AD-R149 950 DEVELOPMENT OF R DHTH BASE HBNRGEHENT SVSTEH
PERFORMANCE MONITOR YOLUME 1(U)> RIR FORCE INST OF TECH
WRIGHT-PATTERSON AFB OH SCHOOL OF ENGI. BHILOR

UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D-2-V0OL-1 G 9/2

1.0 %MK az
Jee & & M
|m 1 £ H2
Ji2s Jlie pe

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

o

Te)

N

(o))

v

F

|
<
-
DEVELOPMENT OF A DATA BASE MANAGEMENT
SYSTEM PERFORMANCE MONITOR
VOLUME I

¥ THESIS :
' AFIT/GCS/EE/83D=2 PAUL D, BAILOR 3
Captain USAF .
= o
5
o 3
DTIC
- ELECTE]
e FEB 11 1966 J .
' 1
‘é DEPARTMENT OF THE AIR FORCE AR
AIR UNIVERSITY — D -
AIR FORCE INSTITUTE OF TECHNOLOG X .'\' [g
- 1
Wright-Patterson Air Force Bcs_c, O}hio_ - :'..:::
DISTRIRUTINN STATEMENT A | 85 01 31 05 4 -

Approved for public released . T
Distritution Unlimited S

AFIT/GCS/EE/83D=2

Accession F?f_ﬂnﬁn :‘
NTTS GRasl | B | 5
DTIC TAB i .:
Unannounced (] >
Justification 4 ;5

B
L__p?{g:j.ribut.1on/7.”_________J
Aveilability Codeg__~_
" |Avail and/or
Dist Special

JIE

DEVELOPMENT OF A DATA BASE MANAGEMENT |}
SYSTEM PERFORMANCE MONITOR

VOLUME I
THESIS
AFIT/GCS/EE/83D=2 PAUL D. BAILOR %ﬂ
Captain USAF S

FEB 11 1985 .°

D _—

Approved for public release; distribution unlimited

AFIT/GCS/EE/83D=2 'Vl'

DEVELOPMENT OF A DATA BASE MANAGEMENT
SYSTEM PERFORMANCE MONITOR
VOLUME I

THESIS

Presented to the Faculty of the School of Engineering
of the Air Force Institute of Technology
Air University
in Partial Fulfillment of the
Requirements for the Degree of

Master of Science

by
Paul D, Bailor, B.S. -
Captain USAF i
Graduate Computer Systems .

December 1983

Approved for public release; distribution unlimited

ER R AN

Preface
The purpose of this study was to develop a

performance monitor for a Data Base Management System.,
During the requirements analysis, many references on the
subject where found, and they indicated the advantages of
using such a monitor. However, none of the references
contained a detailed examination of exactly what was
measured and how the measurements where taken,

In this report, I have attempted to fill this gap by
analyzing the performance evaluation process, providing
tables of performance parameters, presenting a generalized
design for a DBMS performance monitor, and presenting the
details of implementing and using the monitor.

I would like to thank my advisor, Dr. Gary Lamont,
and the other members of my thesis committee for their
help in preparing this report. Additionally, I would like
to thank Dr. Thomas Hartrum and Major Walter Seward for
their excellent instruction in the areas of Computer
Performance Evaluation and Queueing Theory. The
information obtained in these classes was extremely
helpful in preparing this report. Lastly, I wish to
acknowledge my deep gratitude to my wife, Tammy, for her
support and encouragement during the course of this study,

Paul D, Bailor

i1

.
CCpam -

a, ey LIV R PAC IS Y [P I AP PRI I DA VAT I I N S I
'nf-_"':_ ARG RICY LRI """-." OGN ARSI X ot

~ s T T R T o R T N R N N N ATy T aa 3" s
Contents
VOLUME I
Page
Preface e e © ® ¢ 6 o 8 e e @ & o e e o e & ¢ o o o ii
List of Figures e & 6 o & e ® & € o o 83 e 8 e o ° @ vi
[LiSt of Tables e o6 @ @ © o e o ® & o e o 8 e s e o Viii
t:. AbStract ¢ o 6 e o @ @ 8 e e 8 e e o ° e e o o s o ix
h Io Intl"Oduction L] . . L] . . L] . . I"1
BaCkgPOUnd . [. . e ° 'Y . . . Y -1
Purpose . . . L] O -2
SRS PrOblem Py . . - Y * . . "‘3
t‘:-:‘ SCOPe *)]) o] * [}) . . “u
[':_‘: Assumptions e 6 » e e o ® & s & e ¢ ® o o o = -l‘
‘ Appl“oaCh e o o o e e 8 e e e o e s e & o -5
:_ Sequence Of P es entatio e« o e e o e e o . e "7
- II, System Analysis and Requirements II-1
Intr‘OductiOh e e o e o e e o o . "1
e Part One =~ Background Information -1
.'_ . - DBMS Definitions ® & ® e e ° o © o o -2
L CPE Definitions e ® e o o ® e 8 & s e . -11
Summary of Part One . « ¢« « ¢ « o ¢ o o «22
A Part Two - System Analysis . . e e e s o . =23
- Overview of Previous Studies =23
Specification Technique -24
; Performance Evaluation Process =27
. System Requirements . . . e o o . =41
- Performance Monitoring Requirements . . -66
- Methodology/Procedures for Conducting
- A DBMS Performance Study ~-80
) Functional Requirements -388
Summal‘y 3 . . . 3 - . [.) . . L] ° Y ° -94
;:;. III. System DeSign L] . . . [] L] . . III-1
-:-:-; Intl“Oduction e o e o o o o ¢ o e e o . -1
y_ Documentation Technique e o o s e o e o o o a -1 -
o Design Description . . . ¢ ¢« ¢ ¢ ¢ o« o o o &)
Monitor Operation s o o L] » ° [} . . .]] .] -10 :-‘::
Test Plan e o . ° L] . . . ° e . . . -10 -::‘1
USing the DQSign e 8 o ® ® & e 6 ¢ ¢ e o e = -11 N ':
Summa!‘y ® & 6 o e 6 e e o 8 6 e ¢ o e e v o o -13 !
111 N
1
.:\1
BN

CRPDN Bl N A A N AT wow R —— ——
]
Iv, VAX 11/780 Implementation , IV=1 5
IntrodUCtlon 3 ® . [} . .] 3 -1 ;:—.j
Implementation Approach e o s o o s o s & s s -1
VAx 1 1/780 Configuratlon [. . . L] . . o . . -3 '~':'
TOTAL DBMS e . . . ' -6 :':‘1
System Performance Tools e o o o & o o o s -15 -2;
Data Analysis TOOlS . &« ¢ ¢ o o o ¢ o o o o » =21 =
Set of Measurable Performance Parameters . . =21 =
ImplementatiOD Options . o) 3 . o '] [} .] -22 -
Implementation Pl an « ¢ ¢ ¢ o e ¢ o e e o o -2“ .
Summal‘y & o e @ @ % e e e @ 8 e a s e s s o o -28 3]
v. Program Design, Implementation, and]
Testi ng - L] L] L] L] L] L] L] . e L] . e L] L] L] L] L] . v_1

Int!‘OductiOl’l ° Y L] . . -1
Development Stl"ategy e o o e ® & o s ° e e o -1
Testing Procedure . . . « o e o v o -2
Prog-amming Language Select1on o e s o v s e -4
Usel‘ Interface . 3 -6
Instrumentation Utility ® e e e ¢ e o ¢ & o o -13
Data Analysis Program . « « ¢« ¢ ¢ ¢ o o o o o -23
Measurement Report Program . . . « « & o« « & =27
Summary L] L L] L] L] L] * L] L] L] L * L] L] L] - * L] L] -29

VI. Results, Conclusions and Recommendations . . VI-1

Intl"OdUCthn e e o e & & e e ® e e e o & o o "1
System Testing e o . ¢« e a . . -1
Using the DBMS Performance Monltor c ¢ o o a -2
Measurement Results « « + +« ¢« ¢« o« & -4
COﬂOlUSiOhS o o e e o . . e ¢ o . . . o e o o -1u
Recommeﬂdati OIS « o« o o o o o e ¢ . s o . e o -16

Bibliosraphy 8 6 e 6 ¢ e © a e & e e e s e e & s o BIB-1
Vita

VOLUME II

Appendix A: Performance Evaluation Requirements -
Documentation 'Y 'y . . . Y A-1 - 4

Appendix B: Examples of Performance Parameters . . B=-1
Appendix C: DBMS Performance Monitor -
Requirements ¢« + ¢« ¢« &+ ¢ « o & C-1 1

iv

Appendix D: DBMS Performance Monitor Design
Documentation . . . ¢« ¢« ¢« ¢ ¢ ¢ ¢ ¢ o o D=1

Appendix E: VAX 11/780 Performance ToOlS . « « o E-1
Appendix F: Program Documentation « . « . . F=1

Appendix G: DBMON Users Manual . . . ¢« « ¢ ¢ o o & G=-1

VOLUME III

Program Source Code Listings

B

LA
PO UL S AT TN)

] et]

o »
p "o A
b)
k.o o
AN s

b %
iy -
- - “n - --‘
o W kS
o v .

=

g e
O .
e, S ey ., - - - a4, . @A te Mt e e BN e te e m et e ma - PERTTRY PR |
l&.':':i',_-i-"-."-.‘-'-."-.‘7-"-."\"'."~.' e e N T e T T T e e e St R RN DO

Figure
II-1
II-2
II-3
II-4
II-5
II-6

II-7

II1-8
I1-9
II-10

RN R I AR I e R R S’ i o

List of Figures

DBMS Architectural Model
System Performance Indices &
Data Flow Diagram . . « ¢« « ¢ ¢ ¢ o o o &
Computer Performance Evaluation
DBMS Performance Evaluation . . . « . . &

Performance Objectives of DBMS Users
versus DBMS Architecture ¢« . . &

Derivation of Computer System Performance
Parameters . o« « o « ¢ o o o ¢ o o o o @

Service Workload . . . ¢ ¢« ¢ ¢ ¢ o o o &
Conventional DBMS Implementation
Data Base Computer Implementation
Distributed Data Base Implementation . .
Derivation of DBMS Performance Parameters
Service DBMS Workload . . . « . ¢« « « o .
Determine System Objectives
Analyze Performance . . « o« « o o o« o o o
Test Hypotheses « « « ¢« ¢« ¢ « & &
Test Modifications . . « .« « ¢« ¢« ¢ & o« &
Determine DBMS Objectives « + + &
Analyze DBMS Performance . . . « ¢ ¢ « &
SADT Activity Diagram . . « ¢ &« ¢ ¢ « « &
Top Level Design Diagram . . . « « « « &
Test Plan Example . . « + ¢ ¢ o« ¢ &« o « &

VAX 11/780 Hardware Configuration

vi

Page
II-5
II-13
II-26
II-28
II-31

IIx36

II-43
II-46
II-49
II-50
II-53
II-55
II-60
II-84
II-85
I1-86
I1-87
II-89
II-90
III-3
III-5
ITI-12
IV-y

........

»,

‘n

f

IV-2 TOTAL Data Base Structure + « « « « . IV=9

IV-3 TOTAL DBMS Configuration « . « 1IV=-13
IV-4 Implementation Plan ., + & « « .« o IV=27
[QZ V-1 Example of Data Type Definition V-8

: V-2 User Interface Structure « ¢« « ¢ . V-8

V=3 Example Menu ¢ ¢ ¢ ¢ ¢ ¢ o ¢ ¢ o o &« V=10
V-4 Example Data Entry Prompt « ¢« ¢« ¢ & V=11
V-5 Using the Instrumentation Utility . . « . . . V=16
V-6 Item List Descriptor . . ¢« ¢« ¢ ¢« ¢« ¢ &« « « & V=20
V=7 Instrumentation Utility Structure V-21

= V-8 Data Analysis Program Structure V=27

V-9 Sample Output from Data Analysis Program . . V=28

v " " v R - - v—r—~
SRR St e e - . RIS ST NS ARVAREI L aC PRI SIS e gei_ g g el A AR A LS S

List of Tables
Table Page

II-1 Domains of Performance Measurement
Tools [3 L] [] [] L] [] L] . L] L] L] [] * - L] L] L] L] [] II-21

I1I1-2 Examples of Computer System
Performance Parameters . . . ¢« ¢ ¢ o o« o « II-44

II-3 Examples of DBMS Performance Parameters . . II-58

II-4 Examples of a Combined Set of
Performance Parameters . . .« . ¢ ¢« ¢ o « & II-62

Ll 4N anst k. auge —
P
L e

Relationship of Performance Parameters
tO the DBMS USer . ' . Y - . . o . II-63

e 3 3
)
Ll
|
(9))

I7-6 Example Sources for Performance
Parameters - [] [] L[] L] L] - L] L] L] L]) L] L] L] L] II-68

IT-7 Functional Requirements for a DBMS
Performance Monitor . . . ¢« ¢« &« ¢ ¢ ¢ ¢ o« @ II-92

IV-1 Generalized Grouping of the TOTAL
DML Commands . [3 . . .) . o . . ' [) ') .) Iv-12

Iv=2 Examples VAX and TOTAL Performance
Pal"ametel"s . Y . .] . - Y Iv-23

V-1 Measurement Session Log Information V=14
V=2 Measurement Data Record « « ¢« .+ . V=20
V-3 Average Number of Searches . . . « + o « & V=25

Vi-1 Performance Results at the DML
Statement Level L] [] VI"7

VI-2 Results of Main Memory and 4
working Set Test » Y . . . Y VI-g . _:

VI-3 Instrumentation Utility Overhead VI-13

PSR
. AR

. T P

PO WRPLPLN PR WY

viii

J.l ’
SN

ISR @ o T,
A . PRV

®

AFIT/GCS/EE/83D=-2

Fhasis Abstract
. This study- focuses on the problem of evaluating the
performance of a Data Base Management System (DBMS). In
this study, DBMS performance evaluation is treated as a
subset of computer performance evaluation, and in doing
this, the performance parameters unique to a DBMS were
developed and merged with the performance parameters
associated with a general purpose computer system.

Based on this approach, a generalized design for a
DBMS performance monitor was developed. This design
emphasizes the use of existing performance tools such as
software monitors and accounting packages, and it takes
the performance monitoring requirements of different types
of DBMS users into consideration. Additionally, the design
is applicable to any type of DBMS regardless of the
underlying data model.

The generalized design was implemented on a VAX
11/780 computer for the TOTAL DBMS., The results of the
implementation showed the generalized design was viable
and capable of measuring many different types of DBMSs.
However, existing performance tools were only capable of
providing a high level picture of DBMS performance, A
specialized tool called an instrumentation utility had to

be developed to gather detailed performance information.

ix

Coce g Lo

I. Introduction

Backeround

A data base is a collection of stored, operational
data, and a Data Base Management System (DBMS) performs
the task of managing and manipulating the data contained
within a data base (ref. 11:7-25). The development of
generalized DBMSs in the late 1960s provided many
advantages to the users of computer systems (ref. 34:3).
However, these advantages were provided at a cost, and
this cost is the overhead the DBMS places on the resources
of a computer system. The amount of DBMS overhead and the
quality of performance will vary based on the hardware
configuration, the operating system characteristics, the
architecture of the DBMS, and the structure of a data base
query or update. Therefore, DBMS overhead should be
measured to determine where changes can be made to help
improve overall computer system and DBMS performance.

To effectively measure the variations and identify
areas where changes can be made to reduce the overhead, a
data base administrator (DBA), computer system manager, or
software engineer needs the measurement and analysis
capabilites provided by a performance monitor (ref,.
2:315). Otherwise, experience, intuition, and trial and
error techniques must be relied upon to identify areas for
change and to achieve performance gains (ref, 48:1).

I-1

...............................

)

. Consequently, a performance monitor is a much needed tool
for the management of computer resources. In fact, a DBMS
performance monitoring effort conducted at General Motors

N Corporation detected several system deficiencies during

the installation process for the DBMS performance monitor.

The correction of these deficiencies improved the

performance of their REGIS DBMS by almost an order of

magnitude before the performance monitor actually began

collecting system data (ref. 39:331).

Purpose
The purpose of this study is to develop a
methodology for conducting a performance monitoring effort
@r on a DBMS and to develop a generalized design for a

i corresponding DBMS performance monitor, The development of
these tools will allow the software engineer, data base
administrator, and computer system manager to "easily"
measure the performance of the DBMS and its effect on the
supporting resources of the entire computer system. The
data provided by these tools is used to evaluate DBMS
performance based on the specific objectives of the DBMS
users, and this evaluation provides a basis for
identifying areas where changes can be made. The
successful application of the changes should reflect an
increase in the performance aspects of the DBMS and a

reduction in the overhead effects on the supporting

I.2

C e
L R S N T TP T B R ST S P e e tacee R T Y
. % .-_’o.' o ..‘--‘ ARSI ’.-".-. T S R A O, ._'.-. \':_ LIV \':_‘:n_' \-._' PRV N R AL A I : S .'.:.'_‘-“ \.."‘-.‘ .J.\-‘
A .

-® e . . - ® "9 e
K e ot e N T, KA IR TN SR S Y . . - COaSRNA T/ . A
e S ST PS4 A S S R ALY S P S AL P P L s O R R A AR WL AT W W SRR P AN,

o resources, thereby, allowing the DBMS users more
flexibility in meeting their stated objectives. B

-

e Problem
At the highest level of abstraction, the general .-

-

W N e e
e atalels ot

problem is to determine how to measure and analyze
computer system resources so they can be used in the most 5ﬁ
efficient and effective manner, A study at this level o

would correspond to a performance evaluation effort of an

e
At -

entire computer system. At the next level of abstraction,

L] s
P SPRP

- the problem is to determine how to measure and analyze the

) performance characteristics of a specific computer system ff
resource so it can be used in the most efficient way. Even iﬁ

6_ though a DBMS can be considered a specific resource, it ;i

;; o requires the use of most of the other resources of a ;3
%ﬂ computer system to provide its services to a user. E%
Therefore, this study is concerned with both levels of <3

abstraction, and a formal problem statement based on the

NN S W

two levels of abstraction is given below.

T,

Problem Statement. The specific problem is to

determine how to measure and analyze the performance

- characteristics of a DBMS and its supporting resources,
Lo and the objective of the solution is to identify areas B
e where changes can be made to minimize DBMS overhead costs Fa

and increase overall performance,

I-3

Tl v Ty

. ..:...:_, -,.:._.:'. A AT AT P AL I e}

Scope

This study will develop the requirements for a
generalized DBMS performance monitor and generate an
associated design, Every attempt will be made to design a
DBMS performance monitor powerful enough to be used with a
relational, hierarchical, or network model DBMS. However,
this study will only implement the generalized design for
the TOTAL DBMS (network model) developed by Cincom Systems
Inc. (ref. 8:1-3). The TOTAL DBMS is currently being used
on the Digital Equipment Corporation VAX 11/780 computer
system in the Electrical Engineering Department of the Air

Force Institure of Technology (AFIT).

Assumptions

1. A generalized design for a DBMS performance
monitor is feasible, However, the specification of the
system instrumentation required to connect the performance
monitor to the measured system must be "open-ended™ due to
the wide variations in the implementations of computer
system architecture,

2. The VMS operating system of the VAX 11/780
computer maintains tables reflecting the use of computer
resources by programs executing on the computer (ref.

25:Appendix B). These tables are assumed to be accurate.

I-4

A, A S A O RN

-

-3l

- '- -
e et
NN

Approach

This problem was solved as a sequence of five
logical stages and what was accomplished in each stage is
outlined below. This sequence of stages is not necessarily
a discrete or chronological sequence since areas of some

stages overlapped with others.

Literature Search Stage. In this stage, the current

literature on computer performance evaluation, DBMSs, and
developing "user friendly" interfaces was reviewed. The
goal of this stage was to provide the insight and
additional background knowledge required to analyze the
requirements for and design a generalized DBMS performance

monitor.

System Analysis and Requirements Stage. In this

stage, the requirements for a DBMS performance monitor
were analyzed, The goal of the requirements analysis was

to answer questions such as:

1. What type of user interface must be
developed?

2. What parameters of a DBMS and computer
system must be measured?

3. What type of monitoring technique should

be used and how powerful should the monitor be?

I-5

-

-

YA - o ERAERAR . P -
» RSN o e T et . . DI TR o A P A A W AN
L B B AP I R IORI B Tk P P AR R RO, PR A NI IR A I, A

4, What type of analysis must be performed on

the recorded measurements?

The results of the system analysis were used to:

specify the functional requirements of a generalized DBMS

performance monitor, determine the performance tools

N required to measure DBMS performance, determine the
i: tools/techniques used to analyze the measured performance 53
data, and specify a test plan for the implemented DBMS |

performance monitor, Data Flow Diagrams (DFDs) and tables

were used as much as possible to present a structured ;;

requirements analysis/specification technique.

B R

6 System Design Stage. The goal of the system design
‘ stage was to develop a design document for a generalized

x DBMS performance monitor. Structured Analysis and Design

Vo e e s
l. PP
AR
AAA ALY At

Technique (SADT) diagrams were used as the design

R
A

development tool, and the design document for this

technique is presented in the form of a Reader's Kit.

'a 2

Design Implementation Stage. In this stage, the
generalized design was implemented for the TOTAL DBMS used

on the VAX 11/780 computer system. The first step in the
: implementation was to study the details of the VAX 11/780 .
.fl architecture and the TOTAL DBMS., A study of these details

was necessary to completely specify the system

I-6

instrumentation used to connect the monitor to the
measured system. Once the details were determined and
incorporated into the design, the second step was the

actual coding and testing of the performance monitor.

Analysis/Validatjon Stage. In this stage, the

generalized design and the implementation for the TOTAL
DBMS and VAX 11/780 were evaluated for compliance with the
functional requirements. As a result of the evaluation,
deficiencies in the generalized design and implementation
were identified, and recommendations for future

improvements were made,

Sequence of Presentation
Chapter 2 of this study presents a complete analysis
- of the problem of conducting a performance evaluation
effort on a DBMS. The corresponding requirements
documentation, in the form of Data Flow Diagrams and

Tables, is contained in Appendices A through C. Chapters

3, 4, and 5 concentrate on the design, implementation, and
testing of a DBMS performance monitor. Chapter 3 contains
the development of the generalized design for a DBMS

performance monitor, and the corresponding documentation -

PP TR B BT

" for this design is contained in Appendix D, Chapter U4
takes the generalized design and targets it for the TOTAL o

By
.

DBMS used on the VAX 11/780 computer system. The

KT
.'.‘L

Tt T Y
'l
A
PR PLIPLINSY

[—

corresponding documentation pertaining to the details of

ﬁif the VAX 11/780 and the TOTAL DBMS are contained in
Appendix E., Chapter 5 presents the program development o
steps and the results of testing the implementation]
against the stated functional requirements for a DBMS
performance monitor. The program documentation is
contained in Appendix F, and a Users Manual for the
developed performance monitor is contained in Appendix G.

Lastly, Chapter 6 contains the overall results and

conclusions of this study as well as some recommendations

for future study.

. o1
I-8 .ﬁ

b D)
‘b - - -
S

I.." - & %

K

. N
S e e, e . .« .- o . e . N et N AL A et et A At Y Wt R et e
— i e s SOAOAYSLRNRYAY

AAAAAA . RN Pt S A A Al SR MRSt ite T a4 S PRSP A A i R

This chapter presents the system analysis performed
on the problem of monitoring Data Base Management System
(DBMS) performance. Based on this analysis, the functional
requirements for a DBMS performance monitor are presented.,

To meet the needs of all potential readers, this chapter

is presented in two parts. Part One contains background

[; information on DBMSs and Computer Performance Evaluation

(CPE) concepts, and it is intended for readers either

unfamiliar with these concepts or wishing to review them.

All other readers should skip to Part Two which contains
(; the system analysis discussion and presents the functional

requirements derived from the system analysis.
PART ONE ~ BACKGROUND INFORMATION

A requirement for the analysis of any system is a
common understanding of system definitions (ref. 50:7-23
and 41:34-36). This section defines the concepts and

terminology associated with DBMSs and CPE. The background

information on DBMSs is presented first followed by the

CPE information. All information is introductory in

Lol S

nature; however, it represents the "core" concepts and

Ll

terms associated with DBMSs and CPE. Since this

' II-1

e - SR ITT N B e arae gy P oo e s o a0 e

. T

.

G

il l‘ " l'
Pt

-
SRR
Ly

information is used throughout the study, lists of the

terms and concepts are provided to serve as a reference]

aid if they need to be reviewed again. o

i 2BMS Definitions
The following DBMS terms and concepts are defined:
1. DBMS Data Models.

2. Data Base Schema.

-
L 3. DBMS Architecture.
4, DBMS Environment.

:: 5. DBMS -~ Computer Architecture Semantic Gap.
o 6. Computer/DBMS Boundaries.
:i PR DBMS Data Models. A DBMS uses a data model as its
: underlying structure. The data model serves as a basis for
? data definition and manipulation languages because it
ii defines the data structures and associated operators (ref.
‘&1 2:Chapter 4; 10:63-73; and 49:Chapter 3). The three best
Eﬁ? known data models are listed below with a brief
:3 description of how the data is represented. In addition to
- the three data models, some DBMSs are based on the

technique of file inversion on multiple keys; however,
%? this is more of a physical implementation than an abstract
- data model (ref. 2:83-84), =
;

L4
ot

o

o I1-2

(]
£ 4 4
i

e d
J;'_A‘J kb

e

‘.

NS L RN TS

et e et e e .g!‘.f.-_fj

»

L
e T
A AP AP

...
AR SRR

1. Relational - the data is represented as
tables which are a special case of the mathematical
construct known as a relation.

2. Hierarchial - The data is represented by
tree structures.

3. Network -~ The data is represented by

records and links.

Data Base Schema.

data models need to be translated from a model into an

To implement a DBMS, the abstract

operational system. In order to perform the translation,
the model needs to be described in a form suitable for
implementation, and this description is called a schema
(ref. 51:368 and 11:22-23), Therefore, a schema is a
collection of information describing the data base, and it
provides the necessary mechanisms for the data base
objective of data independance. An important part of a
schema is the description of the data elements contained
in the data base. This description is used to store data
element values into the proper position of data base files
and to locate data element values, Additionally, it is
possible to describe only a part of a data base
object/record, and this type of description is known as a

subschema.

II-3

---------- e .
nf o

C et R e s A 9% ® - - N LIS CIN N S}
e e e e e S T e Y e S A N

TR

1

P

. o
L e g et ‘e]
hod b bl o b oa'a’sy

.......................

DBMS Architecture. Date defines a DBMS

architecture to consist of three levels: the external

- level, the conceptual level, and the internal level (ref.
S 11:17-19) ., Figure II-1 contains a diagram of the

- architectural model, and brief descriptions of each level

of the model are:

External Level. This is the level closest to

the end-users of the data in the data base, and it is

concerned with the way data is viewed by each user.

Interngl Level. This level is the one closest

- to physical storage, and it is concerned with the way data

is actually stored. It is responsible for the handling of

L)]
®

stored data base records, and it provides the stored
record interface to the access method which is used to
‘ retrieve and store physical data base records. The access
method is not a part of the DBMS. It deals with the
hardware, device-dependent details of physical storage,

thereby, concealing these details from the DBMS.

" Conceptual Level. This level is the

;: connection between the other two levels, and it is

;i concerned with the global view of data contained in the

iz data base(s). In other words, the conceptual level

‘. provides a view of the entire data base while the external :

II-4 o

EXTERNAL
LEVEL

CONCEPTUAL
LEVEL

INTERNAL
LEVEL

Figure II-1, DBMS Architectural Model
level provides the end-user with a view of some portion of

the entire data base,

DBMS Environment.

of two components, The first component is the type of

The DBMS environment is composed

DBMS, and the second component is the workload
characteristics of the DBMS. The type of DBMS defines the
implementation details, and a thorough understanding of
the implementation and workload details is important to
the performance evaluation of any system (ref, 5:6).
Exactly why these details are important is covered later
in the Methodology/Procedures section of Part Two of this
chapter. At this point, it is only important to introduce
high level definitions for the two components of DBMS
II-5

. e e N T NN G e e T e e
T SRS AN AT AT N AN R

—r

| A

X .

Ltete e w e o
B
PR I I
At hedh i keiden

D I |
' l'l'l. .,x

R
‘ala e a e e lat M

)

o " . o
PG R

....... S g Ty -y

environment because a common, high level understanding is

necessary before the details can be presented,
Based on a review of the current literature,
three types of DBMSs can be defined, and their definitions

are.

1. Single Machine (Conventional) DBMS - This
type of DBMS is defined to be a DBMS composed entirely of
software modules and implemented on a single, Von Neumann
architecture, general purpose, computer (ref. 34:4-5), It
is referred to as a conventional DBMS because it was the
first type to be developed, and it is the most commonly
used of the three DBMS types (ref. 10:). (Note: The design
of today's general purpose computers is commonly referred
to as the Von Neumann architecture because they are based
on the Von Neumann architectural model derived in the
1940s., This study also uses the Von Neumann
classification to describe the architectural design of
computers; however, this classification should not obscure
the Analytical Engine designed by Babbage in the 1840s
which also embodied many of the design principles of
today's computers.)

2. Data Base Computer - This type of DBMS is
defined to be a DBMS implemented on an architecture whose
only purpose is to perform data base functions and tasks,

In general, this means the data base functions have been

I1-6

o

. "‘L'A“_ . l"

of floaded from a host computer and moved onto a dedicated
data base computer which is directly connected to the

host computer by a communications link. The data base
computer can be implemented in one of two ways. First, it
can be a general-purpose, Von Neumann machine using a DBMS
composed entirely of software modules, and this
configuration is commonly called a backend data base
management system (ref. 34:3-4). The second implementation
is a special purpose machine where the data base functions
are wholly or partially implemented in hardware (ref.
6:Chapter 1).

3. Distributed DBMS - This type of DBMS is
defined to be a network of computers where nodes within
the network maintain a DBMS (ref. 47:440-U441), The actual
data base contents at the nodes of the network could be
copies or partitions of a common data base or entirely
different data bases, The architecture of the DBMSs at the
nodes of the network could be either conventional or Data

Base Computers.

The second component of DBMS environment, DBMS
workload characteristics, varies from computer
installation to computer installation; however, the
workload for any given type of DBMS can be grouped into
two generalized classes defined by Hawthorn and

Stonebraker (ref 29:3)., The first class is the "overhead

II-7

............................
...

.....................

FEn l" e
JER RSN et

VAR
AP U)

I
RS

.
N
D

-

........ NICERS
..... REAE

R
ot o N . . L R AN TR SRR AL T UL YRR B Y O
WP SAPATT JRL A AP R A WA Al R WA W IR SR S P A I A SRR I WS B S PNCIL IS TP RS, T T 1

A N P A3 P v
PR N AN A R P A A TR R L AL R A Ot i D L M N . .'.'r
°

-

intensive workload" which is defined to be that worklcad

NP T S Y Y

for which the data processing time is less than system
(operating system and data management) overhead to process
the workload. The second class is the "data intensive
workload" which is defined to be that workload for which
the time to process the data is much greater than the

overhead,

DBMS - Computer Architecture Semantic Gap. Perhaps
the largest contributor to DBMS performance problems is
the incompatibility of DBMS functional requirements with
the architecture of a general purpose computer (ref. 6:1
and 36:422). A general purpose, Von Neumann architecture
computer uses the addresses of storage locations to
retrieve and store data values. On the other hand, the
functional requirements of a DBMS are oriented toward
retreiving and storing data based on data values without
regard to the address of the storage location. Therefore,

a significant part of the processing time associated with

a conventional DBMS is attributable to the conversion -
between the data referencing schemes of
address-by-location of the computer and address-by-value

of the DBMS. =

Computer/DBMS Boundaries. By definition, a boundary

is something that indicates or fixes a limit such as a

St
ol

', ". ‘s 'y]
UDNERENENG

I11-8

.
» 2
¥ Y SO W N S)

MR SR R R P ATIATI Sl

.l.-l.' " - R - “ .A. ..-.‘.
PO S IL . A PR PR Sl T R A TR

separating line. One boundary in a computer system is the
boundary between the system workload and the system
resources, At first glance, this may appear to be an
easily definable boundary, but further investigation shows
it is not. There are three types of resources involved
with a computer system, and they are human, hardware, and
software, Hardware resources are easily defined by a
configuration diagram; however, human and software
resources are not as straight-forward. Operators of a
computer system are a human resource as necessary as the
hardware resources, but operators can also contribute both
negatively and positively to the workload based on their
knowledge, efficiency, and ability to operate the system.
Human users are external to the computer system;
therefore, they contribute to the system workload through
user jobs.

Software resources such as operating system
modules are necessary to control the system and are
usually considered a resource of the system and not a part
of the workload., On the other hand, software resources
such as compilers, text editors, DBMSs, and other types of
shared programs and data perform work as needed by users
of the computer system. Therefore, they contribute to the
system workload based on the individual needs of the
users, but at the same time, they can be considered a

system resource since they are available to all users of

II-9

Banedl

[} .
. n 3 LR ST
A . Pat L .
. L
o : Lot e o)
PRI P D SRS

ot i
1
VR 1

IR,

« .
T

l,'
—h

A

e s e
LTS
P S
e e B e
2 " PR

v .o
oS S
araTe
B e 2
ll' e

’
azad

ol e ar e

-~

T v
&

h '."Vv—v*. T T

the system to preclude the users need for developing their
own (ref, 26:1-2; 33:8; and 43:13).

As the preceding paragraph shows, a DBMS could
be included in either one or both sides of the system
resource - system workload boundary. Ferrari (ref, 24:4)
states the system's boundaries must be specified clearly
once the objectives of the performance study have been
clarified; otherwise, an inconsistent interpretation of
the boundaries may be used for the performance study!

Based on this study's objectives of providing
performance information to both data base users and the
management of the computer system, the following
specification of the computer/DBMS boundary is used for
the remainder of this study.

Computer System. The DBMS (as well as all
other system software), all supporting and applications
programs,

and all the data bases are part of the system

workload (ref. 24:221-222; 26:1-2; 33:8; and 43:13).

DBMS User.

and all data bases are considered a system

The DBMS, DBMS support
programs,
resource, Applications programs, using the DBMS as a

system resource, are a part of the DBMS workload which is

a subset of the overall system workload (ref. 24:221-225).


~~~~ S

NI T
®a®atar

aee,
- - . N4
- .
B W, X, SRS

CPE Definitions

The following CPE terms and concepts are defined:

1. Performance Index.

2. M"Acceptable Level"” of Performance.

3. Types of Performance Monitors.

4, System Instrumentation.

5. Performance Monitor Artifact and Accuracy.
6. Performance Monitor Power.

T. Collection of Performance Measurement Data.

Performance Index. A performance index is a
descriptor used to represent a system's performance (ref.
24:11) . Ferrari (ref. 24:12-13) lists the three most
popular classes of quantitative performance indices as
productivity, responsiveness, and utilization. These
indices can be further grouped based on two categories of
measures proposed by Svobodova (ref, 46:14-15). The first
category is effectiveness which is defined in terms of the
system's capability to process a given workload and to
meet the time requirements of individual users. The second
category is efficiency, and it is defined as the internal
delays and utilizations of individual system components
versus demand. Effectiveness and efficiency serve as
excellent categories for performance indices because they

are also the two major goals of engineering.

II-11

P RS

---------
- e

'''''''''''''''''




Based on the work by Ferrari, Svobodova, and

&i ,:; this study, the scheme for representing a set of
performance parameters based on performance index category K
and class is shown in Figure II-2. The performance indices
i; provided by Ferrari have been expanded to take into i;
consideration the integrity and security aspects of .

- computer system effectiveness, and the efficiency aspects

have been further expanded to include the allocation and
deallocation of resources, The performance indices were

expanded to more accurately characterize the operation of

.
%
|

5!

i

a computer system, and this area is covered in more detail
in Part Two of this chapter. Additionally, Part Two
contains a breakdown of the performance indices into

quantifiable performance measures or parameters.

"Acceptable Level™ of Performance. 4n acceptable

level of performance is easily defined once the objectives

of the end-users and computer system management are

s
A

y e 0
atala’s

clearly defined. These objectives are required to
formulate a set of performance criteria to which ?ﬁ
corresponding performance measurements can be compared,
This basis for comparision makes it possible to decide

wﬁether or not performance is acceptable, and it allows
the effects of changes to be measured - a necessary

prerequisite for any optimization process (ref. 35:2).

II-12 2

---------------------------------------
.........




SYSTEM EFFECTIVENESS R
-Productivity 'J

{Performance Parameters> o

.
. -

-Responsiveness N
-Integrity )
=Security 3

SYSTEM EFFICIENCY
~Allocation
-Utilization
-Deallocation

Figure II-2, System Performance Indices

Generally speaking, the level of performance is
the degree to which the computer meets the expectations of
a user (ref., 46:8). However, this definition of
performance leads to a trap which must be avoided. The
trap is the objectives and performance criteria
("expectations") established by the user may exceed the
capabilities of the computer in question. Therefore, a
different definition of performance may want to exclude

the users expectations, and this definition would only

consider the effectiveness with which the resources of a
computer system are utilized. Singularly, neither of these fﬁ
definitions adequately describe a level of performance,
Hence, both of them must be used to describe the i;
effectiveness with which the users objectives are met {2

(system effectiveness), and the effectiveness with which 'q

II-13 ]

..........
..........

,._s!.\ N A S S I T N P SR

e e
. o, LY AT
B S O S S S5 OB B S SRR R RSO I NOENENIND




the available resources are utilized (system efficiency).

In other words, the system effectiveness must be weighed
against the system efficiency in establishing an

"acceptable level" of performance (ref. 46:8-9). 53

Ivpes of Performance Monifors. There are three
*f: basic types of performance monitors, and they are (ref.

46:Chapter 6 and 28:29-64):

1. Software Monitor - A software monitor is a

special program contained within the measured system, and

its purpose is to collect information about system
processing and utilization of system resources, The
collection process is usually driven by one of two
techniques. The first technique is an event-driven
monitor, and this type of monitor is activated when some

type of event (e.g. I/0 interrupt, expiration of a CPU

time quantum, arrival of a new job, etc.) occurs within
the system. The second technique is a time-driven monitor,
and this type of monitor is periodically activated when a
specified time interval has expired. When software

monitors are activated, they are given control of the

TREREA
PN
atala’a

system to measure and record values for the necessary
performance parameters, and when the measurement process
is completed, they return control to the operating system.

Of the two collection techniques event-driven monitors

T II-14

- s e e e e
. o e e LR T
. Lt K L
SIS G W S DALY GG Y W v g vl




..............................................

record exact data; whereas, time-driven monitors record a
large number of samples to allow for statistical
inferences to be made.

Software monitors can take several forms,
and a common form found on most computer systems is a job
accounting package. Other forms of software monitors are:
specially designed programs that interact with the

operating system and applications programs that contain

s special instrumentation statements for measuring and
recording events within the program.

E 2. Hardware Monitor - A hardware monitor is a
free standing device used to sense electronic signals

(hardware events) within the circuitry of the computer and

record the information in the memory of the computer
system, A special case of a hardware monitor is a monitor
incorporated into the micro~instructions of a computer
system, and this type of monitor is commonly called a
firmware monitor,

3. Hybrid Monitor - A hybrid monitor is a
combination of software and hardware performance monitors
that interact to collect performance measurements, The

software part of the hybrid monitor can detect and record

software related events as well as generate signals that

" v -
BRI

can be detected and recorded by the hardware part of the
monitor. The hardware part of the hybrid monitor combines

signals generated by the software monitor with the

I1I-15
-~ ‘.l
)
® .
-~ 4
B
.
- 9
S \"
........... o .\.-\. I L L T ‘.¢. et .‘.- - .‘-...- ~_-. ..-.... RN R RS -_-.': Tt Tt et et et e “. CetetL St
PPN, PRACYIR A ACPCAE A AR A L RIS AEAEIEAE RSN ':;’.._A’A‘n‘_\-' A :1'\-'.1' Ladasar -..\A.\ NN




S O'EEENTS e a0 s

N FT e e e e .
) SR

1' '-" "-' '-‘ '.' N

hardware events it detects to formulate different types of

measurement data.

System Instrumentation. Instrumentation is the

facility used to connect a performance monitor to the
measured system allowing a set of system activities to be
observed. System instrumentation can take many forms, For
example, hardware monitors typically use electronic probes
to connect to the electronic circuits within the computer
hardware, and an event-driven software monitor for an
interrupt driven machine could be instrumented by a
special data collection routine that executes prior to or
after the interrupt service routine,

The instrumentation of a performance monitor is
one of its most important aspects; however, it is also the
most difficult to specify. While today's general purpose
computers have a common architectural design, the
implementation of this common design varies widely between
computer vendors. Additionally, the common design for
computers does not address measurement facilities and only
a few computer vendors have done anything to solve this
design problem (ref. 24:46). Therefore, the specification
and design of the instrumentation for a particular type of
computer system is performed only after the machine has
been built, and this leads to a non-generalized

implementation of system instrumentation even though all

II-16

Soat e

.
L B

LAY

-----




Bl

- - vt
1 TR
. Sttt e

Lt T T

l.-l.’l..l.--‘.'!' ‘‘‘‘‘‘ .

] . - » . - =
PO RCRNUPC P,

....................

general purpose computers have the same basic
architectural design.

The preceding paragraph points out one of the
biggest problems with performance monitors - the concepts
of performance monitors are common; however, a universal
tool is almost impossible to build because of system
instrumentation problems and the many different
implementations of a common architectural design. System
instrumentation also causes another type of problem, and
this problem deals with the user interface to performance
monitors, For example, it may require a detailed knowledge
of the system to determine where to connect the electronic
probes of a hardware monitor, and the connection process
may contain hazards such as electrical shock and device
damage. The installation of an event-driven software
monitor may require modifications to the operating system
which also requires a detailed knowledge of the system.

The problems listed above are reflected in the
results of this study. The specification of the system
instrumentation for a DBMS performance monitor is very
generalized in the system design chapter (Chapter 3), and
the system instrumentation was not completely specified
until the VAX 11/780 and TOTAL DBMS implementation details

had been examined.

IT-17

. RIS S .
NP PSP RN




Performance Monitor Artifact and Accuracy. The term

monitor artifact is used to describe the way a performance
monitor alters or interferes with the normal operation of
the system (ref. 46:82). For example, a software monitor
must compete for system resources just like user jobs
within the system; therefore, the monitor effects the
processing characteristics of the computer system and the
DBMS. The artifact of performance monitors should be kept
as low as possible, but depending on how complete a
picture of performance is desired, the monitor artifact
can produce noticeable side effects (ref. 24:29). This is
another of the many reasons for establishing objectives.
The performance monitoring objectives will dictate what
type of performance information must be measured and only
necessary information should be measured. Anything else
will add to the artifact of the monitor and provide little
additional data to the performance monitoring study.
Generally speaking, a hardware monitor presents
the smallest amount of artifact or interference to the
measured system, and for this reason, they are usually

considered to be more accurate than software monitors

(ref. 24:45),. Software monitors may substantially

interfere with the measured system, and they can detect
only the more macroscopic, less frequent events (even .;;3
though there are some types of events that can be detected

: by both hardware and software monitors). Therefore,

II-18

................




software monitors generally provide a lower degree of

resolution and accuracy than a hardware monitor does.

Performance Monitor Power (ref. 46:88-89). The
power of a performance monitor is determined by the
monitoring technique and the actual implementation of the
monitor. Together with monitor artifact, monitor power can
be used as the criteria for the design, evaluation, and
selection of performance monitors. The five dimensions of

monitor power are given below:

1.

class of activities theoretically observable with a
particular monitoring technique. Note the difference
between monitor domain and instrumentation -
Instrumentation facilitates application of a monitoring
technique to a particular problem; it selects a unique set

of measurable events from the monitor domain.

2.

frequency at which events can be recognized and recorded,

3.

bits of input information the monitor can extract and

Monitor Domain - Monitor domain is the

Input Rate - Input rate is the maximum

Input Width - Input width is the number of

process when a monitored event occurs.

b,

Recording Capacity - Recording capacity is

the number of memory elements that are available for

storing extracted information, and it determines the

II-19

et T,
R
MRLPLILIE ¢




amount of information that can be retained for further

processing. ,

5. Monitor Resolution - Monitor resolution is
the resolution of the time clock from which the monitor
derives timing information. This factor limits the

achievable accuracy of time-based measures.

Collection of Performance Measurement Data. The

collection of performance measurement data is rather
straightforward since it is performed by the performance
monitor; however, choosing or designing the type of
performance monitor to use is a more difficult task.
Ideally, the chosen or designed performance monitor will
measure values for the necessary performance parameters,
provide accurate results, be easy to use, and produce a
minimum amount of artifact (system interference).
Unfortunately, the ideal performance monitor is rarely
available because of the problems associated with
instrumenting a given computer system to allow performance
measurements to be taken. Therefore, several performance
monitors may need to be examined to decide which one or
ones provides the best service.

For example, the domains of four different
types of commercially available performance monitoring
tools are presented in Table II-1, and this table

illustrates the differences in the domains of the the four

II-20

T ————

Sl g




........
-------

TABLE II-1
Domains ¢f Performance Measurement Tools

Software Monitor - Generally speaking, a software monitor
can measure operating system events and those hardware
events that transfer control to a specified location
(interrupts). There are some system activities that can be
measured both by a software and a hardware monitor;
however, the domains of the two types of monitors do differ
significantly.

Hardware Monitor - A hardware monitor measures the
electronic control signals within the system that are used
for the low level communications between system resources
and components, Therefore, it is very useful for measuring
component activity and overlap, but since it is a passive
device, it cannot associate the activity with a particular
software process unless the software process generates a
special control signal for the hardware monitor,
Additionally, the hardware monitor can be used to decode
and measure the contents of system registers or memory
addresses., For example this capability is useful for
monitoring instruction mixes.

Job Accounting Package - Job accounting packages will
provide good data on the workload and processing
characteristices of individual user jobs as well as
generalized information on system processing
characteristics such as turnaround and response times. By
performing statistical analysis on this data, generalized
inferences about the overall computer workload and system
processing can be made.

Instrumented Program - The domain of an instrumented
program is the same as that for a software monitor;
however, an instrumented program will narrow the scope of
the measurements to obtain more specific information about
a particular software task as opposed to the more
generalized, overall scope of a software monitor.

Calculated -~ Calculating performance measurement values
extends the domain of all the different types of
performance monitors since the calculation process uses two
or more values measured by a performance monitor to de-ive
a value not otherwise directly measurable.

I11-21

......
e .

......

v

a2 aca'Bmas

------




Cihdiay DRSS A SN A A e e e Jhnes (i ihanc B St Jaciban M 2 -~ L aman 2 — "

different monitors. Additionally, Table C-4 of Appendix C B

presents a complete comparison of several different :f?

performance monitors, Table C<4 contains information on

O

the domain, accuracy, artifact, and the

Vo,
Adoiad

advantages/disadvantages of the different types of

performance monitoring tools.

Summary of Part One -

This part of Chapter 2 presented an
introduction/review of the common concepts and terminology
associated with DBMSs and CPE, An understanding of this Si
background information is essential to the system analysis
of the DBMS performance monitoring process which is

presented next, as Part Two of this chapter. o

. - v
o e
. L
Dbl nidh  ig’ ot

o
. N
A aalaaty

II-22




.vvr. SAA RO

AU MEORRMEMOERAC

irs)

g e i dbas aPu. EAdE Vi Nt e St — OB M e e S B Sew e 2 e T T e e e W v T Ty

PART IWO - SYSTEM ANALYSIS

This part of Chapter 2 contains the system analysis
applied to the problem of developing a DBMS performance
monitor. This analysis includes: the specification
technique used, the performance evaluation process, the
system requirements, the performance monitoring
requirements, and the methodology/procedures for
conducting a performance study of a DBMS. After the
analysis stage has been completed, the functional
requirements for a generalized DBMS performance monitor
are extracted. Chapters 3, 4, and 5 use the functional
requirements as the baseline for designing, implementing,

and testing a DBMS performance monitor,

Overview of Previous Studies

A literature review of Data Base Management Systems
(DBMSs) resulted in a varied assortment of books, reports,
and articles related to the performance evaluation of a

DBMS. These studies fell into three basic categories:

1. Design issues and design modelling tools
for increasing DBMS performance.

2. Analytic studies of a specific DBMS or DBMS
architecture,

3. Performance evaluations of a specific DBMS.

II-23




Ty r‘l‘
A

Each of these studies contributed valuable research
cenclusions, and the results of the studies in the third
category provided useful information for this study.
However, the studies did not contain a complete approach
to the problem of DBMS performance evaluation,
Specifically, studies in the third category concentrated
on presenting the results of evaluating DBMS performance,
but they contained minimal information on the set of
performance parameters measured and the performance tools
used to measure values for the parameters.

Based on the literature review, a detailed analysis
of the DBMS performance evaluation process needed to be
conducted. A detailed analysis of this process was not
originally anticipated as a part of this study; however,
it is a gap that needed to be filled. The remainder of
this chapter fills this gap by: analyzing the DBMS
performance evaluation process, developing the set of
performance parameters used to characterize DBMS
performance, and determining the types of performance
tools necessary to measure values for the set of

performance parameters.

sSpecification Technique
To begin the detailed analysis, the performance
evalution process in general was examined, and Data Flow

Diagrams (DFDs) were used as the structured analysis tool

II-24

B .
[ R S



...................

for defining and specifying this process. This technique
was used because DFDs approach a situation from the point
of view of the data, and they can serve as a simple model
of the real situation (ref. 14:40-41), In performance
monitoring, the measurement data is the driving factor, §$ﬁ
and without a model of how the measurement data is
transformed and used, the following situation could easily
occur - A performance monitoring tool is used to measure
and accumulate performance data, and after several samples
of data are collected, the user wonders what to do with
the data (ref. 5:5).

Data Flow Diagrams. The mechanics of a DFD diagram
are shown in Figure II-3. An input data source provides
data to a data transformation process. The transformation
process converts the input data into ouput data which is
provided to the data sink., A transform process can have

more than one input data flow and produce more than one

T R
- R A L
) S R

output data flow. Additionally, the transform process can
access data files or data bases while performing the data

transformation process,

1@
. M .."t-'l.‘.’

Data Flow Diagrams are intended to show the steady
state flow of data within a system with no consideration
to control paths such as loops; hence, loops appear very

seldomly in DFDs. One situation where loops may occur is e

el

“a e
» %
cod

an iterative testing process such as hypothesis testing.

s
.

N
'

In these situations, data and test conditions can be

- .

II-25

ST L AR R -~ S '."\ ~ "'."' o \ '.‘-'\

LR, iy



LT e —

A e JaOC g St 2ede 2

(a4q) weaSerq MoTd eleq °E-II 94ndryg

QSRR
e

R Ny
y - .-‘

Se v o

DN
A
LI

JANIS
vivd

asvd vivd

40 3114

MO14 V1iVa 1ndLno

$83004d
NOILVWYOJSNVYL
vivd

MO14 VIVQ 1NdNI

-'\Q.
PG WAL AR i

I-26

-
]
-

324N0S
vivdad

......
......




Y M Jheu e Jhces Shan Joa Jes Sancae SRuc

modified several times to give a broader range of results.
Showing data flow through a hypothesis testing process ii
E! would naturally seem to require some indication of an N

iterative process or loop. Since loops are seldomly
ii contained in DFDs, there is no agreed upon convention for fJ
¥ showing a loop. For this study, a data flow constructed of ]

dashed lines is used to show a loop in the data flow

paths, and in keeping with the intent of DFDs, this

—d

convention is used only when absolutely necessary.

Performance Evaluation Process

A complete set of documentation for the process of

a2 ‘ s "l‘lil" LIy

I S

R e
e L
RO .

)

computer system and DBMS performance evaluation was

developed as 2 part of this study. This set of

»
4

documentation includes indexes for the DFDs, the actual
DFDs, and data dictionaries. The complete set of
documentation is contained in Appendix A, and this chapter
presents and discusses some of the diagrams contained in
Appendix A, The diagrams presented in this chapter provide
a general picture of the performance evaluation process

with the details being reserved for the data dictionaries

ot ! TR et e
3 . . LA BN

USRI LR A AR

St nad PP TSNS ) Y PR/ Y S

of Appendix A. The DFDs presented in this chapter and in

O

v
' . -

the appendix are based on the information contained in the
excellent report by Bell, et. al. (ref. 5:).

The high level concept of monitoring computer system

Se e 4<l'l.-. i'l'
LS AR NS N N WP i WY Y

. o
v, e,

performance is shown in Figure II-4, In this diagram, the

II-27

............




v - CERU S s ) shaliudh REL agt

y " n ot AR A
.. . VT T T
o R

MEAEEE L I L i o L e e e e ow e o e L b e h e s e T e
. ! . PN e . . ) . et R e L e PR B . . .
] | B et Te Lt ) S | R : L ) N [ I A R € e ° D i LA AL IR G IS [ AR ] 1

—— v
-t
Y
2a

- . -.c'
e o

uorjenteAaly douewJdoJaad J4ayndwo)y °*H-II 3Jn3r4g

. . .
S s

«’
A

INIHIDVNVH
W3LSAS
H3LAdWOD

*
b

-
. e
P L LN

S3AILIArdo

s

SIAILOACHO SININIHINOIY

JONVWYO0J¥3d

“ SLINS3IY
: JONVWYOJY3d

Y

AT e e
PO P

€
JONVHYO0J43d
AZXTVNY

3 LSKTVNV
p WILSXS
¥3LNdWOD

LRI

I1I-28

~
Y

. SIYNSV 3H
g SSANIAILOIAAIT

t
avoTIyoM
JJIAYIS

syasn :
WILSKS :
¥31NdHOD o

A4OM avomiyomM

3 sy3asn
d3L3TdHOD 431NdHOD

: WA1SAS
f 431NdHOD




T T e — T T VT e T > T———— - DAL S RN /e S o 2 e e s T B
~ - - P . A ) . A M O N A R A A A I C e
- EaiRY

users of the computer system generate the system input and
receive the system output. The input is whatever task or

Job the user needs the computer to accomplish - the

R . .
PP o .
PR o . .

computer'’s workload. The output is whatever results the

CRen P g Bt
W

' - K-‘ .
.

user requested the computer to produce - the completed
work. The Service Workload process is the process that
takes the input workload and produces the completed work,
and the Service Workload process can be measured to
determine its effectiveness and efficiency (the major
categories for performance indices).

The parts of the diagram described above are the
basis for establishing the performance indices of a
computer system. The remaining parts of the diagram
describe the process of establishing performance
objectives and criteria used as the basis for measuring,
changing, and optimizing the computer system. The
Determine System Objectives process is an important
process, and it evaluates the workload requirements of the
system user (which implicitly includes the objectives of
the user), the management requirements of the computer
system management, and the system objectives of the
computer system management to produce a set of performance
objectives. The Analyze Performance process uses the
performance objectives, effectiveness measures, and
efficiency measures to produce a set of performance

results. The performance results are used by a computer

II-29

LI IR S SIS A P RIS N T R L L
e ® LN L ST S A N S SR B LS T T e S A S L TRt P [
RN L AN RPN I AEAS SEAEA AN AN ";'.L..L.‘L" .




" AR IRATC A A AR E A A S AR A i
. N A R Y A T T I R Rt e e RO P et

system analyst to determine how well the computer system

ot
R v .
FONPIY PO CI ST VA Wy

is working, and if necessary, to identify areas where
changes or modifications need to be made.
Of the processes contained in Figure II-4, process 2

- (Determine System Objectives) and process 3 (Analyze

-
. a'A’l L
t . ‘. TN N
EAVEAAY
1
FRENCN

Performance) have been explained in detail in the report
by Bell, et. al, (ref. 5:). However, process one, the
service workload process, is much less well explained and
defined, especially in the area of DBMS performance
evaluation, Based on this, the service workload process is

examined in detail in the System Requirements section, but

processes 2 and 3 are only briefly examined and explained
EE; in the Methodology/Procedures section of this chapter.
Ei " To establish a starting point, DBMS performance
= - evaluation is defined as a subset of computer system
: performance evaluation, and this subset is shown in Figure
Ei II-5. Some type of DBMS workload in terms of interactive
ié- queries, applications programs, report writers, etc. is
t?ﬁ applied to the DBMS. The computer system(s) and DBMS are Eﬁ
;: monitored to measure the effectiveness and efficiency of
1:1 the system resources during the Service DBMS Workload ?j
Efz process. Therefore, the performance indices for a DBMS are IE
;; the same as the performance indices of a computer system; 'ﬂ
;ﬁv however, some of the specific performance measures defined :f
;ﬁ beneath the performance indices may be different. The ;S
3
. L .
SO I1-30 :




——

-

v‘an_."‘T‘\_“'"-

-“ ‘.

uorjenteAay SouUewWJOJJIdd SHE]

*G=II 94n314

A CRS M A A APl A AR irgr e i)
S

PR U PP S M
ok e e
M e

SLINs3y
JONVHYO4Y3d

LSXTVNV dSvd
VIVA/NILSKS

431NdHOD

SWYd
¢

SIUNSVINH

SSINIAILII44d

syasn
asvd
vivd

AHON
(CCRACMEL! (0]

JONVHYO0JY3d
SHYd
JZXIVNY

S3AILO3rdO
AINVHYO03Y43d

i
dvo 14 oM
SWHd
AITAYIS

YOLVYLSINIKGQV 3sve
vivad ‘LNIWIOVNVW
NALSAS ¥3LNdHOD

SAAILO4rH0

avoIduoM
SWdd

SININIHINOIY

sydsn

Jsvd
vivda

1I-31.

.
B
A L S NN

~ S
-

Aadadb ol

e e e e e
RO

N

-,

.1’:1'.-- -

.
..
0

)
al g o v o

ot
o .

-
8 s Lo <y ot

,\O.



performance objectives for the DBMS are established in a

manner similar to the way performance objectives for the
computer system are established. The DBMS workload of the
. data base users (which implicitly includes the objectives
of the data base users), the management requirements of
the computer system management and data base administrator
(DBA), and the objectives of the computer system

management and DBA are inputs to the Determine DBMS

- B

Objectives process to produce a set of DBMS performance
objectives. The Analyze DBMS Performance process uses the
performance objectives, effectiveness measures, and
efficiency measures of the DBMS to produce a set of DBMS
performance results. The software engineer, DBA, and the
ii 6i computer system manager use these results to determine how
well the DBMS is performing, and if necessary, to identify
areas where changes or modifications need to be made,
ii While both concepts of performance evaluation appear
to be straight-forward, the question of how to begin and
carry out a performance evaluation can be non-trivial,
especially if approached incorrectly (ref, 5:5-9). A
seemingly simple question, but one with a large impact is
w; - why would anyone want to evaluate DBMS performance? The

answer to this question must lie in the set of clearly

[DER1 IEa
Lt o
LI e

defined objectives for the computer system and DBMS3. As
stated in the definition of Macceptable level" of

ii performance in Part One of this chapter, a set of

II-32

T R T R T Y
LNSALAE 5 .

- - ~ - . -
PRRDREACS SR G N G R R O L AR L O

c,e s
. . .
b bandand i

P -
vl » .
STt

Py VTN Y

et daninosandont i i




’ L PR
AR

o

1
5
Lo
oo
| S

objectives is required; otherwise, it is useless to

monitor the performance of a computer system or DBMS since

there is nothing to compare the performance measurements
against. For example, the monitoring of a particular set
of data base updates may show this task to require three
hours of CPU time to complete, and without some objective
to be met, an evaluation of whether or not the three hours
of CPU time is a good or bad level of performance cannot

be made.

Operational Objectives. Operational objectives in
terms of this study fall into three categories. The first
category is the operational objectives of the gverall
computer system which includes the DBMS and its
corresponding data bases. The second category is the
operational objectives of just the DBMS and its data
bases. These two categories of objectives are established
by the computer installation management, the DBA, and the
end-users. Since the management and end-user objectives of
every computer installation are different, this study can

do nothing more than emphasize the importance of

establishing operational objectives for the overall
computer system, The operational objectives of the DBMS 'q
and its data bases also vary at each computer

installation. However, generalized performance measurement .

e

objectives for each type of DBMS user can be defined, and

II-33

PP rY §

EEAE L I S PR B S T TR SR Rt ] .-"-n *.

.
P S A PR W DY Wl G B RPN Tl Sl %




ARAOAE Ladchdg

T————

these objectives are developed in the next section of this

chapter. The third category of operational objectives,
those of a DBMS performance monitor, can be generalized
enough to apply to all users of the monitor. The four
objectives of a DBMS performance monitor are defined

below.

1. To provide the user of the DBMS with a
measure of the resources required by the DBMS to
accomplish a given data base task.

2. To allow the user to identify areas where a
bottleneck may exist such that the user can make changes
to the system to help alleviate or cure the bottleneck,

3. To provide the user with a convenient,
"user friendly" performance monitoring technique for the
evaluation of DBMS processing,

4, To minimize the artifact inherent in

performance monitoring techniques.

It is important to note the objectives of the
DBMS performance monitor are directed at a user, In this
light, the term user must be studied very closely to
determine if there are different levels of observation at
which a user may "see" the DBMS, An architectural model of
a DBMS is useful for relating the different DBMS users

with an appropriate level of DBMS observation, and this

II-34

" & " a®e " a7, PR TR TR AT S T PR AR S UG T AP . PR R
.......

A
P SRSy

PR
' .
A 2 g a2 g




model allows the performance aspects of interest to

specific or all users of the DBMS to be defined.

User Relationship to DBMS Architecture. Using the
DBMS architecture model defined by Date (ref. 11:17-19),
two interfaces can be defined, and these interfaces are
between the external-conceptual level and the internal
level - access method. Each interface corresponds to a
particular type of DBMS user and Figure II-6 lists these
users. These users may or may not have the same overall
objectives, and this impacts on the performance aspects
they are interested in., In the following paragraphs, the
two interfaces are studied in more detail to obtain a
general idea of the performance aspects (in terms of space

and time) that may be of interest to the different users.

External-Conceptual Interface. There is a

"level of observation" both above and below this
interface. Above this interface are the end-users of the
data base with their corresponding local view of the data
base contents and organization. Below this interface is
the Data Base Administrator (DBA) who has a global view of
the data base contents and organization,

An end-user can be further specified as
either technically or non-technically oriented. A

non=-technically oriented end-user is normally associated

II-35

..........................

L A R
’ .ol Sl
[ [ SRRSO ST |V L_\_A_l..b.j

P
PP .
aae 0 1 e 2

14.4 ot vm e A amt e A lalada

...........

amea aala ik

'Y



94Nn3093TYOJIY SWAA SNSJDA SU3s(] SHAQ JO SaAT303fqQ 2ouewaojuaad °9-IJ 24n314

A” SATI4 3ASVYE VIvVd AH

vada

YOLNIHITIWI/YIANDISIA SKHEd

(JIVIYILINI AJOHLIW
SSAJOV ~ TIAIT TVNYIINI)
SIAILIILH0 JONVWYOJYEd

(FOVAYILNI
TVNLdIONOI-TVYNYI LX)
SAAILOILE0 FINVWHOSHIL

(SYFANIONT FYVMIAIO0S)
SY3A4dOTIAdd NOILVOINddV

(INIWIOVNVH)YISN NOILVWHOJNI

YIOVNVH WILSXS
N

JOVAYILNI

— — —|— —~—Q4023Y4 TVOISAHd

v
Muuuvmmm=-azm

dOHL AN
SSAIOV
FOVIUALINT
|||||| — — Qu023¥ aIU0IS
13A3T
TVNYILNI
SELER
TVNLdAINOD
K TIATT
oo TVNYILX3

(3004 A Siva Jbes Jvet e S i

TN

IZ-3%

ad.

C et

-

o

Pl Wy

g

5
Py

T Y e
SRR RN
L 1l o9

Pl
-t

ERE I
=" .-
DU
- et f.
PR

Ll * w "
TN TN
ut et o

L S W
et e

. -
O Ny

S SRR

o-‘ I-'
PO N

-
- %
o -

-
st o

o
. '




with the management of the organization, and this type of

end-user uses the computer and data base as a tool to

. . B . .
VA PP LTS GRS SO VL S |

access management information for supporting management

decisions., This end-user normally accesses the data base

e e

through a query language or a "canned" application program
and has one expectation of the system. This expectation is
to be able to access the required information in a timely

manner. How this impacts on the computer resources is not

a concern unless the system doesn't respond within the

time frame the end-user expects it to. Therefore, this

. ii
- "4
b type of end-user has a generalized performance measurement -
- objective of determining if the desired data is accessed ]
f; in a timely manner. p

ST B
el el e
Py

= On the other hand, a technically oriented

Q)

end-user corresponds to a software engineer who has been

tasked by management to develop an information processing

Aland

S S
J' et

. S

Al Al Py

*il capability requiring access to some portion or to all of

[
PRPIAE 4

the data base., This user is concerned with both space and

time requirements., Time is of primary importance so the

results can be provided quickly, and space is important so iﬁ
the application being developed can be performed within
the constraints of the system resources. This user
typically needs relevant information about system
parameters to assist in trade-off decisions (For example,
more main memory space could be used to help reduce I/O E%

wait times). Therefore, this user may require performance

II-37

.............. . e e .',‘.‘..“,._‘.._' AR ... .. PR .,'\-.‘_-.'.-_-.-. '..'_-.'_._'.-.- SRR SRR -,'.\-:."

. . -
NN PR S PR PRI S S SN R Nl Y L R A f -."-.‘\.- PNKY




PN et BN et g St A A S N TP sl ot i e g i et S0e S s gt sy ]

information on main memory, buffer space, file size, file

distrubution, access paths, I/0 time requirements, CPU
time requirements, etc., pertinent to the specific
development task., Without this type of information, the
trade-off decisions can not be made except by trial and
error. Based on the preceding discussion, this type of

end-user has a generalized performance measurement
objective of determining how to design and implement a

a solution that provides timely results as well as placing a
minimum impact on the resources of the computer system and
DBMS.

The DBA is a technically oriented user of

the data base, but the DBA also has the responsibility for

the overall control of the data base (ref. 11:25 and
2:29-39). The data base organization must allow all
end-users to access the information they require, and it

must use the system resources in an efficient manner.

.

Hence, the DBA's task is comparable to the technically
oriented end-user in that both of them require system
information allowing them to make trade-off decisions. At
this level of observation, the DBA will require
information on how efficiently the end-users can gain
access to the desired information contained in the data
base(s). Therefore, the generalized performance
measurement objective of the DBA at this level of

observation is to determine how to design the data base

II-38

-------- q....-.‘. ._,,,-.—._--._- ~----—--...---._~-<....--
-

L) - o DI ST WL LR WA A SRR
RSP ST ISP AP I 4‘1" n‘ A AT Y c._ph \.' o -"';‘1" n-l"-nz.c‘_-:\.:v:.ﬂ._-:{:f\l -\" '1" ;.-' ---':ﬁ-'.:;:-‘ --‘\ '-n'\;'\-‘ e




[l

‘

i

i
A
1

;
A

LR 2 S i e A aa — T W = — -~ -

-

rv
i

g .?‘f.f T
‘
¥

organization, access paths, and schemas to allow the
end-users to access the desired information while placing
minimum overhead on the computer system and DBMS
resources.

Internal Level - Access Method Interface. £
Again, there is a level of observation both above and
below this interface. Above this interface is the DBA, and
at this level of observation, the DBA must be concerned
with the mapping of stored records at the internal level
to the data base schemas at the conceptual level. In
particular, the DBA must be able to evaluate the effect of
the length of access paths, the time required to make the
data in a stored record available to the end-user, and the
amount of CPU processing required to process the indexes
at the internal level of the DBMS. Therefore, the
generalized performance measurement objective of the DBA
at this level of observation is to determine how to adjust
implementation and data base generation parameters to
optimize the efficiency of the interface between the
internal level of the DBMS and the access method of the
computer system,

Below this interface, there are several
observers of DBMS performance aspects, The first observer
is the system manager, and the system manager must be
concerned with the impact of the DBMS on the other

resources of the computer system., Therefore, the system

II-39

-----
...............................
R YT e S U e T N T T T P




manager needs information on the percentages of the total

resources consumed by the DBMS to process the DBMS
workload versus the percentages of total resources
consumed to process the overall computer workload. In
other words, the system manager needs a concise picture of
overall resource utilization and what percentage of the
overall utilization is attributable to the DBMS. The
system manager's generalized performance measurement
objective is to determine if the existing system resources
are providing an acceptable level of service to the system
users as well as to find specific system bottlenecks or
resource under-utilization., The second observer, the DBMS
uesigner/implementor, has the task of mapping the
functional requirements of the DBMS to the underlying
architecture of the computer system. Therefore, the
trade~off decisions made by the DBMS designer/implementor
require a very detailed look at the performance aspects of
the underlying, physical architecture. This means the
generalized performance measurement objective of the DBMS
designer/implementor is to obtain a detailed, overall
picture of DBMS performance to find those areas not
providing an acceptable level of service. The third
observer at this level is the DBA, and since the DBA has
the responsibility for the overall control of the DBMS and
data base(s), the DBA needs an overall picture of DBMS

performance to compare with some benchmark level of

II-40

At

"ll..
w_ b 62 ot ..'.
s ‘a’ealaa s g

EPCITRAN & &




per_ormance., Additionally, at this level of observation,

.;the DBA must be able to determine the physical I/0
activity on the channels and devices, I/0 reference
patterns, and the distribution of data base files across
the mass~storage system. Therefore, at this level of
observation, the DBA has the generalized performance

su objective of determining a concise picture of
overall DBMS performance as well as the details of
physical I/0 activity to see if these performance aspects
are within acceptable limits, Failure to meet performance
cbjectives at this level may indicate the DBA must perform
2 more detailed performance analysis at the other two
levels of DBA observation.
6.
System Requirements

The preceding section developed the processes of

comruter system and DBMS performance evalaution, Data flow
cdiagrams of these processes were presented in Figures II-4
ar¢ II-5, respectively. This section concentrates on the
Service Workload and Service DBMS Workload processes
cortained in these diagrams. The goal of this section is
20 Zefine the set of performance parameters which must be
measared by a DBMS performance monitor. The development of
tris set of parameters is a necessary first step because
the measured values of these parameters provides the

”yehicle for evaluating DBMS performance., Also, the




R T e s L s T L T s T e e e T T I SRS S e

relationship of this set of parameters to the

architectural model of a DBMS and the different types of TJ
DBMS users is developed.

et
IA.L_I_A_V

Computer System Performance Evaluation Parameters.

Since the performance monitoring of a DBMS has been

defined as a subset of computer system performance
monitoring, the logical place to begin is with the
parameters commonly used to evaluate the performance of a

general purpose computer system. The architectural

implementations and monitoring facilities of computer
systems tend to have a wide degree of variation;
therefore, a complete list of computer system performance
parameters is almost impossible to develop (ref. 46:82 and
24:64-66). Consequently, a generalized, partially complete
example of computer system performance parameters grouped

by their corresponding performance index was developed.

Figure II-7 illustrates how performance
parameters are derived. The workload characteristics ;A
determine the type and amount of resources the system must
allocate to process the users workload. Some examples of
workload characteristics are the CPU time and amount of
memory requested by a job. Additional examples of workload *J
characteristics are provided in Table B~1 of Appendix B }
(ref. 46:12-13). Ei

II-42




Workload System Performance
Characteristics| Processing Parameters
Characteristics

Figure II-7. Derivation of Computer System
Performance Parameters

The system processing characteristics determine
how the system resources are utilized during the
processing of the users workload. Examples of system
processing characteristics are throughput,
turnaround/response time, and component utilization.
Additional examples of system processing characteristics
are provided in Table B-2 of Appendix B. Table B-2 was
developed from information contained in the following
sources: ref, 26:7; 27T:; 33:112; 46:16-18; as well as
information derived during the course of this study.

The combination of workload and processing
characteristics forms the foundation for developing the

performance parameters of a given computer system, and the

measured values of these performance parameters forms the

foundation for evaluating computer system performance, ]
Some examples of computer system performance parameters -ii
are shown in Table II-2., A generalized, partially complete fﬁ
set of computer system performance parameters was "

II-43 o

.............

................




v

s
T

LT
-
1
L
f-.

|

v-vr.*-n-‘.

T

.

T T —

TABLE II-2

Examples of Computer System Performance Parameters

Parameter Name

Description

Throughput

Turnaround time

Component
Reliability

Number of disk
Volumes

CPU idle
CPU busy

Page rate
Number of page
faults

I/0 System idle

I/0 System busy

Device idle
Device busy

CPU only

CPU wait

CPU and any 1/0

Mean length of
system queues

Number of jobs executed per unit of
time

Elapsed time between submitting a job
or interactive command to a system
and receiving the output

Probability of the component being
active and working correctly at any
given time

Number of disk volumes requested by
a job

Percentage of time the CPU was idle
Percentage of time the CPU was busy

Rate at which pages are retreived from
secondary storage

Number of page faults per unit of time
Pe;centage of time the I/0 system was
idle

Percentage of time the I/0 system was
busy

Percentage of time a device was idle
Percentage of time a device was busy

Percentage of time the CPU was the
only active component

Percentage of time the CPU spent
wailting for I/0 to complete

Percentage of time the CPU and any I/0
occurred simultaneously

Mean number of units contained in the
queue and the percentage of time the
queue was this size

II-44




developed, and this set of parameters is presented in

Table B-~3 of Appendix B. The set of performance parameters
presented in Table B=3 are categorized and grouped by the
performance index scheme of Figure II-2., Table B=3 was Cf
developed from information contained in the following El
sources: ref, 24:Chapter 2; 25:Appendix B; 26:Chapter 1; 4

27:; U46:10-20; as well as information derived during the

b

course of this study. For Table B-3 to be put into

il practical use, the source for measuring values for tihese
éi parameters needs to be defined, and this is covered in the
;; Performance Monitoring Requirements section of this
) chapter.
The computer system performance parameters
a o describe the way the Service Workload process in Figure
- II-4 is monitored to produce a set of system effectiveness
?; and a set of system efficiency measures, Figure II-8
ii contains an expansion of the Service Workload process. The
fj computer workload is input to an Evaluate Workload process
E? which corresponds to the job scheduler of a computer
i; system. In this process, the workload is evaluated to 1
) determine its resource requirements, and information about _.‘
the workload in the form of workload parameters Zf
‘F (characteristics) are extracted. For a computer system to 23
EEE execute a user's job, it needs to allocate resources to ;;
SE the job, utilize the resources to execute the job, and "a
;z return the resources to the system when the job has '1
: - 3
II-45 ‘ﬂ
; fﬁ
K T
)
S e e e




PEOTMJIOM 9O[AJDS °@-I] Sundy4g

SIUNSVINH 9°1
KONIIOIJ43 SANTVA
HILIWVHYd
NOILILYVd
SIHUNSVIAN NV JZXTUNY,
SSINIAILIIAIT
SANTVA SANTVA
a4 LV INHNIDV daLvINWNI IV
6° 1
SANTVA (|
47114 SANTVA HALIAWVYVI & avoIN4OM
YILAWVYVL JLVIANAD0V SANTVA JLVATVAS avo'INd oM
Y313WVHvVd 431ndHOD
avoidomn
SANIVA SANTIVA
JILIWVYVd HALIWVHVd gor
NOIlVI0T11V3ad NOILVZITILN SANTVA yiasn
HALIWVYHVI
NOILVIOTTV
b - |
< $324nos3y $32ynos3y
HUOM J1vo0T1Ivid JZI°111Nn JLVI0TTY,
J3L31dHOD
—_ NOILNJIXI NOILNOIXd
J3IHSINIdJ-dor YyoJg-AQviy-dor

s Ty
e e

A [

N

At et N .
D N S S T
SN S et

.h- ‘-.
S
el N,

1\'3

.
e’ ot & o

- -
LT
PN

At ot g s Y ok

\.-,'-.".:..-,‘u \‘.“-'.'-
ENOMAE)

L -

- 1
h

a

"
P

L]
)

P




o Y VS TYITYNTNIR IS TR N, e v vy

o R

&
finished execution. The execution process is shown by
bubbles 1.2, 1.3, and 1,4, and each of the processes ;g
extracts information about the execution of the job in the i
form of allocation, utilization, and deallocation E;i

parameters. All of the extracted parameters are 519

accumulated within the storage of the system, and at the

end of some specified time interval, the accumulated

parameters are ahalyzed and partitioned to produce the

| 2 IR

effectiveness and efficiency measures which are used to

evaluate the performance of the computer system.

Relationship of These Parameters to a DBMS. In Part

One of this chapter, the concept of the boundary between

system workload and system resources was developed, and
three types of computer system resources were defined,
Ignoring hardware and human resources, it was shown the
software resources of a computer system can be placed on
either one or both sides of the boundary depending on an
individual's level of observation, An evaluation of the
developed set of performance parameters showed the
parameters represent information only at the computer
system level of observation (i.e. the software resources

are measured as a part of the overall system workload).

Therefore, if the software resources are to be classified
as a system resource, the set of parameters must be

modified to include specific information on how software 3

II-47

............

o0, e, o LA R S o TS S R . . e . L. o
NI FIAC AT DAL DRI W WA D N AL AT DAL W SR I " ‘.. - . KN

R P R R S SR SRR SN SRS T S St S 1
AT T . “ DR AL Y AR R A TR A YL P R N
il o . bt St 8 "l a’ aNA Cata atatataatanl




resources are utilized and their impact on the other

system resources. For example, a conventional DBMS
composed entirely of software modules may be used in a
computer system where the CPU utilization is 8C percent;
however, the computer system performance parameters
developed to this point contain no way to determine how

much of the 80 percent CPU utilization was dedicated to

supporting the DBMS.
The example shows the parameters developed so

far do not meet the performance monitoring needs of all

Lam e o a0

the DBMS users defined in Figure II-6. Therefore, there
must be some performance parameters unique to the software
resources of a computer system as well as some performance
parameters unique to a particular type of DBMS. An
evaluation of how the type of DBMS effects the development
of a set of performance parameters for DBMS performance

monitoring is given below.

Conventional DBMS. An example of how a
conventional (Single Machine) DBMS may be implemented on a
general purpose computer system is shown in Figure II-9.

Since this type of DBMS is composed entirely of software

modules, a conventional DBMS is a software resource of the

4
system, and the developed list of performance parameters ;

]

needs to be modified to include information on how the lﬁ

-

=

1

3

N N A B . N R R R R S R R R T SRR




ﬁl ' APPLICATION PROGRAM 1 -
’ . 0 '
- [ ] P
I.- .
: . E S '1|I|.)
- R Y
h‘ APPLICATION PROGRAM n AS

T T =M DATA

IE BASE

DBMS BUFFERS N M
G
SCHEMA|SUBSCHEMA| . . . |SUBSCHEMA
1 i

MAIN MEMORY MAP

Figure II-9. Conventional DBMS Implementation

DBMS is utilized as well as how it impacts on the other ‘f
resources of the computer system.
Data Base Computer. An example of how a data
base computer may be implemented is shown in Figure II-10.
This figure shows three separate aspects must be
monitored. First, the DBMS applications programs,
interface software, and communications hardware/software
nst be monitored on the host computer. Second, the data
base computer and its corresponding interface software and
communications hardware/software must be monitored, and

lastly, the use of these two computers as an integrated

II-49 -

................................................
..........

.....................
...........................



APPLICATIONS PROGRAMS ﬁ

HOST
COMPUTER

INTERFACE SOFTWARE

COMMUNICATIONS SOFTWARE

A

COMMUNICATIONS LINK

COMMUNICATIONS SOFTWARE
INTERFACE SOFTWARE DATA
BASE
o COMPUTER
DBMS
DATA
BASE
b
ﬁi Figure II-10. Data Base Computer Implementation o
.
I1I-50 ]
. :13
5
............ 3
P N O R N R




e St I et e I A R SCRA SO S e AU A S s S o2 Jases 2

system must be monitored to provide a complete picture of

DBMS performance,

By adding parameters to measure the
interface software and the communications
ii hardware/software as a part of the system workload, the
S developed set of computer system performance parameters
! could be used to monitor the performance aspects of the
;; host computer. Monitoring the data base computer may not
o be as easy. The data base computer could be a general
purpcse computer using a conventional DBMS, and in this
;;' case, the same parameters used to monitor the performance
of a conventional DBMS could be used. However, the data

base computer may contain specialized hardware to perform

_ all or some of the DBMS functions. In this case, many of
the parameters used to monitor the performance of a
conventional DBMS would apply, but the data base
computer's specialized hardware resouces requires the

definition of specialized performance parameters,

Therefore, monitoring the performance of a data base
1. computer involves more than just modifying the developed

set of performance parameters. Since the scope of this

study was limited to monitoring the performance of

conventional DBMSs, the problem of monitoring data base

v '.'- ey v
St .
e T .

‘\"' ‘ o ,.‘ ..".‘ . -" .
FEVRS

computers implemented with specialized hardware was not

v

.‘
e

AT
R A

further developed.

II-51

--------

...................




The overall picture of DBMS performance is

obtained by combining performance parameters from both the

host computer and data base computer.

Distributed Data Base System. An example of
how a distributed data base system may be implemented is
shown in Figure II-11. This is the hardest system to
monitor, especially if a picture of overall performance is
desired. In this system, four separate aspects must be
monitored. First, the performance of each DBMS at the
nodes of the network needs to be monitored where the nodes
%‘_ could be conventional DBMSs or data base computers.

Second, the performance of the network needs to be

monitored (a significant performance monitoring effort in
itself ref. 47:Chapter 5). Third, the integrity of the

data in the entire network of data bases needs to be

monitored, and lastly, the combination of these three

4
aspects must be monitored to develop a complete picture of -
DBMS performance. In this study, only the first aspect of ]

conducting a performance monitoring effort on a
distributed data base system will be investigated, and the
investigation of this aspect is limited only to those
nodes using a coﬁventional DBMS or a backend data base

computer implemented with a general purpose computer and

conventional DBMS, ]




bl Ca R e
' BUMES

. O
. - . N

2

MR
SRy
A

T — e R ———— - : 4

NODE 1
(CONVENTIONAL DBMS)

NODE 2
(DATA BASE COMPUTER)

CONCENTRATOR

NODE 3
(NO DBMS)

NODE 4 NODE 5
(CONVENTIONAL DBMS) (CONVENTIONAL DBMS)

Figure II-11, Distributed Data Base Implementation

II-53




[ Performance Parameters Unique to a DBMS. Figure
i . II-12 illustrates how performance parameters for a DBMS :
}

are derived. In a conventional DBMS, the DBMS workload

characteristics determine two things: the DBMS software

.
me E 8 4 b 0, -

modules that must be used as a system resource and the s

type and amount of other resources the computer system

must allocate to support the DBMS software modules. In
fact, data base workload plays a large part in determining
the performance of a DBMS, and it is characterized by the
list of data objects required to satisfy a request for
information contained in a data base(s) (ref. 52:2,12). R i
Some examples of DBMS workload characteristics are the CPU
time requested by a DBMS task and the rate at which
requests for information are submitted to the DBMS.
Additional examples of DBMS workload characteristics are f:ﬁ
provided in Table B-4 of Appendix B.
—d
Data base workload is represented by the

language used to communicate with the DBMS. This language

is referred to as the data sublanguage (DSL), and it is o
some subset of the total computer system language(s) used
to access data base objects and specify data base ZEF

operations (ref. 11:19-21). The data sublanguage could be

e a a_eZafaste

an interactive query language, statements embedded within
an applications program, or specialized statements

interpreted by an applications program. This study makes

II-54 in




J—

~ v w W

v,

~

[

.

v
A B
L L AP
. AR

Trrv v

P ST
Vet et et

. V%t T e e

. .
............
LAV S SN LI PNy R |

LY % e NV v v ey Coia i S e e St e e B N - AR S -Tasi Sansty

DBMS DBMS DBMS
Workload Processing Performance
Characteristics Characteristics Parameters

Figure II-12, Derivation of DBMS Performance Parameters

no distinction on data sublanguages and treats them all as
a generalized way to access and manipulate data in the
data base. Any given data sublanguage is a combination of
two languages. First, there is a data definition language
(DDL) used to describe data base objects, and second,
there is a data manipulation language (DML) used to
manipulate and process data base objects. The data
manipulation language contains statements allowing DBMS
users to retrieve objects, create objects, update objects,
load a data base, etc.. Therefore, they are the biggest
contributor to the DBMS workload. On the other hand,
statements in the data definition language usually serve
only to describe a particular user's view of the data base
and contribute only a small part to DBMS workload. Based
on this premise, this study focuses on DML statements and
their impact on the system. Four general types of DML

statements can be defined and these are given below (ref.

T7:49-52):

1Z-55

---------------
..............
'''''''''''''''''''''''

'

LY
- tm e e

Attt

[ P
P
O

Y Sy SN

oL ]

et el
AR TR R
2 A8 & ok s

e ]

Py

NV N Y



1

1. DML retrieval statements - This type
of DML statement requires that data base objects or "
information be moved from a lower level to a higher one. e
(The lower level would be the mass-storage files of the ;;E
data base which is the lowest level of the storage ﬁ$

hierarchy, and the higher level would be main memory which

is the highest level of the storage hierarchy).

2. DML storage statements - This type of

DML statement requires that data base objects or
information be moved from a higher level to a lower level.
3. DML control statements - This type of
DML statement does not require data movement., Rather, it
prepares the data base for data manipulation. Examples of
this type of operation would be statements to OPEN and

CLOSE the data base for processing.

4, Special purpose DML statements - A
- special purpose DML statement is any DML statement which :;1
cannot be classified as any of the other three types of

DML statements.

DBMS processing characteristics determine the

ey M ..
P AL P L
LT e PR A LA L.
et eV N A O
a’a-a APTS WP N Yt T W B G R WY X

way DBMS software modules and other system resources are
utilized during the processing of the DBMS workload.
Examples of DBMS processing ~racteristics are DBMS

EE throughput, the num. @+ ° T, per :ions per DML

-

statement, and the transfer time .° -'~*- -.ase objects

II-56




between storage hierarchies. Additional examples of DBMS

processing characteristics are provided in Table B-§5 cof
Appendix B.

The combination of workload and processing

characteristics forms the foundation for developing the

performance parameters of a conventional DBMS, and the o

measured values of these performance parameters form the fﬁ

foundation for evaluating the performance of a - .13
o

conventional DBMS, Some examples of DBMS performance

parameters are shown in Table II-3, A generalized, ]

partially complete set of DBMS performance parameters,
grouped by their corresponding performance index, was
developed, and this set of parameters is presented in
Table B-6 of Appendix B. The data presented in Tables B-4,
B-5, and B-6 of Appendix B was developed from information
contained in the following sources: ref. 2:315-321; T7:23,
47,49-55,113-124; 13:21,89-94; 28:Chapter 4; 29:4-7;
31:252; 39:330; u42:7; u48:23,26-29; and 52:75,103-105; as
well as information derived during the course of this
study. For Table B-6 to be put into practical use, the
source for measuring values for these parameters needs to
be defined, and this issue is covered in the Performance
Monitoring Requirements section of this chapter.

The set of DBMS performance parameters

developed in this study describe how the Service DBMS

Workload process in Figure II-5 is monitored to produce a ° o

II-57 Sl

................
----------

-
..........
-----------




AP A Sl &gt Ate Bcat v b o aow messaeanae e ar ey

S e e TN

TABLE II-3 .
- Examples of DBMS Performance Parameters

3
s
,r‘
g

Parameter Name

Description

DBMS throughput
by type of DML
statement

Turnaround time

Response time

Number of data
bases

DBMS CPU
utilization

Mean CPU time per
DML statement

DBMS memory
utilization

DBMS I1I/0
utilization

Number of data
base objects
accessed

DBMS device
utilization

Mean length of
DBMS queues

DBMS functions
used

Number of DML statements executed per
of time broken down into the four
categories of DML statements

Elapsed time (in batch mode of
operation) between submitting a DBMS
task and receiving the output

Turnaround time for a DML statement or
set of DML statements in an
interactive mode of operation

Number of data bases requested by a
DBMS task

CPU usage by the DBMS / total CPU
usage

Mean CPU time to complete a single
DML statement

Memory usage by DBMS tasks / total
available memory

I/0 usage by the DBMS / total I/0
usage

Total number
retreived or
base(s)

of data base objects
stored from/into a data

Device usage
device usage

by the DBMS / total

Mean number of units contained in the
queue and the percentage of time the
queue was this size

Number of times specific DBMS modules
were used during a DBMS task

II-58

Pl . F H
LT .
0 . .
e Wt

o e .
TG DY OU S WL

T T T T T T SN e e T e A e
J WP SN .‘..._‘_-\‘..LJ




set of DBMS effectiveness and a set of DBMS efficiency Ty
measures, Figure IXI-12 contains an expansion of the
Service DBMS Workload process. The DBMS workload is input

to an Evaluate Workload process which corresponds to the

) JULINC A o B ¢
,

"
O
'
>
R
\
T

task scheduler or control module of the DBMS. In this

process the DBMS workload, in the form of DML statements, 1
is evaluated to determine the resource requirements in

terms of DBMS function modules and data base files, and ;;
information about the DBMS workload, in the form of DBMS

workload parameters (characteristics), is extracted. For

the DBMS to execute the DML statement, it needs to _1

PN

allocate resources, utilize the resources, and return the

resources when the DML statement has completed its

execution. The DML statement execution process is shown by
bubbles 1.2, 1.3, and 1.4, and each of the individual
processes extracts information about the execution of the

DML statement in the form of allocation, utilization, and

deallocation parameters. All of the extracted parameters
are accumulated within the storage of the host computer
system, and at the end of some specified time interval,
the accumulated parameters are analyzed and partitioned to
produce the effectiveness and efficiency measures used to

evaluate the performance of the DBMS.

II-59

wTe T .~":-_', ..........................................................

e
e e .
..........




s B Jade Jands Auae B

peOTN.IOM SWHQ 30TAJRS *El-II 24nB1yd

T

oL

9°1
SANIvA
YILIAWVYEVd
NOILILYVd
mmz:ﬂ<m:Aﬂ\\\\ﬁH ANV JZRIVNY
SSINIAILOI4dd .

SIUNSVIN
XONITDI44d —

SANIVA SANTIVA
A3 LVINKRNIOV I LVINWNIDV
\-\)\
61
SANTVA
3714 SANTVA YA LAWYV UV
HILIWVYVd JLVTINANIOY,
SANTVA SANTVA
Y3 LIANWV YV YILIAWVYVd
NOILVOOTIVid NOILVZI'IILN
LR §
<& $324nosay
A4oM JLvVI0TIvid
d31d31dR0OD
—_— NOILNDAXY

QAHSINIA LNIHILVIS—THA

SANTVA
HILIWVHVd
avoIiyom
SHHd

SANTVA
YA LIANVHYd
NOILVOOTIV

JZ1711dN

[
avoIxdoM

SWdd
JLVNIVAY avoIddoM

SHaa

LINIWILVLS
THA

CANY
S$334N0S3y
JLVIOTTV

NOILNDOAXd ¥Od

XAVAY - INIWILV LS -THA

.....

.-
hiC)
.
PR Oy Y

o

-
EEY
PP

.

N
P

o
e
20 g oy

.
P

A

-~

Tet . e
A e et
* ol adad

-~ -
v v e 2t

.-
.

-

U
Clie¥. S T}




Selection of a Set of Performance Parameters for

Mgnitoring a DBMS. The developed sets of performance
parameters for computer system and DBMS performance
monitoring were used to develop a combined set of
performance parameters meeting the performance monitoring
needs of the different DBMS users. The new set of

performance parameters was developed by combining the

parameters from both of the previously defined sets and
selecting those parameters meeting the generalized
performance measurement objectives and performance
monitoring needs of the different DBMS users. Some
examples of the combined set of performance parameters are
presented in Table II-4., Table C-1 of Appendix C contains
the entire set of combined performance parameters, and
while this table should not be considered a complete list,
it should prove to be comprehensive enough to effectively

monitor a conventional DBMS for all the DBMS users.

Relationship to DBMS Architecture and DBMS
Users. Table I1I-5 shows how the example

parameters of Table II-4 relate to DBMS architecture and

the different types of DBMS users defined in Figure II-6,

Table II-5 was developed using the generalized performance

&

measurement objectives of the different types of DBMS

users stated earlier.

PRSP .
.

A A AP

W W

II-61

P i
et
O

T I I AP G \




YT T

TABLE II-Y4
Examples of a Combined Set of Performance Parameters
Parameter Name Description
DBMS throughput Number of DML statements executed per
by type of DML unit of time broken down into the four
statement categories of DML statements

System turnaround Elapsed time between submitting a user
time job or interactive command to the
system and receiving the output

DBMS turnaround Elapsed time (in batch mode of
time operation) between submitting a DBMS
task and receivning the output
CPU busy Percentage of time the CPU was busy
- DBMS CPU CPU usage by the DBMS / total CPU
L utilization usage
Number of page Number of page faults per unit of time
faults (system) attributable to all system processes
and user jobs
Number of page Number of page faults per unit of time
faults (DBMS) attributable to the DBMS
I/0 busy Percentage of time the I/0 system was
busy
DBMS I/0 I/0 usage by the DBMS / total I/0
utilization usage
Device busy Percentage of time a device was busy
(system)
DBMS device Device usage by the DBMS / total
utilization device usage

CPU and any I/0 Percentage of time the CPU and any I/0
occurred simultaneously

CPU and any Percentage of time the CPU and any
DBMS I/0 DBMS I/0 occurred simultaneously
Mean length of Mean number of units contained in the
system and DBMS queues and the percentage of time the
queues queues were this size

1I1-62

PR
P IRr
Vo

la'a a4

N S R Y

i

A
X

ik s s A A e woa oA

..................................
............................




X
X

X
X

uoT3eZITIIN
20TA3D SHAQ

Asnq 3ot1A9(

uoT3ezITIin
0/1 SWda

Asnq 0/1

(sWaa)
ad3ed jJo

(ws3sfs)
aded jJjo

sjiney}
Jaqunp

syiney
Jaquny

uoTIeZTTIIN
Nd2 SWEd

Asnq ndo

jndy3noJdyl sWdq

vad

Jdaudrsaqg
SHAd

Jadeuey
wais kg

vdd

vdda

Jaautduy
8J4eM]} JOg

Jajauweaey
douBWIO JUI

(anoge)

(MoT2q)

(3Ao0qe)

[8AY

-
-1

S

DR T

K

s
L W WY

-
‘A

P D,

N WA e

-

S

a

>

2

(MoT2q)
80BJJU29qUT POYLIIW SS200y
~ T8A377 TeUJDJUT

soeJuaaqul
1engdaouo) .
~ [eudajxj s

JI%N1 SHUQd 3U3 07 TIST3ueJed 3oUeWIoJISd JO dTUSUCT3E(3y o

6~11 3746Vl g8

PP.P?r .




v vowSvYTYTTe 7 vy v~

famv* v v r o 7

Using these objectives, the entire set of
combined performance parameters contained in Table C-1 was
related to the DBMS architectural model and the different
types of DBMS users, and these relationships are presented
in Table C-2 of Appendix C., Since Table C-2 was developed
using generalized objectives, individual DBMS users may
need to add or subtract parameters to meet specific needs.
To add or subtract parameters, an individual DBMS user
simply needs to define specific performance measurement
objectives and then select the appropriate parameters
necessary to accomplish those specific objectives. For
example, a software engineer may want to measure only the
CPU and I/0 times of a specific DBMS task broken down by
the specific DML statements contained in the DBMS task. By
doing this the software engineer can locate those DML
statements using the most CPU and I/0 time and formulate
certain design decisions and alternatives that provide
better performance.

In developing the tables relating DBMS
users to the combined set of performance parameters, the
information or management level user of the DBMS was not
evaluated, Since these users typically have a
non-technical background and are only interested in
"visible" response times, they probably have no interest
in monitoring different aspects of DBMS performance. Their

displeasure with DBMS performance would be passed on te

I1I-64

PR

G Y WRVIY VY




P - T T e T e T AT M TS TR T YT YR T T T T W T Y T WY P — A S ————r—— e - — o = w v e~ .-

f the technical staff in their organization who would use

the data provided by the performance parameters to

investigate and hopefully correct their dissatisfaction.

Level of Performance Measure Provided bv these

Parameters. The level of performance measure
desired from a DBMS performance monitor is stated by Atre
"In a data base environment, continuous, long-term

measurements are necessary to understand the service

provided by a DBMS. The performance monitor should provide
a detailed as well as a bottom line picture of the demand
on the data base service, the service provided, the
resource consumption in the delivery of that service, and
_ any resource overcommitments. The monitor should be
inexpensive to operate and should create concise reports
on a few pages" (ref. 2:315). A DBMS performance monitor
that measures values for all the parameters contained in
the combined set of performance parameters developed in
this study meets the criteria called for by Atre; however,

this would be monitor "overkill" in many cases. A DBMS

performance monitor that takes into consideration a user's
performance monitoring objectives should provide a better
overall level of performance measurement, Therefore, the
results of relating the performance parameters to =
different types of DBMS users should be the basis for the

design or selection of a DBMS performance monitor because

11-65 -

L ou g
e voe e K
R . et e oo
Bdeiid el et e hte

.t
W L e e e e e e e e e e e e e e e e e e
- . S TS B N S vl .

CP I L N T T T U B P P T T

............................................................

Lt T T T it TRl SRS P T T T e L L A S I . L P T . JRtt L S
--.&-.-)‘-';1-'-'.;1-5-v‘--g).v AP L S PR R . I W% TP IR, DA SN P -, P SO . O P, Slat et




..........

; it provides the level of measurement required of a

i‘ o generalized or specific DBMS performance monitoring
effort,

h Performance Monitoring Requirements

i Defining the performance parameters of interest is

S

only the first step in evaluating the Service Workload and
;; Service DBMS Workload processes shown in Figures II-8 and
£Y)

IT-13. The next step is to determine how values for the

parameters are measured. This secticn of the study

addresses this issue., The section covers: the possible
sources of values for performance parameters, the
selection/design of a performance monitor, how a user
interfaces with a performance monitor, and how data
collected by a performance monitor should be analyzed and

presented to the monitor user,

Sources for Performance Parameter Values. In this
study, general purpose performance monitoring tools such
as hardware and software monitors, accounting packages,
etc, were evaluated as potential sources of values for the
performance parameters used to characterize DBMS

performance, However, the ger>ral purpose tools could not

measure all the performance parameters used for DBMS
performance evaluation. To measure values for the

remaining performance parameters, a specialized tool ;

11-66 i




needed to be designed and developed. This new tool is
called a DBMS instrumentation program/utility.

Table II-6 shows some of the possible sources
of values for the example performance parameters of Table
II-4. The sources indicated in the table are: software
monitors (Soft Mon), hardware monitors (Hard Mon), job
accounting packages (Accnt Data), DBMS instrumentation
program (Instr Prog), DBMS log facilities (DBMS Log),
calculations based on one or more other performance
parameter values (Calc), and error log facilities (Error
Log). In the table, values for parameters marked with a
'X' are directly measureable by the indicated source,
Whenever a value must or can be calculated, an 'X' is
placed in the Calc. column and the possible source(s) of
the values used in the calculation are marked with an 'S',
Table C-3 of Appendix C shows the possible sources of
values for the entire set of combined performance
parameters developed in this study. (ref. Table C=1).

Since Tables II-6 and C-3 contain
possible sources, performance monitors already available
or being designed for an existing system must be
individually evaluated in terms of the set of performance
parameters they can measure. The major criteria feor
performing this evaluation are the monitor's domain,

accuracy, and artifact (ref. 24:29-31 and 46:80-93).

II-67

.............. DR AT S R SRS ‘-.“ . M - L et

E R A PSR S B S et e e e
N T T e .t N AT L L R
I B LTS LD S B A WP ST i Y I N IR EY BT o B DI S I N 1P B AP Tl S IhY ST I BT 1hT TP NP S

Y

BASAS

ol




ll <11...‘44.-4 4-.\..4.*-.1.11\41.14.._-.41114. _~\14.1|.l.
Cat PRI . !

T

3
ﬁ uor3eZITIIN
s X S X 20T AP SHYd
p
X X Asng 801A3(
A UOTIeZITT4N
5 X S S S X 0/1 SsWdd
. X S X X Asnq 0/1
- 0
3 (SHdd) s3tney )
g X S S S X aded jJo Jaquny W
+—
g (wdq1sfs) sirney
3 X S X X a%ed Jo Jaquny
. uorlezZITIIN
3 X S S X Ndd SKWHd
ﬁ_ X S X X Asnq ndo
W X X andy3noays sHdd
w. 8017 *o18) 801 Bouyg ejeq UoK UOH Jdajauweded
8 Joaudy SHdd dqsug 3uooy pJaey 1J0g 90UBWJIO JI3d
w FI5T5WETE] 35UBWIOIISd -JO0J §55In0C STdWExy
: 9-I1 318VL




Relationship of the Source of Performance

Parameter Values to the Domain, Accuracy, and

Artjifact of the Performance Monitor. It was
previously mentioned that even though the examples of
performance parameters presented in Tables II-4 and C-1
are a comprehensive set, an individual DBMS user may want
to measure only a subset of this overall set, and some
guidelines for selecting a subset of performance
parameters based onh a individual DBMS user's performance
measurement objectives were shown in Tables II-5 and C-2.
Unfortunately, there is another limiting factor in the
selection of a subset of performance parameters to be used
for a particular DBMS performance monitoring effort. This
additional limiting factor is the domain of the
performance monitor used to accumulate the performance
measurement data, Therefore, the subset of performance
parameters may not be entirely measureable by a single
performance monitor, and this leads to a trade-off
situation in which the subset of performance parameters
may be further modified to fit the domain of the
performance monitor. Alternatively, more than one
performance monitor, each with a different domain, can be
used to obtain measurement values for the entire subset of
performance parameters. The particular trade-off decision
depends on the established performance monitoring

objectives and the budget allowed for the performance

II-69

...............................




........................ e i?
-4
.
monitoring effort. The budget must be considered since the 'i
use of additional performance monitors will increase both ii
the system overhead costs in terms of monitor artifact and :i
the cost of purchasing, leasing, or designing and Ef?
developing the additional monitors. :E
Selection/Design of a Performance Monitor. The 1:
iﬁ performance tools listed in Tables II-6, C-3, and C-4 do _j
e not meet many of the performance monitoring objectives of ‘?
::f DBMS users when used singularly, but when some combination
of the tools are used in parallel, many or all of the ;]
performance monitoring objectives reflected by a set of -]
performance parameters for monitoring DBMS performance can ]
“ be achieved., If it is possible to use existing performance

monitoring tools, the overall design problem of a DBMS
performance monitor can be drastically reduced.

To select existing performance monitoring tools

for use in the design and development of a DBMS
performance monitor, the three step procedure presented S

below was followed. 9

1. Well defined operational objectives
for the DBMS performance monitor were established.

2. Based on the performance measurement v
objectives and the guidelines of Table C-2, the set of 2

performance parameters that provides the level of

II-70

., L T AP L P P L I L LI I SV, PN SNE S BTN Wt et et e _._._- % " e ® e A a Ve Tt e RN
o N T et N e T e e S N T s S R R .-.".\.-.-.\.\“'\.\.\'.-j

et a C AT AL A




AR Sl AR Bl Tl Sad Tt St adt Thg S 20 ot Badecie e ae T EEECEAC S i A i g T T Yy T T g

-y

T
1
e

L}
»
|

performance measurement required of the different types of
DBMS users was selected.
3. The performance monitoring tools

already available on the system were evaluated as well as

RIS .
A A ]
NSRS N

any new tools available from vendors. The criteria for
this evaluation was how well the tools measured the
selected set of performance parameters along with the

accuracy and artifact of the tools. Tables C-3 and C-4

!
il et

proved to be very useful for performing this evaluation.

g

Based on the results of this study, the tools listed in

Tables II-6, C=3 and C-4 should be evaluated in the
following order, and in each case, the measurable values
must be evaluated to determine what calculations can be

made to extend the set of possible measurable values,

a. Job Accounting Package.
b, DBMS Log Facility.
¢. Error Log Facility.

d., Software Monitor.

e. Hardware Monitor.

The order of presentation of these tools

is based on several factors. The first factor is the level

ERILIERN
I AR

of performance measurement they provide, The tools at the

I N

beginning of the list provide a high level view of system

performance without producing much monitor artifact

II-71

........




(system interference). If a lower level, more detailed

view of system performance is required, the tools at the
bottom of the list provide the detailed measurements to

support this type of study although at the cost of

-
FEPCIIY PRI

increased monitor artifact. The second factor is their
ease of use with the tools at the beginning of the list

being the easiest to use. The last factor is the

availability of the tools. Based on a survey of the
Datapro Manuals (ref. 10:), most computer systems have
some type of job accounting capability and most DBMSs are
delivered with some type of DBMS log facility. On the
other hand, software and/or hardware monitors for a
computer system are usually purchased separately.

Unfortunately, these tools did not provide
specific DBMS measurements such as the performance
parameters pertaining to individual DML statements. If
this type of measurement data is absolutely required to
achieve the performance monitoring objectives, the only
recourse may be to use a DBMS instrumentation

program/utility type of performance monitor. These types

of monitors are typically not available from vendors and
must be designed and implemented in-house or by contract.
In fact, it may be necessary to add instrumentation into ;
the actual software modules of the DBMS. Doing this ;J
requires a great deal of knowledge about the software =

implementation of the DBMS, and it entails a high level of :h%

II-72 o

K . m s T "e e a® .. ®_ Wew = N - S— . . R U S T S L m e et et Pt et e e e
et T . i T L e T e P T T N T T I L




| A A TR RN A Attt R il A i S S S Son SN k- - gace e an, g v

risk because new errors could be introduced into the DBMS,

aa gl L. .-

Additionally, it will become increasingly difficult to
keep up with updates to the DBMS,., Therefore, unless the

original vendor of the DBMS is going to provide the

instrumentation, this avenue is not recommended.

Alternatively, a set of softwar: modules can be
designed and implemented to be used to instrument user
programs that contain embedded DML statements. The user
programs can call the software modules before and after
the DML statements are processed by the DBMS, and in this
way, the DBMS specific types of performance data on
individual DML statements can be obtained. Again, a great
deal of system knowledge may be required to design and
implement this set of modules and a certain amount of risk
is still present. In some cases, such as the VAX 11/780,
the operating system provides utilities for just this
purpose, and the use of these utilities help to simplify
the task,

The procedure outlined above should provide a

set of existing tools for most computers and conventional
DBMS, and this set of existing tools should provide R
sources for measuring values for all or the majority of

the desired performance parameters. If it does not, it is

R
TR A
A .l gaa a3 ¢

still a useful procedure to follow because it defines the
measurement requirements of the performance monitor to be

designed and developed.

. P
L
IR A

" PRy T WY VA DR

II1-73

P
B PR
el nnhonid sinih

* .
..'.
.*.‘ L R S Y CONC I S ST SN L T O T TP S S S N " e ® e e e e ate® A e e e e Se e e S
W . e e et et et e e e e e T e e e T e T R e e T e e e e e e N e e et e j

- - . [ Cet Twt - l N
LI SR S ) [P . IS T T VAP AL L PR AT O A e L .t . S -
e M A A S et e Bt e S aal O 0 4._.__4‘_‘4._._:4__- PP LA LA TSI T A S SO RN I L IR DAL L I )




Having defined the requirements for the

selection/design of the DBMS performance monitor, two more

issues still need to be addressed. These are the issue of

]
SOV SNy YEIT i W

S
)

a user interface to the DBMS performance monitor and the

.
)

issue of how to analyze and present the data recorded by

Y
o
PRy W Y

the DBMS performance monitor. Each of these issues are

addressed in detail in the following two sections,

Definition of the User Interface. The user

interface for the DBMS performance monitor needs to

PV Y O W

provide a "user friendly" method for DBMS users to

accomplish their performance measurement objectives.
First, the users must be able to select a set of
performance parameters, and second, the user must be able
to activate the performance tool or combination of
performance tools to actually measure the system and
record the performance parameter values in a specified

data file, Third, the user must be able to specify what

type of mathematical analysis needs to be performed on the
measured data, and lastly, the users need to be able to ﬁ1
review the measurement data after it has been recorded and
analyzed. Unfortunately, this user interface will not be o

able to activate any free-standing hardware monitors that

PN

must be used; however, it can be designed to provide

REAEN
Lodlod.

information on how the hardware monitor must be connected

A
I'J

to the system, initialized, and started.

a

. -'
Aty fan

II-74

T S
,'l/"

d .
S .
S A
bt A b A




» oL
’..
Ve
’
[
[l
»

v

g

Human factors considerations are becoming an
important aspect of software engineering (ref, 2:41). A
user interface for any type of system can not ignore these
considerations and expect the user to be happy with the
product, Literature on this subject ranges from formal
techniques using state diagrams (ref. 32:), to common
sense design principles such as provide feedback, be
consistent, etc, (ref. 44:), to formal studies on the
human error process (ref. 38:).

Personal experience in this area has shown
state diagrams to be an excellent tool for designing user
interfaces as well as some types of complex programs.
During the design stage, no attempt is made to
specifically define user error procedures, user prompts,
or user command languages. Only general notations are made
and after the first-cut design has been completed, a set
of conventions for the user interface are defined and
applied to the design. This approach makes the task of
implementing a consistent user interface much easier, and
it quickly shows the set of common routines that must be
developed for the user interface.

One last item to address is matching the
interface to the user's skill level. Skilled users
shouldn't be bored with tedious entries, and at the same
time, don't abbreviate so much the less skilled user is

unable to use the program. If there is a varied skill

II-75

ol .
AP AR L
D A A .

skt okl ol hd il

L,
v, DA

L . s

—tatatal a et th




Y'.-.,v‘v_

.o R I N N S N ST SR - - M et Lt e e e A
LRSS NP Y AT T AL R RS AL P S SR SO PR S L A N R R
L e L e e . . L T e T R Ve S N U S
A" LIRS M S R S i T Jr i s et =

level in the user population, this should be taken into

consideration and different mcdes of operation such as
verbose, normal, and terse (ref., 45:171) can be developed.
For the problem of DBMS performance monitoring, all of the
users of the DBMS performance monitor should have a good
technical background. Therefore, one clear, concise mode

of operation should be all that is required.

Ana js and Presentation of the Performance

Measurements. Two types of analysis must be
performed on the measured values for the performance
parameters. First, some of the necessary values must be
calculated from the other values, and the use of a
mathematical~statistical package such as SPSS (Statistical
Package for the Social Sciences) should be considered.
Also, many performance tools have data analysis
capabilities built into them. Typical types of
calculations will include mean values, variances, and
information on the underlying sampling distrubution such
as minimum and maximum values. The statistical package can
also be used to generate histograms, scattergrams,
regression models, ete,. Histograms and scattergrams are
useful for presenting graphical displays of performance
parameter values., For example, a histogram of the CPU time
required by each job processed during the measurement

interval will quickly show the distribution of CPU time

II-76

e



e S v - —y

{ over all the jobs in the measurement interval. Regression
models are useful for modelling performance parameters
such as turnaround time. For example, the regression model
may show the major part of turnaround time is spent in the
input queue waiting for the necessary resources to be

allocated. Based on this, the input queueing process is

concentrated on to determine why user jobs are spenaing
the majority of their time in the input queue,.

The second type of analysis is taking the
performance measurements and using them to formulate or
justify performance hypotheses about Lhe computer system
and the DBMS. This aspect of analyzing the performance
measurements is covered in the Methodology/Procedures
section of this chapter.

Presenting the measured values for the
performance parameters to the user of the DBMS performance
monitor should follow the advice of Atre who states the
monitor "should create concise reports on a few pages". In
following this advice, measured values for the combined
set of performance parameters presented in Table C=1 will
be presented in basically the same way they are presented
in the table - categorized by performance index.
Therefore, a report organized as follows should prove to

be satisfactory for this and for other studies.

1. Page One - Page one will contain all

II=-77

.......................
S A T T T T T T et PSP Ui Sl B U P T P Pt S S e S P TR S S PO PO P ML S P
.........................

...............
.. R




.~ AD-A149 958 DEVELOPHENT OF A DATA BRSE HRNRGEHENT SVSTEH /3
i PERFORMANCE MONITOR YOLUME 4(U> AIR FORCE INST OF TECH

MRIGHT-PRTTERSON AFB OH SCHODL OF ENGI. BRILDR
UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D-2-YOL-1




.

.

.

.
.

e

P AR Y

10w
—_— E '™ h
v L2 [§20

m, TR =
= Wl 1.8
==

22 it nee

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

YOG

PO, o S PN ey pA AL




the effectiveness measures grouped by their corresponding

category of Productivity, Responsiveness, Integrity, and

Security. 5~j
o)

2. Page Two - Page two will contain the ﬁ{ﬁ

first and last categories of the efficiency measures which :ﬁi

are the allocation and deallocation parameters. : j
3. Page Three and Four - These pages will

contain the utilization parameters grouped by the resource

"

type of CPU, Memory, I/0, Channels, etc..
4, Additional Pages - Additional pages

can be added to this report, and these pages will consist

of statistical analysis items such as histograms,

regression models, hypothesis tests, etc.

Relationship of the Performance Measurements to
Controlling the DBMS Enviropment. One more aspect

of measuring values for the performance parameters needs

to be investigated, and this aspect is what to do with the
values for the performance parameters after they have been

measured, mathematically analyzed, and presented to the

user of the monitor. In other words, how can the -_5
measurement data be used to improve or control DBMS Eg
performance and help meet the needs of the DBMS users. ]
Obviously, some aspects of the computer system and/or DBMS 31%
need to be changed or modified to realize a performance :gj

improvement, and there are several different ways to

II-78 i




iy GRS | SIS,
« e [ e, .. '- 'v LI S '] N

Du gl . g
e
e
. .

Attt e N
ARSI o,

change/modify the computer system or DBMS. Four example

changes/modifications are given below (ref. 46:20):

1. Adjust the system and DBMS control
parameters (i.e. modify the parameters used to generate
the operating system and the DBMS).

2. Change or modify resource management
policies.

3. Distribute the load among system
components to balance resource utilization (e.g. changes
in the assignment of peripheral devices to channels or the
assignment of files to physical storage devices, changes
in the distribution of software components in the system
memory hierarchy, etc.).

4, Replace or modify system components.,

The examples appear to be straightforward
solutions to performance problems, but actually solving
the problems is not as easy as it sounds. The difficult
part is determining from the measurement data what
specific aspects of the computer system and/or DBMS to
change or modify to gain the performance improvement. The
solution to this problem is non-trivial, especially if
some type of structured methodology or procedure is not
adhered to (ref. 5:). Therefore, an examination of this

problem is presented next,

II-79

.

‘.ﬁﬁ'__“
P RDEEN

PRI ol




Methodology/Procedures for Conducting a DBMS Performance
Study

The proper development of a methodology for
conducting an overall DBMS performance study is important.
It provides the individuals conducting a DBMS performance
study with procedures for measuring DBMS performance and
procedures for using the measurements to make changes to
the host computer system and DBMS to increase overall
performance. The basis for the material developed in this
section comes from the report by Bell, et. al. (ref. 5:).
The approach to the material in this section is the same
approach used in the preceding sections. First, the
material is developed for computer sSystem performance
evaluation in general, and then the scope is narrowed by
treating DBMS performance evaluation as a subset of
computer system performance evaluation. Additionally, the
material in this section is supported by the further
development of the Data Flow Diagrams used to specify the
performance evaluation process. In particular, bubbles 2
and 3 of Figures II-4 and II-5 are expanded.

To begin, the seven phases of a procedure for
conducting a computer system performance monitoring effort
contained in the report by Bell, et, al. (ref. 5:) are
briefly described. For those readers not familiar with
this report, it is a valuable source of information and

should be read. A copy of this report may be obtained from

I1I-80

... e e e
s e el
s Ty 4 L VRO

s
PRA)

. PR B N
L‘.' o,
g o DR/

a

L e e

PPN T T
ST, o e

PO I Sl R Y WP 2 PR

Y

. - L N R
o’ TR

. A A
. LIS TN E WD

»”
P.%afa’a”



the Defense Technical Information Center (DTIC) by

requesting report AD 737 317.

1. Understand the System - The purpose of this
phase is to learn and understand the details of the system
to be analyzed. This should include details of its
hardware, software, workload, and the organization of the
installation management,

2. Analyze Operations - The purpose of this
phase is to analyze the management of the svstem
operations. This analysis will help review the operational
objectives of the installation and how the management is
currently trying to accomplish these objectives.

3. Formulate Performance Improvement
Hypotheses - The purpose of this phase is to formulate
specific, performance related hypotheses on possible
problems and their possible cures. The hypotheses are
based on what was learned from the first two phases and
any performance data that may be available. For example,
the utilization of an individual peripheral device such as
a disk drive may be high while the other drives have a low
utilization. This data may lead to the hypothesis that

re-locating some of the files from the highly used device

onto the other devices may reduce the contention for that f%

)
® 0
.

device thereby decreasing I/0 wait times,

.
[ ]
o

.
.t

N !

RSN WP &'

I1-81

AR ]
e % % 4

LS

CE

T A I T SN Iy R ST S SPUT SO SN S
ISR A S AT ) S DS AT IS Sy




. ERR i i St S dr e DU
..............

4, Analyze Probable Cost-Effectiveness of

Improvement Modifications - The purpose of this phase is
to critically analyze the hypotheses formulated in phase
3. Due to budget constraints or unrealistic objectives,
the performance improvements predicted by the formulated
hypotheses may not be worth the additional investment.

5. Test Specific Hypotheses - The purpose of
this phase is to test the validity of the hypotheses from
phase 3. If the hypotheses are valid, they can be used to
implement modifications; otherwise, they must be
reformulated or rejected, It is in this phase that
specific types of performance monitors are selected and
used to collect performance measurement data.

6. Implement Appropriate Combinations of
Modifications - The purpose of this phase is to select a
set of modifications based on the valid hypotheses and
implement them. The modifications should be selected so
they do not unduly affect production requirements, and if
more than one modification is made, they should not cancel
each other,

7. Test Effectiveness of Modifications - The
purpose of this phase is to determine the effects of the
modifications to see if performance is now satisfactory or
if additional analysis and modifications are required to

achieve the operational and performance objectives,

1I-82

4
X
o~
K

-
o

.
:',,'-')'\:,\';.:.-{,'-';.'__'.:-L‘:'.j\:-."\ Ve A A R R A P RIS P ) : A AN N N N




b

v S T A S AN N I A 2 Sk AL I a0 e L N L N e g el
Pretee ae M- tme % e e A Tat W, s o

O R I T 2 R g B e Y Y A o A A, S R S A S B R S LRSS

~ L L O L I i T A R A L e L ARt T W T A B e

The seven phases are easily placed into the form of
a Data Flow Diagram, Phases 1 and 2 are the underlying
phases for the Determine System Objectives process shown
as bubble 2 in Figure II-4, The breakdown of bubble 2 is
shown in Figure II-14, and this is an important diagram
because it shows how performance objectives are derived.
This study has introduced, defined, and stressed the
importance of performance objectives in the earlier
sections, and now the last factor, how to actually derive
a set of specific performance objectives for a performance
monitoring effort has been presented,

Phases 3 through 7 are the underlying phases for the
Analyze Performance process shown as bubble 3 in Figure
II-4, The breakdown of bubble 3 is shown in Figure II-15,
and this is also an important diagram since it shows what
to do with performance objectives, effectiveness measures,
and efficiency measures in order to study and improve the
performance of a computer system. Bubbles 3.3 and 3.5 of
Figure II-15 deal with the process of testing performance
hypotheses (Phase 5) and testing the modifications made to
a computer system (Phase 7). Figures II-16 and II-17
contain the breakdown of these two processes. The salient
feature of these diagrams is that specific performance
tools are not selected for use until a set of hypotheses
tests have been designed. This aspect is important because

it eliminates situations of using performance tools to

I11-83

=
Dot )

.S
GRS

! oo



.....

. e PR

oo
.....

SaAT303(q0 woysAg aurwdalaq °*HiL-II a4ndtd

Lo el
MY e "

.....
.....

SAAILOAr4o

SININFYINDIY

2*c
SNOILVY¥3d0
JZXTVNY

e
SIAILIArdo

JONVHYOJHId

viva
Jovsn

NOILVWHOJINI
H3LSKS

1°c

NOILVHNIIANOD

HI1SXS
ANVISUIANN

INAHIDVNVH NOILVITVISNI 40
JUYVHO NOILVZINVIOYO

JdO NOILdIYIS3d

avoTIYOM
HILNdHOD

P21 AR

sy s

A A KPP P

-84




aourwJ0oJadd 9zATeuy °*GlL-II 24n314

$7700L LNIWIUNSVIH
— FDNYNHOJ¥Id 40 13S

—

W't

G € SNOILVIT4IAON 3
SNOILVOTJIAOR|- SNOILVDIAIGOHW WALSXS SISTHLOdAH | SISTHLOJAH
1531 WALSAS ANINYALAQ aIva 1S3l
SLINS3Y SISAHLOJ AH SISAHLOJKH
1S31 dIVANI ANI 193 443~1S0D
SIATLIArLEO
FINVHYOJH3d
c't L° €
9°€ SSANIATLDA443 SISIHLOJAH
S110S3y |~ S3ISAHLOLAH 1509 SISIHLOIAH  |3IINVHHOSYId
IZRTVNY AITVANI TZATVNY FINVNHOIYd JLVINHEO0S
~N
~ _ -
- _ STUNSVIN
S < - SSINIAT L343
S110S3Y¥ SISAHLOdAH STHASVAN
FINVHE0JY3d AT TVANI XONIIDI443

[TA)

[
-

AP R

i i e PR 0

_ -. - -- v -. e

CeR'

3

EA WA,

.
"htatatar o e

et vy,

»

N

—
.th'_l

.




e 4

R

oo

.“.‘*

B e ape 4

e e

e

o

sosayjodAy 1s9] °*9|-JI 94n3TJ

A7TI4 SINTVA

YILIWVYHVd
SISHHLOdXH
dITTVANI SanIva
a4 .LVINKNJIV .
gt°t
L 2 3 SAN'IVA
SINTVA YILINVHV I
YILIRVUVd JONVHYO4Y3d
JLVNTVAI 12371100 S$T1001L LNIWIUNSVIW

SISIHLOdKH
aIva

\
\

ST7001 JINVREOIYAd

4312373

JONVWYO4¥3d 40 L3S

c et
S$71001
LINIWIYNSV IR
JONVHY 04U 3d
1037138

NOISAd 1S3l SISsil

II-86

% 31vndIAVNI N SISIHLO4XH

SISIHLOIXH =
3AI103443-150 R




T T
r.
5 SUOT}BOTJTPOW 3S3L *LL-II 94n3T4 o
3 [ 714 SANTVA m¢
g YIALANVYV )
g SNOILVOTIAIAONW g
' | 1°G°€ HILSAS ok
; SANIVA SNOILVOIAIAOH 4
5 AaLVINHND OV INIWI1dWI u*
—— -\ o
§ WILSAS o
“ RS A3TJIGOH ’
3 G'G°€ SANTVA
s SANTVA YILAWVYVd
g YILANVHVd JINVRYOJI¥Ad
: ALVNTIVAS 12371109 S700L
3 INIWIUNSVIN
_ JONVWYOJY 3d b
. Jo 13sS o
: sl1ns3y $1001 —
4 1sar  \ JONVHE04U3d
\ a3loa3s

€6t
\ $1001

. \ INIWTUNSY IH
5 FONVHY 044 3d
- N\ 103138
. N
3 NDIS3d 1S3l .
‘ FLVADAQVNI gX
[ ~ S1sil -
= HILSXS J
-, oy
% X
- X
% "
- o
: , @ ) i
¢ Ry
& -




T T — 3 5 - < T

collect performance data and then wondering what to do

[ with the data.

F The development of the Data Flow Diagrams for
Computer Performance Evaluation is now complete, and these
.‘ diagrams provide a computer system analyst with the

_ necessary information for conducting a performance

» evaluation effort on a computer system. All that is left

is to narrow the scope of the information to allow it to
be applied to a performance evaluation study of a
conventional DBMS. The Data Flow Diagram for DBMS
Performance Evaluation was shown in Figure II-5. The
breakdown of the Determine DBMS Objectives process of
bubble 2 is shown in Figure II-1§, and the breakdown of
the Analyze DBMS Performance process of bubble 3 is shown
in Figure 1I-19, A breakdown of the test hypotheses and
test modifications bubbles of Figure II-19 are not shown
because they are identical to the corresponding DFDs for
computer performance evaluation. These diagrams complete
the development of the DBMS Performance Evaluation Data
Flow Diagram originally shown in Figure II-5, Therefore, a
complete procedure for conducting a DBMS performance study

has also been specified,

Functional Reguirements
The major questions in any performance evaluation

KA
effort are what data to collect, when and how much data to B

1I-88 s

«w R A T LRI I St S, LR TN A ‘-_'-' A ._'-\ ....... T el

et v, L \ et e
a, 2 PRSI WO FRPLIIA a0 .-(.L(LL..:L;_‘LN'-‘-'- ORI SN OGO




S9AT303(q0 SWEQ 2uTwWJa3aq °*gL~II a4n3rg

SIAILOArdo

SINIWIYINDIN

S3AAILIArdo c'e
JONVHY 04U 3d SNOILVYddo
SWHd SKHdd
JZXTVNY

vivd
a9vsn
SKWYd
NOILVWHOJNI

SHEA/WALSAS NOILVHNOIANOD

_——— R3LSAS HIILNdRWOD
40 NOILdIYISs3ida

NOILVHNOIINOD SWHA
JO NOILdIYIS3d

ANVISYIANN/S

avo'IN4OM
SHad

INIHIOVNVH NOILVTIVLSNI 40
LYVHD NOILVZINVOYO

o " .
.
atal e e 0,

o~
o0

-
-

[RPRPAPARAY

.t
LRt
A‘-!‘A‘;l‘

-
g

" -
I\ -.'
Alatas

Pl
e

»

-
e
AlA A0 st ot a A"

by

IRy

Pe,)

ay
Al altalas al

-, -
- A

e
"4
LS.

o
-
L)

.

“®
-!.

R

L)
P, )




aouewJ0JJdd SHOQ 2zAteuy °*6L-II 2J4n314

____ S’100L LN3WIHNSVIW
T JONVWYO04¥3d 40 13S

\

n €
SNOILVITIAIAOKH £°¢
SNOILVDIJIAOK WILSXS SASAHLOd XH SISAHLOJAH
W3lSXS ANINYILAA aIiva 153l
s1ins3ay SASAHLOL RH SASAHLOJKH
1831 aAITVANI AAIL03443-1S0D
SAAILO3r40
FONVHY 03434
SHYd
¢t t° €
9° ¢ SSANIATLO3L43 SASAHLOdXH
sl1ns3y SASAHLOdAH 1s09 SASAHLO4 AH FONVHYOIY 3d
AZXTYNY AITVANI JZXTIVNY AINVHHOIYIAd FLVINHYO0L
SHEd
~
~ _ -
~ _ SIUNSVIR
~.
~ - SSANIAILIILA3
s110S3Y T oe— - . -
FONVRYOJY3d SASAHLOJ XH SAYNSVIN
SKdda (dITIVANI AONAIOIAAT

-90

I

b
o et
O Sl

AT A Y a
W D T W Wy Wy - W

R P TS
AT,
LA, Ny 1.‘_'.{'.

¥
g

g
LN




collect, and how to physically and mathematically analyze
the data (ref. 2:315; 5:5-9; 24:9-11; and 46:9). When
these questions and their corresponding sub-questions are
answered, the requirements for the performance evaluation
are known, and the functional requirements of the
performance measurement tools used in the performance
evaluation are defined. The analysis presented in this
chapter has asked these questions, and in the process of
answering them, four major functional requirements of any
performance tool surfaced. The four major functional

requirements are:

1. It must provide a user interface,

2. It must measure the desired set of
performance parameters.

3. It must be able to mathematically analyze
the measurement data.

4, It must be able to present the measurement

data to the user.

Based on these four requirements and the material
developed in this chapter, a summary of the functional

requirements for a DBMS performance monitor were

developed, and they are presented in Table II-T7.

-----------

A
J AT O

S

PP T




P i

P

T ——

.

A

et Aron e

T

CERATSS At e B Sece ven 4

TN T T T ha A JRNAi Sy ann b S Ba A 2en A 4 w " T —— _
T AR Y Y Y T Y Y e e e
RO B RO .

*sJajauweded souewsojaad jo 3as pajo’[as
ayy Atuo SuyipJaooad pue Surdanseosm Aq 30BJJJJ4E JOJTUOW DZTWIUTH

*90.4nos
juswa.Jdnsesw & 07 sdajauweded aouewdojaad Jo 39s pajoaias ayj dey

*ejep juawaJInsesaw ayj pJoodd pue 9[FJ BIEP 9yl SZT[EIITUT J0 3jedU)

£°e

c'¢c
|

*saajauweded aouewdojaad Jo 39S Pagjoa[ads ayj aJnseay Q°2

*pajuasauad
8q 09 ST ejep juswsuanseaw ay3 Moy AJroads 09 Jasn 3yl MOIly

‘ejep paJnsedaw ayj uo pawdaojasd
3q 097 sfsATeue [eo13si3els Jo sadhy ayj AJioads o3 Jasn ay3z MOLIy

*paJa7dxa sey TeAJD]UT UOTIO3TTOO patrJioads ayj3 auaojaq ssasooud
UOT309T 00 JuUAWIJNSEIW Y] 91BUTWAI] AT[nJaoedd o3 Jasn ayj Mo[1V

*sg9o04d
UOT309T 00 JudwWIJNEEIW ay3 Jo sniel3s ayj 3oodsuy o3 Jasn ayjz MoLIvV

*g59004d
UoOT309T100 jJuawWAIJNSEIW 3Y] 93eFJTuUl pue LJT10o3ds 03 J3asn ayjz MOTTY

*paJnseau
aq 03 suJdjouweded aouewdojaad JO 33§ B 303138 03 J43sn Y3 MOTTY

9°1

61

LA

£°1

c’t

(B

*J03IUOW 3Y3 09 d0BJUAIJUT JISN € YsTIqeisd o°t

JOTTUOH 3JUBWITIISS SHYd T J03 SIUSWSITNLIY TeusTiouny
L-1II 319V

1I-92

e, &,

P PR
SRR S,




AR

ol oL ey T T T T T T L T P ORI PR

R

ASYS

i e e
N I i S
NN NN

. *leujwaag e uo jJ40dad aouewdoJaad ayy Aeydsiq €£€°h "
*gsaJaInbau m
Jasn ayjl se sajdoo Auew se uy - 340daJ soueuwdsojaad ayy QuUIdd 2°h e

*qJ40dad asouewJdoJuad ayjz ajead)y (°f .

*49Sn 9yl 03 elEp JuUIWIJNSEIW IYJ JUISaIAd Q°k

¢

*elep sysAfeue [eOF3ISTIRIS 3Y3 Jo a[rJ Indino ue ajzeaua) |°2°¢ e

g

o\ v

*sysAieue [EO[315[381S AABSE209U d9Y] WIA0JJ34 ¢2°f A :

H ‘s

*ejep ‘.

juaue JJnseaw aouewdoJuaad pazdhieue ayjz Jo aT1fJ Indqno ue ajead)y (°|°€ "

*SUOTj}eTINROTEO YInodyjz paATLap sdajaueded aouewdojJdad ayjy
J0J sanyTeA ujeqqo o3 suojjedado Teojjewsdyjew AIeSSID3U Y3l WJI0JAdd |°E “

.
Lo

*sd9laweded oouewdojJdad ay3 J40J sanTeA paJdnsedu usu‘ouaamcq 0°¢

o .
-
> o

«®arte" "

g *awyq patJioads ayj 3e s€3004d UOF3O98TI00 JuawaJnsesaw ayy doig G°2 m
ﬁ“ *auty) patJroads ayg e sed004d UOTIOSTT0O jJuawWwdAnsEdW dYj 3Je3ISs §°e wh
3 X
F JOTTUOR SOURWICIISI THAQ € I67 SIUSUSITALSY TeusTIdoung i
g (panuijuo)) L-II 374VL
v.. --oh
3 X
! \.-L
: .\.,M
] o ,,4
L ../._
N o
r-- i ._.- ﬂ-vln .- --h -vg --u-'- ............ .'




This chapter presented a detailed analysis of
Computer Performance Evaluation (CPE) and its application
to specific resources such as a Data Base Management
System (DBMS). Part One of this chapter presented the
necessary background information on DBMSs and CPE, and
this provided for a common understanding of the terms and
concepts used throughout this study. Part Two of this
chapter developed and specified the CPE process using Data
Flow Diagrams. Based on this analysis, the task of
evaluating the performance of a DBMS was classified as a
subset of CPE in general, and the unique DBMS performance
parameters were developed. The different types of
performance evaluation tools where examined for their
usefulness in a DBMS performance monitor, and it was
concluded that some of the existing types of performance
tools could be used to gather performance information
relevant to a DBMS, However, a specialized tool such as a
DBMS instrumentation program/utility was also required to
obtain detailed DBMS performance information. Lastly, the
requirements for a generalized DBMS performance monitor
were extracted and summarized in Table II-7.

The next three chapters use the functional
requirements in Table II-7 as the basis for designing,

implementing, and testing a DBMS performance monitor.

*e

-------
.

R TN T R I

RSP RSO AT AEARAGACAD

A}
Aol bt

e b sa e

- d
-




ITII. System Design

Introduction

This chapter presents a generalized design for a
DBMS performance monitor. The top-down design technique of
stepwise refinement (ref., 30:18; 41:131; and 53:51,250)
was used to develop the design, and the first step was to
translate the monitor's high level (major) functional :ﬂ
requirements into corresponding high level activities.

Next, the process of stepwise refinement was continued

until all the functional requirements were satisfied and :i
all the activities had been decomposed into sub-activities "
that are easily implemented. Descriptions of the four high E;
€: level activities of the DBMS performance monitor are

presented in this chapter; however, the details of

decomposing the sub-activities and their descriptions is g*
reserved for the design documention contained in .
Appendix D,

In addition to describing the four high level
activities, this chapter describes: the documentation
technique, the operation of the performance monitor, the
test plan for the design, and the use of the design to

implement a DBMS performance monitor.

Documentation Technique >
The Structured Analysis and Design Technique (SADT)

III-1 o~

IR C N SR RN SN S

-
DRI g -

AN YRR XA 2.




\\\\\

..........

developed by SofTech Corporation was used to document the
generalized design. Other techniques, such as structured
english, could have been used; however, the SADT technique
was chosen because it contains specific methods for
showing the activities that must be accomplished by a
design. By showing the system activities, the SADT
technique specifies what has to be accomplished before the
details of how it is accomplished are introduced.
Therefore, the implementation details are forced to the
lower levels of the problem solution, and the design
documentation does not resemble programming logic. This is
an important capability for a documentation technique
since the concept of forcing the implementation details to
the lower levels of actual program development is a major
goal in developing software systems (ref. 41:131 and
53:5).

The mechanics of an SADT activity diagram are shown
in Figure III-1. The box represents the activity to be
performed, and the arrows represent the data associated
with the activity. An additional advantage of SADT
activity diagrams is their ability to specify control and
mechanism inputs. In a DBMS performance monitor,
controlling the measurement activity and the mechanism
used to measure performance parameter values are important
concepts, and for this reason, how they affect the system

design must be reflected in the designh documentation.

ITI-2

L e e e
B A
. DRI
A Ao de ol a 2 4 4




.................................

Control
Input > Activity > Output
Mechanism
Input - Data consumed or transformed by the activity
Control - Data which controls or constrains the
activity
Output -~ Data produced by the Activity
Mechanism - Processor or tool used to help
accomplish the activity
L
Figure III-1, SADT Activity Diagram
The SADT documentation technique also includes a
data diagram. In an SADT data diagram, the box represents
the data, and the arrows represent the activities
associated with the data, Data diagrams were not used in
the design of the DBMS performance monitor.
Documentation for SADT diagrams is presented in the
form of a reader kit consisting of a diagram index, the
activity and/or data diagrams, and a data dictionary. A
complete SADT reader kit for a generalized DBMS
performance monitor is contained in Appendix D.
I1I-3 3
-
- "
RITN B R A D A R R e B R R S T 3 S R S T A A S




Desigp Description

The design presented in this chapter is based on the

use of software tools to accomplish as many of the
functional requirements of a DBMS performance monitor as
- possible - especially in the area of measuring and
recording values for the performance parameters, This
strategy does not restrict the generality of the design
because no specific software tools have been included in
it. Each of the activities represented in the SADT
diagrams could be accomplished by software tools,

specially designed programs, or a combination of software

tools and specially designed programs.

As previously stated, the top level SADT diagram was
Ei 6‘ obtained by directly translating each of the four major
2 - functional requirements of a DBMS performance monitor into
: corresponding activities. The top level diagram derived by
ii the translation is shown in Figure III-2, and this figure
::: is a reproduction of page D-6 from the SADT reader kit of
- Appendix D. An important aspect of this figure is the
L: method of communication between the interconnected
] activities. As shown in figure III-2, the user interface Ej
: activity serves to collect a user's input to the DBMS i%
;? performance monitor, and it produces a set of commands i%
;L that are subsequently used to control the measurement, 'f
?5 analysis, and presentation activities. This method of _&
;’ communication between the activities is important for .,
o e )
i III-4 )
e <3




{
3
A
+
1
1
1
1
1
P

-.hn.m

7

ueJaderq udysag taad7 doy °*Z2-I1II 24n313 X

: SHYY¥D0Ud A9ViOVd $7001 "
[ SISXTVYNV  TVOILSILVIS INANTUNSY AN NOILVINIWNHISNI ‘ 9
) -HIVH JONVHY0JUId WALSXS 0
ﬁ. B
! 4114 o
_ SISKTVNY € F4 A
. TWIOILSILVIS S3714 V1vd SWad aNy o
g LNANIUNSV 3N S31I4 Vlvd HIL1SXS SYALIWVHVJ .
- S31I4 Vivd ) AZXTYNY | INIWFYOSYAW | FUNSVIN FINVRYOLY A e
. INIRFYOSY IH xuﬂ‘ ‘ 40 13s -
] GIZATYNY - .
$., . ~|
P H ”...
3 30IA3a 1SI1 - ]
3 »<qmmua‘nmu SNOILdO 1001 Ry
’ ‘ FONVHYOI¥ Ad o
3 h yasn o
L oL vIvafS N
5 & INIWIYNSY W o
g lyoday AONVHYOJYAd .
8 LNIWIYNSY AW INIS3dd iy
g FONYWYOJY I o
: X
[ SANVHWOD %
L TO¥INOD o
- SANVNHOD INIWIUNSVIAN 1 oy
. SANVRHOD SISATVNV JOVIUILINI —— P
3 NOILVINISIYd yasn LndNI i
¢ liXxae——- ¥asn o
L .»
- %
: i
5 A 3
f i
- o N, s S Y ] T SRR \ IR PRRRY . R IR S AU A P TARRTRRL DR PR PR .“



o i Sate s S e dene T T —————_m—" g 3 e PR s Zuem o e 4 B BER /N S A S ghuns ives Sel Sren Sien Sesn Sees Seen eem ven mme sp-en amen e mwe e
et e L. . Pl R P . . A . S . P P P T . - et

three reasons. First, it allows the user to completely
specify an entire measurement session or just certain
activities of the DBMS performance monitor. For example, a
user may want to specify a measurement session that
executes late at night and be able to receive the results
the first thing the next morning. Alternately, a user many
want to specify just the measurement activity and delay

the specification and execution of the analysis and

presentation routines until some later time. Second, this

method is important because it does not dictate how the
i activities are actually implemented on a target system,
! This allows the flexibility of using software tools and/or

specially designed programs., Lastly, this method is
i (,._ important because it supports the software development

o technique of iterative enhancement.
Iterative enhancement is the technique of selecting

. a subset of the problem and designing and implementing
RS this subset first (ref., 4:121-127 and 53:54-55), In this
;E way, a running system (although limited in function) is
:5 produced earlier, and the early system can be easily
- evaluated and changed., After the early system is running

satisfactorily, the process is repeated using successively
;? larger subsets until the entire system has been developed

and tested.

The technique of iterative enhancement can be easily Ei;

;' applied to the DBMS performance monitor. For example, the -ij
¥ o III-6 ET_Z_':E
. -
en e bR A A Ao e o - DRI AR :

‘A.‘A“- LI, ~a e ot a% et o te St o b o




measure system and DBMS activity of Figure III-2 could be
implemented first with the goal of producing measurement
data as quickly as possible,

A descriptive summary of each of the four activity

diagrams shown in Figure III-2 is provided below,

User Interface. This activity satisfies
functional requirements numbers 1.0, 1.1, 1.2, 1.3, 1.4,
1.5, and 1.6 from Table II-7. It accepts the user's input
to the DBMS performance monitor, and it uses the input to
construct three command sets for controlling a measurement
session. The commands sets serve as the interface to the
three other activities shown in Figure III-2. The contents

of each command set are briefly described below.

Measurement Control Commands. This
command set controls the measuring and recording of values
for the performance parameters, and the individual
commands within the command set control three aspects of a
performance measurement session. First, the commands

select the performance measurement tools required to

measure the desired set of performance parameter values,

Second, the commands specify operating conditions for the
performance tools such as start time, stop time, data file
names, etc.. Lastly, the commands initiate the performance

tools to begin monitoring the system. In the event a

III-7 ;;l::i

XA CLGRRR IR SRR




selected performance tool can not be automatically
initiated because it requires human intervention(i.e. a
hardware monitor), the commands initiate the printing or
display of a set of instructions for connecting the

performance tool to the measured system,

Analyvsis Commands. This command set
controls the mathematical analysis of the data recorded by
the performance tools, The individual commands within this
command set select the necessary analysis programs or

math-statistical packages and schedule them for execution.

Presentation Commands. This command set
controls the presentation of the performanc. measurement
data to the user of the monitor. The individual commands
within this command set select the required formatting
programs and schedule them for execution. Additionally,

the display device for the data is selected.

Measure System and DBMS. This activity
satisfies functional requirements numbers 2.0, 2.1, 2.2,
2.3, 2.4, and 2.5 from Table II-7. It utilizes the
performance measurement tools to measure values for the
set of performance parameters specified by the user of the
monitor. The measurement activity is controlled by the

measurement control commands generated by a user's input

III-8




T S —— ey . T ——— ” -

to the user interface activity. The values measured by

this activity are recorded in measurement data files for

later analysis and presentation to the monitor user.

..,-_ -jﬁﬁ,,
LRt A —
RAASA - RN .

]

i

Analvze Measurement Data Files. This activity
satifies functional requirements numbers 3.0, 3.1, 3.1.1,
and 3.2 from Table II-7. It uses the measurement data
files produced by the performance tools to calculate
values for the performance parameters that are not
directly measureable and to produce statistical analysis
of the data. The analysis activity is controlled by the
analysis commands generated by a user's input to the user
interface activity. The analyzed measurement data and any
required statistical analysis data are stored in files for

later presentation to the monitor user,

O

WY ey
.'-‘_-"v o

Present Performance Measurement Data. This :i
activity satisfies functional requirements numbers 4,0,
4.1, 4.2, and 4.3 from Table II-7. It presents the
analyzed measurement data and any statistical analysis
data to the user of the DBMS performance monitor in the
form of a performance measurement report. The presentation
activity is controlled by the presentation commands

generated by a user's input to the user interface

jé activity.

..............
.......................




Monitor QOperation o

The design presented in this chapter implies each of
the four major activites of Figure II-2 occur in a
sequential manner. For an individual measurement session,
the sequential order of processing must be adhered to;
however, the sequential nature of an individual
measurement session does not preclude the operation of
several measurement sessions in parallel. The limiting
factor to parallel operation is the increased system
interference caused by the parallel execution of the
performance measurement tools. Generally speaking, there
should be no need to have parallel measurement sessions,

but this should not limit the flexibility of the design.

Iest Plan
A formal test plan is used to test the validity of a

design as well as any implementations based on the design.

For a test plan to be useful, it must be developed with
the intent of finding errors (ref. 37:5). Two methods
commonly used to test software are known as "black-box"
and "white-box" testing (ref. 37:8-11 and 41:292-293).

Other techniques for developing test cases and testing

% e T
.' 8 . [
IS

programs do exist; however, the majority of these

a

techniques fall into the generic classes of "black-box"

e
-

e .
I
0

and "white~box" testing. Examples of these techniques are

III-10 N




Logic Coverage, Equivalence Partitioning, and Boundary

Value Analysis (ref. 41:305-311).

"Black-box" test procedures derive their test cases
solely from the requirements and specifications of the
system without taking advantage of any knowledge about the
internal structure of the software. On the other hand,
"white-box" test procedures derive their test cases from
an examination of the program logic.

At this point, "white-box™ testing cannot be used;
only the design of the DBMS performance monitor has been
specified, However, the "black-box" testing method and the
functional requirements of Table II-7 can be used to
derive a set of test cases for the generalized design
presented in this chapter and Appendix D. An example test
plan module is shown in Figure III-3, and a complete test

plan for the proposed design is contained in Appendix D.

Using the Design

The complete design presented in Appendix D shows
the activities and sub-activities that must be
accomplished in order to develop a DBMS performance
monitor meeting the functional requirements of Table II-7,
The next step in the problem was to use the design to
implement a DBMS Performance Monitor for a specific host
computer system and DBMS, The activities shown in the SADT

diagrams do not necessarily reflect a one-to-one mapping

III-11

'l

A N P R



oy —— o CHA A aaar e —
L R e T L T B ST T, - AR I AT Seu e i St A ey 2

B MR A P S e

REQUIREMENT: 1.1 - Allow the user to select a set of
performance parameters,

TEST CASE(S):

Select no parameters. T
Select all parameters,

Select the pre-defined Software Engineer's
subset of parameters.

4, Select a specialized subset of parameters.
5. Restart the selection process,

1
2
3

o & »

EXPECTED RESPONSE:

1« The default set of parameters is selected. .
2. The complete set of measurable parameters is :
selected.
2. The Software Engineer's subset is selected.
4, Only the special subset is selected. O
5., The currently selected set of parameters is -
deleted and a new set is started. .
RESULTS: 5
CASE 1. - PASS: FAIL:____ DATE: o
CASE 2. - PAS3S: FAIL: DATE: :
CASE 3. - PASS: FAIL:____ DATE: -
CASE 4, - PASS: FAIL: DATE: .3
-

CASE 5. - PASS: FAIL:____ DATE: -
TESTED BY:

REMARKS ¢

Figure III-3. Test Plan Example

III-12




I::.'_:J‘ N

- -
RSOk

from the activity diagram to a computer program or a

software tool. Therefore, a study of the software tools
and general capabilities of the target system needs to be
performed, and the results of the system study are

presented in the next chapter.

sSummary
This chapter introduced the SADT design

documentation technique, and this technique was used to
present a generalized design for a DBMS performance
monitor. The four major activities of a DBMS performance

monitor were defined as,

1. User Interface
. Measure System and DBMS

Analyze Measurement Data Files

= W N
.

. Present Performance Measurement Data

and each of these activities were examined in detail to
specify the interface between them. The methodology for

developing a test plan for the design was presented, and

an example test plan module was shown. Lastly, an approach

for using the design was presented, and the results of

this approach are presented in the next chapter.

III-13

.....

..............................
.............................................

..............

a" %y o

P R
R N N
il

¥
b

ST R
AR .
PV ST W)

[
JOR I PSR



T L L TR e m— e Ll et Joas ane em e e ven o e

IV, VAX 11/78Q Implementation

Introduction

This chapter discusses how the generalized design
for a DBMS performance monitor was implemented on a
Digital Equipment Corporation (DEC) VAX 11/780 computer
for the TOTAL DBMS. As with most software systems, there
is more than one way to realize an implementation, and a
DBMS performance monitor is no exception to this rule,
Therefore, the implementation plan presented in this
chapter is just one of many possible implementations,

The topics discussed in this chapter include: the
approach used to implement the monitor, the operating
characteristics of the VAX 11/780 computer and TOTAL DBMS,
the performance tools available on the VAX 11/780, the
implementation options, and the implementation plan. The
discussions on the operating characteristics of the VAX
11/780 and TOTAL DBMS are included in this chapter to help
illustrate the importance of understanding the system to
be evaluated, and they are useful for relating the results
of the DBMS performance monitor to specific aspects of the

VAX computer and TOTAL DBMS.

Implementation Approach
The first thing performed during the implementation

stage was a study of the VAX 11/780 computer system and

IV-1

et e Tt

I

PSR
AR
Vo N PR

M
A

LN
et
das o .a

U A
. A .
PSS N N TS S Y




.............

the TOTAL DBMS. The five goals of the system study were

to:

1. Understand the hardware and software
configurations of the VAX 11/780.

2. Understand the TOTAL DBMS and how it works
on a VAX 11/780 computer,

3. Determine the performance tools available
for the VAX computer and the TOTAL DBMS.

4, Determine the capability of each
performance tool to measure the system, analyze the
measured data, and present the data to a user of the tool.

5. Determine what other types of software
tools were available for performing tasks such as data
analysis, statistical analysis, and developing "user

friendly" interfaces,

After the system study was completed, the next step
was to apply the information to the generalized design,
and this involved selecting the useful tools, determining
any additional computer programs to be developed, and
specifying the communication interfaces between the four
major activities of the DBMS performance monitor. The
third step in the implementation was to develop the
additional programs. The program development included

analyzing the data structures required by the programs,

Iv=2

........ A I T R S R T W -'.\ -

.............

STt

B R R A T S T S tet LR AN
PLAPRC S W A AE T AL PR S STRAAE S U R SR i S SR AR PR I S S I P AL I I AP IE EATEINEARAR



designing the programs, coding the programs, documenting
the programs, and individually testing each of the
programs, The final implementation step was to perform a
system test of the DBMS performance monitor in accordance
with the test plan developed for the generalized design of
the monitor.

The system study and detailed design steps are
presented in this chapter, and the program development and
testing steps are presented in Chapter 5. The system

testing step is presented in Chapter 6.

YAX 11/780 Configuration

Figure IV-1 contains a hardware configuration
diagram of the VAX 11/780 computer system used in this
study (ref, 15:7-18). The system contains 2.5 megabytes of
main memory, two RKO7 disk drives (each having a storage &
capacity of 28 megabytes), one tape drive, six terminals,
and one line printer. All peripheral devices are connected
to the processor through the UNIBUS, and the UNIBUS allows
data to be transferred in one of two ways. The data can be
transferred in a block as a DMA transfer, or it can be
transferred on a byte-by-byte basis through program
interrupts (ref. 15:16).

The operating system used on the computer was
version 3.4 of the VAX/VMS operating system. The VMS

operating system employs a virtual memory management

Iv-3



»
g 11/780
y CPU
N
£ 2.5 MEGABYTES
L MEMORY
. CACHE
x UNIBUS OTHER I/0
3 ADAPTER ADAPTERS
DISK
CONTROLLER
U
N
I TAPE TAPE
B CONTROLLER > 0
U
S
LINE
PRINTER .
TERMINALS .
. .Q
UNIBUS . =
TERMINATION ~
C
]

Figure IV-1, VAX 11/780 Hardware Configuration

IV-y

DAL ¢

e e
e
e et
PR




scheme of demand paging using a fixed page size of 512
_ works (1K bytes), and the principles of its operation are
’
!I briefly described below (ref. 17:Chapter 2,3 and

25:Appendix A).

o Individual user jobs are referred to as a
process within the operating system, and each active
process has a working set of primary memory pages
associated with it. The working set refers to the number
of pages a process has resident in main memory. When
enough pages of memory have been allocated to fulfill a
processes' minimum working set requirements, it joins all
the other active processes in the system's balance set.
The balance set is all the processes waiting to be
scheduled for the CPU or I/0 operations. Since a
processes' working set may be smaller than the overall
memory space requirements, memory references to regions of
the process not currently contained in the working set
will occur periodically, and this causes a hardware page
fault. A page fault event may force the VMS operating

system to select a page currently in the working set for

removal in order to make room for the new page being
referenced. fgﬂ
A page selected for removal from the working ?ﬁ

set is not actually removed from main memory. It is placed
on either the free page list or the modified page list. ]
The free page list keeps track of those available pages }Q
9

IV-5 =




which were not altered during their use, and the modified
page list keeps track of those pages that were altered
during their use, These two lists make up a shared page
cache, and before the VMS operating system initiates a
disk read to satisfy a page fault, these lists are checked
to determine if the required page is already in memory. If
the required page is found, it is removed from the list
and connected back into the processes' working set saving
the time needed to perform a disk read.

If the required page is not found, space is
taken from the free page list to store the new page read
from the disk. If the free page list is empty, space must
be taken from the modified page list. However, pages on

this list have been altered and must be saved on the disk

» —_
I de
before the new memory page is read from the disk into the
memory space currently held by the the modified page. This
i situation could cause considerable overhead, and the VMS
operating system tries to prevent this situation from
occuring by writing the modified pages to disk whenever
) the system is idle or the list exceeds a certain length.
; Modified pages saved in this manner are moved to the free
- page list for later use,
'
‘ IOTAL DBMS
: The Data Base Management System (DBMS) used in this
; study is Version 2.1 of the TOTAL DBMS marketed by CINCOM
IV-6
’ .
e e e NS e e T i kl-‘.ﬁ




kl

o e. D/ A R TN er—— o e B aas aae A o o
. B PRERP S N . A AT A PRl " AR AR ARS G descias e S S AT |

Systems Inc.. The TOTAL DBMS uses the network data model N
for storing and retrieving information (ref. 8:1-3), and
its basic principles of operation on a VAX 11/780 computer

are described below:

Data Base Structure (ref. 8:1-3). A TOTAL data base

consists of a group of data sets (files). There are two

types of data sets. The first type is called a master data
set., Master data sets are independent, and the logical
records within a master data set can be directly accessed
using the control key. The second type of data set is
called a variable data set. Variable data sets are
dependent, and they must be attached to a master data set.
Logical records within a variable data set are chained to
a unique master record in a related master data set. The
chaining provides the access paths to the data, and these
paths are referred to as linkpaths, A master data set can

have more than one variable data set attached to it, and a

variable data set can be attached to more than one master
data set. Therefore, multiple access paths can exist from
a single master data set to multiple variable data sets,
and from multiple master data sets to a single variable
data set.

The structure of a TOTAL data base relates to
the Data Base Task Group (DBTG) definition of a network

model data base in the following way. Set types defined

iv-7




for a data base would use records from a master data set

as owner records and records from a variable data set as
member records. There is no direct correspondence to a
connection record type because a TOTAL data base defines
fields within master and variable data set records to
serve as the connection mechanism. These fields are
referred to as the linkpath.

Figure IV-2 illustrates a simple TOTAL data

base with one master data set and one variable data set.
The control key is used to select a unique master record
from the master data set. After the master record has been
selected, the linkpath field within the master record is

5; used as the access path to a group of chained records in

the variable data set. For example, the master record
could contain all the personal and employee data for a car
salesman, and the chained group of variable records could
represent the information on all the cars the salesman has
sold. The control key for the master data set could be any
unique identifying information about the salesman such as

employee number, social security number, etc..

DML Commands. The Data Manipulation Language (DML)
commands available in the TOTAL DBMS are (ref. 8:2-26):

Serial Processing Functions. These functions

are used to process records one-by~one according to their

IV-8




CONTROL
KEY

)

MASTER | _ _ __ MASTER
DATA SET RECORD

F; LINKPATH

r'~
I® -
-

VARIABLE | _ __ __ VARIABLE
DATA SET RECORD

VARIABLE CHAINED
RECORD GROUP

VARIABLE
RECORD

Figure IV-2., TOTAL Data Base Structure

IV-9 ;f

AN

Pl LA




————y— P ——— Dol B B Sl ek e g S ree A o AT AT e 4

- .

Physical sequence in a data set. Serial processing 1is
' accomplished by repeating the same function. f
# ;o
] 1. RDNXT - Serially read a master or a
- variable entry data set,
h Master Data Set Functions. These functions are ' :
4 used to process a record from a master data set, .
{
READM - Read a master record.
WRITM - Write a master record.

ADD-M - Add a master record.
DEL-M - Delete a master record.

Eony =

Variable Data Set Functions. These functions

are used to process a record from a variable data set.

1. READV

Read a variable record along
the forward direction of a
variable record chain.

2. READR - Read a variable record along
the reverse direction of a
variable record chain.

3. READD - Read a variable record
directly by specifying its
position, :

k., WRITV - Write the variable record S
retrieved by the preceding =
read,

5. ADDVC - Add a variable record to the '
end of the chain.

6. ADDVB - Add a variable record before
the one retrieved by the
preceding read.

7. ADDVA - Add a variable record after :
the one retrieved by the '
preceding read.

8. DELVD - Delete the variable r«-ord

retrieved by the preceding

read.

IV-10 _ i




------ AR FMArEL APEL & ShNE 4 Y Y YTy

Special Functions. These functions are used to

control the processing of specialized DBMS operations.

SINON ~ Sign-on to the DBMS,

1.

2. SINOF - Sign-off the DBMS.

3. RQLOC ~ Request the home location of a
master record.

4, WRITD -~ Write a master or variable

3 record directly into a

‘ specific location.

« QUIET - Check point the data base and
log device.,

LOADD - Load a data base descriptor.

FREEF Free held records for a file.

FREEX - Free all held records for this
program.

o~ N W
e o o

In chapter two, four general types of DML
statements were defined. These four types were defined as
retrieval, storage, control, and special purpose. The four
types were grouped based on their general DBMS function so
the performance evaluation aspects of these DBMS functions
could be more closely evaluated. In keeping with this
idea, the TOTAL DML commands have been grouped into the
four general types, and the results of this grouping are

shown in Table IV=1.,

DBMS Configuration. Figure IV-3 shows how the TOTAL
DBMS works on a VAX 11/780 computer system (ref. 8:2-2).

On a VAX host, the TOTAL DBMS is executed as a background =
bateh job, and the DBMS applications programs are E:

executed either as batch or interactive jobs. The

IvV-11

e
. . . . . Ay o v el e . L. e e e .
-..‘\{-,’-, A e L I B O NN e S e N e e e e e e e e N

P P AN PP P A T Tl W Tl s Jia S il S T B LA WA T S AN S W T N S W Y YL A S A N S L TR . D S P W R PR - - -
LIRS VN N SN YRS Y YR I R S WA D AT R I ) PPN "*. .Il.' Sttt P A I A IR R W




.......

)

..........
.........

TABLE IV-1
Ceneraljzed Grouping of the TOTAL DML Commands

Retrieval Storage Control Specjal Purpose

RDNXT WRITM SINON RQLOC
READM ADD-M SINOF WRITD
READV DEL-M QUIET LOADD
READR WRITV FREEF
READD ADDVC FREEX

ADDVB

ADDVA

DELVD

........................
.....................

applications programs communicate with the TOTAL DBMS
using subroutine calls to the subroutine DATBAS, and the
parameters of the subroutine call make-up the TOTAL DML
command. The DATBAS subroutine communicates with the TOTAL
DBMS through the VAX Mail Facility to send/receive
messages, data, and commands to/from the TOTAL DBMS. When
there is no mail to TOTAL, the TOTAL DBMS hibernates and
waits for incoming mail.

An example of the complete sequence of steps
required to retrieve a logical record from a TOTAL data
base is outlined below. Figure IV-3 contains the
step numbers to allow the sequence to be easily traced on

the configuration diagram.

1« The user applications program sets up
the parameters for *he DML command and calls the DATBAS

subroutine,

IV-12

e e
—deh A f VTR

LEVCI

. LT
N P I
PP SIS TN WO RP i 4B i SN

[
A

e,

S

PRI N

[}
*
2

e
Lok oot
By Ll i
P " L

L
A

ot L
T e T
e A Aok

.
.
-

o el
. R A
- iAW e_eys 8

.............
f N .




! . VAX 11/780 COMPUTER

p (5)

e PHYSICAL
S DISK I/O

VAX/VMS REQUEST
> OPERATING

[’ SYSTEM

(4)
LOGICAL DATA BASE
DISK I/O DESCRIPTOR
REQUEST MODULE (6)
BLOCK
(3) CONTAINING i
DESCRIPTIVE REQUESTED '
INFORMATION RECORD

TOTAL

ik .
i

(2) (7) )
MAIL (1) USER MAIL o
MESSAGE CALL APPLICATIONS (8) MESSAGE -
PROGRAMS [\ ° DATA .

- jELEMENTS '

DATBAS f/ o

7 :

Figure IV-3, VAX-TOTAL DBMS Configuration

Iv-13




i < i

Py

,
e

.......................

2. The DATBAS subroutine formats a mail
message and sends it to the TOTAL DBMS,.

3. The TOTAL DBMS receives the mail
message and accesses the data base descriptor module
(schema) to obtain descriptive information about the
logical record and its data elements,

4, The TOTAL DBMS requests a logical disk
I/0 be performed by the VMS operating system.

5. The VMS operating system translates
the logical I/0 request into a physical disk I/0 request.

6. The VAX I/0 hardware performs the
physical I/0 from the TOTAL data base files (data sets)
and places the data in a data buffer defined by the TOTAL
DBMS.

7. The TOTAL DBMS extracts the required
data elements from the disk block and sends them via a
mail message to the DATBAS subroutine.

8. The DATBAS subroutine places the data
element values in the data area of the user program and

returns control the the user program.

Relationship to DBMS Architectural Model. The DBMS
architectural model presented in Chapter 2 does apply to
the TOTAL DBMS. The TOTAL DBMS allows each user to define
an external level view by using a schema definition in the

applications program, The data base descriptor modules

Iv-14




R A AR ALt et N AT S S Y et A M e e LT e

(DBMOD) make up the conceptual level view of all the data
bases, and the DBMODs are used to provide the schema
capability to end-~users at the external level.
Additionally, the DBMODs are used at the internal level to

present a stored record interface to the VAX/VMS access

method.

Potential Areas for Performance Problems. The

?i complexity of Figure IV-3 graphically illustrates how
important it is to understand how the DBMS operates in the
b VAX/VMS environment before undertaking a performance
evaluation effort, This figure shows at least five areas

where performance problems could potentially occur. These

five areas are: the overhead involved in making calls to

the DATBAS subroutine, the VAX Mail facility, the VAX/VMS
access method (translating the logical disk request to a

physical disk request), the physical I/0 system, and the

TOTAL DBMS buffer pools,

System Performance Iools.
Five performance tools were found to exist on the
VAX 11/780 computer. In addition to these tools, the TOTAL
DBMS provides a DBMS log facility. An additional
performance tool, VAX-11 SPM (Software Performance :
Monitor) is available from DEC, but it was not available g

on the target system. The general capabilities of each

IV-15

K
-~
l';.'i.‘l S R S M I Rt gr TIPSO TR L YL L P e P I O A TR et e LA LACROACRGASH

E A S R R B R LR R R AR CRIRRIRTE AN YA AT PN R PR N T I el e e e, e
LA c.+ PN P AR A AT IO TR S I S v '-.\“_l- I PR 'Si PRI VIR IS Ao A AP A A Iy u':..’:‘-'.\-':.




tool are described below, and Appendix E contains a

detailed look at each of the tools. The tables contained

in Appendix E list the set of performance parameters each
tool is capable of measuring, a brief description of each
parameter, and the parameters used for a DBMS performance

monitor.

VAX Monitor Utility (ref. 21:Chapter 12). The
monitor utility is a software monitor used to obtain
information on the performance of the VMS operating
system. The monitor utility collects data on a time-driven
basis, and the sampling interval between data collection
events can be set between the range of 1 to 9,999,999
seconds, It has the capability of monitoring nine classes
of system wide performance data and producing a variety of
summary reports. The nine classes of performance data are:
DECNET, FCP, IO, LOCK, MODES, PAGE, POOL, PROCESSES, and
STATES. Of these nine, four are useful for the development
of a DBMS performance monitor, and the four classes are

briefly described below,

1. IO - Monitors the I/0 system and produces
values for the performance parameters such as: rate of
disk and tape I/0 operations, page fault rate, page read
rate, size of the free and modified page lists, etec..

2. MODES - Monitors the time spent in each of

IV-16

/v
DR
e te O .

S
i s

PR ¢




the seven processor modes such as: processor idle,
supervisor mode, user mode, etc..

3. STATES - Monitors the number of processes
in each of the fourteen scheduler states such as: waiting
for CPU, suspended, waiting for a free page of memory,
waiting for a page fault, etc..

4, FCP - Monitors the VAX/VMS file system and
produces values for performance parameters such as: disk
space allocation rate, file open rate, file creation rate,

rate at which CPU time is used by the file system, etc..

The monitor utility can produce three types of
output, and it has the capability to analyze the data
before producing the output. The monitor utility can
display the output on a terminal, generate a binary data
file of non-analyzed data, or generate an ASCII formatted
print file of the analyzed data. The output options are
not mutually exclusive providing the capability to produce

several types of output simultaneously.

YAX-11 SPM (ref. 16:). The VAX-11 SPM (Software
Performance Monitor) utility is a software monitor used to
collect and report performance statistics for VAX/VMS
computers, It is similar to the monitor utility, but it
provides an extended set of capabilities., For example, it

can: measure CPU-I/0 overlap, measure where the overall

V=17




system is spending its CPU time, trace specific VMS

events, and produce histograms of where user programs are

spending their CPU time.

VAX Accounting Utility (ref. 21:Chapter 1). The
accounting utility has the capability to read the system

- job accounting file, select records from the file, and

produce a summary report or a new data file. The summary
report can be tailored to meet many needs because the
capability exists to select the desired data items and
group them by a list of summary keys. Summary reports are
produced only in the form of an ASCII formatted print
file. However, new data files can be produced as either
binary files or ASCII formatted print files. The
accounting utility can produce performance values for
individual user jobs such as: elapsed time, total CPU
time, total page faults, total disk and tape I/0s, total

number of disk and tape volumes mounted, etc..

VAX SYE Utility (ref. 21:Chapter 17). The SYE
utility can selectively extract records from the system
error log file and generate summary reports in an ASCII

print file format. The SYE utility can produce performance

.
bl

values for the error rates and reliablity of the CPU,

memory, disk drives, and other peripheral devices,

..
e
.

RN
Wy SO

A SR L
L e e .,
4 A B s L ok W 3

IvV-18

.........




BRLATER AP AR e S et Sbdn Bean S S ) B e M e e e e g P r—— v

VAX Run Time Library (ref. 20:5-24)., The run time
library provides four procedures that can be used to
instrument a process (applications program) and test its
performance. The four procedures can be used to obtain the
processes'! elapsed time, CPU time, I/0 counts, and the
number of page faults. These procedures are easy to use,
but they are constrained by two factors. First, they

provide only a limited amount of information, and second,

e

they can only be used to obtain information on the
specific process being executed. Performance information

on other active processes is not available,

YAX System Services Library (ref. 18:124-132). The

system services library provides the SYS$GETJPI procedure

» —
- ‘o which provides access to a wide range of performance
3 information on a user process., Additionally, it has the
i capability to retrieve information about more than one
. specific process. The system service procedure is a more
% powerful tool to instrument a process (applications
; program) since it can simultaneously measure the
; performance of several processes. For example, it could be
i used to simultaneously measure the performance of the DBMS
; and all user processes of the DBMS. One drawback of this
ﬁ procedure is that it does not provide data analysis
: capabilities.
; The system services library also provides the
IV-19 Eﬁ
) .
: 2
S e 2




T R A T T T W Aep————— T~ Dafiiragirend
St RN . R - - R -

SYS$GETTIM procedure which provides access to the system

clock to a resclution of 100 nanoseconds. This procecure
is useful for accurately measuring the elapsed time

between events,

TOTAL DBMS Log Facility (ref. 9:Chap 7 and 8). The
TOTAL logging facility provides the capability to log
before images, DBMS functions, or both. Log information
can be recorded on either tape or disk media, and the
capability exists to define a two file flip-flop approach.
The information is recorded in the log file in variable
length records inside of a fixed size block, and the block
size is established at data base generation time.

Typically, the information contained in a DBMS
Log file is useful for determining performance parameters
such as DBMS throughput, the arrival rates of DML
commands, the distribution of the arrival rates, etec.
(ref. 2:319). Unfortunately, the log file provided by the
TOTAL DBMS is specifically designed for recovery purposes.
Therefore, the TOTAL DBMS only logs storage and control
DML commands. All data pertaining to retrieval and special
purpose DML commands is not recorded. Additionally, the
log file does not contain the time information is
recorded; it only records the date. This means the log
file can't be used to calculate the arrival rate or

distribution of the arrival rate for the DML storage

IvV-20

-------------------------

ey -
- Ve, ..
. ot .

T e
,




operations (useful statistics for constructing

probabilistic models of DBEMS processing). For thes

-—1 .

reasons, the TOTAL DBMS Log Facility was not use e

DBMS performance monitor.

Data Analyvsis Iools
Only one data analysis tool was available for the

VAX 11/780 development system. This was the Haessle STAT

| ]

package (ref. 40:). It was not operational on the system,
and an evaluation of the user manual showed it was limited
in its capabilities. It can not handle alpha-numeric data;
therefore, it could not be used to select data based on
alpha-numeric values such as job/process name, date, time,

etc..

)|
-
0

The capability existed to generate data tapes for
use on a CYBER computer system and the SPSS software
i package. This tool provided the necessary data selection
capabilities based on alpha-numeric values; however, it
could not be used for "on-line" analysis. It required

human intervention to create the tape, prepare a CYBER job

to analyze the data on the tape, run the job, and pick-up

the results.,

.1. v "r e "; Ta .
.y

Set of Measurable Performance Parameters
Of the 104 performance parameters developed during %ﬁj

i' the system requirements stage (ref. Table C-1), 66 were

Iv-21

.....

, RO v L % - CIP IR L AL . oLt
RN N N P SN AOACNG PALPGN, N PO A AR AR A AE SRR AT A AT A P SR SR AP AATUITR

-
-
-5." w0 e v A R L A TP L P IR D Sl Nel Al LA A R VLI L R Ve et e et et e e e e N .




{.rsvv—rf..b.._v-v-t T — L L SR it LaEchst et e S ol s SEML LGS MaiM A omms SEnt Mieh e uan S S s s

capable of being measured on the VAX 11/780 by using a

combination of the Monitor Utility, Accounting Utility,

SYE Utility, and System Services Library. Of the 38

remaining parameters, 10 were not measured due to the lack

of a hardware monitor, 11 were re-defined by VAX unique

parameters, and 17 were not measurable. Additionally,

4 eight parameters unique to the VAX 11/780 memory and I/0

‘ system management were added to the set. Table IV=2
contains an example of the measurable parameters and their

corresponding sources. The complete set of measurable

contained in Table E-T7 of Appendix E.

; performance parameters and their corresponding sources are
1
;
g

Implementation QOptions

The evaluation of the capabilities of the existing
performance tools presented several options for the actual
implementation of a DBMS performance monitor, and these
options were in the area of data analysis. For example,
the monitor and accounting utilities have the capability

to produce raw data files for user developed data analysis

software, or they have the capability to produce ASCII

formatted summary files which contain the required

analysis. If the raw data files option is chosen, data
analysis software must be provided or developed by the

user, If the summary files option is chosen, the data is

r
Far /'.'. [N
Lt S
L I e . * »
araraa’a’a’aad e "

analyzed by the utility; however, the data is intermixed

e

Iv=22

]
e
i )

I e S A A N Ry R R R S T L e A A A S A A S A S S S S Ay
P PN RPN N PP P PP TR S PR P AR LS 2 AL OO A S S PR o el S TR T T R, Sl N S i ¥




TABLE IV-2
Examples of VAX and IOTAL Performance Parameters

Parameter MName Source

System throughput Accounting Utility

DBMS throughput DBMS Log (DBMS Storage Functions only)
or an Instrumented Program

System and DBMS Accounting Utility
turnaround time

System and DBMS Instrumented Program
response time

Component SYE Utility

reliability

CPU busy Monitor Utility

DBMS CPU Calculated using Accounting Utility
utilization data

Number of page Calculated using Accounting Utility
faults (system) data :

Number of page Calculated using Accounting Utility
faults (DBMS) data

I/0 rates Monitor Utility

Number of data DBMS Log (DBMS Storage Functions only)
base objects or an Instrumented Program

accessed

Mean I/0 Calculated using data from an
statistics per Instrumented Program

DML statement

Device SYE Utility

utilization

(system)

Mean length of Monitor Utility

system queues

IV-23 =

......

e W W Y




Wwith print headers generated by the utility. This does not
present a problem if the VAX generated format is
acceptable for the performance report, but if a different
type of performance report is desired, the ASCII formatted
summary files have to be read by a specialized program to
locate and extract the values of the measurement data.

The data produced by instrumented applications
programs also needs to be analyzed, and this analysis
could be performed by either the instrumented program or
separate data analysis software,

Additionally, two options existed in terms of data
presentation. The data produced by each tcol could be
separately printed and consolidated by the analyst, or
special presentation software could be written to
consolidate the data and produce a consolidated

performance measurement report.

Implementation Plan

For this study, it was decided to use the data
analysis capabilities of the monitor and accounting
utilities instead of developing new data analysis
routines, Additionally, it was decided to create a
consolidated performance measurement report, and this
required the development of specialized software to
extract the necessary performance parameter values from

the ASCII formatted summary files, Typically, specialized

Iv=24




_.
.y

s .l.l.
Lt L I |
I ST

software such as this should be avoided; however,

rew

developing new software for a funciion that already exists
is too wasteful, Therefore, the analysis capabilities of
the utilities and a specialized, well documented, data

extraction program were chosen as the implementation

, method.

To make the instrumented program capability more

powerful, it was decided that a generalized
instrumentation utility would be developed. This allows
any VAX user to instrument their applications programs
through subroutine calls to the instrumentation utility.
Also, it was decided the instrumentation utility would
operate in two discrete steps. In the first step, it would
only collect data and write it to a file, and after all
the data was recorded, the second step would analyze the
recorded data. Therefore, the instrumentation utility
provides not only a general purpose utility to instrument
programs, it can provide both generalized or specialized
data analysis capabilities, This allows the

instrumentation program to be more general purpose and be

used for more than just DBMS oriented applications

program. ‘;ﬁ;é
To provide data analysis for the instrumentation ;ﬂué
utility, it was decided that data analysis software would '
be developed as a part of this study. This decision was ;;éi
made for two reasons, First, the level of data analysis ;? j

IV-25 B

........................




required is relatively simple, and second, an online data

analysis capability will provide better service than the
alternative of creating data files for use on the CYBER
computer,

A block diagram of the implementation plan is shown
in Figure IV-4, and this figure shows how each major
functional requirement is accomplished through a set of
computer software. The blocks annotated with a (U) denote
a VAX utility, while the blocks annotated with a (P)
denote a program developed as a part of the study.

In terms of controlling the implementation, the user
interface is used to generate a VAX command procedure, and
this procedure contains all the necessary measurement
control, analysis, and presentation commands in the form
of VAX Command Language statements. These statements are
used to initiate the necessary performance tools and user
developed software comprising the DBMS performance
monitor. After the user has completely specified the
measurement session and selected the exit option, the user
interface will display a message instructing the user to

enter the following VAX command:

$SUBMIT/NOLOG_FILE [DBMON]DBMONINIT

This command submits the DBMS performance monitor as a

Iv-26

™
.‘.: A‘:‘
[ 3 :
©3
-
.

P

- - d
. o
LU
e
*
|

o

A

|
.
*
1

- P
® |
B
’
~.'1
S
. '..
L
-3
e

PO




L T TERRRRS, RIS e SREE
j
ueid :OﬁQNQCQEQﬁQEH “Hh-AI QLS&HE
g
| v1va ,LA vLva J SWEA ANV “T FOVIUILINI
g K Lnis3ud IZKTYNY 1< W3ILSKS JUOSVAW — 7 ¥3sn
3
8
! (n)
| T114 ALITILN
.‘ KUVHHNS S
, IAS
3 (n)
: 3114 ALITILN
g XUVHWAS | ONIINNODOV
5 LNDOV &
3 (d) )
5 HYY4D0Yd 24nQId04d (d) &
5 14043y ANYHHOD JOVAHILINT
% a3LYaITOSNOD XVA ¥asn
Y .
2 S3TI4 Viva
. NOILVINIWNYISNI [(d) ALITLLN
g - NOILVLNIHAULISNI
. 3
. HY4D0Yd SHV4D0Ud
. 3714 viva SNOILVIITddY
3 XUVKHNS FZATUNY SHEQ
|

! (n)
- KLITIL0 f—]
5 714 AHVHWNS YOLINOW

HOLINONW




background batch job allowing the terminal to be used for

other tasks.

Summary

This chapter examined the details of implementing
the generalized design for a DBMS performance monitor on a
VAX 11/780 computer and the TOTAL DBMS., First, the
operational details of the VAX computer and TOTAL DBMS
were presented to illustrate the importance of
understanding the details of their operation. Next, the

f: existing performance evaluation tools of the VAX computer

. T
P PO T B

and TOTAL DBMS were evaluated to determine the set of
tools useful to the development of a DBMS performance
monitor. Additionally, the VAX operating system was
examined to determine if any "hooks" existed to facilitate
a . the development of additional performance tools, Based on
the results of the system evaluation, a plan for
implementing the DBMS performance monitor was developed,

and the next chapter discusses the details of actually

implementing the DBMS performance monitor,




o V. Program Design, Implementation, and Testing

.
VAU AU

Introduction

This chapter describes the development of the User

Interface, Instrumentation Utility, Data Analysis, and
Measurement Report programs identified in the
implementation plan of Figure IV-4, Each program is
described individually and the description includes:

specialized data structures, high level program structure,

P RS Y

and program testing along with results. In addition to the
documentation presented in this chapter, Appendix F -
contains complete and detailed structure charts for each

program. o

—

Development Strategy R
A development priority was assigned to each of the ;f

four programs, and the highest priorities were assigned to ;3

the programs responsible for data collection tasks. This

1]
alal s ek

strategy seemed reasonable since it is impossible to

analyze or present data that has not been collected.

The user interface controls all the performance

tools used in the DBMS performance monitor, and it was
assigned the highest development priority. This allowed
all existing VAX performance tools to begin collecting
data as quickly as possible. Also, developing this program

first provided two other advantages. It provided a basis

Va1




-------
............

for testing the generalized design presented in Chapter 3,

and it provided a limited DBMS performance monitoring
capability with the development of a single program,

The instrumentation utility is the only other
program involving data collection tasks, and it was
assigned second development priority. Of the two remaining
programs, the data analysis program analyzes the data
collected by the instrumentation utility, and the
measurement report program produces a consolidated
measurement report. Since the VAX performance tools can
produce measurement reports (ref., 21:Chapter 1,12, and
17), the need for a consolidated measurement report is
more of a "user friendly" feature than it is an essential
requirement. Therefore, third priority for development was
assigned to the data analysis program, and fourth priority
for development was assigned to the measurement report

program.

Testing Procedure

Before the test plan discussed in Chapter 3 can be
used, a detailed procedure for applying the test plan must
be developed. The procedure used in this study consists of
four steps which are: unit testing, integration testing,
validation testing, and system testing (ref. U41:295-305).
As a whole, these steps are referred to as incremental

testing because the testing proceeds on an incremental

V-2

"

LIS . e ‘.
.
- LIRS




TR A i e RGO Jnan ARG I devie ar-ae u Bt JRan St S St S L AT I EaiC i £

basis throughout the software development. An incremental
testing process is consistent with the principles of

software engineering (ref. 53:7-9,88-99 and #1:295), and

if the testing is started with the design stage, it allows
errors to be discovered as early as possible.
Each of the four testing steps are briefly described

below:

Unit Testing. Unit testing focuses on testing
each program module individually, and this step assures
that each module functions correctly as an individual unit

of a software system,

Integration Testing. After unit testing has
been completed, the modules must be assembled or
integrated to form a complete program. Integration testing

focuses on testing the complete program to ensure the

interfaces between modules are working correctly and that

none of the modules have an inadvertent, adverse side

ﬁ; effect on other modules.

¢

1 Validation Testing. Validation testing is 3
‘ performed to ensure the assembled set of software :E
ii functions in accordance with the requirements. Typically, ii
&ii a series of "black-box" test cases are used to perform the E;

validation,




System Testing. System testing is the final

step, and it is used to ensure all elements of the system
work properly and that overall system function and
performance requirements are achieved. This testing must
involve the end-user of the software system, and it is

typically culminated in a series of acceptance tests.

Programming Language Selectjon

Four languages were available for program
development, and these four languages were MACRO-11
Assembly, FORTRAN, C, and PASCAL. Of these languages,
PASCAL was chosen as the primary development language.
PASCAL was chosen for several reasons, but the two primary
considerations were PASCAL's ability to define data types
and structures, and PASCAL is the language used at AFIT to
develop applications programs for the TOTAL DBMS. (Other
languages such as COBOL, FORTRAN, and MACRO-11 can also be
used to develop TOTAL DBMS applications programs (ref.
8:1-4): however, none of these languages are used at
AFIT).

The ability to define data types and structures is
important to the process of developing programs. The first
steps in program devéiopment concentrate on the data
transformations performed by the program, and during these
steps, a scheme for representing the data is devised (ref.

1:9-12; 30:4-5; and 53:89). After this has been

V-4

Ml S A e S v Sve S ol el o e T 1
Ste Re BT R TN T T e LR LT e




N - f ¥ vov
AR
R " AR

-

accomplished, the algorithms operating on the devised data
scheme are selected or developed. The end result of the
initial development steps is a data structure consisting
of the selected data types, the functions/algorithms
operating on the data types, and the relationships between
the functions/algorithms and the data types. In formal
terminology, the data structure consists of a set of
domains (data types), a set of functions (algorithms), and
a set of axioms (relationships). This triple is referred
to as an abstract data type, and its specification allows
for a clear understanding of what the data structure is
intended to do (ref. 1:11-14 and 30:7).

The next step in program development is to implement
the data structure specification in a programming
language., Ideally, the development language should contain
constructs facilitating the implementation of the data
structure specification, and PASCAL is such an language
since it allows the user to define their own data types

and structures,

...........

Since AFIT applications programs
are developed in PASCAL, it made sense
the development language. In this way,

performance monitor would already have

for the TOTAL DBMS
to select PASCAL as
users of the DBMS

some familiarity

with the language if the monitor needed to be examined

and/or modified.

Situations did occur during the program development

V-5

-------------




A ARSI R B Flian Pl iy ol Pad S TIT—~ T WS

) stage where PASCAL could not be used because of

limitations in its capability to interact with the VAX ;;j
File System and System Services Library. Specifically, .4
problems occurred during the development of the

instrumentation utility. The details of the problems and
the alternate programming language used are presented in

the description of the instrumentation utility.

User Interface ]
The concept of iterative enhancement was applied to ::3

the user interface in the following way (ref. 53:54-55 and

4:121-127). The requirements analysis for a DBMS

performance monitor showed the monitor must be flexible -ff

enough to allow users to select the set of performance
parameters applicable to their "level of DBMS observation®
and performance monitoring objectives. Before this

capability can be developed, the ability to measure the

entire set of all possible performance parameters should
be demonstrated. Therefore, the initial development of the ii}
user interface only allows the user to select the option .
of measuring the enitre set of parameters. The ability to
select pre-defined or specialized subsets should be a

future expansion, Additionally, the data presentation

DS A R
e ,
A aiaa e o )

options were limited to printed reports. The ability to
display measurement reports on a terminal will also be a

4
future expansion. =




I E IO S'S ATl T W W T P, p—— — P — - Ty

Data Structures. The three main features of a

"user freindly" interface for the DBMS performance monitor

r

4 were: allowing the user to navigate through the control
paths of the interface, allowing the user to enter input

:f data, and informing the user of errors. These features

were provided through the use of menus, data entry
prompts, and error messages, and the PASCAL data type
statement was used to define descriptive names for the
individual menus, prompts, and messages. In this way, an
easy mechanism for specifying individual data objects to

the functions operating on the defined names was

A

developed, and the functions were easily implemented
through the use of case statements. An example of the type
definition for the menu names and the DISPLAYMENU

procedure is shown in Figure V-1,

Program Structure. The high level structure of the
user interface is shown in Figure V-2, The user interface
. was designed using a state diagram to determine the

control paths through the user interface. After this was

Ei completed, each state was evaluated for control path i
E; options, data entry requirements, and possible error 3
; processing/messages. Using the results of the evaluation, 1
;; the last design step was to develop a set of conventions
S for the menus, data entry prompts, and error messages. A

set of conventions is necessary because it assures the

.
e

PR L
LS PP N
P [ T Y
A . A . .
TP SPLD LY B S I I G OP B LV S W1

S V-7




: : TYPE
%I - MENUNAME = (MAIN,PARAMETERS,ANALYSIS,.....):

- PROCEDURE DISPLAYMENU(NAME : MENUNAME);
BEGIN
CASE NAME OF

MAIN: (* PASCAL CODE TO DISPLAY THE MAIN MENU %)

PARAMETERS: (*%* PASCA% CODE TO DISPLAY PARAMETERS
MENU *)

END (* END CASE ¥)
END; (* END PROCEDURE DISPLAYMENU ¥)

Figure V-1. Example of Data Type Definition

MAIN
PROGRAM

GETUSER EDITUSER CREATE
INPUT INPUT COMMAND SETS

TERMINAL
HANDLING
ROUTINES

Figure V=2. User Interface Structure




o VT

operation of the program remains consisent, thereby,
reducing the potential for human error (ref., 238:257 and
4y:112-114).

The state diagram evaluation showed two types
of data needed to be entered by the user, The first type
is static data which maintains a constant definition for
all executions of the DBMS performance monitor. Examples
of static data are pre-defined performance parameter
subsets, functions performed by the user interface, data
analysis options, etc.. Menus with descriptive titles were
used to enter static data, and the user makes the desired
selection by entering a single number. An example menu is
shown in Figure V-3, and the conventions established for

the menus are:

1. The menu title is always displayed in
double height characters, centered in lines 2 and 3 of the
display.

2. Menu selections are always numbers.

3. The first menu selection line always
starts on line 6, and the last possible menu selection
line is line 16,

4, The enter selection prompt is alwayé

displayed in line 18 in reverse video.

‘.
e
.
g

, .
. W

C %
PNV G ST 3

i LT etel
e
PR

. PRSI

P G LI L Y, G e




T

''''''''''''
Ll

e T — v ——— I At S Sn B Aes Stces Mt e Zheums e - Ste e S T

MAIN MENU
1..SPECIFY MEASUREMENT SESSION
2,..DELETE MEASUREMENT SESSION
3..SHOW STATUS OF MEASUREMENT SESSION
4,.,.EXIT PROGRAM

ENTER SELECTION >

Figure V-3, Example Menu

The second type of data is dynamic data, and
this type of data can vary for each execution of the DBMS
performance monitor. Examples of dynamic data are: the
start date, the stop date, the stop time, etc.. Full
prompting, with examples, was used for the entering of
dyanamic data. An example of a data entry prompt is shown
in Figure V-4, and the following conventions were

established for data entry prompts:

1. Information and/or examples relating
to data entry prompts always begin in line 12.
2. The user prompt line is always

displayed in reverse video.

V-10

ot

il PRI

CEDE SRR Jes e oyen o]

[ e e
R
. RN

...........................................................

........................................

..........................................

...........




ENTER STOP TIME FOR MONITOR SESSION
FORMAT IS HH:MM:SS, EXAMPLE 18:45:00
PRESS <RETURN> FOR DEFAULT STOP TIME OF 24:00:00

ENTER STOP TIME > < END-OF-INPUT-FIELD

Figure V-4, Example Data Entry Prompt

ol
#r‘ 3. The length of the data entry field is

shown,

In addition to allowing the user to enter data,
the data was always edited as fully as possible to detect
and correct errors at the earliest possible time. This
capability required the display of error messages when
errors were detected. Error messages are always as
informational as possible, and to help to user to
recognize the mistake, the original entry is not erased.

The cursor is re-positioned to the beginning of the data

entry field, and the user is allowed to type over the
previous entry. The following convention was established

for the display of error messages:

Error messages are always displayed in
lines 23 and 24 of the display in double height

characters,

E
Y
o
"9
Y
Y
=
1
b

V-11

-,“‘
B e e e o 4N A et an

. .- . P P S S T LI T B A A S L U S RN I R T N R S SR S SRS P G NP .
-":'("f.'-::-';-'.:-‘:n'.' A I A T R S e e e e T N e T T T T T T




A special set of terminal handling routines

were developed for the user interface to help make it as
"user friendly" as possible. These routines performed
functions such as: positioning the cursor to a specified

row and column number, erasing parts of or the entire

! display, drawing boxes around items, displaying items in

; reverse video, etc.. The capabilities provided by these

Fﬂ routines enhanced the appearance of the screen formats and
:u provided a more pleasing environment than scrolling. These
A routines were established and maintained in a separate

g; external library. This allows the user interface to be

: re-hosted on a different type of terminal by simply

modifying the external terminal routines. The user

interface program remains independent of the terminal
type.

After a measurement session is completely
specified, the data entered by the user is always
displayed for review. If changes need to be made,

individual data items can be selected for modification.

All modifications are fully prompted in addition to
displaying the current value, After all the modifications

have been made, the data is re-displayed. If the data is

o Caee e

correct, the command sets for controlling the DBMS
performance monitor are created; otherwise, the user can =

continue to review and modify the data., Additionally, the gﬁ:

“.
o)

data is written to a session log file for use by other

vte'e
(3]

W
LIS

V=12




xRN vvr" LR e
RSN AT A
o + . PN

PR R

-rv‘vv

D gt
DR o
RN P st

BRI i s e e e T —— ———— T Wy

.......

programs. The information recorded in the log record is

shown in Table V=1,

Testing and Results. The user interface was tested
in accordance with the test plan developed during the
system design stage (ref. III-10 and Appendix D). For
those features that have been implemented, the user
interface program has successfully passed all tests
conducted during the unit, integration, and validation

testing steps. No design modifications were required.

Instrumentation Utility

The instrumentation utility is the mechanism used to
obtain detailed performance information at the DML
statement level of a DBMS. Ideally, this utility should be
designed as a module of the DBMS, allowing individual
users to enable or disable its operation. However, the
TOTAL DBMS does not have this utility designed within it,
and it must be provided in some other way. Two approaches
to developing the instrumentation utility were considered.
The first approach involved modifying the TOTAL DBMS to
include this utility, but as stated in the system analysis
chapter, this approach entails a high deal of risk. It
could potentially introduce errors into the DBMS, and it
makes it difficult to maintain DBMS updates. Additionally,

this approach requires an intimate knowledge of the

V=13

.

N
. oo
mad _talatae a #

B

o A et ale mam o A

.............
......




B e e e Sen S S A e e B e e meane s a s e e —— -v-?

Table V=1
Measurement Sessjon Log Information J
Name of the Measurement Session ]
Start Date X
Start Time -
Stop Date .}
Stop Time i

ey

Data Analysis Options

Data Presentation Options

Performance Parameter Set

Data Collection interval for the VAX/VMS }
Monitor Utility |

Status of the Measurement Session

P

software modules comprising the TOTAL DBMS, and this

information was not available,

The second approach, the one used in this study, is
to provide users with an instrumentation utility that can
be incorporated into applications programs. The VAX 11/780
System Services Library provided the necessary system
routines for accessing performance data maintained by the

operating system tables (ref. 18:124-132), and a set of

external procedures (subroutines) were developed to allow 4
easy access to the capabilities provided by the system f}
services library. j
Three external procedures were defined as the ‘I
interface to the instrumentation utility. To instrument a
DBMS applications program, a user defines the three
external procedures in the PASCAL applications program,
and calls to the procedures are included in the
applications program to allow performance parameter values - 4

v-14

.
D
PRV

‘s,

N
S S S

..............




e oo o

.

..
PN

...........

T B et A S e e e -a Bar s A e ST a-Sgs Sesh Beas Mee e i, ——— >

to be measured and accumulated. The names of the three
procedures and the functions they perform are described
below, and Figure V=5 illustrates how the instrumentation

utilitity is incorporated into an applications program.

1. INITUTILITY - This procedure initializes
the instrumentation utility and creates a data file for
accumulating performance parameter values, This procedure
is typically called once before the data base signon
request is sent to the TOTAL DBMS, and the other two
procedures are called orn a DML by DML statement basis.
However, the capability exists to call this procedure more
than once, thereby, creating more than one data file. This
capability gives the user the flexibility to tailor the
contents of the data file for use in specially designed
performance tests., Two parameters, the program and data
base names, are inputs to this procedure, and a completion
status is the output from the procedure., The two input
parameters are PASCAL string types, and they can be
represented either as a literal or variable name. Since
the status is supplied by the external procedures, a
variable name must be specified for the output parameter,

2. MEASUREDBMS -~ This procedure records the
state of the DBMS just prior to the execution of a DML
statement (or group of DML statements), and a call to this

procedure should immediately precede a DML statement. In

V-15

e d
.-~ .4
SRR
“.-:'.«‘:1
]
.:‘. _‘.
2. _:\
< Tma
LN
»
- 4
o
- -
;
-
"
_—
]
e
L I
AR
b 1
e
el g
]
g
R
RSN
]
R
]
i
-
Coeld
- ‘!
o
-_': ':1
-.'.< 'q
L

...............



DR et S SRS S A

PROGRAM COURSEDATA(INPUT,OUTFUT);

TYPE -
BUFF4 = PACKED ARRAY [1..4] OF CHAR; -
BUFF5 = PACKED ARRAY [1..5] OF CHAR;

BUFF6 = PACKED ARRAY [1..6] OF CHAR;

BUFF15 = PACKED ARRAY [1..15] OF CHAR;

PROCEDURE INITUTILITY(%STDESCR PROGRAMNAME : BUFF15;
- %STDESCR DATABASENAME : BUFF6;
& %STDESCR STATUS : BUFF4);

EXTERN;
E: PROCEDURE MEASUREDBMS(%STDESCR DBMSFUNCTION : BUFFS5;
i %STDESCR DBMSFILENAME : BUFF4;
[ 4STDESCR STATUS : BUFF4);

L}
‘. )
P PRV I N SN B

| EXTERN;

_ PROCEDURE ENDMEASURE(%STDESCR ENDCODE : BUFF6; -

: 4STDESCR STATUS : BUFF4); :
EXTERN; o

. -
PROCEDURE GETCOURSEDATA; .

(. PROCEDURE DATBAS(Call Parameters...); EXTERN; —
BEGIN 33?

COMMAND := 'READM'; 5;2

FNAME := 'CRSE'; =4

ME ASUREDBMS ( COMMAND , FNAME , STATCODE) ;
DATBAS(Parameters comprising a DML statement);
ENDMEASURE( *ENDDML' ,STATCODE);
END; (* END PROCEDURE GETCOURSEDATA #) 7
BEGIN (* BEGIN MAIN PROGRAM %)
INITUTILITY('UPDATECOURSES ','AFITDB',STATCODE);
GETCOURSEDATA;

A END.

_-J
Figure V-5, Using the Instrumentation Utility N

V=16 L




the case of the TOTAL DBMS, a call to this procedure ;
i;} immediately precedes a call to the DATBAS subroutine. Two ';;j
parameters, the name of the DBMS function (DML command)
and the name of the data base file, are inputs to this Z;§ﬂ

procedure, and a completion status is the output from the ?Jil

procedure, The two input parameters are PASCAL string
types, and they can be represented either as a literal or

variable name, Since the status is supplied by the

3 L ERTERTAE

external procedures, a variable name must be specified for

it e .
LIPSy Ty Ry .

the output parameter.

3. ENDMEASURE = This procedure records the
state of the DBMS just after the execution of a DML

statement (or group of DML statements), and a call to this

as procedure should immediately follow a DML statement. In

- the case of the TOTAL DBMS, a call to this procedure
should immediately follow a call to the DATBAS subroutine.
One parameter, the endcode, is the input to this

procedure, and a completion status is the output from the

procedure, The input parameter is a PASCAL string type, ?:

and it can be represented either as a literal or a :Q
variable name. Since the status is supplied by the o
external procedures, a variable name must be specified for I?Eﬁ
the output parameter. Only two values are defined for the ;*1
endcode. The first value is 'ENDDML' and this code denotes :ﬁ}}
the end of a DML or group of DML statements, allowing {;EE
additional calls to be made to the instrumentation ;“f
o
N

e e e e oA e e A A A e Attt ke e e A ch et i
E-Ax.‘f o g g e p e S » et e y A R LS ST

..............




C gy

utility. The second value is 'ENDPRG', and this code

denctes the end of a measurement session, It causes the
data file to be closed, and the instrumentation utility is
disabled., Therefore, the procedure INITUTILITY must be

called to re-enable it.

Two status codes are returned by the procedures. A
successful completion is indicated by the value '#¥##r
and this is consistent with the successful completion code
of the TOTAL DBMS (ref, 8:2-23). An error condition is
indicated by the value 'EROR', and this value was selected
because it is a four character code with a close
resemblance to the word error., In addition to returning
the error condition, the instrumentation utility is
disabled. Therefore, additional calls to procedures
MEASUREDBMS and ENDMEASURE will have no effect until the
instrumentation utility is re-initialized by calling the

procedure INITUTILITY.

Data Structures. One special data structure was
required by the instrumentation utility, and this -

structure was a requirement of the SYS$GETJPI »nrocedure in
the VAX System Services Library (ref, 18:124-126). This

data structure is a list of item descriptors for the

A e

performance parameter values retreived from the operating

..
o
r
R PR
b el

.

.
B

V-18

ot

..............................................................................
...................................
.......




| A b A e Racheec 5 ——— — T——— — Laaanae 2 4 MM e s e e SR Y e -

. - EERE - - - . . - . P R

system tables. The format of an element of this data
structure is illustrated in Figure V=6,
t To record the measured values of the
performance parameters, a data record was created and
written to a file. The corntents of this record are shown

in Table V=2,

Program Structure. The high level structure of the
instrumentation utility is shown in Figure V-7. This
diagram shows the three entry points into the
instrumentation utility. This represents the external call
structure from an applications program to the three

procedures making up the instrumentation utility.

l-!

Testing and Results. The development of this
program was initially attempted in PASCAL, Small modules
were successfully developed and individually tested, but -;n
these modules could not be successfully integrated into an
instrumentation utility and still remain easy to use. The ;gfi

major problems were:

1« An external PASCAL module cannot perform

file operations without the file being duplicately and
exactly defined in the calling program.

2. The itemlist descriptor elements could not l}?ﬂ

be reliably allocated. Occasionally, the System Service

|-
.l . .
AN

Py
B
L

e
2’2 28

V=19

......... PRSI S S . % . P L L R S I . D I ] Y T -,
I T U LIS ORI U TR RN I e T T e e e T SRR R R ARSI
O PRSI N I ey o e e N A O E T I I TP T P A i ) - . E R R A . S P L P N LRI T

e o e TR T LN VU SERERREEV Y PEPRVE- WY WEEEE RS Y SREEA ST S S G NS WU ET P TV VRTS




e aa

J R s D SV SUmnt s Jaetn Mes Snan s sven BBV Jaas Juam Beas aiee Bvam aven

ERRRERERBERBERRAE AR RRRRERR XXX ERRRXRARRERERNRX

* length * item code *
REBRERRRRRERERRRERRRRRRRTR RN RN AR RN NN RN NN

b address of buffer to receive data *
ERRRERRRRRERRERERRENR R ERRRRRERERRERERRERNRE NN

# address of buffer to receive data length #
BARERR RN RN RN F RN R R RN R AR RN AR R RN ARRRRRERRED

Figure V-6, Item List Descriptor

Table V-2,

Measurement Data Record

Relative Record Number
Completion Code

Program Name

Data Base Name

Data Base File Name

Data Base Function

Before Call Date/Time

Before Call CPU Time

Before Call Buffered I/0 Count
Before Call Direct I/0 Count
Before Call Page Fault Count
Before Call Working Set Size
After Call Date/Time

After Call CPU Time

After Call Buffered I/0 Count
After Call Direct I/0 Count
After Call Page Fault Count
After Call Working Set Size

V-20

..................................................
..............................

.....

...............

------- .:‘\ ;‘




SV LT—r, - o Ak S ne B S 24 RACEMINE A A tb S e -

L | )

INITUTILITY MEASUREDBMS ENDMEASURE 1

INITIALIZE GETDBMSPERFDATA WRITEPERFDATA
N\ N\

ERRORHANDLER

Figure V-T. Instrumentation Utility Structure

6 Library would return alignment errors meaning it expected

the storage location to begin on a longword boundary which

e

it did not.

G et
A R

——y
v oy
.

p 3. Pointers were used to allocate the address
values required in the definition of each item list

descriptor element. However, the amount of new storage

that can be allocated by the NEW() function is limited in

external PASCAL modules.

In an attempt to solve these problems, a ‘ﬂ
different approach was tried. Instead of the
instrumentation utility being a library of subroutines, it ;g

was implemented as a stand-alone program. However, this

vV-21

IR
I . o




meant the interface between applications programs and the

instrumentaticn utility could no longer be simple
subroutine calls. The new interface required the
capability for two independent processes to communicate,
and the VAX Mail Utility was used to provide this service.
Using the Mail Utility, the new interface consisted of
Mail messages transmitted between the two processes.
Initially, this approach seemed to be a viable solution;
however, two-way communications proved to be unreliable.
The main problem occurred when two or more applications
programs attempted to access the instrumentation utility
simultaneously. PASCAL treats the mailbox messages as
records read from a sequential file (ref. 19:6~6), and as
soon as one of the programs finished using the
instrumentation utility and closed the mailbox file, all
remaining programs also lost their communications
capability through the mailbox.

At this point it was decided to change the
development language to MACRO-11 assembly. This language
allows the most flexibility and capability to access the
VAX File System and System Services Library. Therefore,
the problems encountered using PASCAL were solved by using
the assembly language capabilites, and this allowed the
simple interface mechanism of calls to external procedures
(ref. Figure V-5) to become feasible again. The MACRO-11

procedures are operational, and they have successfully

V=22

.................................

)
siamn e St

............
...........




TR DR lrl!I‘_I'I‘I',llll 'Il v I. '. W——— ‘-—r'—v, " O o o =y

completed unit, integration, and validation testing. These
L] - procedures are successfully accessing the system tables

and returning the required performance data,

‘lata a

Data Analysis Program

This program analyzes (reduces) the data collected

e Te T
L i
AL AL DL

by the instrumentation utility. Before this program is
executed, individual data files produced by the
instrumentation utility are merged into one large file
using the COPY command of the VMS operating system,
Records from this file are individually retreived and
processed to compute performance parameter values for

applications programs and the DML statements used in the

programs. ;J

Data Structures. To compute total and average values
for the performance parameters, a data structure is needed

to accumulate the individual values read from the raw data

file. Tables (arrays) were chosen as the data structures
used to accumulate the values, and a hashing function was ‘ n
chosen as the method used to access specific loactions in
the table. The hash value for a table key is computed by
summing the integer value of each character in the key,
dividing by the table size, and using the remainder as the
hash value. To handle collisions, the technique of linear

probing was used (ref. 1:126 and 30:464),

V=23

Y




; A simple linear (sequential) search could have

teen used to access specific table locations (ref.
30:335-336); however, the data analysis program needs to
maintain more than one table, Specifically, separate
tables for the DML commands, data base names, and data
base file names are used. Since a linear search algorithm
has an average performance of searching half of the table
' for each access, the computing time of the search
algorithm can become significant as the size of the table

increases (ref. 20:336). The computing time of hashing

K techniques is typically better than linear search
techniques (ref, 30:469); however, the computing time of a

hashing function can approach the computing time of a

L EEEE

h 'Y linear search if careful attention is not paid to the
loading density of the table (ref, 30:469).
To compare the two techniques, Table V-3 shows

i the average number of searches required to search a table

with 30 entries. This example assumes the table has a

loading density of .8 (e.g. 24 locations in the table

contain vaild data and the other six locations are empty).
If three tables are used to accumulate values and each
table is accessed once for each record read from the raw
data file, linear searching requires an average of 46.5
searches while the hashing technique requires an average

of only nine searches, a 500 percent improvement,

V=214 -

.........
.....................
.....................

PUPREIPAIAT I T Wi Sy T 1) W W W




pprT——"y

Table V=3

Average Number of Searches

Average Number of Average Number
Algorithm Searches Formula of Searches

Linear Search (n + 1)/2 15.5
Hashing (with HS(1 + (1/1 = 1d)) 3.0
linear probing)

n = 30

ld = loading density = .8 (24/30)

Formulas obtained from ref. 30:336,470

To implement the hashing technique, five

routines were developed, and each of them are briefly

described:

1. HASH - Computes the hash value of the

key used to access the table.

2. NEXTPROBE - Computes the next probe
point into the table when a collision occurs.

3. INITABLE - Initializes all the hash
table locations to empty.

4, INSERT - Inserts items into the hash

table,

5. LOOKUP - Finds the location of an item

within the hash table.

V=25

................
...............

........
2" a3

.......... : L I S S
I WK L AP SO S el S

e e

o« '-'.‘I.Q
RN NGRS o




Before the data analysis program is executed,

the individual data files generated by the instrumentation
utility are merged into one file, Typically, the data in
the merged file is composed of data from many different

programs; however, the data from individual programs is

not intermixed within the file. Data from one program
appears as a series of sequential data records. Therefore,
%ﬁi the data from each program can be processed serially until
ff. data from a new program or end-of-file is encountered. The
. last record of each data file generated by the

k. instrumentation utility should contain a last record
indicator in the relative record number field of the file,

However, situations could occur where the indicator is not

generated because the users program did not terminate

I.l

correctly due to programming logic errors, system
failures, DBMS errors, etc.. Therefore, a control
mechanism was needed to keep the data analysis program as
robust as possible while reading the data file, thereby,
preventing data from two separate programs from being
accidently merged. The control mechanism was provided by a
simple integer flag used to control the reading of records

from the raw data file,

Program Structure. The high level structure of the

data analysis program is shown in Figure V-8,

V-26

.........................

" I L S I TR B A BN . e et e e e e e e e e e
‘Y . ) . B T T T T T T Y N i N I R
DO LR PR RN I N PRI NI jA_““ shnabadenetensieiodicedseds PN AN PP R PN L...A‘LAA-A_A




................................................

V=27

................................

.......
.......

r‘ MR ‘ - it I POy T "“
o
MAIN ®
PROGRAM o
° .
GET RAW DATA WRITE SUMMARY COMPUTE
DATA STATISTICS '
- B |
®
HASH .
TABLE ®
ROUTINES S
Figure V-8. Data Analysis Program Structure »

- Testing and Results. This program is operational; ff?
however, its data analysis capabilities are limited to é;Q
only accumulating totals and computing average values for 1'15
the DML commands. It has successfully completed unit, f%
integration, and validation testing. A sample of the . }
output generated by this program is shown in Figure V-9, ?! ]

This program consolidates the summary files produced RR

by the VAX utilities and the data analysis programs. The 1]
generalized formats of the VAX summary files are not well "\J
=




e e e ARG AR e s o "

L & gy > . v
. - > cooen R

-'~‘
2
E
N
N . PROGRAN NAME: SECTION-MAME
DHL STATEMENT SUMMARY
RETRIEVAL COMMANDS
COMMAND TrPE EXECUTION RESPONSE (2] BUFFERED DIRECT PAGE WORKING
NAME INFORMATION COUNT TIME( secs) TINE(m3ec) 1/0 1/0 FAULTS SET
RDNXT total 10 15.160 5860 1022 306 18 100
average a.030 1.5 2.0 0.6 0.0 100.0
READM totsl n 2.010 520 1 It 2 100
average 0.05% 181 2.0 1.0 0.1 100.0
READY toteal "2 22.920 11510 2384 110 8 100
average 0.020 9.8 2.0 0.4 0.0 100.0
-sum- total 1720 %0.090 17910 RLLD 53 28 100
average 0.023 10.0 2.0 0 0.0 100.0
STORAGE COMMARDS
NO STONAGE COMMANDS EXECUTED
CONTROL COMMANDS
COMMAND TYPE EXECUTION RESPONSE [44] BUFFERED DINECT PAGE WORKING
NAME INFORNATION COUNT TINEC3ecs} TINE(msec) 1/0 1/0 FAULTS SET
SINON total 2 3.060 1580 1 28 2116 100
average 1.530 710.0 16.5 .o 1658.0 160.0
. SINOF totsl 2 3.330 980 18 28 1361 100
; average 1.665 N70.0 9.0 18,0 680.5 100.0
-sum- total . 6.390 24680 51 56 bLA4 100
average 1.597 620.0 12.8 18,0 869.3 100.0
. SPECIAL PURPOSE COMMANDS
4
L NO SPECIAL PURPOSE COMMANDS EXECUTED
INVALID CONMANDS
NO INVALID COMMANDS EXECUTED
SUMMARY OF ALL COMMANDS
CONMAND TYPE EXECUTION REIPONSE cru SUFFERED OIRECT PACE WORKING
NANE INFORMATION count TIME(3ecs) TIME(msec) /0 1/0 FAULTS SET
-sum- total 1728 a6 .800 20390 N 509 3505 100
average 0.027 11.8 2.0 0.3 2.0 100.0

Figure V-9. Sample Output from Data Analysis Program

related to all aspects of DBMS performance. For example,
the summary files generated by the Accounting Utility do
not directly relate resource consumption by the TOTAL DBMS
to resource consumption by all other programs (ref.
21:Chapter 1). This type of information is necessary to

determine relationships such as: the percentage of CPU

v-28




time used by the DBMS, the percentage of page faults
attributable to the DBMS, the percentage of I/0 activity

attributable to the DBMS, etc.. Therefore, this program 4

reads the individuwal VAX summary files and extracts the

.
Lo
Py

necessary values for DBMS performance parameters. After
the values have been extracted, a performance measurement

report is created in a format relating the extracted

performance paramefer values to the different aspects of

computer system and DBMS performance.

PR

Testing apnd Results. Due to time limitations and ;

problems with developing the instrumentation utility,

program implementation was not initiated,

Summary

This chapter presented the development of the four

PPN 1 PRV DU Y NN

programs required by the implementation plan of Chapter 4.
The high level structure of each program was presented in
addition to any special data structures used by the

program. The testing results of each program were

PR
PR

efat

P ALY

presented, and the only major problem occurred in the

development of the instrumentation utility. This problem

was attributable to programming language incompatibilty,

and its effect was to delay the schedule such that the

O R

ooy O
IV B0 It N A AU SRR

measurement report pi .ram was not developed.

The next chapter presents the results of testing the

V-29 o

<

-.‘
s

AR PRSI T e e LT e e e e e e, L A oo
L - o A




LR SN e ————— PP —

DBMS performance monitor as a complete system,

Additionally, the results of using the monitor to measure

a VAX 11/780 computer and TOTAL DBMS are presented.

e e’
. .
PO Ny W)

V=30

.7 .
al e

P
s % % e S N
et

WOt e L e
T A R P A SN




r N T T P = ———r— —————

VI. Results, Conclusions, and Recommendatiops

Intr ction

This chapter presents the results of testing the
DBMS performance monitor as an operational system and the
results of using the monitor to measure the TOTAL DBMS
operating on a VAX 11/780 computer. Additionally, the
conclusions and recommendations derived from the results

of this study are presented.

System Testing .
With the exception of the measurement report
program, the DBMS performance monitor is operational and

capable of measuring DBMS performance in a VAX 11/780
environment. No problems were discovered with the
generalized design presented in Chapter 3, and during the
development and testing process, the only significant we
problem was the incompatibility of the PASCAL language for
use in developing the instrumentation utility.

The lack of a measurement report program for
consolidating the summary reports generated by the
individual performance tools is a drawback. It makes the
interpretation of the output cumbersome because it has to
be manually interpreted. However, all the necessary {f

information is available.

VI-1 o

‘e - - » - - . - - - R R L Y S ST S SR S S DT Y - - - - L TR B R R D U R N Y

g . - . - -.. ................... . L) » - " et a ", LY - - - - - - . . - «-% e e ey s
R e St S ST S ORI R e A A A e A e e e e R T SRR IR AR RN
R O ROATH ) . . BN . .

BT . . . LR
P AL IR IS PSS P S P SIS PR AR S L A P LU AR LIS PRI




Using the DBMS Performance Monitor

This section describes the operational environment
of the VAX 11/780 computer and the TOTAL DBMS. Since most
of the work in this study was dedicated to developing the
monitor, only a limited amount of measurements were taken.
These measurements provide a general idea of DBMS
performance; however, more measurements need to be taken
with the instrumentation utility to obtain a better
understanding of DBMS performance at the DML statement

level. For example, the following types of performance

tests need to be conducted: test the effects of increasing
the number of simultaneous users, test the effects of
increasing the data base size, test the effects of
changing data base generation parameters, test the effects

of file linkpaths, etec..

VAX 11/780 Operational Environmept. The DBMS
performance monitor was used on the VAX 11/780 computer
described in Chapter 4. Under the current configuration
(ref., Figure IV-1), disk drive 0 is dedicated to the VMS
operating system, and disk drive 1 is available for user
disk volumes. Since the storage space on a disk volume is
limited to 28 megabytes, enough space is not available on
a single volume to satisfy the requirements of all users.
Specifically, the TOTAL DBMS resides on a disk volume

different from the normal user disk volume,

VIi-2

.....................

, ...~..
S et et
A g g’ ot gt o

daoa a4t




The workload for this computer is primarily i. }

generated by student research; however, it does perform a

limited amount of production work for the school
administration. On any given day, the wor' »ad for this

computer varies greatly, and it is hypothesized that the

workload is non-stationary. However, no statistical tools

were easily available to verify this hypothesis.

DBMS Operatjonal Environment. Currently, the TOTAL
DBMS is being used for two purposes. The first purpose is

to maintain a production data base for use by the EE

Department, and the second purpose is to maintain a

development environment for students in the Computer Data

Base Systems course. Because of the problems with limited
mass-storage space, the TOTAL DBMS is never simultaneously
used to support both purposes. Therefore, the TOTAL DBMS
is used in two different modes, The first mode is a
stand-alone mode for production work, and the second mode
is a multi-user mode for development work on student data
base projects.

This environment created a situation where the

system had little activity during the measurement L
sessions. Typically, the system activity was limited to

the TOTAL DBMS, a single DBMS applications program, and S
one or two interactive terminals performing program i":
development tasks such as: text editing, compiling, and ]
N
VI-3 T
S
NS
‘1
)
e I N e N e e e N I O




SH A v e R T e T T e L, e R pe— e - - T T - - T

test executions. Under these conditions, the VAX computer
showed less than 50 percent CPU utilization where the
utilization was evenly divided between the VMS operating
system and the users. Also, over half of the available

main memory was not being used. Therefore, the measurement

> DA Gl i v
B . '
PR M AR c

results presented in the next section must be weighed

against the relative inactivity of the system during the

Lo aan o o

period of time it was being measured.

Monjtor Operatjon. The details of using the DBMS
Performance Monitor are not presented in this chapter;
however, a complete Users Manual is contained in

Appendix G.

Measurement Results

This section presents the results of using the DBMS
performance monitor, and these results fall into two
categories. The first category is a high level view of
DBMS performance, and the second category is a detailed

view of DBMS performance at the DML statement level.

High Level View. The measurement results presented

for this level were primarily obtained by the VAX Monitor ;ﬂ
and Accounting Utilities, and these measurements are ‘1
presented by specific resource. ﬂﬁ
5

VI-y




M I S G S S L e S e R e e Ao g e e e o e

CPU - Approximately 10 to 15 percent of
the available CPU time was consumed by the TOTAL DBMS.

Memory - Because of the large amount of
free memory space, less than 6 percent of the page faults

generated by the TOTAL DBMS required actual disk reads.

The remainder of the page faults were serviced by

Lo a0

accessing the free or modified page lists.
I/0 - The number of direct I/0s the TOTAL
F DBMS issues to the disk is dependent upon the logic of the
{ DBMS applications program; however, the TOTAL DBMS was
k:" consistently the largest user of the disk resources. In
some cases it accounted for almost 45 percent of the total
number of direct I/0Os issued by all jobs executed during
-2 the measurement session, However, this did not present a
performance bottleneck since the utilization of the I/O

subsystem was calculated to be less the 5 percent,

From these measurements, it was concluded the
TOTAL DBMS is currently enjoying a performance advantage
due to the abundance of main memory and relative
inactivity of the VAX computer. Response times remain fast
as there is little competition for the processor and I/0

subsystem,

Detajled View. The instrumentation utility was used

to conduct three performance tests at the DML st-tement -

VI-5 i
R
o d

.......................................

...........
-----------




e e, a
VTt .

......................

level., For each of the tests, the TOTAL DBMS was being
accessed by a single user and only one data base was being
accessed., The data base consisted of five master files and
two variable files where multiple linkpaths exist between
master and variable files,

The three performance tests are described in

detail below:

Test One. The goal of this test was to provide
a general idea of DBMS performance., Table VI-1 shows the
results of this test, and the values in the table are
grouped by the four general categories of DML statements.
However, not all of the possible DML commands were
measured, The measurements presented in Table VI-1 were
made using three retrieval commands (RDNXT, READM, and
READV), three storage commands (ADD-M, ADDVB, and DELVD),
and two control commands (SIGNON and SIGNOF). No special
purpose commands were measured.

The values in the table are average
values; however, they should not be considered typical
values for all applications. These values will vary based
on: data base generation parameters, data base size,
number of files within the data base, linkages between the
data base files, the number of simultaneous users of TOTAL
(and the VAX 11/780), the VAX 11/780 configuration, and

the VAX 11/780 parameters assigned to the account

VI-6

..........................

..................................

..............................................
..................................

o e .-

POV Y ST I

2 et e .
P AP SR AP WO R SN

.............

........
.........




—— r‘ T
T PRMIRIN

'''''''''''''''''

Table VI-1
Performance Results at the DML Statement Level

RESP CPU DIRECT BUFFERED PAGE

COMMAND TIME TIME I/0 I/0 FAULT
CATEGORY (sec) (msec) COUNT COUNT COUNT
RETREIVAL .024 10 1 2 0.0
STORAGE .070 17 2 2 0.0
CONTROL 1.403 230 14 13 8.0
SPECIAL {Not Measured>

executing the TOTAL DBMS (e.g. working set quota,
priority, etc.). Even though these values can not be
considered typical, they do provide some insight into DBMS
performance. Specifically, the control category of DML
commands have performance values an order of magnitude
greater than the other two categories, retrieval commands
have the best performance values, and the overall response
time is composed of approximately one-third CPU time and

two=thirds I/0 and other wait times.

Test Two. The goal of this test was to
determine the relationship of available main memory and
working set size to DBMS performance. For this test, a
DBMS applications program using a standardized set of DML
commands was executed against various memory
configurations. The set of DML commands consisted of 1,720

retrieval commands (511 RDNXT; 37 READM; and 1,172 READV)

VI-T

.......




and four control commands (2 SIGNON and 2 SIGNOF). The
ii results of this test are contained in Table VI-2, and the

following conclusions were drawn from this test:

1. DBMS performance begins to stabilize

at a working set size of 80 pages. Additional increases in

working set size had little effect on performance except
for control commands. The control commands generate a
large number of page faults and require more CPU time,
However, the control commands are executed very
infrequently in a TOTAL DBMS applications program. Hence,
increasing working set size above the stabilization point
for the commonly used DML ccmmands would not be cost

effective., Based on this, a working set size of 80 pages

»)

is all this is required to obtain satisfactory
performance; anything above this value will add little to
DBMS performance!

2. A working set size less than 80 pages
is not recommended. The response time values shown in
Table VI-2 for working set size less than 80 pages are
artificially fast at main memory sizes of .5 and .75
megabytes because there was little other activity on the
measured system. At a main memory size of .5 megabytes and
working set size of 50, a total of 92,705 page faults we.e
generated, but only 400 of these required page reads from

the disk. All other page faults were serviced by the free

VIi-8

................




AD-A149 950 DEVELDPHENT OF A _DATA BRSE MANAGEMENT SYSTEM 3/3
PERFORMANCE HDNITDR YOLUME 1¢(U> AIR FORCE INST DF TECH
WRIGHT-PATTERSON AFB OH CHOOL OF ENGI. P

UNCLASSIFIED DEC 83 AFIT/GCS/EE/83D-2-YOL-1

END
sumen
onic




" N R S Saait-ShdE It i
- s 4 d Tadl S A TS AT Ar i Ao anil N - AR i - i i R A A SUCRG R S S
U (A ARG SRR ERIE M VI R S

2.8 m R

(-]

g
”N
N

0

reEEEEEE

"EEEE
=

2.

o

-—

.

(=]
o

s s pes

2

ey

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

s DL

Ve o g0 v ¢ 1

" e ’.- A
- .-“.... _‘ ..I‘A.‘ ." .'l ...




R

e s

Pl

RS are A

ST

)

TSI 7155 FUTHIOR PUE XIOWSH UTEH JO §ITnssy

¢-IA 31qel

seged Jo Jaqunu ufp payjroads st 2zIg 33§ BULHJION aw

. sojAqe8ay uy parJioads ST 921§ AJOWdN Uuley mm

3 8°198 L09 TIM T043u0) o6

09 how‘€ 0°0 ol £20° TeA27433Y 00} GL° X
I

. g°S€0* 1 569 o€l 2 1043u0) o

gol G2E‘n 0°0 oL €20° TeAatTa39Y 06 GL® 3
o

. £°850°1 t47) Gel e 1o43u0) "

g2L EEE'w 1°0 ol €20° TeAaT433Y 08 L gy
"

. £°991°1 2Ll Sh6° L 10.43u0) e

19 2LL'ot L9 £l L2o° TeAaT393Y oL GlL° o
’

% N

8 6HEL Log gli°2 ToJ43u0) %

69 0LL°69 heLe T 8€0° TeAatagay 09 GL° o v
by

[ ] u—-

2°6599°1 2L6 Les e 1043U0) H oy

2ie 6LE‘26 g°6h (11 ShO* TeAsa7433Y 0S SlL* s
.-\-

. 0°699°L LS01 LG6° & 1043u0) e

00k G0L‘26 0°06 62 9%0° TeAaTJI39Y 0S G* ¥
sav3ay  siinvd si1nvd (soosw) (so9s) | XYODIALVI 3Z1IS 3ZIS %
1nvd 39vd 39Vd NIl INIL ANVHHOD 13S  XYOHW3IW )
49vd wviol HIGHAN ndJ  ISNOJSIY THA  DNINHOM NIVH 2
Id

SANVHWOD 111V ¥0d ANVHHOD ¥
sTvlol 11nvd 39vd TNA Y34 SIDVUIAV <
v

\l

.I-.

-‘:-¢'

\I

A

—....--.-.- . e 0,7,

] (N I
!I'... .

CN f'~f\‘f\f.'l‘..f-.-"."




PR

s ...,-- -f -no -.4 N q..... ’
1 LY

: %
: Y
» 75
: o
H.....,
2
0'8g 052 86E° 1 1043u0) g
L 992 0°0 ot €20° TeAatJyay 002 G2 g
~|-1“
g . €698 029 L6G° 1 1043u0) ]
3 L G0S‘€ 0°0 ol €20° Teaarugay 001 G*e %
-- \l-
3 . 8°680°1 oLl 589° 1 1043u0) “
. Wi SLg‘n 0°0 ol £20° TeAdT439Y 06 §°2 ww
5 RIA oL 569° I 104309 g
- Wi L90‘s 0°0 ol €20° TeAdTJI3Y 08 52 Py
-
g G G811 2hl oLLL 1043u0) *]
5 i nge‘lLl 6°9 €l 8eco0° TeAaTI39Y oL S°e ]
g 0°952°1 €8 G6L° 1 1043u0) o %
g hl go€‘ol 2T Le 92 oho* TeAaTJ}3Y 09 G2 - iy
_ . A
3 0°599°1 056 2Lg° 1 1043u0) = iy
3 Wl ign‘e6 6°6h 0t Sho® TeAaTJ33Y 06 6*e 4
& o~
¥ € 2n 262 S9h° L 1043u0) o
& 62 2Ll 0°'0 ol €20 TeA3TII3Y 002 sL* ]
-,.. ..-._
3 savay  siL1nvd s11nvd (soosu) (s098) | X409ALVD CA ¢ 3ZIS X
3 11nvd 39Vd 39vd ANIL INIL|  QGNVHHOD 13S  XKYOW3HW "3
X 39vd  Iviol HIGHON Nd3  ISNOJSI¥ THA  ONINYOM NIVH %
x o
: SANVHHOD TV 404 ANVHHOD -
- STV10L L1nVd 39Vd TG 43d SIADVYIAV "4
P,
P,
“.“. T3] 33T JUTHIOR PuUe KIOWSH UTEW JO §ITNSIY
& (PanuTju0)) 2-IA 2Tqel

SE ¥




........

or modified page lists. However, as the number of

simultaneous VAX users increases, the number of TOTAL DBMS
pages resident in the free or modified page lists will
decrease, and the number of page faults requiring disk
reads will increase - causing response times to increase.
This is illustrated in Table VI-2 with memory
configurations of .75 megabytes and working set sizes of
80 and 90 pages. The higher number of page fault reads
increased the response time of the control commands by
approximately .75 seconds even though the actual number of
page faults decreased. (Note: All the performance
parameter values shown in Table VI-2 were obtained through
the instrumentation utility except for the number of page

5 fault reads. The SYS$GETJPI System Services Routine is not

B currently able to monitor the number of page faults reads;
however, this data can be obtained from the summary files
produced by the accounting utility (ref. 21:Chapter 21 and
Table E-2).

3. As working set and main memory size
increased, the number of page faults requiring page reads
from disk approached zero and stabilized. This
relationship is attributable to the page management
characteristics of the VMS operating system, Additional

v
P

main memory allows the size of the free and modified page

lists to increase, thereby, pages not currently contained

e ¥
- o
PN

'.I f. -l

[ -

in the working set remain in main memory - reducing the

VI-11

T
e a8 o & 4 4




r

; -
t number of required page reads when a page fault occurs, o

L Therefore, increasing the size of main memory can L
' alleviate performance problems caused by an excessive page &;

| read rate. ;&E

4, The main memory configuration of .5 é§§

megabytes required a working set size of 50 pages. lfﬁ

Attempts to increase the working set caused VMS processes _;E

to be swapped out and the TOTAL DBMS would not load. %;i

Test Three. The goal of this test was to 535

determine the overhead effects of the instrumentation iia

utility. The same DBMS applications program and set of DML &TE

commands used in Test Two were used for this test. To Zf

‘3 obtain performance parameter comparisons, the program was E:
executed with the instrumentation utility included in it -

and without the instrumentation utility included in it. E;g}

Table VI-3 contains the results of this test, and this EEE

data shows the instrumentation utility increased the ;jﬁ

program's overall execution time by 19.07 seconds (16 Anﬁ

percent), increased the CPU time by 9.21 seconds (66 ;‘3

percent), and increased the number of direct I/0Os by 25
(100 percent).,

Evaluating the overhead, the additional
9.21 seconds of CPU time is primarily caused by the :
SYS$GETJPI routines and can not be reduced. However, the Eﬁi
other 10 seconds of overhead is attributable to the o

VI-12 b

r‘z"'*-r"*wrv-*“‘**-—“*-'
I-
\

a-"#- J'.

-y
‘l b W R WA ey !_.L »,‘s-.-‘“m




Table VI=3
Instrumentation Utility Qverhead

PERFORMANCE

PARAMETER WITH UTILITY WITHOUT UTILTY
EXECUTION TIME 2 min, 16.66 sec 1 min, 57.59 sec
CPU TIME 23.20 sec 13.99 sec
DIRECT I/O0 COUNT 50 25

increase in the number of direct I/0s. This increase is
caused by the writing of the data file generated by the
instrumentation utility, and it can be reduced by
increasing the blocking factor of the file.

When the overhead is factored over the
entire set of 1,724 DML commands, the overhead per DML
statement is 11 milliseconds (msec) of additional response
time. This overhead is constant regardless of the type of
DML statement being measured; however, the impact of the
overhead is weighted by the type;of DML statement where
the statements with the fastest response times are

affected the most, Using the average values in Table VI=-1,

an 11 msec increase corresponds to a 50 percent increase

PR

in the response time for retrieval commands, a 16 percent
increase for storage commands, and a less than one percent

increase for control commands. In a program with a closely

SOOI SRS O

balanced mix of retrieval and storage commands, the

[

instrumentation utility can be expected to increase

VI-13

.
.-‘ - .-. 4 o - .. '.- P L L S L . I BT S ) - - -~ .- ' - .. llllllllll \

U O L - U PR L N PR T ISE APSTAPC g S - Lg - CR ALY RSy
IR BN S AL R O . A S A S PSS A SIS Y YA L o S O S CEARA RS A RASA AR AR HELLGRY




.............................

average DML response time by approximately 25 to 30
percent; however, this should not affect the "visible"

response time of each DML statement. Therefore, overall o

o
instrumentation utility overhead is considered minimal as ;ﬁ
it does not adversely affect DBMS, VAX 11/780, or >

applications program performance.

Conclusions ]
On the basis of the work performed during this

study, the following conclusions on monitoring DBMS

performance are made:

1. Existing performance tools for a general
purpose computer system can provide valuable information
for evaluating high level DBMS performance. However,
detailed performance information at the DML statement
level requires a more specialized type of performance
tool, such as the instrumentation utility. Inversely, the
instrumentation utility is not able to provide a high
level view of DBMS performance. It is only suited for
detailed types of performance information. Therefore, the
use of a combination of different performance tools was a

necessity for obtaining all required performance

information. A single performance tool would not have
satisfied the performance monitoring objectives of all
users.

~—
VI-14 :ﬁ
N
iy
o
B e e e e e e e et o L o, oo, -;;;.;:.::;.;:;--';-::;-:--::-::--;:-‘;.-';:Q




TV

BRSSP S AP S Vel cv.vay

.......................

7 2. The generalized design for a DBMS

125 performance monitor proved to be valid for the VAX 11/780
and TOTAL DBMS. Additionally, it is valid for all other
types of DBMSs available for the VAX 11/780 computer and
VMS operating system, Also, the instrumentation utility
showed it is possible to monitor a DBMS at the DML

statement level regardless of the data model it is based

on,

3.

diagrams, stepwise refinement, and iterative enhancement

The top-down design techniques of SADT

helped to simplify the task of solving the problem
attacked by this study. The results of these techniques
simplified the program development stage, and they have
provided an exceptional level of documentation. However,
the preparation of the documentation is a substantial
task, and it is as prone to underestimation of time
requirements as is the actual software development!

4, A tool such as the instrumentation utility
is relatively straightforward to develop when the

operating system provides a set of "hooks" for

instrumentation. The System Services Library (ref.
18:124-132) of the VAX/VMS operating system, is an

excellent example of a hopefully continuing trend to make

.
»
-
-
"
o
-
> .
D

—
.

computer systems easier to measure,

5. A part of DBMS design requirements should

r: be performance monitoring capabilities. While the
o

o VI-15

'.::.

A

e

® .- U e e @ e AT Ta® AV et e T, e Ve LN, et W e " eV % o & e

) 2 a® o W W, % % % . e et e . S e et an e v e e .
L‘ l-'l-"&"&"t‘;’:’ NS ..'F. , :":.f:".\ o, o ;-':.?: f. < ..n' :.":!'..!. :.O.l':"-..a. '0':‘0‘:1’:.-’} :'. 'I_\-’?. ", S - "‘. t et y

..........

0|

.,w-[;.(r
- etz

£

R )
e

28 e

g~ . ¥ DR R R
Lo R
PO ORI T T T
2 2'2"s e N N

. vy

'.I ' '_-'.a ":
ettt

2

v e e )
..
YL

."‘. J ‘J.J{

Qe e
PR
el e’

A

Lo 0 0, o
LA .,
BIRAFOAIR

\




instrumentation utility is a convienient and easy to use
= tool, it would be better if it were designed as a part of
the DBMS. For example, it could be made an extension to {
the DBMS Log Facility. g
R
6. The DEC extensions to the PASCAL language e
]
t can be misleading. It is possible to use their PASCAL
3
, language to access low-level operating system services via
b
l the system services library; however, there is a point at ;-_4
Voo e
: which it becomes cumbersome to do so, Some of the system R
Z services library routines require data structures with a ;f;
precise, low level definition and word/byte boundary {5%
LT --'1
constraints., The definition of these structures in a <
PASCAL program is tedious, prone to error, and confusing
‘:! (especially to those expected to maintain the programs). e
. Therefore, extreme care must be taken when choosing a *
programming language for a design requiring the functions 5
provided by the System Services Library. Even though a t=;1
-
higher learning curve is normally associated with it, the
MACRO-11 Assembly Language may be a better choice than &sﬂ
)
PASCAL. -
T
Based on the results of this study and the {1j
observations made during it, the following recommendations i:.
for further study and development are made: S.ﬁ
‘-'. .
VI-16 )
N
ey
Ty
B A R A I S ok A G R A e A NS AT A S "-C" \.;




....................

1. The remaining pieces of the DBMS

performance monitor should be completed. The remaining

development work is outlined below by individual program.

User Interface -

.<—t'l:'( LD

a. Allow specific or generalized
subsets of performance parameters to be selected and

measured.

T
ST AR AT
e A I

b. Allow the status of a measurement
session to be displayed and modified.
S c. Allow the consolidated
F measurement report to be displayed on a terminal.

- Data Analysis Program -

a, Compute statistics on the number
of accesses to each data base and the individual files
within the data base,

b, Generate information suitable for
constructing and evaluating queueing models.

Measurement Report Program - Needs to be

developed and tested.

2. The measurement capabilities of the
1nstrumeﬁtation utility should be further enhanced. This
utility currently monitors a pre-selected, minimum set of
performance parameters. Its capabilities can be expanded

to include additional performance parameters. This

VI-17

‘-F\I.F. W I A,

y )‘.‘

. - R NN N e e o " ‘. e
AR _P. -..\ .)s. -. \ \ AN R AR 1..:,‘\_,5__\ _,\ XY _,_\__\ ORI AN 5

!




A YA RLTRE T KNI AN SN A R N i b AT N e s IR A I AT PR SR o S e

r
'4
y
: L.-’.c,..!

P I S .

increases its generality by allowing users to select
additional performance parameters to be measured or to

default to the minimum subset. This capability will allow

users to better design and measure specific performance

)

tests and experiments.

foa

3. A benchmark data base and set of queries
should be developed. Using the benchmark to generate
example data bases and translating the queries to ﬁﬂ
appropriate DML statements, the performance of different
types of DBMSs could be compared using the DBMS

performance monitor, ;3

<
.

4, A suitable statistical package should be
obtained for the VAX computer, such as SPSS-X (ref. 22:83)

6— or an updated version of the Haessle STAT Package (ref.

- 40:). Since the instrumentation utility records the
arrival and completion times of DML statements, arrival
and service time distrubutions can be calculated for use

in queueing models. This would make it possible to conduct

f
P P
) [ t- e
fal L N
'A Y l‘. LN

experiments for determining if different types of DBMSs

'l ll R4 " «
Sttt

fit different models or if there appears to be a model
which can be universally applied to all types of DBMSs.

.
aad s

Additionally, the statistical package would be helpful in

EACEA
A ot diat o

deriving regression models used for explaining the

response time of DML statements.

- VI-18




SRR IR A P S R A PR I STRACR SR GE R i St B e e d

Bibliograpy

1. Aho, Alfred V., et al. Data Structures and
Algorithms. Reading: Addison-Wesley Publishing
Company, 1983,

2. Atre, S. DATA BASE: Structured Techniques for Design, -
Performance, and Management. New York: John Wiley
and Sons, Inc., 1980.

3. Badre, Albert N. "Designing the Human - Computer igﬁ
Interface," ACM SIGCSE Bulletin, 14: 41-44
(September 1982). ]

4, Basili, Victor R. and Turner, Albert J. "Iterative
Enhancement: A Practical Technique for Software
Development,® IEEE Tutorial on Structured
Programming, Catalog No. 75CH1049<6: 121-127 (1977).

5. Bell, T. E., et al. Computer Performance Analysis: N
Framework and Initial Phases for a Performance
Improvement Effort. Report R-549-1-PR, Santa Monica,

California: Rand Corporation, November 1972.

ey

PP

il

6. Bray, Olin H. and Freeman, Harvey A. Base
Computers. Lexington: D.C. Heath and Company, 1979.

7. Brownsmith, Joseph D. A Methodology for the
Performance Evaluation of Data Base Systems: An
of the IPSS Methodology. PhD Dissertation.

Extensjon
Columbus, Ohio: Ohio State University, 1979.
(NASA T9N34080).

8. Cincom Systems Inc, Publication Number P10-0002-01.

Canada: Cincom Systems Inc., 1979.

Ko U DR

R et

P ]
e et
Aoud

9. Cincom Systems Inc. Data Base Administrator's Guide v
for VAX-11 Systems (Publication Number P10-0001-02). - -
Canada: Cincom Systems Inc., 1981. o

10. Datapro Research Corporation. Datapro 70 and Reports
on Minicomputers. Delran: Datapro Research

Corporation, 1983. -

1. Date, C. J. An Introduction Lo Database Systems
(Third Edition). Reading: Addison-Wesley Publishing
Company, 1982,

A

a
d
Ta'e

BIB=-1

...
4.#.1..’ 2,

3
.
.1
«
o
L

LRI I A SN A T SIS A R N N R R

B . . AR R T .
DI PGNP SN L NIUPLUE SRURL N T R AT S I R




......................

r S T e T TL T T e e L T T T T e T S L T T N Y W NV SN e Y, NN e o e e e e T o~ = o= = -

12. Dearnly, P. "Monitorin% Database System Performance,"
Computer 5-19 (January 1978).

13. DeLutis, Thomas G. A Methodology for the Performance :ff

Evaluation Processing Systems.
Technical Report OSU-CISRC-TR-77-2,., Columbus, Ohio:
Ohio State University, March 1977.

3 14, DeMarco, Tom.

L B

@
R
LI

. New York: Yourdan Press, 1978.

15. Digital Equipment Corporation. Hardware Handbook.
Maynard, Ma.: DEC. 1980.
16. Digital Equipment Corporation. Software Product .
Description, VAX~-11 SPM. Maynard, Ma.: DEC, 1983. »
17. Digital Equipment Corporation. VAX/VMS Summary '
r Description and Glossary. Maynard, Ma,: DEC, 1982.
% 18. Digital Equipment Corporation. YAX/VMS System .
Services Reference Manual. Maynard, Ma.: DEC, 1982. »

19. Digital Equipment Corporation. VAX-11 Pascal User's
Guide. Maynard, Ma.: DEC, 1981,

20, Digital Equipment Corporation. VAX-11 Rup-Time
4o Library User's Guide. Maynard, Ma.: DEC, 1982. R

21. Digital Equipment Corporation. VAX-11 i
Reference Manual. Maynard, Ma.: DEC, 1982.

22. Engineering Systems Group. Software Referral Catalog. _
Marlboro, Ma,: Digital Equipment Corporation, 1983. R

23. Ferrari, Domenico and Liu, Mark. "A General-Purpose

Software Measurement Tool," Software-Practice and
Experience, 5: 181-192 (1975).

24, Ferrari, Domenico. Computer Svystems Performance .
Evaluation. Englewood Cliffs: Prentice-Hall, Inc., R
1 9780 e

25. Gilpin, Eugene C. Jr. Development of
Performance Evaluation Iools for VAX-11/780 )
Computers. MS Thesis, Wright-Patterson AFB, Ohio: .
Air Force Institute of Technology, December 1982, .

26. Hansen, Per Brinch. Qperating Svstem Principles.
Englewood Cliffs: Prentice~Hall Inc., 1973.

BIB-2




27.

28.

29.

30.

310

32.

33.

34,

35.

36.

37.

38.

Hartrum, Thomas C. Lecture materials and Computer
Performance Evaluation Notes distributed in EE6.52,
Computer Performance Measurement and Evaluation,
School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio, 1983.

Hawthorn, Paula B. Evaluation and Enhancement of the
of Database Management

Performance Relational
Systems. PhD Dissertation. Berkley, California:
University of California, 1979. (NASA 80N28233).

Hawthorn, Paula and Stonebraker, Micheal.
"Performance Analysis of a Relational Data Base

Management System," Proceedings of ACM-SIGMOD 1979
Intern Conference on Management of Data, 1-12

Horowitz, Ellis and Sahni, Sartaj. Fundamentals of
Data Structures. Rockville: Computer Science Press,
Inc., 1982.

Houstis, Catherine E. "Performance Evaluation of a

Data Base System," South Eastern Conference on
Systems Theory, 251-255 (1980).

Jacob, Robert J, K. "Using Formal Specifications in
the Design of a Human - Computer Interface,"
Communicatjions of the ACM, 26: 259-264 (April 1983).

Madnick, Stuart E., and Donovan, John J. Qperating
Systems. New York: McGraw-Hill Book Company, 1974.

Maryanski, Fred J. "Backend Database Systems,"
Computing , 12: 3-24 (March 1980).

Merrill, Hebert W. A ggmggihgnaixg Apn:gagh to the
Eszrgzmanss Measurement Evaluation of

Computer Systems. PhD Dissertation.
Champaign, Illinois: University of Illinois at
Urbana-Champaign, 1979. (NASA 80N18765).

Myers, Glenford J. Advances in Computer Architecture
(Sgcond Edition). New York: John Wiley and Sons Inc.,
1982,

Myers, Glenford J. The Art of Software Jesting. New )
York: John Wiley and Sons Inec., 1979. ]

Norman, Donald A. "Design Rules Based on Analyses of

Human Error," Communications of the ACM, 26: 254-258
(April 1983).

BIB-3




................

39. Oliver, N. N, and Joyce, John D, "Performance
Monitor for a Relational Information System,"

I(i%%s)zﬂnxﬂ of ACM 76 Annual Conference, 329-333 "_‘_

40. Palmer, Lars. Haessle STAT Package Users Manual
(Version 9A.00). Molndal, Sweden. 1981.

41. Pressman, Roger S. Software Engineering: A T
Approach. New York: McGraw-Hill Book .
Company, 1982. >

42, Rodriguez-Rosell, Juan and Hildebrand, David. A

Eramework Evaluation Of Data Base Systems. IBM
Technical Report RJ 1587. San Jose, California: IBM S

Research Laboratory, May 23, 1975. ®

4

43. Shaw, Alan C. The Logical Design of Operating
Systems. Englewood Cliffs: Prentice-Hall Inc., 1974.

44, Simpson, Henry. "A Human-Factors Style Guide for ui
q Program Design," Byte, Z: 108-132 (April 1982). »

45, Smith, Hugh and Green, Thomas. Human Interaction With ﬁail
Computers. New York: Academic Press, 1980. R

46. Svobodova, Liba. Computer Performance Measurement and

de Evaluation Methods: Analvysis and Applications. New
) York: American Elsevier Publishing Company, Inc., _
1976. oy
47. Tanenbaum, Andrew S. Computer Networks. Englewood ﬁﬁ?ﬁ
Cliffs: Prentice-Hall Inc., 1981. e
LI
48. Tuel, Willifam G. Jr. and Rodrigues-Rosell, Juan. A A
Methodology for Evaluation of Data Base Systems. IBM e
Technical Report RJ 1668, San Jose, California: IBM K
Research Laboratory, October 15, 1975, e
49. Ullman, Jeffrey D. Principles of Database Systems. .
Potomac: Computer Science Press, Inc., 1980. L
50. Weinberg, Victor. Structured Analysis. New York: ;ﬁf
Yourdan Press, 1980. LA
51. Wiederhold, Gio. Database Design. New York: LI
McGraw-Hill Book Company, 1977. R
52. Wong, Patrick M. K. Performance Evaluation of Data R
Base Systems. Ann Arbor: UMI Research Press, 1981. AN
b
BIB-4 R
DR
Y
N e L A T N L B T e e O S Y .“ =

i, S P\ LLL



AR A R O ORI IR RO A D A e A S R N AL R e R NG vr_—‘:*f."r’.;‘}
[y
o0l

53. Zelkowitz, Marvin V., et al. Principles of Software o

Engineering and Design. Englewood Cliffs: T
Prentice-Hall Inc., 1979. s

X I DO

P
(I Y

“ o

MRS A A

N




...........................................

Vita

Paul Dennis Bailor was born in Lebanon, Pennsylvania ;i
on July 9, 1953, He graduated from high school in 1971 and :;
enlisted in the United States Air Force in May, 1972. He ff
received an Air Force Reserve Officers Training Corps ;é
scholarship in July 1975, and he entered the University of {%

Maryland, College Park, Maryland in January 1976. He

graduated Magna Cum Laude with the degree of Bachelor of

.
el

Science in Computer Science in December 1978, After

graduation, he served as a Department of Defense Computer

N
&

Programmer at Headquarters Military Enlistment Processing
Command, Fort Sheridan, Illinois. During this assignment,

é:— he was in charge of developing and implementing a network

.. e,
. l, S A
' I FLU
g tatalatalela’,

LT LPRN

of mini-computers for the 68 Military Enlistment

roe e v -
v e 8 .
- _a

Processing Stations located throughout the United States

ol
and Puerto Rico. He entered the Air Force Institute of or
Technology in June 1982, iﬁ

C:'

Permanent Address: 1537 Sand Hill Road -
Lebanon, Pennsylvania
-y

. . N et .
..\ -\A-.‘\.-.‘-.",-': B SR A VAo e " BN AS AT AT L-'. -'\d' ‘.-\J}': :'f‘

e tat, 1...;_ _n__-.L a st ‘.L [T L{L’




UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

REPORT DOCUMENTATION PAGE

ML R R AN SN S . . o D

TN w o,

“+ REPORT SECURITY CLASSIFICATION

JNCLASSIFIED

10. RESTRICTIVE MARKINGS

20. SECURITY CLASSIFICATION AUTHORITY

3. DISTRIBUTION/AVAILABILITY OF REPORT
Approved for public release;

b - 2». OECLASSIFICATION/DOWNGRADING SCHEDULE

distribution unlimited

'-_.- 4, PEAFOAMING ORGANIZATION REPOAT NUMBER(S) S. MONITORING ORGANIZATION REPORT NUMBER(S) :.

- .

L. AFIT/GCS/EE/83D-2 -
Ga. NAME OF PERFORMING ORGANIZATION OFFICE SYMBOL To. NAME OF MONITORAING ORGANIZATION

: (If applicable)

{ School of Engineering AFIT/ENG

3 i

8c. ADDRESS (City, State and ZIP Code) 7o. ADORESS (City, State end ZIP Code)
Air Force Institute of Technology '
Wright-Patterson AFB, Ohio 45433

OFFICE SYMBOL
(1f applicabie)

8s. NAME OF FUNDING/SPONSORING

9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZATION

12. PERSONAL AUTHOA(S)

Sajilor, Paul D., B.S., Capt, USAF

. 8c. ADDRESS (City, State and ZIP Code) 10. SOURCE OF FUNDING NOS.
’ PROGRAM PROJECT TASK WORK UNLT
ELEMENT NO. NO, NO. NO. -
. TITLE (Include Security Clamification) T
See Box 19 -

“% TYPE OF REPOAT 135, TIME COVERED 14. DATE OF REPORT (Yr., Mo, Dey/ 15. PAGE COUNT -
MS Thesis FAOM to 1983 December 506 o
16. SUPPLEMENTARY NOTATION Ligo oo ton iz relcase: IAVE AFR 180 1D, L
L%?\(’.;;Lmz-z BISYAD -
Lean for feoe s o =0 Pretageienal Devele .
COSATI COOES —

18 SUBJECT TERMS (Continue on reverse if necesQVRANG idenily Dy dioek Ny
Data Bases, Data Base Management System, Data
Management, DBMS, Computer Performance Evaluation
Performance(Encgineerin Mepitors

19. ABSTRACT (Continue on reverse if necessary and identify by block number)

Title: DEVELOPMENT OF A DATA BASE MANAGEMENT SYSTEM
PERFORMANCE MONITOR

GROUP SUB. GA.

09 02

Thesis Advisor: Dr. Gary B. Lamont, Professor, EE Department

“7. DISTRIBUTION/AVAILABILITY OF ABSTRACT

uncLassirigo/unuimteo B same as mer. O ovic usens O

21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIFIED

22s. NAME OF RESPONSIBLE INDIVIDUAL

Dr, Gary B. Lamont, EE Department
DD FORM 1473, 83 APR

'o‘- %o %" 0

Pe e % N 0 0, A e RS et T e "'-'..' T e® g0 e .-
JL.’I."‘,. “5’&";’:{ .:""Q ..LI.: .&.JL"‘:-; L": ” > " ‘e’

EDITION OF 1 JAN 738 OBSOLETE.

LN DU IE VLRI A R e Ve Vet 3 .
d L#.?‘_! LfL{L_".L.-:.~:'.A'. .-':-'..G. WAL n‘:t“ A : "“ '.‘.'\-’ .l.\v. i

22b. TELEPHONE NUMBER
(Include Ares Code)

513-255-3450

22¢c. OFFICE SYMBOL

AFIT/ENG
UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE




...............................................

SECURITY CLASSIFICATION OF THIS PAGE

]

g

5 UNCLASSIFIED
|

E

E

This study focuses on the problem of evaluating the N
. performance of a Data Base Management System (DBMS). In el
“ this study, DBMS performance evaluation is treated as a

. subset of computer performance evaluation, and in doing
o this, the performance parameters unique to a DBMS were
N ' developed and merged with the performance parameters
NS | associated with a general purpose computer system.

o Based on this approach, a generalized design for a

: DBMS performance monitor was developed. This design
emphasizes the use of existing performance tools such as
. software monitors and accounting packages, and it takes
o the performance monitoring requirements of different types
O | of DBMS users into consideration, Additionally, the design
S is applicable to any type of DBMS regardless of the
o~ underlying data model.

E The generalized design was implemented on a VAX
11/780 computer for the TOTAL DBMS. The results of the
implementation showed the generalized design was viable
and capable of measuring many different types of DBMSs.
However, existing performance tools were only capable of
providing a high level picture of DBMS performance. A
specialized tool called an instrumentation utility had to
be developed to gather detailed performance information.

- -
e " N
..'. :‘.1
:'..' t-'.q
. ]
n. - .“-1
"... -_‘.1
. .:‘ .t
o —UNCLASSTIFTRD o
e SECURITY CLASSIFICATION OF THIS PAGE 2.4
i T LA T T T T S N S A A SR S SR R A T e




'
l
!
i

-
W S

PN W W

~'

.
S

Yot

&

M‘- A
oK
41 ...
o2
e -.-
s
NN
-- I.

T
CREN St .
A SV Y IS

A
TR I

o,
o,

U-' \_‘
LAY

o
AT

FILMED

-
ok

————

- -
O
\i‘-‘;%’




