W W T W e T W T —— ' g ~———
v o e oW .

NAVAL POSTGRADUATE SCHOOL

Monterey, California

N RS

THESIS

AN INTERACTIVE ENVIRONMENT FOR
THE DEVELOPMENT OF
AN EXPERT SYSTEM IN Z0G

o DTIC -

fRELECTE g,
W FEB1 1 '985éﬁf::

Vidar

-—

Dempsey Butler, III
June 1984

Thesis Advisor: Bruce J. Maclennan

Approved for public release; distribution unlimited

LW W T TR LT T TN T TR T e P I Bt A P R U Ml At AR AU LIl R R A I S AL . N S AR v M S A A A it B

SECURITY CLASSIFICATION OF THIS PAGE (Wnen Date Enterod)

READ INSTRUCTIONS
_REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM

T REPGAT NUMBER 2. 00%7:27&"0?& 1ENT'S CATALOG NUMBER
4. TITLE (and Subtitle) 5. TYPE OF REPQRT & FERIOD COVERED
An Interactive Environment for the Master's Thesis
Development of an Expert System in June 1984
20G 6. PERFORMING ORG. REPORT NUMBER
7. AUTHORC(a) - 8 CONTAACT ON GRANT NUMBER(®)

Dempsey Butler, III

\

9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. ::2&R.Acoznl.xznﬁ:qT'r.Nﬂuﬂ:‘o.JR:ﬁ"r. TASK
Naval Postgraduate School '
Monterey, California 93943
Naval postgTadudte ScHooT 2 REPORT OATS
Mont California 93943 June 1984

onterey, (alirornia . Nug!!ﬂ OF PAGES

14, MONITORING AGENCY NAME & ADDRESS(If differont from Controlling Oflice) 18, SECURITY CLASS. (of thie report)

UNCLASSIFIED

185a. DECLASSIFICATION/DOWNGRADING
SCHEDULE

—

186. OISTRIBUTION STATEMENT (of this Keport)

Approved for public release; distribution unlimited

17. DISTRIBUTION STATEMENT (of the abstract entered in Block 20, il dilferent from Report)

18. SUPPLEMENTARY NOTES

19. KEY WORDS (Continue on reverse aide if necessary and identify by block number)

Expert System, Frame, Human-Computer Interface, OPS7, Schema,
206G

20. ABSTRACT (Continue on reverse aide If nwcessary and identity by block number)

Z0G is a rapid-response, large-network, menu-selection human-
computer interface implemented on the PERQ microcomputer. This :
thesis develops a framework for and discusses issues relative to |
implement ing the OPS7 expert system language as an interactive
programming environment in Z0G. It begins by tracing the history _
of the Z0G system. The logical and physical aspects of Z0G's)
frame structure are explained. A discussion of the expert system -

Llanguage used in Z0G, OPS7, s presented to acquaint (Continued)

M
DD |52n 73 1473 EDITION OF | NOV 658 |S OBSOLETE
SN 0102-LF. 014- 6601 1

SECURITY CLASSIFICATION OF THIS PAGE (When Deta Bntered;

L e T e T R T s T T T N T N T R T T W W T T T T T T T et e R L G A R TR TN U
Bl . - . . . v -~ - (Y . . - N . . . N T N " - .

&ICJ:“TV CLASBIFICATION OF THIS FAGE (When Date Entered)

ABSTRACT (Coatinued)

the reader with its character. The subnet schemas required to ~
run an OPS7 style interpreter agent are developed and the user's o
erspective of the agent is prescnted. Finally, recommendations
for future work in this area are made. : g

S N 0102- LF-014-6601

SECURITY CLASSIFICATION OF THIS PAGE(When Date Entersd)

A gl i Muniih, Vb Jhbash I e Sy © AL H g T TN T T T W T T W T Yy Wi - Y T Y ey
T T Ty N T W W e T T T e T T e L By wide 2L S L S e e
N - - . . B - . - - . - . . " 0 . - - . N et

Approved for public release; distribution unlimited.

An Interactive Environment for .
the Develognent of R
an Expert System in 706G -

by :

. Fempsey Butler, III
Lieutenant, United States Navy
B.S., United States Naval Academy,” 1977

Cheeeslta For
Subnitted in partial fulfillment of the: . « ,peer ~ ~ V%
requirements for the degree of , V[B Z£%
TA B
‘ s sunced N
MASTER OF SCIENCE IN COMPUTER SCIENCE =~ ' 'fteation. - -
e T R S

_Distribwticn/ -
Avziladbil ity Codes :

T Avail ruifor

Dist Q Special

#l

from the

NAVAL POSTGRADUATE SCHOOL
June 1984

Author:

.22

Approved by:____ "
7T Thesis Advisor :
l.—‘ﬂ_\ﬁ.LL.t— —_—

Second Reader -
() .
Lawid_£-_Dls, 8
Chairmarn, Department of Computer Science

'''''''''''

.......

)

—

.........
...........

. LU WLt e T e e T et e e e I . . [P » . w
O W VO Todl Nl Soiv Sl S Y iU S - PP U PR S AP SR S S A S ull LI S, S Sl S R T N, A U Ty

ABSTRACT

206G is a rapid-resgonse, large-network, menu-selection
human-computer interface iamplemented on the PERQ micrccom-
puter. This thesis develops a framevork for and discusses
issues relative to implementing the OPS7 expert systen
language as an interactive programming environment in 20G.
It begins by tracing the bistory of the Z0G systen. The
logical and physical aspects of Z0G's frame structure are
explained. A discussion of the expert system language useqd
in 720G, OPS7, is presented to acgyuaint the reader with its
character. The subnet schemas required to rumn an OPS7 style
interpreter agent are developed and the user's perspective

of the agent is presented. Finally, recommendations for
future work in this area are made. ;fzaucahoh"](dqwc,é(q;
a;rn/nf UYAL‘“@iwr f@’¢““£/ Shipbonid
. v o / ..
fﬁ;‘ﬂi.{* Coarricrs (RIRP-B N jpu/e bas- C?”
proqremming la waqei.
‘f) : - j -/ /r

P T T A N S A N T)

5"/,‘,*.:,,) .

........

TN YN N T T Y

TABLE OF CONTENTS

ZCG BACKGROUNL ©. ¢ ¢ o« o « o « &

A,
B.
C.

INTRODUCTION 2 o « o o = «
HISTORY OF THE 206G PROJECT .
AIRPLAN: AN EXPERT SYSTEM IN

INIRODUCTION - - * -] L] L] - L] - -

A,
B,

A PROGRAMMING ENVIRCNMENT .
THE ZOG ENVIRONMENT

ZCG FRAME STRUCTURE .« « « + « o«

A.
B.
C.

AN
A.
B.
C.
De
E.

THE LOGICAL VIEW « o o o =
THE PHYSICAL VIEW o« o« « « &
SUHHARY L) L 4 * L J L4 - - L] - -

EXPERT SYSTEM LANGUAGE: OPS7
WORKING MEMORY ELEMENTS . .
RECOGNIZE AND ACT CYCLE . .
CONFLICT RESOLUTICN .« . « &
A SAMELE FROGRAM . . . « .« «
SUMMARY .« ¢ o ¢« o o ¢ o o @

FRAME SCHEMA LESIGNS . « &« + o« &

A.
B.

...
..............................

INTRODUCTICN o o o « o « « »
THE USER SUBNETS + o« o « «
1. Type Declarations . . .
2. P Rules . . ¢ « o ¢ o =«
SYSTEM SUBNETS o ¢ o o ¢ o
1. Global Subnet
2. Working Memory « « . . -«
3. Conflict Set

.................

13
13
14

16
16
19
20

21
21
22
23
24
26

28
28
30
32
34
35
36
37
39

T T N TN T N TN T Y T YT N N Ty YT YT T AR Bot Sttt et et Dt it it S AL St s dint A Ll Jer et AL v s

D. SUHHARY - L] L] - - - L] - - . - - s - - - L] [- “O

VI. BW INTERPRETER ¢ « ¢ o o © o o o o o« o o o o o « « 41
A. DESIGN NATURE =« o o o o ¢ » o 2 « « © o o o « U1

Be DAGENT FEATURES « ¢ o « o o o o o o o o a o » o U2

Co IMPLEMENTATION ISSUES &« @ o ¢ o« o « « o o o « 45

1. Writing to POS files « ¢ o o v« & o ¢ o« o o« U€

2. Program SiZe . o« o« e ¢ o o o o o « = « « o U6

3. PERQ Hardware Limitations . « « o o « « o W47

4., Benefits of OPS7 in Z0G o o o o « o o o« o &7

5. System Execution Time . « « ¢« o « « o« « o 48

De SUMMARY .« o ¢ o o o c o o o o « o o ©« o o « « 51

VII. CCNCLUSIONS ANL RECOMMENDATIONS o o ¢ o « o « o« o« 52
A‘ CONCLUSIONS L] L] o ® - - - - - - - - - - L L] L] 52
Boe FEECOMMENDATIONS . 2 o o ¢ o o o o o « =« o o« « 53

APPENDIX A: FRAME STRUCTURE SCURCE CODE . « 2 « « « « « 55
APPENDIX B: OPS7 BNEF SYNTAX =« ¢ o « o o o« » « o o« o « « 58
LIST OF REFERENCES L] L] - * * L 4 - L] L] - 9 L] - - - - - - - 61

INITIAL DISTRIBUTION IIST o o o o o o o o o o« o a =« « « « 62

........................

. A - - . vt e ® . ™) "~ POEIRSUIRST EST SrSE S TR Y
PPN W ST W NI WA R WA W N W U W W P SN W) B ol oo e S nl o AaileSaldaNe®aloBinildlegs o288 o, T RE. PR R TR W R A S RN -

LT L e e B A hd e Aol
R e A T AIRAREMERC A o E RSN S MO AN L L P S L N A e

PN AR

LIST OF TABLES

I. STANDARD GLOBAL PAD SET ¢ o ¢ o o o o o o = o« « o« 29

W e T T, WO UW T W W W T T T T g R T Ml .
s e < - R Pt Ly A e A SR M . . M Sl Biadl Ml e M Skl SR 2 Y n el)

LIST OF FIGURES

3.1 Frame LAayouUt « « » o o o o ¢ ¢ o o 0 « o o o o =« 17
5.1 OPS7 Envircnment Frame . « « « o o o s o o o« o « 30
%.2 Program Schema FIeR€ « « « « « « o o o o o o o o 32
5.3 Type Schema FraBe€ .« « o « « o « o o o« o o o o « 33
S. 4 Tyre Element Schema Frame . . « « « « o « « « « 34
5.5 P Rule Condition Schema Frame . « « « « « o « o 35
S.6 P Rule Acticn Schema Frame « « « ¢ =« « o o = « o 36
5.7 GlobalNet Schema FITaM€ . « « o « « o o o » o o« o« 37
- 5.8 Working Memcry Element Schema Frame . . « . . . 38
5.9 Conflict Set Schema Frame . . « « ¢« « o » o o o« 39
A 8

MR F A AL . i L P cl i S L A T e A Vi Mt e dh A S S e P P P N A et A Sk oA A it A A b N i |

A. INTRODUCTION

Cne of the first things a prospective computer user
learns is that interaction with a machine is regquired if the
user expects to realize the potential power of the computer.
This interaction takes place via a human-computer interface.
Depending on the design of the interface, thnere are varying
degrees of usefulness which the wuser can achieve. It is
safe to say that the more familiar one is with the interface
the more computer power one has available. Suppose that the
knowledge required tc become familiar with the interface was
embedded within the interface. If such an interface was
also simply structured and responded rapidly to commands, it
would allow the user to guickly understand the power of the
computer. Z20G is such an interface. 5
ZCG appears as a rapid-response, large-network, menu- |
selection human~computer 1interface. [Ref. T : p.l1] The '
tasic data structure is a frame, which contains textual
information and selection information about the related |
items. Tens of thousands of related frames exist in hier-
archical networks called ZOGNETS. Selections allow the
rapid traversal of ZCGNETS, the editing of frames, or thae
execution of programs.

. B. HISTORY OF THE ZCG PROJECT

,\j: ZOG has its origin in 1972, when a group of cognitive

psychologists gathered at Carnegie-Mellon University to

investigate coamputer program simulations.! In particular,
this group was interested in devising a method of |using
large scale simulations without prior knowledge of the
programs or of the operating systems on the computers which
ran the simulations. Three individuals (A. Newell, G.
Robertson, and D.M. McCracken) developed a uniform interface
for these frograams, but the first 220G was short lived
because of the limitations in terminal technology; 300 baud
hardcopy was hardly rapid response.

In 1575 Newell and Robertson served on a technical advi-
sory committee for a system called PROMIS (Problem Oriented
Medical Information System) icplemented at the University of
Vermont Medical Schocl. PROMIS turned out to be remarkably
similar to 220G and it utilized terminal technrnology which
provided a response cn the order of .5 seconds.

This experience rekindled interest in 220G, and in 1975
the Office of Naval Research (ONR) began support of a smeall
effort tc further develop Z0OG into an interesting interface.
Several versions of 20G exist on machines like the PDP10,
VAX/11-780, and on the PERQ microcomputer. While developing
Z0G on the minis, Fossible alternate implementations and
difficulties regarding hardware and operating system
constraints were explored. The desire to use the PERQ as
the ultimate target pmachine was influenced by the parallel
develcpment of SPICE (scientific personal integrated
computing environment) on the PERQ at Carnegie-Mellon.
Planning included the use of some of the results of the
SPICE research in the Z0G implementation.

- - - ——— —— - s

1The historical informatjion in thlS ection is based on
- R.M. Akscyn. D.L. MNcCracken. g g_g gggeegg, Compu ter
?gégnue Cepartment, Carneyle-Mello Jnive Y¢S January

10

... PR . A
) Sa S A "‘_A .. RPN ST Tt wt T e e e e e e e T N N G e T
e, Sleatt .a_n__A_l_A_r. A et Aam. s RO AP P RIS Y SIS TN

In 19580, Captain Richard Martin, USN, Commanding Officer
for the commissioning crew of the USS CARL VINSON, visited
the 206G project. The Captain had previously decided to
incorporate computer science research to make CARL VINSON a
test bed for 1leading scientific technolcogies in the fleet.
After visiting many CNR research sites, he believed that 206G
would meet his goals for creating an onboard testbed for
further research. Although the Z0G group had not envisioned
the application of Z06 in such a real-time, large scale
environment, the advantages of placing ONR sponsored
research into the fleet were too great to pass up.

The current Z0G-based management information system
onboard CARL VINSON has a data base distributed over 28 PERQ
computers. Applications cover four main areas: (1) arc
on-line Ship's Organization and Regulations Hkanual (SORN);
(2) an ipteractive task management system which can use the
SORM to decide how tasks are to be performed; (3) a rule
based expert system tc aid Air Operations in the launch and
recovery of aircraft; (4) an on-line training manuals which
interact with videodisk display units; and (5) an electronic

mail systen.

Because this thesis 1is involved with enhancing the
developrment environment for an expert system in 20G, the
focus will be on the third itemn.

C. AIBPLAN: AN EXPERT SYSTEM IN 206G

The USS CARL VINSON is an aircraft carrier and as such
spends a substantial amount of time in the launch and
recovery of aircraft. AIRPLAN is a rule-tased expert systen
used as a decision tool for air operations officers in the
launchk and recovery evolution. The system is implemented in
OPS7, a rule-based language, with 206 used as the human-
computer interface.

1

..........

........................
....................................

From the beginning, the development of AIRPLAN has been
incremental; a kernel of the expected system was put into
the ofperational environment, and the envircnmeat has and
continues to direct the direction of growth. In support of
this incremental strategy, the system allows queries about
its data base and its behavior. “This ability to ark the
system gquestions about its reasoning is useful for system
developers trying to track down bugs, and for system users
to both gain confidence in the abilities of the system and
the correctness of its recommendations, and for eliciting
additional or more detailed informatica orn whick t¢ base
decisions." [Ref. 2 : pp.2-3]

12

IRASERCTUNLATAAC R AR A A AL Y AP i aeaupsEas e b ari it el oo et SR LT s a o e -

oo
Ta, A"

II. INIBODUCTION

A. A PROGRAMBING ENVIRONHENT

Wkat is a programming environment? To answer this gues-
tion it is necessary to understand what is involved in the
process of writing a computer program. Initially sonme
Froblen specification nust exist. With such a specifica-
tioa, aa algorithm which appears to satisfy it is found.
Given these two items, the algorithm must be translated into
source code, executed and debugged. The c¢ycle of code
writipg, execution and debugging continues until the human
programmer is convinced to sonme predetermined degree that
the program satisfies the fproblem specification. The task
of mapaging all associated files and programs falls upon the
Frogranmera

Experience shows that this process is composed of many
activities which are tedious, repetitive and detailed to the
point where errors are commonplace. Examples of areas wiich
create such problems include mastering A programming
language syntax for creating and editing progranms, and
managing the compileslink/load process. It seems appro-
priate that the computer should be counted on to perfornm
these kinds of mechanical tasks, which it excels at, vhile
the programmer concentrates on cognitive ones. To this end,
the programmer should have sufficient tools available on the
computer to automate these activities [Ref. 4 : pp. U-5].
In such ar environment, creating and maintaining programs
can be the responsibility of a syntax-directed editor. The
process of compiles/link/load can be reserved for final
producticn programs, since in the interactive environment an
intergreter is better suited for program development.

13

-

VTR VT TN T CURCHEN T T T TR TN W T w U

The above is just an exanmple of what an interactive

programaing environment can provide. For the purpgoses of
further discussion, the followiny definition of an interac-
tive programming environment will be adopted:

First, within a unified i:ameuork, ;hez grovide a larg
set of tools, most of which are sgecxfl o a_particul
grogramu ng anguage. Second, .he{ take advantage o
the fact that prfoglams have an underlying structure that
is mcre than a stf ng. of characters, u3ing this struc-
ture as an organizational tool. ,Tﬁvrd they suppert
incremental o ria,development, in both the des g aand
maintenance Activities. Fxnal&y, t?e{ are hlghll nt§r~
active _in nature, ;tinoting an e:g olting a fai lx high
banduwidth of commiinicatio between the 1ser an the
environment [Ref. 3].

e
x
b4

B. TBE 20G ENVIRONHENT

The natural gquestion which follows is, how does Z0G
measure up to this mcre fecrmal definition of an interactive
programaing environment? The notion c¢f a frame in a tree
structure satisfies the requiremeat of a unified framework.
In ZCG, the frame is used as a visuai representation cf the
data kase for the user to see and manipulate; at the same
time the frame 1is the structure used to store data in
memory. These tvo separate ideas work this way. In memory,
data is store 4in a complex PERQ PASCAL 2 record structure.
Por the user, the notion of a window frame exists. Whken the
user requests to see data in memory, the data is unparsed
into different fields of the window and presented on the
screen.

2PERC PASCAL is an extension of PASCAL which, among
other featuyres, supports high level strln% manipulation.
The cogyrlght of, this extensior is held Yy Three Rivers

Computer”Cofporation, Pittsburgh, PA.

14

P T T D L A T Ca e P T . S T S R S
P S N R . K . P T ST T T TP S Sy « e . e
L A N A N A R A R - T A L AN L I A N

..................................

LN

‘l
.
-
.
l-‘
-
L
y
-
.
.
--
-
L]
.
.
S
-
-
.'\
R"
h.'
.
b
-
C.
,
-
AT
W NN TN A N

~

The second point ¢f using the underlying structure of a
language as an organizational tool is present if one
considers the language to be Pascal like. The inherent
structure of Pascal encourages hierarchical stepwise devel-
opnent and modular design. 220G develops its ZOGNETS is just
this way. The frame at the top of a subnet contains its
central theme. Opticns are created on this frame, and these
options link to other frames which further explain the
central thenme. But this use of the underlying structure of
Pascal seeas to end tere. There is little evidence to show
that the developers of 210G planned to support any particular
programning language from vithin the environment. The lack
¢f any programming tocls, such as interpreters, cospilers,
or syntax directed editors, makes this manifest.

The ability to support incremental program development
is one area where Z0G falls short. Currently it supgorts
develorment of Pascal programs by writing the programs as
text in frames and then running an agent (a program
executed from vwithin Z0G which manipulates frames) which
strips the text off the frames and creates a text file out
in the ©rxachine's operating system. What is needed is a
method of executing parts of the program while still in the
environment; this is the focus of this thesis.

The bandwidth of communication which Z0G currently has
is highly interactive and user friendly. Users find that
movenent around the subnets is intuitive and easily
mastered. Straight-forward system utilities exist for the
creation and modification of frames in the data hase; time
on the system rapidly makes the user comfortable with these
utilities.

15

ol IR i A AP A MR TR A SN A R SO SN et SR Pa il Saiags Bt A S e aste AR A A s e]
P B T S T . ' DI TR VI D e

S N AP SR T s et sk e T e it e T Y T T T W e e R e e

III. 206 FRANE STRUCIURE

Thus far, 206G has been viewed from a logical ferspec-
tive. This chapter will expound on this view apd address
the physical inmplementation of the 20G frame in Perq Pascal.
The intent is not to maks the reader an expert in using 20G,
manipulating 20G frames, or generating code in this version
of Pascal. Rather it is hoped that the reader will gain a
respect for the power and coaplexity of this environment.

XY -

A. TPBE IOGICAL VIEW

The logical view has been defined as the user's window
into 20G. Understanding this view requires an understanding
of the lLasic parts of a 20G frame aand how they are put
together.

The hierarchical arrangement of frames in 20G is in the

form of a tree. This structure, <called a net, has a root
frame (called the tofp frame), and branches, or connectiag
frames. As iupleuented on the Perg Microcomputer, ZOG is
one large net compcsed many subordinant nets, called
subnets. Inherent to the net are different levels of infor- '
mation: the top frame orf the net contains yeneral informa-
tion and pcints to frames with more specific informaticn.
This rpattern continues until the most specific frames in
the net, the leaves, are reached. The point is that every
frame describing a particular aspect of the more general
subject bas a place in the hierarchy of tne tree that is
dictated by the 1logical structure of the subject wmratter
[Ref. 5 : p.11].

16

........................
..............................

AR R . R A i A AN A S 2

Every frame is divided

......

g At Siste it Shints Saais Stantei St Seede
------- e m e LR M

into four component types called

The frameid is the uni
Z0G nete.
number of that subnet.

sane frameid name.

in the
Fr

points to it. It can be

be anything the user wants.

'''''''''''''''''''

......... A

IO S

.........

S
»

Ty LSRN
".:‘;"L.

It contains

The frame title is usually the

ketween a frame and its parent.

itens: the frameid (frame identification), frame title,
frame text, and selections (see figure 3.1). Selections,
which represent choices of wvhat to do next, are of three o
types: op tions, local pads, and global pads [Ref. 5 : :%
pe123. ﬁ
TBEIS IS THE FRAME TITLE. IT GIVES FRAMEID R
A CONCEPTUAL NOTICN OFP THE FRAME'S -
CCNTENTS. o
THIS IS THE PRAME TEXT AREA. THE TEXT PROVIDES THE {
CENTRAL IDEAS QOF THE INFORMATION. .
THE FOLLORING OPTTIONS LEAD TO ELABORATIORS ;
CR THE TEXT OF THIS PRA ME. o
1. THIS IS THE FIRST OPTION
2. THIS IS THE SECOND OPTION N
L. THIS IS A _LOCAL PAD. IT IS A CROSS_REFERENCE .
T2 OTHER FRAMES. ‘
X. ACTIONS (AGENTS) CAN BE EXECUTED HERE. -
™
HERE ARE GLOBAL PADS. THEY ARE ENVIRONMENTAL TOCLS. k;
-
Piguzre 3.1 Prame Layout. -

que system label
the subnet
the same subnet have the

for every frame
name and frame

ames in

text of the option which
considered the conceptual link

The text of the frame can

17

'''''''''''''''''
......

....................
............................

I A e A U S A A A)

Selections are used to point to other branches in a net.
The first type of selection is an option. It consists of a
selection character and text. Options are used to fpoint to
frames that are logically more specific than the franme
containing the option.

The second type, the local pad, also consist of a selec-
tion character and text. While the difference between local
pads and options are negligible, local pads usually cross-
reference other frames rather than following a strictly
logical fpath.

The final type of selection is the global pad. These
are fcund across the bottom 1line of the frame amd can be
utilized by typing the first letter (always lowercase) of
the desired pad. Glcbal pads provide more choices for the
user: more ways to move around nets, informatioa altout the

rape€'s history, and utilities for tasks such as creating or
deleting frames.

One other part of a frame is the user display. Zog
comnunicates with the user on the liast line of the frame,
directly above the global pads. The display helps the user
by suggesting what to do next, why a compand from the user
was not accepted, or where or not the editor is currently
envoked [Ref. 5].

When frames in 20G are created, they must originate fron
some frame schenma. A schema is the generic frame for a
subnet, and is <c¢ieated vhen a user elects to create a new
subnet. The wuwser designs the frame with anything on it,
from oftions or text, to any number of local or global fads.
This frame will now exist in Z0G as the zero frame in the
subnet specified by the user. Subsequently, vhenever
another frame is created in this subnet, the default frame
schema to be created will be the zero frame for the subnet.
The oftion exists to use another frame schema, if desired.

18

.............

B. THE PHYSICAL VIEW

In reality Z0G is simply a very large computer program
(over 70,200 lines of source code). The Z0G system is based :
on the record structures provided by Pascal. A frame is a -
record containing as nany fields as there are parts to the
logical franme. Some of the parts are easily recognized,
such as the frame title, the text, and the options. Others
are less obvious, such as the frame owner(s), the frame
protection, and the action hidden behind global pads.

The field type declarations vwvary, depending of the
nature and quantity of information that <the field hclds.
For example, the frame ID field is simply a string of no
more than 15 characters. The text field is more complex
because its data may be up to 21 1lines of information ;
(doukle sized frames exists, and these could hold more "
text). To handle this, its field in the frame record points :
to another record, which points to a linear, doubly linked

list; each element of the list contains a line of text. The :

source code for the frame structure can be found in appendix -

. X
Just how is data stored into the Z0G database? By using

the utilities provided by the system, the user can create a ;

blank frame or a new subnet of frames into which data can be *

stored. The Z0G editor (ZED) is used to insert information

into the various fields in the frame. Once the frame is

saved, 120G parses tlke different fields of the display frame

(called the vwindovw frame) and stores the data into the phys- -
ical record frane. The retrieval of data follows the |
reverse path. After telling 20G which frame you wish to
see, it finds the physical record and unparses its fields
into the window frame. It is interesting to note that the
retrieval of a specific frame over the Ethernet takes under
1.2 seconds. If the frame is located on the same machine as

the user, retrieval takes .5 seconds!

19

-
-
.......

C. SUABARY

From the perspective of an interactive programming envi-

aent both the 1logical and physical views are important.

logical view of the frame provides an intuitive under-
standing of stored data as well as a mechanism for input and
output for programs. The physical view provides the knowl-
edge base required to design a tool in the environment.

et anad Jernen atnde oy - T T y——

IV. AN EXEERT SISTEN LANGUAGE: ORS?

Because OPS7 is the expert system currently used by 206G,
a discussion of the 1language is appropriate. OPsS?7 1is a
member of the OPS family of production system languages
designed by Charles l. Forgye. Production systems represent
a model of computaticn equal in power to, but very different
in style from, procedural languages like Pascal, operator-
oriented languages like APL, and applicative languages such
as Lisp. This discussion will highlight the language's data
structure, rasic control structure, and conflict resolution
scheme. Having this understanding will reveal the character-
istics which lend OPS7 to integration within Z0G. The BNF
{(Backus~Naur Form) syntax for the 1language can be found in
appendix B.?

A. WORKING MEMOBY ELEMENTS '

The only data structure used in OPS7 1is the working
memory e€lement. It is similar in form and funmnction to
Pascal's record structure. Fields in a working menory
¢lement can hold scalar values, vectors, or sets. The
following is an exanmple of a type declaration, a function
call ‘'MAKE,' used to create an instance of the type in
working mepory, and a call to display a wvworking mcemory
element. Comments in OPS7 start with a semi-colon and

terminate at the end of the line.

(t{pe task
) ind = scalar status = set:1 values = vector:3
N . 31he gulkag the information is this chapter comes from -

_— a reference

% - SO 21

...........................
................................
...........

S e e e T e < - e,
PRI VR W TR ST WA Wl S YAl Vil Sl AL WL L L W

ng memory.

(make task

§ gype tas
a
kind = sort status = { on }

)

(vme 1)

task
*ids = 1
kind = sort
statue = Qn } .
values = 1223)

Symbolic atcms may be any string
integers or anything enclosed by

collections of scalar values which

Cne must think of the working
as the knowledge base about the
contains instances of the declared
by the MAKE function, altered by

constantly changing. It is this

B. RECOGHEIZE AND ACT CYCLE

The lkasic control structure of
the recognize and act cycle. On
interpreter, an attempt is made to
hand side of a prcduction rule
vorking pnpemorye. This process
instapces in vhich left hand sid

— . . - 5o =

satisfied on each cycle. From he

22

his fungtign ggfgtes an instance of
v

values = [12 3]

Call to display working Memory Element 1
What follows is the outp ,
(Assgles this instance of TASK is
vorking memory element 1.)

ut.

Scalar types can be either integers or symbolic atous.

of characters other than
double gquotes. Floating

point operations are not implemented in OPS7. Sets are
defined as unordered collections of non-repeating scalar
values. Curly braces delineate sets. Vectors are ordered

may repeat.

memory of an OPS7 progran
state of a problen. It

types, vwhich are created

the MODIFY function, and

deleted by the REMOVE function. Working memory is

change which causes the

expert system to transition from one state to another.

any production system is
every cycle of the OPS7
satisfy at least one left
with elements frocm the
defines a set of unigue
es of productions may be
re the conflict resolution

scheme muvst determine which instance from this conflict set
is swuitable for firing. The following pseudo code for this
cycle is found in reference 5:

loop

RECOGNIZE:

determine the current set of instantiations;

if the set of instantiations is empty, then halt;

3
A TSR
:".‘}'-' l'l z

) R ACT:
_ select 1 instantiation and execute its right hand side
actions
repeat
R e C. COHFLICT RESOLUTICN

The purpose of the conflict resolution strategy is to
select the next rule to fire. Ideally the execution of
‘ules would be order independent so that such a strategy
would not be required. But in reality such a set of rules
rarely exists. Due to the nature of expert systems, the
conditions for different rules will be similar. And as the
vorking memory elements are created, modified, and deleted
rules have a tendency to fire sequentially although that nmay
not have been the original fplan.

Scme strategy must exist to deteraine which instantia-
tion is to be selected from the conflict set if the set
contains more than one element. In 0OPS7, conflict resolu-

tion is either special case figst cr most recent first. If

- the set of conditions for a production rule P is a proper
'j subset of the conditions for production rule Q, then rule Q
L will fire first. Rule Q is more specific than P because of

23

its additional conditions, hence the interpreter should
address the more detailed prior to the more gemeral case.

If the working memory elements which satisfy the condi-
tions for production rules P and Q differ only in that the
elements for P were created or modified more recently than
those for ¢, then rule P will fire. Thus, exfpansion is
depth first in that once a path is followed, it will be
continued as far as it can go before branching out.

This strategy introduces order into a potentially
chaotic situation. Obviously, it is necessary if the
‘expert' is to have any control over the systen. Knowledge
of the mechanism at work allows programeing of specific
tasks though the <control flow may be subtle or [fpossibly
convoluted.

D. A SANELE PROGRAHN

As with any language, learning its primitives and syntax
is the major hurdle to successful programming. But our
purpose is to determine the suitability of OPS7 for integra-
tion into 20G. To this end, a small sample program will be
reviewed. The particulars regarding items such as input and
cutput syntax are not important to this example. If the
reader has further interest in such matters, see [Ref. 7].

24

e e e e e e . e e
PR) CRE A ~ g W N N, N T T . . TN R PR . R . . - R S e e e .
N e Y TN T A T T T T T T e T TN e s e T e T T

o . . e
KA . L T Ty o . Wt Lt e e T T e A0 - AT T te T
P PUPLPETEF P WL P U T L R R T PRI SR . S TR St Tl Sl S T e

..................

This program asks the user to input numbers and, when
told to sort, will print out the nuambers in ascending order.
70 preserve siamplicity no error checking is performed.

IYPE DECIARATIONS

type nunber
(typ value = scalar)

number schena

(type task task scherma

type = scalar)
PRQDUCTION RULES
(p readin

A rule called READIN

Read as long as the input
is anythl but the woltd
‘sort ERBROR CHECKING
ti' is a label.

i;task type -~= sort

LI X TT %)

(write "I/put an Integer—->
) ; Input message

(mod1f3 i type =]
(index (accept) 1) ; Read value into task tyre

(make puuher value =
type) Make another INSTANCE of

number using the same value)

A raule called SORT

Task is now sort
(as entered by user)

(p sort

(task type = sort)

LIXT)

j(number value -~= sort) Find a number 3 which
is not = sor

(‘j' is a label)

fhe;e is NO value
ncluding *sort! {
ich is snaller han j

- (number value -~= sort

value < j:value

) ==>
write j:value
(urite p:7ayeq

)

s+ Print out the smallest value

(remove j) ; Remove this value from working memory)
ZNRPUTI DATA
(make tacsk) ;s Create an jinstance of task

; to start the systenm

25

L ARes iy - = Bk aiiabl ' 2l ——
etV - e TN ,"f,v:]‘—(v’"wv—'vw_r‘-‘rfv'"_v-‘"v'v. W W T T W W TR W T h"—r‘"v v—*'—*““** AT A AL N T SN N R T e L 200 S e |

.........................

Thke order of entry is important in 02S57; type declara-
tions, rules, and then input data. Generally, the iunstances
created by the input data establish the working memory
elements required to start the systean. The type declara-
tions are easy enough to understand. Two types are
declared, both of which hold scalar values. The INPUT DATA
makes an instance of type task and assigns its field type
the default scalar value of *'2¢'. Placing this in working
nemory causes tae first p rule, READIN, to fire. READIN
assigns the input value to both number valuwe and task tyre.
This rule will cortinue to fire until the work ‘sort' is
typed and entered. 9nce this happens, p rule SORT will fire
because the task type = sort and there exists (at least one)
number value NOT equal to sort. The beauty of OPS7 is seen
in this simple prcduction: the interpreter has been
instructed to search working memory until it find a value
"j' whbich is swaller than any other value (nct egual to
'sartf). This smallest value is printed to the console and

[DR SN SRS
Fr Ry
AR L]

renoved from working amemory. SORT continues to fire until

2ll number value instances, except value = sort, are removed ::
from working menmory. At this point there are no wcrking if
memory elements which can satisfy the right hand sides of EZ

any p rules, so the system halts. Essentially, this is a
program which will sort from one to many numbers (restricted
by memory size) using only one rule!

E. SUNMARY

This review shows that there is a structure in the
creation of an OPS7 system which can be supported by a hier- :
archical environment such as 20G. Specifically, sutnets ia }Q
206 can be the structures for storing type declarations, o
working memory (each frame containing a single working
Renory element), prcduction rules, and the conflict set.

26

...... N e e e e e et et e e e S e S T S T) DRRRVS .- RN
al‘;-_ L.-:.; PRI l.__.._l _.’__L-ﬁLJ J__A.__L_-&}.l. lac A_.A_A..A_.J‘:‘I:"_AEAA.JJ_‘._L‘,J l;q-_h.‘ A awa'y _:_-J_.:- ‘A R o vh;.;_'_::.’.l;'.Lz

......

The job of the interpreter will be to know the location of
these suknets and what to do with specific types of frames.
The next chapter will discuss the design of the frames for
each such subnet.

21

L AN hd Dl MRS Il DA Ml D I il At S Mttt St M seath uine S B Ieih sadh Jendh A et g M taat ek s st el e D
- .~ ~ - - . DR Tt e w e ~ . L) -

V. FBANE SCEEBR DESIGHS

A. INTRODUCTION

Ncw that there is an understanding of the frame struc-) ;
ture in 120G and the format of QPS7, the next ster is to
develcp subnets which the new interactive dinterpreter wiil
use, and to detail the basic design of the generic frame, or
schema frame, for each suknet. A subnet is required for: 1) .
each system subnet used and maintained by the interpreter, .
and 2) e<€ach user subnet upon which the user can develop his
Prograns. It follows that each subanet should have a unique
frame schema so that the dinterpreter knows what tc¢ expect -
each time it refers tc it. The unigque schemas take advan-~
tage of the structure and syntax of OPS7 for writing
programs and organiziag subnets.

The first consideration for schema design is whether the ‘ -
information written on the frames should he frame text or
frame options. Because each of these parts of a frame are
implemented as selection pointers, it makes little differ-
ence to the system which one is used when trying to fimnd
information on the frame. If the frame item is to point to
another frame, orptions are required. It is also preferable
to have frawmes which contain only text, without selecting
other frames. For these reasons both text and options are

used.
The use of the frame determines which global pads are -
displayed. Those frames which are created by the user will
have a standard set of global pads (table I). Those franmes
created, modi fied, and removed by the interpreter will
contain a similar set except 'edit' will not be available.

28

...................
) =

T T WY W T W T N TR T YT W T W T T T e I T e Ty T W Ty TR Y e T W R e a . W o o
L e . e T e R v :" LT PR N A A AU A P St N A R A T A R A M TRV S A R A

TABLE I
STARDARD GLOBAL PAD SET

oo EDIT - RUN 'edit', THE 20G EDITOR. y
i HELP =~ DISPLAY THE ToP FRAME OF 20G USER'S GUIDE i
v - R IN THE OTHER WINDOW. .
] ' BACK - BACK UP ONE FRAME IN THE BACK-UP STACK. D
T NEXT -~ DISPLAY THE NEXT OPTION FROM THE SELECTION FRAME. -
o PREV - DISPLAY THE EREVIGUS CPTION FROM -
-3 THE SELECTICN FRAME. o
. T0p - DISPLAY THE T0P OF THE NET (FOR THE
PARTICUIAR MACHINE).
GOTO - GO TO SPECIFIED FRAMEID, SYSTEM WILL PROMPT.

- UTIL - DISPLAY THE TOP FRAME OF SUBNET 20G. SHOWS
- AVAILABLE AGENTS AND ACTIONS.
5 DISP - REDISPLAY THE CURRENT FRAME.
N INPO - DISPLAY FRAME MAINTENANCE INFORMATION
- WIN - MAKE THE OTHER WINDOW THE CURRENT WIJDOW.)
- JOMP - PUT THE CURRENT WINDOW FRAME IN THE OTHER WINDOW

AND CHANGE WINDOWS.

. The subnets for this proposed O0OPS7 system contain all

= U - the information that the interpreter requires for fproper o
| | executior. Each have unigue characteristics causing the
approfriate results when it interacts with the interpreter.
The regquirement for subnets can be divided into two types:

_ those created by the user and those created by the inter- o
:U _L; preter. The user subnets are the working areas 4in which —
X ; declarations, rules, and actions are writtem by the -

: “‘?j programmer. Characteristic of these subnets are frames
' which allow editing for the purposes of writing OPBS7 ;;

programse. The interpreter, or system, nets are sigilar in
form to the user mnets, except editing of the frames |is
denied. This is acccmplished by write protecting the frames
and by removing the 'edit' global pad from the frames. This
prevents the user frcm circumventing consistency checks done

-%: " ;2 by the systen. System subnets are required for trpe decla-
jﬁjf " rations, production rules, working memory, and the confiict
set. What follows are specific designs for the schema

frames for each subnet.

I R A A R MR S R D N b B Ao A R N A S T i Tl A B S M) D S A A e LAY 1 v - 1% Ry

B. THE USER SUBHETS

When the user elects to write 02S7 programs in 220G, the
first frame presented to hiw is the enviroument frame for
the agent. Agents typically reguire one or more userc-
specified parameters, such as subnet name, or output file
name, in order to run. Environment frames were created to
provide a means of fpassing this information to the agent.
These frames use their options as ‘'slots' that hcld this
input data. The slct editor is used in conjunction with
these frames to provide the user a simple method of
inserting the desired information.

ENVIKONNENT FERAME OPS0
1. NAME OF THE FEOGRAM SUBNET:

Y« EXECUTE

GLOBAL PADS (To include the slot editor *SLED') ;

Figure 5.1 OPS?7 Environment Fraame.

{Ref. 8]. In this ipstance, the user selects the silot
€ditcr apnd, following a prompt for the subnet name, fills in
the name of the suktnet he wishes to use. Error checking
done by the slct editcr prevents enterinyg an invalid subnet
nake. The exection 1local pad on the environmert f£frame
causes the agent to begin execution on the given subnet.

30

...........

................

......

If the subnet already exists, the agent presents the top
frame in the subnet in the current window and the user
proceeds as desired. If it 4is not present, the agent
creates a new subnet using the name from the iaput slot and
copying the PROGRAMO frame as a schema (see figure 5.2).
The system then creates the subnets for types, rules, and N
actions under the respective options, using the followving =
naming coanvention. The subnet names include the subnet
function (type, rule, or action) appended to the end of the
subnet name from the input slot, not to exceed 12 charac-
ters. For example, for a program nawe of AIR, thke subnets
are called AIRTYPE, AIRRULE, and AIRACTION. If need be,
letters are truncated from the input slot subnet nane. lhe
development of these subnets is discussed later. The
FROGRAMO frame schema contains the standard set of glokal
pads and a set of six loncel pads: Load, Rum, Halt/Continue,
Working Memory, Conflict Set, and Error Msgs. The Load pad
is selected once the rrogram has been entered. It tells the
interpreter to evaluate the program statements for syntax
and type errors. The Run pad explicitly tells the systeam to
commence evaluation and execution of the PROGRAM frame. The
Halt/Continue pad allows the user to arbitrarily stop a
running OPS7 program in orider tc go to other frames and
analyze program acticms. The Working Memory pad is a link
to the existing wvorking memory subnet. The Conflict Set fpad
links this frame to the conflict set subnet. The Error Msgs
pad is the 1link to a frame which contains the text of the
system error messages. Having these local pads nmakes the
OPS7 actions, (wm) and {cs), cbsolete as debugging ccamands.
The top frame organizes the program into these specific
subnets to make program creation and debugging easier for
the [frograemer. Note that all schema figures may also
include the syntax for possible entries into the franme.

4

DN B R

s

S B PN

R AR
y v e B SN

31

........

Cn the top frames of each of the three subordinate
subnets is where the programmer writes type declarations,
production rules, and actions. Each entry is a single
option on the frame. In the case of type declarations and p
rules, cnly the first line of the declaration appears on the
appropriate frame. For single actions not appearing as p
rule right-hand-sides, the entire action statement is
entered. For types and p rules, additional frames must be
created to contain the body of these parts of the program.

Progran PROGRA MO

1. TYPES

Z. RULES

3. ACTIONS
L. LOAD
R. RON
H. HALT/CONTINUE
W. WORKING MEMOKY
C. CONFLICT SET
E. ERROR HKSGS

GILCBAL PADS

Figure 5.2 Program Schema Prare.

1. 1Iype Declarations

The schema for the type subnet is a frame with the
standard global pads and tvo local pads (Figure 5.3).
This top frame is created by the agent and is linked to the
top frame in the user subnet. The subnet name for this
subnet comes from appending the word *types” on to the first
seven letters of the user program name. The 1local pad,
More, directs the user and the interpreter to additional

32

RO B B B S it i i i abi ol Rl I P daP T Adade JB b S BEPAA Shte 4 YT T T ¥ TN W YW W W \
R emaT ’ S S, TP AR A R A A AN A Sl Wi At AL SN SN S A
.

.....................

<SYMBOL> TYPEO N
1. <SYMBOL> ”
Z. <SYMBOL>
3. <SYMBOL>
4. <SYMBOL> :

- M. More types
P. Parent frame

GLCBAL PADS .

Pigure 5.3 Type Schema Frane.

type declarations shculd more than nine be needed (there
are a raxinmum of nine options per normal frame). While the
More fpad is not the most efficient way to traverse a list of .
items, this system shculd not have to support a program with -
more than two frames worth of types. The issue of progranm
size is addressed later. The parent pad directs the user to
the current frame's parent. .

To create tyre declarations the user selects the .
TYPES options on the top PROGBRAM frame. This selection .
leads to the top of the type subnet. The programmer then
. selects edit and enter the first type as an option. Once
;1 cut of the editor, the desired type is selected and the
| ELEMENTO schema is explicitly rejuested. This frame is
created and the editor is automatically entered (see figure
- S.4) . The body of the type declaration is entered as teit,
o in accordance with the OPS7 syntax, and saved. When the
interpreter encounters the TYPE option on the top PROGRAM
- frame, as it process the frames beneth it, it enters the
1: types found in a subnet called GlobalNet; This process is

explained in section C.1.

33

R TP R A A N C A R
YA EL A S RS 8 -
P o o 'l..:‘ PN .I.\l‘- l’} PN l.\I. "

'7"**":_."""]"7.ﬁ':.‘, .".".'-ﬁ"f'.'-‘. ORI SR A L B AT S A St S e Bt Miats Bt 4 g T T Lisheuh 4 it b

<SYNBOL> ELEMENTO
<TYPE-~FIELD>
<TYPE-FIELD>
<TYPE-FIELD>
{TYPE-FIELD>

. M. More elements
. P. Parent frane

GLCBAL PADS

Figure 5.4 Type Element Schema Frame.

2. [Bules

The body of p rules are entered like types using a
schema similar to TYPEO, except the More pad leads to 'Mcre
rules.' This schema 1is called RULEO. The tree below this
frame differs from the ¢types tree because at least two
frames are reeded to contain a single p rule: one for condi-
tions and one for actions. The schema frame for conditicns
contains the standard global pads and the same local pads as
TYPEO. The use of a More pad is considered sufficient here
because in most cases rules can be expected to have fewer
than twenty-one conditions (there area maximum of twenty-cne
line of text per norzal frame). The conditions are entered
as text on these franmes. The bottom of the condition frame
contains an option '-->', which points to the actions for
the given p rule. This option does not appear if there are
more conditions on another frame. Figures 5.5 and 5.6
illustrate these schema fraames.

34

...
...
.............

B P P . L e e R B A . AR L P A I L v . D . R PR

The action schema frame is a frame like ELEMENTO,
with the standard set of glotal pads and the local pads,
More and Parent. Actions which appear on the right-hand-
side of froduction riles may also stand alone as commands in
oPS7. The <cstandard use for tnese kinds of actions is to
create some initial state in vorking memory so the program
starts when rumn is selected. This subnet is =modified by
selecting the ACTION option at the top of the user subnet,
selecting 'edit' on the frame, and entering the action as
text.

(P <SYMBOL> CONDO
<CCNDITION>
<CCNDITION>
<CCNDITION>
<CCNDITION>

- M. More conditions
o P. Parent frame

-->
GLCBAL PADS

Figure 5.5 P Rule Condition Schema Frame.

C. SYSTEB SUBNETS

The system subnets are those created and maintained by
the interpreter. The subnets regquired by the interfreter
are for glokal variables, working memory elements, and the
conflict set. They are «called GlobalNet, WM, and (s,
respectively. These subnets are created the first time the
interfreter is called to load a program. Subsequently, any

35

-—D ACTICNO
<ACTION
<ACTICN>
<ACTICN>
<ACTICN>
. M. More actions

P. Parent frame

GLCBAL PADS

Figure 5.6 P BRule Action Schema Fraae.

time another program is loaded, they are cleared out so the
systea can start from scratch. The subnet names for these
nets are not concatenated with the name of the user prcgram
subnet Lkecause they are independent of any particular
program. As previously mentioned, security is maintained in
these sutnets by DENYING the user the ability to edit system
subnet frames.

1. Gloral Subpet

As the interfpreter is processing, each time a type
declaration is found it is inserted into the GlcltalNet.
This is the svstem':s reference mechanism whenever it 1is
creating an instance of a declared type for working memory.
This name comes from the fact that all variables is OPS7 are
global [Bef. 6].

Adding an entry into this subnet is a two step
process. First, the type name (OPS7 syntax for this is
<SYMBCL») must be written as an option in the top frame of
the subpet. Pigure 5.7 shows the top frame in the GlobalNet
subnet.

36

Tt e et e T T e e T e T e e et e -
" -\._-\.:,‘.' A A T L R S Sy \:~._,-.l_\ T e T o A R L

P S SRS A AEE A T DI R AP PR P S o

LR IR AL St St St S ol LA RO A i A AL A S St Al b4 T it it Mt St et e B ARa k. endt wane aals
A S A N P gt TN TN _ o NI) SV ek il o
. - N . - . " . . . ~ a . . ~ . ~ -
R N DL

GLOBAL VARIABLES GLOBALNETO
= = 1. <SYMBOL>
™ 2. <SYMBOL>
- 3. <SYMBOL>
s X% 4. <SYMBOL>

. M. More variables
. P. Parent franme
44‘[” - GIOEAL PADS (EXCIUDING ‘edit!').

Figure 5.7 GlobalNet Schema Prame.

The second step is the creation of the frame which
has the actual declaration. This frame contains infcrmation
as text. To insure security of system nets, a copy of the
type elements frame from the user subnet, TYPES, must be
copied into this franme. Simply establishing a link between
the GlokalNet and the TYPFES subnet would allow the user to
edit frames used by the systenm. The system does rot create
these frames until they bhave been found syntactically
correct ty the interpreter.

2. J¥orking Hemory

v The working memory subnet is used by the system to
" *',”; held working memory elements, which are specific instances
: - of the previously declared types. The top frame in this
subnet is similar to that of the GlobalNet except its subrnet
name is WM (refer to figure 5.7). The subordinate frames in
this subnet use ELEMENTO frames as the schena. When the
interrreter encounters the function MAKE (implicitly or
explicitly), it creates an option on the top WM frame and an

instance of that tyre from GlobalNet is copied into the
Working Memory subnet.

This subnet's element frame differsfron the
GlobalNet's type schema in that the values assigned to the
various fields of the element are included in the text.
Each value is appended to the end of the text containing the
type~field. As seen in figure 5.8, the character

<SYMBOL> ELEMENTO
<TYPE-FIELD> ==> <ANY-VALUE>
<TYPE-FIELD>==> <ANY-VALUE>
<TYPE-FIELD>==> <ANY-VALUE>
<TYPE-FIELD>==> <ANY-VALUE>

o M. More elements
. P. Parent franme

GLOBAL PADS (EXCLUDING 'edit').

FPigure 5.8 Sorking Memory Element Schexa Frane.

string '==>' separates the declaration from the value. The
creation of the working memory element requires writing the
element name { <symbcl>) on the top frame in the WM suknet,
copying the type information frame from the GlobalNet into
its element frame, and writing the explicit values (or the
defaults) assigned by Make.

A potential [froblem arises when one considers how
many working memory elements might be created during a
program run. It is difficult to estimate this because it
depends not only on the nature of the program, but also on
the different ways a program can be executed. What is
known, is that the conflict set must have a unigue way of

38

identifying each element in working memory. The soluticn to
this is to use the selection number of the working memory
element option appended to the number part of the frameid to
create a unique identification number. When a working
memory e¢lement satisfies a p rule condition, the above
pumber is passed to the conflict set subnet.

3. conflict Set

The 0OPS7 conflict set contains the p rule name(s)
and the ID nambers cf the working memory element (s) which
satisfy conditions of the particular rules. Using the
example frcm the previous chapter, if the p rule SORT had
its two conditions satisfied by elements 1 and 9 froun the
working memory, then the response to the OPS7 action (cs)
would be to display the conflict set *'SORT [1 9].' The
conflict set may contain zero, or more elements.

CONFLICT SET cso
<SYMBC1> [ELEMENT ID NUMBERS]
<SYMBC1> [ELEMENT ID NUMBERS]
<SYMBO1> [ELEMENI ID NUMBERS]
<SYNBCL> [ELEMENT ID NUMBERS]

. M. dore
. P. Parent frame

GLCBAL PADS (EXCLULING 'edit').

Figure 5.9 Conflict Set Schema Prame.

39

ST w e T W W T -
PN e e R TR T T T T - g S Jhie A S Jaah RN M (P Alace it e

......................

In the 206G implementation of OPS7 the conflict set L
is kept on frames in a specificly c¢reated subnet. The
schena frame for this subnet is a frame with the stardard
global pads without ‘tedit', and local pads for Parent and
More. The conflict set information is written as text.
Figure 5.9 illustrates this schenma. This subnet is used
cnce the run command is executed at the top of the user
subnet. Every time the recognize and act cycle conpletes,
the information on this frame is updated because the p rule
which just fired must be renmoved. Remaining unfired rules
are also deleted if the change in Working Memory caused by
the firing of the previous rule irvalidated a rule in the
conflict set.

D. SUREBARY

: The subnets defined here are the mechanisms through
afﬁ which a user can use OP57 in the interactive Z0G environ-

ment. Being able tc do this on Z0G frames takes advantage
of 2ZCG's hierarchical organization and fast retrieval of
information. But tlere is still an important piece of the ;;
Fuzzle missing. The OPS7 interpreter envisioned wnmust be Ef
called from within 2Z0G to create, execute and most impor- ;i

tantly, debug prograus. Hopefully, these subnets establish
an intuitive framework within 20G for the programmer and the

interrreter.

VI. AN INIERPREIER

With the foundation laid by previous chapters, this o
chapter outlines the characteristics of the interpreter to Z{
ke used in this systenm. This is done by reviewing three
tkings: 1) the nature of the design for OPS7, 2) what
features the interpreter will have, and 3) issues which will
directly affect the fpracticality of the imglementation.

A. DESIGN NATURE

In trying to decide just what the interpreter for this
system should look like, two distinct choices were afpareat. *:
First, the system could be an interface hetween the existing
206 system and the current OPS7 interpreter. Essentially,
this would mean creating a layer of software between Z0G and
OPS7 for the purpose of formatting data into a usealkle fornm
for each systen. Although the appearance of OPS7 in 206G
would be hierarchical and more interactive, it really would
te the o0ld interfreter in disguise, This approach sidesteps
the entire issue of designing a new tool for the environ-
ment. The second choice is to integrate the <£features of
OPS7 into 206G itself. To do this OPS7 must be able to
communicate to the user via 120G mechanisms while contimuing

2 I DR

R

to evaluate and execute programs correctly.

The decision of which option is preferable is based on a -
nunber of engineering issues such as the time constraints on
the design project and the compatibility of the OPS7 system
with 20G. The determination of which implementation
approach is easier, is not trivial due to the complexity of
Z0G and OPS7. If the project were time sensitive, the e
method which would get a system up and ruaning the fastest

41

. Lt e

v

RIS T et N e M et e e vl T . v e e LT

P W DTS S e « . W AT AT e et e, - R P S L SR)
L e e Ut e - . R -\ - b . L} - - - - . Y -

PPN PERE WA WAL P, P WAL A R SR WA AR A~AMMA®MJMD_‘L\£&:£: IACSCIAN

-~

is the okvious choice. Comparing this research with other
projects wmay preovide some insight into this decision.
Regarding compatibility, the two systems are currently
written in the same fprogramming language, and OPS7 programs
have an inherent hierarchical structure like the organiza-
tion of data in Z0G. While the use of the same programminy
language does not imply compatibility, the similarity in
organization of the two systeas does.

It is Lecause of the desire to implement GCPS7 under
Z0G's ccntrol and tbe compatikility of system organization
that the latter direction is chosen.

B. AGENT PEATURES

The interpreter, vwhich currently comprises 14 modules,
will be integrated into 206G as an agent. Agents are Lasi-
cally processes within Z0OG which know about 2Z0G stcuctures.
Typically agents operate on subnets of frames, or fortions
therecf [Ref. 8]- Their main purpose is to extend the func-

tionality of Z0G. Agents differ from system utilities in
that the latter are components of 206G. The former are
programs that are separate yet <called from vwithin 206G
[Ref. 5].

There are many features wvwhich will be a part of the
design of this interpreter, and will perform implicit tasks,
such as the creation of the Working Kemory and Conflict Set
subnets. The user will interact with the explicit features
for the creation and debugying of programs. To illustrate
how the agent will work, a sample programhing session will
ke discusseg.

In Z0G, the programmer will select the OPS7 interpreter
ty calling up the net utilities frame aand choosing to run
the C¥S7 agent. If the subnet name given to the envircnment
frame is not found, the agent will create a total of seven

42

et i A N

Mo "v?
. .y

ALt T

¥

L g 4 Tl At st e e
LT, LY Rl e e,

MACER ™ SACIACIAL S A S S g
BB AR SCRAR R A MRS G A M CIUCE A A AT KT A B S AR SR A e i i o

subnets. For the user, the tofp PROGRAM frame with the three
options is created. Each option points to the respective
subnets for types, rules, abda actions. When the system g
ipitiaiization is comfplete, the top frame in the user subnet :
will be in the current window. The programmer may now enter
statements on the user frames by selecting the approiriate
options. As descriked in chapter 5, only parts of the N
statements may appear on the top user frames for types and
rules. The programmer may choose to first enter all the
required syntax for these frames in a top-down fashion, or

to enter the statements and its body (on a connecting framej ;
before proceeding tc the next option on the parent franme. .
The latter approach is called depth first. The top-down

method is faster because the top <frame in the subnet will
only have to be opened and closed once.

When the program has been entered the user nust return
to the top frame and select the Lcad local pad, This will
cause the interpreter tn traverse the program subnet .
performing type checking, creating the GloballNet, WM, and CS ;
subnets, and performing any actiomns present. At this time
OPS7 will also put the production rules into waat it calls
production memory. Essentially, this is a tramnslation of

the language syntax into a more compact form for use by the
producticn system part of the interpreter. Any errors
detected during the lcad phase, will be announced to the
user's display on the current frame and written to an error ‘
message franme, This frame is found by returning to the top 2
frame in the user suknet and selecting the local pad E. The e
errors will be options on the Error Msgs frame; these .
options will be linked backed to the frame in tlhe user
subnet which contains the error. f

Suppese the program bas been correctly entered and
loaded. Now the Run local pad is selected. This action -
causes the recognize and act cycle to ccmmence.

43

I TP Tt S I I TP TP Y '., e et P S, - e e
ORI IR I A - - I I ~ - CEE . S L I IS

M = e T "‘ e e R N A R A L Lt
v .

e e e e e e e T S e e e e e e e e e e,
—a it a Jr;r."‘.ﬁ\' Y

\ LR Y . LN N .
Nl Wl N WA _-".‘A_L.A\‘x‘ 2t -] "}‘L-f.“ et e e Ve Y T

P DL I R B D S P A M 2 D e e B i) M Dl . hd e bl A, st A Rt A Fiadiaid o it - - ,_w‘-“v
“ - PR N e ' S . . " ” . P . LT

.......

Compunication with tle user is accomplished through the user
display of the current window {(which 1is at the top of the
user subnet). Although the muchanics of this process are
transparent to the user, the interpreter searches through
working memory trying to find elements to match the left-
hand-sides of production rules.

As the production system is firing its rules, three main
things are happening. First, the conflict set subnet is
~ontinually expanding and contracting as conditions are
satisfied. Closely connected with this 1is the second
activity, the creaticn, wmodification, aud removal of items
from the working memory subnet. Most important is the third
activity: the system I/0 with the user. This takes place
in the user display, and allows a somewhat limited methcd of
communication with tlte progranm.

While the production system is running, it would be
: advantageous tc allow the user to look at a system suknet,
;?Qf”“ _ such as WM or CS, ir order to follow what the prcgram is
"J e doing to. A feature implemented specifically for AIRPLAN,
lf¥ _f3§ called incremental display, would prove useful in imple-
y . menting this capability. Incremental display has Z0G update
the visual representation of a frame, which is displayed in
one of the 720G windows, whenever the physical information
for that franme, in secondary storage, has changed.
Implementing this while OPS7 is running could prove to be
impractical because a software level interrupt would be
required to tell Z0G to update the displayed franme.

In the event that the program has a semantic error which
causes, for example, the program to terminate prematurely,
the user may want tc survey what the systeu was using for
working memory or what was contained in its last conflict
set. This is done Lty returning to the top of the prcgram

'i& subnet (if not already there) and selecting the approfgriate
local pad. This feature has the potential to greatly

enhance the process of debugging, because while the rrogram

listing is in the bottom display window,
can be used to traverse the desired subnet for dekugging.
Take the situation above. To find program has
halted one may want to view the condition frame of a p rule
memory
gloktal pads can be

the upper window
out why a
while viewing the contents of particular working
elements. The next and
extremely helpful in this situation by
prograrmer to move ficm condition frame to condition

rules without returning to the parent frame
working

ptevious
allowing the
frame
of different p
holding the selecticns.
memory may be viewved.
As previously mentioned, the programmer will be denied
the ability to edit system subnets via global pads. But
there does exist an alternate method of entering the editor
on the current frame. If the user logged imto 220G is the
framne owner, the editor may be selected by typing control-d,
followed by e. One would only want to do this to manipulate
menory elements that might be

Similarly, elements of

hindering a program's devel-
the specific [fproblem could be

the program run to completion.

opment. The bug creating
overlcoked in order tc allow
The freedom to do *this would be restricted by
make a special owner assignment when creating the
The password to log in as this special user
to the OPS7 igplementor(s). It is their
unpredictable results which

having the
agent
system subnets.

would ke linmited
responsikility to realize the
may occur if illegal mcdifications are made to subnets main-

tained by the systen.

C. IBPLEBERTATION ISSUES

Because the intergreter and the interactive environment

it is appropriate to discuss scme

are real world systers,

known issues which ©must eventually be dealt with if such a

45

ot

LA Nl M . M AL e P e " AL N) e i § L’ Bl Sl A it e ¥ -
MR Rt M M e e e e S N AR B AU St it B RS AL oML M T AA SN

e U

Ly

s .

-

S AR A

......

........

GNP 2Tl Y
-‘.:-_""- VRN N Y e \

' w Y - L A el Y ani Redh Mt T S Ehd
* . A T e e N e

project is to ever te iampleaented. While this section
attemgts to bring to 1light dinmplementation guestions and
suggest possible solutions, in no way is the domain of solu-
tions limited to the author's knowledye nor the limitaticns
of the current systeas. While some of the issues may seean
prohidbitive, the impact of future technological capakilities

e 3 ¥

can not te dismissed.
1. Rriting to RCS files

An initial question is how aan OPS7 program in the
206G system will be saved intc a PERQ Operating System (POS)
fiie. The capability to write the information from frames
into cperating systex files currently exists in Z0G. The
agents designed to do this must be modified to read the
program from the subnet in the proper sequence. The ability

g .

to do this is necessary because programs may be smaller
conponents of larger OPS7 programs too big for wuse in Z(CG.
This integration of modules is currently envisioned to be
done ocutside the developement environment.

2. Erogram Size

Frogram size is an issue which impacts the design of N
every subnet in the proposed OPS7 implementation. When -
considering size, ¢ne should 1look at an existing expert
systen. AIRPLAN is the only ope currently implemented in
OPS7. 1In its present form, it uses about 200 p rules. The
goal cf this research was to create a development envirce-
ment for small programs or parts of larger programs. Hence
a program of AIRPLAN's size ard complexity was not planned
b to rur in this environment. This decision may seem arbi- -
\;; trary, ftut the autbhor felt that if this system could be o
implemented with this 1limit, expanding it to support full
OP57 programs could be dealt with later. Specifically, the
- author envisioned tlke ability to support programs about -
. one-fourth the size cf AIRPLAN.

R 46

LS SRR ORI AL R IS ML i - LS TN St A A et B B ey RS Ralir K RIS S A o I e

............................

3. PERC Hardvare¢ Limitaticps

Another issue is the implementation of ZOG and OPS7
together onr the PERQ. The PERQ can support 32,000 16-bit
words of global data (in Pascal, under the PERQ Operating
Systenm) . The current version of Z0G uses about 24,000
global words. 0OPS7 reguires 23,000 global words. One can
reduce this number by converting large structures (frames on
down to individual strings) from static variables (currently
managed by 2Z0G) to dynamically allocated structures using
the Fascal NEW call. This still requires the use of a
32-bit pcinter to the structures in the global word area of
memory, and the pointer will have to be dereferenced every
time the structure is referenced. The dereferencing will
add some extra time cverhead. It is possible to combine 20G
and CES7 on the PERQ using this method.

A more rressing problem is the amount of primary
memory available. When Z0G was first put on the PERQ, the
implementors tried tc include a Pascal Compiler. This
resulted in the system swapping so much that it was func-
tionally brought to a standstill. The simple solution is to
hope for the availability of a larger amemory board for the
PERQ. Currently, an upgyrade from 1 Megabyte to 2 Megabyte
memory boards is being investigated onboard the Carl Vinson.
Without such a change, the only option available would Le to
include in 2Z20G a sukset of OPS7. The majority of the
globals for OPS7 are concentrated in two modules. This
implies that some sort of reduction of the standard OPS7 may
be possikle [Ref. 9].

4. Benefits of CES7 in 206

Cne might ask what is the benefit of having OPS7 in

20G in terms of the time required to simply type in the
subject progranm. In other words, will the programmer spend

47

L. e LML RISLINACL M PN A AN T S AP AT A e d Sl Ml Ve M il Sl N Sand e J
N ST . PR w e P Y L. A N I AR Y

EEPEIRS AR {4_“_,‘1\.}‘?-‘1}*‘:"»;*!",.'w]- PRI ity

more timeé trying to enter a program in Z0G than he otherwise
would tyring it into a text file. Based on expericnce with
AIRPLAN, the following can be said. Unquestionably, for an
inexperienced user, the use of a text editor is definitely
preferred over Z0G. This is because the user wculd be
spending mcst of tke time trying to understand how 206
works, rather than corcentrating on prograam creation. Oonce
the user becomes more familiar with 20G, the time required
to create an OPS7 program should decrease dramatically.

20G is designed to be an intuitive, easiy tc learn,
human-computer interface, but in reality, it takes hours of
use before the user can adroitly construct trees and edit
frames. In this inplementation, the 20G environment would
e used to add organization to OPS7 but not make it easier
to type in rrograms. Hopefully, the benefits of having OPS?
in Z0G will more than compensate for the increased overhead
required to use Z0G frames.

5. System Egecution Time -

The time reguired to run this system is interesting
to analyze. Fairly good mumbers exist for determining the
time it takes to read a frame from disk memory into the ZOG
Pascal record structure. For a local frame it takes 0.5 ;
seconds to read a small frame; 1.2 seconds are required for
a repmote frame. The time to modify a frame (an Cpen
folloved by a Close) 1is approximately double the read tinme
[Bef. 9]. 1The time required to locally create a small frame
is estimated to be afpfroximately 2 seconds. The following
is an estimation of the time required to load and run the
number scrt program in Chapter IV.

This program bhas two type declarations. The inter-
preter will open the type frame to £find the first type name
and the location of the element declaration frame. It will
then cpen the Globallet and write in the type name as the

48 2

v -

first option, foliowed by copyiung the declaration frame into

a newly created frame pointed to by the GlobalNet option.

This process requires the opening and closing of a minimunm “

of three frames and the creation of another. This must be -

done for every type declaration. Therefore, about 5 seconds

will te reguired to lcad each type, or a total of 10 seconds :

for the progranm. Q
Beading the p rules into the system production -

memory requires reading the rules frame for the ipdividual

rules, and reading koth the condition and action frames. _

For each rule, a minimum of three frames must be opened and -

closed; this will take about six seconds. Allowing time for

the reading of the rule into memory means each p rule will

required altout seven seconds. The two p rules in the

-

example will require 14 seconds to load.

The single action in this program is read from its
frame and the 'make' directs the interpreter to create a
working memory element. This process requires the opening
and closing of two frames, the reading of another, and the
creation and modification of a third. It is estimated that
this will require 4.5 seconds (3.5 of which is required to

l e .
s e
COR T B S AP

. !

create a working meaory element). The total time required 3
to load this program is about 28.5 seconds. -

Frogram run tige is determined by following the
action of the prograa. When run is selected, the systen
will attempt to find matches for the p rule conditions in
working memory. This process requires the system to read
every working memory element for each p rule. To do this
the top frame in the WM subnet is read for the element IDs
and the fointer to the element values. In other words, on
every recognize and act cycle at least two frames must be .
read rer working memcry element. Then, each time a match is
found for the left-hand-side of a p rule, the C5 subunet must
te orened so the new member of the conflict set may be

49

.....
-------- -

AT SILIEL TS .
'y N Yy vt et

entered. It will take 3 seconds to fire the first rule. As
working memory increases the time reguired to read working
memory will increase 1linearly. The time to create the CS
subnet will depend on the nature of working memory.

The readin rule will continue to fire until the word
'sort' is entered by the user. The time between user inputs
is devoted to making a new memory element, mcdifying
another, and determining the conflict set for the next
recognize and act cycle. This will take about 1 seccnd more
for every new number added. Entering five numbers to be
sorted, plus the word sort will take at least 40 seconds.
The fprocesses to perform the sort will take about the sanme
length of tinme.

All told, the loading and running of this small
program, assuming the subnets are local, will take at least
110 seconds. This is due mainly to the time reguired to
create, open, and clcse so many frames. The same load and
Tun fprocess on the existiny OPS7 syster takes only about 10
seconds! This is a tenfold decrease in performance.
Extrapolating these performance figures to a program
containing 25 rules may make the new system iantolerably
slow.

A method to increase performance is not clear
because the bottleneck 1lies in the overhead for reading
frames from disk storage. Like the previous issue of main
memoxry size, the only solution to increased speed may be
fourd in improved CPU technology. In any case, the bernefit
of having OFS7 in Z0G will have to be weighed against this
degredation in execution performance.

50

-, WY e N, & T T oW T TE T T T T T e e
W, - e e Y T B e T ., N EAlaBO A TR S Ml Sl M R DA i i S M DAL S A S il e S Shnl Mt St Sundie et it I Dokl Ml o
. - T LT e I N R e e A

D. SUBHARY

The issues addressed here are by pro means all that need
be considered, but they do represent the real world consid- :
erations that must be faced for projects in general, and '
this research in particular. Should the schemas prorosed by
this research be implemented, these issues aust be resolved ;
if it tc have any imfact on interactive programming.

»
E
-
-
-
-
"
-
‘-. -
- ’
- -
:-.. +
- ‘g r
™ - .. "r
v 4 -)
e - -
» N
- - - -,
e " -
A " N
i & :
A - o .
‘_.'\‘ ~ .
ST a -
-.'. -‘ N
- -~ .
. .
51 .
- e »t, "
- ‘. 3 ... -
. . .
R .
o <,
- .-

e e, e) . e .
e A T e AT e e e e O AT A TP AL AEN
" § -Pae IR TS P S - e

AR EC A IS IR AACUL Gt Sl DA o Srig) utl s oo ot Ebul Suol Sttt nolh el el aer Bah et dews e aouy e ae et L O e e i il s +

.....

VII. CONCIUSIONS AND RECOMMENDATIONS

A. CCRCILUSIONS

This research was an investigation into the design of
an interactive programming environkent. The reguirements
for such an envircnment were initially studied. This
research showed that the environment should (1) prcvide
tools specific to the supported language, (2) use the under-
lying structure of the language in designiag the environ-
went, (3) support incremental program development, and (4)
support a high bandwidth of communciations between the user
and the environment.

In analyzing Z20G, oae finds that it conforms nicely to
this raradigm, except it does not have any specific tools to
support the desired expert system language, OPS7. In order
to design these tools a study of the code for both 206G and
OPS7 was undertaken. It should be noted that the time to do
this study took much 1longer than expected because of the
size of the two systems and lack of instructional documenta-
tion of the system ccde. The result of this study was the
design of a reasonable framework for the writing of OPS7
programs in 20G.

The design of the the subnet framework is the first step
in the creation of the programwming environment. During the
actual isgplementation, issues concerning hardware limita-
tions, the speed with which Z0G can run OPS7, and the time
saved by developing CPS7 programs would have to lLe dealt
with. These issues have been analyzed and solutioams
suggested.

52

.................

A 2t S D e IR ute "atiad atedt S et - - -
T o R T T T Y R T T T Ty Ty r—r

B. RECCHMENDATIONS

The experience «c¢f working with these two systems will
undoubtedly pay dividends in the future. The work exfperi-
ence gained by studying both ZOG and OPS7 have iamstilled in
the auther an appreciation for the effort, both in research
and manfpcwer, required to design and implement human-
computer interfaces and new programming Jlanguages. Also,
the author will be leaving Monterey to work with the imple-
mentation cf these systems onboard USS Carl Vinson.
Additional formal instruction in these systems will be
fort hcoming, but the time spent on this research has laid an
important foundation for continued work in this fielgd.

From this experience, it appears that trying to learn
about a complex software system in a benign environment is
difficuit, at best. The learning environment must be
similar to the real world environment, and have support from
personnel, as well as documentation. Personnel uust ke able
to provide to the student the benefits of their experience
with the system. Further, the available documentation must .
extend beyond system definitions and source code to e of
any tangible value.

The time required to understand laryge, complex software
systems is difficult to estinmate. The size of the system
will have the greatest impact on the learing process. The
next factor is the structure of the software. If the systenm
is written in a structured programming language, some struc-
ture is inherent. Beyond this, the different @wmodules of
program code must be logically interrelated. Minally, the
documentation availakle must extend to instruction on the
design conventions used and implementations made during
system developaent. This kind of documentation will help -
the user understand the overall design apprnachk and prevent
hin from repeating sistakes npade earlier in the systenm

development. Ultimately, the system size is the Kkey. It
may be well documented, have discrete, well defined modules,
and be suprorted by many knowledgeable users, bLut with a
large system, more time is required to understand enough so
that the user can comfortably work with the systenm.

In future research in the area of interactive envircn-
ments it is strongly recommended that implementation wcrk in
systems of this scale include experience tour type training
in the subject systen. The time reguired to bring the
student up to the level of understanding required to accom-
plish this kind of work, is otherwise not available. In
this instance, on-site facilities and technical expertise
were availahle, but not to the degree sufficient to support
further implementaticn work.

54

L e N e S S S S -
AT AT A A W TR R B S

"o A
» .
L] - .
[R 3 L)

.

Tt

e

- N - ol - . ~ A W T
.. O T T T T T T T T T R I Ty T R T R T T R Y T e ey TR T v pi
R R Wt Pl A N L A

W
RN

Pl RS

APEENDIX A =

FRAME STROCTURE SOURCE CODE L

(GENERAL TYPE DEFINITICNS) “

N

v

##% NOTE: The symbol @ is used as the pointer label. "
type int = integer;

Pos Typ = int;

string15 = string[{15]; =

zstring = string [2557]; v

SidTyp = string15; {Subnet ID} .

FidTyr = string15; {Frame ID} _

UsrIdTyp = string15; {User ID} -

{protection type} ;

ProtTyp = int; f

{FRAME STRUCTURES) -

{Short string structnres} f

type Eﬁ

Fsi5FTyp = @Fs15typ; {Pointer to frame string 15 } :

Fs15Typ = record :

text: string15; {a line of text } c

Frevstr: Fsi5PIyp; {Pointer to the previous string } :j

18

nextstr: Fs15PTyp; [Pointer to the next string } .

end; {Fs15PType record}

type
UsrIdPTyp = Fs15P1yp; {List of user ID's }

{String structure} tyge
FsPTyp = ?FsTyp; {Pointer to frame string }
FsTyr = record

------- S e T e N e R P N N M A R ol ik e e R AR M e R N T A, SR A e A
. ‘_
. '™

N

i

text: string; {a line of text } ;

Frevstr: FsPTyp; {Pointer to the previous strang } f

nextstr: FsPTyr; {Pointer to the next string } i

end; {PsPType record) X

%

{Selection structure} §

type ;

SelP1yp ~ @dSelTyp; {Pointer to selection} ?

SelTyp = record :

ks char; {Selection character] E

nf: FidTyp; {(Next frame ID} 3

text: FsTyp; {Item of text } fﬁ

Iow: PosTyp; {Item row position in the frame) .

colunmn: PosTyfp:; {Item column positiony f

10: PosTyp: {Item ninimum row position} i

cO: PosTYE;: {ltem mizimum column position} 3

11: PosTYE:; {Item maximum row position} !

cl: PosTyp; {Item maximuam column position} $

action: FsPTyg; {(Item action } s

expand: FsPTyr; {Expansion area } ?

Frevsel: SelPTyp; {Previous selection} ﬁ?

nextsel: SelPTyp; {Next selection } j@

end; (SelTyp record} t

{#hole frame structuxe} &

type ?f

FETyp = @FTyp; fPointer to franme} 3

FIyp = record T

nextfr: FPTyp; {Next frame (save list only)} ﬁ

frameid: FidTyp; {Frame ID } i

owners: UsrId1yp; {List fo frame owners} L

{ crgate: long; {creation date (longer integer) 1} -
% modifier: UsrIidTyp; {modifier } &
- moddate: long; {modification date } ‘ fj
’ modtime: long; {modification time } J

56 - \

version: int; {version number }

Frot: ProtTyp; (frame protection}

AgCvBit: bonlean; f{agent created indicator }

AgModRit: boolean; {agent modified indicator} g
title: SelPTyp; (title info }

text: SelPTyp; {(text iafo } L
options: SelPTyp; {options lists) =
lpads: SelPTyp; {local pad iist }

gpads: FidTyf:; (global pad frame}

ccmupent: FsPTyp; (frame comment}

accessor: Fs15PTyp; {(frame accessor list} -
end; (PIyp record}

{Frame header structure}

type
FHPTyYp
FHTYE record -
nextfr: FHPTyfp: (next frame header (save list only) } =
frameid: FidTyp; {Frame ID }
CWners: U'srIdTyp: {List fo frame owners}
crdate: long; f{creation date (longecr integer) }
modifier: UsrIdTyp; {modifier } i
pmoddate: long; {modification date} B
modtime: 1long; {modification time}
version: int; (version number }
prot: ProtTyg; {frame protection }
AgCrBit: Dboolean; {agent created indicator}
AgModBit: boolean; {agent modified indicator}
end; (FHTyp recoid}

2FHTyp; {(Pointer to trame header}

it

57

..........
.............................

e te PO IR R S
FERUPPINP I TP o0 ST WP JP UL T SR Sl T)

SERCRA S SN B M S SR S YA 1040 I AR AR BN AL N AN AN gt Lt ar (L AR R S N N R e e e e P A S e S e

ARBENDAX B *
OPST BNF SINTAX

This is the BNF syntax Zor ors7?. It is included in this
document for the <convenience of the reader. It was
extracted in total from [Ref. 7]. The symbol *'-' is used
for relation negation. The non-terminal <symbol> stande for

- e P s ® 3

any Dname or label. The symbol ... wmeans repeat the
PRECELING item any number of times.

<type> ::= (type <symbol> <type-fieldd>...)
<type-field> ::= <symdol> = scalar .
s3= <symbol> = set : <integer> ,
::= <syabol> = vector : <ihteger> -
<rule> :3= (p <symbol> <conditiond,.. =-=>
<actionr...)
<conditicn> ::= <pattern>
::= =<pattern>
s:= <symbol> <pattern> .
<pattern> ::= (<symbol> <lhs-termd...) :
<lhs-term> ::= <symbol> <relation> <lhs-value> A
::= Jdsymbol> : <integer> <relation> -
<lhs-value» -
<lhs~value> ::= <scalar-constaant> -
$:= <{scalar-constant>... } \
s3= <{sgcajar~constant>... a
HEES fldval> g
<scalar-constant> ::= <symbol>
s := <integer>
<fldval> s:= <symbol> : <symbol> _
::= <symbol> : <symbol> : <intceger>
<{relation> t:= <scalar-scalar> -~
¢t := <scalarc-struct> N
::= <struct-scalar> s
$:= <Lstruct-struct> =
{scalar-scalar> HE L = | 2=] <} A< | > | 2> f
58 : R

.. NI IE I IR I I T -
* :.“ - ot . "e - K -\ l\ '\-t\llx -c." ~

e EP Il

<scalar-struct> $:® in | ~in
{struct-scalar> ::= has | -has N
h-‘
<struct-struct> = o= X
s = = X
s 3= intr B
3= -intr b
2e= sub -
1= -sub N
$ 3= sup ,
s 3= ~sup
<action> = <wm-action>
3= <£u-act;on>
::= <lo-action> | .
: = <variable-action> .
::= <control-action> L
<pm-acticn> s:= <rule> ‘
s:= <type>
<wa-action> s3w imakg <symbol> <rhs-termd>...)
HFE modify <scalar-constant> *
<rhs-term>... ; =
HEE remove <scalar-coanstant>... ﬂ
3= re set> S
::= <JLimplicit-make> .
<rhs-~term> s3= <symbol> = <any-value> ;
<io~actiomn> ::= (vrite <arny-value>) ;
HEES write <any-value> <vector-value>) -
S write <any-value> <vector-vajiue> o
o <{scalar-~value>) o
. S (ifile {scalar-value> .
<scalar-value>)] -
$3= (ofile <scalar-value> '
<{scalar~-valued) he
HH close <scalar-value>) '
3= load <scalar-value>)
<control-action> L trace <scalar-value>)
$:= wne <scalar-coastant>...)
$:= wn
: ss= (cs ~
K s:= run) ny
B 1= run <scalar-value>) o
2 ::= (match <scalar-value>) -
) <variable-action> ::= (let <syuwbol> = <any-value>) .
L”Qﬁ <implicit-make> ::= (<symbol> <rhs-term>...) E
Lj <any-value> ::= [<scalar-valued... 9 o
2N ‘ $:= [<scalar-value>...)
— s := <scalar-constant>
= g 59 -
- O -
N A R e e ML o e e e o ae e
t C AT A AT BT W I S A T A A S IC G AT S e A N St e TN

<chs-field
<function>

28 as
ts 8o
un

<{scalar-constant>

<rhs~field> :
<{scalar-constant> :

<symbol>
<symbol>
<integer>

<function> <{scalar-value> <scalar-value>

N®l

<scalar-value>
{scalar-value>
<scalar-value>
<{scalar-value>

{scalar-value>
<{scalar-value>
¢{scalar-value>
<{scalar-value>

ensyn
enint
acceg%

NNy

acce <scalar-value>)
accept <scalar-value>
<{scalar-value>) ;

val <symbol>) .
append <vector-value>
. <vector-value>)
(index <vector-value>

. {scalar-value>)
ggnlon <set-value> <set-value>)

84 00 0080588000084 00 00

as 00
o 00
([]

intr <set-value> <set-value> ;
get <type-name> <scalar-value
<{scalar-value>)

[INXX-RT]
48 80 00

L X
1}

{type-nape> : scalar | vector | set

60

DR BN R e e e S S TN . St e R - - A B
. . - - - ' . RN . .- . - . . MARN v, e T TwET Y " - - - ad
Lo . - . . JOR . AR R A I D M hPRI ML SN RTR T T T Y TN TN

5.

LIST OF REFERENCES

Neuell D.L. McCracken, «Ge Robertson, M.
and the 0SS CARL' vmson. g_g*s U don

;_és_;_x Cgﬂpusgg Science Research R.Eié!.

Sobel A. Levelop rpla Computer Science
Depar%ment, Carneg:.e-ﬁ"%loA 17%551ty, 1 July 1683.

Barstow, D., H. h obe, E. Sandevall. Inte i
ggo rapming Environmeants, New York: McGraw-HAill

uacLennan, B. J. EE&H_;E i%gi ajng La g%ges:
egg g ;g . €W York:

RETRa0y: o SRRHIAERENG; oo P08,

Yoder E. R. Askcyn. 20G User's Guide,Comfputer
Sc1enée ﬁepartment Carnegie-Nellon University,

Version One, 6 July f982.

Brownston, L. S.Elements of O0BPS7 P
Carnegie-Mellon Unive %y, Dec

Forgy, Charles L. g elipinary OPS7 Manual Charles L.
Forgy, 20 July 1982.

0 System OQrerational Description Carnegie-Mellon
$asvc2i3Esh p2iskpliodel gegcription g

ARFANET MAIL, from D. McCracken Carnegie-Nellon

University, to D. Butler, 18 June 1584,

61

e e Y ¥TEF v v

INITIAL DISTRIBUTION LIST

Bo. Capies

Defense Techplcal Information Center 2 . ;
Cameron Stat lf ;
Alexandria, rginia 22314 .

Dudley Knox Ljibrary Code 0142 2
Naval Postgraduate’ §c
Mcnterey, Califorria 93 43

Department Chairsan, Code 52 1 .
Department of Comg ufer Science _
Naval Pcst raduate School -
Mcnterey, California 93943 :

8f éce13§ Research Adainistration 1
o

Naval Pcstgraduate School

Mcnterey, Califorria 93943

Comguter Technologies Curricular Office 1
Code_37

Naval Postqraduate Schoel
Monterey, Califorria 93943

Dr. Eruce J. Maclennan 1

Code S52M 3
Naval Postgtaduate School . .
Mcnterey, -

LCDR Paul S. Fischbeck, USN 1
Ccde_ 55Fb

Naval Postgraduate School

Mcnterey, Ca. 943

Dr. Lon L. McCracken 1 .
Ccmputer Science Lepartment -
Carne ie-Mellon Univer51ty -
ttsburgh, PA .

Butler, III 1

o
g A royo Drive

Pi
i
Pebble Beach, CA 93953

62

