
D-R149 950 DEVELOPMENT OF A DATA BASE MANAGEMENT SYSTEM 1/
PERFORMANCE MONITOR VOLUME i(U) AIR FORCE INST OF TECH
WRIGHT-PRTTERSON AFB OH SCHOOL OF ENGI.. P D BAILOR

UNCLASSIFIED DEC 83 RFIT/GCS/EE/83D-2-VOL-i F/G 9/2 NL

mhmhomommhl

msmmmmhhhhh

LL 13 2

136

IIIJIL2

MIROOP RS LUTO TES CAR
11111OA BUEUO.SADRS-16-

a 0 0 i i -

REPRODCED AT GOVERNMENT EXPENSE .'-.

~OF

DEVELOPMENT OF A DATA BASE MANAGEMENT
SYSTEM PERFORMANCE MONITOR

VOLUME I

THESIS

AFIT/GCS/EE/83D-2 PAUL D. BAILOR
Captain USAF

DTIC
.. j1 SIELECTE
LA. FEB11 1 JWE

DEPARTMENT OF THE AIR FORCE

• "AIR UNIVERSITYAIR FORCE INSTITUTE OF TECHNOLOGY '* -:-

Wright-Patterson Air Force Base, Ohio

D1STR,oTrrTr TEMENT A 8 5 0 1 3 1 0 5 4
Approved fl public zeleas4 8 01

Distriution Unlimited "J
S.....--* * . :: .

--.

AFIT/GCS/EE/83D-2

Accession For

NTIS GRA&I
-DTIC TAB 0 V2

Un innounced [r ."e

justification OP
IN4SPECTEC

By.

Distribution/_"

Availability Codes
* . ~Avail and/or

ist Special

DEVELOPMENT OF A DATA BASE MANAGEMENT

SYSTEM PERFORMANCE MONITOR
VOLUME I

THESIS

AFIT/GCS/EE/83D-2 PAUL D. BAILOR
Capt .tai "n USAF

-..-

ELECTE
FEB1i -

S -. Approved for public release; distribution unlimited

*
o-

.. *.-**.*.° .- *- . .

AFIT/GCS/EE/83D-2 -'(

DEVELOPMENT OF A DATA BASE MANAGEMENT

SYSTEM PERFORMANCE MONITOR

VOLUME I

THESIS

Presented to the Faculty of the School of Engineering

of the Air Force Institute of Technology

Air University

in Partial Fulfillment of the

Requirements for the Degree of

Master of Science

by

Paul D. Bailor, B.S.

Captain USAF

Graduate Computer Systems

December 1983

Approved for public release; distribution unlimited

%* .. , %*'*.**.* .

* * * -*'*- *:~ -~* -,i

- -a s~t.)

- The purpose of this study was to develop a

performance monitor for a Data Base Management System.

During the requirements analysis, many references on the

subject where found, and they indicated the advantages of

using such a monitor. However, none of the references

contained a detailed examination of exactly what was

measured and how the measurements where taken.

In this report, I have attempted to fill this gap by

analyzing the performance evaluation process, providing

tables of performance parameters, presenting a generalized

design for a DBMS performance monitor, and presenting the

details of implementing and using the monitor.

c I would like to thank my advisor, Dr. Gary Lamont,

and the other members of my thesis committee for their

help in preparing this report. Additionally, I would like

to thank Dr. Thomas Hartrum and Major Walter Seward for

their excellent instruction in the areas of Computer

Performance Evaluation and Queueing Theory. The

information obtained in these classes was extremely

helpful in preparing this report. Lastly, I wish to

acknowledge my deep gratitude to my wife, Tammy, for her

support and encouragement during the course of this study.

Paul D. Bailor -

ii"'

- . . 7-9 4 - -

Contents""

VOLUME I

Page

Preface .i

List of Figures. vi

List of Tables viii

Abstractkgroun ix

I. Introduction -

Background -
Purpose -2
A-b.mt -3
Scope a -4

Sequence of Pr s n at in -7

II. System Analysis and Requirements II-I

Introduction -1
Part One - Background Information -1

DBMS Definitions -2
CPE Definitions -11 ""
Summary of Part One -22

Part Two - System Analysis -23
Overview of Previous Studies -23
Specification Technique -24
Performance Evaluation Process -27
System Requirements 41. . - l '
Performance Monitoring Requirement; • . -66
Methodology/Procedures for Conducting
A DBMS Performance Study -80
Functional Requirements -88 -

Summary9 4

III. System Design-. I

Introduction 1
Documentation Techniqu; -1
Design Description -4
Monitor Operation -10
Test Plan -0.

.Using the D.............. -11
Summary -13.."

IV. VAX 11/780 Implementation IV-1

Introduction -1
Implementation Approach -1
VAX 11/780 Configuration -3
TOTAL DBMS -6
System Performance Tools -15
Data Analysis Tools -21
Set of Measurable Performance Parameters -21
Implementation Options -22
Implementation Plan -24
Summary -28

V. Program Design, Implementation, and
Testing V-1

Introduction -1
Development Strategy -1
Testing Procedure -2
Programming Language Selection -4
User Interface -6
Instrumentation Utility -13
Data Analysis Program -23
Measurement Report Program -27
Summary -29

VI. Results, Conclusions and Recommendations . . VI-1

Introduction -1
System Testing -
Using the DBMS Performance Monitor -2
Measurement Results -4
Conclusions -14
Recommendations -16

Bibliography BIB-1

Vita

VOLUME II

Appendix A: Performance Evaluation Requirements

Documentation A-1

Appendix B: Examples of Performance Parameters . . B-1

Appendix C: DBMS Performance Monitor
Requirements C-1

iv

~~~~~~~~~~~~~~~~~~~~~~~~~~~. ...... .. ... ,... ........ .. .. .... ............ ... .. ..-......... .. ...... ... ........ ........ ,.o.,.:



Appendix D: DBMS Performance Monitor Design

Documentation . . . . . . . . . . . . . D-1

Appendix E: VAX 11/780 Performance Tools . . . . . E-1

Appendix F: Program Documentation ........ F-1

Appendix G: DBMON Users Manual . . . . . . . . .. G-1

VOLUME III

* . Program Source Code Listings

£v



Lia 2f Figu

Figure Page

II-1 DBMS Architectural Model . . . . . . . . . . 11-5

- 11-2 System Performance Indices . . . . . . . . . 11-13

11-3 Data Flow Diagram . . . . . . . . . . . . . . 11-26

11-4 Computer Performance Evaluation . . . . . . . 11-28

11-5 DBMS Performance Evaluation . . . . . . . . . 11-31

11-6 Performance Objectives of DBMS Users
versus DBMS Architecture . . . . . . . . . . II36

11-7 Derivation of Computer System Performance
Parameters . . . . . . . . . . . . . . . . . 11-43

11-8 Service Workload . . . . . . . . . . . . . . 11-46

11-9 Conventional DBMS Implementation . . . . . . 11-49

II-10 Data Base Computer Implementation . . . . . . 11-50

II-11 Distributed Data Base Implementation . . . . 11-53

11-12 Derivation of DBMS Performance Parameters . . 11-55

11-13 Service DBMS Workload . . . . . . . . . . . . 11-60

11-14 Determine System Objectives . . . ...... 11-84

11-15 Analyze Performance . . . . . . . . . . . . . 11-85

11-16 Test Hypotheses . . . . . . . . . . . . . . . 11-86

11-17 Test Modifications . . . . . . . . . . . . . 11-87

11-18 Determine DBMS Objectives . . . . . . . . . . 11-89

11-19 Analyze DBMS Performance . . . . . . . . . . 11-90

111-1 SADT Activity Diagram . . . . . . . . . . . . 111-3

111-2 Top Level Design Diagram . . . . . . . . . . 111-5

111-3 Test Plan Example . . . . . . . . . . . . . . 111-12

IV-1 VAX 11/780 Hardware Configuration . . . . . . IV-4

vi



IV-2 TOTAL Data Base Structure . . . . . . . . . . IV-9

IV-3 TOTAL DBMS Configuration . . . . . . . . . . IV-13

IV-LI Implementation Plan . . . . . . . . . . . . . IV-27

V-i Example of Data Type Definition . . . . . . . V-B

V-2 User Interface Structure . . . . . . . . . . v-8

V-3 Example Menu . . . ... . . ... v-10

V-4i Example Data Entry Prompt . . . . . . . . . . V-i1

V-5 Using the Instrumentation Utility . . . . . . V-16

V-6 Item List Descriptor . .. . ... .. . .. V-20

V.-7 Instrumentation Utility Structure . . . . . . V-21

V-8 Data Analysis Program Structure . . . . . . . V-27

V-9 Sample Output from Data Analysis Program .. V-28

vii

a'-'- t~.** W .. D *.t ... ~. .. . .



[jw . '.

Table Page

II-1 Domains of Performance Measurement
Tools . . . . . . . . . . . . . . . . . . . 11-21

11-2 Examples of Computer System

Performance Parameters . . . . . . . . . . -4

11-3 Examples of DBMS Performance Parameters . . 11-58

II-4 Examples of a Combined Set of
Performance Parameters .. . . . . . . . . 11-62

11-5 Relationship of Performance Parameters
to the DBMS User . . . . . . . . . . . . . 11-63

11-6 Example Sources for Performance
Parameters . . . . . . . . . . . . . . . . 11-68

II-7 Functional Requirements for a DBMS
Performance Monitor . . . . . . . . . . . . 11-92

IV-1 Generalized Grouping of the TOTAL
DML Commands . . . . . . . . . . . . . IV-12

IV-2 Examples VAX and TOTAL Performance
Parameters . . . . .. . .. .. .. . .. IV-23

V-I Measurement Session Log Information . ... V-14

V-2 Measurement Data Record . . . . . . . . . . V-20

V-3 Average Number of Searches . . . . . . . . V-25

VI-1 Performance Results at the DML
Statement Level . . . ......... . VI-7

VI-2 Results of Main Memory and
Working Set Test . . . . . . . . . . . . . VI-9

VI-3 Instrumentation Utility Overhead . . . . . VI-13

viii



AFIT/GCS/EE/83D-2

Abstract

- This atudy focuses on the problem of evaluating the

performance of a Data Base Management System (DBMS). In

this study, DBMS performance evaluation is treated as a

subset of computer performance evaluation, and in doing

this, the performance parameters unique to a DBMS were

developed and merged with the performance parameters

associated with a general purpose computer system.

Based on this approach, a generalized design for a

DBMS performance monitor was developed. This design

emphasizes the use of existing performance tools such as

software monitors and accounting packages, and it takes

the performance monitoring requirements of different types

of DBMS users into consideration. Additionally, the design

is applicable to any type of DBMS regardless of the

underlying data model.

The generalized design was implemented on a VAX

11/780 computer for the TOTAL DBMS. The results of the

implementation showed the generalized design was viable

and capable of measuring many different types of DBMSs.

However, existing performance tools were only capable of

providing a high level picture of DBMS performance. A

specialized tool called an instrumentation utility had to

be developed to gather detailed performance information.
<,.. _ , x



I. Introduction

Background,.

A data base is a collection of stored, operational

data, and a Data Base Management System (DBMS) performs

the task of managing and manipulating the data contained

within a data base (ref. 11:7-25). The development of

generalized DBMSs in the late 1960s provided many

advantages to the users of computer systems (ref. 34:3).

However, these advantages were provided at a cost, and

this cost is the overhead the DBMS places on the resources

of a computer system. The amount of DBMS overhead and the

*quality of performance will vary based on the hardware

configuration, the operating system characteristics, the

-*architecture of the DBMS, and the structure of a data base

query or update. Therefore, DBMS overhead should be

measured to determine where changes can be made to help

improve overall computer system and DBMS performance.

To effectively measure the variations and identify

areas where changes can be made to reduce the overhead, a

data base administrator (DBA), computer system manager, or

software engineer needs the measurement and analysis

capabilites provided by a performance monitor (ref. 7

S.2:315). Otherwise, experience, intuition, and trial and

error techniques must be relied upon to identify areas for

change and to achieve performance gains (ref. 48:1).

%e~~t .. . .. .... . . ... ... . . , . " ... " "." "*." . % ** % "% . •. .'. . . . •. . . . . . . . . .



Consequently, a performance monitor is a much needed tool

for the management of computer resources. In fact, a DBMS

performance monitoring effort conducted at General Motors

Corporation detected several system deficiencies during

the installation process for the DBMS performance monitor.

The correction of these deficiencies improved the

performance of their REGIS DBMS by almost an order of

magnitude before the performance monitor actually began

collecting system data (ref. 39:331).

Purpose

The purpose of this study is to develop a

methodology for conducting a performance monitoring effort

on a DBMS and to develop a generalized design for a

corresponding DBMS performance monitor. The development of

these tools wil'l allow the software engineer, data base

administrator, and computer system manager to "easily"

measure the performance of the DBMS and its effect on the

supporting resources of the entire computer system. The

data provided by these tools is used to evaluate DBMS

performance based on the specific objectives of the DBMS

users, and this evaluation provides a basis for

identifying areas where changes can be made. The

successful application of the changes should reflect an

increase in the performance aspects of the DBMS and a

reduction in the overhead effects on the supporting

1-2

.......... ~ ..



resources, thereby, allowing the DBMS users more

flexibility in meeting their stated objectives.

Problem

At the highest level of abstraction, the general

problem is to determine how to measure and analyze

computer system resources so they can be used in the most

efficient and effective manner. A study at this level

would correspond to a performance evaluation effort of an

entire computer system. At the next level of abstraction,

the problem is to determine how to measure and analyze the

performance characteristics of a specific computer system

resource so it can be used in the most efficient way. Even

though a DBMS can be considered a specific resource, it

requires the use of most of the other resources of a

computer system to provide its services to a user.

Therefore, this study is concerned with both levels of

abstraction, and a formal problem statement based on the

two levels of abstraction is given below.

Problem Statement. The specific problem is to

determine how to measure and analyze the performance

characteristics of a DBMS and its supporting resources,

and the objective of the solution is to identify areas

where changes can be made to minimize DBMS overhead costs

and increase overall performance.

1-3



Scove

This study will develop the requirements for a

generalized DBMS performance monitor and generate an

associated design. Every attempt will be made to design a

DBMS performance monitor powerful enough to be used with a

relational, hierarchical, or network model DBMS. However,

this study will only implement the generalized design for

the TOTAL DBMS (network model) developed by Cincom Systems

Inc. (ref. 8:1-3). The TOTAL DBMS is currently being used

on the Digital Equipment Corporation VAX 11/780 computer

system in the Electrical Engineering Department of the Air

Force Institure of Technology (AFIT).

C@_ Assumptions

1. A generalized design for a DBMS performance

monitor is feasible. However, the specification of the

system instrumentation required to connect the performance

monitor to the measured system must be "open-ended" due to

the wide variations in the implementations of computer

system architecture.

2. The VMS operating system of the VAX 11/780

computer maintains tables reflecting the use of computer

resources by programs executing on the computer (ref.

25:Appendix B). These tables are assumed to be accurate.

1-14

.. l '** > *il:-:- **- *-;--<



ADDroach

This problem was solved as a sequence of five

logical stages and what was accomplished in each stage is

outlined below. This sequence of stages is not necessarily

a discrete or chronological sequence since areas of some

stages overlapped with others.

Literature Search Stagg. In this stage, the current

literature on computer performance evaluation, DBMSs, and

developing "user friendly" interfaces was reviewed. The

goal of this stage was to provide the insight and

additional background knowledge required to analyze the

requirements for and design a generalized DBMS performance

monitor. -

System Analysis And Reauirements Stage. In this

stage, the requirements for a DBMS performance monitor

were analyzed. The goal of the requirements analysis was

to answer questions such as:

1. What type of user interface must be

developed?

2. What parameters of a DBMS and computer

system must be measured?

3. What type of monitoring technique should

be used and how powerful should the monitor be?

1-5

i.... - .



4. What type of analysis must be performed on

the recorded measurements?

The results of the system analysis were used to:

specify the functional requirements of a generalized DBMS

performance monitor, determine the performance tools

required to measure DBMS performance, determine the

tools/techniques used to analyze the measured performance

data, and specify a test plan for the implemented DBMS

performance monitor. Data Flow Diagrams (DFDs) and tables

were used as much as possible to present a structured

requirements analysis/specification technique.

System Design Staae. The goal of the system design

stage was to develop a design document for a generalized

DBMS performance monitor. Structured Analysis and Design

Technique (SADT) diagrams were used as the design

development tool, and the design document for this

technique is presented in the form of a Reader's Kit.

Design l Tnementation Stage. In this stage, the

generalized design was implemented for the TOTAL DBMS used

on the VAX 11/780 computer system. The first step in the

implementation was to study the details of the VAX 11/780

architecture and the TOTAL DBMS. A study of these details

was necessary to completely specify the system

1-6



.,--.•--.,--r--rT,'- • ....... . .-. -...... . . _. -. . .. .-..- ... ...... ..... . . .-w.' -,-._--.

instrumentation used to connect the monitor to the

measured system. Once the details were determined and

incorporated into the design, the second step was the

actual coding and testing of the performance monitor.

Analysis/Validation Stage. In this stage, the

generalized design and the implementation for the TOTAL

DBMS and VAX 11/780 were evaluated for compliance with the

functional requirements. As a result of the evaluation,

deficiencies in the generalized design and implementation

were identified, and recommendations for future

improvements were made.

Secuence of Presentation

Chapter 2 of this study presents a complete analysis

of the problem of conducting a performance evaluation

effort on a DBMS. The corresponding requirements

documentation, in the form of Data Flow Diagrams and

Tables, is contained in Appendices A through C. Chapters

3, 4, and 5 concentrate on the design, implementation, and

testing of a DBMS performance monitor. Chapter 3 contains

the development of the generalized design for a DBMS

performance monitor, and the corresponding documentation

for this design is contained in Appendix D. Chapter 4

. takes the generalized design and targets it for the TOTAL

DBMS used on the VAX 11/780 computer system. The

1-7• ,o I



corresponding documentation pertaining to the details of

the VAX 11/780 and the TOTAL DBMS are contained in

Appendix E. Chapter 5 presents the program development

steps and the results of testing the implementation

against the stated functional requirements for a DBMS

performance monitor. The program documentation is

contained in Appendix F, and a Users Manual for the

developed performance monitor is contained in Appendix G.

Lastly, Chapter 6 contains the overall results and

conclusions of this study as well as some recommendations

for future study.

1--

Si

1-8!

p °

V.. - .** . *. .. . . . *'l 5--. 1



II. SYSTEM ANALYSIS. AU REQUIREMENTS

Introduction

This chapter presents the system analysis performed

on the problem of monitoring Data Base Management System

(DBMS) performance. Based on this analysis, the functional

requirements for a DBMS performance monitor are presented.

To meet the needs of all potential readers, this chapter

is presented in two parts. Part One contains background

information on DBMSs and Computer Performance Evaluation

(CPE) concepts, and it is intended for readers either

unfamiliar with these concepts or wishing to review them.

All other readers should skip to Part Two which contains

the system analysis discussion and presents the functional

requirements derived from the system analysis.

A requirement for the analysis of any system is a

common understanding of system definitions (ref. 50:7-23

and 41:34-36). This section defines the concepts and

terminology associated with DBMSs and CPE. The background

information on DBMSs is presented first followed by the

CPE information. All information is introductory in

nature; however, it represents the "core" concepts and

terms associated with DBMSs and CPE. Since this

hI-i



information is used throughout the study, lists of the

* .. terms and concepts are provided to serve as a reference

aid if they need to be reviewed again.

The following DBMS terms and concepts are defined:

1. DBMS Data Models.

2. Data Base Schema.

3. DBMS Architecture.

4. DBMS Environment.

5. DBMS Computer Architecture Semantic Gap.

6. Computer/DBMS Boundaries.

DBMS Models. A DBMS uses a data model as its

underlying structure. The data model serves as a basis for

data definition and manipulation languages because it

defines the data structures and associated operators (ref.

2:Chapter 4; 10:63-73; and 49:Chapter 3). The three best

known data models are listed below with a brief

description of how the data is represented. In addition to

the three data models, some DBMSs are based on the

technique of file inversion on multiple keys; however,

this is more of a physical implementation than an abstract

data model (ref. 2:83-84).

11-2



. . .. . . . . . . . . . . . . . . . . - . . .
V_-+,.

1. Relational - the data is represented as

tables which are a special case of the mathematical

construct known as a relation.

2. Hierarchial - The data is represented by

tree structures.

3. Network - The data is represented by

records and links.

Data Base ahema. To implement a DBMS, the abstract

data models need to be translated from a model into an

operational system. In order to perform the translation,

the model needs to be described in a form suitable for

implementation, and this description is called a schema

* .. (ref. 51:368 and 11:22-23). Therefore, a schema is a

collection of information describing the data base, and it

provides the necessary mechanisms for the data base

objective of data independance. An important part of a

schema is the description of the data elements contained

in the data base. This description is used to store data

element values into the proper position of data base files

and to locate data element values. Additionally, it is

possible to describe only a part of a data base

object/record, and this type of description is known as a

subschema.

11-3

'I- .-. o



DBMS Architecture. Date defines a DBMS

architecture to consist of three levels: the external

level, the conceptual level, and the internal level (ref.

11:17-19). Figure II-1 contains a diagram of the

architectural model, and brief descriptions of each level

of the model are:

rna Lvel. This is the level closest to

the end-users of the data in the data base, and it is

concerned with the way data is viewed by each user.

1k
Internal Level. This level is the one closest

to physical storage, and it is concerned with the way data

is actually stored. It is responsible for the handling of

stored data base records, and it provides the stored

record interface to the access method which is used to

retrieve and store physical data base records. The access

method is not a part of the DBMS. It deals with the

hardware, device-dependent details of physical storage,

thereby, concealing these details from the DBMS.

Cnptual Level. This level is the

connection between the other two levels, and it is

concerned with the global view of data contained in the

data base(s). In other words, the conceptual level

provides a view of the entire data base while the external

II- 4 p'

..........................................................



CONCEPTUAL

LEVEL

INTERNAL
LEVEL

Figure II-1. DBMS Architectural Model

level provides the end-user with a view of some portion of

( . the entire data base.

DBMS Environment. The DBMS environment is composed

of two components. The first component is the type of

DBMS, and the second component is the workload

characteristics of the DBMS. The type of DBMS defines the

implementation details, and a thorough understanding of

the implementation and workload details is important to

the performance evaluation of any system (ref. 5:6).

Exactly why these details are important is covered later

in the Methodology/Procedures section of Part Two of this

chapter. At this point, it is only important to introduce

high level definitions for the two components of DBMS

11-5

.. v.. *.*.--. . .. •. *.

• t .,- - o . -, q o , , %- 
t

• • • , o ._ _"° -_"__ _
°

"_ _" " _ _ ._ _ ._ - . • - , , .*- * .". " ."- , "".. . " """" , , " " . '. j.. " " " ' ' . . . . . . .i



environment because a common, high level understanding is

necessary before the details can be presented.

Based on a review of the current literature,

three types of DBMSs can be defined, and their definitions

are:

1. Single Machine (Conventional) DBMS - This

type of DBMS is defined to be a DBMS composed entirely of

software modules and implemented on a single, Von Neumann

architecture, general purpose, computer (ref. 34:4-5). It

is referred to as a conventional DBMS because it was the

first type to be developed, and it is the most commonly

used of the three DBMS types (ref. 10:). (Note: The design

of today's general purpose computers is commonly referred

to as the Von Neumann architecture because they are based

on the Von Neumann architectural model derived in the

1940s. This study also uses the Von Neumann

classification to describe the architectural design of

computers; however, this classification should not obscure

the Analytical Engine designed by Babbage in the 1840s

which also embodied many of the design principles of

today's computers.)

2. Data Base Computer - This type of DBMS is

defined to be a DBMS implemented on an architecture whose

only purpose is to perform data base functions and tasks.

In general, this means the data base functions have been

11-6

,f...- .. .. . . . .. ..- ... . . . . . . . .. .... . .. . . . . . . . . . . . . . . . . . -i
. . .. . . . . .. . ... ...-. . . ...**. . -



offloaded from a host computer and moved onto a dedicated

data base computer which is directly connected to the

host computer by a communications link. The data base

computer can be implemented in one of two ways. First, it

can be a general-purpose, Von Neumann machine using a DBMS

composed entirely of software modules, and this

configuration is commonly called a backend data base

management system (ref. 34:3-4). The second implementation

is a special purpose machine where the data base functions

are wholly or partially implemented in hardware (ref.

6:Chapter 1).

3. Distributed DBMS - This type of DBMS is

defined to be a network of computers where nodes within

the network maintain a DBMS (ref. 47:440-441). The actual

data base contents at the nodes of the network could be

copies or partitions of a common data base or entirely

different data bases. The architecture of the DBMSs at the

nodes of the network could be either conventional or Data

Base Computers.

The second component of DBMS environment, DBMS

workload characteristics, varies from computer

installation to computer installation; however, the

workload for any given type of DBMS can be grouped into

*two generalized classes defined by Hawthorn and

Stonebraker (ref 29:3). The first class is the "overhead

11-7



intensive workload" which is defined to be that workload

for which the data processing time is less than system

(operating system and data management) overhead to process

-' the workload. The second class is the "data intensive

workload" which is defined to be that workload for which

the time to process the data is much greater than the

overhead.

DBMS - Computer Architecture Semantic f=. Perhaps

the largest contributor to DBMS performance problems is

the incompatibility of DBMS functional requirements with

the architecture of a general purpose computer (ref. 6:1

and 36:422). A general purpose, Von Neumann architecture

computer uses the addresses of storage locations to

retrieve and store data values. On the other hand, the

functional requirements of a DBMS are oriented toward

retreiving and storing data based on data values without

regard to the address of the storage location. Therefore,

a significant part of the processing time associated with

a conventional DBMS is attributable to the conversion

between the data referencing schemes of

address-by-location of the computer and address-by-value

of the DBMS.

Computer/DBMS Bdarie. By definition, a boundary

is something that indicates or fixes a limit such as a

11-8



separating line. One boundary in a computer system is the

boundary between the system workload and the system

resources. At first glance, this may appear to be an

easily definable boundary, but further investigation shows

it is not. There are three types of resources involved

with a computer system, and they are human, hardware, and

software. Hardware resources are easily defined by a

configuration diagram; however, human and software

resources are not as straight-forward. Operators of a

computer system are a human resource as necessary as the

hardware resources, but operators can also contribute both

negatively and positively to the workload based on their

knowledge, efficiency, and ability to operate the system.

Human users are external to the computer system;

therefore, they contribute to the system workload through

user jobs.

Software resources such as operating system

modules are necessary to control the system and are

usually considered a resource of the system and not a part

of the workload. On the other hand, software resources

such as compilers, text editors, DBMSs, and other types of

shared programs and data perform work as needed by users

of the computer system. Therefore, they contribute to the

system workload based on the individual needs of the

users, but at the same time, they can be considered a

system resource since they are available to all users of

11-9



the system to preclude the users need for developing their

own (ref. 26:1-2; 33:8; and 43:13).

As the preceding paragraph shows, a DBMS could

be included in either one or both sides of the system

resource - system workload boundary. Ferrari (ref. 24:4)

states the system's boundaries must be specified clearly

once the objectives of the performance study have been

clarified; otherwise, an inconsistent interpretation of

the boundaries may be used for the performance study!

Based on this study's objectives of providing

performance information to both data base users and the

management of the computer system, the following

specification of the computer/DBMS boundary is used for

the remainder of this study.

Computer System. The DBMS (as well as all

other system software), all supporting and applications

programs, and all the data bases are part of the system

workload (ref. 24:221-222; 26:1-2; 33:8; and 43:13).

DBMS User. The DBMS, DBMS support

programs, and all data bases are considered a system

resource. Applications programs, using the DBMS as a

system resource, are a part of the DBMS workload which is

a subset of the overall system workload (ref. 24:221-225).

I I- I0 -[
o- L

°.- -i -... °• .° .°.. . .. .. . .. ....... ..

l'.'h"." ".'Sffi' " -_" , 
°

" • 
°
.° 

°
. " " ° '.. . . . . . . . . . . . .. . . . . . . . . . . . . . . . . . . . . .... • ... • .. .• .



7 Y

PE Definitions

The following CPE terms and concepts are defined:

1. Performance Index.

2. "Acceptable Level" of Performance.

3. Types of Performance Monitors.

4. System Instrumentation.

5. Performance Monitor Artifact and Accuracy.

6. Performance Monitor Power.

7. Collection of Performance Measurement Data.

Performance Index. A performance index is a

descriptor used to represent a system's performance (ref.

24:11). Ferrari (ref. 24:12-13) lists the three most

popular classes of quantitative performance indices as

productivity, responsiveness, and utilization. These

indices can be further grouped based on two categories of

measures proposed by Svobodova (ref. 46:14-15). The first

category is effectiveness which is defined in terms of the

system's capability to process a given workload and to

meet the time requirements of individual users. The second

category is efficiency, and it is defined as the internal

delays and utilizations of individual system components

versus demand. Effectiveness and efficiency serve as

excellent categories for performance indices because they

are also the two major goals of engineering.

*. ..- . . . . . .. . *. .-.. . ~. . . .

-. . -. W [ ". . . , ....... - - ...... ,.-.. .... -. ,. .'..'. .. U.- . , .".".-.. .. ."



Based on the work by Ferrari, Svobodova, and

this study, the scheme for representing a set of

performance parameters based on performance index category

and class is shown in Figure 11-2. The performance indices

provided by Ferrari have been expanded to take into

consideration the integrity and security aspects of

computer system effectiveness, and the efficiency aspects

have been further expanded to include the allocation and

deallocation of resources. The performance indices were

expanded to more accurately characterize the operation of

a computer system, and this area is covered in more detail

in Part Two of this chapter. Additionally, Part Two

contains a breakdown of the performance indices into

quantifiable performance measures or parameters.

"A.ptabl Level" P eformance. An acceptable

level of performance is easily defined once the objectives

of the end-users and computer system management are

clearly defined. These objectives are required to

formulate a set of performance criteria to which

corresponding performance measurements can be compared.

This basis for comparision makes it possible to decide

whether or not performance is acceptable, and it allows

the effects of changes to be measured - a necessary

prerequisite for any optimization process (ref. 35:2).

11-12

..................................................



SYSTEM EFFECTIVENESS
-Productivity

<Performance Parameters>

-Responsiveness
-Integrity
-Security

SYSTEM EFFICIENCY
-Allocation
-Utilization
-Deallocation

Figure 11-2. System Performance Indices

Generally speaking, the level of performance is

the degree to which the computer meets the expectations of

a user (ref. 46:8). However, this definition of

performance leads to a trap which must be avoided. The

trap is the objectives and performance criteria

("expectations") established by the user may exceed the

capabilities of the computer in question. Therefore, a

different definition of performance may want to exclude

the users expectations, and this definition would only

consider the effectiveness with which the resources of a

computer system are utilized. Singularly, neither of these

definitions adequately describe a level of performance.

Hence, both of them must be used to describe the

effectiveness with which the users objectives are met

(system effectiveness), and the effectiveness with which

11-13

'.%4*"*O ' - - . .12, • - -.%'-'.J '-' °.j ' . .'.'--.-'- .°"-" " -.. . . .. . . . . . . . . . .... . . . . .. '. .'."-". .- "-.. .. "".-.-'



the available resources are utilized (system efficiency).

In other words, the system effectiveness must be weighed

against the system efficiency in establishing an

"acceptable level" of performance (ref. 46:8-9).

Sf Peform Monitors. There are three

basic types of performance monitors, and they are (ref.

46:Chapter 6 and 24:29-64):

1. Software Monitor - A software monitor is a

special program contained within the measured system, and

its purpose is to collect information about system

- processing and utilization of system resources. The

collection process is usually driven by one of two

techniques. The first technique is an event-driven

monitor, and this type of monitor is activated when some

type of event (e.g. I/O interrupt, expiration of a CPU

time quantum, arrival of a new job, etc.) occurs within

the system. The second technique is a time-driven monitor,

and this type of monitor is periodically activated when a

specified time interval has expired. When software

monitors are activated, they are given control of the

system to measure and record values for the necessary

performance parameters, and when the measurement process

is completed, they return control to the operating system.

Of the two collection techniques event-driven monitors

11-14

t+I



record exact data; whereas, time-driven monitors record a

large number of samples to allow for statistical

inferences to be made.

Software monitors can take several forms,

and a common form found on most computer systems is a job

accounting package. Other forms of software monitors are:

specially designed programs that interact with the

operating system and applications programs that contain

special instrumentation statements for measuring and

recording events within the program.

2. Hardware Monitor - A hardware monitor is a

free standing device used to sense electronic signals

(hardware events) within the circuitry of the computer and

record the information in the memory of the computer

system. A special case of a hardware monitor is a monitor

incorporated into the miero-instructions of a computer

system, and this type of monitor is commonly called a

firmware monitor.

3. Hybrid Monitor - A hybrid monitor is a

combination of software and hardware performance monitors

that interact to collect performance measurements. The

software part of the hybrid monitor can detect and record

software related events as well as generate signals that

can be detected and recorded by the hardware part of the

monitor. The hardware part of the hybrid monitor combines

signals generated by the software monitor with the

11-15



hardware events it detects to formulate different types of

measurement data.

System Instrumentation. Instrumentation is the

facility used to connect a performance monitor to the

measured system allowing a set of system activities to be

observed. System instrumentation can take many forms. For

example, hardware monitors typically use electronic probes
n

to connect to the electronic circuits within the computer

hardware, and an event-driven software monitor for an

interrupt driven machine could be instrumented by a

special data collection routine that executes prior to or

after the interrupt service routine.

The instrumentation of a performance monitor is

one of its most important aspects; however, it is also the

most difficult to specify. While today's general purpose

computers have a common architectural design, the

implementation of this common design varies widely between

computer vendors. Additionally, the common design for

computers does not address measurement facilities and only

a few computer vendors have done anything to solve this

design problem (ref. 24:46). Therefore, the specification

and design of the instrumentation for a particular type of

computer system is performed only after the machine has

been built, and this leads to a non-generalized

implementation of system instrumentation even though all

11-16pT .

°S-.
*5 ***~** -. . -..5



general purpose computers have the same basic

architectural design.

The preceding paragraph points out one of the

biggest problems with performance monitors - the concepts

of performance monitors are common; however, a universal

tool is almost impossible to build because of system

instrumentation problems and the many different

implementations of a common architectural design. System

instrumentation also causes another type of problem, and

this problem deals with the user interface to performance

monitors. For example, it may require a detailed knowledge

of the system to determine where to connect the electronic

probes of a hardware monitor, and the connection process

may contain hazards such as electrical shock and device

damage. The installation of an event-driven software

monitor may require modifications to the operating system

which also requires a detailed knowledge of the system.

The problems listed above are reflected in the

results of this study. The specification of the system

instrumentation for a DBMS performance monitor is very

generalized in the system design chapter (Chapter 3), and

the system instrumentation was not completely specified

until the VAX 11/780 and TOTAL DBMS implementation details

had been examined.

11-17

e ° o Q.. I - " o = o,=. -. % -. '.'." "....- ...-". %.. .' .' .' .e . % ". . a .X],".% ',% % " . .'



Performanen Monitor Ara and Acuac. The term

monitor artifact is used to describe the way a performance

monitor alters or interferes with the normal operation of

the system (ref. 46:8 2). For example, a software monitor

must compete for system resources just like user jobs

within the system; therefore, the monitor effects the 1

processing characteristics of the computer system and the

DBMS. The artifact of performance monitors should be kept
S

as low as possible, but depending on how complete a

picture of performance is desired, the monitor artifact

can produce noticeable side effects (ref. 24:29). This is
S

another of the many reasons for establishing objectives. . -

The performance monitoring objectives will dictate what .

type of performance information must be measured and only

necessary information should be measured. Anything else

will add to the artifact of the monitor and provide little

additional data to the performance monitoring study.
I

Generally speaking, a hardware monitor presents

the smallest amount of artifact or interference to the

measured system, and for this reason, they are usually

considered to be more accurate than software monitors

(ref. 24:45). Software monitors may substantially

interfere with the measured system, and they can detect

only the more macroscopic, less frequent events (even

though there are some types of events that can be detected

by both hardware and software monitors). Therefore,

I1-18



software monitors generally provide a lower degree of

resolution and accuracy than a hardware monitor does.

P erfrmance MonitoQr Poe (ref. 46:88-89). The

power of a performance monitor is determined by the

monitoring technique and the actual implementation of the

monitor. Together with monitor artifact, monitor power can

be used as the criteria for the design, evaluation, and

selection of performance monitors. The five dimensions of

monitor power are given below:

1. Monitor Domain - Monitor domain is the

class of activities theoretically observable with a

particular monitoring technique. Note the difference

between monitor domain and instrumentation -

Instrumentation facilitates application of a monitoring

technique to a particular problem; it selects a unique set

of measurable events from the monitor domain.

2. Input Rate - Input rate is the maximum

frequency at which events can be recognized and recorded.

3. Input Width - Input width is the number of

bits of input information the monitor can extract and

process when a monitored event occurs.

4. Recording Capacity - Recording capacity is

the number of memory elements that are available for

storing extracted information, and it determines the

11-19



- - V- -.

amount of information that can be retained for further

processing.

5. Monitor Resolution - Monitor resolution is

the resolution of the time clock from which the monitor

derives timing information. This factor limits the

achievable accuracy of time-based measures.

Collection of Performance Measurement Data. The

collection of performance measurement data is rather

straightforward since it is performed by the performance

monitor; however, choosing or designing the type of

performance monitor to use is a more difficult task.

Ideally, the chosen or designed performance monitor will

measure values for the necessary performance parameters,

provide accurate results, be easy to use, and produce a

minimum amount of artifact (system interference).

Unfortunately, the ideal performance monitor is rarely

available because of the problems associated with

instrumenting a given computer system to allow performance

measurements to be taken. Therefore, several performance

monitors may need to be examined to decide which one or

ones provides the best service.

For example, the domains of four different

types of commercially available performance monitoring

tools are presented in Table II-1, and this table

illustrates the differences in the domains of the the four

iI-20

'I, , .



TABLE II-1

Doma n Performance Measurement Tools

Software Monitor - Generally speaking, a software monitor
can measure operating system events and those hardware
events that transfer control to a specified location
(interrupts). There are some system activities that can be
measured both by a software and a hardware monitor;
however, the domains of the two types of monitors do differ
significantly.

Hardware Monitor - A hardware monitor measures the
electronic control signals within the system that are used
for the low level communications between system resources
and components. Therefore, it is very useful for measuring
component activity and overlap, but since it is a passive
device, it cannot associate the activity with a particular
software process unless the software process generates a
special control signal for the hardware monitor.
Additionally, the hardware monitor can be used to decode
and measure the contents of system registers or memory
addresses. For example this capability is useful for
monitoring instruction mixes.

Job Accounting Package - Job accounting packages will
0O provide good data on the workload and processing

characteristics of individual user jobs as well as
generalized information on system processing
characteristics such as turnaround and response times. By
performing statistical analysis on this data, generalized
inferences about the overall computer workload and system
processing can be made.

Instrumented Program - The domain of an instrumented
program is the same as that for a software monitor;
however, an instrumented program will narrow the scope of
the measurements to obtain more specific information about
a particular software task as opposed to the more
generalized, overall scope of a software monitor.

Calculated - Calculating performance measurement values
extends the domain of all the different types of
performance monitors since the calculation process uses two
or more values measured by a performance monitor to dr-ive
a value not otherwise directly measurable.

11-21

............... . .............. .,

. . . . . . . .



1, ,. .

different monitors. Additionally, Table C-'4 of Appendix C

presents a complete comparison of several different

performance monitors. Table C-4 contains information on

the domain, accuracy, artifact, and the

advantages/disadvantages of the different types of

performance monitoring tools.

Summary oL Part Q=~

This part of Chapter 2 presented an

introduction/review of the common concepts and terminology

associated with DBMSs and CPE. An understanding of this

background information is essential to the system analysis

of the DBMS performance monitoring process which is

presented next, as Part Two of this chapter.

11-22

i-'.. ".-*. *\ **I**.



PARTWO -SYTEM ANALYSIS

This part of Chapter 2 contains the system analysis

applied to the problem of developing a DBMS performance

monitor. This analysis includes: the specification

technique used, the performance evaluation process, the

system requirements, the performance monitoring

requirements, and the methodology/procedures for

conducting a performance study of a DBMS. After the

analysis stage has been completed, the functional

requirements for a generalized DBMS performance monitor

are extracted. Chapters 3, 4, and 5 use the functional

requirements as the baseline for designing, implementing,

and testing a DBMS performance monitor.

f Previous Studies

A literature review of Data Base Management Systems -

(DBMSs) resulted in a varied assortment of books, reports,

and articles related to the performance evaluation of a

DBMS. These studies fell into three basic categories:

1. Design issues and design modelling tools

for increasing DBMS performance.

2. Analytic studies of a specific DBMS or DBMS

architecture.

3. Performance evaluations of a specific DBMS.

11-23

. .. '.'. ..-. ,.-..'- '..... .. '.... .... .... ...... , -----... -. .. ,...'... -..



Each of these studies contributed valuable research

conclusions, and the results of the studies in the third

category provided useful information for this study.

However, the studies did not contain a complete approach

to the problem of DBMS performance evaluation.

Specifically, studies in the third category concentrated

on presenting the results of evaluating DBMS performance,

but they contained minimal information on the set of

performance parameters measured and the performance tools

used to measure values for the parameters.

Based on the literature review, a detailed analysis

of the DBMS performance evaluation process needed to be

conducted. A detailed analysis of this process was not

originally anticipated as a part of this study; however,

it is a gap that needed to be filled. The remainder of

this chapter fills this gap by: analyzing the DBMS

performance evaluation process, developing the set of

performance parameters used to characterize DBMS

performance, and determining the types of performance

tools necessary to measure values for the set of

performance parameters.

Specification Iebnigue

To begin the detailed analysis, the performance

evalution process in general was examined, and Data Flow

Diagrams (DFDs) were used as the structured analysis tool

11-24

-. - .,



for defining and specifying this process. This technique

was used because DFDs approach a situation from the point

of view of the data, and they can serve as a simple model

of the real situation (ref. 14:40-41). In performance

monitoring, the measurement data is the driving factor,

and without a model of how the measurement data is

transformed and used, the following situation could easily

occur - A performance monitoring tool is used to measure

and accumulate performance data, and after several samples

of data are collected, the user wonders what to do with

the data (ref. 5:5).

Pala Flow Da . The mechanics of a DFD diagram

are shown in Figure 11-3. An input data source provides

data to a data transformation process. The transformation

process converts the input data into ouput data which is

provided to the data sink. A transform process can have

more than one input data flow and produce more than one

output data flow. Additionally, the transform process can

access data files or data bases while performing the data

transformation process.

Data Flow Diagrams are intended to show the steady

state flow of data within a system with no consideration

to control paths such as loops; hence, loops appear very

seldomly in DFDs. One situation where loops may occur is

an iterative testing process such as hypothesis testing.

In these situations, data and test conditions can be

11-25

• - -



I-.-

00

L.

TI-26

Z7u



modified several times to give a broader range of results.

Showing data flow through a hypothesis testing process

would naturally seem to require some indication of an

iterative process or loop. Since loops are seldomly

contained in DFDs, there is no agreed upon convention for

showing a loop. For this study, a data flow constructed of

dashed lines is used to show a loop in the data flow

paths, and in keeping with the intent of DFDs, this

convention is used only when absolutely necessary.

PerformancEvl tion Process

A complete set of documentation for the process of

computer system and DBMS performance evaluation was

developed as a part of this study. This set of

documentation includes indexes for the DFDs, the actual

DFDs, and data dictionaries. The complete set of

documentation is contained in Appendix A, and this chapter

presents and discusses some of the diagrams contained in

Appendix A. The diagrams presented in this chapter provide

a general picture of the performance evaluation process

with the details being reserved for the data dictionaries

of Appendix A. The DFDs presented in this chapter and in

the appendix are based on the information contained in the

excellent report by Bell, et. al. (ref. 5:).

The high level concept of monitoring computer system

performance is shown in Figure II-4. In this diagram, the

11-27

i. .. , .. -. -... -...... .-...... :. .-. ,.. . ...-.- . . . . ... ...... .. , . . , .. .



CL.

ca

LL..
= =

>. C/) LX

LL, ul

cw I-
0

C")

0

LI ac 2



77

users of the computer system generate the system input and

receive the system output. The input is whatever task or

job the user needs the computer to accomplish - the

computer's workload. The output is whatever results the

user requested the computer to produce - the completed

work. The Service Workload process is the process that

takes the input workload and produces the completed work,

and the Service Workload process can be measured to

determine its effectiveness and efficiency (the major

categories for performance indices).

The parts of the diagram described above are the

basis for establishing the performance indices of a

computer system. The remaining parts of the diagram

describe the process of establishing performance

objectives and criteria used as the basis for measuring,

changing, and optimizing the computer system. The

Determine System Objectives process is an important

process, and it evaluates the workload requirements of the

system user (which implicitly includes the objectives of -

the user), the management requirements of the computer

system management, and the system objectives of the

computer system management to produce a set of performance

objectives. The Analyze Performance process uses the

performance objectives, effectiveness measures, and

efficiency measures to produce a set of performance

results. The performance results are used by a computer

11-29



system analyst to determine how well the computer system

is working, and if necessary, to identify areas where

.. changes or modifications need to be made.

Of the processes contained in Figure 11-4, process 2

(Determine System Objectives) and process 3 (Analyze

Performance) have been explained in detail in the report

by Bell, et. al. (ref. 5:). However, process one, the

service workload process, is much less well explained and

defined, especially in the area of DBMS performance

evaluation. Based on this, the service workload process is

examined in detail in the System Requirements section, but

processes 2 and 3 are only briefly examined and explained

in the Methodology/Procedures section of this chapter.

To establish a starting point, DBMS performance

evaluation is defined as a subset of computer system

performance evaluation, and this subset is shown in Figure

11-5. Some type of DBMS workload in terms of interactive

-queries, applications programs, report writers, etc. is

applied to the DBMS. The computer system(s) and DBMS are

monitored to measure the effectiveness and efficiency of

the system resources during the Service DBMS Workload

process. Therefore, the performance indices for a DBMS are

the same as the performance indices of a computer system;

however, some of the specific performance measures defined

beneath the performance indices may be different. The

11-30

,-'. , _:_ x.:o, _ _. .,.........................................'.......-.......,.-,..,..,,......,.,,.....,.,..



E- -A

f-, C'~z.

cn 0

Co o

LL.

0
ELI Qf 4

-
4

UU
-CC

t

LL . . . - .



i

performance objectives for the DBMS are established in a

manner similar to the way performance objectives for the

computer system are established. The DBMS workload of the

data base users (which implicitly includes the objectives

of the data base users), the management requirements of

the computer system management and data base administrator

(DBA), and the objectives of the computer system

management and DBA are inputs to the Determine DBMS

Objectives process to produce a set of DBMS performance

objectives. The Analyze DBMS Performance process uses the

performance objectives, effectiveness measures, and

efficiency measures of the DBMS to produce a set of DBMS

performance results. The software engineer, DBA, and the

computer system manager use these results to determine how

well the DBMS is performing, and if necessary, to identify

areas where changes or modifications need to be made.

While both concepts of performance evaluation appear

to be straight-forward, the question of how to begin and

carry out a performance evaluation can be non-trivial,

especially if approached incorrectly (ref. 5:5-9). A

seemingly simple question, but one with a large impact is

- why would anyone want to evaluate DBMS performance? The

answer to this question must lie in the set of clearly

defined objectives for the computer system and DBMS. As

stated in the definition of "acceptable level" of

performance in Part One of this chapter, a set of

11-32

II

• a o . • • ,** . < . . * - .. .....-... .... .•-......... . -%...... .•-• .



S.

objectives is required; otherwise, it is useless to

monitor the performance of a computer system or DBMS since

there is nothing to compare the performance measurements

against. For example, the monitoring of a particular set

of data base updates may show this task to require three

hours of CPU time to complete, and without some objective

to be met, an evaluation of whether or not the three hours

of CPU time is a good or bad level of performance cannot

be made.

Operational Objectives. Operational objectives in

terms of this study fall into three categories. The first

category is the operational objectives of the overall

computer system which includes the DBMS and its

corresponding data bases. The second category is the

operational objectives of just the DBMS and its data

bases. These two categories of objectives are established

by the computer installation management, the DBA, and the

end-users. Since the management and end-user objectives of

every computer installation are different, this study can

do nothing more than emphasize the importance of

establishing operational objectives for the overall

computer system. The operational objectives of the DBMS

and its data bases also vary at each computer

installation. However, generalized performance measurement

objectives for each type of DBMS user can be defined, and

11-33

s~t -_ ._',. _'e t, ".#['-...i "_, '.,"... .., t, .."J ._'. ,'.,'......--...,.........".... ...... "."-'"-.'-........-."."...'""'.."'....."..".-..-... '-.. -'-''-"' . -" """.".,"



these objectives are developed in the next section of this

chapter. The third category of operational objectives,

those of a DBMS performance monitor, can be generalized

enough to apply to all users of the monitor. The four

objectives of a DBMS performance monitor are defined

below.

1. To provide the user of the DBMS with a

measure of the resources required by the DBMS to

accomplish a given data base task.

2. To allow the user to identify areas where a

bottleneck may exist such that the user can make changes

to the system to help alleviate or cure the bottleneck.

3. To provide the user with a convenient,

"user friendly" performance monitoring technique for the

evaluation of DBMS processing.

4. To minimize the artifact inherent in

performance monitoring techniques.

It is important to note the objectives of the

DBMS performance monitor are directed at a user. In this

light, the term user must be studied very closely to

determine if there are different levels of observation at

which a user may "see" the DBMS. An architectural model of

a DBMS is useful for relating the different DBMS users

with an appropriate level of DBMS observation, and this

11-34

-----------.°. .. . [ .. .. ... . . . .... . .. .. .... .. . ...........°....° .......
- "

: ' -..' ' .,...' ., - *'.' '-, -. -. "."--"-



model allows the performance aspects of interest to

specific or all users of the DBMS to be defined.

User RelationshiD to DBMS Architecture. Using the

DBMS architecture model defined by Date (ref. 11:17-19),

two interfaces can be defined, and these interfaces are

between the external-conceptual level and the internal

level - access method. Each interface corresponds to a

particular type of DBMS user and Figure 11-6 lists these

users. These users may or may not have the same overall

objectives, and this impacts on the performance aspects

they are interested in. In the following paragraphs, the

two interfaces are studied in more detail to obtain a

general idea of the performance aspects (in terms of space

and time) that may be of interest to the different users.

External-Conceptual Interface. There is a -.

"level of observation" both above and below this

interface. Above this interface are the end-users of the

data base with their corresponding local view of the data

base contents and organization. Below this interface is

the Data Base Administrator (DBA) who has a global view of

the data base contents and organization.

An end-user can be further specified as

either technically or non-technically oriented. A

non-technically oriented end-user is normally associated

11-35



It)

2 LI

u0E uJ / LZI
w w a. ~w .- C

2 1-3 44.

E-zJz CJ. L4 -cc

2- u 0 wzCi

0A 0 =. z
0- -0C2 2i. .. I48

~~~E )-4E- O0JW0
0~~~c 4)2. ~ 4 LE
z~~> >.C2~Jz2-

ca'I

Xco 4) 0
a=

cn 0

2 CiJI-4

with the management of the organization, and this type of

end-user uses the computer and data base as a tool to

access management information for supporting management

decisions. This end-user normally accesses the data base

through a query language or a "canned" application program

and has one expectation of the system. This expectation is

to be able to access the required information in a timely

manner. How this impacts on the computer resources is not

a concern unless the system doesn't respond within the

time frame the end-user expects it to. Therefore, this

type of end-user has a generalized performance measurement

obiective of determining if the desired data is accessed

in a timely manner.

On the other hand, a technically oriented

end-user corresponds to a software engineer who has been

tasked by management to develop an information processing

capability requiring access to some portion or to all of

the data base. This user is concerned with both space and

time requirements. Time is of primary importance so the .

" -results can be provided quickly, and space is important so

the application being developed can be performed within

'" the constraints of the system resources. This user

typically needs relevant information about system

parameters to assist in trade-off decisions (For example,

more main memory space could be used to help reduce I/O

wait times). Therefore, this user may require performance

11-37

C. .C* * *. % * % *.~***~

.';::> 5" _, ~~~~~~~. .,...'..."."......... ".........." -" " """.*" "'"
....'*. ~ ." * .* . .= '4= = *.." .. .**.* _° **. :."-=-'I q " -' -- -'

=
--= -- %

-
%

information on main memory, buffer space, file size, file

distrubution, access paths, I/O time requirements, CPU

time requirements, etc., pertinent to the specific

development task. Without this type of information, the

trade-off decisions can not be made except by trial and

error. Based on the preceding discussion, this type of

end-user has a g performan measurement

obiective of determining how to design and implement a

solution that provides timely results as well as placing a

minimum impact on the resources of the computer system and

DBMS.

The DBA is a technically oriented user of

the data base, but the DBA also has the responsibility for

the overall control of the data base (ref. 11:25 and

2:29-39). The data base organization must allow all

end-users to access the information they require, and it

must use the system resources in an efficient manner.

Hence, the DBA's task is comparable to the technically

oriented end-user in that both of them require system

information allowing them to make trade-off decisions. At

this level of observation, the DBA will require

information on how efficiently the end-users can gain

access to the desired information contained in the data

base(s). Therefore, the g performance

measurement o of the DBA at this level of

observation is to determine how to design the data base

11-38

...............................

organization, access paths, and schemas to allow the

end-users to access the desired information while placing

minimum overhead on the computer system and DBMS

resources.

Internal Level- Access Method Interfce.

Again, there is a level of observation both above and

below this interface. Above this interface is the DBA, and

at this level of observation, the DBA must be concerned

with the mapping of stored records at the internal level

to the data base schemas at the conceptual level. In

particular, the DBA must be able to evaluate the effect of

the length of access paths, the time required to make the

data in a stored record available to the end-user, and the

amount of CPU processing required to process the indexes

at the internal level of the DBMS. Therefore, the

g n aiz.gd performance measurement objective of the DBA

at this level of observation is to determine how to adjust

implementation and data base generation parameters to

optimize the efficiency of the interface between the

internal level of the DBMS and the access method of the

computer system.

Below this interface, there are several

observers of DBMS performance aspects. The first observer

is the system manager, and the system manager must be

concerned with the impact of the DBMS on the other

resources of the computer system. Therefore, the system

11-39

manager needs information on the percentages of the total

resources consumed by the DBMS to process the DBMS

workload versus the percentages of total resources

consumed to process the overall computer workload. In

other words, the system manager needs a concise picture of

overall resource utilization and what percentage of the

overall utilization is attributable to the DBMS. The

system manager's g performance measurement

oici is to determine if the existing system resources

are providing an acceptable level of service to the system

users as well as to find specific system bottlenecks or

resource under-utilization. The second observer, the DBMS

uesigner/implementor, has the task of mapping the

functional requirements of the DBMS to the underlying

architecture of the computer system. Therefore, the

trade-off decisions made by the DBMS designer/implementor

require a very detailed look at the performance aspects of 7

the underlying, physical architecture. This means the

a rlnize1 performance measurement objective of the DBMS

designer/implementor is to obtain a detailed, overall

picture of DBMS performance to find those areas not

providing an acceptable level of service. The third

observer at this level is the DBA, and since the DBA has

the responsibility for the overall control of the DBMS and

data base(s), the DBA needs an overall picture of DBMS

performance to compare with some benchmark level of

1I-40

W--

.*

performance. Additionally, at this level of observation,

the DBA must be able to determine the physical I/O

activity on the channels and devices, I/O reference

patterns, and the distribution of data base files across

the mass-storage system. Therefore, at this level of

observation, the DBA has the generaliz performance

measurement obiective of determining a concise picture of

overall DBMS performance as well as the details of

physical I/O activity to see if these performance aspects

are within acceptable limits. Failure to meet performance

objectives at this level may indicate the DBA must perform

e more detailed performance analysis at the other two

levels of DBA observation.

System Requirements

The preceding section developed the processes of

com-uter system and DBMS performance evalaution. Data flow

d iagrams of these processes were presented in Figures II-4

and 11-5, respectively. This section concentrates on the

Ser' .ce Workload and Service DBMS Workload processes

contained in these diagrams. The goal of this section is

:o define the set of performance parameters which must be

meap;jred by a DBMS performance monitor. The development of

set of parameters is a necessary first step because

the measured values of these parameters provides the

.'ecle for evaluating DBMS performance. Also, the

1I-41

[.-1

-- ". " ..- '"" . 7 ' .-.-. 7.7--. .-........." ".. . - " -.. .. ". .---.. • .. --. -- .- .. - , ..-.-. .- .

relationship of this set of parameters to the

architectural model of a DBMS and the different types of

DBMS users is developed.

Computer System Performanc& uai n Paramt s.

Since the performance monitoring of a DBMS has been

defined as a subset of computer system performance

monitoring, the logical place to begin is with the

parameters commonly used to evaluate the performance of a

general purpose computer system. The architectural

implementations and monitoring facilities of computer

systems tend to have a wide degree of variation;

therefore, a complete list of computer system performance

parameters is almost impossible to develop (ref. 46:82 and

24:64-66). Consequently, a generalized, partially complete

example of computer system performance parameters grouped

by their corresponding performance index was developed.

Figure 11-7 illustrates how performance

parameters are derived. The workload characteristics

determine the type and amount of resources the system must

allocate to process the users workload. Some examples of

workload characteristics are the CPU time and amount of

memory requested by a job. Additional examples of workload

characteristics are provided in Table B-i of Appendix B

(ref. 46:12-13).

11-42

'o ",-.-, •, - - - ..--. .. '. ., . . .- - • , • -..... . . '

[- "S - I U

Workload System Performancel

Characteristics Processing Parameters

Figure II-?. Derivation of Computer System
Performance Parameters

The system processing characteristics determine

how the system resources are utilized during the

processing of the users workload. Examples of system

processing characteristics are throughput,

turnaround/response time, and component utilization.

Additional examples of system processing characteristics

are provided in Table B-2 of Appendix B. Table B-2 was

developed from information contained in the following

sources: ref. 26:7; 27:; 33:112; 46:16-18; as well as

information derived during the course of this study.

The combination of workload and processing

characteristics forms the foundation for developing the

performance parameters of a given computer system, and the

measured values of these performance parameters forms the

foundation for evaluating computer system performance.

Some examples of computer system performance parameters

are shown in Table 11-2. A generalized, partially complete

set of computer system performance parameters was

II-43

. -.°

. -

TABLE 11-2

Examples _f C Syste Performance e

Parameter Name Description

Throughput Number of jobs executed per unit of
time

Turnaround time Elapsed time between submitting a job
or interactive command to a system
and receiving the output

Component Probability of the component being
Reliability active and working correctly at any

given time

Number of disk Number of disk volumes requested by
Volumes a job

CPU idle Percentage of time the CPU was idle

CPU busy Percentage of time the CPU was busy

Page rate Rate at which pages are retreived from
secondary storage

(. Number of page Number of page faults per unit'of time
faults

I/O System idle Percentage of time the I/O system was
idle

I/O System busy Percentage of time the I/O system was
busy

Device idle Percentage of time a device was idle

Device busy Percentage of time a device was busy

CPU only Percentage of time the CPU was the
only active component

CPU wait Percentage of time the CPU spent
waiting for I/O to complete

CPU and any I/O Percentage of time the CPU and any I/O
occurred simultaneously

Mean length of Mean number of units contained in the
system queues queue and the percentage of time the

queue was this size

1I-44

L-

" " ' " "ii " .= [-- ' ", '_- " u.- --"" " L'." " " -'..""- -"" . - "- " -" -" ".

developed, and this set of parameters is presented in

ii Table B-3 of Appendix B. The set of performance parameters

presented in Table B-3 are categorized and grouped by the

performance index scheme of Figure 11-2. Table B-3 was

developed from information contained in the following

sources: ref. 24:Chapter 2; 25:Appendix B; 26:Chapter 1;

27:; 46:10-20; as well as information derived during the

course of this study. For Table B-3 to be put into

practical use, the source for measuring values for these

parameters needs to be defined, and this is covered in the

Performance Monitoring Requirements section of this

chapter.

The computer system performance parameters

describe the way the Service Workload process in Figure

II-4 is monitored to produce a set of system effectiveness

and a set of system efficiency measures. Figure 11-8

contains an expansion of the Service Workload process. The

computer workload is input to an Evaluate Workload process

which corresponds to the job scheduler of a computer

system. In this process, the workload is evaluated to

determine its resource requirements, and information about

the workload in the form of workload parameters

(characteristics) are extracted. For a computer system to

execute a user's job, it needs to allocate resources to

the job, utilize the resources to execute the job, and

return the resources to the system when the job has

11-45

I"

IL

=C/ V24Ea

LTL.

U E-4

.j w4

E-46w

cn -3
Gn %,-. *. . 0 .' %

finished execution. The execution process is shown by

bubbles 1.2, 1.3, and 1.4, and each of the processes

extracts information about the execution of the job in the

form of allocation, utilization, and deallocation

parameters. All of the extracted parameters are

accumulated within the storage of the system, and at the

end of some specified time interval, the accumulated

parameters are analyzed and partitioned to produce the

effectiveness and efficiency measures which are used to

evaluate the performance of the computer system.

Relationship of These Parameters to p DBMS. In Part

One of this chapter, the concept of the boundary between

system workload and system resources was developed, and

three types of computer system resources were defined.

Ignoring hardware and human resources, it was shown the

software resources of a computer system can be placed on

either one or both sides of the boundary depending on an

individual's level of observation. An evaluation of the

developed set of performance parameters showed the

parameters represent information only at the computer

system level of observation (i.e. the software resources

are measured as a part of the overall system workload).

Therefore, if the software resources are to be classified

* as a system resource, the set of parameters must be

modified to include specific information on how software

11-4L

:... - -": - -:-'-, " "- ' -,-- ,:-- - . : -- -. .. *~: -. x: * i ;: :i[: :

resources are utilized and their impact on the other

system resources. For example, a conventional DBMS

composed entirely of software modules may be used in a

computer system where the CPU utilization is 80 percent;

however, the computer system performance parameters

developed to this point contain no way to determine how

much of the 80 percent CPU utilization was dedicated to

supporting the DBMS.

The example shows the parameters developed so

far do not meet the performance monitoring needs of all

the DBMS users defined in Figure 11-6. Therefore, there

must be some performance parameters unique to the software

resources of a computer system as well as some performance

parameters unique to a particular type of DBMS. An

evaluation of how the type of DBMS effects the development

of a set of performance parameters for DBMS performance

monitoring is given below.

Conventional DBMS. An example of how a

conventional (Single Machine) DBMS may be implemented on a

general purpose computer system is shown in Figure 11-9.

Since this type of DBMS is composed entirely of software

modules, a conventional DBMS is a software resource of the

system, and the developed list of performance parameters

needs to be modified to include information on how the

II-48

- - . - ..

APPLICATION PROGRAM 1

0
P

° ES
RY

APPLICATION PROGRAM n A S
TT DATA
IE BASE

DBMS BUFFERS N M
G

SCHEMA SUBSCHEMA ° * SUBSCHEMA

MAIN MEMORY MAP

Figure 11-9. Conventional DBMS Implementation

DBMS is utilized as well as how it impacts on the other

resources of the computer system.

Data Base Computer. An example of how a data

base computer may be implemented is shown in Figure II-10.

This figure shows three separate aspects must be

monitored. First, the DBMS applications programs,

interface software, and communications hardware/software

ast be monitored on the host computer. Second, the data

base computer and its corresponding interface software and

communications hardware/software must be monitored, and

lastly, the use of these two computers as an integrated

11-149

I I--*,* ** **** * * * ***9 * * ****. * ** * * .,* * . *-.-.-*

APPLICATIONS PROGRAMS

HO ST
COMPUTER

INTERFACE SOFTWARE

COMMUNICATIONS SOFTWARE

COMMUNICATIONS LINK

COMMUNICATIONS SOFTWARE

INTERFACE SOFTWARE DATA
B AS E

COMPUTER

DBMS

DATA
B AS E

Figure 11-10. Data Base Computer Implementation

11-50

system must be monitored to provide a complete picture of

DBMS performance.

By adding parameters to measure the

interface software and the communications

hardware/software as a part of the system workload, the

developed set of computer system performance parameters

could be used to monitor the performance aspects of the

host computer. Monitoring the data base computer may not

be as easy. The data base computer could be a general

purpose computer using a conventional DBMS, and in this

case, the same parameters used to monitor the performance

of a conventional DBMS could be used. However, the data

base computer may contain specialized hardware to perform

all or some of the DBMS functions. In this case, many of

the parameters used to monitor the performance of a

conventional DBMS would apply, but the data base

computer's specialized hardware resouces requires the

definition of specialized performance parameters.

Therefore, monitoring the performance of a data base

computer involves more than just modifying the developed

set of performance parameters. Since the scope of this

study was limited to monitoring the performance of

conventional DBMSs, the problem of monitoring data base

computers implemented with specialized hardware was not

further developed.

11-51

." a '.'o -.. ' .a .U" -. - - .• oa t . .°. - , ...

The overall picture of DBMS performance is

obtained by combining performance parameters from both the

host computer and data base computer.

i u Dat Base System. An example of

how a distributed data base system may be implemented is

shown in Figure II-11. This is the hardest system to

monitor, especially if a picture of overall performance is

desired. In this system, four separate aspects must be

monitored. First, the performance of each DBMS at the

nodes of the network needs to be monitored where the nodes

could be conventional DBMSs or data base computers.

Second, the performance of the network needs to be

monitored (a significant performance monitoring effort in

itself ref. 47:Chapter 5). Third, the integrity of the

data in the entire network of data bases needs to be

monitored, and lastly, the combination of these three

aspects must be monitored to develop a complete picture of

DBMS performance. In this study, only the first aspect of

conducting a performance monitoring effort on a

distributed data base system will be investigated, and the

investigation of this aspect is limited only to those

nodes using a conventional DBMS or a backend data base

computer implemented with a general purpose computer and

conventional DBMS.

11-52

'.- .-.'- -" -'. • '.-. ". '. . " ".-'.-'--'- '- '. . -. " -" '.-. -.- '-'.'. '. '.- ." ' - -:-"". " "" - -" " "" - "- ". .- : - k [,' 1

NODE 1
(CONVENTIONAL DBMS)

NODE 2CETA

(DATA BASE COMPUTER) SSE

CONCENTRATOR

NODE 3
(NO DBMS)

NODE 4 NODE 5
(CONVENTIONAL DBMS) (CONVENTIONAL DBMS)

Figure II-11. Distributed Data Base Implementation

11-53

..................................... •...

Performance Parameters Unigue t a DBMS. Figure

11-12 illustrates how performance parameters for a DBMS

are derived. In a conventional DBMS, the DBMS workload

characteristics determine two things: the DBMS software

modules that must be used as a system resource and the

type and amount of other resources the computer system

must allocate to support the DBMS software modules. In

fact, data base workload plays a large part in determining

the performance of a DBMS, and it is characterized by the

list of data objects required to satisfy a request for

information contained in a data base(s) (ref. 52:2,12).

Some examples of DBMS workload characteristics are the CPU

time requested by a DBMS task and the rate at which

requests for information are submitted to the DBMS.0*
Additional examples of DBMS workload characteristics are

provided in Table B-4 of Appendix B.

Data base workload is represented by the

language used to communicate with the DBMS. This language

is referred to as the data sublanguage (DSL), and it is

some subset of the total computer system language(s) used

to access data base objects and specify data base

operations (ref. 11:19-21). The data sublanguage could be

an interactive query language, statements embedded within

an applications program, or specialized statements

interpreted by an applications program. This study makes

11-54

DBMS DBMS DBMS
"-Workload Processing Performance

Characteristics Characteristics Parameters

Figure 11-12. Derivation of DBMS Performance Parameters

no distinction on data sublanguages and treats them all as

a generalized way to access and manipulate data in the

data base. Any given data sublanguage is a combination of

two languages. First, there is a data definition language

(DDL) used to describe data base objects, and second,

there is a data manipulation language (DML) used to

manipulate and process data base objects. The data

manipulation language contains statements allowing DBMS

users to retrieve objects, create objects, update objects,

load a data base, etc.. Therefore, they are the biggest

contributor to the DBMS workload. On the other hand,

statements in the data definition language usually serve

only to describe a particular user's view of the data base

and contribute only a small part to DBMS workload. Based

on this premise, this study focuses on DML statements and

their impact on the system. Four general types of DML

statements can be defined and these are given below (ref.

7:49-52):

i.-55

1. DML retrieval statements - This type

of DML statement requires that data base objects or

information be moved from a lower level to a higher one.

(The lower level would be the mass-storage files of the

data base which is the lowest level of the storage

hierarchy, and the higher level would be main memory which

is the highest level of the storage hierarchy).

2. DML storage statements - This type of

DML statement requires that data base objects or

information be moved from a higher level to a lower level.

3. DML control statements - This type of

DML statement does not require data movement. Rather, it

prepares the data base for data manipulation. Examples of

this type of operation would be statements to OPEN and

CLOSE the data base for processing.

4. Special purpose DML statements - A

special purpose DML statement is any DML statement which

cannot be classified as any of the other three types of

DML statements.

DBMS processing characteristics determine the

way DBMS software modules and other system resources are

utilized during the processing of the DBMS workload.

Examples of DBMS processing ;,racteristics are DBMS

throughput, the num,,-z T . per ions per DML

statement, and the transfer time " . objects

11-56

-< * * ** 1* NW ,.

between storage hierarchies. Additional examples of DBMS

processing characteristics are provided in Table B-5 of

Appendix B.

The combination of workload and processing

characteristics forms the foundation for developing the

performance parameters of a conventional DBMS, and the

measured values of these performance parameters form the

foundation for evaluating the performance of a

conventional DBMS. Some examples of DBMS performance

parameters are shown in Table 11-3. A generalized,

partially complete set of DBMS performance parameters,

grouped by their corresponding performance index, was

developed, and this set of parameters is presented in

Table B-6 of Appendix B. The data presented in Tables B-41,

B-5, and B-6 of Appendix B was developed from information

contained in the following sources: ref. 2:315-321; 7:23,

47,49-55,113-124; 13:21,89-94; 28:Chapter 4; 29:4-7;

31:252; 39:330; 42:7; 48:23,26-29; and 52:75,103-105; as

well as information derived during the course of this

study. For Table B-6 to be put into practical use, the

source for measuring values for these parameters needs to

be defined, and this issue is covered in the Performance

Monitoring Requirements section of this chapter.

The set of DBMS performance parameters

developed in this study describe how the Service DBMS

Workload process in Figure 11-5 is monitored to produce a

11-57

* . .-.

TABLE 11-3

of DBMS Pfrmann Parameters

Parameter Name Description

DBMS throughput Number of DML statements executed per
by type of DML of time broken down into the four
statement categories of DML statements

Turnaround time Elapsed time (in batch mode of
operation) between submitting a DBMS
task and receiving the output

Response time Turnaround time for a DML statement or
set of DML statements in an
interactive mode of operation

Number of data Number of data bases requested by a
bases DBMS task

DBMS CPU CPU usage by the DBMS / total CPU
utilization usage

Mean CPU time per Mean CPU time to complete a single
DML statement DML statement

DBMS memory Memory usage by DBMS tasks / total
utilization available memory

DBMS I/O I/O usage by the DBMS / total I/O
utilization usage

Number of data Total number of data base objects
base objects retreived or stored from/into a data
accessed base(s)

DBMS device Device usage by the DBMS / total
utilization device usage

Mean length of Mean number of units contained in the
DBMS queues queue and the percentage of time the

queue was this size

DBMS functions Number of times specific DBMS modules
used were used during a DBMS task

11-58

set of DBMS effectiveness and a set of DBMS efficiency

measures. Figure 11-13 contains an expansion of the

Service DBMS Workload process. The DBMS workload is input

to an Evaluate Workload process which corresponds to the

task scheduler or control module of the DBMS. In this

process the DBMS workload, in the form of DML statements,

is evaluated to determine the resource requirements in

terms of DBMS function modules and data base files, and

information about the DBMS workload, in the form of DBMS

workload parameters (characteristics), is extracted. For

the DBMS to execute the DML statement, it needs to

allocate resources, utilize the resources, and return the

resources when the DML statement has completed its

6- execution. The DML statement execution process is shown by

bubbles 1.2, 1.3, and 1.4, and each of the individual

processes extracts information about the execution of the

DML statement in the form of allocation, utilization, and

deallocation parameters. All of the extracted parameters

are accumulated within the storage of the host computer

system, and at the end of some specified time interval,

the accumulated parameters are analyzed and partitioned to

produce the effectiveness and efficiency measures used to

evaluate the performance of the DBMS.

11-59

ctn
't)

Lz.W uLaWL)z-
.j x w L)

CL 0d-4a
x = m= r3

00 Q6 U. u

E-4 Cn -j 6

Ezl3
uL

co ca

w 0

11-60

Selection of a Set of Performance Parameters for

Monitoring a DBMS. The developed sets of performance

parameters for computer system and DBMS performance

monitoring were used to develop a combined set of

performance parameters meeting the performance monitoring

needs of the different DBMS users. The new set of

performance parameters was developed by combining the

parameters from both of the previously defined sets and

selecting those parameters meeting the generalized

performance measurement objectives and performance

monitoring needs of the different DBMS users. Some

examples of the combined set of performance parameters are

presented in Table I1-4. Table C-I of Appendix C contains

the entire set of combined performance parameters, and

while this table should not be considered a complete list,

it should prove to be comprehensive enough to effectively

monitor a conventional DBMS for all the DBMS users.

Relationship Jto DB=S Architecture and DBMS

U s Table 11-5 shows how the example

- parameters of Table 11-4 relate to DBMS architecture and

.-the different types of DBMS users defined in Figure 11-6.

Table 11-5 was developed using the generalized performance

- - measurement objectives of the different types of DBMS

users stated earlier.

11-61

• ~~~ ~~~.- . .-. . ° ..- . . . - '° % ., . . -. -'

TABLE II-4

Examples f A Combined Set of Performance Parameters

Parameter Name Description

DBMS throughput Number of DML statements executed per ,1
by type of DML unit of time broken down into the four
statement categories of DML statements

System turnaround Elapsed time between submitting a user
time job or interactive command to the

system and receiving the output

DBMS turnaround Elapsed time (in batch mode of
time operation) between submitting a DBMS

task and receivning the output

CPU busy Percentage of time the CPU was busy

DBMS CPU CPU usage by the DBMS / total CPU
utilization usage

Number of page Number of page faults per unit of time
faults (system) attributable to all system processes

and user jobs

0 Number of page Number of page faults per unit of time
faults (DBMS) attributable to the DBMS
1/0 busy Percentage of time the I/O system was

busy

-4
DBMS I/O I/O usage by the DBMS / total I/O
utilization usage

Device busy Percentage of time a device was busy
(system)

DBMS device Device usage by the DBMS / total
utilization device usage

CPU and any I/O Percentage of time the CPU and any I/O
occurred simultaneously

CPU and any Percentage of time the CPU and any
DBMS I/O DBMS I/O occurred simultaneously

Mean length of Mean number of units contained in the
system and DBMS queues and the percentage of time the
queues queues were this size

II-62

: ' '. -v .- '. ' -" -. - ".'...- . -.

W 4

CD

.4 4-3v CC x x >4 X4 x4 X

C" ~ . 0 -
f a) c

az 0
cc r4.-

CU~ 4- C

(a4 4) -

x0ca) S-D
Uau)' ma

0 3: a4 > 4 4 >
I .0 4 ,

I-aL (44 I

0
C4 >4>4>4>

4--)

M 41 a C/)
bC 0..4 x:c)

0 0) L4 -o0 V) C

0M 4)~-s 1.0 04Lm .
41Ca W .cumNam))c

0 0 , .0 41).- >4)4) .- ii

4D .4. m43 w Q4

a. 9L4

6 U~ 3UC

0

Using these objectives, the entire set of

combined performance parameters contained in Table C-1 was

related to the DBMS architectural model and the different

types of DBMS users, and these relationships are presented

in Table C-2 of Appendix C. Since Table C-2 was developed

using generalized objectives, individual DBMS users may

need to add or subtract parameters to meet specific needs.

To add or subtract parameters, an individual DBMS user

simply needs to define specific performance measurement

objectives and then select the appropriate parameters

necessary to accomplish those specific objectives. For

example, a software engineer may want to measure only the

CPU and I/O times of a specific DBMS task broken down by

the specific DML statements contained in the DBMS task. By

doing this the software engineer can locate those DML

statements using the most CPU and I/O time and formulate

certain design decisions and alternatives that provide

better performance.

In developing the tables relating DBMS

users to the combined set of performance parameters, the

information or management level user of the DBMS was not

evaluated. Since these users typically have a

non-technical background and are only interested in

"visible" response times, they probably have no interest

in monitoring different aspects of DBMS performance. Their

displeasure with DBMS performance would be passed on to

11-64

I

.. --.. r. - -- - -... _ . . .

the technical staff in their organization who would use

the data provided by the performance parameters to

investigate and hopefully correct their dissatisfaction.

Level f Performance Measure Provided bX _e

Parameters. The level of performance measure

desired from a DBMS performance monitor is stated by Atre

"In a data base environment, continuous, long-term

measurements are necessary to understand the service

provided by a DBMS. The performance monitor should provide

a detailed as well as a bottom line picture of the demand

on the data base service, the service provided, the

resource consumption in the delivery of that service, and

any resource overcommitments. The monitor should be

inexpensive to operate and should create concise reports

on a few pages" (ref. 2:315). A DBMS performance monitor

that measures values for all the parameters contained in

the combined set of performance parameters developed in

this study meets the criteria called for by Atre; however,

this would be monitor "overkill" in many cases. A DBMS

performance monitor that takes into consideration a user's

performance monitoring objectives should provide a better

overall level of performance measurement. Therefore, the

results of relating the performance parameters to

different types of DBMS users should be the basis for the

design or selection of a DBMS performance monitor because

11-65

- . * - * .- -** .

" --- - '. :,' ': , - - - • -. . . - . , .,-. . - ,., . -" . .. " .. ". ." ." .- .- .- . " .- ... '- ,' -. .

it provides the level of measurement required of a

generalized or specific DBMS performance monitoring

effort.

Performance Monitoring Reauirements

Defining the performance parameters of interest is

only the first step in evaluating the Service Workload and

Service DBMS Workload processes shown in Figures 11-8 and

11-13. The next step is to determine how values for the

parameters are measured. This section of the study

addresses this issue. The section covers: the possible

sources of values for performance parameters, the

selection/design of a performance monitor, how a user

interfaces with a performance monitor, and how data

collected by a performance monitor should be analyzed and

presented to the monitor user.

Sources for Performance Parameter Values. In this

study, general purpose performance monitoring tools such

as hardware and software monitors, accounting packages,

etc. were evaluated as potential sources of values for the

performance parameters used to characterize DBMS

performance. However, the ger-ral purpose tools could not

measure all the performance parameters used for DBMS

performance evaluation. To measure values for the

remaining performance parameters, a specialized tool

1-66

S. . . .

"'"'-"- "-" "°" ""'"" " "" "'""" " " " -. -" •" ." "'" " " " "° " "" • ".. "..'..".'.".".".-.. .",...".-'.".... ,"...,.','

needed to be designed and developed. This new tool is

called a DBMS instrumentation program/utility.

Table 11-6 shows some of the possible sources

of values for the example performance parameters of Table

II1-4. The sources indicated in the table are: software

monitors (Soft Mon), hardware monitors (Hard Mon), job

accounting packages (Accnt Data), DBMS instrumentation

program (Instr Prog), DBMS log facilities (DBMS Log),

calculations based on one or more other performance

parameter values (Calc), and error log facilities (Error

Log). In the table, values for parameters marked with a

'X' are directly measureable by the indicated source.

Whenever a value must or can be calculated, an 'X' is

placed in the Calc. column and the possible source(s) of

the values used in the calculation are marked with 3n 'S'.

Table C-3 of Appendix C shows the possible sources of

values for the entire set of combined performance

parameters developed in this study. (ref. Table C-I).

Since Tables 11-6 and C-3 contain

possible sources, performance monitors already available

or being designed for an existing system must be

individually evaluated in terms of the set of performance

parameters they can measure. The major criteria for

performing this evaluation are the monitor's domain,

accuracy, and artifact (ref. 24:29-31 and 46:80-93).

11-67

0

L. 0

C.)

r= to xC/) C/)

L. Q

4-)0 W <C)

E~J c0L
L..

(a~ 02l

cc C* c.1 x. C x

o 0 1 0(D 0
C L 0 wC.,2 C

L) bo 0. ul) CI) LMI c) 0
0E 00 '- % 0)i. in~ 00 ~

C.. cl) V)~ .0 r- .0~ CII -4 .,4 C4 r-4

LLo Q. co .. m~ 0 . (1 m4

u68

Relationship of the Source 2L Performance

Parameter Values to the Domain, Accuracy, and

Artifact QL the Performance Monitor. It was

previously mentioned that even though the examples of

performance parameters presented in Tables 11-4 and C-i

are a comprehensive set, an individual DBMS user may want

to measure only a subset of this overall set, and some

guidelines for selecting a subset of performance

parameters based on a individual DBMS user's performance

measurement objectives were shown in Tables 11-5 and C-2.

Unfortunately, there is another limiting factor in the

selection of a subset of performance parameters to be used

for a particular DBMS performance monitoring effort. This

additional limiting factor is the domain of the

performance monitor used to accumulate the performance

measurement data. Therefore, the subset of performance

parameters may not be entirely measureable by a single

performance monitor, and this leads to a trade-off

situation in which the subset of performance parameters

may be further modified to fit the domain of the

performance monitor. Alternatively, more than one

performance monitor, each with a different domain, can be

used to obtain measurement values for the entire subset of

performance parameters. The particular trade-off decision

depends on the established performance monitoring

objectives and the budget allowed for the performance

11-69

monitoring effort. The budget must be considered since the

use of additional performance monitors will increase both

the system overhead costs in terms of monitor artifact and

the cost of purchasing, leasing, or designing and

developing the additional monitors.

Selection/Design 2L a Performance Monitor. The

performance tools listed in Tables 11-6, C-3, and C-4 do

not meet many of the performance monitoring objectives of

DBMS users when used singularly, but when some combination

of the tools are used in parallel, many or all of the

performance monitoring objectives reflected by a set of

performance parameters for monitoring DBMS performance can

be achieved. If it is possible to use existing performance

monitoring tools, the overall design problem of a DBMS

performance monitor can be drastically reduced.

To select existing performance monitoring tools

for use in the design and development of a DBMS

performance monitor, the three step procedure presented

below was followed.

1. Well defined operational objectives

for the DBMS performance monitor were established.

2. Based on the performance measurement

objectives and the guidelines of Table C-2, the set of

performance parameters that provides the level of

I-70

_'I

performance measurement required of the different types of

DBMS users was selected.

3. The performance monitoring tools

already available on the system were evaluated as well as

any new tools available from vendors. The criteria for

this evaluation was how well the tools measured the

selected set of performance parameters along with the

accuracy and artifact of the tools. Tables C-3 and C-4

proved to be very useful for performing this evaluation.

Based on the results of this study, the tools listed in

Tables 11-6, C-3 and C-4 should be evaluated in the

following order, and in each case, the measurable values

must be evaluated to determine what calculations can be

made to extend the set of possible measurable values.

a. Job Accounting Package.

b. DBMS Log Facility.

c. Error Log Facility.

d. Software Monitor.

e. Hardware Monitor.

The order of presentation of these tools

is based on several factors. The first factor is the level

of performance measurement they provide. The tools at the

beginning of the list provide a high level view of system

performance without producing much monitor artifact

11-71

p -. ..* .. %:*

(system interference). If a lower level, more detailed
view of system performance is required, the tools at the

bottom of the list provide the detailed measurements to

support this type of study although at the cost of

increased monitor artifact. The second factor is their

ease of use with the tools at the beginning of the list

being the easiest to use. The last factor is the

availability of the tools. Based on a survey of the

Datapro Manuals (ref. 10:), most computer systems have

some type of job accounting capability and most DBMSs are

delivered with some type of DBMS log facility. On the

other hand, software and/or hardware monitors for a

computer system are usually purchased separately.

Unfortunately, these tools did not provide
(.

specific DBMS measurements such as the performance

parameters pertaining to individual DML statements. If

this type of measurement data is absolutely required to

achieve the performance monitoring objectives, the only

recourse may be to use a DBMS instrumentation

program/utility type of performance monitor. These types

of monitors are typically not available from vendors and

must be designed and implemented in-house or by contract.

In fact, it may be necessary to add instrumentation into

the actual software modules of the DBMS. Doing this

requires a great deal of knowledge about the software.-

implementation of the DBMS, and it entails a high level of

11-72

risk because new errors could be introduced into the DBMS.

Additionally, it will become increasingly difficult to

keep up with updates to the DBMS. Therefore, unless the

original vendor of the DBMS is going to provide the

instrumentation, this avenue is not recommended.

Alternatively, a set of software modules can be

designed and implemented to be used to instrument user

programs that contain embedded DML statements. The user

programs can call the software modules before and after

the DML statements are processed by the DBMS, and in this

way, the DBMS specific types of performance data on

individual DML statements can be obtained. Again, a great

deal of system knowledge may be required to design and

implement this set of modules and a certain amount of risk

is still present. In some cases, such as the VAX 11/780,

the operating system provides utilities for just this

purpose, and the use of these utilities help to simplify

the task.

The procedure outlined above should provide a

set of existing tools for most computers and conventional

DBMS, and this set of existing tools should provide

sources for measuring values for all or the majority of

the desired performance parameters. If it does not, it is

still a useful procedure to follow because it defines the

measurement requirements of the performance monitor to be

designed and developed.

11-73

%Q~~~~~~~wal~~~..-....1 o...," . . .*.*.- .,o o - °- o o- .- o - - •o , •-'' 'a.'.

Having defined the requirements for the

selection/design of the DBMS performance monitor, two more

issues still need to be addressed. These are the issue of

a user interface to the DBMS performance monitor and the

issue of how to analyze and present the data recorded by

the DBMS performance monitor. Each of these issues are

addressed in detail in the following two sections.

Definition of the User Interface. The user

interface for the DBMS performance monitor needs to

provide a "user friendly" method for DBMS users to

accomplish their performance measurement objectives.

First, the users must be able to select a set of

performance parameters, and second, the user must be able

to activate the performance tool or combination of

performance tools to actually measure the system and .

record the performance parameter values in a specified

data file. Third, the user must be able to specify what

type of mathematical analysis needs to be performed on the

measured data, and lastly, the users need to be able to

review the measurement data after it has been recorded and

analyzed. Unfortunately, this user interface will not be

able to activate any free-standing hardware monitors that

must be used; however, it can be designed to provide

information on how the hardware monitor must be connected

to the system, initialized, and started.

II-74

" ""- " '-'-. -'- -'.-'° '. -'.'' .'I_'.'.'.' "........"....."............."......".."......".....""."".."....."." -" '" " ""....

Human factors considerations are becoming an

important aspect of software engineering (ref. 3:41). A

user interface for any type of system can not ignore these

considerations and expect the user to be happy with the

product. Literature on this subject ranges from formal

techniques using state diagrams (ref. 32:), to common

sense design principles such as provide feedback, be

consistent, etc. (ref. 44:), to formal studies on the

human error process (ref. 38:).

Personal experience in this area has shown

state diagrams to be an excellent tool for designing user

interfaces as well as some types of complex programs.

During the design stage, no attempt is made to

specifically define user error procedures, user prompts,

or user command languages. Only general notations are made

and after the first-cut design has been completed, a set

of conventions for the user interface are defined and

applied to the design. This approach makes the task of

implementing a consistent user interface much easier, and

it quickly shows the set of common routines that must be

developed for the user interface.

One last item to address is matching the

interface to the user's skill level. Skilled users

shouldn't be bored with tedious entries, and at the same

time, don't abbreviate so much the less skilled user is

unable to use the program. If there is a varied skill

11-75

..
.. - - .- . . . -. . . - .-

level in the user population, this should be taken into

consideration and different modes of operation such as

verbose, normal, and terse (ref. 45:171) can be developed.

For the problem of DBMS performance monitoring, all of the

users of the DBMS performance monitor should have a good

technical background. Therefore, one clear, concise mode

of operation should be all that is required.

Analysis and Presentation of the Performance

Measurements. Two types of analysis must be

performed on the measured values for the performance

parameters. First, some of the necessary values must be

calculated from the other values, and the use of a

mathematical-statistical package such as SPSS (Statistical

Package for the Social Sciences) should be considered.

- Also, many performance tools have data analysis

capabilities built into them. Typical types of

calculations will include mean values, variances, and

information on the underlying sampling distrubution such

as minimum and maximum values. The statistical package can

also be used to generate histograms, scattergrams,

regression models, etc.. Histograms and scattergrams are

useful for presenting graphical displays of performance

parameter values. For example, a histogram of the CPU time

- required by each job processed during the measurement

interval will quickly show the distribution of CPU time

11-76

- . ,..-..-.. -...-..-...--,.'. -.--.-..-..-.........-............ .. ,.-.-..-. .-..-. .-..-.,-.-.... .-.....-.,

over all the jobs in the measurement interval. Regression

models are useful for modelling performance parameters

such as turnaround time. For example, the regression model

may show the major part of turnaround time is spent in the

input queue waiting for the necessary resources to be

allocated. Based on this, the input queueing process is

concentrated on to determine why user jobs are spenaing

the majority of their time in the input queue.

The second type of analysis is taking the

performance measurements and using them to formulate or

justify performance hypotheses about The computer system
e

and the DBMS. This aspect of analyzing the performance

measurements is covered in the Methodology/Procedures

section of this chapter.

Presenting the measured values for the

performance parameters to the user of the DBMS performance

monitor should follow the advice of Atre who states the

monitor "should create concise reports on a few pages". In

- "following this advice, measured values for the combined

set of performance parameters presented in Table C-I will

be presented in basically the same way they are presented

in the table - categorized by performance index.

* Therefore, a report organized as follows should prove to

be satisfactory for this and for other studies.

1. Page One - Page one will contain all

11-77

""' t,gl - " "" "' ','' '" " " '' " '' " '

AD-A49 950 DEVELOPMENT OF A DATA BASE MANAGEMENT SYSTEM 2/
PERFORMANCE MONITOR VOLUME i(U) AIR FORCE INST OF TECH
WRIGHT-PRTTERSON RFB OH SCHOOL OF ENGI,, P D BRILOR

UNCLASSIFIED DEC 83 RFIT/GCS'EE/83D-2-VOL-i F/G 9/2 NL

IIIIIIIIIIIII

IIIIIIIIIIIIIu
IIIIIIIIIIIIlll

III IIffffl

- .. '

i i i50 wiiiiUii thii
Lg 1j.,2 1

L..~ ISo2

118

"Ill125 _ 6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 1963-A

*S5S0%

.... , - - .. - , . . . , . , , - . , , .

-.- ~-.-W. --.'-.,-, -- - - -

the effectiveness measures grouped by their corresponding

category of Productivity, Responsiveness, Integrity, and

Security.

2. Page Two - Page two will contain the

first and last categories of the efficiency measures which

are the allocation and deallocation parameters.

3. Page Three and Four - These pages will

contain the utilization parameters grouped by the resource

type of CPU, Memory, I/O, Channels, etc..

4. Additional Pages - Additional pages

can be added to this report, and these pages will consist

of statistical analysis items such as histograms,

regression models, hypothesis tests, etc.

Relationship 2f the Perfrma= Measurements t2

tCtling jdi Enirnmn. One more aspect

of measuring values for the performance parameters needs

to be investigated, and this aspect is what to do with the

values for the performance parameters after they have been

measured, mathematically analyzed, and presented to the

user of the monitor. In other words, how can the

measurement data be used to improve or control DBMS

performance and help meet the needs of the DBMS users.

Obviously, some aspects of the computer system and/or DBMS

need to be changed or modified to realize a performance

improvement, and there are several different ways to
11- 8'-

II-7 8 p.-.:':

. ° . -° ° ..-.. ". '.",-- ."...-,-.. ..-. '-.' ..-.. .. .-...... .-.. ,' .-... ,. v.,,... .,.. "..--. ... ,. -. . .,'.'.,'.,.,'.~

change/modify the computer system or DBMS. Four example

changes/modifications are given below (ref. 46:20):

1. Adjust the system and DBMS control

parameters (i.e. modify the parameters used to generate

the operating system and the DBMS).

2. Change or modify resource management

policies.

3. Distribute the load among system

components to balance resource utilization (e.g. changes

in the assignment of peripheral devices to channels or the

assignment of files to physical storage devices, changes

in the distribution of software components in the system

memory hierarchy, etc.).

4. Replace or modify system components.

The examples appear to be straightforward

solutions to performance problems, but actually solving

the problems is not as easy as it sounds. The difficult

part is determining from the measurement data what

specific aspects of the computer system and/or DBMS to

change or modify to gain the performance improvement. The

solution to this problem is non-trivial, especially if

some type of structured methodology or procedure is not

.-. . adhered to (ref. 5:). Therefore, an examination of this

problem is presented next.

11-79:.-1

S...*.- a

p '.-- ' : . *. - * . ''-. . .> " - -- . = N- -- =.. "
'

- - " : : , - - - ; w - : .

Methodoloxv/Procedures for ConduBctn D .= Permace

Study

The proper development of a methodology for

conducting an overall DBMS performance study is important.

It provides the individuals conducting a DBMS performance

study with procedures for measuring DBMS performance and

procedures for using the measurements to make changes to

the host computer system and DBMS to increase overall

performance. The basis for the material developed in this

section comes from the report by Bell, et. al. (ref. 5:).

The approach to the material in this section is the same

approach used in the preceding sections. First, the

material is developed for computer system performance

evaluation in general, and then the scope is narrowed by

treating DBMS performance evaluation as a subset of

computer system performance evaluation. Additionally, the

material in this section is supported by the further

development of the Data Flow Diagrams used to specify the

performance evaluation process. In particular, bubbles 2

and 3 of Figures 11-4 and 11-5 are expanded.

To begin, the seven phases of a procedure for

conducting a computer system performance monitoring effort

contained in the report by Bell, et. al. (ref. 5:) are

briefly described. For those readers not familiar with

this report, it is a valuable source of information and

should be read. A copy of this report may be obtained from

11-80

7 ..

°-.......... P .d° ~-S * * .

the Defense Technical Information Center (DTIC) by

-- requesting report AD 737 317.

1. Understand the System - The purpose of this

phase is to learn and understand the details of the system

to be analyzed. This should include details of its

hardware, software, workload, and the organization of the

installation management.

2. Analyze Operations - The purpose of this

phase is to analyze the management of the s,,stem

operations. This analysis will help review the operational

objectives of the installation and how the management is

currently trying to accomplish these objectives.

3. Formulate Performance Improvement

Hypotheses - The purpose of this phase is to formulate

specific, performance related hypotheses on possible

problems and their possible cures. The hypotheses are

based on what was learned from the first two phases and

any performance data that may be available. For example,

the utilization of an individual peripheral device such as

a disk drive may be high while the other drives have a low

utilization. This data may lead to the hypothesis that

re-locating some of the files from the highly used device

onto the other devices may reduce the contention for that

device thereby decreasing I/O wait times.

11-81

bl-"" f

- -- ' ." . - - - - a -- -. ; :,. ... - .- . ..-.,- - ,--7.._ .. ._-:-, ..

4. Analyze Probable Cost-Effectiveness of

Improvement Modifications - The purpose of this phase is

to critically analyze the hypotheses formulated in phase

3. Due to budget constraints or unrealistic objectives,

the performance improvements predicted by the formulated

hypotheses may not be worth the additional investment.

5. Test Specific Hypotheses - The purpose of

this phase is to test the validity of the hypotheses from

phase 3. If the hypotheses are valid, they can be used to

implement modifications; otherwise, they must be

reformulated or rejected. It is in this phase that

specific types of performance monitors are selected and

used to collect performance measurement data.

6. Implement Appropriate Combinations of

Modifications - The purpose of this phase is to select a

set of modifications based on the valid hypotheses and

implement them. The modifications should be selected so

they do not unduly affect production requirements, and if

more than one modification is made, they should not cancel

each other.

7. Test Effectiveness of Modifications - The

purpose of this phase is to determine the effects of the

modifications to see if performance is now satisfactory or

if additional analysis and modifications are required to

achieve the operational and performance objectives.

11-82

a - a *.*. . * -• 4. .£

The seven phases are easily placed into the form of

a Data Flow Diagram. Phases 1 and 2 are the underlying

phases for the Determine System Objectives process shown

as bubble 2 in Figure II-4. The breakdown of bubble 2 is

shown in Figure 11-14, and this is an important diagram

because it shows how performance objectives are derived.

This study has introduced, defined, and stressed the

importance of performance objectives in the earlier

sections, and now the last factor, how to actually derive

a set of specific performance objectives for a performance

monitoring effort has been presented.

Phases 3 through 7 are the underlying phases for the

Analyze Performance process shown as bubble 3 in Figure

II-4. The breakdown of bubble 3 is shown in Figure 11-15,

and this is also an important diagram since it shows what

to do with performance objectives, effectiveness measures,

and efficiency measures in order to study and improve the

performance of a computer system. Bubbles 3.3 and 3.5 of

Figure 11-15 deal with the process of testing performance

hypotheses (Phase 5) and testing the modifications made to S

a computer system (Phase 7). Figures 11-16 and 11-17

contain the breakdown of these two processes. The salient

feature of these diagrams is that specific performance

tools are not selected for use until a set of hypotheses

tests have been designed. This aspect is important because

it eliminates situations of using performance tools to

11-83
S ."

zow

c. *aJ

cn Lu

1=4

uo *1 6

CCa
LL, 41

(LL.

0.4,
w ag 0

00 1"

C, LJ

0004

PLL

Z7 -i -Z

- LAO. ---

/ WCW

P-4W u1-4

1-44
-J E-4Cn -1E- 0

-940

>4>

E-4S

1-1= 1-1

92 -

rw E-4 L-

44 4/C M

U')

/Q
IT

cn 0-

E'-4

u4,

>4- 030=E-' W U') E

C/ac 0

Q cnJ

11-86

07 Lci

Z U,%

1-4 U3 a.

/ 0

4

2c2
ol,

Z '-4

11-87

collect performance data and then wondering what to do

* with the data.

The development of the Data Flow Diagrams for

Computer Performance Evaluation is now complete, and these

diagrams provide a computer system analyst with the

necessary information for conducting a performance

evaluation effort on a computer system. All that is left

is to narrow the scope of the information to allow it to

be applied to a performance evaluation study of a

conventional DBMS. The Data Flow Diagram for DBMS

Performance Evaluation was shown in Figure 11-5. The

breakdown of the Determine DBMS Objectives process of

bubble 2 is shown in Figure 11-18, and the breakdown of

the Analyze DBMS Performance process of bubble 3 is shown

in Figure 11-19. A breakdown of the test hypotheses and

test modifications bubbles of Figure 11-19 are not shown

because they are identical to the corresponding DFDs for

computer performance evaluation. These diagrams complete

the development of the DBMS Performance Evaluation Data

Flow Diagram originally shown in Figure 11-5. Therefore, a

complete procedure for conducting a DBMS performance study

has also been specified.

Fujctioal Recuirements

The major questions in any performance evaluation

effort are what data to collect, when and how much data to

11-88

- - -. flu

a.lw

r12

-Cc4

-CC

cc/

Z C')

010 0 n6

H- E&--

E-4= E

U3 caL H

Q-4

0- L E

00

zcd
V2Ln>4w

Z wC1

c:J>

Lai c: &a

collect, and how to physically and mathematically analyze

the data (ref. 2:315; 5:5-9; 24:9-11; and 46:9). When

these questions and their corresponding sub-questions are

answered, the requirements for the performance evaluation

are known, and the functional requirements of the

performance measurement tools used in the performance

evaluation are defined. The analysis presented in this

chapter has asked these questions, and in the process of

answering them, four major functional requirements of any

performance tool surfaced. The four major functional

requirements are:

1. It must provide a user interface.

2. It must measure the desired set of

performance parameters.

3. It must be able to mathematically analyze

the measurement data.

4. It must be able to present the measurement

data to the user.

Based on these four requirements and the material

developed in this chapter, a summary of the functional

requirements for a DBMS performance monitor were

developed, and they are presented in Table 11-7.

11-91

S. *. . .

c 0 c a 4)
o 0 .0 C

a) 4) C) 4) 0

C0 C) 0 - 4) 03 41
0) CL 2p

4)3 M P-4 4) -(3
41 4) c 44 U 4) 0.)) 0to 0 .- i-

4) 4) C C 020 0
49. 4 1

6 44 0
cc :. 1.~ -1 Cu

a4 CU 020C U C 4

Cue4.) 4.3 2 i. 021 V L

0 ~~~ 0 Ga v- 2 . 4)

4 0 3 S. C

41 Cod e. -4 4) r-4 C_ @ =
1-4 -4 0 4

0. ca C

S.w 0. La L. 4) 4) 4)
CA 41 m 4J r-4 4) 41 0 m Z"

01 02 0 20bC 024 0.
0.. -r4 4 L. '- 4 0

4-3 03 2

r V 4). .C C 4) 03 4) 0

4) 34) u4) Q)303a 0 4) 4)4020.

ccO) C) 00 O.. 02 .CC0 2 0 e. 4- 44 U)4 cc..)-
4" 0 -0 0 s-0 0-I 0 4) 41 0 C-

-. ~ IV) .
a)) C\j C.) .0 0

to U2 0) 0)0o)r l4
0 0 r4 0Q

9- C 'a

4J -) .)92 1 V 4 rI4.)4.

..0. . . .v

4) V

0.S. 41 0m

0 2 S

4) cc f- 0

2 41 m) @2 v "U

4-a) Cl 0 41 0 @2

M1 P4 =G C En U

co 41 0CU 0t Cr CU
ori 0. :3 r-4 0. CU

ca 4. 0 ~ cc @

03~C (a S. r .

Q 0= CM m. 04 C

o L. Z ~ c S.

CUG) 4'- P-I a' a

0- a~ 0 C 0o 0 . J C-
.g 0 4'S.L. 0 *ve 0 * I

0 4'.C *~ 41 02 41C0. 4
a. 4 4 .3 @ r-4 4'q *-4 0. 0 4

0'. C... C.. 0 40.

0 CC") 4'4' S.

4J 0 41) 4
r-4 4' S. 4J CU C 0l C

r- u 0 U 0 2 L.
m 910. 0 4'3 1. a 0

C 4) C 4 _ c 0 L. C.

cc1 02 C) CU 41 L..
(U @ 41 cc 4j 41 L. 4 1. 0

2) Z 415 r= (41 CU 0.

m1C 4)0 LCU 4 1. .al 41. 4)

~ 1 4 a . ~ t 41 4 C@

4-3 . 41 L. CU
(.0 v- 4 4' 4-3,4~ r-4

N CL

11-93

| .'U=

This chapter presented a detailed analysis of

Computer Performance Evaluation (CPE) and its application

to specific resources such as a Data Base Management

System (DBMS). Part One of this chapter presented the

necessary background information on DBMSs and CPE, and

this provided for a common understanding of the terms and

concepts used throughout this study. Part Two of this

chapter developed and specified the CPE process using Data

Flow Diagrams. Based on this analysis, the task of

evaluating the performance of a DBMS was classified as a

subset of CPE in general, and the unique DBMS performance

parameters were developed. The different types of

performance evaluation tools where examined for their

usefulness in a DBMS performance monitor, and it was

concluded that some of the existing types of performance

tools could be used to gather performance information

relevant to a DBMS. However, a specialized tool such as a

DBMS instrumentation program/utility was also required to

obtain detailed DBMS performance information. Lastly, the

requirements for a generalized DBMS performance monitor

were extracted and summarized in Table 11-7.

The next three chapters use the functional

requirements in Table 11-7 as the basis for designing,

implementing, and testing a DBMS performance monitor.

11--94

. '.. .'_ _ _ *._- . -

III. System Dsig.n:

Introduction

This chapter presents a generalized design for a

DBMS performance monitor. The top-down design technique of

stepwise refinement (ref. 30:18; 41:131; and 53:51,250)

was used to develop the design, and the first step was to

translate the monitor's high level (major) functional

requirements into corresponding high level activities.

Next, the process of stepwise refinement was continued

until all the functional requirements were satisfied and

all the activities had been decomposed into sub-activities

that are easily implemented. Descriptions of the four high

level activities of the DBMS performance monitor are

presented in this chapter; however, the details of

decomposing the sub-activities and their descriptions is

reserved for the design documention contained in

Appendix D.

In addition to describing the four high level

activities, this chapter describes: the documentation

technique, the operation of the performance monitor, the

test plan for the design, and the use of the design to

implement a DBMS performance monitor.

Documentation Tehiqu

The Structured Analysis and Design Technique (SADT)

11l-1

I°..

developed by SofTech Corporation was used to document the

generalized design. Other techniques, such as structured

english, could have been used; however, the SADT technique

was chosen because it contains specific methods for

showing the activities that must be accomplished by a

design. By showing the system activities, the SADT

technique specifies What has to be accomplished before the

details of h.w& it is accomplished are introduced.

Therefore, the implementation details are forced to the

lower levels of the problem solution, and the design

documentation does not resemble programming logic. This is

an important capability for a documentation technique

since the concept of forcing the implementation details to

the lower levels of actual program development is a major

goal in developing software systems (ref. 41:131 and

53:5).

The mechanics of an SADT activity diagram are shown

in Figure III-1. The box represents the activity to be

performed, and the arrows represent the data associated

with the activity. An additional advantage of SADT

activity diagrams is their ability to specify control and

mechanism inputs. In a DBMS performance monitor,

controlling the measurement activity and the mechanism

used to measure performance parameter values are important

concepts, and for this reason, how they affect the system

design must be reflected in the design documentation.

111-2

".--.".-.< .-v, ." . .""" "" " - -".-. " r .""". . "% ' .. ' - '"-".' . . .'. ...V.."

. . .-. .

Control

°%1
Input Activity >Output

Mechanism

Input - Data consumed or transformed by the activity
Control - Data which controls or constrains the

activity
Output - Data produced by the Activity
Mechanism - Processor or tool used to help

accomplish the activity

Figure 111-I. SADT Activity Diagram

The SADT documentation technique also includes a

data diagram. In an SADT data diagram, the box represents

the data, and the arrows represent the activities

associated with the data. Data diagrams were not used in

the design of the DBMS performance monitor.

Documentation for SADT diagrams is presented in the

form of a reader kit consisting of a diagram index, the

activity and/or data diagrams, and a data dictionary. A

complete SADT reader kit for a generalized DBMS

performance monitor is contained in Appendix D.

111-3

Desian Deiption

The design presented in this chapter is based on the

use of software tools to accomplish as many of the

functional requirements of a DBMS performance monitor as

possible - especially in the area of measuring and

recording values for the performance parameters. This

strategy does not restrict the generality of the design

because no specific software tools have been included in

it. Each of the activities represented in the SADT

diagrams could be accomplished by software tools,

specially designed programs, or a combination of software

tools and specially designed programs.

As previously stated, the top level SADT diagram was

obtained by directly translating each of the four major

functional requirements of a DBMS performance monitor into

corresponding activities. The top level diagram derived by

the translation is shown in Figure 111-2, and this figure

is a reproduction of page D-6 from the SADT reader kit of

Appendix D. An important aspect of this figure is the

method of communication between the interconnected

activities. As shown in figure 111-2, the user interface

activity serves to collect a user's input to the DBMS

performance monitor, and it produces a set of commands * .

that are subsequently used to control the measurement,

analysis, and presentation activities. This method of

communication between the activities is important for

111-4

Ld-

W W- W U3

Qm E- -0

E- 0 t-=U- -4=c
= 4-co-4S

M0 w n4 zjc

c-4 c= LL

IZ4

40-w

W ai 0 L. Ls E4

woo 44 E-
=0wocWC

= 3I

-3E =

three reasons. First, it allows the user to completely

specify an entire measurement session or just certain

activities of the DBMS performance monitor. For example, a

user may want to specify a measurement session that

executes late at night and be able to receive the results

the first thing the next morning. Alternately, a user many

want to specify just the measurement activity and delay

the specification and execution of the analysis and

presentation routines until some later time. Second, this

method is important because it does not dictate how the

activities are actually implemented on a target system.

This allows the flexibility of using software tools and/or

specially designed programs. Lastly, this method is

0 important because it supports the software development

technique of iterative enhancement.

Iterative enhancement is the technique of selecting

a subset of the problem and designing and implementing

this subset first (ref. 4:121-127 and 53:54-55). In this

way, a running system (although limited in function) is

produced earlier, and the early system can be easily

evaluated and changed. After the early system is running

satisfactorily, the process is repeated using successively

larger subsets until the entire system has been developed

and tested.

The technique of iterative enhancement can be easily

applied to the DBMS performance monitor. For example, the

111-6

:. -..**..*.*.°..;

measure system and DBMS activity of Figure 111-2 could be

implemented first with the goal of producing measurement

data as quickly as possible.

A descriptive summary of each of the four activity

diagrams shown in Figure 111-2 is provided below.

I!

er Interface. This activity satisfies

functional requirements numbers 1.0, 1.1, 1.2, 1.3, 1.4,

1.5, and 1.6 from Table 11-7. It accepts the user's input

to the DBMS performance monitor, and it uses the input to

construct three command sets for controlling a measurement

session. The commands sets serve as the interface to the

three other activities shown in Figure 111-2. The contents

of each command set are briefly described below.

Measurement C Commands. This

command set controls the measuring and recording of values

for the performance parameters, and the individual

commands within the command set control three aspects of a

performance measurement session. First, the commands

select the performance measurement tools required to

measure the desired set of performance parameter values.

Second, the commands specify operating conditions for the

performance tools such as start time, stop time, data file

names, etc.. Lastly, the commands initiate the performance

tools to begin monitoring the system. In the event a

111-7

S** % *-. ~.o..

. - . - . -~~~~,

selected performance tool can not be automatically

initiated because it requires human intervention(i.e. a

hardware monitor), the commands initiate the printing or

display of a set of instructions for connecting the

performance tool to the measured system.

Analysi Commands. This command set

controls the mathematical analysis of the data recorded by

the performance tools. The individual commands within this

command set select the necessary analysis programs or

math-statistical packages and schedule them for execution.

Presentation Commands. This command set

controls the presentation of the performanc measurement

data to the user of the monitor. The individual commands

within this command set select the required formatting

programs and schedule them for execution. Additionally,

the display device for the data is selected.

Measure System and DBMS. This activity

satisfies functional requirements numbers 2.0, 2.1, 2.2,

2.3, 2.4, and 2.5 from Table 11-7. It utilizes the

performance measurement tools to measure values for the

set of performance parameters specified by the user of the

monitor. The measurement activity is controlled by the

measurement control commands generated by a user's input

111-8

..

to the user interface activity. The values measured by

this activity are recorded in measurement data files for

later analysis and presentation to the monitor user.

Analyze Measurement Da" Files. This activity

satifies functional requirements numbers 3.0, 3.1, 3.1.1,

and 3.2 from Table 11-7. It uses the measurement data

files produced by the performance tools to calculate

values for the performance parameters that are not

directly measureable and to produce statistical analysis

of the data. The analysis activity is controlled by the

analysis commands generated by a user's input to the user

interface activity. The analyzed measurement data and any

required statistical analysis data are stored in files for

later presentation to the monitor user.

Present Performance Measurement Data. This

activity satisfies functional requirements numbers 4.0,

4.1, 4.2, and 4.3 from Table 11-7. It presents the

analyzed measurement data and any statistical analysis

data to the user of the DBMS performance monitor in the

form of a performance measurement report. The presentation

activity is controlled by the presentation commands

generated by a user's input to the user interface

activity.

111-9

-- . S .a m.

Monitor Operation

The design presented in this chapter implies each of

the four major activites of Figure 11-2 occur in a

sequential manner. For an individual measurement session,

the sequential order of processing must be adhered to;

however, the sequential nature of an individual

measurement session does not preclude the operation of

several measurement sessions in parallel. The limiting

factor to parallel operation is the increased system

interference caused by the parallel execution of the

performance measurement tools. Generally speaking, there

should be no need to have parallel measurement sessions,

but this should not limit the flexibility of the design.

Tt P

A formal test plan is used to test the validity of a

design as well as any implementations based on the design.

For a test plan to be useful, it must be developed with

the intent of finding errors (ref. 37:5). Two methods

commonly used to test software are known as "black-box"

and "white-box" testing (ref. 37:8-11 and 41:292-293).

Other techniques for developing test cases and testing

programs do exist; however, the majority of these

techniques fall into the generic classes of "black-box"

" and "white-box" testing. Examples of these techniques are

III-10

• • .. • .. . %., %.° ,...- % -- °.... ,' .. ,%.' - .%

Logic Coverage, Equivalence Partitioning, and Boundary

Value Analysis (ref. 41:305-311).

"Black-box" test procedures derive their test cases

solely from the requirements and specifications of the

system without taking advantage of any knowledge about the

internal structure of the software. On the other hand,

"white-box" test procedures derive their test cases from

an examination of the program logic.

At this point, "white-box" testing cannot be used;

only the design of the DBMS performance monitor has been

specified. However, the "black-box" testing method and the

functional requirements of Table 11-7 can be used to

derive a set of test cases for the generalized design

presented in this chapter and Appendix D. An example test

plan module is shown in Figure 111-3, and a complete test

plan for the proposed design is contained in Appendix D.

Using the Design

The complete design presented in Appendix D shows

the activities and sub-activities that must be

accomplished in order to develop a DBMS performance

monitor meeting the functional requirements of Table 11-7.

The next step in the problem was to use the design to

implement a DBMS Performance Monitor for a specific host

computer system and DBMS. The activities shown in the SADT

diagrams do not necessarily reflect a one-to-one mapping

111-117

REQUIREMENT: 1.1 - Allow the user to select a set of

performance parameters.

TEST CASE(S):

1. Select no parameters.
2. Select all parameters.
3. Select the pre-defined Software Engineer's

subset of parameters.
4. Select a specialized subset of parameters.
5. Restart the selection process.

EXPECTED RESPONSE:

1. The default set of parameters is selected.
2. The complete set of measurable parameters is

selected.
3. The Software Engineer's subset is selected.
4. Only the special subset is selected.
5. The currently selected set of parameters is

deleted and a new set is started.

RESULTS:

CASE 1. - PASS:- FAIL:- DATE:

CASE 2. - PASS:- FAIL: DATE:

CASE 3. - PASS:_ FAIL:_ DATE:

CASE 4. - PASS:- FAIL:- DATE:

CASE 5. - PASS:- FAIL:- DATE: -

TESTED BY:

REMARKS:

Figure 111-3. Test Plan Example

111-12

from the activity diagram to a computer program or a

software tool. Therefore, a study of the software tools

and general capabilities of the target system needs to be

performed, and the results of the system study are

presented in the next chapter.

Summary

This chapter introduced the SADT design

documentation technique, and this technique was used to

present a generalized design for a DBMS performance

monitor. The four major activities of a DBMS performance

monitor were defined as,

1. User Interface

2. Measure System and DBMS

3. Analyze Measurement Data Files

4. Present Performance Measurement Data

and each of these activities were examined in detail to

specify the interface between them. The methodology for

developing a test plan for the design was presented, and

an example test plan module was shown. Lastly, an approach

for using the design was presented, and the results of

this approach are presented in the next chapter.

111-13

Ill.- 3

* - * .'" -" * ,* "" .'."" ".." ..""" -'" - - -, .-- '. - ." . '-'..-'- " "'",","."-" """ " " ",","" "-","'",

IV. LAX 11/780 Implementation

Introduction

This chapter discusses how the generalized design

for a DBMS performance monitor was implemented on a

Digital Equipment Corporation (DEC) VAX 11/780 computer

for the TOTAL DBMS. As with most software systems, there

is more than one way to realize an implementation, and a

DBMS performance monitor is no exception to this rule.

Therefore, the implementation plan presented in this

chapter is just one of many possible implementations.

The topics discussed in this chapter include: the

approach used to implement the monitor, the operating

characteristics of the VAX 11/780 computer and TOTAL DBMS,

the performance tools available on the VAX 11/780, the

implementation options, and the implementation plan. The

discussions on the operating characteristics of the VAX

11/780 and TOTAL DBMS are included in this chapter to help

illustrate the importance of understanding the system to

be evaluated, and they are useful for relating the results

of the DBMS performance monitor to specific aspects of the

VAX computer and TOTAL DBMS.

Implementation Aoroach-

The first thing performed during the implementation

stage was a study of the VAX 11/780 computer system and

• Iv- 1
IV-I .,.

7 -7

;; ...,, - v ..' ' ,'..,.'.' ;v ,'v-. '... . .,',, ,' '.- -,. .. . ,,,v . ,.,.,",,.', , ".%

the TOTAL DBMS. The five goals of the system study were

to:

1. Understand the hardware and software

configurations of the VAX 11/780.

2. Understand the TOTAL DBMS and how it works

on a VAX 11/780 computer.

3. Determine the performance tools available

for the VAX computer and the TOTAL DBMS.

1. Determine the capability of each

performance tool to measure the system, analyze the

measured data, and present the data to a user of the tool.

5. Determine what other types of software

tools were available for performing tasks such as data

analysis, statistical analysis, and developing "user

friendly" interfaces.

After the system study was completed, the next step

was to apply the information to the generalized design,

and this involved selecting the useful tools, determining

any additional computer programs to be developed, and

specifying the communication interfaces between the four

major activities of the DBMS performance monitor. The

third step in the implementation was to develop the

additional programs. The program development included

analyzing the data structures required by the programs,

IV-2

-'- . -.- -. . , • ..- .-..--..... .-....... .-.... ..- • ~. , - .. *. .:.

:.1:'-"

designing the programs, coding the programs, documenting

the programs, and individually testing each of the

programs. The final implementation step was to perform a

system test of the DBMS performance monitor in accordance

with the test plan developed for the generalized design of

the monitor.

The system study and detailed design steps are

presented in this chapter, and the program development and

testing steps are presented in Chapter 5. The system

testing step is presented in Chapter 6.

AX 11/780 Configuration

Figure IV-1 contains a hardware configuration

diagram of the VAX 11/780 computer system used in this

study (ref. 15:7-18). The system contains 2.5 megabytes of

main memory, two RK07 disk drives (each having a storage

capacity of 28 megabytes), one tape drive, six terminals,

and one line printer. All peripheral devices are connected

to the processor through the UNIBUS, and the UNIBUS allows

data to be transferred in one of two ways. The data can be

transferred in a block as a DMA transfer, or it can be

transferred on a byte-by-byte basis through program

interrupts (ref. 15:16).

The operating system used on the computer was

version 3.4 of the VAX/VMS operating system. The VMS

operating system employs a virtual memory management

IV-3

X,

11/780
CPU

2.5 MEGABYTES
MEMORY

CACHE

UNIBUS OTHER 1/O
ADAPTER ADAPTERS

DIS
B CONTROLLER0

U
S

SS

Figure IV-1. VAX 11/780 Hardware Configuration

IV- 4

--. . 17

scheme of demand paging using a fixed page size of 512

* works (1K bytes), and the principles of its operation are

briefly described below (ref. 17:Chapter 2,3 and

25:Appendix A).

Individual user jobs are referred to as a

process within the operating system, and each active

process has a working set of primary memory pages

associated with it. The working set refers to the number

of pages a process has resident in main memory. When

enough pages of memory have been allocated to fulfill a

processes' minimum working set requirements, it joins all

the other active processes in the system's balance set.

The balance set is all the processes waiting to be

scheduled for the CPU or I/0 operations. Since a

processes' working set may be smaller than the overall

memory space requirements, memory references to regions of

the process not currently contained in the working set

will occur periodically, and this causes a hardware page

fault. A page fault event may force the VMS operating

system to select a page currently in the working set for

removal in order to make room for the new page being

referenced.

A page selected for removal from the working

set is not actually removed from main memory. It is placed

on either the free page list or the modified page list.

The free page list keeps track of those available pages

IV-5

.% _ -% % % =_, =_% ' ._ % _% =, ', ' _ " =. = .'° ' =-' -_o'''."" '' . . " . ' °"."""' .% """" , "' ''' "' . ' 7 '

which were not altered during their use, and the modified

page list keeps track of those pages that were altered

during their use. These two lists make up a shared page

cache, and before the VMS operating system initiates a

disk read to satisfy a page fault, these lists are checked

to determine if the required page is already in memory. If

the required page is found, it is removed from the list

and connected back into the processes' working set saving

the time needed to perform a disk read.

If the required page is not found, space is

taken from the free page list to store the new page read

from the disk. If the free page list is empty, space must

be taken from the modified page list. However, pages on

this list have been altered and must be saved on the disk

before the new memory page is read from the disk into the

memory space currently held by the the modified page. This

situation could cause considerable overhead, and the VMS

operating system tries to prevent this situation from

occuring by writing the modified pages to disk whenever

the system is idle or the list exceeds a certain length.

Modified pages saved in this manner are moved to the free

page list for later use.

TOTAL QM

The Data Base Management System (DBMS) used in this

study is Version 2.1 of the TOTAL DBMS marketed by CINCOM

IV-6

7.. ~.. -2

. t =[_.[. [
t

. I t t- . - . .t . .I - - - - I

I

Systems Inc.. The TOTAL DBMS uses the network data model

for storing and retrieving information (ref. 8:1-3), and

its basic principles of operation on a VAX 11/780 computer

are described below:

Data Bas Structure (ref. 8:1-3). A TOTAL data base

consists of a group of data sets (files). There are two

types of data sets. The first type is called a master data

set. Master data sets are independent, and the logical

records within a master data set can be directly accessed

using the control key. The second type of data set is

called a variable data set. Variable data sets are

dependent, and they must be attached to a master data set.

Logical records within a variable data set are chained to

a unique master record in a related master data set. The

chaining provides the access paths to the data, and these

paths are referred to as linkpaths. A master data set can

have more than one variable data set attached to it, and a

variable data set can be attached to more than one master

data set. Therefore, multiple access paths can exist from

a single master data set to multiple variable data sets,

and from multiple master data sets to a single variable

data set.

The structure of a TOTAL data base relates to

the Data Base Task Group (DBTG) definition of a network

model data base in the following way. Set types defined

IV-7

for a data base would use records from a master data set

as owner records and records from a variable data set as

member records. There is no direct correspondence to a

connection record type because a TOTAL data base defines

fields within master and variable data set records to

serve as the connection mechanism. These fields are

referred to as the linkpath.

Figure IV-2 illustrates a simple TOTAL data

base with one master data set and one variable data set.

The control key is used to select a unique master record

from the master data set. After the master record has been

selected, the linkpath field within the master record is

used as the access path to a group of chained records in

the variable data set. For example, the master record

could contain all the personal and employee data for a car

salesman, and the chained group of variable records could

represent the information on all the cars the salesman has

sold. The control key for the master data set could be any

unique identifying information about the salesman such as

employee number, social security number, etc..

DJ1L Commands. The Data Manipulation Language (DML)

commands available in the TOTAL DBMS are (ref. 8:2-26):

Serial Processin Fu ns. These functions

are used to process records one-by-one according to their

IV-8"
UT- 8

* ~ ~ *~.*.%*..

CONTROL
KEY

MASTER MASTER 1
DATA SET RECORD

VARIABLE VARIABLE
DATA SET IRECORD

I IVARIABLlI CHAINED
RECORD GROUP

VARIABLEI

ARECORD1

Figure IV-2. TOTAL Data Base Structure

IV-9

physical sequence in a data set. Serial processing is

accomplished by repeating the same function.

1. RDNXT - Serially read a master or a
variable entry data set.

Master Data Set Functions. These functions are P

used to process a record from a master data set.

1. READM - Read a master record.
2. WRITM - Write a master record.
3. ADD-M - Add a master record.
4. DEL-M - Delete a master record.

Variable Data Set Functions. These functions

are used to process a record from a variable data set.

1I. READV- Read a variable record along
the forward direction of a
variable record chain.

2. READR - Read a variable record along
the reverse direction of a
variable record chain.

3. READD - Read a variable record
directly by specifying its
position.

4. WRITV - Write the variable record
retrieved by the preceding
read.

5. ADDVC - Add a variable record to the
end of the chain.

6. ADDVB- Add a var;iable record before
the one retrieved by the
preceding read.

7. ADDVA - Add a variable record after
the one retrieved by the
preceding read.

8. DELVD - Delete the variable r -ord
retrieved by the preceding
read.

IV-1 0

i ~w r - -..- - '- - - * ,-v - . . v . - -

Special Functions. These functions are used to

control the processing of specialized DBMS operations.

1. SINON - Sign-on to the DBMS.
2. SINOF - Sign-off the DBMS.
3. RQLOC - Request the home location of a

master record.
4. WRITD - Write a master or variable

record directly into a
specific location.

5. QUIET - Check point the data base and
log device.

6. LOADD - Load a data base descriptor.
7. FREEF - Free held records for a file.
8. FREEX - Free all held records for this

program.

In chapter two, four general types of DML

statements were defined. These four types were defined as

retrieval, storage, control, and special purpose. The four

types were grouped based on their general DBMS function so

the performance evaluation aspects of these DBMS functions

could be more closely evaluated. In keeping with this

idea, the TOTAL DML commands have been grouped into the

four general types, and the results of this grouping are

shown in Table IV-1.

DBMS Configuration. Figure IV-3 shows how the TOTAL

DBMS works on a VAX 11/780 computer system (ref. 8:2-2).

On a VAX host, the TOTAL DBMS is executed as a background

batch job, and the DBMS applications programs are

executed either as batch or interactive jobs. The

IV-1 1

"- " " "-".'"-'"- .- .- .- .- ,..- .-.....m ,'..-~~........,...'.............. ..-. ...'.............. -_--

TABLE IV-1

Gnelzgd Grouping l_ TOTAL D1ML Commands

Retriva Storage Control Spcia Purpose

RDNXT WRITM SINON RQLOC
READM ADD-M SINOF WRITD
READV DEL-M QUIET LOADD
READR WRITV FREEF
READD ADDVC FREEX

ADDVB
ADDVA
DELVD

Al

applications programs communicate with the TOTAL DBMS

using subroutine calls to the subroutine DATBAS, and the

parameters of the subroutine call make-up the TOTAL DML

command. The DATBAS subroutine communicates with the TOTAL

DBMS through the VAX Mail Facility to send/receive

messages, data, and commands to/from the TOTAL DBMS. When

there is no mail to TOTAL, the TOTAL DBMS hibernates and

waits for incoming mail.

An example of the complete sequence of steps

required to retrieve a logical record from a TOTAL data

base is outlined below. Figure IV-3 contains the

step numbers to allow the sequence to be easily traced on

the configuration diagram.

1. The user applications program sets up

the parameters for the DML command and calls the DATBAS

subroutine.

IV-1 2

VAX 11/780 COMPUTER

(5)
PHYSICAL
DISK I/0

VAX/VMS REQUEST
OPERATING
SYSTEM

DATA
B AS E
FILES

(4)
LOGICAL DATA BASE
DISK I/0 DESCRIPTOR
REQUEST MODULE (6)

BLOCK
(3) CONTAINING

DESCRIPTIVE REQUESTED
INFORMATION RECORD

_ TOTAL U
--. DBMS-, __ _ I

(2) (7)

MAIL (1) USER MAIL
MESSAGE CALL APPLICATIONS (8) MESSAGE

PROGRAMS DATA, " ELEMENTS

,. • DATBAS

Figure IV-3. VAX-TOTAL DBMS Configuration

IV-13

.c

2. The DATBAS subroutine formats a mail

message and sends it to the TOTAL DBMS.

3. The TOTAL DBMS receives the mail

message and accesses the data base descriptor module

(schema) to obtain descriptive information about the

logical record and its data elements.

4. The TOTAL DBMS requests a logical disk

I/O be performed by the VMS operating system.

5. The VMS operating system translates

the logical I/O request into a physical disk I/O request.

6. The VAX I/O hardware performs the

physical I/O from the TOTAL data base files (data sets)

and places the data in a data buffer defined by the TOTAL

DBMS.

7. The TOTAL DBMS extracts the required

data elements from the disk block and sends them via a

mail message to the DATBAS subroutine.

8. The DATBAS subroutine places the data

element values in the data area of the user program and

returns control the the user program.

Relationship DBMS Architectural Model. The DBMS

architectural model presented in Chapter 2 does apply to

the TOTAL DBMS. The TOTAL DBMS allows each user to define

an external level view by using a schema definition in the

applications program. The data base descriptor modules

IV-1 4.

(DBMOD) make up the conceptual level view of all the data

bases, and the DBMODs are used to provide the schema

capability to end-users at the external level.

Additionally, the DBMODs are used at the internal level to

present a stored record interface to the VAX/VMS access

method.

P Areas for Prma. Problems.. The

complexity of Figure IV-3 graphically illustrates how

important it is to understand how the DBMS operates in the

VAX/VMS environment before undertaking a performance

evaluation effort. This figure shows at least five areas

where performance problems could potentially occur. These

five areas are: the overhead involved in making calls to

the DATBAS subroutine, the VAX Mail facility, the VAX/VMS

access method (translating the logical disk request to a

* physical disk request), the physical I/0 system, and the

TOTAL DBMS buffer pools.

O-.. System Performance Tools.-

Five performance tools were found to exist on the

*' VAX 11/780 computer. In addition to these tools, the TOTAL

DBMS provides a DBMS log facility. An additional

performance tool, VAX-11 SPM (Software Performance

- Monitor) is available from DEC, but it was not available

on the target system. The general capabilities of each

IV-15

tool are described below, and Appendix E contains a

detailed look at each of the tools. The tables contained

in Appendix E list the set of performance parameters each

tool is capable of measuring, a brief description of each

parameter, and the parameters used for a DBMS performance

monitor.

VAX Monitor Utility (ref. 21:Chapter 12). The

monitor utility is a software monitor used to obtain

information on the performance of the VMS operating

system. The monitor utility collects data on a time-driven

basis, and the sampling interval between data collection

events can be set between the range of 1 to 9,999,999

seconds. It has the capability of monitoring nine classes

of system wide performance data and producing a variety of

summary reports. The nine classes of performance data are:

DECNET, FCP, 10, LOCK, MODES, PAGE, POOL, PROCESSES, and

STATES. Of these nine, four are useful for the development

of a DBMS performance monitor, and the four classes are

briefly described below.

1. 10- Monitors the I/O system and produces

values for the performance parameters such as: rate of

disk and tape I/O operations, page fault rate, page read

rate, size of the free and modified page lists, etc..

2. MODES - Monitors the time spent in each of

IV-16

""°" • 9 Q - S -. "%

the seven processor modes such as: processor idle,

supervisor mode, user mode, etc..

3. STATES - Monitors the number of processes

in each of the fourteen scheduler states such as: waiting

for CPU, suspended, waiting for a free page of memory,

waiting for a page fault, etc..

4. FCP - Monitors the VAX/VMS file system and

produces values for performance parameters such as: disk

space allocation rate, file open rate, file creation rate,

rate at which CPU time is used by the file system, etc..

The monitor utility can produce three types of

output, and it has the capability to analyze the data

before producing the output. The monitor utility can

display the output on a terminal, generate a binary data

file of non-analyzed data, or generate an ASCII formatted

print file of the analyzed data. The output options are

not mutually exclusive providing the capability to produce

several types of output simultaneously.

VAX-11 SfM (ref. 16:). The VAX-11 SPM (Software

Performance Monitor) utility is a software monitor used to

collect and report performance statistics for VAX/VMS

computers. It is similar to the monitor utility, but it

provides an extended set of capabilities. For example, it

can: measure CPU-I/O overlap, measure where the overall

IV-17

q- ~..* *.*..* o*N"

system is spending its CPU time, trace specific VMS

events, and produce histograms of where user programs are

spending their CPU time.

MVAXccouning Uiity (ref. 21:Chapter 1). The

accounting utility has the capability to read the system

job accounting file, select records from the file, and

produce a summary report or a new data file. The summary

report can be tailored to meet many needs because the

capability exists to select the desired data items and

group them by a list of summary keys. Summary reports are

produced only in the form of an ASCII formatted print

file. However, new data files can be produced as either

binary files or ASCII formatted print files. The

accounting utility can produce performance values for

individual user jobs such as: elapsed time, total CPU

time, total page faults, total disk and tape I/Os, total

number of disk and tape volumes mounted, etc..

VAX ti lit (ref. 21:Chapter 17). The SYE

utility can selectively extract records from the system

error log file and generate summary reports in an ASCII

print file format. The SYE utility can produce performance

values for the error rates and reliablity of the CPU,

memory, disk drives, and other peripheral devices.

IV-18

'I

*w * • . * .: * .. .* * . o .~ , -... o .,

... III.-... - -

VAX E=un I Library (ref. 20:5-24). The run time

library provides four procedures that can be used to

instrument a process (applications program) and test its

performance. The four procedures can be used to obtain the

processes' elapsed time, CPU time, I/O counts, and the

number of page faults. These procedures are easy to use,

but they are constrained by two factors. First, they

provide only a limited amount of information, and second,

they can only be used to obtain information on the

specific process being executed. Performance information

on other active processes is not available.

AXSystem Src Library (ref. 18:124-132). The

system services library provides the SYS$GETJPI procedure

which provides access to a wide range of performance

information on a user process. Additionally, it has the

capability to retrieve information about more than one

specific process. The system service procedure is a more

powerful tool to instrument a process (applications

program) since it can simultaneously measure the

performance of several processes. For example, it could be

used to simultaneously measure the performance of the DBMS

and all user processes of the DBMS. One drawback of this

procedure is that it does not provide data analysis

capabilities.

The system services library also provides the

IV-1 9

SYS$GETTIM procedure which provides access to the system

clock to a resolution of 100 nanoseconds. This procedure
I

is useful for accurately measuring the elapsed time

between events.

I

TOTAL DBMS L g iity (ref. 9:Chap 7 and 8). The

TOTAL logging facility provides the capability to log

before images, DBMS functions, or both. Log information

can be recorded on either tape or disk media, and the

capability exists to define a two file flip-flop approach.

The information is recorded in the log file in variable

length records inside of a fixed size block, and the block

size is established at data base generation time.

A. Typically, the information contained in a DBMS S

Log file is useful for determining performance parameters

such as DBMS throughput, the arrival rates of DML

commands, the distribution of the arrival rates, etc. p
(ref. 2:319). Unfortunately, the log file provided by the

TOTAL DBMS is specifically designed for recovery purposes.

Therefore, the TOTAL DBMS only logs storage and control

DML commands. All data pertaining to retrieval and special

purpose DML commands is not recorded. Additionally, the

log file does not contain the time information is

recorded; it only records the date. This means the log

file can't be used to calculate the arrival rate or

distribution of the arrival rate for the DML storage

IV-20

.....- -. --.......-.-.... -.-..- :

operations (useful statistics for constructing

probabilistic models of DBMS processing). For thee

reasons, the TOTAL DBMS Log Facility was not use e

DBMS performance monitor.

DaaI A Tools

Only one data analysis tool was available for the

VAX 11/780 development system. This was the Haessle STAT

package (ref. 40:). It was not operational on the system,

and an evaluation of the user manual showed it was limited

in its capabilities. It can not handle alpha-numeric data;

therefore, it could not be used to select data based on

alpha-numeric values such as job/process name, date, time,

etc..

The capability existed to generate data tapes for

use on a CYBER computer system and the SPSS software

package. This tool provided the necessary data selection

capabilities based on alpha-numeric values; however, it

could not be used for "on-line" analysis. It required

human intervention to create the tape, prepare a CYBER job

to analyze the data on the tape, run the job, and pick-up

the results.

Set of Measurable Performance Paramters

Of the 104 performance parameters developed during

the system requirements stage (ref. Table C-1), 66 were

IV-21

p."

capable of being measured on the VAX 11/780 by using a

combination of the Monitor Utility, Accounting Utility,

SYE Utility, and System Services Library. Of the 38

remaining parameters, 10 were not measured due to the lack

of a hardware monitor, 11 were re-defined by VAX unique

parameters, and 17 were not measurable. Additionally,

eight parameters unique to the VAX 11/780 memory and I/O

system management were added to the set. Table IV-2

contains an example of the measurable parameters and their

corresponding sources. The complete set of measurable

performance parameters and their corresponding sources are

contained in Table E-7 of Appendix E.

Implementation O

The evaluation of the capabilities of the existing

performance tools presented several options for the actual

implementation of a DBMS performance monitor, and these

options were in the area of data analysis. For example,

the monitor and accounting utilities have the capability

to produce raw data files for user developed data analysis

software, or they have the capability to produce ASCII

formatted summary files which contain the required

analysis. If the raw data files option is chosen, data

analysis software must be provided or developed by the

user. If the summary files option is chosen, the data is

analyzed by the utility; however, the data is intermixed

IV-22

L

" - " - .'-. : . -- .-.-,-"- """"-.-... '.-., - """"""". . , -""""""" . ,- ,"""",''""""-.-,..-' - '. '''., '" . " ', '' , ', '' '

TABLE IV-2

E p .L V.AX nd TOTAL Performance Parameters

Parameter Name Source

System throughput Accounting Utility

DBMS throughput DBMS Log (DBMS Storage Functions only)
or an Instrumented Program

System and DBMS Accounting Utility
turnaround time

System and DBMS Instrumented Program
response time

Component SYE Utility
reliability

CPU busy Monitor Utility

DBMS CPU Calculated using Accounting Utility
utilization data

Number of page Calculated using Accounting Utility
faults (system) data

Number of page Calculated using Accounting Utility
faults (DBMS) data

I/O rates Monitor Utility

Number of data DBMS Log (DBMS Storage Functions only)
base objects or an Instrumented Program
accessed

Mean I/O Calculated using data from an
statistics per Instrumented Program
DML statement

Device SYE Utility
utilization
(system)

Mean length of Monitor Utility
system queues

IV- 23-

with print headers generated by the utility. This does not

present a problem if the VAX generated format is

acceptable for the performance report, but if a different

type of performance report is desired, the ASCII formatted

summary files have to be read by a specialized program to

locate and extract the values of the measurement data.

The data produced by instrumented applications

programs also needs to be analyzed, and this analysis

could be performed by either the instrumented program or

separate data analysis software.

Additionally, two options existed in terms of data

presentation. The data produced by each tool could be

separately printed and consolidated by the analyst, or

special presentation software could be written to

consolidate the data and produce a consolidated

performance measurement report.

Implementation L

For this study, it was decided to use the data

analysis capabilities of the monitor and accounting

utilities instead of developing new data analysis

routines. Additionally, it was decided to create a

consolidated performance measurement report, and this

required the development of specialized software to

extract the necessary performance parameter values from

the ASCII formatted summary files. Typically, specialized

i. °.":IV-24

;::? ,~~~~~~~.. ,...... ,...... ,,...,..

software such as this should be avoided; however,

developing new software for a function that already exists

is too wasteful. Therefore, the analysis capabilities of

the utilities and a specialized, well documented, data

extraction program were chosen as the implementation

method.

To make the instrumented program capability more

powerful, it was decided that a generalized

instrumentation utility would be developed. This allows

any VAX user to instrument their applications programs

through subroutine calls to the instrumentation utility.

Also, it was decided the instrumentation utility would

operate in two discrete steps. In the first step, it would

only collect data and write it to a file, and after all40 p

the data was recorded, the second step would analyze the

recorded data. Therefore, the instrumentation utility

provides not only a general purpose utility to instrument

programs, it can provide both generalized or specialized

data analysis capabilities. This allows the

instrumentation program to be more general purpose and be D

used for more than just DBMS oriented applications

program.

To provide data analysis for the instrumentation S

utility, it was decided that data analysis software would

be developed as a part of this study. This decision was

made for two reasons. First, the level of data analysis

IV-25

S

S.

required is relatively simple, and second, an online data

analysis capability will provide better service than the

alternative of creating data files for use on the CYBER

computer.

A block diagram of the implementation plan is shown --

in Figure IV-4, and this figure shows how each major

functional requirement is accomplished through a set of

computer software. The blocks annotated with a (U) denote
S

a VAX utility, while the blocks annotated with a (P)

denote a program developed as a part of the study.

In terms of controlling the implementation, the user

interface is used to generate a VAX command procedure, and

this procedure contains all the necessary measurement

control, analysis, and presentation commands in the form •

of VAX Command Language statements. These statements are

used to initiate the necessary performance tools and user

developed software comprising the DBMS performance

monitor. After the user has completely specified the

measurement session and selected the exit option, the user

interface will display a message instructing the user to
D

enter the following VAX command:

$SUBMIT/NOLOG_FILE [DBMON]DBMONINIT

This command submits the DBMS performance monitor as a

IV-26

°.

- - -- - - - - -- - - - - -- - - - - - -- - ---....-...
........................ . . .

E'P

>-44

E-4 4 9z0.

Cn E-4

6-. Lai

E-4 -t
Q.~O. -~ La.

E-4J r1 n I
19 x = >-

L) 44 E- ti

crz. -.J

-)

w E-

IV- 27

background batch job allowing the terminal to be used for

other tasks.

Summary

This chapter examined the details of implementing

the generalized design for a DBMS performance monitor on a

VAX 11/780 computer and the TOTAL DBMS. First, the

operational details of the VAX computer and TOTAL DBMS

were presented to illustrate the importance of

understanding the details of their operation. Next, the

existing performance evaluation tools of the VAX computer

and TOTAL DBMS were evaluated to determine the set of

tools useful to the development of a DBMS performance

monitor. Additionally, the VAX operating system was

examined to determine if any "hooks" existed to facilitate

the development of additional performance tools. Based on

the results of the system evaluation, a plan for

implementing the DBMS performance monitor was developed,

and the next chapter discusses the details of actually

implementing the DBMS performance monitor.

IV-28

.D .~.

.* .,,.. .

f g" Q Qo
°

a• o
•

.
•

•
•

•
•

• % ° m . •• • • •• • • • .o .q . . • .• .• °..-. * ** . l

V. Program Design, Implementation, and Testing

Introduction

This chapter describes the development of the User

Interface, Instrumentation Utility, Data Analysis, and

Measurement Report programs identified in the

implementation plan of Figure IV-4. Each program is

described individually and the description includes:

specialized data structures, high level program structure,

and program testing along with results. In addition to the

documentation presented in this chapter, Appendix F

contains complete and detailed structure charts for each

*program.

Development Strategy

A development priority was assigned to each of the

four programs, and the highest priorities were assigned to

the programs responsible for data collection tasks. This

strategy seemed reasonable since it is impossible to

analyze or present data that has not been collected.

The user interface controls all the performance -

tools used in the DBMS performance monitor, and it was

assigned the highest development priority. This allowed

all existing VAX performance tools to begin collecting

data as quickly as possible. Also, developing this program

first provided two other advantages. It provided a basis

V-i

ii-

for testing the generalized design presented in Chapter 3,

and it provided a limited DBMS performance monitoring

capability with the development of a single program.

* .The instrumentation utility is the only other

program involving data collection tasks, and it was

assigned second development priority. Of the two remaining

programs, the data analysis program analyzes the data

collected by the instrumentation utility, and the

measurement report program produces a consolidated

measurement report. Since the VAX performance tools can

produce measurement reports (ref. 21:Chapter 1,12, and

17), the need for a consolidated measurement report is

more of a "user friendly" feature than it is an essential

requirement. Therefore, third priority for development was

assigned to the data analysis program, and fourth priority

for development was assigned to the measurement report

program.

in rocedure

Before the test plan discussed in Chapter 3 can be

used, a detailed procedure for applying the test plan must

be developed. The procedure used in this study consists of

four steps which are: unit testing, integration testing,

validation testing, and system testing (ref. 41:295-305).

As a whole, these steps are referred to as incremental

testing because the testing proceeds on an incremental

V-2

"-. q-7

basis throughout the software development. An incremental

testing process is consistent with the principles of

software engineering (ref. 53:7-9,88-99 and 41:295), and

if the testing is started with the design stage, it allows

errors to be discovered as early as possible.

Each of the four testing steps are briefly described

below:

Unit Testing. Unit testing focuses on testing

each program module individually, and this step assures

that each module functions correctly as an individual unit

of a software system.

Integration Testing. After unit testing has

been completed, the modules must be assembled or

integrated to form a complete program. Integration testing

focuses on testing the complete program to ensure the

interfaces between modules are working correctly and that

none of the modules have an inadvertent, adverse side

effect on other modules.

V Testing. Validation testing is

performed to ensure the assembled set of software

functions in accordance with the requirements. Typically,

a series of "black-box" test cases are used to perform the

validation.

V--3

System Testing. System testing is the final

step, and it is used to ensure all elements of the system

work properly and that overall system function and

performance requirements are achieved. This testing must

involve the end-user of the software system, and it is

typically culminated in a series of acceptance tests.

.oramming Languaae Selectin

Four languages were available for program

development, and these four languages were MACRO-11

Assembly, FORTRAN, C, and PASCAL. Of these languages,

PASCAL was chosen as the primary development language.

PASCAL was chosen for several reasons, but the two primary

considerations were PASCAL's ability to define data types

and structures, and PASCAL is the language used at AFIT to

develop applications programs for the TOTAL DBMS. (Other

languages such as COBOL, FORTRAN, and MACRO-11 can also be

used to develop TOTAL DBMS applications programs (ref.

8:1-4); however, none of these languages are used at

AFIT).

The ability to define data types and structures is

important to the process of developing programs. The first

steps in program development concentrate on the data

transformations performed by the program, and during these

steps, a scheme for representing the data is devised (ref.

1:9-12; 30:4-5; and 53:89). After this has been

V-4

.

accomplished, the algorithms operating on the devised data

scheme are selected or developed. The end result of the

initial development steps is a data structure consisting

of the selected data types, the functions/algorithms

operating on the data types, and the relationships between

the functions/algorithms and the data types. In formal

terminology, the data structure consists of a set of

domains (data types), a set of functions (algorithms), and

a set of axioms (relationships). This triple is referred

to as an abstract data type, and its specification allows

for a clear understanding of what the data structure is

intended to do (ref. 1:11-14 and 30:7).

The next step in program development is to implement

the data structure specification in a programming

language. Ideally, the development language should contain

constructs facilitating the implementation of the data

structure specification, and PASCAL is such an language

since it allows the user to define their own data types

and structures.

Since AFIT applications programs for the TOTAL DBMS

are developed in PASCAL, it made sense to select PASCAL as

the development language. In this way, users of the DBMS

performance monitor would already have some familiarity

with the language if the monitor needed to be examined

and/or modified.

Situations did occur during the program development

V-5

stage where PASCAL could not be used because of

limitations in its capability to interact with the VAX

File System and System Services Library. Specifically,

problems occurred during the development of the

instrumentation utility. The details of the problems and

the alternate programming language used are presented in

the description of the instrumentation utility.

User Interfc

The concept of iterative enhancement was applied to

the user interface in the following way (ref. 53:54-55 and

4:121-127). The requirements analysis for a DBMS

performance monitor showed the monitor must be flexible

enough to allow users to select the set of performance

parameters applicable to their "level of DBMS observation"

and performance monitoring objectives. Before this

capability can be developed, the ability to measure the

entire set of all possible performance parameters should

be demonstrated. Therefore, the initial development of the

user interface only allows the user to select the option

of measuring the enitre set of parameters. The ability to

select pre-defined or specialized subsets should be a

future expansion. Additionally, the data presentation

options were limited to printed reports. The ability to

display measurement reports on a terminal will also be a

future expansion.

V-6

*.~~.::--

...--

Data Structures. The three main features of a

"user freindly" interface for the DBMS performance monitor

were: allowing the user to navigate through the control

paths of the interface, allowing the user to enter input

data, and informing the user of errors. These features

were provided through the use of menus, data entry

prompts, and error messages, and the PASCAL data type

statement was used to define descriptive names for the

individual menus, prompts, and messages. In this way, an

easy mechanism for specifying individual data objects to

the functions operating on the defined names was

developed, and the functions were easily implemented

through the use of case statements. An example of the type

definition for the menu names and the DISPLAYMENU

procedure is shown in Figure V-1.

Program Structure. The high level structure of the

user interface is shown in Figure V-2. The user interface

was designed using a state diagram to determine the

control paths through the user interface. After this was

completed, each state was evaluated for control path

options, data entry requirements, and possible error

processing/messages. Using the results of the evaluation,

the last design step was to develop a set of conventions

for the menus, data entry prompts, and error messages. A

set of conventions is necessary because it assures the

V-7

• - "- ", '- -". ".". " " " " . . .

TYPE
MENUNAME (MAIN,PARAMETERS,ANALYSIS ;

PROCEDURE DISPLAYMENU(NAME MENUNAME);
BEGIN

CASE NAME OF

MAIN: (*PASCAL CODE TO DISPLAY THE MAIN MENU *

PARAMETERS: ('PASCAL CODE TO DISPLAY PARAMETERS

MENU *

END (*END CASE *

END; (*END PROCEDURE DISPLAYMENU *

Figure V-i1. Example of Data Type Definition

~. PROGRAM

GTSREDITUSER CREATE

Figure V-2. User Interface Structure

V- 8

operation of the program remains consisent, thereby,

reducing the potential for human error (ref. 38:257 and

44:112-114).

The state diagram evaluation showed two types

of data needed to be entered by the user. The first type

is static data which maintains a constant definition for

all executions of the DBMS performance monitor. Examples

of static data are pre-defined performance parameter

subsets, functions performed by the user interface, data

analysis options, etc.. Menus with descriptive titles were

used to enter static data, and the user makes the desired

selection by entering a single number. An example menu is

shown in Figure V-3, and the conventions established for

the menus are:

1. The menu title is always displayed in

double height characters, centered in lines 2 and 3 of the

display.

2. Menu selections are always numbers.

3. The first menu selection line always

starts on line 6, and the last possible menu selection

line is line 16.

4. The enter selection prompt is always

displayed in line 18 in reverse video.

V-9-

......-...... ,......".. . . .

• . . -, .

-.

MAIN MENU I

1..SPECIFY MEASUREMENT SESSION

2..DELETE MEASUREMENT SESSION

3..SHOW STATUS OF MEASUREMENT SESSION

4..EXIT PROGRAM

ENTER SELECTION >

Figure V-3. Example Menu
I

The second type of data is dynamic data, and

this type of data can vary for each execution of the DBMS

performance monitor. Examples of dynamic data are: the

start date, the stop date, the stop time, etc.. Full

prompting, with examples, was used for the entering of

dyanamic data. An example of a data entry prompt is shown

in Figure V-4, and the following conventions were

established for data entry prompts:

1. Information and/or examples relating

to data entry prompts always begin in line 12.

2. The user prompt line is always

displayed in reverse video.

V-10

ENTER STOP TIME FOR MONITOR SESSION
FORMAT IS HH:MM:SS, EXAMPLE 18:45:00
PRESS <RETURN> FOR DEFAULT STOP TIME OF 24:00:00

ENTER STOP TIME > < END-OF-INPUT-FIELD

Figure V-4. Example Data Entry Prompt

3. The length of the data entry field is

shown.

In addition to allowing the user to enter data,

the data was always edited as fully as possible to detect

and correct errors at the earliest possible time. This

capability required the display of error messages when

errors were detected. Error messages are always as

informational as possible, and to help to user to

recognize the mistake, the original entry is not erased.

" The cursor is re-positioned to the beginning of the data

entry field, and the user is allowed to type over the

previous entry. The following convention was established

" for the display of error messages:

Error messages are always displayed in

" lines 23 and 24 of the display in double height

characters.

V-11

.-- o - - - , - -, , , , , , ,- - , - ' ,,*' ' ,, . ' ,- ' ,• ,,*,, " ,,*,' ,. , " . ".,, - , - - - ,, - . - . /

A special set of terminal handling routines

were developed for the user interface to help make it as

"user friendly" as possible. These routines performed

functions such as: positioning the cursor to a specified

row and column number, erasing parts of or the entire

display, drawing boxes around items, displaying items in

reverse video, etc.. The capabilities provided by these

routines enhanced the appearance of the screen formats and

provided a more pleasing environment than scrolling. These

routines were established and maintained in a separate

external library. This allows the user interface to be

re-hosted on a different type of terminal by simply

modifying the external terminal routines. The user

interface program remains independent of the terminal

type.

After a measurement session is completely

specified, the data entered by the user is always -

displayed for review. If changes need to be made,

individual data items can be selected for modification.

All modifications are fully prompted in addition to

displaying the current value. After all the modifications

have been made, the data is re-displayed. If the data is

correct, the command sets for controlling the DBMS

performance monitor are created; otherwise, the user can

continue to review and modify the data. Additionally, the

data is written to a session log file for use by other

V-12..

programs. The information recorded in the log record is

shown in Table V-I.

"Testing and jesult. The user interface was tested

in accordance with the test plan developed during the

system design stage (ref. III-10 and Appendix D). For

those features that have been implemented, the user

interface program has successfully passed all tests

conducted during the unit, integration, and validation

testing steps. No design modifications were required. -I
-

Instrumentation Ulity

The instrumentation utility is the mechanism used to

obtain detailed performance information at the DML

statement level of a DBMS. Ideally, this utility should be

designed as a module of the DBMS, allowing individual

users to enable or disable its operation. However, the

TOTAL DBMS does not have this utility designed within it,

and it must be provided in some other way. Two approaches

to developing the instrumentation utility were considered.

The first approach involved modifying the TOTAL DBMS to

include this utility, but as stated in the system analysis

chapter, this approach entails a high deal of risk. It

could potentially introduce errors into the DBMS, and it

makes it difficult to maintain DBMS updates. Additionally,

this approach requires an intimate knowledge of the

V-13

.6..-

Table V-I

Measurement Session J Information

Name of the Measurement Session
Start Date
Start Time
Stop Date
Stop Time
Data Analysis Options
Data Presentation Options
Performance Parameter Set
Data Collection interval for the VAX/VMS

Monitor Utility
Status of the Measurement Session

software modules comprising the TOTAL DBMS, and this

information was not available.

The second approach, the one used in this study, is

to provide users with an instrumentation utility that can

be incorporated into applications programs. The VAX 11/780

System Services Library provided the necessary system

routines for accessing performance data maintained by the

operating system tables (ref. 18:124-132), and a set of

external procedures (subroutines) were developed to allow

easy access to the capabilities provided by the system

services library.

Three external procedures were defined as the

interface to the instrumentation utility. To instrument a

DBMS applications program, a user defines the three

external procedures in the PASCAL applications program,

and calls to the procedures are included in the

applications program to allow performance parameter values

V-14

I <- -- .

to be measured and accumulated. The names of the three

procedures and the functions they perform are described

below, and Figure V-5 illustrates how the instrumentation 5

utiltity is incorporated into an applications program.

1. INITUTILITY - This procedure initializes

the instrumentation utility and creates a data file for

accumulating performance parameter values. This procedure

is typically called once before the data base signon

request is sent to the TOTAL DBMS, and the other two

procedures are called on a DML by DML statement basis.
S

However, the capability exists to call this procedure more

than once, thereby, creating more than one data file. This

capability gives the user the flexibility to tailor the

contents of the data file for use in specially designed

performance tests. Two parameters, the program and data

base names, are inputs to this procedure, and a completion
I

status is the output from the procedure. The two input

parameters are PASCAL string types, and they can be

represented either as a literal or variable name. Since
I

the status is supplied by the external procedures, a

variable name must be specified for the output parameter.

2. MEASUREDBMS - This procedure records the
I

state of the DBMS just prior to the execution of a DML

statement (or group of DML statements), and a call to this

procedure should immediately precede a DML statement. In

V-15

. - . - .•.. ..

PROGRAM COURSEDATA(INPUTOUTPUT);

TYPE
BUFF4 PACKED ARRAY [l..4] OF CHAR;
BUFF5 PACKED ARRAY [1..51 OF CHAR;
BUFF6 PACKED ARRAY (l..61 OF CHAR;
BUFF15 PACKED ARRAY [1..151 OF CHAR;

PROCEDURE INITUTILITY(%STDESCR PROGRAMNAME :BUFF15;
%STDESCR DATABASENAME :BUFF6;
%STDESCR STATUS : BUFF4);
EXT ERN;

PROCEDURE MEASUREDBMS(%STDESCR DBMSFUNCTION :BUFF5;
%STDESCR DBMSFILENAME : BUFF4;
%STDESCR STATUS :BUFFLI);
EXT ERN;

PROCEDURE ENDMEASURE(%STDESCR ENDCODE :BUFF6;
%STDESCR STATUS :BUFF4);
EXT ERN;

PROCEDURE GETCOURSEDATA;

(i PROCEDURE DATBAS(Call Parameters...); EXTERN;

BEGIN

COMMAND :I READMf;
FNAME :I CRSE';

ME ASUR EDBMS (COM MAND, FN AME ,ST ATOODE);
DATBAS(Parameters comprising a DML statement);
ENDMEASURE(?ENDDML' ,STATCODE);

END; (*END PROCEDURE GETCOURSEDATA '

BEGIN C'BEGIN MAIN PROGRAM '

INITUTILITYO UPDATECOURSES ', 'AFITDB' ,STATCODE);

GETC OU R SEDA TA;

END.

Figure V-5. Using the Instrumentation Utility

V-16

W7 7<, " " "-.. . " "% --.'- '- " " -. . - .-

the case of the TOTAL DBMS, a call to this procedure

immediately precedes a call to the DATBAS subroutine. Two

parameters, the name of the DBMS function (DML command) .

and the name of the data base file, are inputs to this

procedure, and a completion status is the output from the

procedure. The two input parameters are PASCAL string

types, and they can be represented either as a literal or

variable name. Since the status is supplied by the

external procedures, a variable name must be specified for

the output parameter.

3. ENDMEASURE- This procedure records the

state of the DBMS just after the execution of a DML

statement (or group of DML statements), and a call to this

procedure should immediately follow a DML statement. In

the case of the TOTAL DBMS, a call to this procedure

should immediately follow a call to the DATBAS subroutine.

One parameter, the endcode, is the input to this

procedure, and a completion status is the output from the

procedure. The input parameter is a PASCAL string type,

and it can be represented either as a literal or a

variable name. Since the status is supplied by the

external procedures, a variable name must be specified for

the output parameter. Only two values are defined for the

endcode. The first value is 'ENDDML' and this code denotes

the end of a DML or group of DML statements, allowing .

additional calls to be made to the instrumentation

;

L

""-''"""'- "." " " -'" " " " 'J :"-:-'" ""-'; ".- -" Z:; : : .';:-:-: -:::F~ :.".: ".,: ,;:-.,.._":: :: .;:',:_:. : ::'. "..".",.

utility. The second value is 'ENDPRG', and this code

denotes the end of a measurement session. It causes the

data file to be closed, and the instrumentation utility is

disabled. Therefore, the procedure INITUTILITY must be

called to re-enable it.

Two status codes are returned by the procedures. A

successful completion is indicated by the value '****,

and this is consistent with the successful completion code

of the TOTAL DBMS (ref. 8:2-23). An error condition is

indicated by the value 'EROR', and this value was selected

because it is a four character code with a close

resemblance to the word error. In addition to returning

the error condition, the instrumentation utility is

disabled. Therefore, additional calls to procedures

MEASUREDBMS and ENDMEASURE will have no effect until the

instrumentation utility is re-initialized by calling the

procedure INITUTILITY.

Data Structures. One special data structure was

required by the instrumentation utility, and this

structure was a requirement of the SYS$GETJPI)rocedure in

the VAX System Services Library (ref. 18:124-126). This

data structure is a list of item descriptors for the

performance parameter values retreived from the operating

V-18

." '.... " " " '" ' " " .:

I

system tables. The format of an element of this data

structure is illustrated in Figure V-6.

To record the measured values of the

performance parameters, a data record was created and

written to a file. The contents of this record are shown

in Table V-2.

Program Structure. The high level structure of the

instrumentation utility is shown in Figure V-7. This

diagram shows the three entry points into the

instrumentation utility. This represents the external call

structure from an applications program to the three

procedures making up the instrumentation utility.

Testing and Results. The development of this

program was initially attempted in PASCAL. Small modules

were successfully developed and individually tested, but

these modules could not be successfully integrated into an

instrumentation utility and still remain easy to use. The

major problems were:

1. An external PASCAL module cannot perform

file operations without the file being duplicately and p

exactly defined in the calling program.

2. The itemlist descriptor elements could not

be reliably allocated. Occasionally, the System Service

V-19

m .. , , o. ooo ,o. , • •.o -..j , .. , ,.....,..................,...........................-..........,.-.......

* length * item code *

***address of buffer to receive data

* address of buffer to receive data length*

Figure V-6. Item List Descriptor a

Table V-2.

Measurement D Record

Ce Relative Record Number -
Completion Code
Program Name
Data Base Name
Data Base File Name
Data Base Function
Before Call Date/Time
Before Call CPU Time
Before Call Buffered I/O Count
Before Call Direct I/O Count
Before Call Page Fault Count
Before Call Working Set Size
After Call Date/Time 0
After Call CPU Time
After Call Buffered I/O Count
After Call Direct I/O Count
After Call Page Fault Count
After Call Working Set Size

V-20

9

INITUTILITY MEASUREDBMS ENDMEASURE

INITIALIZE GETDBMSPE RFDATA WTEERFDATA

ERRORHADR

Figure V-7. Instrumentation Utility Structure

Library would return alignment errors meaning it expected

the storage location to begin on a longword boundary which

it did not.

3. Pointers were used to allocate the address

values required in the definition of each item list

descriptor element. However, the amount of new storage

that can be allocated by the NEW() function is limited in

external PASCAL modules.

In an attempt to solve these problems, a

different approach was tried. Instead of the

instrumentation utility being a library of subroutines, it

was implemented as a stand-alone program. However, this

V-21

e-....•
• • , • o • . . 0 , , . . o • .0 . ,

meant the interface between applications programs and the

instrumentation utility could no longer be simple

subroutine calls. The new interface required the

capability for two independent processes to communicate,

and the VAX Mail Utility was used to provide this service.

Using the Mail Utility, the new interface consisted of

Mail messages transmitted between the two processes.

Initially, this approach seemed to be a viable solution;

however, two-way communications proved to be unreliable.

The main problem occurred when two or more applications

programs attempted to access the instrumentation utility

simultaneously. PASCAL treats the mailbox messages as

records read from a sequential file (ref. 19:6-6), and as

j*- soon as one of the programs finished using the

instrumentation utility and closed the mailbox file, all

remaining programs also lost their communications

capability through the mailbox.

At this point it was decided to change the

development language to MACRO-11 assembly. This language

allows the most flexibility and capability to access the

VAX File System and System Services Library. Therefore,

the problems encountered using PASCAL were solved by using

the assembly language capabilites, and this allowed the

simple interface mechanism of calls to external procedures

(ref. Figure V-5) to become feasible again. The MACRO-11

procedures are operational, and they have successfully

V-22

: ~ ****.

completed unit, integration, and validation testing. These

procedures are successfully accessing the system tables

and returning the required performance data.

Data Analyss Program

This program analyzes (reduces) the data collected

by the instrumentation utility. Before this program is

executed, individual data files produced by the

instrumentation utility are merged into one large file

using the COPY command of the VMS operating system.

Records from this file are individually retreived and

processed to compute performance parameter values for

applications programs and the DML statements used in the

programs.

Data Structures. To compute total and average values

for the performance parameters, a data structure is needed

to accumulate the individual values read from the raw data

file. Tables (arrays) were chosen as the data structures

used to accumulate the values, and a hashing function was

chosen as the method used to access specific loactions in

the table. The hash value for a table key is computed by

summing the integer value of each character in the key,

dividing by the table size, and using the remainder as the

hash value. To handle collisions, the technique of linear

probing was used (ref. 1:126 and 30:464).

V-23

-7:.....--........

A simple linear (sequential) search could have

been used to access specific table locations (ref.

30:335-336); however, the data analysis program needs to

maintain more than one table. Specifically, separate

tables for the DML commands, data base names, and data

base file names are used. Since a linear search algorithm

has an average performance of searching half of the table

for each access, the computing time of the search

algorithm can become significant as the size of the table

increases (ref. 30:336). The computing time of hashing

techniques is typically better than linear search

techniques (ref. 30:469); however, the computing time of a

hashing function can approach the computing time of a

linear search if careful attention is not paid to the

loading density of the table (ref. 30:469).

To compare the two techniques, Table V-3 shows

the average number of searches required to search a table

with 30 entries. This example assumes the table has a

loading density of .8 (e.g. 24 locations in the table

contain vaild data and the other six locations are empty).

If three tables are used to accumulate values and each

table is accessed once for each record read from the raw

data file, linear searching requires an average of 46.5

searches while the hashing technique requires an average

of only nine searches, a 500 percent improvement.

V-.24

** * * *.

Table V-3

Average Number of Searches

Average Number of Average Number
Algorithm Searches Formula of Searches

Linear Search (n + 1)/2 15.5

Hashing (with .5(1 + (1/1 - ld)) 3.0
linear probing)

n = 30ld = loading density .8 (24/30)

Formulas obtained from ref. 30:336,470

To implement the hashing technique, five

routines were developed, and each of them are briefly

described:

1. HASH- Computes the hash value of the

key used to access the table.

2. NEXTPROBE - Computes the next probe

point into the table when a collision occurs.

3. INITABLE - Initializes all the hash

table locations to empty.

4. INSERT - Inserts items into the hash

table.

5. LOOKUP - Finds the location of an item

within the hash table.

V-25

.. .

- - - - - - -.

Before the data analysis program is executed,

the individual data files generated by the instrumentation

utility are merged into one file. Typically, the data in

the merged file is composed of data from many different

programs; however, the data from individual programs is

not intermixed within the file. Data from one program

appears as a series of sequential data records. Therefore,

the data from each program can be processed serially until

data from a new program or end-of-file is encountered. The

last record of each data file generated by the

instrumentation utility should contain a last record

indicator in the relative record number field of the file.

However, situations could occur where the indicator is not

generated because the users program did not terminate

correctly due to programming logic errors, system

failures, DBMS errors, etc.. Therefore, a control

mechanism was needed to keep the data analysis program as

robust as possible while reading the data file, thereby,

preventing data from two separate programs from being

accidently merged. The control mechanism was provided by a

simple integer flag used to control the reading of records

from the raw data file.

Program Structure. The high level structure of the

data analysis program is shown in Figure V-8.

V-26

. S S S S S S S S

. . *. S S S

GET RAw DATA WRITE SUMMARY CO M PU T E

HASH
TABLE

ROUTINES

dl_ Figure V-8. Data Analysis Program Structure

Testing and Results. This program is operational;

however, its data analysis capabilities are limited to

only accumulating totals and computing average values for

the DML commands. It has successfully completed unit,

integration, and validation testing. A sample of the I

output generated by this program is shown in Figure V-9.

Measurement Report Program

This program consolidates the summary files produced

by the VAX utilities and the data analysis programs. The

generalized formats of the VAX summary files are not well

V-27

k).. -~~~~~~~ ~~~~.-. ..-.-...... ,............... -. ,....-...........- -'".,

Sa

PROGRAM NAME: SECTION-NAME

DML STATEMENT SUMMARY

NET IEVAL COMMANDS

COMMAND TYPE EXECUTION RESPONSE CPU BUFFERED DIRECT PACE WORKING

NAME INFORMATION COUNT TIME(sees) TIME(w.c.) I/O IO FAULTS SET

ADNXT total 511 IS.160 5680 1022 306 18 100

average 0.030 11.S 2.0 0.6 0.0 100.0

READM total 37 2.010 520 To 37 2 t00
:vrae. O.OSt 11.1 2.0 1.0 0.1 100.0

READV total 1172 22.920 11510 2344 110 8 100

average 0.020 9.8 2.0 0.1 0.0 100.0

total 1720 N0.090 17910 34M0 I3 20 100

avera 0.023 10.8 2.0 0.3 0.0 100.0

STONAGE COMMANDS

NO STONAGE COMMANDS EXECUTED

CONTNOL COMMANDS

COMMAND TYPE EXECUTION RESPONSE CPU BUFFERED DINECT PAGE WONKING

NAME INFORMATION COUNT TIME(sacs) TIME(lsec) 1/0 1/0 FAULTS SET

SINON total 2 3.060 ISMO 33 28 2116 100

averag
e

1.530 770.0 16.5 38.0 1058.0 100.0

SINOF total 2 J.330 980 is 28 1361 100

average 1.665 870.0 9.0 16.0 660.5 100.0

-sum- total N 6.390 280 51 56 3477 100

average 1.59? 620.0 12.8 18.0 869.3 100.0

SPECXAL PURPOSE COMMANDS

NO SPECIAL PURPOSE COMMANDS EXECUTED

INVALID COMMANDS

NO INVALID COMMANDS EXECUTED

SUMMART OF ALL COMMANDS

COMMAND TYPE EXECUTION RESPONSE CPU BUFFERED DIRECT PAGE WORKING

NAME INFORMATION COUNT TIME(sees) TIMEtmoec) 1/0 I/O FAULTS SET

-aum- total 1728 46.800 20390 3491 509 3505 100

avarage 0.027 11.8 2.0 0.3 2.0 100.0

Figure V-9. Sample Output from Data Analysis Program

related to all aspects of DBMS performance. For example,

the summary files generated by the Accounting Utility do

not directly relate resource consumption by the TOTAL DBMS

to resource consumption by all other programs (ref.

21:Chapter 1). This type of information is necessary to

determine relationships such as: the percentage of CPU

V-28

time used by the DBMS, the percentage of page faults

attributable to the DBMS, the percentage of I/O activity

attributable to the DBMS, etc.. Therefore, this program

reads the individual VAX summary files and extracts the

necessary values for DBMS performance parameters. After

the values have been extracted, a performance measurement

report is created in a format relating the extracted

performance parameter values to the different aspects of

computer system and DBMS performance.

Test and Results. Due to time limitations and

problems with developing the instrumentation utility,

program implementation was not initiated.

Summary-

This chapter presented the development of the four

programs required by the implementation plan of Chapter 4.

The high level structure of each program was presented in

addition to any special data structures used by the

program. The testing results of each program were

presented, and the only major problem occurred in the

development of the instrumentation utility. This problem

was attributable to programming language incompatibilty,

and its effect was to delay the schedule such that the

measurement report pi ram was not developed.

The next chapter presents the results of testing the

V-29

m?

DBMS performance monitor as a complete system.

Additionally, the results of using the monitor to measure

a VAX 11/780 computer and TOTAL DBMS are presented.

V- 30

VI. Results, Conclusions, and Recommendations

Introduction

This chapter presents the results of testing the

DBMS performance monitor as an operational system and the

results of using the monitor to measure the TOTAL DBMS

operating on a VAX 11/780 computer. Additionally, the

conclusions and recommendations derived from the results

of this study are presented.

System

With the exception of the measurement report

program, the DBMS performance monitor is operational and

oi- capable of measuring DBMS performance in a VAX 11/780

environment. No problems were discovered with the

generalized design presented in Chapter 3, and during the

development and testing process, the only significant

problem was the incompatibility of the PASCAL language for

use in developing the instrumentation utility.

The lack of a measurement report program for

consolidating the summary reports generated by the

: individual performance tools is a drawback. It makes the

interpretation of the output cumbersome because it has to

. be manually interpreted. However, all the necessary

* information is available.

VI-1
! '" I-

"" -''€ '.2"'-.''.-''.. ".. .'',-""..''..''-.' "" ',.''..'" ."". "" ."",,.''..'" . '- ""*,"", ""*,"". "" ."", "" . .", "" ."". "*".*..", "- ..

Using the DBMS Performance MQnitor.

This section describes the operational environment
0

of the VAX 11/780 computer and the TOTAL DBMS. Since most

of the work in this study was dedicated to developing the

monitor, only a limited amount of measurements were taken.
S

These measurements provide a general idea of DBMS

performance; however, more measurements need to be taken

with the instrumentation utility to obtain a better
O

understanding of DBMS performance at the DML statement

level. For example, the following types of performance

tests need to be conducted: test the effects of increasing

the number of simultaneous users, test the effects of

increasing the data base size, test the effects of

a.I changing data base generation parameters, test the effects •

of file linkpaths, etc..

VAX 11/780 O Environment. The DBMS

performance monitor was used on the VAX 11/780 computer

described in Chapter 4. Under the current configuration

(ref. Figure IV-1), disk drive 0 is dedicated to the VMS

operating system, and disk drive 1 is available for user

disk volumes. Since the storage space on a disk volume is

limited to 28 megabytes, enough space is not available on

a single volume to satisfy the requirements of all users.

Specifically, the TOTAL DBMS resides on a disk volume

different from the normal user disk volume. 7

VI-2[. ..

The workload for this computer is primarily

generated by student research; however, it does perform a

limited amount of production work for the school

administration. On any given day, the wor' ad for this

computer varies greatly, and it is hypothesized that the

workload is non-stationary. However, no statistical tools

were easily available to verify this hypothesis.

DBSOperational Environment. Currently, the TOTAL

DBMS is being used for two purposes. The first purpose is

to maintain a production data base for use by the EE

Department, and the second purpose is to maintain a

development environment for students in the Computer Data

Base Systems course. Because of the problems with limited

mass-storage space, the TOTAL DBMS is never simultaneously

used to support both purposes. Therefore, the TOTAL DBMS

is used in two different modes. The first mode is a

stand-alone mode for production work, and the second mode

is a multi-user mode for development work on student data

base projects.

This environment created a situation where the

system had little activity during the measurement

sessions. Typically, the system activity was limited to

the TOTAL DBMS, a single DBMS applications program, and

one or two interactive terminals performing program

development tasks such as: text editing, compiling, and - -

VI-3

.-... ,.,?........-....-.................-.-- ,-.. -

test executions. Under these conditions, the VAX computer

showed less than 50 percent CPU utilization where the

utilization was evenly divided between the VMS operating

system and the users. Also, over half of the available

main memory was not being used. Therefore, the measurement

results presented in the next section must be weighed

against the relative inactivity of the system during the

period of time it was being measured.

Monitor Operaion. The details of using the DBMS

Performance Monitor are not presented in this chapter;

however, a complete Users Manual is contained in

Appendix G.

Measurement Results

This section presents the results of using the DBMS

performance monitor, and these results fall into two

categories. The first category is a high level view of

DBMS performance, and the second category is a detailed

view of DBMS performance at the DML statement level.

Iiih Level View. The measurement results presented

for this level were primarily obtained by the VAX Monitor

and Accounting Utilities, and these measurements are

presented by specific resource.

VI-4

.-: .) . , , . .-.. - - .

7i

CPU - Approximately 10 to 15 percent of

the available CPU time was consumed by the TOTAL DBMS.

Memory - Because of the large amount of

free memory space, less than 6 percent of the page faults

generated by the TOTAL DBMS required actual disk reads.

The remainder of the page faults were serviced by

accessing the free or modified page lists.

I/O - The number of direct I/Os the TOTAL

DBMS issues to the disk is dependent upon the logic of the

DBMS applications program; however, the TOTAL DBMS was

consistently the largest user of the disk resources. In

some cases it accounted for almost 45 percent of the total

number of direct I/Os issued by all jobs executed during

the measurement session. However, this did not present a

performance bottleneck since the utilization of the I/O

subsystem was calculated to be less the 5 percent.

From these measurements, it was concluded the

TOTAL DBMS is currently enjoying a performance advantage

due to the abundance of main memory and relative

inactivity of the VAX computer. Response times remain fast

as there is little competition for the processor and I/O

subsystem.

Detailed View. The instrumentation utility was used

to conduct three performance tests at the DML sttement

VI-5

.".

level. For each of the tests, the TOTAL DBMS was being

accessed by a single user and only one data base was being

accessed. The data base consisted of five master files and

two variable files where multiple linkpaths exist between

master and variable files.

The three performance tests are described in

detail below:

Test One. The goal of this test was to provide

a general idea of DBMS performance. Table VI-1 shows the

results of this test, and the values in the table are

grouped by the four general categories of DML statements.

However, not all of the possible DML commands were

measured. The measurements presented in Table VI-I were

made using three retrieval commands (RDNXT, READM, and

READV), three storage commands (ADD-M, ADDVB, and DELVD),

and two control commands (SIGNON and SIGNOF). No special

purpose commands were measured.

The values in the table are average

values; however, they should not be considered typical

values for all applications. These values will vary based

on: data base generation parameters, data base size,

number of files within the data base, linkages between the

data base files, the number of simultaneous users of TOTAL

(and the VAX 11/780), the VAX 11/780 configuration, and

the VAX 11/780 parameters assigned to the account

VI-6

S.

%" • oo - o % % o~~~~~~~~~.. -o -- o . •,. ,. . . •. . ,-. -.

I

Table VI-1

!I
SPerformanc.e Results 2t the DMI Statement Level

RESP CPU DIRECT BUFFERED PAGE
COMMAND TIME TIME I/O I/O FAULT
CATEGORY (sec) (msec) COUNT COUNT COUNT

RETREIVAL .024 10 1 2 0.0

STORAGE .070 17 2 2 0.0

CONTROL 1.403 230 14 13 8.0

SPECIAL <Not Measured>

executing the TOTAL DBMS (e.g. working set quota,

priority, etc.). Even though these values can not be

considered typical, they do provide some insight into DBMS

performance. Specifically, the control category of DML

commands have performance values an order of magnitude

greater than the other two categories, retrieval commands

have the best performance values, and the overall response

time is composed of approximately one-third CPU time and

two-thirds I/O and other wait times.

Test Two. The goal of this test was to

determine the relationship of available main memory and

working set size to DBMS performance. For this test, a

DBMS applications program using a standardized set of DML

commands was executed against various memory

configurations. The set of DML commands consisted of 1,720

retrieval commands (511 RDNXT; 37 READM; and 1,172 READV)

VI-7

"-.-' -'''-' ''" /. .,...'. [. '. . '/ . "'.. -. / ',,,i* .< ',.- '.. < . b i- - -. ' . . .,' '- . . ."-. .. .'- ,

and four control commands (2 SIGNON and 2 SIGNOF). The

results of this test are contained in Table VI-2, and the

following conclusions were drawn from this test:

1. DBMS performance begins to stabilize

at a working set size of 80 pages. Additional increases in

working set size had little effect on performance except

for control commands. The control commands generate a

large number of page faults and require more CPU time.

However, the control commands are executed very

infrequently in a TOTAL DBMS applications program. Hence,

increasing working set size above the stabilization point

for the commonly used DML commands would not be cost

- effective. Based on this, a working set size of 80 pages

is all this is required to obtain satisfactory

performance; anything above this value will add little to

DBMS performance!

2. A working set size less than 80 pages

is not recommended. The response time values shown in

Table VI-2 for working set size less than 80 pages are

artificially fast at main memory sizes of .5 and .75

megabytes because there was little other activity on the

*• measured system. At a main memory size of .5 megabytes and

working set size of 50, a total of 92,705 page faults we.'e

generated, but only 400 of these required page reads from

the disk. All other page faults were serviced by the free

VI-8

i.-..... -...........
.. . -, .-... . ., ... •...•.°.-. ..-... °,-• -. ,. .. -

AD-A149 950 DEVELOPMENT OF A DATA BASE MANAGEMENT SYSTEM 3/3
PERFORMANCE MONITOR VOLUME i(U) AIR FORCE INST OF TECH
WRIOHT-PATTERSON AFB OH SCHOOL OF ENGI. P D BAILOR

UNLSIIDDEC 83 AFIT/GCS/EE,'83D-2-VOL-i F/G 9/2 N

II."..omom

1.0
t12

,

12.12

I iii 1
1.8

1111125 11 1.4 116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS- 9A3-A

%1

..
. I ft - -• .- .. .-I'' - I ,- -** " - * "I :: I* -

....';'.... .'..'..'..'.- .'. -. . ~. , ," ,... ...-..

,I% - -:.

W! ;
n a a - ar

w~ 0. C 05J C7% C 0% L% t. C

m -%0% C U-

00 b

0.w(02 t- N Ln t- 04J 0\C 6 %j C,' t--

Mi 02 N E m CI &n (7 V-

u-I E-4 '- -i uI .4 G

ZO @0 @1 @10 @10 @10 10 @0 .4-

.. ZE .aC 4C 4C +C .J aC 4C 00

XL4 U'% t C3 wU cC.. LCJ rnU f l)7 00 10 0 L 1 0 0 0

toa 4)0)0 4 4) 04 -4-P4a L. LA A L L. .LA
4.3~ LA 4.) t-3 L. 4.) L. 4.) L.

C-)1

V I-?W4

2:I

9 ~ *r%~~b4~.d
N *n L*% Go > % (7*

494Q .. j0 C -

z =

EM 3Cj 0- LA A6

oca. bi 04- c 0 LA- 0

Ow a d

41 44% V- 0 c

AJIQ

CM'

2 m~ ruli uLN O LA @0 m Vli l m tY.- f r0
CD 93 N". %0 -- - =a N J- Na ON @ N M N C N C\
12. w 0 0 coo a0@0 El- 0 E- 0%0 0%0 0 Lin C m
Cf2Z4 *e Z 4 S 00 *0

r-4 P-4 r-4 r- r-4 r-4 s-I -

=a 00.4) 0.4 14) 0 .4 wo 4) 0 4) 0 4) 0 4)0

z a 0 09 0 o4 0 0o 0o 0 4)0

I-N 0 Lin %0 L- co C% 0

0 -4 C-u~ A L L A A L

mc w *

xt)N Nj N~ N~ (V N~ N

'11-10 S

or modified page lists. However, as the number of

simultaneous VAX users increases, the number of TOTAL DBMS

pages resident in the free or modified page lists will

decrease, and the number of page faults requiring disk

reads will increase - causing response times to increase.

This is illustrated in Table VI-2 with memory

configurations of .75 megabytes and working set sizes of

80 and 90 pages. The higher number of page fault reads

increased the response time of the control commands by

approximately .75 seconds even though the actual number of

page faults decreased. (Note: All the performance

parameter values shown in Table VI-2 were obtained through

the instrumentation utility except for the number of page

fault reads. The SYS$GETJPI System Services Routine is not

currently able to monitor the number of page faults reads;

however, this data can be obtained from the summary files

produced by the accounting utility (ref. 21:Chapter 21 and

Table E-2).

3. As working set and main memory size

increased, the number of page faults requiring page reads

from disk approached zero and stabilized. This

relationship is attributable to the page management

characteristics of the VMS operating system. Additional

main memory allows the size of the free and modified page

lists to increase, thereby, pages not currently contained

in the working set remain in main memory - reducing the

VI-11

.. . • t. o.j -_." , , - .. *s* *" *" ," ' * l" , ,' .. .,, ,. ,. ,o.. ,- * ,,'

number of required page reads when a page fault occurs.

Therefore, increasing the size of main memory can

alleviate performance problems caused by an excessive page

read rate.

4. The main memory configuration of .5

megabytes required a working set size of 50 pages.

Attempts to increase the working set caused VMS processes

to be swapped out and the TOTAL DBMS would not load.

Teste Three. The goal of this test was to

determine the overhead effects of the instrumentation

utility. The same DBMS applications program and set of DML

commands used in Test Two were used for this test. To

obtain performance parameter comparisons, the program was

executed with the instrumentation utility included in it

and without the instrumentation utility included in it.

Table VI-3 contains the results of this test, and this

data shows the instrumentation utility increased the

program's overall execution time by 19.07 seconds (16

percent), increased the CPU time by 9.21 seconds (66

percent), and increased the number of direct I/Os by 25

(100 percent).

Evaluating the overhead, the additional

9.21 seconds of CPU time is primarily caused by the iLl

SYS$GETJPI routines and can not be reduced. However, the

other 10 seconds of overhead is attributable to the

.*L VI-12

f Nq

Table VI-3

Instrumentation Utility Overhead

PERFORMANCE

PARAMETER WITH UTILITY WITHOUT UTILTY

EXECUTION TIME 2 min, 16.66 sec 1 min, 57.59 sec

CPU TIME 23.20 sec 13.99 sec

DIRECT I/O COUNT 50 25

increase in the number of direct I/Os. This increase is

caused by the writing of the data file generated by the

instrumentation utility, and it can be reduced by

increasing the blocking factor of the file.

When the overhead is factored over the

Lentire set of 1,724 DML commands, the overhead per DML

statement is 11 milliseconds (msec) of additional response

time. This overhead is constant regardless of the type of

DML statement being measured; however, the impact of the

overhead is weighted by the type of DML statement where

the statements with the fastest response times are

affected the most. Using the average values in Table VI-1,

an 11 msec increase corresponds to a 50 percent increase

in the response time for retrieval commands, a 16 percent

increase for storage commands, and a less than one percent

increase for control commands. In a program with a closely

balanced mix of retrieval and storage commands, the

instrumentation utility can be expected to increase

VI-13

average DML response time by approximately 25 to 30

percent; however, this should not affect the "visible"

response time of each DML statement. Therefore, overall

instrumentation utility overhead is considered minimal as

it does not adversely affect DBMS, VAX 11/780, or

applications program performance.

On the basis of the work performed during this

study, the following conclusions on monitoring DBMS

performance are made:

1. Existing performance tools for a general

purpose computer system can provide valuable information

for evaluating high level DBMS performance. However,

detailed performance information at the DML statement

level requires a more specialized type of performance

tool, such as the instrumentation utility. Inversely, the

instrumentation utility is not able to provide a high

level view of DBMS performance. It is only suited for

detailed types of performance information. Therefore, the

use of a combination of different performance tools was a

necessity for obtaining all required performance

information. A single performance tool would not have

satisfied the performance monitoring objectives of all

users.

VI-14

.-t

[,.9P , • _ '. ' , .'_ . ,° -' , *,', ., *." ~ * * ., . .,' .'. ". '*• , _ _, ". e . -,

L

2. The generalized design for a DBMS

performance monitor proved to be valid for the VAX 11/780

and TOTAL DBMS. Additionally, it is valid for all other

types of DBMSs available for the VAX 11/780 computer and

VMS operating system. Also, the instrumentation utility

showed it is possible to monitor a DBMS at the DML

statement level regardless of the data model it is based

on.

3. The top-down design techniques of SADT

diagrams, stepwise refinement, and iterative enhancement

helped to simplify the task of solving the problem

attacked by this study. The results of these techniques

simplified the program development stage, and they have

provided an exceptional level of documentation. However,

the preparation of the documentation is a substantial

task, and it is as prone to underestimation of time

requirements as is the actual software development!

4. A tool such as the instrumentation utility

is relatively straightforward to develop when the

operating system provides a set of "hooks" for

instrumentation. The System Services Library (ref.

18:124-132) of the VAX/VMS operating system, is an

excellent example of a hopefully continuing trend to make

computer systems easier to measure.

5. A part of DBMS design requirements should

be performance monitoring capabilities. While the

VI-15 -.,

.' '"m .'-' ,." ;.% _ .L. .% ". . • % '% • . ' .', .'. -,.-.- -... ,%- .,. .. % ... j... . , -.'

instrumentation utility is a convienient and easy to use

tool, it would be better if it were designed as a part of

the DBMS. For example, it could be made an extension to

the DBMS Log Facility.

6. The DEC extensions to the PASCAL language

can be misleading. It is possible to use their PASCAL

language to access low-level operating system services via

the system services library; however, there is a point at

which it becomes cumbersome to do so. Some of the system

services library routines require data structures with a

precise, low level definition and word/byte boundary

constraints. The definition of these structures in a

PASCAL program is tedious, prone to error, and confusing

(especially to those expected to maintain the programs).

Therefore, extreme care must be taken when choosing a

programming language for a design requiring the functions

provided by the System Services Library. Even though a

higher learning curve is normally associated with it, the

MACRO-it Assembly Language may be a better choice than

PASCAL.

Recommendations

Based on the results of this study and the

observations made during it, the following recommendations

for further study and development are made:

i

V I- 16 ::.

_____ _____ - *.** .,o *.*,-. a

1. The remaining pieces of the DBMS "

performance monitor should be completed. The remaining

development work is outlined below by individual program.

User Interface -

a. Allow specific or generalized

subsets of performance parameters to be selected and

measured.

b. Allow the status of a measurement

session to be displayed and modified.

c. Allow the consolidated

measurement report to be displayed on a terminal.

Data Analysis Program -

a. Compute statistics on the number

of accesses to each data base and the individual files

within the data base.

b. Generate information suitable for

constructing and evaluating queueing models.

Measurement Report Program - Needs to be

developed and tested.

2. The measurement capabilities of the

instrumentation utility should be further enhanced. This

utility currently monitors a pre-selected, minimum set of

performance parameters. Its capabilities can be expanded

to include additional performance parameters. This

VI-1T

%*... .L-\ . % .~~~ . .--

increases its generality by allowing users to select

additional performance parameters to be measured or to

default to the minimum subset. This capability will allow

users to better design and measure specific performance

tests and experiments.

3. A benchmark data base and set of queries

should be developed. Using the benchmark to generate

example data bases and translating the queries to

appropriate DML statements, the performance of different

types of DBMSs could be compared using the DBMS

performance monitor.

4. A suitable statistical package should be

obtained for the VAX computer, such as SPSS-X (ref. 22:83)

or an updated version of the Haessle STAT Package (ref.

40:). Since the instrumentation utility records the

arrival and completion times of DML statements, arrival

and service time distrubutions can be calculated for use

in queueing models. This would make it possible to conduct

experiments for determining if different types of DBMSs

fit different models or if there appears to be a model

which can be universally applied to all types of DBMSs.

Additionally, the statistical package would be helpful in

deriving regression models used for explaining the

response time of DML statements.

rVI.1

VI-18

" . * S-Q *-* * *q %". o • .o • •a * '

-p-

Bibliogra2Y

1. Aho, Alfred V., &t 1. Data StruCturs AadJ
zw&t. Reading: Addison-Wesley Publishing

Company, 1983.

2. Atre, S. DATA BA=E: S.IL,.tu g . bigug fr Deign,
eerf.tmance, and Knagemgnt. New York: John Wiley
and Sons, Inc., 1980.

3. Badre, Albert N. "Designing the Human - ComputerInterface," A0H SIGCSE Bulei, lA: 41-44 .

(September 1982).

4. Basili, Victor R. and Turner, Albert J. "Iterative
Enhancement: A Practical Technique for Software
Development," ILU Tutorial DD S
Pgramming, Catalog No. 75CH1049-6: 121-127 (1977).

5. Bell, T. E., &t l. Computer Performance Analysis:
Framewk and Initial Phases f.r & Pfrmance
Imrovm~ent E . Report R-549-1-PR. Santa Monica,
California: Rand Corporation, November 1972.

6. Bray, Olin H. and Freeman, Harvey A. DAIJU Base
ComPutr3. Lexington: D.C. Heath and Company, 1979.

7. Brownsmith, Joseph D. A Methodology fr the
Performanc g f Da DA=e Sysms: An
Et nthe IMZ= Methodology. PhD Dissertation.
Columbus, Ohio: Ohio State University, 1979.
(NASA 79N34080).

8. Cincom Systems Inc. Pub ation Number P002-.
Canada: Cincom Systems Inc., 1979.

9. Cincom Systems Inc. DA" DAM Administrator's Quide
f. f AXor 11 Sstems (Publication Number P10-0001-02).
Canada: Cincom Systems Inc., 1981.

10. Datapro Research Corporation. DaLtaDro 10 an= ReP..rt_
2n Minicomputers. Delran: Datapro Research
Corporation, 1983.

11. Date, C. J. An Introduction toa S e
(Third Edition). Reading: Addison-Wesley Publishing
Company, 1982.

BIB-I

'.1

12. Dearnly, P. "Monitoring Database System Performance,"
Computer Journal, d: 15-19 (January 1978).

13. DeLutis, Thomas G. a Methodology fr the Perormanc
ovaatianf I m Processing Systems.

Technical Report OSU-CISRC-TR-77-2. Columbus, Ohio:
Ohio State University, March 1977.

14. DeMarco, Tom. Structured Analysis and Sysem
Snecification. New York: Yourdan Press, 1978.

15. Digital Equipment Corporation. Hardware Handbook.
Maynard, Ma.: DEC. 1980.

16. Digital Equipment Corporation. Software Product
Dscr12ion, VAX-11 SPM. Maynard, Ma.: DEC, 1983. S

17. Digital Equipment Corporation. VAX/VM$ Summary
D and Glossary. Maynard, Ma.: DEC, 1982.

18. Digital Equipment Corporation. VAX/VMS System
Reference Manual. Maynard, Ma.: DEC, 1982. R

19. Digital Equipment Corporation. VAX-11 Pascal User's•
Guide. Maynard, Ma.: DEC, 1981.

20. Digital Equipment Corporation. VAX-ii Run-im-
Library User's Guide. Maynard, Ma.: DEC, 1982.

21. Digital Equipment Corporation. VAX-II Utilities
Reference Manual. Maynard, Ma.: DEC, 1982.

22. Engineering Systems Group. Software Referral tal-g.-
Marlboro, Ma.: Digital Equipment Corporation, 1983.

23. Ferrari, Domenico and Liu, Mark. "A General-Purpose
Software Measurement Tool," Software-Practice anD.d
xpei , 5: 181-192 (1975).

24. Ferrari, Domenico. Computer Systes Performance
altuati. Englewood Cliffs: Prentice-Hall, Inc.,

1978.

25. Gilpin, Eugene C. Jr. De Q.oUAD.t gf Computer
Performanc Evaluio±n Tooi s £Qr YAX-1J1/_
ompDutra. MS Thesis. Wright-Patterson AFB, Ohio:

Air Force Institute of Technology, December 1982.

26. Hansen, Per Brinch. berating S P.r.i.nQiples."
Englewood Cliffs: Prentice-Hall Inc., 1973.

BIB-2

L_

... . •-- ",,-. -'_.-_ -' -'-.' ,'. -. .:= '. . . .• -, ,,.,,..-.-......-,....,'- ,...,.. ,.,... -.-.-. ,,,.,

27. Hartrum, Thomas C. Lecture materials and Computer
Performance Evaluation Notes distributed in EE6.52,
Computer Performance Measurement and Evaluation.
School of Engineering, Air Force Institute of
Technology, Wright-Patterson AFB, Ohio, 1983.

28. Hawthorn, Paula B. E.v.Juatin j Enhanadnt 2of ± =
Performance _UReatonlDatabase Management

Systems. PhD Dissertation. Berkley, California:
University of California, 1979. (NASA 80N28233).

29. Hawthorn, Paula and Stonebraker, Micheal.
"Performance Analysis of a Relational Data Base
Management System," Proc.edin1Q f 2.1.I
International Conference on M 2L Data, 1-12
(1979).

30. Horowitz, Ellis and Sahni, Sartaj. Fundamentals 2f
D.ata . Rockville: Computer Science Press,
Inc., 1982.

31. Houstis, Catherine E. "Performance Evaluation of a
Data Base System," South Eastern Conferenc
Systems Theory, 251-255 (1980).

32. Jacob, Robert J. K. "Using Formal Specifications in
the Design of a Human - Computer Interface,"
Communications at Jhe A01, Z: 259-264 (April 1983).

33. Madnick, Stuart E. and Donovan, John J. 0
Systems. New York: McGraw-Hill Book Company, 1974.

34. Maryanski, Fred J. "Backend Database Systems,"
Compuing Surveys, 12: 3-24 (March 1980).

35. Merrill, Hebert W. A Comprehensive Approah &_U=
Performance Measurement Ind Ev_ i 2f

gComputer Sy m. PhD Dissertation.
Champaign, Illinois: University of Illinois at
Urbana-Champaign, 1979. (NASA 80N18765).

36. Myers, Glenford J. Aanc in Comjuter Architecture
(Second Edition). New York: John Wiley and Sons Inc.,
1982.

37. Myers, Glenford J. Th& Art Qf Software Iting. New
York: John Wiley and Sons Inc., 1979.

38. Norman, Donald A. "Design Rules Based on Analyses of
Human Error," Communications 2f the A0, k: 254-258
(April 1983).

BIB-3

.P;:-=4...~.~~ : -.........*

S-.5 5..

39. Oliver, N. N. and Joyce John D. "Performance
Monitor for a Relational Information System,"
.-'.'ei.a of" A Z6 Annual Conference, 329-333
(1976).

40. Palmer, Lars. Haesle Z= Packa Users Manual..
(Version 9A.O0). Molndal, Sweden. 1981.

41. Pressman, Roger S. Software ngin ng: A
Practitioner's ARr.ga..h. New York: McGraw-Hill Book
Company, 1982.

42. Rodriguez-Rosell, Juan and Hildebrand, David. A
Frm £r eo E Ealation Dai.ta ae Syste. IBM
Technical Report RJ 1587. San Jose, California: IBM
Research Laboratory, May 23, 1975.

43. Shaw, Alan C. JIM Logigal Design 2f QR.rtig
Systems. Englewood Cliffs: Prentice-Hall Inc., 1974.

44. Simpson, Henry. "A Human-Factors Style Guide for
Program Design," byte, Z: 108-132 (April 1982). "

45. Smith, Hugh and Green, Thomas. Human Interactio nith
C t New York: Academic Press, 1980.

46. Svobodova, Liba. Comouter i Qrma IMeasuremet an
Evaluation Methods: Analx."s and ADDlications. New
York: American Elsevier Publishing Company, Inc.,
1976.

47. Tanenbaum, Andrew S. C Ntrks. Englewood
Cliffs: Prentice-Hall Inc., 1981.

48. Tuel, William G. Jr. and Rodrigues-Rosell, Juan. A
IMehodl f= Eva.uIation f Daaa u= Systems. IBM
Technical Report RJ 1668. San Jose, California: IBM
Research Laboratory, October 15, 1975.

49. Ullman, Jeffrey D. orin.ili2f Dtbs Sy..tm.
Potomac: Computer Science Press, Inc., 1980.

50. Weinberg, Victor. Structured Analysis. New York:
Yourdan Press, 1980.

51. Wiederhold, Gio. D Design. New York:
McGraw-Hill Book Company, 1977.

52. Wong, Patrick M. K. frmance Ev atioaDtn g. ..A.
BaU ysLtj ma. Ann Arbor: UMI Research Press, 1981.

BIB-4

53. Zelkowitz, Marvin V., it Al. P 2oftware
:agi"eer" - an Desig. Englewood Cliffs:
Prentice-Hall Inc., 1979.

BIB-5

-. . -.

- -A

Paul Dennis Bailor was born in Lebanon, Pennsylvania

on July 9, 1953. He graduated from high school in 1971 and

enlisted in the United States Air Force in May, 1972. He

received an Air Force Reserve Officers Training Corps

scholarship in July 1975, and he entered the University of

Maryland, College Park, Maryland in January 1976. He

graduated Magna Cum Laude with the degree of Bachelor of

Science in Computer Science in December 1978. After

graduation, he served as a Department of Defense Computer

Programmer at Headquarters Military Enlistment Processing

Command, Fort Sheridan, Illinois. During this assignment,

he was in charge of developing and implementing a network

of mini-computers for the 68 Military Enlistment

Processing Stations located throughout the United States

and Puerto Rico. He entered the Air Force Institute of

Technology in June 1982.

Permanent Address: 1537 Sand Hill Road

Lebanon, Pennsylvania

-5'6'

UNCLASSIFIED
SECURITY CLASSIFICATION OF TIiS PAGE

REPORT DOCUMENTATION PAGE
* .REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS

L . UCLASSIFIED
2a. SECURITY CLASSIFICATION AUTHORITY 3. DISTRIBUTIONJAVAILABILITY OF REPORT

______________________________Approved for public release;
-.- 2b. D1ECLASSIFICATION/OOWNGRAOiNG SCHEDULE distribution unlimited

4 PERFORMING ORGANIZATION REPORT NUMBERIS) S. MONITORING ORGANIZATION REPORT NUMBER(S)

AFIT/GCS/EE/83D-2
5.& NAME OF PERFORMING ORGANIZATION OFFICE SYMBOL 7. NAME OF MONITORING ORGANIZATION

O(I, @FD01101b1)

School of' Engineering AFIT/ENG
* Se. ADDRESS (City. State mnd ZIP Code) 7b. ADDRESS (City. State dad ZIP Code)

Air Force Institute of Technology
Wright-Patterson AFB, Ohio 45433

Is. NAME OF FUNOING/SPONSORING la.OFFICE SYMBOL B. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGAN IZAT ION (tapplicable)

Be. ADDREFSS (City. Stew mid ZIP Code) 10. SOURCE OF FUNDING NOS. ______ ____

PROGRAM PROJECT TASK WORK UNII
ELE MENT NO. NO. NO. NO.

11. TITLE (include Security Clasifitcation)

See Box 19_______________
12. PERSONAL AUTHOR(S)
Bailor, Paul D., B.S., Capt, USAF-

-- TYPE OF REPORT 13b6 TIME COVERED 114. DATE OF REPORT (Yr.. Mo.. Day) 15. PAGE COUNT -

* MS Thesis FRM____t ___ 18 eember50
10. SUPPLEMENTARY NOTATION I AW A~r I

L-.un for f_ 1,cr~" i Devow.I. a

17. COSATI CODES IB. SUBJECT TERMS (Continue on revee ii' ec 91"M7)~uj

FIELD GROUP 3UB. GR. Data Bases, Data Base Management System, Data
09 02 Management, DBMS, Computer Performance Evaluation

Performance(Enginein '), Mcitr
19. ABSTRACT (Continue. on reverse if neceWy mid idmntify by block numnber)

* Title: DEVELOPMENT OF A DATA BASE MANAGEMENT SYSTEM
PERFORMANCE MONITOR

Thesis Advisor: Dr. Gary B. Lamont, Professor, EE Department

DISTRIUUTIONs'AVAILABILITY OF ABSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIEDIUNLIMITED SAME AS RiPT. 0 OTIC USERS C UNCLASSIFIED
2.NAME OF' RESPONSIBLE INDIVIDUAL 22b. TELEPHONE NUMBER 2cOFIESYMBOL

(Inctude A me. Codei
I Dr. Gary B. Lamont, EE Department 1513-255-3450 AFIT/ENG

00 FORM 1473,83 APR IDTION OF I JAN 73 1ISOBSOLETE. UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS8 PAGE

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE

This study focuses on the problem of evaluating the
performance of a Data Base Management System (DBMS). In
this study, DBMS performance evaluation is treated as a
subset of computer performance evaluation, and in doing
this, the performance parameters unique to a DBMS were
developed and merged with the performance parameters
associated with a general purpose computer system.

Based on this approach, a generalized design for a
DBMS performance monitor was developed. This design
emphasizes the use of existing performance tools such as
software monitors and accounting packages, and it takes
the performance monitoring requirements of different types
of DBMS users into consideration. Additionally, the design
is applicable to any type of DBMS regardless of the
underlying data model.

The generalized design was implemented on a VAX
11/780 computer for the TOTAL DBMS. The results of the
implementation showed the generalized design was viable
and capable of measuring many different types of DBMSs.
However, existing performance tools were only capable of
providing a high level picture of DBMS performance. A
specialized tool called an instrumentation utility had to
be developed to gather detailed performance information.

UNCLASTFTPfl
SECURITY CLASSIFICATION OP THIS PAGE

• - ;;;'I;' , - , & . "" " **?.% " * " " *. " .**.*.*-*" . q" " ' '

*
6

S
L

~. ..~

0

I.. 9

*,.0

FILMED

2-'-85

S

J

DTIC
S

~ * ~i >A.:.i:C

