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L.carning from experience involves three distinct components — generating behavior, assigning credit, and
modifying behavior. We-discuss these components in the context of learning scarch heuristics, along with the
types of learning that can occur. We then focus on SAGE, a system that improves its scarch strategics with
practice. The program is implemented as a production system. and learns by creating and strengthening rules
for proposing moves. SAGE incorporates five different heuristics for assigning credit and blame, and employs
a discrimination proccss to direct its scarch through the space of rules. The system has shown its gencrality by
learning heuristics for directing scarch in six different task domains. In addition to improving its search
behavior on practice problems, SAGE is able to transfer its expertise to scaled-up versions of a task, and in
one casc transfers its acquired search strategy to problems with different initial and goal states. /7 /...
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1. Introduction

The ability to scarch is central to intelligence. and the ability to direct search down profitable paths is
what distinguishes the expert from the novice. However. since all experts begin as novices, the transition from
one to the other should hold great interest for Artificial Intelligence. In this paper. we examine the process by
which general but weak methods are transformed into powerful, domain-specific search heuristics. As the
rcader proceeds. he should be able to detect two main themes. In the carly scctions of the paper, we have
attempted to classifv the types of heuristics learning that can occur, as well as the components that contribute
to such learning. After these preliminaries have been completed. we explore a particular learning system —
SAGE.2 — in some detail. both in terms of its structure and in terms of its behavior in different domains. We
ciose with a discussion of some dircctions in which the system should be extended.

Within any system that improves its scarch strategics with experience, we can identify three distinct
components. First. such a system must be able to search. so that it can gencrate behaviors upon which to base
its learning. Sccond. the system must be able to distinguish desirable from undesirable behaviors, and to
determinc the components of the system that were responsible for those behaviors: in other words, it must be
able to uassign credit and blame. IFinally. the system must be able to usc this knowledge o modify its scarch
strategies. so that behavior improves over time. Since so much Al rescarch has revolved around the notion of
scarch. it is not surprising that the first of these components is the best understood. Many alternative search
strategics have been explored, ranging from very general but weak methods, like depth-first and breadth-first
search. to much more powerful methods that incorporate knowledge about specific domains. It is preciscly the
transition between weak, general methods and specific, powerful methods with which we are concerned.
Thus, it is appropriate that a strategy learning system start with some weak scarch scheme that can be applicd
to many different domains. However, it is also important that the search control can be casily modified to take
advantage of domain-dependent knowledge that is acquired with experience. The arcas of credit assignment
and modification are less well understood, and we discuss them in some detail in later scections. However,
before turning to these matters, let us consider the problem of learning scarch heuristics in the context of a
simple puzzle.

Over the years, the Tower of Hanoi puzzle has been used as a testbed for many different Al systems. We
have chosen this task for our example because it is so well-known to the Al community, and because it poses a
challenging probiem to humans despite its small search space. In this puzzle, onc is presented with three pegs
on which are placed N disks of decreasing size. Initially. all disks are placed on a single peg, and the goal is to
get all of these disks onto one of the other pegs. This task would be trivial except for two constraints on the
types of moves that are allowed. First, one can only move the smallest disk from a given peg. Second, one
cannot move a disk onto ancther peg if a smaller disk is alrcady resting on that peg. Taken together, these
restrictions considerably constrain the set of legal moves, and make for a challenging problem.

Figure 1 presents the state space for the three-disk Tower of Hanoi problem, originally formulated by
Nilsson (1971), while Figure 2 shows two of these states in more detail. Note that although only 27 states exist
in the space, the number of connections between these states is very large. One result of this high density of
connections is that loops are very easy to gcncrate.1 Another result is that while many paths to a goal are
possible, only a few are optimal. In other words, within the state spacc for the three-disk problem,
considerable secarch may be necessary to find an optimal solution path. Suppose S1 is given as the initial state
(in which all disks are on a single peg), and the goal is to reach cither state S20 or state S27 (in which the disks

1l.oops are possible because all moves are reversible. For example, one can move from State S2 to S1 as easily as from S1 to S2,
though longer ioops can also occur.
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arc all on another pcg).2 Further assume that we employ a very general but weak secarch strategy such as
depth-first or breadth-first scarch to solve this problem. Given such weuk scarch control. many non-optimal
moves will be considered before the best set of moves is discovered. For example, a breadth-first search
scheme would consider moving from state §2 to S3. as well as the optimal move from S2 to S4. The goal of a
strategy learning system is to discover a sct of heuristics that will propose moves lying on the solution path,
while avoiding those leading off the path. In th: following scctions, we consider some of the ways in which
such scarch heuristics can be acquired.

—
.
o

L A2

S20 S21 S22 S$23 S24 826 S2 s27 °
Figure 1. State space for the three-disk Tower of Hanoi puzzle.

2. Tynes of Strategy Learning

- Throughout the history of science, the first step in understanding a sct of phenomena has involved the
construction of taxenomics or classification schemes. Thus, the carly chemists formulated classes such as
acids. alkalis, and salts before they began to discover quantitative laws for reactions. Similarly, in biology the
acceplance of the Linnacan classification system preceded Darwin's recognition of similaritics between classes

@ and his explanation of their evolutionary relations. By analogy. it would scem useful to attempt to categorize
';j the various types of strategy improvement, before attempting to explain the processes responsible for them.
::: Ohlsson (1982) has distinguished between improvement, in which scarch decreases on a single practice
::: problem, and transfer, in which practice on one set of problems leads to a reduction in scarch on a sccond set
of problems. Building upoen this distinction. it is possible to subdivide the class of transfer learning still
L further. One type of transfer involves the scaling up of simple problems into more complex ones. We have
scen that for puzzles such as the Tower of Hanoi, one can draw a statc space diagram representing the possible
L states and the moves connccting them. The state space for the four-disk puzzle is very similar to that for the
" simpler problem, and can be generated by replacing cach state in Figure 1 by a triangle of states. Given this
] similarity of structure, one might expect that heuristics learned for solving the three-disk problem would
e transfer to the four-disk problem. However, more steps are involved in rcaching a solution, so this problem is
L

2In most versions of this task, the goal involves moving all disks to a single peg: we will discuss the rcason for allowing multiple

solutions iater in the paper.
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a scaled-up version of the three-disk problcm.3

A second type of transfer occurs when one practices on one problem, and then is presented with another
problem that involves the same state space, but has a different initial state or a different goal state. For
cxample, one might learn a set of heuristics for moving from state S1 to S20 or S27 in the three-disk problem,
and then be asked to find a path between state S7 and S14. In general, this type of transfer would appear to be
morc difficult that scaled-up transfer, since one must take goal information into account while constructing
one's heuristics,

In domains such as algebra and integration, the state spaces for different problems bear little similarity
to onc another. since only a few of the many possible vperators come into play on a given probiem. However,
the goals always have very similar forms — to simplify an expression or to solve for some variable. As a result,
the above two types of transfer seldom occur in such domains. In these cases. one usually practices on one sct
of problems. and is then tested on a different set of problems that, while they differ in the structure of their
state spaccs. have approximately the same complexity. This type of transfer constitutes the third member in
our classification scheme.

* = — = |

state S1 state S2

Figure 2. Moving disk-1 from peg-A to peg-C on the Tower of Hanoi puzzle.

Finally, one may somctimes attempt to use knowicdge learned in an area that is only loosely related to
the current situaticn. In such cases, only some of the operators used carlier may be applicable to the space
o currently being scarched, and others that were not applicable before may come into play. Still, one may be
’ able to take advantage of some of the heuristics that were acquired in the first class of problems and apply
them to the task at hand; this form of transfer is usually called learning by analogy. Taken together, these four
classes would seem to cover the ways in which transfer of learning can occur, though one might propose
alternate divisions based along other dimensions.

While we do not have the space to review earlier research on strategy learning in detail,® it will be useful
to classifv the existing work in terms of our categorics. For instance, Anzai (1978) focused on improvement
within the three-disk Tower of Hanoi task. but did not address the issue of transfer. In contrast, Brazdil’s
(1978) concern with arithmetic has led him to explore transfer to scaled-up problems and to problems of
equal complexity. and Neves {1978) has also cxamined the latter in the context of algebra learning. Mitchell,
Utgoff, and Bancrji’s (1983) rescarch on symbolic integration and Anderson’s (1981) work on gcometry
theorem proving have also been concerned with the latter type of transfer. Langley's SAGE.1 (1982, 1983) —
the predecessor of the current system — showed bath improvement on a single problem and transfer to
( scaled-up problems, while Ohlsson’s UPL2 (1982) showed both improvement and some ability to transfer to
) problems with different initial states and goals. Rendell's (1983) PLS1 system was able to transfer its heuristics

3Thc difficulty of a problem can somcetimes be altered in multiple ways. For example, one can formulate a variation of the Tower of
Hanoi puzzie that involves three disks and four pegs. In fact, this problem can be solved in fewer steps than the standard version, but the
. point is that ditficulty can someumes be aficcted 1n more than one way.

4. : T 5 o . ,
The interested reader is directed to Keller (1982) and Langles (1983) for reviews of some recent work in the area.




to both scaled-up problems and to those with different initial and goal states. Like Anzai. Hagert (1982) has
focused on improvement on the Tower of Hanol task. while Korf's (1982) macro-operator learning program
was able to transfer its expertise to problems with different iniual states. Finally. both Carbonell (1983) and
Anderson (1983) have studicd learning by analogy. in which knowledge gained in solving onc problem is
applied to direct search in a quite different problem. We summarize this information in Table 1.

Later in the paper, we will examine the behavior of a particular strategy learning system called SAGE.2.
To anticipate our results, we will find that SAGE is capable not only of improvement. but that it is also
capable of transfer to scaled-up tasks. and to problems of cqual complexity. We will also find that the current
system has difficulty in transferring its expertisce to problems with different initial and goal states, hut that the
potential for this form of transfer does exist. Finally, learning by analogy appears to lic beyond the methods
emploved by the program. Hopefully. the reader now has a better understunding of the types of transfer that
can cecur. and those types we will focus on in the following pages. Now, let us move on to the components of
the strategy learning process.

3. Approaches to Credit Assignment

As we have seen, the first step in learning is 1o distinguish desirable from undesirable behaviors. and to
determine the parts of the system responsibie for those behaviors. This has been called the credir assignment
problem. and has been explored in a number of domains, ranging from puzzIe solving to chess playing. We
have arrived at a number of heuristics for assigning credit and blame that appear to be guite general, some of
which we have borrowed from other rescarchers. All of these methods involve the same basic idea — that
steps lving along optimal solution paths should be preferred to those leading off those paths, However, the
various methods make judgements about preferable moves in quite different ways, Below we discuss these
heuristics in the context of the Tower of Hanoi puzzle and a fow othier simple tasks.

3.1. Complete Solution Paths

One option for distinguishing desirable from undesirable behavior is to wait until a complete selution
path has been found for a problem. Moves leading to states on the solution path are desirabl-, since they ied
to a solution. whilc moves going off the path arc undesirable, since they led elsewheore. Mitchell. Utgoff, and
Banerji (1983) have emploved this approach in their LEX system, while Langley (1983) has used a very similar
approach in his SAGE.]l program. Brazdil (1978) and Rendell (1983) have also employed the complete
solution path heuristic. Sleeman, Langley, and Mitchell (1982) have discussed the generality and limitations of
this approach to credit assignment.

Let us consider how this technique can be applied to the Tower of Hanoi puzzle. rFigure 1 presents the
state spacce for the three-disk puzzle, with the two solution paths connecting the top vertex w the two bottom
vertices. Given the legal operators for solving the puzzie, many problem solving systems can discover the
solutions by scarching this space. Once the solution paths have been discovered. they can be used to assign
credit and blame. For example. since both moves from the initial state S1 lic on the solution path, both would
be labeled as good moves. Three moves are possible from cach of the resulting states S2 and S3. The moves
leading to states S4 and S5 aiso lie on the solution path, and so would be marked as good moves. However,
the moves lcading to states S3 and S2 lic off the solution path, as do the two moves leading back to the initial
state. Thus, all of these moves would be labeled as undesirable.

This approach is very general, since it can be used to assign blame and credit to any problem that can be
solved by scarch. However. this method is guaranteed to work only if @/ of the shortest solution paths are
available. Since some scarch techniques tind only a single solution path, difficulties can arise. For example, a
system that solves problems using a form of depth-first scarch might find onc of the solutions shown in Figure

—a . e A m_ . A




1. but not the other. Given such incomplete knowledge, our credit assignment heuristic would mistakenly
label one of the initial moves as undesirable.  Mitchell, Utgoff, and Banerji (1983) have dealt with this
problem by carrying out additional search before deciding that a move is bad. Another problem is that while
almost any problem can in principie be solved purely by search, there are many problems with scarch spaces
so large that some other route must be taken. In these cases, other credit assignment heuristics that do not
require complete solution paths must be emploved to cnable learning to occur while the problem is being
solved. so that the scarch process can become directed cnough to reach the goal state. Below we discuss a
number of heuristics that allow credit assignment during the scarch process. and which open the way to
lcarning while doing.

Table 1. Types of learning addressed in carlier resecarch.

IMPROVEMENT SCALED-LP DIFF. GOALS EQUAL COMP. ANALOGY
ANZAL X
BRAZDIL: X X X
NEVES X X
MITCHELL X X
LANGLEY X X
OlILSSON X X
RENDELL X X X
HAGERT X
KORF X X
ANDERSON X X X
CARBONEIL X X

3.2. Noting Loop Moves

When one is attempting to solve a problem in as few steps as possible. returning to a previously visited
staie (or Jooping) may be safely considered undesirable. Thus, when a move leads to a state through which the
problem solver has already traveled, that move can be labeled as less desirable than another move that does
not complete a loop. FFor example, supposc one is at state S4 in the three-disk Tower of Hanoi problem, and
considers moving to states S2, S6. and S7. Since the first of these Icads back to the previously visited state S2,
it can be labeled as less desirable than the last two moves, Note that this form of credit assignment is relative
rather than absolute, as was the case when complete solutions were known. There is no guarantee that the
move leading from 84 to §7 will uitimately be decmed desirabie (as in fact it will not. since it Jeads ofT the
solution path). However, one can say that this move is rmore desirable than the one leading back to previously
reached state, and this information mav be usetul to the modification component of the system. Anzai (1978)
has used a loop move detector to good effect in modeling Iearning on the Tower of Hanoi. but it is clear that
this approech can be applied to any domain in which loops can occur during scarch. Ohlsson (1982) has
employved a similar credit assignment technique in his UPLL system.

3.3. Noting Longer Paths

In general. shorter paths to a goal are more desirable than jonger ones. Thus, if a problem solver notes
that he has reached some swate by two different paths. he can infer that the last move in the longer path should
have been avonded. For exainple, in the three-disk Tower of Hanoi puzzle. suppose one has moved from state
54 to state §7. as well as from S4to So. Further suppose that on the next move. one moves from S6 to S7, as
well as from Sh e ST0. Since the state S7 has been reached by two paths, the last move in the longer path
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(from S6 to S7) may be judged undesirable, The alternate move from S6 to S10 cannot immediately be
deemed good in any absolute sense (though fater it would be found to lic on the solution path). but it can be
judged as more desirable than the move trom S6 to S7. Thus, this is another case where the assignment of
credit and blame takes on a relative aspect. The shorter path heuristic is closely related o the loop move
mcthod. and appears to be another quite genceral technique for assigning credit during the search process.
Anzai (1978) has applied a very similar technique to learning on the Tower of Hanoi task.

3.4. Dead Ends

[n solving a problem, a path must be found from the initial to the goal state. However, some paths lead
to dead ends from which no steps can be taken cxcept to back up. and it is desirable o avoid these cul de sacs
if possible. Another gencrally useful credit assignment heuristic labels as bad the last move in a path that has
led to a dead end. For example, supposc in solving the three-disk Tower of Hanoi problem. one has moved
from state S4 10 S7. Also suppose that after this, one has tried moving from S7 to S4. trom S7 w S0, and from
S7 to SS. If the first of these moves is labeled as bad by the loop move heuristic. and the second two are
marked as bad by the shorter path heuristic. then the state S7 may be classified as a dead end. s a result, the
move from S4 to S7 may be judged as undesirable, and the move from $4 0 S6 may be judeed as a better
move, since it does not lcad to any undcesirable state. Again, this heuristic cannot decide that the S4 to S6
move is absolutely desirable (though it docs lic on the solution path), but it can deterninine that this move
should be preferred to its alternative.

3.5. Failure to Progress

We have so far referred to the initial scarch strategy only in the abstract. However, some search
strategics arc more powerful than others, and this power can be used 1n assigning credit und blume before a
complete solution has been found. For examiple, scarch methods such as mcans-ends analysis and hill-
climbing employ an evaluation function which tells whether eonc is closer to the goal after a move has been
made than he was before, Let us consider a simple example {rom the domain of alzebra. In solving algebra
problems in one variable, simplifying the expression will take onc closer to the goal (in which the variable is
on one side of the equation and a number is on the other). Thus. if a step is taken which does not simplify the
expression, this may be judged as an undesirable move. Another move made from the same state that does
lead to a simplification muy be judged as more desirable. though (in principle at least) it might not be the best
move possible. Neves (1978) employed such a credit assignment principle in his ALEX system. cnabling it to
learn algebra heuristics before a complete solution had been achieved. The implementation of such a
principle might be quite general, as in Ohlsson’s (1982) UPIL.2 system, which used a form of means-ends
analysis. or it might be relatively specific, as in knowing that algebra expressions should always be simplified.

3.6. lllegal States

A final heuristic for the determination of credit and blame revolves around the notion of illegal states.
In some cases. the problem solver may attempt to make moves which he later recognizes as violating some
task constraint. For example, in the Tower of Hanoi puzzle, one might attempt to move the largest disk, even
though one or more smaller disks were resting on it. Of course, such a mosve is undesitable, and any move
from the same state that does not violate a constraint may be judzed as better. This is yet ancther case in
which the desirable move is only relatively good. and that move niay be judzod as undesirable at some later
point in the scarch process. In principle, this heuristic may be applied to any task that invohes <ome form of
constraints. However, problem solvers often incorporate such constraints into thewr operators, and so avoid
illegal moves from the outset. Sull, this tvpe of mistake occurs among human problem solvers sutTiciently
often for it to be included in the psyvchological literature (Simon, 1976), so we shall keep it on our list of
methods for solving the credit assignment problem. Now that we have considered approaches to the first step
in the strategy learning process. it is time to move on to the second stage — the moditication of behavior.
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4. Approaches to Altering Search Behavior

There exist two rather different approaches to controlling search in an mrtetheent tskion. In the first
scheme, some numerical evaluation function is used to rank states. and those with e tughest scores are
sclected for further expansion. This method is commonly used in game-plasmg programs. The alternative is
to ecmploy heuristics with symbolic conditions to direct scarch, and this approach has erten been applicd to
puzzle-sohving tasks and mathematical domains. As one might expect. both of the methods lead w associated
techniques for altering scarch behavior, and both approaches to learning have been explored i the hterature.
Below we summarize these approaches to strategy acquisition,

4.1. Discovering Evaluation Functions

The approach to learning through discovering cvaluation functions is an attractive one, and was
examined carly in the history of Artificial Intelligence. Samuel (1959) constructed a checker-playing program
that chose its moves on the basis of 4 lincar evaluation function. The sastem experimentally introduced new
terms from a set of predefined features and altered the weizhits of existing terms, and then noted the result in
its playing ability. In this way, Samuel’s system eventually progressed to master fevel checkers play. Rendell
(1983) has cxplored an alwernate approach to finding ¢valuation tunctions, His PLS1 program first solves a
problem {such as the cights puzzie) using breadth-first scarch. Once a solution has been found, this
information is uscd to assign a score to cach state in the search tree. Using various curve-fitting techniqucs,
Rendell's system gencrates a function that predicts these scores in terms of a set of predefined features. This
function can then be used as an evaluation function for dirccting the scarch process. While such techniques
are useful in domains where numeric evaluation functions are appropriate, other methods must be used to
acquire heuristics that can only be stated in symbolic tenns,

4.2. Generalizing Conditions

One technique for learning symbolic conditions begins with very specific rules and generalizes as more
information is gathered. In this incremental approach. the hypothesized conditions arc usually initialized to
the first positive instance. When a new positive instance is encountered, it is compared to the current
hypothesis and onc or more revised hypothescs arc gencrated, based on the features held in common by the
two structures. If some of these hypotheses become overly general, they eventually lead to the incorrect
classification of ncgative instances as positive ones, and are rejected. Since more than one hypothesis may
result from this comparison, some mcthod for controlling scarch through the rule space is required. Winston
(1975) has explored depth-first strategics for scarching the rule space, while Hayes-Roth (1976) and Vere
(1975) have emploved breadth-first scarch strategics. Since most generalization-based methods search for
features held in common by all positive instances, they have difficulty in learning rules with disjunctive
conditions. However, Iba (1979) has used an extension of the depth-first scheme to successfully learn
disjunctive rules.

4.3. Discriminating Conditions

An alternate approach starts with an overly general rule, and generates more specific versions through a
process of discrimination. This occurs when one of the current hypotheses leads to an error, providing
evidence that it is too general. The context in which the faulty rule matched the negative instance is compared
to the last context in which the same rule matched a positive instance. During this comparison, differences
between the positive (desirable) instance and negative (undesirable) instance are found. For cach difference, a
more specific hypothesis is constructed that matches against the positive instance but not the negative one.
Since multiple hypotheses can result, some scarch control is required. Brazdil (1978) has used depth-first
search to direct the discrimination process. while Anderson and Kline (1979) and lLangley (1982b) have
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cmploved more complex  strategies  involving notions  of strengthening and  weakening. Since the
discrimination methed does not attempt to find features common to all positive instances, (the method
compares instances to instances, rather than comparing instances to hypotheses), it has no difficulty in
lcarning rules with disjunctive conditions.

4.4, The Version Space Approach

Mitchell (1977) has explored the version space approach, which incorporates aspects of both the
goncralization and discrimination methods. This technique begins with a very specific hypothesis, and
generates more general hypotheses (S) that act as an upper bound on the rule being learned. As with
gencralization methods, this is done by finding common features between the current hypotheses (S) and cach
new positive instance. The version space method aiso also begins with a very general hypothesis, and produces
more specific versions (G) that act as a lower bound on the rule being learned. At first glance, this approach _
seems o be simply a combination of the generalization and discrimination methods. However, instead of ]
tosting the first set of hypotheses (S) against negative instances to sce if they are overly general, it tests them
against the second set (G). Similarly, more specific versions of the second set (G) are found by comparing ’
negative instances 1o members of the first set (S). Mitchell emploved a breadth-first strategy to direet scarch
through the space of hypotheses. As more instances are gathered. this bi-directional scarch converges (by
movinz the upper and lower bounds together) on the hypothesis best suited o summarize the data. Since
Mitchell's method also finds features held in common by all positive instances, it has the same difficulty with
disjunctive rules as most generalization-based learning systems,
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4.5. Implications for Search Behavior

Note that the direction taken in scarching for conditions has implications for the performance .
componcnt of a sirategy learning system.  For example, if the system moves from specific to general y
hypotheses through a generalization process. then the associated performance sysiem will be conservative. The ’
system will begin by making no bad moves and missing some good moves. but as the system nears the correct .
hypothesis. its errors of omission will decrease. In contrast. if the system moves from general to specific X
hypotheses through a discrimination process, then the associated performance system will be a rash one,
omitting fow desirable moves but considering many undesirable ones as well, though the latter will decrease ]
as the correct hypothesis is approached. %

s
<
"

While a conservative strategy is useful when a benevolent tutor is available to present positive and
negative instances (as in the paradigm of learning concepts from cxamples). it is less adaptive in learning
scarch heuristics. where a system must generate its own behavior in order to accumulate positive and negative :
instances of various rules. In this case, the price of commission errors is small, since the only result is added
search. However, the price of omissions is great, since learning is impossiblc in the absence of behavior, Thus,
in the context of learning search s ies. the reckless discrimination approach seerns superior to the more
conscrvative generalization approach The version space approach is capable of conservative or rash
behavior, depending on whether one uses S or G in the match process. However, in this paper we will limit
our attention to discrimination-based approaches to strategy learning.

5

Slrlowc\'cr. Ohisson (1983) has devised a generalization-based scheme that sidesteps the problems associated with most such
approaches His UPL2 svstem begins with a set of overly general rules which lead to scarch: based on good moves, the program creates
speaific rules and zeneralizes them when possible. Although UPL prefers to use such learned rules. it retains the enzinal nuics, and so can
falt back on them if the acquired rules fail to propose any move.
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5. SAGE.2: A System That Learns Search Heuristics

Having considered the three components involved in strategy learning, we can now examine a particular
strategy learning system in some detail. We will focus on SAGIE.2, the second in a line of programs (I.angley,
19824, Langley. 1983) that we have constructed to study the process of strategy acquisition. SAGE stands for
Strategy Acquisition Governed by Experimentation. Like most other strategy icarning programs, SAGE is
implemented as an adaptive production system. In other words, it is stated as a set of relatively independent
condition-action rules or productions, and learning occurs through the addition of new productions. The
program is implemented in PRISM (Langley, 1981), a production system language designed to explore
lcarning phenomena. Below we consider the components of SAGE. starting with its representation of states
and operators. After this, we discuss the system’s initial scarch strategy, its credit assignment heuristics, and its
mechanisms for altering its scarch strategy in the light of experience.

5.1. Representing States and Operators

Any problem solving system must have some representation upon which to work, For a given problem,
it must be able to represent the states that constitute the problem space being scarched, and to represent the
opcrators that enable the system to move between those states. As we have stated, SAGE.2 is implemented as
a production system. Others have argued for the advantages of production system formalisims (Newell, 1972,
Andcerson, 1976), and we do not have the space to recount those arguments here. However, the choice of
production systems leads to a natural style for representing states and operators. and it is appropriate to spend
some timc discussing that style.

A program that is stated as a production system consists of two main components — a sct of condition-
action rules or productions, and a working memory against which those productions arc matched. The
working memory tends to be declarative in nature. and changes contents fairly rapidly. In contrast, the
production memory tends to express procedural knowledge, and changes only slowly. when learning occurs.
During problem solving. new states are generated quite often, while new scarch procedures are added only
occasionally. Therefore, it is quite natural to represent states as clements in working memory, and it is cqually
natural to represent operators for moving between those states as productions.

Given these design decisions, a question remains as to the precise manner in which states and operators
are to be stored. For cxample, states might be represented as single working memory clements, as with
(in-state S2 (peg-A contains disk-2 disk-3) (peg-B contains disk-1) (peg-C contains)) for the Tower of Hanoi.
Alternately, they might be stored as a number of separate elements, such as (disk-1 is-on peg-B in-state S2),
(disk-2 is-on peg-A in-state S2), and (disk-3 is-on peg-A in-state S2). Since most production system languages
have limited pattern matching capabilitics, the latter of these two schemes is desirable, since it lets onc express
finer distinctions. In fact, this is the representation for states used in SAGE, and it has worked extremely well
for our purposcs.t '

Since production system formalisms require a close correspondence between the form of clements in
working memory and the form of productions, the choice of representation for states places strong constraints
on the representation for operators. For example, the following rule is a natural statement of the conditions
under which a disk can be legally moved in the Tower of Hanot task:

6.~\nzai (1978) employced a representation very much like the first one shown above, and certainly managed to implement a running
system. However, this approach required that he build considerable knowiedge mnto his learning mechanisms about the particular
representation he was using. In our opinion, this was onc of the reasons why Anzai nes<r managed 10 get hus system to icarn in more than
asingle domain.
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TOH
If you have disk on current-peg in current-state,

and you have some other-peg different from current-peg,

and in current-state there is no othier-disk on current-peg that is smaller than disk,

and in current-state there is no tiird-disk on other-peg that is smaller than disk,
then consider moving disk from current-peg to other-peg.

a2 o o

The meaning of this production is sclf-explanatory, but the correspondence between conditions and working )
memory may not be so clear. For this rule to be applied. cach line must match against some clement in
working memory. For example, at the outset of the probiem, the first line might match against against the
clements (disk-1 is-on peg-A in-state S1), (disk-2 is-on peg-A in-state S1), or (disk-3 is-on peg-A in-state Si).
Similarly. the second condition would match against the clements (peg-b is-a peg) and (peg-c is-a peg). The
remaining ncgated conditions would match against elements like (disk-1 is-on peg-A in-state S1) and (disk-1
is-smaller-than disk-3). ltalicized terms in the above rule stand for variables which can match against any
symbol: in addition w matching within individual conditions, variables must bind consistently across
conditions for the preduction as a whole to match. In cascs where the negated conditions are successfully
matched: they keep the production as a whole from matching. Thus, they can be used to keep this rule from
proposing illegal moves. such as moving a disk when a smaller one is resting on it.

bl

7

Note that the above rule proposes a move, but docs not actually carry it out: we will call such rules
proposers. Each proposer contains the legal conditions on an operator, while the operator itself is implemented
in a scparate rule. This division of labor has two main advantages. First, since we arc concerned with
improving scarch strategies, our system nced only alter the conditions under which actions are proposed. This
means that we can igrore the actions involved in an operator, and focus on the conditions. Sccond, as we shall
sec later. SAGE learns by creating variants of proposers like TOH. In some cases. variants of the same original
production fire in parallel. proposing the same action. By introducing an additional step between the move
proposal and its implementation, we give the system time to recognize the identity of these proposals and to q
avoid unnccessary effort.

AR S s

When a proposal is actually carried out, an operator trace is deposited in working memory. These traces
refer 1o the operator that was applied, as well as to the arguments that were passed to it. as in the working
memory element (move-1 was move disk-1 from peg-A to peg-B). Information is also stored about the state at
which the operator was applied, and the state that resulted from its application. as in the clement (move-1
led-from S1 to S2). Such trace information is used once a solution has been found, allowing SAGE to chain
back up the path, marking traces lying on that path as dcsirable. The system’s other credit assignment
heuristics also take advantage of these traces, using them to infer moves leading to undcsirable states and to
back up to carlier states. SAGE also considers such trace information when it is scarching for conditions on its
proposers, and can incorporate knowledge of previous moves into the productions it generates. The need for

some form of trace data in strategy learning has been emphasized by Neches (1981) and by Langley, Neches, j
Neves, and Anzai (1980), and our expericnce with the current system has reinforced our beliefs on this matter. 1
5.2. The Initial Search Strategy
‘

In order to understand SAGE.2’s initial scarch strategy. and the manner in which this strategy changes :1

over time, we must consider some more details about the nature of production systems. A given rule may
match against the clements in working memory in more than one way; cach such match is called an
instantiation. Given a sct of instantiations. a production system program must have some means of
determining which should be applied, and which should be saved for later application: this process is called
conflict resolution. SAGE employs three conflict resolution principles. which are applicd in turn, First, i
instantiations which have been applied before are never selected again; this process of refraction keeps the :
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same move from being proposed by the same production, while allowing prior states to be retained in case
some other move must be made from them. Sccond. instantiations matching against more recent states are
preferred to those relating to older states: this focuses attention on new states. so that the system continucs to
explore promising paths. Third, cach production has an associated strength, and rules with high strengths are
preferred to weaker ones; since rules are strengthened cach time they are relearned. this number can be
viewed as a measure of cach rule’s success. with preference being given to more successful rules.

If two or more rules have cqual strength, or if multiple instantiations of a single rule match against
elements of the same recency, then more than one move may be proposed at a time. This is the standard
situation when SAGE first attempts to solve a problem, since its proposers generally begin with identical
strengths, or because it starts with only one such rule. In this case, the system carries out a breadth-first scarch
through the problem space defined by its operators. and the program continues in this exhaustive fashion
until credit can be assigned and learning can occur. Once new move proposing rules have been generated, and
the strengths of the old rules have been altered. search becomes more selective. Although still preferring more
recent states, SAGE begins to prefer productions that have been learned many times, and to shun those that
have led to errors in the past. However, it retains the ability to consider multiple paths. as long as these paths
arc generated by rules with the same strengths,  For example, it would still be able to find both solutions to
the Tower of Hanoi puzzle, since these are perfectly symmetrical. In summary, the system starts by carrying
out a blind breadth-first scarch, and using information it gathers along the way, it ends (perhaps after a
number of runs) with the ability to direct its search toward the goal states.

) i'l. e

The system must also know when it can stop searching. This is the responsibility of a separate
production that recognizes when the goal state has been reached, and adds information to working memory to
this etfect. For example, the goal-recognizing rule for the Tower of Hanoi puzzle notes when all disks are
resting on the same goal peg. and adds to memory the names of the states that satisfy this condition. This
information is used later in determining the complete solution path. Separate goal-recognizing productions
must he provided for cach task domain, since the conditions for the solutions differ. However, the same rule
can generally be used for scaled-up versions of a problem; for instance, the goal production for Tower of
Hanoi does not refer to the number of disks on the goal peg, and so can be used for the four-disk and
five-disk tasks. as well as for the simpler three-disk problem.

5.3. SAGE.2’s Credit Assignment Heuristics

In an carlier section, we distinguished two basic approaches to aliering search behavior. The first of
these involved the discovery of evaluation functions, while the second involved the determination of the
symbolic conditions under which moves should be proposed. Since we are working within a production
svstem framework, the symbolic approach is most appropriate. As we indicatcd before, SAGE cmploys a
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discrimination mechanism (as opposcd to a generalization or version space method) to determine the heuristic
conditions for applying its operators. Since this method inputs a positive and negative instance of some rule, it
is appropriate to first consider the manner in which the system assigns credit and blame, and thus

; distinguishes desirable moves (or positive instances) from those which should be avoided (or necgative

. instances).
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Table 2. Credit assignment heuristics based on complete sotution paths.

ON-THE-PATH

If move led from siate to good-state,
and szare lies along the solution path,
and good-state lies along the solution path,

then retrieve the rule and instantiation that proposed niove,
and store that instantiation as a positive instance of the rule.

OFF-THE-PATH
If move led from state to bad-state,
and szate lies along the solution path,
and bud-stare does not lie along the solution path,
then retrieve the instantiation and rule that proposed niove,
as well as the List good instantiation of the saune rule;
weahen the rule and call on the discrimination process using
the List good instantiation as the positive instance
and the current instantiation as the negative instance.

SAGE can operate in cither of two modes. It can assign credit based only on complete solution paths, or
it can attempt ‘o learn during the search process. Since the program’s credit assignment heuristics are stated as
independent condition-action rules, they can be added or removed without affecting the system’s ability to
scarch. though of course this does affect the manner in which learning occurs. 1.ct us begin by focusing on the
method rehying on complete solution paths. Tabie 2 shows two productions, ON-THE-PATH and OFF-THE-
PATH. The first of these matches agatnst traces of moves that lie along the solution path: upon application, it
ratrieves the instantiation responsible for proposing the move and stores it as a positive instance of the rule
that was matched.” The second production matches against traces that originated on the solution path but led
otf that path when the move was made: upon firing, this rule retrieves the responsible instantiation and marks
it as a bad instunce of the rule that led to the move. In addition, it weakens the responsible rule so that it will
be less likely to apply in the future. and calls on the discrimination learning mechanism. This retrieves the last
positive instance of the faulty rule and compares it to the current negative instance in search of differences,
Since this *-uristic retrieves the most recent positive instance of a rule, SAGE may losc information when
more than one correct move is made in a row. However, it would be impractical to compare all positive
instances to all negative instances, and retrieving the last positive instance scems a plausible compromise.

SAGE's other credit assignment rules avoid this issue by more completely specifying the instances that
should be compared. Table 3 presents three of the system's rules for assigning credit during the search
process.  The first of these, MARKED-BAD, matches when some operator trace has been labeled as
undesirable, and some other operator trace originating from the same state has not been so labeled. In this
case, SAGE retrieves the rule that fired in each case. If the same rule was applied in both situations, the
discrimination mechanism is called with the first move as a negative instance and the sccond as a positive
instance. In addition, the strength of the offending rule is decrecased. If the good and bad moves were
proposed by different rules. then the discrimination process cannot be applied, but the rule lcading to the
undesirable state is still wecakened,

7'I‘hc traces maiched by these rules are based on move information laid down by the various operators upon application; when a
solution :s found. SAGI: chains back up the solution paths. marking move traces that fall on these paths,
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Table 3. Credit assignment heuristics for learning during search.

MARKED-BAD
If bad-stare is the current state,
and bad-move led from prior-state to bad-state,
and bad-move was undesirable,
and good-move led from priorstate to good-state,
and good-move is not marked as undesirable,
then weaken the rule that proposed bad-move,
and if the same rule proposed good-move,
discriminate using the instanti:ation for bad-nove as a negative instance,
and using the instantiation for good-move as a positive instance.

NOTE-LONGER
If current-state is the current state,
and move led from priorstate to current-state,
and current-stare has been visited carlier,
then make prior-state the current state,
and label move as undesirable.

DEAD-END
If current-state is the current state,
and move led from prior-state to current-state,
and no moves are possible from current-state
that have not already been made,
then make priorstate the current stite,
and label move as undesirable.

The remaining productions interact with MARKED-BAD, providing the labeling of states it requires
for application. One of these, NOTE-LLONGER. matches when the systein reaches some state that was visited
carlier. It marks the move that led to the revisited state as bad. and backs up. focusing attention on the state
from which this move originated. Note that as this rule is stated, it will match against loops as well as against
unnecessarily long paths, since a loop can be viewed as the longer of two paths to a state, where the shorter
path has length zero. Thus. while these two situations can be separated conceptually, there is no reason to
distinguish them as far as the implementation is concerned. as Anzai (1978) has done. The third rule in Table
3, DEAD-END, applies when a state is found from which no moves can be made: it marks the move leading
to that state as undesirable. and shifts atiention back to the previous state. We have not shown rules for noting
illegal states or failure to make progress. since these must be implemented for specific domains individually.
However, while the conditions of such rules differ from thosc of NOTE-LONGER and DEAD-END, their
actions have the same effect. These actions mark a specific move as undesirable, causing MARKED-BAD to
select a better move leading from the same state, and to evoke the discr’ ination process with the good and
bad moves as arguments,

5.4. Learning Conditions Through Discrimination

As we have seen, once a strategy learning system has distinguished the positive from the negative
instances of an operator. it must have some means of altering the conditions under which that operator s
applied. In implementing SAGE.2, we chose to employ a discrimination learning process that hegins with
overly general rules for proposing moves, and generates variants of these rules with additional conditions as
experience is gained. This mechanism is presented with a single positise instance ol a rule and a single
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negatise instance of the same rule (in terms of their variable bindings), along with the state of working
memory 1 cach case. Bundy and Silver (Bundy, 1982) have called the variable hindings and state of memory
durtt 2 the good application the selection context, and the variable bindings and state of memory during the
faulty application the rejecrion context. The discrimination process compares these two contexts, scarching for
differences which will allow it to distinguish one from the other.

The simplest form of difference involves a working memory clement that was present in one context but
not in the other. For example, if the trace of a previous move were present in the selection context but not in
the rejection context. SAGE would create a variant of the overly general proposer that inciuded this fact (with
certain terms replaced by variables) as an additional condition. This variant would never mateh against the
inttial problem state, since no such trace would be present at the outset of the problem. Similarly, if an
clement were found to be present in the rejection context but not the selection context, this fact would be
included as a negated condition in a variant on the original rule. The resulting rule would only match if this
fact Lor asim:lar one) were not present in memory.

Table 4. Selection and rejection contexts for the TOH rule.

Selection context: Rejection context:

Variable bindings:

disk — disk-2 disk — disk-1
current-peg — peg-A current-peg — peg-C
other-peg — peg-B other-peg — peg-A
current-state— S2 current-state—» S3

Fiements in working memory:
(move-1 led-from S1 to S2)
(move-1 was move disk-1 frcm peg-A to peg-C)

{move-2 led-from S1 to S3)
(move-2 was move disk-1 from peg-A to peg-B)

A San A o e W W
: . .

(disk-1 is-on peg-A in-state S1)
(disk-2 is-on peg-A in-state S1)
(disk-3 is-on peg-A in-state S1)
(disk-1 is-on peg-C in-state S2)
(disk-2 is-on peg-A in-state S2)
(disk-3 is-on peg-A in-state S2)

(disk-1 is-on peg-A in-state S1)
(disk-2 is-on peg-A in-state S1)
(disk-3 is-on peg-A in-state S1)
(disk-1 is-on pcg-B in-state S3)
(disk-2 is-on peg-A in-state S3)
(disk-3 is-on peg-A in-state S3)

More complex differences can be stated as conjunctions of elements that were present in one context but
not in the other. Such differences are generated by a path-finding process that travels through symbols shared
by working memory ¢lements. An example wiil clarify the process. Table 4 presents both a scicction context
and a rcjection context for the TOH rule. The first of these proposes the move from state S2 to state S4 shown
in Figure 1. while the second leads to the move from state S3 to state S1. The two contexts are expressed in
terms of the bindings between variables (in italics) and the symbols agzainst which these variables matched.
Thus, in the selection context. the variable current-state was bound to state S2. disk w disk-2. current-peg to
peg-A, and other-peg to peg-B. leading SAGE to consider moving disk-2 from peg-A to pez-B. This move falls
on the solution path. since it removes an obstruction (disk-2) from the largest disk (disk-3). In the rejection
context. the variable current-state was bound to state S3. disk to disk-1, current-peg to peg-B. and other-peg to
peg-A, leading to the action of moving disk-1 from neg-B to peg-A. Since this move takes the system back to
the original state, it is undesirable.
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Table 4 also shows the clements that were present in memory during each context.® and from which
new conditions are generated. The path-finding process starts from analogous symbols in the two scts of
bindings (such as disk-2 and disk-1). and attempts to find some path through the "good” elements that has no
analogous path through the "bad” clements. Thus, it a path consisting of three elements was present in the
sclection context but not in the rejection context, a variant of the TOH rule would be based on this difference.
This rule would include the three elements (with some constants replaced by variables) as positive conditions,
so that it would match in the selection context, but not the rejection context,

The path-finding process also scarches for paths through the "bad” clements that have no analogous
path through the "good" clements. Let us trace the method's discovery of such a difference in the clements in
Table 4. Starting from the "bad™ symbol S3 and the "good” symbol S2, the path-finding process considers
bad clements and good clements that contain these symbols. Since both conrtexts contain an clement
indicating that an carlier move led to the current state — (move-2 led-from S1 to S3) and (move-1 led-from
S1 10 S2) — SAGE must extend these (Iength one) paths by considering additional elements in its scarch for
differences. Thus. the analogous svinbols move-2 {for the bad element) and move-1 (for the good clement) are
marked, and other elements containing these symbols are considered.?

For example. the bad path can be extended to include the clement (move-2 was move disk-1 from
peg-A to peg-B), since this also contains the symbol move-2. At first glance, there appears to be an analogous
extension to the good path. using the element (move-1 was move disk-1 from peg-A to peg-C). However,
note that the symbol disk-1 is alrcady bound to the variable disk in the rejection centext, while this is not true
of disk-1 in the sclection context, Similarly, peg-A is alrcady bound to other-peg in the rejection context, while
peg-C is unbound in the selection context. As a result. these two clements cannot be considered analogous,
and the path-finding process has found a difference between the two contexts. Based on this difference,
SAGE constructs the following variant;

TOH-1
If vou have disk on current-pegin current-siate,
and you have some otherpeg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than disk,
and in current-staie there is no third-disk on other-peg that is smaller than disk,
and it is not the case that:
prior-move led-from prior-state to current-state, and
prior-move was a move of disk from other-peg to current-peg,
then consider moving disk from current-peg to other-peg.

In addition to the original conditions, this rule (let us call it TOH-1) includes the clements (move-2 led-from
S1 1o $3) and (move-2 was move disk-1 from neg-A to peg-13). with the specific disk and pegs 1eplaced by
variables. embedded within a single negated condition. This rule will match if either of the negated conditions
is matched. but not if both are matched simultancously, As a result, it will still match against the selection
context in Table 4. but not agairst the rejection context, which is precisely the goal of the discrimination
method. Effectively. the new conditions prevent SAGE from reversing the last move it has made.

8.\:1'..':111}; SAGE considers only those clements which deseribe the current state, or which describe parents to the current state. Since
other states considered in paraliel can have no cffect on the current move, they are ignored. Thus, the state of working memory after
SAGE's intial moses can be found by taking the union of the two sets shown in Table 4, together with state-independent clements such
as (pep- A is-a peg) and (disk-3 is-larger-than disk-1).

9., . , . .
Alternaie paths are foliowed through other aralogous s:mbois, such as peg-B anc peg-C. peg-A and peg-A. and disk-1 and disk-1.
Note that a ssmnol sy be mapped ontoatel!, provided it occurs 1n analogous posttions in the two clements,
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In some cases. only a single difference exists between the selection and rejection contexts. Winston
(Winston. 1970) has called these situations near misses. and they considerably simplify the learning process,
since only one variant need be considered. Untortunately, near misses seldom ocecur in the task of learning
scarch heuristics, and a robust system must be able to handle the general case in which many differences exist
(Bundy and Silver (1982) have called these far misses). SAGE deals with far misses by finding «/l paths up to
iength N (in our runs. we have set N to 4), and constructing a variant based on ecach of these differences, some
with new nezated conditions iike TOH-1. and others with new positive conditions. These conditions may
mvolve descriptions of the current state, previous states, previous mosves {as in TOH-1), or any combination of
them. This leads to a significant scarch problem. and we discuss the system’s response to this problem below.
Howeser, et us first consider the notion of difference in more detail.

In scarching for differences, the discrimination process must know which symbols should be used in
determining significant differences. and which differences should be ignored. For example. it makes sense to
distinguish between working memory clements including the symbol was (which describes move traces) and
those :ncluding led-from (which temporally connect these move traces). since they represent different types of
mnformation. [n contrast. there is no reason to distinguish between internally generated symbols like the states
S1and S20since these are only the "connccting ussue”™ used to link together the descriptions of cach state and
the wempora! relations between states. Thus, when it is scaiching for differences. the discrimination routine
never considers two clements as analogous if one contains was in the Nth position and the other contains
led-from in the same position. However, if one contains S1 and the other contains S2 in the same position,
then the two elements will be considered analogous, unless some other (significant) difference exists, or unless
onc of these symbols has alrcady been associated with some other symbol (such as S3) during the path-finding
process. When a variant is constructed, significant terms are retained. while insignificant terins are replaced by
variables in a consistent manner,

The case is less clear for the names of operators and their arguments, These symbols arc not generated
internally, yet if the variants are to retain any generality, some of them must be replaced by variables. Since
onc scidom wants to generalize across the operators theinselves, SAGE treats operator namecs as significant.
However, the arguments of these operators (e.g.. objects and their positions) are treated as insignificant, and
are replaced by variables when a variant is constructed. Note that such decisions are not inherent aspects of
the discrimination process; rather, they are parameters that are input to the learning method, and can be casily
modified. Later we will reconsider this decision. and its implications for SAGE's learning behavior. For now,
though, let us continue with our examination of the current system.

5.5. Directing Search Through the Rule Space

Most condition-finding methods. including the standard generalization approach and Mitchell's version
spacc technique. find conditions that arc held in common by all positive instances of a concept or operator. As
a result, these methods are limited to acquiring conjunctive rules. In contrast. SAGE.2's discrimination
process compares a single positive instance tc a single negative instance. Because of this, it is capable of
discovering disjunctive rules as well as conjunctive oncs, and this ability can be very important in some task
domains. In order to acquire disjunctive rules, the discrimination mechanism must search a larger space of
rules than methods based on finding common features, and it must have some means of directing this scarch.
For this reason. SAGE compares newly learned rules to those it has constructed carlier, If the new rule is
identical wo one of the existing variants, that variant is strengthened. Since the sirenzth of a rule plays a major
role in whether it is selected for application. rules that have been learned more often will tend to be preferred.
Thus, strenath measures the success rate of cach variant. and SAGE can be viewed as carrving out a heuristic
search through the space of rules. selecting those rules that have proyen most successful.
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In domains involving only a single operator, it would be sufficient to simply strengthen variants
whenever they were relearnced, since they would eventually come to be preferred to the rules from which they
were generated. However, some tasks involve muliple operators, and require that one of these operators be
preferred to another. Given the role of strength in selecting rules. the natural response to such situations is to
weaken rules when they propose an undesirable move. In addition to tetting SAGE Iearn to prefer some
operators over others, this strategy also decreases the chance that a faulty variant will be selected for
application.

Although the combination of discrimination, strengthening, and weakening will eventually lead to
useful search heuristics. many spurious variants will be created along the way. Since the matching process is a
major component of programs stated as condition-action rules, we should brictly consider how SAGYF handles
the potential combinatorial explosion in the matcher. First, the system'’s condition-action rules are stored in a
discrimination network that takes advantage of structure that is shared between rules. Since variants of the
same proposer wend o be quite similar to one another, the expensce involved i matchig many variants of a
rule is not much greater than that invohved in matching the original rule. However. other components of the
svstem (such as conflict resolution) are also slowed by the presence of many variants, so some further response
Is required. In addition. SAGE incorporates a thresholding principle. Variants below the threshold are not
even incorporated in the discrimination network, and so have no effect on cither the match process or contlict
resolution (though they are retained for comparison with rules that are learned later). The strengths of new
variants are sct to a fraction of the rule from which they were spawned. and it is only when a variant comes to
cxceed its parent in strength that it is considered for application. Since few spurious variants ¢ver become
stronger than their parent rules, this method has worked quite well in directing SAGL's search through the
spacc of proposers.

6. An Example of SAGE.2 at Work

Our overview of SAGE.2 is now complete, but to give the reader a better understanding of how the
system lcarns search strategies, we must examine its workings in specific domains. Below we discuss SAGE's
learning scquence on the Tower of Hanoi puzzle, comparing its bechavior when using only complete solution
paths o its behavior when learning during the scarch process. We have chosen this task as our main cxample
because it is familiar to many readers, and because most of the credit assignment heuristics discussed earlier
come into play. However, since generality is an important criterion for judging learning systems, we will later
examine the program’s behavior in five other task domains in somewhat less detail.

6.1. Learning From Solution Paths

Since we have already discussed the Tower of Hanoi puzzle and its associated problem space, we shall
begin by discussing the system’s behavior on this problem when using the first credit assignment strategy —
learning from complete solution paths. SAGE.2 was presented with a standard three-disk problem: the three
disks were placed on a single peg, and the goal was to get all three disks on cither of the other two pegs. In
other words. the system started at state S1 in Figure 1, and was asked to reach cither state S20 or $27 (or both
of them). Starting with a breadth-first scurch strategy, the program first moved to states S2 and S3, and from
there considered six moves: from S2 to S4, from S3 to S5, from S2 to S1, from S3 to S1. from S2 to S3, and
from S3 to S2. While the system noted that the last four of these moves led to previously visited states, it did
not attempt to learn froin this knowledge, and simply abandoned these undesirable paths, From the two
remaining states S4 and S5, SAGE moved to states S6. §7, S8, $9. S2. and S3. The last two of these moves
were identified as loops, so only the first four states were retained for expansion. This scarch process
continucd until the program reached the two solution states $20 and S27.,
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At this point. the complete solution path heuristic was applied. SAGE chained back up the solution
path, marking the traces of moves that lay on the path. Once this was completed. it worked its way back down
the marked path. letting the rules ON-THE-PATH and OFF-THE-PATH apply when they matched. The first
of these circumstances occurred at states S2 and S3. when four moves were made that led off the solution
path. One of these moves led to a loop from S2 back to S1. the original state. Comparing the good move from
this point {from $2 to S4) to the bad move, SAGE's discrimination mechanism generated the variant TOH-1
that we considered carlier. The selection and rejection contexts for this learning situation were identical to
those we have examined. except that SAGE compared two moves from state S2, rather than comparing one
move from state S2 and another from state S3. As a result. the same differcnces were discovered. and the
variant TOH-1 was constructed. 'The recader will recall that this rule contains a negated conjunction that
prevents it from proposing a move that will reverse the move SAGE has just made. Some four other
differences were found, leading to four additional variants, but TOtH-1 was the only rule that cver became
strong ¢nough to apply. An identical set of variants were created when the context for the move from S3 to
S1 was compared to that for the move from S3 to S5, since these situations are completely syminetrical; this
led cach of the existing variants to be strengthened.

A different set of three variants resulted when the good move from S2 to S4 was compared to the bad
move from S2 to S3 (and when the symmetrical moves were examined). In this case, the rule we are interested
in is subtly different from the variant we described earlier:

TOH-2
If you have disk on current-peg in current-siate,
and you have some other-peg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than disk,
and in currens-state there is no third-disk on other-peg that is smaller than disk,
and it is not the casce that:
prior-move led-from priorsiate to current-state, and
prior-move was a move of disk from any-peg to current-peg,
then consider moving disk from current-peg to other-peg.
The new negated conjunction on this variant of TOH is nearly identical to that on TOH-1, but the difference
is significant. TOH-2 states that it is acceptable to move a disk from its current peg to a new peg, provided on
the previous move one did not move from any peg to the current peg. An example should help clarify this
difference. Supposc we have disk-1 on peg-b, and since disk-1 is the smallest of the disks, we can move it to
either peg-a or peg-¢ without violating any of the task constraints. Further suppose that on the previous step,
we moved disk-1 from peg-a to peg-b, so that TOH-1 will not propose moving the smallest disk back to peg-a
(which would result in a loop). However, this variant would propose moving disk-1 to peg-c. In contrast,
TOH-2 would not propese moving disk-1 to cither peg-a or peg-c, since its negated condition forbids a move
of the same disk twice in a row. Thus, the second variant is more conservative than the first, and as a result, it
constrains the scarch process to a greater extent.

Upon comparing different moves from state S4, SAGE produced another set of variants on its initial
proposer. When the discrimination process compared the context in which the desirable move from S4 to S6
was proposed 10 the context that led to the move from S4 1o §7, some six new productions resulted. In this
casc, two of the rules are of interest:




W TOH-3
A If you have Jisk on current-peg in current-state,
and you have some othicr-pey different from current-peg,
and in current-siare there is no othier-disk on current-peg that is smatler than Jisk,
and in current-state there is no third-disk on other-peg that is smaller than disk,
and it is not the case that:
prior-move led-from priorstate to current-state, and
eariier-move led-from earfierstate to priorstate, and
disk was on other-peg in carlier-state,
then consider moving disk from current-peg to otherpeg.

and

TOH-4
If you have disk on current-peg in current-state,
and you have some other-peg different from current-peg,
and in current-stare there is no othier-disk on current-peg that is smaller than dJisk,
and in currenit-siate there is no tird-disk on vt/ier-peg that is smaller than disk,
and it is not the case that:
prior-move led-from priorstate to current-state, and
earlier-move led-from eariierstate to prior-state, and
earlier-move wis a move of disk from othier-peg to current-peg,
then consider moving disk from curreni-peg to other-peg.

In addition to helping direct scarch down profitable paths, these rules are interesiing because they are
syntactically different. but semantically equivalent. The first refers to the suare occupicd two steps before the
current state, while the second refers to the move made at that point. Yet both rules effectively keep one from
moving a disk back to the position it was in two moves before. avoiding such non-optumal moves as that from
S4 10 S7 and that from S5 to S8. Because of the structure of the task demain. these rules are always guaranteed
to match together, and whenever one is learned. the other will also be learned. The possibility for syntactically
distinct but semantically identical rules causes some extra scarch through the space of possible rules, but other
than this no harm is done,

So far, we have considered oaly the initial cases in which the above variants were constructed. However,
cach of these was relearned many times throughout the course of the first run. For example, the non-backup
variant TOH-1 is relearned and strengthened at each step along the way, since SAGE foolishly considered a
backup at every point in its initial search tree. Similarly, the TOH-2 variant was strengthened whenever an
attempt had been made to move the same disk twice in a row (other than simple backups). Thus, the bad
moves from S2 to S3. from S6 to S7. and from S12 to S13 all resulted in an increase of this rule's strength,
along with the analogous faulty moves on the symmetrical path. Finally, the last two uscful variants, TOH-3
and TOH-4, were learned whenever SAGE had considered moving a disk back to the position it had occupied
two states carlier. Thus, the bad moves from S4 1o S7, from S10 to S13, and from S16 to S21 all reinforced
these rules, increasing their likelihood of selection on the next run,

P

On the second run, the system’s performance improved considerably, since TOH-1's strength had come
® to exceed that of the initial proposer. As a result, no backup moves were considered and the scarch process
was considerably more directed. Unfortunately, neither this rule nor any of the other variants were sufficient
by themseives to completely eliminate SAGE's scarch on the Tower of [lanei problem, so more learning was
required. Again the system chained back up its solution path. marking traces that led to the goal states, and
began to compare the contexts of positive and nezative instances 1n its scarch for useful variants. The learning
° process on this run was quite similar to the first, except that variants of TOH-1 were created (since only it had
been applicd). instead of variants of the original rule.
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As one might expecte TOH-1T made exactly the same errors as its predecessar, except for the backup
moves which s additional conditon torbid. Thuso when at state 82, it considered moving 1o §3 as well as o
S4oand when at state S40 e moeved w0 S7oas well as to SO0 As a result the diserimination process generated
variants of this production that were verny similar o those created for its more general ancestor. When
comparing the contexts that led from S2 o S4 and trom §2 w S3, SAGE created a rule containing a "don't
move the same disk twice in g row™ condition, as well as the "don't backup™ condition that was already
present. Similarly, when comparing the moves tfrom S4 1o SH and trem S4 10§71t constructed two variants R
with a "don’t move a disk back where it was two states before” condition (uzain, these were syntactically 3
dirterent but would alwass match against the same state of memory). These rules were relearned and )
strengthened at cach of the points where their anelogs were learned during the first run. :
Since the new variants were more conservatise than TOH-1, and since they had surpassed this rule in :
sirength durng the second fearning run. they began to further direct the scarch process on the third pass. In
fact the "doa't morve the same disk twice inoa row™ variant Get us call it TOH-4) achieved the highest d
stroenathy se ot was appiicd a2t ead stage on dis run. This rule avarded errors sach as moving from S2 10 S3, ]
and rom 5o o ST However. it continued to make mistikes such as moving from S4 o S7. since it iacked the
condition (contaimed i TOH-3) that would keep it rom muking such moves. Fortunatelv. once the solution !
paths had been tound end the learning stege had begun. o structurally ditierent but semantically ]
cquivalent) variants of TOH-4 were constructed that contained the "don't move a disk back to where it was
il
o states hetore” condition, Once these two rules exeecded the strenzth of TOH-3 (as they had by the end of (]
~q- - . . . . h
the run), SAGE had asailable to it a search heuristic that proposed moves lying on the selution path, but that
ignored moves that would take it off that pathi. Indeed. when the system was presented the three-disk problem
a fourth time, it successfully solved the problem without tuking any false steps. ]
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Figure 3. Learning curve for the three-disk Tower of Hanoi task. g
Figure 3 presents the learning curve for SAGE.2 on the Tower of Hanei task, The figure graphs the ,
number of states censidered during the scarch process against the pumber of tmes the probiem had ]
proviously been attempted. As can be seen. the system shows a distinet improvement over time, untl it 3
¢ esentually solves the task in the minimum number of steps. In addition. since the problem spaces for the )
four-disk and five-disk puzzles have the seme busic structure as the simplar three-disk space. the learned R
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heuristics were also useful in these more complex tasks. In fuct, when presented with the standard four-disk
and five-disk versions of the puzvle (in which all disks must be moved from one peg to a different peg), SAGE
applied its heuristics to solve these problems without scarch as well. Thus, we can conclude that for this
domain at least, the system is capable of transfer to scaled-up versions of a problem on which it has practiced.

While SAGE was able to transfer its acquired knowledge to other standard versions of the Tower of
Hanoi task. the program would not have fared so well if it had been given a non-standard problem. The
heuristics that the system lcarns for this task are very good at directing search when all disks start on one peg
and must be moved to another peg, but they are not adequate for moving from one arbitrary configuration to
another. Later, we will have morc to say about this type of transfer, and what would be required to
accomplish it. However, let us first turn to the topic of learning while doing.

6.2. Learning While Doing

Although SAGE.2 is capable of learning from complete solution paths, it is not limited to this method.
As we have seen. the system also includes heuristics for learning from longer paths and loops. from dead ends,
from illegal moves, and from a failure to make progress. The first two of these tcchniqucs10 can be applied to
the Tower of Hanoi puzzle to acquire scarch strategics identical to those described in the previous section.
Lct us consider this process of learning while doing, and its relation to learning from complete soiution paths,

As before, SAGE began the three-disk problem by carrying out a breadth-first scarch. moving from
state S1 to states S2 and S3. Since these moves led 1o new states. and since other moves could be made from
them, none of the blame assignment heuristics applied at this point. Since the two solution paths are
symmetrical, we will focus on the left half of the space shown in Figure 1. From the state S2, three moves
were possible — SAGE could move to S4, to S1, and to S3. The first of these was a new state, but S1 and S3
had been visited before. The move from S2 to S1 led to a loop. while the move frem S1 through S2 to S3 was
a longer path than that from S1 directly to S3. However. the NOTE-LONGER productinn does not make
such distinctions, being concerned only with avoiding revisited states, so this rule applied, ..arkt :g the moves
from S2 to S1 and S3 as undesirable.

Given the information that these two moves should not have been made, the rule MARKED-BAD was
applied to cach in turn, calling on the discrimination mechanism. In both cases, it focused on the move from
S2 to S4 as the positive instance, since this was the only move from S2 that was not labeled as an error. Upon
comparing this move to the onc from S2 to S1, SAGE constructed the variant TOH-1 that we saw before,
along with four other variant productions that never become strong enough to apply. When the move from S2
to S4 was compared to that from S2 to S3, the variant TOH-2 was created (along with two other rules). Thus,
up to this point, SAGE had assigned credit in precisely the same manner that it did when the complete
solution path was available.

Next. having abandoned the revisited states, SAGE applied its initial proposer (which was stll stronger
than any of the variants) to the state S4. From this position, three moves were again possible — from S4 to S6,
from S4 to S2, and from S4 to S7. The sccond of these led back to the previous state, and was labeled as
undcesirable by NOTE-LONGER. Given this judgement, MARKED-BAD applied twice, comparing this
move both to that from S4 to S6 and to that from S4 to S7, since ncither had been marked as bad. In both
cases, the variant TOH-1 was recreated and strengthened, along with a number of other rules. Since SAGE

lOln fact. the rules NOTE-LONGFER and DEAD-END were used even in the run described above, in which credit was assigned after a
solution had been found. However, their role in this run was only to tell SAGE when it had reached untenable positions, so the sysiem
could abandon scarch down contain paths and focus on others. Since the production MARKED-BAD was not present. the program could
not learn using the information added to memory by these rules.
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did not vet have any reason to suspect that the move from S4 to S7 was undesirable, it considered moves from
both this state and from S6. which lay on the solution path.

Three moves were possible from S6, and all were carried out: these included a move from S6 to S10,
from 56 to S4. and from S6 to §7. The last two of these operations led to revisited states, so NOTE-LLONGER
was applied in cach case. MARKED-BAD compared cach of these moves to that from S6 to S10, regencrating
TOH-1 in one instance and TOH-2 in the other, along with a number of additional variants. Three moves
could also be made from S7, to the states S6, S4. and S8. However, cach of these states had been visited
before. the last from the symumnetrical scarch in the right side of the space. NOTE-1LONGER was applicd and

b . marked cach of the moves from S7 as undesirable, but since there were no good moves originating from S7
with which they could be compared. MARKED-BAD could not be applicd. Mecanwhile, NOTE-LONGER
. had also refocused SAGE's attention on S7. marking it as one of the states currently under consideration for
9 expansion. Since no other moves could be made from this state. the rule DEAD-END applied, marking the
3 move that led from S4 to S7 as undesirable. With this knowledge in hand. MARKIED-BAD applied. calling
[ on the discrimination routine to compare the good move from S4 to S6 1o the recently determined bad move,
Two of the resulting variants were TOH-3 and TOH-4, which avoid moving a disk back to the position it
occupied two states carlier.

g By this point. SAGE’s credit assignment heuristics had begun to losc ground to the strategy of learning
4 from complete solution paths. Although NOTE-LONGER continued to notice revisited states and to lead
E. MARKED-BAD to strengthen both TOH-1 and TOH-2, the dead-end noticing rule never had another

chance to apply. As a result, the moves from S10 to S13 and from $16 to S21 were never classified as
undesirable, and the two variants TOH-3 and TOH-4 were not relcarned until the complete solution path was
marked. and ON-PATH and OFF-PATH came into the picture. This did cventually occur, and the resulting
cvenis were identical to those described in the previous section. save that many of the variants already ¢xisted,
and so by the end of the run they were considerabiy stronger than in the other case. Arter this, SAGE was
given a sccond chance to solve the three-disk task, and events followed much the same route, except that
backups were missing. so NOTE-LONGER was applied much less often. By the fifth run, the system was able
to solve the problem without search. and to transfer its expertise to the four-disk puzsie. The learning curve
for these runs was very similar to that shown in Figure 3. However, slightly less search was carried out in the
early runs, since the uscful variants were able to mask their predecessors before the run was complete.

6.3. The Importance of Goals

In our treatment of the Tower of Hanoi puzzle, we assumed two goal states and two symmetrical
solution paths to these goals. It is much more common to formulate the problem with a single goal peg,
resulting in only one optimal solution path. and our use of multiple goais descrves some discussion. In the
carly stages of constructing SAGE.2, we made two design decisions that led us to state the Tower of Hanoi
puzzle as we have done. First. we decided to treat the arguments of operators as insignificant during the
discrimination process. as we described ecarlier. As a result, the system has difficulty in learning heuristics for
moving disks towards onc peg rather than another, and we dealt with problem by including two goal pegs. If
we had chosen instead to treat pegs as significant symbols, SAGE would have learned more specific rules, but
at least the system would have been able to acquire heuristics for moving disks to a specific peg. However, a
more general and attractive alternative exists.

The sccond design decision involved assuming a procedural representation for the goal state, rather than
a declarative one. The reader will recall that SAGE includes a production for recognizing when it has solved a
problem. and which stops the scarch process when this occurs. Since goal information is not available for
inspection by the discrimination mechanism, it cannot discover conditions that refer to the goal state, As a
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result. the search heuristics it learns are incapable of dirccting scarch down different paths depending on the
goal. Note that this is not a limitation of the discrimination method itself, but is rather a limitation in the
information accessible t the learning system. If we had chosen o include explicit information about the goal
state in working memory, SAGE should have been able to learn rules that would move toward a single goal,
and still treat the arguments of its operators (such as pegs and disks) as insignificant symbols. The system
would have been able to detect relarions between desirable moves and the goal state, and incorporate these
relations into the variants it learned.

In addition. this approach opens the way for learning heuristics for solving non-standard versions of the
Tower of Hanoi puzzie, in which both the initial and goal states are arbitrary configurations of disks. Once
the discrimination method has access to the goal state, it might well be able 0 acquire rules that would
transfer between different initial and goal states. leading to a much more robust system. Although we have not
vet tested SAGE in this manner on the Tower of Hanoi. we will later examine another task in which this
approach does lead to the predicted forms of transfer. Since goals are so obviously important to problem
solving, it may seem odd that we did not include declarative knowledge of goals at the outset of our rescarch.
Such judeements are all o casily made with the aid of hindsight. In defense, we can only note that very little
of the other work on learning scarch heuristics deals with goals in this manner, so that SAGE is far from alone
on this dimension.

7. Applying SAGE.2 to Other Domains

Onc important dimension on which Al systems are judged is their generality, and the most obvious test
of a program’'s generality is to apply it to a number of different domains. In this section, we summarize
SAGE.2’s behavior on five additional tasks, Some of these are puzzles similar to the Tower of Hanoi task, but
others have quite different characteristics.  In cach case, we describe the problem or class of problems,
consider the rules the program learns in the domain, and discuss the types of transfer that occur. After this, we
examine the generality of the individual learning heuristics employed by the system.,

7.1. The Slide-Jump Puzzle

In the Slide-Jump puzzle. onc is presented with N quarters and N nickels placed in a row. The quarters
are on the left, the nickels are on the right. and the two sets of coins are scparated by a blank space. Legal
moves include sliding into a blank space or jumping over another coin into a blank space. In addition, quarters
can be moved only to the right, while nickels can be moved only to the left. The goal is to cxchange the
positions of the quarters and the nickels, so that the former occur on the right side of the blank and the latter
occur on the left. For instance, given the initial state Q Q Q — N N N, one would attempt to generate the goal
state N N N — Q Q Q. Like the Tower of Hanoi problem, the Slide-Jump puzzle has a relatively small search
space, vet it is quite difficult for human problem solvers to master. Also like the Tower of Hanoi, it has two
symmetric solution paths; however, since moves are not reversible, loops do not come into play in this task.

SAGE.2 was initially presented with the four-coin version of this puzzle. in which the positions of two
quarters and two nickels must be cxchanged. The program was given two initial proposers — one for
suggesting slide moves and the other for suggesting jumps. After an initial breadth-first scarch in which both
optimal solutions were found. the system attempted to learn from these paths. After some three runs through
the problem, SAGE had generated (and sufficiently strengthened) the following variant of the initial slide
rule:
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SLIDE-1
If 2 tvpe-of-coinis in current-position in current-state,

and adjacent-position is blank in current-state,

and adjacent-position is to the lefi-or-right of current-position,

and nype-of-coin can move to the left-or-right,

and prior-move led-from prior-staie to current-state,

and priormove was a jump of nvpe-ofcoin from adjacent-position to_other position,
then consider sliding 0y pe-of-coin from current-position to adjacent-position.

This rule contains two (underlined) conditions that were not present in the original slide-proposing
production. These conditions allow the variant to propose sliding a coin only if another coin of the same type
was just jumped from the adjacent position. Five other variants of the original slide rule were constructed and
contributed to directing the scarch process, while some 14 variants were based on spurious features of the
problem. and were not learned enough times to affect behavior. One vartant of the jump rule was also
construc:ed. which avoided jumping one coin over another of the same type (which leads to to a dead-end).
However, this rule was lcarned only once before a stronger variant of the slide rule caused SAGE to avoid this
particular crror.

In the learning while doing runs. the system proceeded in a very similar manner. except that some credit
and blame was assigned during the scarch process. In this task, two credit assignment heuristics contributed to
learning. The DEAD-END rule produced a variant that avoided sliding the same type of coin twice in a row,
while NOTE-LLONGER gencrated the jump variant mentioned above. When SAGE was presented with the
six-coin Slide-Jump puzzle, it successfully solved this problem without scarch, again indicating that the
system can handle scaled-up transfer. Although the normmal statement of the puzzle does not allow reversible
moves, alternate initial and goal states can be formulated if they are allowed. However, in its current form,
the program would not have been able to transfer its expertise to an arbitrary problem of this type, for the
same reasons as the Tower of Hanoi version.

7.2. Tiles and Squares

Ohlsson (1932) has described the Tiles and Squares puzzle, in which one is presented with N tiles and N
+ 1 squares on which they are placed. Each square is numbered from 1 10 N + 1, and each tile is labeled
with a unique letter. Only one legal move is possible: moving a tile from its current position to the blank
square. The goal is simple; get all the tiles from the initial positions to some explicitly specified end position.
For example, the initial configuration might be B C — A, while the goal configuration might be A — C
B. Since any tile may be moved into the blank space, the moves are much less constrained than in most
puzzles. One of the interesting features of this task is that while the branching factor of the scarch space is
quite high (3 for three tile tasks, 4 for four tile tasks, et¢.), two simple heuristics are sufficient to aveid search
entircly. Indeed, one might even question whether the task is challenging enough to be called a puzzle. We
have included it here primarily to clarify SAGE's ability to acquire disjunctive rules.

SAGE.2 was presented with the above problem. as well as a single rule for proposing legal moves. Based
on the two optimal solution paths it discovered for this task, the systemi generated (and sufficiently
strengthened) seven variants for directing the search process. along with some 73 less uscful rules. Two of the
useful variants!! may be paraphrascd as:

1

The other five usefu] variants were semantically equivalent to TS-2, and proposed the same movcs in all cases.
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TS-1
If you have a rile on current-square in current-state,
and othier-square is blank in current-state,
and in_the final goal vou want sile in other-square,
then consider moving tile from current-square 10 other-square.

and

TS-2
If you have a tile on current-square in current-state,
and other-square is blank in current-state,
and in the final coal you want othertile in current-square,
and it is not the case that:
prior-move led-from priorstate to current-state, and
prior-move was 4 move of /e from crhiersquare to current-square,
then consider moving tile from current-square 1o other-square.

Note that these rules are disjunctive, in that they cover different situations that arise in the problem. For
example. the first variant is uscful in suggesting that C be moved to the third position at the outsct of the
above problem, leading to the state B — C AL Once this has been done. the second rule is useful in proposing
tiat cither B or A be moved into the second square. leading to the states — BC A and BA C —. At this point
the first rule again comes into play, proposing the move of A into square 1 or B into square 4, and finaily, this
same rule proposcs moving B to 4 or A to 1, reaching the goal state. The point here is that neither of the above
heuristics is sufficient to completely direct the search process by itself, but taken together they climinate
scarch. Thus. the ability of SAGE'’s discrimination process to consider disjunctive heuristics shows its
potential in the Tiles and Squares puzzie.

Another interesting characteristic of this problem is that SAGE incorporated information about the goal
state in the conditions it discovered. This was possible because the goal description was present in working
memory, and so was considered during the condition-finding process. As a result, the heuristics the system
learncd from the above problem can be applied not only to more complex problems with longer solution
paths. but to other problems in the same space with differing initial and goal states. Thus. SAGE's behavior
on the Tilcs and Squarcs task shows that the system is capable of acyuiring goal-sensitive heuristics, as we
proposed carlicr, provided information about the goal state is present in working memory.

In addition to learning from complete solution paths, the credit assignment heuristic for noting loops
and longer paths was also applicable to this domain. The detection of longer paths led to TS-1, the first
variant, which moves a tile into its goal square whenever possible. Similarly. the detection of loops led to an
jnitial version of TS-2 that contained only the no-backup condition. However, none of the lcarning while
doing heuristics were sufficient to learn the TS-2 condition “"in the final geal vou want othertile in
current-sguare”. This resuited from the fact that whenever TS-2 was applicabie. alf of the cgal mmoves (other
than backtracking moves) lay along optimal solution paths of cqual length. Since the learning while doing
rule MARKED-BAD only compares instances originating from the same state, and since there were no bad
moves from such statcs. SAGE could never master the complete form of TS-2 during the search process. As a
result, the system fell back on its complete solution path strategy to Icarn the final version of this variant.

7.3. The Mattress Factory Puzzle

Like the Slide-Jump problem, the Mattress Factory puzzle requires two operators for moving through
its search space. In this task, one is told that N employces are working at a mattress factory. Duc to losses, the
factory must be closed down, and so all the workers must be fired. However, union regulations require that
hiring and firing follow ceriain rules. The least senior worker may be hired or fired at any time; this
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corresponds to the first operator. However, other workers may only be hired or fired if the person directly
below them in seniority is currently employved. and furthermore, provided that no other person below them is
Lc also employed.  This complex rule corresponds to the second operator. Since cach of these operators is
f ; reversible. one can alwayvs immediately undo an action that was just taken. Thus, this task sharcs an
: abundance of possible loop moves with the Tower of Hanoi. Although this problem has an even smaller space
! than the Tower of Huanoi, it also gives human problem solvers considerable difficulty.  Cahn (1977) has
f studied human learning on the Mattress Factory problem.

{

SAGE.2 was initially presented with the three-person version of the problem, along with rules for
proposing the two types of moves described above. After finding the single solution path, it gencrated and
- sutficiently strengthened a straightforward variant of the original lowest worker rule:

o MF-1
If you have a worker with current-status in current-state,
and worker is not senior to any other-worker,
and current-status is the opposite of otherstatus,
and it is not the case that:
prior-move led-from priorstaie to_current-state, and
prior-move was a chanae of word cr from othicrsiars W0 _current-starus,
then consider changing worker front current-status to ctherstutus.

_. In this production. the variables current-status and othrer-statas match against the possible states in which a
worker can find himself — either employed or uneriployed. The additional nezated conjunction on this rule
simply prevents one from undoing the previous move. Together with a similar variant of the sccond operator,
this production is nearly sufficient for directing scarch on the Mattress [Factory puzzle.

However, onc additonal picce of information is required. If one avoids ocackups, then only two legal
paths can be traversed in this problem space. and these paths are entirely determined by whether one initially
fires the least scnior worker or his immediate superior. In the three-worker problem. the correct choice is to
208 firc the lowest person. SAGE acquires this strategy by weakening the variant on the second operator, so that
the MF-1 rule shown above is preferred. This strategy transfers to scaled-up probiems concerning five, seven,
or any odd number of werkers. but not to problems concerning even numbers of cmployees. If we had been

willing to add to SAGE’s memory the parity of the number of workers, this could conceivably have been
S learned as a condition across problem types.

A significant feature of this class of problems is that learning from complete solution paths does not
provide any more accurate credit assignment information than docs learning while doing. In the latter case,
the majority of credit is assigned by the NOTE-LONGER rule in response to the large number of loop moves
® that are made. In addition, although SAGE explores both of the paths leading from the initial state, one of
these eventually leads to a dead-end. At this peint, the DEAD-END rule chains back up the search tree,
marking cach statc along the way as undesirable. However, no learning can occur until it reaches the two
moves made from the initial state, since it requires both a positive and negative instance before learning can
occur. Since different operators were applied at this point, no discriminations can result, but the rule
o proposing the move down the dead-end path is weakened, giving preference to the other operator.

- 7.4. Algebra

We have also presented SAGE.2 with algebra problems in one variable. such as 4x — § = 3. The goal
here is to simplify the expression, arriving at an cquation with the variable on one side and a number on the
other, such as x = 2, For this domain, the system was given a single operator for adding. subtracting,
) multiplying. or dividing both sides of an equation by the same number. Morcover, the initial proposer for this
:_ operator required that any numeric arguments t these functions occur somewhere within the current
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V.- expression. In addition. SAGE was provided with a domain-specific credit assignment heuristic; this informed
. . . . . . . .

& o the program that expressions which were not simpler in form that the previous cxpression were no closer to
1" the goal, and so were undesirable.

(¢

Given this information, the system’s behavior when learning while doing was identical to that when
learning from complete solution paths. During both runs, SAGE arrived at a variant of its original proposer
that would always direct it to an optimal solution. This rule can be stated as:

ALGEBRA-L
If you see a number as the argument of finction in current-state,
and other-function is a function,
and tfurction is the inverse of other-fiinetion,
and fiviciron occurs at the top level of the expression_in current-state,
then consider applying otizerfunction to both sides with number as its argument,

This production contains two conditions bevond these in the initial rule. both of which are underlined. The
first of these constrains attention to functions that arc the inverses of fune ns occurring in the expression.
For example. given the expression 4x — § = 3. ALGEBRA-1 would consider adding a number (since

s addition is the inverse of subtraction) or dividing by a number (since division is the inverse of multiplication),

but not subtracting or multiplying. The sccond condition further constrains the function that is sclected.

- SAGE represents such expressions as trees or list structures with forms like (= (= (*4x)5) 3). Since
o

! subtraction occurs at the top level of this structure, it would bind against the variable function, so that adding
5 1o both sides would be suggested.

Since algebra problems such as the above always assume similar goals, transfer to problems with
- different goals is not appropriate for this domain. However, scaled-up transfer is possible, and the variant
SAGE generated for the above problem can be used to solve more compiex problems, such as 3 (x + 1) ~
5)/2 = 2. Obviously, it can also be used to solve different problems of the samie complexity involving
different functions. In principle, we could have given SAGE four different proposers at the outset — one for
addition, one for subtraction, and so forth. If we had not given the system information about the inverses of
functions, it would still have been able to learn not to add unless subtraction occurred in an cxpression, and
analogous rules with similar conditions. However, given a problem like 4x — 5 = 3 on which to practice, the
system would then have only partial transfer to a problem like 2x + 1 = 7, in which there occurred only one
of the operators with which it had experience. This form of transfer is similar to that studied by Mitchell,
CUtgoff, and Banerji (1983) in their work on symbolic integration.

7.5. Seriation
° Scriation behavior has been widely studied by developmental psychologists, starting with Piaget (1952),
and production system models of children’s behavior on this task have been constructed by Young (1976) and
by Baylor, Gascon. Lemoyne, and Pother (1973). In one version of this task, the child is presented with a set
of blocks in a pile. and is asked to line them up in order of descending height (say from left to right). As
simple as this may sound. young children have considerable difficulty with this sorting task, and many adults
°® , do not solve the problem very efticiently. Since this class of problems was somewhat different from the others
SAGE had been given, we felt it would be useful to include it in our tests of the system.

In this case. the program was given a single operator for moving a block from the pile to the end of the

current line (or to the first position in the linc if none existed). Also, SAGE was given a domain-specific rule

‘ for determining illegal states. This stated that if a taller block had been set to the right of a shorter block, the

® move that led to this state was undesirable. For example, suppose the systein were presented with four blocks
' - A, B.C and D = where A is the tallest and 1) is the shortest. Further suppose that on the first move,




SAGE moved D into the line. On the next move, the program could move any of A, B, or C next w 1), but
cach of these moves would immediately be classified as illegal.

SAGE.2 was presented with four blocks and given the goal of ordering them according to height.
Learning from complete solution paths (and using only the illegal move detector o constrain the initial
search). the system generated one useful variant, along with some 67 others. This production excecded the
original ruje in strength after a single learning run, and led to perfect behasior on the second time through the
problem: it can be stated as:

SERIATE-1
If you have a biock in the pile in current-state,
and it is not the case that:
there is some ethier-block in the pile in_current-state,
and_orlerhlock is taller than block,
then consider moving bdivck to the end of the line,

This production contains a single new condition that is stated as a negated conjunction, Eifectively. it says that
one should move a bleck only if there is no other block in the pile that is taller than that picce. This constraint
is related to conditions in the illegal state detector, since the SERIATE-1 variant will never place a taller block
to the right of a shorter one, However. one can imagine & rule that would never propose illegal moves, and yet
would still start off down the wrong path. say by placing the smallest block in the line first. Such a variant was
generated during the seriation run, but did not become as strong SERIATE-1, which never makes this
mistake. Thus, the negated conjunction in SERIATE-1 incorporates both the test for illegal states and look-
ahcad information, enabling the rule to avoid moves that will lead to dead-ends.

SAGE.2 was also capable of learning during the initial search on this task. In addition to the rule far
noting illezal states. the DEAD-END heuristic also came into play. Consider again our example from above,
in which block D s placed first in the line. In this situation, the system attempted moving cach of A, B, and C
next to the smallest block. and each move was marked as illegal. However, since no other moves were possible
from this state. the DEAD-END rule applied, marking the initial 1> move as undesirable. Since the three
other moves considered at the outset were still acceptable (the B and C moves did not lead to dead ends until
later), the D move was compared to cach of these moves by MARKED-BAD, The resulting call on
discrimination led to the SERIATE-1 rule shown above. Later dead-ends led to similar comparisons, and this
rule was strengthened, until it came to cfficiently direct the scarch process even before an initial solution had
been found.

8. Discussion

Now that we have examined SAGE and its behavior on a number of tasks, we can begin to evaluate the
program. In the case of a learning system, one of the most important dimensions is gencrality. One way to test
a system'’s gencrality is to run it in a number of domains, and as we have seen, SAGE fares well on this
criterion. However, one could in principle construct a program that employed one heuristic for one domain, a
different heuristic for another domain, and so forth. In other words. one must also test the components of a
system for generality. On this dimension, SAGE’s discrimination/strengthening strategy passes with flying
colors, since it plaved a central role in cach of the runs described above. However, the situation with respect to

the credit assignment heuristics is more complex. so let us consider it in more detail,

Table 5 presents the six credit assignment rules used in SAGE.2, along with the six task domains in
which the system was tested. As can be scen from the table, and as has been apparent throughout the paper,
the complete solution path heuristic is very general, and was (or could have been) applied on cach of the
tasks. The other heuristics were Jess useful. but still showed evidence of generality. Both the loop move/longer
path rule and the dead-end rule led to learning in four of the six problem classes.
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Table 3. Generality of SAGE.2's credit assignment heuristics.

SOLLTION LLONGLR DEAD ENDS ILLEGAL NO PROGRESS
TOWLER OF HHANOI X X X
SLIDE-JUNMP X X X
TILES AND SQUARES X X
MATTRESS FACTORY X X X
ALGIBRA X X
SERIATION X X X

The illegal state detector was stated in a domain-specific manner and was used only in the seriation task.
However, one can imagine versions of the Tower of Hanoi. Mattress Fuctory. and Slide-Jump puzzles in
which the conditions for legal moves must be learned along with the conditions for good moves. 1t might even
be possible to state these constraints as clements in SAGE's working memory. so that a quite general illegal
state detector couid be implemented. Finally, the no progress rule was used only in the algebra domain, but
onc can imagine a version of SAGE that always computed the distance between the current state and the goal
state, and a very gencral no progress heuristic that matched off the results of this computation.

Another issue relates to the form of the acquired heuristics. As we have seen. the discrimination
approach is in principle capable of learning disjunctive rules. and this potential proved useful on the Tiles and
Squares task. Since disjunctive heurisiics are likely to occur in a significant fraction of task domains, the
ability to acquire them is certainly desirable, and SAGE shows promise along this dimension. On the other
hand, we found that on most tasks. SAGE was not able to learn heuristics that incorporated information about
the goal state. Such rules arc important, sinice they would et the system to transfer its acquired expertise to
problems with different initial and goal states from those on which it practiced.

The one arca in which the system did achicve such transfer was the Tiles and Squares problem, and the
key in this case was the explicit representation in working memory of the goal state toward which the system
was working. Since this information was available for inspection by the discrimination mechanism, it could be
included in the conditions on variants spawned by this process. As a result, variants containing such
conditions could direct the scarch in different directions, depending on the particular goal that was being
sought. Presumably, before SAGE can be expected to manage similar transfers for other domains, its
representation for these tasks must be augmented to include explicit representations of their goal states.
Whether such an addition will be sufficient or merely necessary is a question that can best be answered
experimentally,

A sccond natural extension relates to the search strategy that SAGE employs. Many problems (such as
winning a chess game) are so complex that they can only be solved by breaking the task up into manageable
components. One such approach involves setting up subgoals, cach of which must be solved before the
supergoal is accomplished. If SAGE's search control were augmented to allow tiie introduction of subgoals,
then the heuristic for assigning credit based on complete solution paths could undergo an important but
subtle alteration. Rather than requiring solutions to an entire problem. the method could be applied
whenever a particular subgoal had been achiceved. Variants learned from this path would be specific to that
subgoal: that is. they would include a description of the current subgoal as an extra condition, in addition to
the other conditions found through discrimination. Even if SAGE later determined that this subgoal was not
particularly desirable in the current context, the rules that had been learned might still prove uscful in
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satisfying the subgoal in some other situation at a later date. This approach would also require the system to
learn the conditions under which various subgoals should be set, but this could be handied by the existing
mechanisms for learning the conditions on operators,

In summary. the existing version of SAGE has a number of desirable features, but our understanding of
the strategy leurning process is far from compiete. and more work remains to be done. In our future rescarch,
we plan to restructure the system’s problem solving and Iearning methods to take advantage of information
about goals. as we outlined above. In addition, SAGE has so far been tested only on problems with relatively
small scarch spaces. and we are now ready to explore the system's behavior on more complex tasks.
Undoubtedly. our experiences in these domains will lead 1o additional insights into SAGE's limitations, and
to further revisions that. hopefully. will lead to a more powerful and robust system for learning search
heuristics.
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