
AD-Ai49 949 LEARNING TO SEARCH FROM WEAK METHODS TO DONAIN-SPECIFIC i/l
HEURISTICS(U) CARNEGIE-MELLON UNIV PITTSBURGH PR
ROBOTICS INST P LANGLEY 81 SEP 84 CMU-RI-TR-84-21

UNCLASSIFIED F/G 5/10 NL

IIIIIIII

a- 2 1 2.2

I1111IL25 I1111 1.4 11111_.6

MICROCOPY RESOLUTION TEST CHART
NA NA J J ALP I~ 'AV 1 A

~~71-

- 4- .\

I,
V AMe

Learning~FE to Serh FrmW5kMehd

toe DoanSeibcHuitc

' ii

to

01 28 11

Learning to Search: From Weak Methods
to Domain-Specific Heuristics

Pat Langley

CMU-RI-TR-84-21

The Robotics Institute
Carnegie-Mellon University

Pittsburgh, Pennsylvania 15213 USA

September 1, 1984 S EL 85'SFE B7 1985

Copyright 0 1984 The Robotics Institute, Camegie-Mvfellon University

I would like thank Stephanie Sage, who helped in programming and debugging the SAGE system, as well as
Drew McDermott and Rich Korf, who provided useful comments on an earlier draft.

This paper will appear in Cognitive Science.

k!
Tb 60ma " 6

SECURITY CLASSIVICA. O4 o3. -- IS PASE~f. ~n-e
*REPORT DOCUMENTATION PAGE !!RtOED CSLTICTI

In REPORIT NUMB4 2 . GOVI ACCESSION N.O. 3. 'rC;-1ENTO CATALOG NUMazR

CMU-RI-TR-84-2 1

4. TITLE (and Subtitle) S. TYPE OF REPORT &PERIOD COVLRED

Learning to Search: From Weak Methods to Domain- Interim
Specific Heuristics _________________

6. PERFORMING ORG. REPORT NU04SER

17. AUTHOR(a) 9.CO.TRACT OR GRANT NUMBER(a)

Pat Langley

S. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMIE.T. PROJECT. T i

Carnegie-Mellon UniversityARA&Oi(UT MES

The Robotics Institute
Pittsburgh, PA. 15213

11. CONTqfyG OFFICE NAME AND ADRESS 2. REPORT DATE

*Office of Naval Research September 1, 1984

*Arlinzgton, VA 22217 13. NUMBER OF PAGES

32

_M MOIiTORING AGEN4CY NAME &A00RESS(If different Irorn Controlijng Ofie IS. SECURITY CLASS. (of thla report)

1386 DECLASSIFICATION/OOWNGRAAING

* 16. i)ISTRIaUTIC.4 STAT ENENT (or lte Report)

Approrved for ptiblic release; distribution uhlimited

17. DISTRIBUT104. STATEMENT (of the abauect entered In Stock 20. it different born Repoit)

Approved for public release; distribution unlimited

s. SUPPLEMENTARY NO0TES

19. KEY WORZS (Continue an ir.,,. *:Iyo if nacesa7and ident*ify by block nbr

20. ABSTRACT (Conromwe an ic-ereo aide It neceao and identify' by block nk.~b*.rJ -

Learning from experience involves three distinct components--generating behavior,
*assigning credit, and modifying behavior. We discuss these components in the contex

of learning search heuristics, along with the L'pes of learning that can occur. We
then focus on SAGE, a-system that improves its search strategies with practice. The
program is implemented as a production system, and learns by creating and strength-
ening rules for proposing moves. SAGE incorporates five different heuristics for
issigning credit and blame, and employs a discrimination process to direct its

DD I Z' 1473 EDITION CF I NOV GS IS OBSOLETE SEUIT UNCLASSIFIED.
S/N 0802-01#-6601 1 9UIYCLASSIFICATIONO OF THIS PAGE (06hen Data 5'.Eei*4) -

(20. cont'd)

search through the space of rules. The system has shown its generality by
learning heuristics for directing search in six different task domains. In
addition to improving its search behavior on practice problems, SAGE is able
to transfer its expertise to scaled-up versions of a task, and in one case
transfers its acquired search strategy to problems with different initial and

-: goal states.

Accession For

UTIS G1~

By- --- 0

Distr LA~

Availabil 1 .

* ~Avail_ 'D~.r -

Dist Spec 4:il

Table of Contents
I. Introduction I
2. Types of Strategy I.earning 2
3. Approaches to Credit Assignment 4

3.1. Complete Solution Paths 4
3.2. Noting Loop Moves 5
3.3. Noting Longer Paths 5
3.4. Dead Ends 6
3.5. Failure to Progress 6
3.6. Illegal States 6

4. Approaches to Altering Search Behavior 7
4.1. Discovering Evaluation Functions 7
4.2. Gcnerali/ing Conditions 7
4.3. Discriminating Conditions 7
4.4. The Version Space Approach 8
4.5. Implications for Search Behavior 8

5. SAGE.2: A System That Learns Search Heuristics 9
5.1. Representing States and Operators 9
5.2. "lhe Initial Search Strategy 10
5.3. SAGE.2"s Credit Assignment Heuristics 11
5.4. Learning Conditions Through Discrimination 13
5.5. Directing Search Through the Rule Space 16

6. An Example of SAGE.2 at Work 17
6.1. Learning From Solution Paths 17
6.2. Iearning While Doing 21
6.3. The Importance of Goals 22

7. Applying SAGE.2 to Other Domains 23
7.1. The Slide-Jump Puzzle 23
7.2. Tiles and Squares 24
7.3. The Mattress Factory Puzzle 25
7.4. Algebra 26
7.5. Seriation 27

8. Discussion 28
References 31

-S T. II" . .

.0 , ,.. : . " : . .: '

II
7 - Abstract

Learning from experience involves three distinct components - generating behavior, assigning credit, and

modifying behavior. We-discuss these components in the context of learning search heuristics, along with the
types of learning that can occur. -We then focus on SAGE, a system that improves its search strategies with
practice. The program is implemented as a production system. and learns by creating and strengthening rules
for proposing moves. SAGE incorporates five different heuristics tbr assigning credit and blame, and employs
a discrimination process to direct its search through the space of rules. The system has showkn its generality by
learning heuristics for directing search in six different task domains. In addition to improving its search
behavior on practice problems, SAGE is able to transfer its expertise to scaled-up versions of a task, and in
one case transfers its acquired search strategy to problems with different initial and goal states. ,,' / /

,q

..

1. Introduction

"The ability to search is central to intelligence, and the ability to direct scarch down profitable paths is
what distinguishes the expert from the novice. I-lowever. since all experts begin as novices, the transition from
one to the other should hold great interest for Artificial Intelligence. In this paper. we examine the process by
which general but weak methods are transformed into powerful. domain-specific search heuristics. As the
reader proceeds. he should be able to detect two main themes. In the early sections of the paper, we have
attempted to classify the types of heuristics learning that can occur, as well as the components that contribute
to such learning. After these preliminaries have been completed. we explore a particular learning system -
S\GE.2 - in some detail, both in terms of its structure and in terms of its behavior in different domains. We
close with a discussion of some directions in which the system should be extended.

Within any system that improves its search strategies with experience, we can identify three distinct
components. First. such a system must be able to search. so that it can generate behaviors upon Mhich to base
its learning. Second. the system must be able to distinguish desirable fiom undesirable behaviors, and to
determine the components of the system that were responsible for those behaviors: in other words, it must be
able to assign credii and blame. Finally, the system must be able to use this knowledge to modify, its search
strategies. so that behavior improves over time. Since so much Al research has revolved around the notion of
search, it is not surprising that the first of these components is the best understood. Many alternative search
strategies have been explored, ranging from very general but weak methods, like depth-first and breadth-first
search, to much more powerful methods that incorporate knowledge about specific domains. It is precisely the
transition between weak. general methods and specific, powerful methods with which we are concerned.
Thus, it is appropriate that a strategy learning system start with some weak search scheme that can be applied
to many different domains. However, it is also important that the search control can be easily modified to take
advantage of domain-dependent knowledge that is acquired with experience. The areas of credit assignment
and modification are less well understood, and we discuss them in some detail in later sections. However,
before turning to these matters, let us consider the problem of learning search heuristics in the context of a
simple puzzle.

Over the years, the Tower of Hanoi puzzle has been used as a testbed for many different Al systems. We
have chosen this task for our example because it is so well-known to the Al community, and because it poses a
challenging problem to humans despite its small search space. In this puzzle, one is presented with three pegs
on which are placed N disks of decreasing size. Initially, all disks are placed on a single peg, and the goal is to
get all of these disks onto one of the other pegs. This task would be trivial except for two constraints on the
types of moves that are allowed. First, one can only move the smallest disk from a given peg. Second, one
cannot move a disk onto another peg if a smaller disk is already resting on that peg. Taken together, these
restrictions considerably constrain the set of legal moves, and make for a challenging problem.

Figure 1 presents the state space for the three-disk Tower of Hanoi problem, originally formulated by
Nilsson (1971), while Figure 2 shows two of these states in more detail. Note that although only 27 states exist
in the space, the number of connections between these states is very large. One result of this high density of
connections is that loops are very easy to generate. 1 Another result is that while many paths to a goal are
possible, only a few are optimal. In other words, within the state space for the three-disk problem,
considerable search may be necessary to find an optimal solution path. Suppose S1 is given as the initial state
(in which all disks are on a single peg), and the goal is to reach either state S20 or state S27 (in which the disks

Loops are possible because all moves are re'ersible. For example, one can most from State S2 to SI as easily as from SI to S2,
though longer loops can also occur.

6'

-2-

are all on another peg).- lurther assume that %e employ a NerN gencral but %eak search strategy such as
depth-first or breadth-first search to sol e this problem. Given such weak search control, many non-optimal
moves %ill be considered before the best set of moves is disco~ered. [or example. a breadth-first search
scheme would consider moving from state S2 to S3, as well as the optimal io~e from S2 to S4. The goal of a

strategy learning system is to discover a set of heuristics that will propose mo\cs I% ing on the solution path,
while avoiding those leading off the path. In d.1 following sections, "e consider some of the ways in which
such search heuristics can be acquired.

S1

S2 5

S4 S

S6 S9

Sbo S7 S8 Sil

S12 513 S14 515

S16 S17 S18 S19

S20 S21 S22 S23 S24 S26 S26 S27

Figure 1. State space for the three-disk Tower of Hanoi puzzle.

2. Types of Strategy Learning

Throughout the history of science, the first step in understanding a set of phenomena has involved the
construction of taxonomies or classification schemes. Thus, the early chemists formulated classes such as
acids. alkalis, and salts before they began to discover quantitative laws for reactions. Similarly, in biology the
acceptance of the Linnacan classification system preceded Darwin's recognition of similarities between classes
and his explanation of their evolutionary relations. By analogy, it would seem useful to attempt to categorize
the various types of strategy improvement, before attempting to explain the processes responsible for them.

Ohlsson (1982) has distinguished between improvement, in which search decreases on a single practice
problem, and transfer, in which practice on one set of problems leads to a reduction in search on a second set
of problems. Building upon this distinction, it is possible to subdivide the class of transfer learning still
further. One type of transfer involves the scaling up of simple problems into more complex ones. We have
seen that for puzzles such as the Tower of Hanoi, one can draw a state space diagram representing the possible
states and the moves connecting them. The state space for the four-disk puzzle is very similar to that for the
simpler problem, and can be generated by replacing each state in Figure I by a triangle of states. Given this
similarity of stfucture, one might expect that heuristics learned for solving the three-disk problem would
transfer to the four-disk problem. However, more steps are involved in reaching a solution, so this problem is

2In most versions of this task, the goal involves moving all disks to a single peg: we Ail discuss the rcason for allowkmrg multiple

solutions iater in Lhe paper.

.

A-3-

a scaled-up version of the three-disk problem. 3

A second t. pc of transfer occurs lhen one practices on one problem, and then is presented with another
problem that involves the same state space, but has a different initial state or a different goal state. For
example. one might learn a set of heuristics for moing from state S1 to S20 or S27 in the three-disk problem,
and then be asked to find a path between state S7 and S14. In general, this type of transfer would appear to be
more difficult that scaled-up transfer, since one must take goal information into account while constructing
one's heuristics.

In domains such as algebra and integration, the state spaces for different problems bear little similarity
to one another, since only a few of the man. possible operators come into play on a given problem. However,
the goals always ha~c xerv similar forms - to simplify an expression or to solve for some variable. As a result,
the above two types of transfer seldom occur in such domains. In these cases, one usually practices on one set
of problems. and is then tested on a different set of problems that, while they differ in the structure of their
state spaces. have approximately the same complexi. This type of transfer constitutes the third member in
our classification scheme.

state S1 state S2
Figure 2. Moving disk-1 from peg-A to peg-C on the Tower of Hanoi puzzle.

Finally, one may sometimes attempt to use knowledge learned in an area that is only loosely related to
the current situation. In such cases, only some of the operators used earlier may be applicable to the space
currently being searched, and others that were not applicable before may come into play. Still, one may be
able to take advantage of some of the heuristics that were acquired in the first class of problems and apply
them to the task at hand; this form of transfer is usually called learning by' a',logy. Taken together, these four
classes would seem to cover the ways in which transfer of learning can occur, though one might propose
alternate divisions based along other dimensions.

While we do not have the space to review earlier research on strategy learning in detail,4 it will be useful
to classify the existing work in terms of our categories. For instance. Anzai (1978) focused on improvement
within the three-disk Tower of Hanoi task. but did not address the issue of transfer. In contrast, Brazdil's
(1978) concern with arithmetic has led him to explore transfer to scaled-up problems and to problems of
equal complexity. and Nevcs (197S) has also examined the latter in the context of algebra learning. Mitchell,
Utgoff, and Banerji's (1983) research on symbolic integration and Anderson's (1981) work on geometry
theorem proving have also been concerned with the latter type of transfer. Langle.'s SAGE.1 (1982, 1983) -

the predecessor of the current system - showed both improvement on a single problem and transfer to
scaled-up problems, while Ohlsson's UPL2 (1982) showed both improvement and some ability to transfer to
problems with different initial states and goals. Rendell's (1983) PLS1 system was able to transfer its heuristics

3Thc difficulty of a problem can sometimes be altered in multiple ways. For example, one can foTulate a variation of the Tower of
Hanoi puzle that imvolkes three disks and four pegs. In fact, this problem can be solvcd in fewer steps than the standard 'ersion, but the
point is that difficulty can someumes be affected in more than one way.

4. he interested reader is dirccted to Kc!ler (192) and Langle, !1983) for reN ies of some recent work in the area.

4

-4-

to both scaled-up problems and to those A ith different initial and goal states. I.ike Anai. IlAgert (1982) has
focused on improvcment on the lower of I lanoi task. khile Kort's (1982) macro-operator learning program
was able to transfer its expertise to problems with different initial states. Finall both Carhonell (1983) and
.nderson (19S3) haxe studied learning bv analogy, in Mhich knowledge gained in sol% ing one problem is

applied to direct search in a quite different problem. We summarize this information in Table 1.

Later in the paper, we will examine the behavior of a particular strategy learning s\stem called SAG..2.
To anticipate our results, we will find that SAGE is capable not only of improvement, but that it is also
capable of transfer to scaled-up tasks, and to problems of equal complexity. We %%'ill also find that the current

s.stem has difficulty in transferring its expertise to problems \%ith different initial and goal stateS, but that the
. potential for this form of transfer does exist. Finally, learning by analog. appears to lie be.ond the methods

employed by the program. Holpefully. the reader now has a better understanding of the types of transfer that
can 'ccur. and those types we will focus on in the following pages. Now, let us move on to the components of
the strategy learning process.

3. Approaches to Credit Assignment

As we have seen. tie first step in learning is to distinguish desirable from undesirable behaviors, and to
determine the parts of the system responsible tor those beha iors. lhis has been called the credit assignment
problem. and has been explored in a number of domains, ranging from puzzle solving to chess playing. We
have arrived at a nlumber Of heuristics for assenin. credit and blame that appecr to be quite general, some of
which we ha\c borrowed from other researchers. All of these methods invol\e the same basic idea - that
steps 1. ing along optimal solution paths should be preferred to those leading off those padts. However, the
various methods make judgements about preferable mo~es in quite different wa.s. Below \,e discuss these

heuristics in the context of the Tower of Hanoi puzzle and a few other simple tasks.

3.1. Complete Solution Paths

One option for distinguishing desirable from undesirable beha~ior is to wait until a complete solution
path has been found for a problem. Moves leading to states on the solution path are desirabl'. since they ied
to a solution. while moves going off the path are undesirable, since they led elsewhere. Mitchell. Ltgoff, and
Banerji (1933) have employed this approach in their LEX system, while Langley (19S3) has used a very similar
approach in his SAGE.1 program. Brazdil (1978) and Rendell (1983) have also employed the complete
solution path heuristic. Sleeman, Langley, and Mitchell (1982) have discussed de generalit and limitations of
this approach to credit assignment.

Let us consider how this technique can be applied to the Tower of Hanoi puzzle. Figure 1 presents the
state space for the three-disk puzzle, with de two solution paths connecting the top %ertex to tie two bottom
vertices. Given the legal operators for solving the puzzle, many problem solving s.stems can discover the

solutions by searching this space. Once the solution paths have been discovered, they can be used to assign
-redit and blame. For example. since both moves from the initial state SI lie on the solution path. both would

be labeled as good moves. Three moves are possible from each of the resulting states S2 and S3. The moves
* leading to states S4 and S5 also lie on the solution path, and so would be marked as good moves. However,

the moves leading to states S3 and S2 lie off the solution path, as do the two mo%es leading back to the initial
state. Thus. all of these mo'es would be labeled as undesirable.

This approach is very general, since it can be used to assign blame and credit to any problem that can be
solved by search. However. this method is guaranteed to work onE if ail of the shortest solution paths are
available. Since some search techniques find only a single solution path, difficulties can arise. For example, a

system that sol es problems using a form of depth-first search might fEnd one i the solutuns Qhoin in Figure

0A

7 a°

i -S-

1. but not the other. Given such incomplete knowledge, our credit assigniment heuristic would mistakenly
label one of the initial ino es as undesirable. Mitchell, ULtgoff, and Baierji (19S3) ha.c dealt with this
problem b'. carry ing out ,dditional search before deciding that a move is bad. Another problem is that %%hile
almost any problem can in principie be sol.ed purely b search, there are many problems with search spaces
so large that some other route must be taken. In these cases, other credit assignment heuristics that do not
require complete solution paths must be employed to enable learning to occur while the problem is being
sol'ed. so that the search process can become directed enough to reach the goal state. Below we discuss a

number of heuristics that allow credit assignment during the search process, and which open the way to
learning while doing.

Table 1. Types of learning addressed in earlier research.

INI'ROIEMENT SC.\ LED-UP [)1[:F. GOALS tQUAL COMP. ANALOGY

ANZAI X
BRAZDIL X X X
N EVtS X X
MITCI [EL. X X
LANGLEY X X
OIILSSON X X
RENDELL X X X
HAGERT X
KORF X X
ANDERSON X X X
CARBONEIL X X

3.2. Noting Loop Moves

When one is attempting to solve a problem in as few steps as possible. returning to a previously visited
sta:e (or looping) ma', be safely considerc-d undesirable. Thus, when a move leads to a state through which the
problem solver has already traveled, that move can be labeled as less desirable than another move that does
not complete a loop. For example, suppose one is at state S4 in the three-disk Tokver of Hanoi problem, and
considers moving to states $2. S6. and S7. Since the first of these leads back to the previously visited state S2,
it can be labeled as less desirable than the last two moves. Note that this form of credit assignment is relative
rather than absolute. as was the case when complete solutions were known. !here is no guarantee that the
moxe leadirg from S4 to S7 will ultimately be decmed dcsirable (as in fact it will not. since it leads off tie
solution path). Ho%% e\ er. one can say that this move is Pnore desirable than the one leading back to previously
reached state, and this information may be useful to the modification component of the system. Anzai (1978)
has us,'d a loop move dctector to good effect in modeling learning on the lo~er of Hanoi. but it is clear that
this approach can be applied to any domain in which loops can occur during search. Ohlsson (1982) has
emplo ed a similar credit assignment technique in his UPI. system.

3.3. Noting Longer Paths

In genicral. shorter paths to a goal are more desirable than longer ones. Thus, if a problem solver notes
that he has reached sonic state by two different paths. he can infer that the last move in the longer path should
ha.e hccn a',oidcd,. Fo-r ex.imple, in the three-disk [o'.er of Hanoi puzzle. suppose one has moved from state
S4 to state S-,. as ,Aell as from S4 to St. Further suppose that on the next move. one moxes from S6 to S7, as

.A!l is '14M S(, S, l11. S;r, c' the state S7 has been reached by two paths. the last moxe in the longer path

"*,. .

-6-

(from S6 to S7) ma. be judged undesirable. The alternate inove from S6 to SIO cannot immediately be
deemed good in an. absolute sense (though later it would be found to lie on the solution path). hut it can be
judged as More desirable than the move from S6 to ST. Thus, this is another case where the assignment of
credit and blame takes on a relative aspect. The shorter path heuristic is closely related to the loop move
method, and appears to be another quite general technique for assigning credit during the search process.
:\nzai (197S) has applied a \cry similar technique to learning on the lower of Hanoi task.

3.4. Dead Ends

In solving a problem, a path must be found from the initial to the goal state. Howeer. some paths lead
to dead ends from which no steps can be taken except to back up. and it is desirable to avoid these cul de sacs
if possible. Another generally useful credit assignment heuristic labels as bad the last ni e in a path that has

-. led to a dead end. For example, suppose in sol ing the three-disk Tower of I Hanoi problem, one has moved
- from stace S4 to ST. Also suppose that after this. one has tried moving from S7 to S4. trom S7 to So. and from

S-57 to SS. If the first of these moses is labeled as bad by the loop move heuristi. and te second two are
marked as bad b% the shorter path heuristic, then the state S7 may be classified as a dead end. As a result, the
move from S4 to S" nia be judged as undesirable, and the move from S4 to S6 ma\ he judged as a better
move. since it does not lead to any undesirable state. Again, this heuristic cannot decide that the S4 to S6
mose is absolutely desirable (though it does lie on the solution path), but it can determine that this move
should be preferred to its alternative.

3.5. Failure to Progress

We have so far referred to the initial search strategy only in the abstract. However. some search
strategies are more powerful than others, and this power can be used in assigning credit and bla,,me before a
complete solution has been found. For example, search method, such as means-ends analsis and hill-
climbing employ an evaluation function which tells w hether one is closer to the goal alter a nmoxe has been
made than he was before. Let us consider a simple example from the domain of algebra. In solving algebra
problems in one variable, simplifying the expression will take one closer to the goal (in which the variable is
on one side of the equation and a number is on the other). Thus. if a step is taken .which does not simplify the
expression, this may be judged as an undesirable move. Another move made from the same state that does
lead to a simplification may be judged as more desirable, though (in principle at least) it might not be the best
move possible. Neves (1973) employed such a credit assignment principle in his ALEX system, enabling it to
learn algebra heuristics before a complete solution had been achieved. The implementation of such a
principle might be quite general, as in Ohlsson's (1932) UPI.2 system, which used a form of means-ends
analysis, or it might be relatively specific, as in knowing that algebra expressions should alwsays be simplified.

3.6. Illegal States

A final heuristic for the determination of credit and blame revolves around the notion of illegal states.
In some cases, the problem solver may attempt to make moves which he later recognizes as iolating some
task constraint. For example. in the Tower of Hanoi puzzle, one might attempt to move the largest disk, even
though one or more smaller disks were resting on it. Of couise, such a moc is undcsiiable, and any move
from the same state that does not violate a constraint may be judged as better. This is yet another case in
,hich the desirable mos e is only relatively good. and that move may be judged as undesirable at some later
point in the search process. In principle, this heuristic may be applied to any task that involIcs smne fonn of
constraints. Howeser. problem solvers often incorporate such constraints into their operators. and so avoid
illegal moves from the outset. Still, this type of mistake occurs among human problem solbers sufficiently
often for it to he included in the psychological literature (Simon, 1976), so .%e shall keep it on our list of
methods for sol ing the credit assignment problem. Now that s c have considered approaches to the first step
in the strategy learning process. it is time to mo e on to the second sutge - the :iodil'ication oftbchavior.

-7-

4. Approaches to Altering Search Behavior

There exist two rather different approaches to controlling search in an tntclhocnt 'Amhion. In the first
scheme, some numerical exaluation function is used to rank states. and lhoxe %iih cc chest sores are
selected for further expansion. This method is commonl, used in gaife-pla.i'ng proc rims. I he alternatike is
to emplo. heuristics xkith s~nbolic conditions to direct search, and this approach l hs ,ttcn been applied to
puzzle-solk ing tasks and mathematical domains. As one might expect. both of the methods leCd to associated
techniques for altering search behavior, and both approaches to learning haxe been explored in the literature.
Below we summarize these approaches to strategy acquisition.

4.1. Discovering Evaluation Functions

The approach to learning through discoering ealuation functions is an attr.ctime one. and \kas
examined early in the historv of .\rtificial Intelligence. Samuel (1959) constructcd a checker-play ine program
that chose its moves on the basis of a linear ex aluation function. Ihe ,.,steni experimmcntal.\ introduced new
terms from a set of predefined features and altered the ,a ci-hts of existing terms, .1nd then 1u ted the result in
its playing ability. In this way, Sanml's S sten e\ent-ally progressed to mnater lI'el checkers pla. Rendell
(19S3) has explored an alternate approach to finding C', aluation functions. Ilis PIT.S1 program first solves a
problem (such as the eights puzzle) using breadth-first search. Once a solution has been found, this
information is used to assign a score to each state in the search tree. Using ,arious curve-fitting techniques,
Rendell's system generates a function that predicts these scores in terms of a set of predefined features. This
function can then be used as an evaluation function for directing the search process. While such techniques
are useful in domains where numeric Caluation functions are appropriate, other methods must be used to
acquire heuristics that can only be stated in symbolic terms.

4.2. Generalizing Conditions

One technique for learning symbolic conditions begins with very specific rules and generalizes as more
information is gathered. In this incremental approach. the hypothesized conditions are usually initialized to
the first positive instance. When a new positive instance is encountered, it is compared to the current
hypothesis and one or more revised hypotheses are generated, based on the features held in common by the
two structures. If some of these hypotheses become overly general, they eventually lead to the incorrect
classification of negative instances as positive ones, and are rejected. Since more than one hypothesis may
result from this comparison, some method for controlling search through the rule space is required. Winston
(1975) has explored depth-first strategies for searching the rule space, while Hayes-Roth (1976) and Vere
(1975) have employed breadth-first search strategies. Since most generalization-based methods search for
features held in common by all positive instances, they have difficulty in learning rules with disjunctive
conditions. However, Iba (1979) has used an extension of the depth-first scheme to successfully learn
disjunctive rules.

4.3. Discriminating Conditions

An alternate approach starts with an overly general rule, and generates more specific versions through a
process of discrimination. This occurs when one of the current hypotheses leads to an error, providing
evidence that it is too general. The context in which the faulty rule matched the negative instance is compared
to the last context in which the same rule matched a positive instance. Dturing this comparison, differences
between the positive (desirable) instance and negative (undesirable) instance are found. For each difference, a
more specific hypothesis is constructed that matches against the positive instance but not the negative one.
Since multiple hypotheses can result, some search control is required. Brazdil (197S) has used depth-first
search to direct the discrimination process. while Anderson and Kline (1979) and langley (1982b) have

.'- . .-.. .1.i'.- " ; " "" " " " '" "' " -" "; , _ -

4 -8-

employed more complex strategies involving notions of strengthening and weakening. Since the
discrimination method does not attempt to find features common to all positive instances, (the method
compares instances to instances, rather than comparing instances to hypotheses), it has no difficulty in
learning rules \k ith disjunctive conditions.

4.4. The Version Space Approach

Mitchell (1977) has explored the version space approach, \khich incorporates aspects of both the
generali/ation and discrimination methods. This technique begins with a very specific hypothesis, and
generates more general hypotheses (S) that act as an upper bound on the rule being learned. As with
generaliiation methods, this is done by finding common features between the current hypotheses (S) and each
new\ positive instance. The version space method also also begins with a very general hypothesis and produces
more specific vcrsions (G) that act as a lower bound on the rule being learned. At first glance, this approach
seems to be simplh a combination of the generalization and discrimination methods. Hioweer instead of
testing the first set of h. pothescs (S) against negative instances to see if they are overly general, it tests them
agamist t1c second set (G). Similarly, more specific versions of the second set (G) ire found by comparing
negative instances to members of the first set (S). Mitchell employed a breadth-first strategy to direct search
through the space of hypotheses. As more instances are gathered, this bi-directional search converges (by
11o i'1g the Lipper and lmver bounds together) on the hypothesis best suited to summarize the data. Since
Mitchell's method also finds features held in common by all positive instances, it has the same difficulty with
disjunctiv e rules as most generalization-based learning systems.

4.5. Implications for Search Behavior

Note that the direction taken in searching for conditions has implications for the performance
compmorc t of a srategy learning system. For example, if the system moves from specific to general
hypodicses through a generalization process, then the associated perfommnce system will be conservative. The
system xill begin byi making no bad moves and missing some good moves, but as the system nears the correct
hypothesis, its errors of omission will decrease. In contrast, if the system moves from general to specific
hypotheses through a discrimination process, then the associated performance system will be a rash one,
omitting few desirable moves but considering many undesirable ones as well, though the latter will decrease
as the correct hypothesis is approached.

While a conservative strategy is useful when a benevolent tutor is available to present positive and
negative instances (as in the paradigm of learning concepts from examples). it is less adaptive in learning
search heuristics, where a system must generate its own behavior in order to accumulate positive and negative
instances of various rules. In this case, the price of commission errors is small, since the only result is added

4 search. However, the price of omissions is great, since learning is impossible in the absence of behavior. Thus,
in the context of learning search strategies. the reckless discrimination approach seems superior to the more
conservative generalization approach. 5 The version space approach is capable of conservative or rash
behavior, depending on whether one uses S or G in the match process. However, in this paper e will limit
our attention to discrimination-based approaches to strategy learning.

4

5Hlowccr. Ohlsson (1983) has devised a generalization-bascd scheme that sidesteps the problems associated with most such

approaches I is UPI.2 system begins with a set of ocrly general rules which lead to search: based on Eood moses, the program crcates
specific rules and ge;.eniXi.s :]em when possible. Although UPL prefers to use such 'arnc, rules. it retians the omrinal cuies. and so can
fall back on hem if thc acqu:red rules fail to propose any move.

4

-9-

5. SAGE.2: A System That Learns Search Heuristics

Having considered the three components involved in strategy learning, we can now examine a particular
strategy learning system in some detail. We %% ill focus on SAGi'.2, the second in a line of programs (Langley,
1982a. l.angley. 1983) that we hatc constructed to study the process of strategy acquisition. SAGE stands for
Strategy Acquisition Governed by Fxperimentation. Like most other strategy learning programs, SAGE is
implemented as an adaptivc production system. In other words, it is stated as a set of rclatively independent
condition-action rules or productions, and learning occurs through the addition of new productions. The
program is implemented in PRISM (Langley, 1981), a production system language designed to explore
learning phenomena. Below we consider the components of SAGE, starting with its representation of states
and operators. After this, we discuss the system's initial search strategy, its credit assignment heuristics, and its
mechanisms for altering its search strategy in the light of experience.

5.1. Representing States and Operators

Any problem solving system must have some representation upon which to work. For a given problem,
it must be able to represent the states that constitute the problem space being searched, and to represent the
operators that enable the s~stem to mo~e between those states. :As \'e have stated, SAGE.2 is implemented as
a production system. Others have argued for the advantages of production system formalisms (Ncwell, 1972,
Anderson, 1976), and we do not have the space to recount those arguments here. However, the choice of
production systems leads to a natural style for representing states and operators. and it is appropriate to spend
some time discussing that style.

A program that is stated as a production system consists of two main components - a set of condition-
action rules or productions, and a working memory against which those productions are matched. The
working memory tends to be declarative in nature, and changes contents fairly rapidly. In contrast, the
production memory tends to express procedural knowledge, and changes only slowly, when learning occurs.
During problem solving, new states are generated quite often, while new search procedures are added only
occasionally. Therefore, it is quite natural to represent states as elements in working memory, and it is equally
natural to represent operators for moving between those states as productions.

Given these design decisions, a question remains as to the precise manner in which states and operators
are to be stored. For example, states might be represented as single working memory elements, as with
(in-state S2 (peg-A contains disk-2 disk-3) (peg-B contains disk-i) (peg-C contains)) for the Tower of Hanoi.
Alternately, they might be stored as a number of separate elements, such as (disk-1 is-on peg-B in-state S2),
(disk-2 is-on peg-A in-state S2), and (disk-3 is-on peg-A in-state S2). Since most production system languages
have limited pattern matching capabilities, the latter of these two schemes is desirable, since it lets one express
finer distinctions. In fact, this is the representation for states used in SAGE, and it has worked extremely well
for our purposes.6

Since production system formalisms require a close correspondence between the form of elements in
working memory and the form of productions, the choice of representation for states places strong constraints
on the representation for operators. For example, the following rule is a natural statement of the conditions
under which a disk can be legally moved in the Tower of Hanoi task:

6Anzai (1978) employed a representation very much like the first one shown above, and cenainl managed to implement a running
system. However, this approach required that he build considerable knowviedc into his learning mechansms about the particular
representauon he vas using. In our opinion, this was one of the reasons h:,. Anai nc.sc managed to ge. his system to 1carn in more than
a single domain.

-,..'1

: -= -. .- ." '; ,, ° - * --, - - . . " - % " . -. . . - ° ; - - w ---- ,-- --

6-10-

TOH

If 'ou haie disk on current-peg in current-state,
and you ha.1%e sonc other-peg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than disk,
and in current-state there is no third-disk on other-peg that is smaller than disk,

then consider mo% ing disk front current-peg to other-peg.

The meaning of this production is self-explanatory. but the correspondence between conditions and working
memory may not be so clear. For this rule to be applied, each line must match against some element in
working memory. For example. at the outset of the problem, the first line might match against against the
elements (disk-1 is-on peg-A in-state S1). (disk-2 is-on peg-A in-state S1), or (disk-3 is-on peg-A in-state SI).
Similarly, the second condition would match against the elements (peg-b is-a peg) and (peg-c is-a peg). The
remaining negated conditions would match against elements like (disk-1 is-on peg-A in-state SI) and (disk-i
is-smaller-than disk-3). Italicized terms in the above nile stand for \ariables which can match against any
symbol: in addition to matching within individual conditions, variables must bind consistently across
conditions for the production as a whole to match. in cases where the negated conditions are successfully
matched: the% keep the production as a Mhole from matching. Thus. they can he used to keep this nIle from
proposing illegal., moves, such as moving a disk when a smaller one is resting on it.

Note that the above rule proposes a move, but does not actually carry it out: we will call such rules
proposers. Each proposer contains the legal conditions on an operator, while the operator itself is implemented
in a separate rule. This division of labor has two main advantages. First, since we are concerned with
improving search strategies. our system need only alter the conditions under which actions are proposed. This
means that we can ignore the actions involved in an operator, and focus on the conditions. Second, as we shall
see later. SAGE learns by creating variants of proposers like TOH. In some cases, variants of the same original
production fire in parallel, proposing the same action. By introducing an additional step bet%,een the move
proposal and its implementation, we give the system time to recognize the identity of these proposals and to
avoid unnecessary effort.

When a proposal is actually carried out, an operator trace is deposited in working memory. These traces
refer to the operator that was applied, as well as to the arguments that were passed to it. as in the working
memory element (move-1 was move disk-1 from peg-A to peg-B). Information is also stored about the state at
which the operator was applied, and the state that resulted from its application, as in the element (move-1
led-from S1 to S2). Such trace information is used once a solution has been found, allowing SAGE to chain
back up the path, marking traces lying on that path as desirable. The system's other credit assignment
heuristics also take advantage of these traces, using them to infer moves leading to undesirable states and to
back up to earlier states. SAGE also considers such trac" information w.hen it is searching for conditions on its
proposers, and can incorporate knowledge of previous moves into the productions it generates. The need for
some form of trace data in strategy learning has been emphasized by Neches (1981) and by Langley, Neches,
Neves, and Anzai (1980), and our experience with the current system has reinforced our beliefs on this matter.

5.2. The Initial Search Strategy

In order to understand SAGE.2's initial search strategy. and the manner in which this strategy changes
over time, we must consider some more details about the nature of production systems. A given rule may
match against the elements in working memory in more than one way; each such match is called an
instantiation. Given a set of instantiations. a production system program must have some means of
determining which should be applied, and which should be saved for later application: this process is called
conflict resolution. SAGE employs three conflict resolution principles, which are applied in turn. First,
instantiations which ha~e been applied before are never selected again; this process of rejractiOn keeps the

. .. U*.

same mo~e from being proposed by the same production, while allowing prior states to be retained in case

some other moNe must he made from them. Second. instantiations matching against more recent states are
preferred to those relating to older states: this focuses attention onl new sui tes. so that the System continues to

explore promising paths. Third, each production has an associated sirength, and rules % ith high strengths are

preferred to weaker ones: since rules are strengthened each time they are relearned, this number can be

viewed as a measure of each rule's success, with preference being given to more successful rules.

If two or more rules have equal strength, or if multiple instantiations of a single rule match against

elements of the same recency, then more than one move may be proposed at a time. This is the standard
situation when SAGE first attempts to solve a problem. since its proposers generally begin with identical

strengths, or because it starts with only one such rule. In this case, the system carries out a breadth-first search

through the problem space defined by its operators. and the program continues in this exhatustie fashion
until credit can he assigned and learning can occur. Once new move proposing rules have been generated, and

the strengths of the old rules have been altered, search becomes more selective. Although still preferring more
recent states, SAGE begins to prefer productions that have been learned many times, and to shun those that
have led to errors in the past. Howxever, it retains the ability to consider multiple paths. as long as these paths

are generated by rules with the same strengths. For example, it would still be able to find both solutions to

the Tower of Hanoi puzzle. since these are perfectly symmetrical. In summary, the system starts by carrying

out a blind breadth-first search, and using information it gathers along the way, it ends (perhaps after a

number of runs) with the ability to direct its search toward the goal states.

The system must also know when it can stop searching. This is the responsibility of a separate
production that recognizes when the goal state has been reached, and adds information to working memory to

this effect. For example, the goal-recognizing rule for tie Tower of Hanoi puzzle notes when all disks are
resting on the same goal peg. and adds to memory the names of the states that satisfy this condition. This

information is used later in determining the complete solution path. Separate goai-recognizing productions
must be provided for each task domain, since the conditions for the solutions differ. However, the same rule

can generally be used for scaled-up versions of a problem; for instance, the goal production for Tower of
Hanoi does not refer to the number of disks on the goal peg, and so can be used for the four-disk and

five-disk tasks. as well as for the simpler three-disk problem.

5.3. SAGE.2's Credit Assignment Heuristics

In an earlier section, we distinguished two basic approaches to altering search behavior. The first of

these involved the discovery of evaluation functions, while the second involved the determination of the

symbolic conditions under which moves should be proposed. Since we are working within a production

system framework, the symbolic approach is most appropriate. As we indicated before, SAGE employs a
discrimination mechanism (as opposed to a generalization or version space method) to determine the heuristic

conditions for applying its operators. Since this method inputs a positive and negative instance of some rule, it

is appropriate to first consider the manner in which the system assigns credit and blame, and thus

distinguishes desirable moves (or positive instances) from those which should be avoided (or negative

instances).

-12-

Table 2. Credit assignment heuristics based on complete solution paths.

ON-TI I !F- PATH
If nove led fron state to good-state,

and state lies along the solution path,
and gool-state lies along the solution path,

then retrie.e the rule and instantiation that proposed move,
and store that instantiation as a positise instance of the rule.

OFF-TH E-PATtI
If move led from state to bad-state,

and state lies along the solution path,
and b,:d-.iaie does not lie along the solution path,

then retriee the instantiation and rule that proposed move,
as iiell as the last -ood instantiation of the saine rule;
iseaken tie rule and call on the discrimination process using

tie last good instantiation as the positive instance
ad tile current instantiation as the negathe instance.

SAGE can operate in either of two modes. It can assign credit based onN on complete solution paths, or
it can attempt 'o learn duri ng the search process. Since the program's credit assignment heuristics are stated as
indepenicnt condition-action rule,, they can be added or removed without affecting the system's ability to
searcl. though of course this does affect the manner in which learning occurs. l.et us begin by focusing on the
method rel ing on complete solution paths. Table 2 shows two productions, ON-TItE-P.ATH and OFF-THE-
PA Ill. The first of thedse matches gwainst traces of moves that lie alon the solution path: upon application, it
retr~ecs the nst.intiation responsible for prposing the move aiid stores it as a positive instance of the rule
that was matched.' The second production matches against traces that originated on the solution path but led
otf that path when the move was made: upon firing, this rule retrieves the responsible instantiation and marks
it as a bad instance of the rule that led to the move. In addition, it weakens the responsible rule so that it will
be less likely to apply in the future. and calls on the discrimination learning mechanism. This retrieves the last
positte instance of the faulty rule and compares it to the current negative instance in search of differences.
Since this 'unistiL ietrieves the most recent positive instance of a rule, SAGE may lose information when
more than one correct move is made in a row. However. it would be impractical to compare all positive
instances to all negative instances, and retrieving the last positive instance seems a plausible compromise.

SAGE's other credit assignment rules avoid this issue by more completely specifying the instances that
should be compared. Table 3 presents three of the system's rules for assigning credit during the search
process. The flrst of hese. NI.\ RKED-BAD, matches \:hen some operator trace has been labeled as
undesirable, and some other operator trace originating from the same state has not been so labeled. In this
case, SAGE retrieves the rule that fired in each case. If the same rule was applied in both situations, the
discrimination mechanism is called with the first move as a negative instance and the second as a positive
instance. In addition, the strength of the offending rule is decreased. If the good and bad moves were
proposed by different rules. then the discrimination process cannot be applied, but the rule leading to the
undesirable state is still weakened.

0
7The traccs rna:chcd h-, :hcse rles are bascd on or.oc iformation laid down by the various operators upon application: when a

soiution :s found.S Gh cha.rv, back up the solution paths. marking rmo~e traces that fall on tesc paths.

;.. . v .-....

-13-

Table 3. Credit assignment heuristics for learning during search.

If bad-stale is the current state,
and bad-move led from prior-state to bad-state,
and bad-move ias undesirable,
and good-move led from prior-state to good-stale,
and good-move is not marked as undesirable,

then iseaken the rule that proposed bad-move,
and if the same rule proposed good-move,

discriminate using the instantiation for bad-move as a negatise instance,
and using the instantiation for good-move as a positive instance.

NOTE-LONGER
If currenit-state is the current state,

and move led from prior-state to current-slate,
and current-state has been visited earlier,

then make prior-slate the current state,
and label move as undesirable.

DEA)-END
If current-state is the current state,

and move led from prior-state to current-state,
and no moves are possible from current-slale

that haie not already been made,
then make prior-state the current state,

and label move as undesirable.

The remaining productions interact with MARKED-BAD, providing the labeling of states it requires
for application. One of these, NOTE-LONGER. matches when the systcmn reches some state that was visited
earlier. It marks the move that led to the revisited state as bad, and backs tip. focusing attention on the state
from which this move originated. Note that as this rule is stated, it will match against loops as well as against
unnecessarily long paths, since a loop can be viewed as the longer of two paths to a state, where the shorter
path has length zero. Thus. while these two situations can be separated conceptually, there is no reason to
distineuish them as far as the implementation is concerned, as Anzai (1978) has done. The third rule in Table
3, DEAD-END, applies when a state is found from which no moves can be made: it marks the move leading
to that sttc as undesi rab, and shifts attcntion back to .., previous state. We haxc not shown rules for noting
illegal states or failure to make progress. since these must be implemented for specific domains individually.
However, while the conditions of such rules differ from those of NOTE-LONGER and DEAI)-END, their
actions have the same effect. These actions mark a specific move as undesirable, causing MARKED-BAD to
select a better move leading from the same state, and to evoke the discr :ination process with the good and

bad moves as arguments. .

5.4. Learning Conditions Through Discrimination
As we have seen, once a strategy learning system has distinguished the positive from the negative

instances of an operator. it must have some means of altering the conditions under %hich that operator is
applied. In implementing SAGE.2. we chose to employ a discrimination learning process that begins with
overly general rules for proposing moves, and generates variants of these rules %% ith additional conditions as
experience is gained. This mechanism is presented Ait a single rositi',e instance ol a rule and a single

-14-

negati'e instance of the same nile (in terms of their %ariable bindings), along %kith the state of Aorking
mernor. II QeaCl C,,. Bu~nd.% ind SiINCr (l1Mnd.N. 11.1%C haecalled Ohe %ariatble binding2s ,and state of memory

duri g the good application the selection cowe.%r and the %ariable hindings and sttate of memorN during the
fault% application the rcyctton llcon.l. lhe discrimination process compares these t\o contexts, searching for
differences % hich % ill allomw it to distinguish one from the other.

The simplest form of difference involves a Aorking memory element that %as present in one context but
not in the other. For example, if the trace of a pre\ ious mo\ e % ere present in the selection context but not in
the rejection context. SAGF ould create a variant of the overly general proposer that included this fact (with
certain terms replaced b. %ariables) as an additional condition. This variant Aould neer match against the
initial problem state, since no such trace Aould be present at the outset of the problem. Similarly, if an
element %ere found to be present in the rejection context but not the selection context, this fact would be
included as a ,zc-wc dcondition in a \ariant on the original rule. The resulting rule ould only match if this
fact (or a sinmlir one) \%ere noi present in memory.

Table 4. Selection and rejection contexts for the TOH rule.

Selection context: Rejection context:

Variable bindings:
disk- disk-2 disk-- disk-1
current-peg - peg-A current-peg-- peg-C
other-peg--- peg-B other-peg--* peg-A
current-state---* S2 curren t-state-- S3

Flenflents in "orking memory:
(move-I led-from SI to S2) (move-2 led-from SI to S3)
(move-I was move disk-I from peg-A to peg-C) (moe-2 was move disk-I from peg-A to peg-B)
(disk-1 is-on peg-A in-state SI) (disk-1 is-on peg-A in-state Si)
(disk-2 i;i-on peg-A in-state Sl) (disk-2 is-on peg-A in-state Si)
(disk-3 is-on peg-A in-state SI) (disk-3 is-on peg-A in-state Si)
(disk-1 is-on peg-C in-state S2) (disk-i is-on peg-B in-state S3)
(disk-2 is-on peg-A in-state S2) (disk-2 is-on peg-A in-state S3)
(disk-3 is-on peg-A in-state S2) (disk-3 is-on peg-A in-state S3)

More complex differences can be stated a conjunctinns of elements that were present in one context but
not in the other. Such differences are generated by a path-finding process that travels through symbols shared
by working memory elements. An example wiil clarify the process. Table 4 presents both a selection context
and a rejection context for the TOH rule. The first of these proposes the move from state S2 to state S4 shown
in Figure 1. while the second leads to the move from state S3 to state S1. The t\Ao contexts are expressed in
terms of the bindings bctween variables (in italics) and the symbols against which thesce variables matched.
Thus, in the selection context. the "ariable current-state was bound to state S2. disk to disk-2. current-peg to
peg-A, and other-peg to peg-B. leading SAGE to consider moving disk-2 from peg-A to peg-B. This move falls
on the solution path, since it removcs an obstruction (disk-2) from ,he largest disk (disk-3). In the rejection
context, the variable current-state was bound to state S3, disk to disk-i, current-ptg to peg-Il. and other-peg to
peg-A, leading to the action of moving disk-1 from peg-il to peg-A. Since this move takes the s~stem back to
the original state, it is undesirable.

) - . .. -.. 7 j .- ,; '. -. ,' " "" ;."- ' 'G -" -'7- : . ".-' .- • ' - - . ." -, - -* -" . .- " "'

- 15-

Table 4 also shows the elements that were present in memory during each context, and from which
new conditions are generated. The path-finding process starts from analogous s.nmbols in the two sets of
bindings (such as disk-2 and disk-I). and attempts to find some path through the "good" elements that has no
analogous path through the "bad" elements. I hus, if a path consisting of three elements was present in the
selection context but not in tie rejection context. a xariant of the TOH rule would be based on this difference.
This rule would include the three elements (,w ith some constants replaced by variables) as positive conditions,
so that it would match in the selection context, but not the rejection context.

The path-finding process also searches for paths through the "bad" elements that have no analogous
path through the "good" elements. Let us trace the method's discovery of such a difference in tile elements in
Table 4. Starting from the "bad" symbol S3 and the "good" s.imbol S2, the path-finding process considers
bad elements and good elements that contain these symbols. Since both contexts contain an element
indicating that an earlier mo'e led to the current state - (move-2 led-from SI to S3) and (mose-1 led-from
SI to S2) - SAG I must extend these (length one) paths b% considering additional elements in its search for
differences. Thus. the analogous symbols move-2 (for the bad element) and move-I (for the good element) are
marked, and other elements containing these s mhols are considered.9

For example. the bad path can be extended to include the element (move-2 was move disk-1 from
peg-A to peg- 1), since this also contains the s% mbol move-2. At first glance, there appears to be an analogous
extension to the good path. using the element (move-1 was move disk-1 from peg-A to peg-C). However,
note that the symbol disk-1 is already bound to the variable disk in the rejection context. while this is not true
of disk-1 in the selection context. Similarly, peg-,\ is already bound to other-peg in the rejection context, while
peg-C is unbound in the selection context. As a result. these two elements cannot be considered analogous,
and the path-finding process has found a difference between the two contexts. Based on this difference,
SAGE constructs the following variant:

TO 11-1
If you have disk on current-peg in current-state,

and you halie some other-peg different from current-peg,
and in current-state there is no other-disk on current-peg that is smaller than disk,
and in current-state there is no third-disk on other-peg that is smaller than disk,
and it is not the case that:

prior-move led-from prior-state to current-state, and
prior-move was a move of disk from other-peg to current-peg,

then consider moiing disk from current-peg to other-peg.

In addition to the original conditions, this rule (let us call it TOH-1) includes the elements (move-2 led-from
Si to S3) and (move-2 was move disk-I from peg-A to peg-li). with the specific disk and pegs ieplaced by
variables, embedded within a sinle negated condition. This rule will match if either of the negated conditions
is matched. but not if both are matched simultaneously. As a result, it will still match against the selection
context in Table 4. but not agairst the rejection context, which is precisely the goal of the discrimination
method. Effectively. the new conditions prevent SAGE from reversing the last move it has made.

8Actually. SAGE considers only those c!crncnts which describe the current state, or which describe parents to the Current state. Since
other states considered in parallel can hase no effect on the currcnt moc. the% are ignored. "hus. the state of working memory after
SAGi's init;al mo'es can bc found by taking the union of the two sets shown in Table 4, together with state-independent elements such
as (per-A is-a pe,) and (disk-3 is-!argcr-than disk-i).

9.\:tcrr-.a:c path ar% fnio'cd through other ar-aleou s'.rbos such as peg-B anc pcg-C. peg-A and peg-A, and disk-1 and disk-i.

Note t:at a h'e Mni ' n.ppd c P .to ,!:. prus o dcd it occurs in anialocous positions in the t%%o elements.

. ,,

-16-

In some cases, only a single difference exists between the selection and rejection contexts. Winston
(Winston. 19'0) has called these situations ',ar mnissc. , and they considerably simplify the learning process,
since only one %ariant need be considered. L'nfortunatcl\. near misses seldom occur in the task of learning
search heuristics, and a robust system must be able to handle the general case in xhich mank differences exist
(Bundy and Silver (1982) ha~e called these fizr Hisses). S.\GE deals with far misses by finding all paths up to
;ength N (in our runs. \e have set N to 4). and constructing a Nariant based on each of these differences, some

L
with new ne'gated conditions iike TO 1-1. and others ith new positi\e conditions. These conditions may
involke descriptions of de current state, previous states, previous rnoes (as in [t011-1), or an combination of
thcm. This leads to a significant search problem. and Ae discuss the system's response to this problem below.
Hlowc\er. let us first consider the notion oftdffrence in more detail.

In searching for differences, the discrimination process must know ,,hich symbols should be used in
determining significant differences. and %%hich differences should be ignored. [or example. it makes sense to
distinguish between working memory elements including the nslbol %as (which describes move traces) and
those :nclud:.ng led-rom ('Ahich temporal]% connect these mo'e traces). since the\ represent different types of
information. In contrast, dhere is no reason to ditinguish betmeen internall generated symbols like the states
SI and S2. s1ce these are onl the "connecting tissue" used to link tog.ether hie dscript:ons of each state and
the temporal relations between states. Thus, N Ihen it is searching for differencc,. [he discrimination routine
never considers two elements as analogous if one contains iss in the Nth position and the other contains
led-from in the same position. Howeever, if one contains SI and the other contains S2 in the same position,
then the tMo elements will be considered analogous, unless some other (significant) difference exists, or unless
one of these symbols has already been associated with some other symbol (such as S3) during the path-finding
process. When a variant is constructed, significant terms are retained. Ahile insignificant terms are replaced by
%ariables in a consistent manner.

The case is less clear for the names of operators and their arguments. These symbols are not generated
internally, yct if the variants are to retain any generality, some of them must be replaced by variables. Since
one seldom wants to generalize across the operators themselves, SAGE treats operator names as significant.
Howecr. the arguments of these operators (e.g.. objects and their positions) are treated as insignificant, and
are replaced by variabies when a varint is constructed. Note that such decisions are not inherent aspects of
the discrimination process: rather, they are parameters that are input to the learning method, and can be easily
modified. Later we will reconsider this decision, and its implications for S,\GE's learning behavior. For now,
though, let us continue with our examination of the current system.

5.5. Directing Search Through the Rule Space

Most condition-finding methods. including the standard generalization approach and Mitchell's version
space technique. find conditions that are held in common by all positive instances of a concept or operator. As
a result, these methods are limited to acquiring conjiunctive rules. In contrast. SAGE.2's discrimination
process compares a single positive instance to a singie negative instance. Because of this, it is capable of
discovering di.sunctive rules as well as conjunctive ones, and this ability can be ery important in some task
domains. In order to acquire disjunctive rules, the discrimination mechanism must search a larger space of
rules than methods based on finding common features, and it must have some means of directing this scarch.
For this reason. SAGE compares newly learned rules to those it has constructed earlier. If the new rule is
identical to one of the existing variants, that variant is strengthened. Since the stroa"th of a rule plays a major
role in whether it is selected for application, rules that ha e been learned more often wkill tend to be preferred.
Thus. strength measures the success rate of each variant, and SAGE can be %iewed as carrying out a heuristic
search through the space of rules. selecting those niles that ha% e pro en most successful.

i -. ,6

-b+ . 4 L ; . 7- -. _ ,g % -: . - ° ", .• o + • - • - .

-17-

In domains involhing only a single operator, it would be sufficient to simply strengthen variants
A hene\ er the%- were relearned, since they w ould e0enmuallV come to be preferred to the rules from hich they

were generated. Howe\er. some tasks in\ ilve multiple operators, and require that one of these operators be
preferred to another. ix en the role ofstrength in selecting rules. the natural response to such situations is to
weaken rules when they propose an undesirable moxe. In addition to letting SAGE learn to prefer some
operators over others, this strategy also decreases the chance that a faulty variant %ill be selected for
application.

Although the combination of discrimination, strengthening, and weakening %ill eventually lead to
useful search heuristics, many spurious %ariants will be created along the way. Since the matching process is a
major component or p rograms stated as condition-action rules, we should briefl. con,,ider ho% SAG F handles
the potential combinatorial explosion in the matcher. First. the sxstem's condition-action rules are stored in a
discrimination netxork that takes advantage of structure that is shared between rules. Since %ariants of the
same proposer tend to be quite similar to one another, the expense invohed in matchin man5 xaina1t of a
rule is not much greater than that inxolhed in matching the oriinal rule. Flo\%cxer. other components of tie
s.xstem (such as conflict resolution) are aso slowked by t, presence of many variants. so some further response
is required. In addition. SAGL incorporates a threshollk:mg principle. Variants belo the threshold are not
exen incorporated in the discrimination network, and so haxe no effcct on either the match process or conflict
resolution (though they are retained for comparison with rules that are learned later). 'he strengths of new
variants are set to a fraction of the rule from which they were spawned. and it is only when a variant comes to
exceed its parent in strength that it is considered for application. Since few spurious variants ever become
stronger than their parent rules, this method has worked quite well in directing SAGI s search through the
space of proposers.

6. An Example of SAGE.2 at Work

Our overview of SAGE.2 is now complete, but to give the reader a better understanding of how the
system learns search strategies, we must examine its workings in specific domains. Below e discuss SAGE's
learning sequence on the Tower of Hanoi puzzle, comparing its behavior A hen using only complete solution
paths to its behavior when learning during the search process. We have chosen this task as our main example
because it is familiar to many readers, and because most of the credit assignment heuristics discussed earlier
come into play. However. since generality is an important criterion for judging learning systems, we will later
examine the program's behavior in five other task domains in somewhat less detail.

6.1. Learning From Solution Paths

Since we have already discussed the Tower of Hanoi puzzle and its associated problem space, we shall
begin by discussing the system's behavior on this problem when using the first credit assignment strategy -

learning from complete solution paths. SAGF.2 was presented with a standard three-disk problem: the three
disks were placed on a single peg, and the goal was to get all three disks on either of the other two pegs. In
other words, the system started at state S1 in Figure 1, and was asked to reach either state S20 or S27 (or both
of them). Starting with a breadth-first search strategy, the program first moxed to states S2 and S3, and from
there considered six moves: from S2 to S4, from S3 to S5, from S2 to SI, from S3 to SI. from S2 to S3, and
from S3 to S2. While the system noted that the last four of these moves led to previously visited states, it did
not attempt to learn from this knowledge, and simply abandoned dese undesirable pads. From the two
remaining states S4 and S5. SAGE moved to states S6. S7, S8. S9, S2, and S3. The last two of these moves
were identified as loops, so only the first four states were retained for expansion. This search process
continued until the program reached t,.he two solution states S20 and S27.

• *

-18-

At this point, the complete solution path heuristic vas applied. SAGt chained back up the solution
path, marking the traces of mox es that lay on the path. Once this was completed, it %korked its wkay back down
the marked path. letting the rules ON-Il tL-P.\ IHI and OF:- 1}lF-ATVIH appls Mhen they iiihed. 'l'hc first
of these circumstances occurred at states S2 and S3. %hen four moves were made that led off the solution
path. One of these moves led to a loop from S2 back to SI, the original state. Comparing the good move from
this point (from S2 to S4) to the bad nmove. SAG 's discrimination mechanism generated the \ariant TOI-11
that we considered earlier. The selection and rejection contexts for this learning situation were identical to
those we have examined, except that SAGE compared two moves from state S2. rather than comparing one
move from state S2 and another from state S3. As a result, the same differences were discovered, and the
variant IO1-1 was constructed. The reader will recall that this rule contains a negated conjunction that
prevents it from proposing a moxe that Aill reverse the moe S.\GE has just made. Some four other
differences were found, leading to four additional variants, but lOTl-1 was the only rule that eser became
strong enough to apply. An identical set of ariants w erc created when the context for the move from S3 to
S1 was compared to that for the move from S3 to S5, since these situations are completely symmetrical: this
led each of the existing sariants to be strengthened.

A different set of three variants resulted hen the good moke from S2 to S4 was compared to the bad
move from S2 to S3 (and Mhen the s imnmetrical moves were examined). In this case, the rule we are interested
in is subtly differcnt from the variant .ve described earlier:

TOH-2
If you have disk on current-peg in current-slate,

and you haie some olher-peg different from current-peg,
and in curren!-state there is no othei-disk on currcnt-peg that is smaller than disk,
and in curren,-state there is no third-disk on other-pcg that is smaller than disk,
and it is not the case that:

prior-move Ied-from prior-state to current-state, and

prior-move ias a imoe of disk fron any-peg to current-peg,
then consider moving disk from current-peg to other-peg.

The new negated conjunction on this variant ofFOIl is nearly identical to that on TOH-1, but the difference
is significant. -iO1--2 states that it is acceptable to move a disk from its current peg to a new peg, provided on
the previous move one did not move from any peg to the current peg. An example should help clarify this
difference. Suppose we have disk-1 on peg-b, and since disk-i is the smallest of the disks, we can move it to
either peg-a or pcg-c without violating any of the task constraints. Further suppose that on the previous step,
we moved disk-i from peg-a to peg-b, so that TOH-1 will not propose mosing the smallest disk back to peg-a
(which would result in a loop). However, this variant would propose moving disk-1 to peg-c. In contrast,
TOI--2 would not propose moving disk-1 to either peg-a or peg-c, since its negated condition forbids a move
of the same disk tmice in a row&. J"lirs, the second variant is more conservative than the first, and as a result, it
constrains the search process to a greater extent.

Upon comparing different moves from state S4, SAGE produced another set of variants on its initial
proposer. When the discrimination process compared the context in which the desirable move from S4 to S6

0 was proposed to the context that led to the move from S4 to S7, some six new productions resulted. In this
case, two of the rules are of interest:

0

0

-19-

"-i-" 1"011-3

* " If.iou haie disk on currcnt-pe in current-state,
and %on ha e ,mine orher-pcg different from current-peg.
and in catirct0-.ShotC there is no ,,lcr-dsk on current-pcg that is smaller than disk,
and in currcit-statc there is no third-disk on other-peg that is smaller than disk,
and it is not the case that:

prior-move led-fron prior-state to current-state, and
earlier-miv e led-from earlier-state to prior-state, and
disk isas on other-peg in earlier-state,

then consider mining disk from current-peg to other-peg.

and

TOH-4
If Nou haie disk on currcnt-pe., in current-state,

and NOiU halie sonic otherpteg. different from current-peg.
and in current- statc there is no othct-disk on currnta-ptei, that is smaller than disk,
and in curreit-state there is no third-d:sk on ,t;:cr-peg that is smaller than disk,
and it is not the case that:

prior-move led-from priot-state to currcnt-state, and
earlier-movc led-fron earliet-state to prior-state, and
earliet-move %sas a mo e of disk from other-peg to current-peg,

then consider no % ing disk from current-peg to other-peg.

In addition to helping direct search don profitable paths. these rules are interesting because they are
syntactically different. but semantically equivalent. The First refers to the state occupied two steps before the

- " current state, while the second refers to the more made at that point. Yet both rules effectively keep one frotp
moving a disk back to the position it was in two moves before, avoiding such non-optimal moves as that from
S4 to S7 and that from S5 to S8. Because of the structure of the task demain, these rules are alw ays guaranteed
to match together. and whenever one is learned, the other will also be learned. The possibility for syntactically
distinct but semantically identical rules causes some extra search through the space of possible rules, but other
than this no harm is done.

So far, we have considered only the initial cases in which the above variants were constructed. However,
. each of these was relearned many times throughout the course of the first run. For example, the non-backup

variant TOH-1 is relearned and strengthened at each step along the way, since SAGE foolishly considered a
backup at every point in its initial search tree. Similarly. the TOH-2 variant was strengthened whenever an
attempt had been made to move the same disk twice in a row (other than simple backups). Thus, the bad
moves from S2 to S3, from S6 to S7, and from S12 to S13 all resulted in an increase of this nile's strength,
alone with the analogous faulty moves on the symmetrical path. Finally. the last twvo useful variants, TOt!-3
and TOI-4. were learned %%enever SAG ., had cos , -cred Anoving a disk back to the position it had occupied
two states earlier. Thus. the bad moves from S4 to S7, from S1O to S13, and from S16 to S21 all reinforced
these rules. increasing their likelihood of selection on the next nin.

On the second run. the system's performance improved considerably. since TOH-I's strength had come
to exceed that of the initial proposer. As a result, no backup moves wsere considered and the search process
was considerably more directed. Unfortunately, neither this rule nor any of the other variants were sufficient
by thcni e:kcs to (c mplktcelv eliminate SAGE's search on the Tower of I lanoi problem, so more learning was
required. Again the system chained back tip its solution path. marking traces that led to the goal states, and
began to compare the contexts of positive and negatise instances in its search for useful variants. The learning
process on his run was quite similar to the first, except that variants of TOH-1 were created (since only it had
been applied). i:vsc,,d of ',ariants of the original rule.

0 °

A\s one migcht \occt.r 1i)M I -1 nadc eatd\ th samce errors vis its prccsor cwccpt for die backup
t!"o\ es \% h Ich Its aiddtOit'll! c~ntorll toiid. I hli. %w hell at State S_', it ConsidCr-Cd 1110% ing to S3 as wecll as to
S-4. and \when at state S-1. It nio\e LO to- as W~cl a to A6 As5 a rcsLt die diwcrininaflo proccss generatd
\ariamt of thos prodton tWa " cre ci" sinuiar to thiose created (or. its llorIC zencral ancestor. When

comrarng the contex ts that lcd Cromn S2 to SA and fRon S2 to A3 S.\G crcatd a ruic containing a "don't

fact. [Ilc samentisk'.\eithc aedst\ccin a r oIow''I %el ariat it usCaoll* it~klP Codto 0114 Lce cis hc hhs

arn ir i to . "h e c crompnnue toe imac MiuS4c U)c is tand fin frmS 4 to S it n01SRcc ito aiadte
cowit on t nt ain d ik ba 01-3 ha 'olde it m tawou suuch inn." cs.1 (oagai onse he soluctionl
ditfferent befut ti~l alnd~ mth layb r came stac e ofba n tx. strnctu ral fcen t"btrln tiand
seruix alc at sm wpiriant or"he- x r cMsre that cntaned hdorngt moe aE dikbautoxhr.i a

t M di nttc ew coNdion Onrcae csctonrs ctcceic The1 atrndt ofnc t0i-e'4 (as they ha d his the no

istiorcoth durl e tht v od, taeing ounf that path. Iid whnthedec syte wa prentcd the the-hdis pasoblem

a o toat tim ,! it sucsflyoicdthi e poble wth out tak Iingul anydc false r stepSs. ~ igfri S 3

an rmS S m c t o tn c o aeiitilc sno i. rm60t 7 ic i 1~c h
il 0 ,avo l e ,' tCo !M kn. 1ch11%..l0_U~tP, 1C ieS 1.to

lli M o~dal i er5gvg a euto0tutuil irn u eadal

ciac[:iin tFH- wr mtawo u rmbe oMi un:adkbc0t hr a

t %o ~ ' 40,c eoe odnn neMA wo 71C \,k!dW t~t f V114(sd ha) ieedo
dw nin ~~~~I SG a ib oi achhmtcEape mslngo h uo abtta

0

40

0

0 1 2 3 4 5
Learning trials

Ftgure 3 presents the learning cur'. e for SAGF.2 on the Tover of Hanoi task. The figure E!:-atrhs the
ntumber of states ccnsidered during th search procss agis i na of tis the problemr had

prex oUSly been attempted. As can be seen, the system shows a distinct imiprovemient over time, until it
ex.entuallV soixcs the task in the minimumn number of steps. In addition. Since thle problemi spaces for the
four-disk and five-disk puukls haoe the samer basic structure as tesplth:-Ce-di, k spac th larned

q -21-

heuristics werc also useful in these more complex tasks. In fact, when presented with the standard four-disk
and five-disk %ersions of the puzile (in s'.hich all disks must be moved from one peg to a different peg), SAGE
applied its heuristics to solvc these problems without search as well. Thus, we can conclude that for this
domain at least, the system is capable of transfer to scaled-up versions of a problem on which it has practiced.

While SAGE was able to transfer its acquired knowledge to other standard versions of the '[ower of
Hanoi task. the program would not have fared so well if it had been given a non-standard problem. The
heuristics that the system learns for this task are very good at directing search when all disks start on one peg
and must be moved to another peg, but they are not adequate for moving from one arbitray) configuration to
another. Later, we will have more to say about this type of transfer, and what would be required to
accomplish it. However. let us first turn to the topic of learning while doing.

6.2. Learning While Doing
Although S.\GE.2 is capable of learning from complete solution paths. it is not limited to this method.

As we have seen. the system also includes heuristics for learning from longer paths and loops, from dead ends,

from ille2al moves, and from a failure to make progress. The first two of these techniques 0 can he applied to
the Tower of Hanoi puzzle to acquire search strategies identical to those described in the previous section.
Let us consider this process of learning while doing, and its relation to learning from complete solution paths.

As before, SAGE began the three-disk problem by carrying out a breadth-first search, moving from
4 state S1 to states S2 and S3. Since these moves led to new states, and since other moves could be made from

them, none of the blame assignment heuristics applied at this point. Since the two solution paths are
symmetrical, we will focus on the left half of the space shown in Figure 1. From the state S2, three moves
were possible - SAGE could move to S4, to S1, and to S3. The first of these was a new state, but S1 and S3
had been visited before. The move from S2 to S1 led to a loop. while the move from S1 through S2 to S3 was
a longer path than that from S1 directly to S3. However. the NOTE-LONGER production does not make
such distinctions, being concerned only with avoiding revisited states, so this rule applied, ,.,rki g the moves
from S2 to S1 and S3 as undesirable.

Given the information that these two moves should not have been made, the rule MARKED-BAD was
applied to each in turn, calling on the discrimination mechanism. In both cases, it focused on the move from
S2 to S4 as the positive instance, since this was the only move from S2 that was not labeled as an error. Upon
comparing this move to the one from S2 to S1, SAGE constructed the variant TOH-1 that we saw before,
along with four other variant productions that never become strong enough to apply. When the move from S2
to S4 was compared to that from S2 to S3. the variant TOI-I-2 was created (along with two other rules). Thus,
up to this point, SAGE had assigned credit in precisely the same manner that it did when the complete

4 solution path was available.

- Next, having abandoned the revisited states, SAGE applied its initial proposer (which was still stronger
than any of the variants) to the state S4. From this position, three moves were again possible - from S4 to S6,
from S4 to S2, and from S4 to S7. The second of these led back to the previous state. and was labeled as
undesirable by NOTE-LONGER. Givcn this judgement, MARKED-,AI) applied twice, comparing this

4 move both to that from S4 to S6 and to that from S4 to S7, since neither had been marked as bad. In both
cases, the variant TOH-1 was recreated and strengthened, along with a number of other rules. Since SAGE

101n fact. the rules NOTE-LONGER and DEAD-END were used even in the run described above, in which credit was assigned after a
4 solution had been found. llowcser, their role in this run was only to tell SAGE when it had reached untenable positions, so the system

could abandon search down certain paths and focus on others. Since the production M \RKED-B.AI) %is not prcsent. the program could
not learn using the information added to memor) by these rules.

4 'p 9

4 -22-

did not .et have any reason to suspect that the move from S4 to S7 was undesirable, it considered moves from
both this stte and from S6. \ hich lay Oi the solution path.

Three moves were possible from S6, and all were carried out: these included a mokc from S6 to S10,
from S6 to S4. and from S6 to S7. The last two of these operations led to revisited states, so NOTE-LONGFR
was applied in each case. M.\ RKE)-BAI) compared each of these moves to that from S6 to S10, regenerating
T011-1 in one instance and TOH-2 in the other. along \kith a number of additional %ariants. Three moves
could also be made from S7, to the states S6, S4. and SS. However, each of these states had been visited
before. the last from die symmetrical search in the right side of the space. NOTE-LONGER was applied and
marked each of the mo es from S7 as undesirable, but since there were no good moves originating from S7
with which they could be compared. M.RKED-BAD could not be applied. Meanwhile, NOTE-LONGEI
had also refocused SAGE's attention on S7. marking it as one of the states currently under consideration for
expansion. Since no other moves could be made from this state, the rule IDtAI)-IENI) applied, marking the
move that led from S4 to S7 as undesirable. With this knowledge in hand, .MARKI'I)-B\I) applied, calling
on the discr:mination routine to compare the good move from S4 to S6 to the recently determined bad move.
"liwo of the resulting variants were TO1-3 and TOH-4, which avoid moving a disk back to the position it
occupied to states earlier.

By this point. SAGtE's credit assignment heuristics had begun to lose ground to the strategy of learning
from complete solution paths. Although NOIE-LONGER continued to notice revisited states and to lead
.M..ARKEI)-BAL) to strengthen both TOit-1 and TOH-2, the dead-end noticing rule never had another
chance to apply. As a result, the moves from S10 to S13 and from S16 to S21 were never classified as
undesirable, and the two variants TO-3 and TOH-4 were not relearned until the complete solution path was
marked. and ON-PATH and OFF-PATH came into the picture. This did eventually occur, and the resulting
events were identical to those described in the previous section, save that many of the variants already existed,
and so by the end of the run they were considerabiy stronger than in the other case. After this, SAGE was
given a second chance to solve the three-disk task, and events followed much the same route, except that
backups were missing. so NOTE-LONGER was applied much less often. By the fifth run, the system was able
to solve the problem withotit search, and to transfer its expertise to the four-disk puzzle. The learning curve
fbr these runs was very similar to that show~n in Figure 3. Ho ever, slightly less search was carried out in the
earl runs, since the useful variants were able to mask their predecessors before the run was complete.

6.3. The Importance of Goals
In our treatment of the Tower of Hlanoi puzzle, we assumed two goal states and two symmetrical

solution paths to these goals. It is much more common to formulate the problem with a single goal peg,
4 resulting in only one optimal solution path. and our use of multiple goals deserves some discussion. In the

early stages of constructing SAGE.2, we made two design decisions that led us to state the Tower of Hanoi
puzzle as we have done. First, we decided to treat the arguments of operators as insignificant during the
discrimination process. as we described earlier. As a result, the system has difficulty in learning heuristics for
moving disks towards one peg rather than another, and we dealt with problem by including two goal pegs. If

4 we had chosen instead to treat pegs as significant symbols, SAGE would have learned more specific rules, but
at least the system would have been able to acquire heuristics for moving disks to a specific peg. However, a
more general and attractive alternative exists.

The second design decision involved assuming a procedural representation for the goal state, rather than
a declarative one. The reader will recall that SAGE includes a production for recognizing when it has solved a
problem. and which stops the search process when this occurs. Since goal information is not available for
inspection by the discrimination mechanism, it cannot discover conditions that refer to the goal state. As a

-' " "I ' " " """ ' " " ' i: ::" :i''i :. .:,

-23- -

result. tie scarch heuristics it learns are incapable of directing search down different paths depending on the
goal. Note that this is not a limitation of the discrimination method itself. but is rather a limitation in the
information accessible to the learning s. stem. If Ae had chosen to include explicit information about the goal
state in working memory. SAG should ha\e been able to learn rules that would move toward a single goal,
and still treat the arguments of its operators (such as pegs and disks) as insignificant symbols. The system
would have been able to detect relations between desirable moxes and the goal state, and incorporate these
relations into the variants it learned.

In addition, this approach opens the way for learning heuristics for solving non-standard versions of the
Tower of Hanoi puzzle, in Ahich both the initial and goal states are arbitrary configurations of disks. Once
the discrimination method has access to the goal state, it might well be able to acquire rules that would
transfer bet.veen different initial and goal states. leading to a much more robust system. Although we have not
yet tested SAG' in this manner on the 'Towker of Hanoi. we %%ill later examine another task in which this
approach does lead to the predicted forms of transfer. Since goals are so obviously important to problem
solving, it na. seem odd that %e did not include declaratike knowledge of goals at the outset of our research.
Such judgements are all too easily made %kith the aid of hindsight. In defense, we can only note that very little
of the other w ork on learning search heuristics deals with goals in this manner, so that SAGE is far from alone
on this dimension.

7. Applying SAGE.2 to Other Domains

One important dimension on which Al systems are judged is their generality, and the most obvious test
of a program's generality is to apply it to a number of different domains. In this section, we summarize
SAGI'.2"s behavior on five additional tasks. Some of these are puzzles similar to the Tower of Hanoi task, but
others have quite different characteristics. In each case, we describe the problem or class of problems,
consider the rules the program learns in the domain, and discuss the types of transfer that occur. After this, we
examine the generality of the individual learning heuristics employed by the system.

7.1. The Slide-Jump Puzzle

In the Slide-Jump puzzle, one is presented with N quarters and N nickels placed in a row. The quarters
are on the left, the nickels are on the right and the two sets of coins are separated by a blank space. Legal
moves include sliding into a blank space or jumping over another coin into a blank space. In addition, quarters
can be moved only to the right, while nickels can be moved only to the left. The goal is to exchange the
positions of the quarters and the nickels, so that the former occur on the right side of the blank and the latter
occur on the left. For instance, given the initial state Q Q Q - N N N, one would attempt to generate the goal
state N N N - Q Q Q. Like the Tower of Hanoi problem, the Side-Jump puzzle has a relatively small search
space, yet it is quite difficult for human problem solvers to master. Also like the Tower of Hanoi, it has two
symmetric solution paths, however, since moves are not reversible, loops do not come into play in this task.

SAGE.2 was initially presented with the four-coin version of this puzzle. in which the positions of two
quarters and two nickels must be exchanged. The program was given two initial proposers - one for
suggesting slide moves and the other for suggesting jumps. After an initial breadth-first search in which both
optimal solutions were found, the system attempted to learn from these paths. After some three runs through
the problem, SAGE had generated (and sufficiently strengthened) the following variant of the initial slide
rule:

-24-

SI I) E-1
If a type-o.(-coin is in current-position in current-state,

and ahiacet'i-positon is blank in currct-stale,
and adjt ent-position is to the !cfi-or-right of current-position,
and 1vpe-of-coi can mine to the lefi-or-right,
and prior-move led-fromn prior-stale to current-state,
and iurioi)tfmov ims a hitnitr of itvpe- ef'oi!, fron) ,h/l'acenl-posifion to other-positiol,

then consider sliding itpe-olcoin froi currenl-pusition to adjacent-position.

This ruile contains two (underlined) conditions that wcre not present in the original slide-proposing
production. These conditions allow the variant to propose sliding a coin only if another coin of the same type
was just jumped from the adjacent position. Five other variants of the original slide rule were constructed and
contributed to directing the search process, %%hile some 14 variants were based on spurious features of the
problem, and were not learned enough times to affect behavior. One variant of the jump rule was also
construc:ed. v hich avoided jumping one coin over another of the same type (which leads to to a dead-end).
l-lovever, this rule was learned only once before a stronger variant of the slide rule caused SAGI- to avoid this
particular error.

In the learning while doing runs. the s.stem proceeded in a very similar manner, except that some credit
and blame was assigned during the search process. In this task, two credit assignment heuristics contributed to
learning. The DAI)-END rule produced a variant that avoided sliding the same type of coin twice in a row,

lhile NOTE-I.ONGER generated the jump variant mentioned above. When SAGE was presented %kith the
six-coin Slide-Jump puzzle, it successfully solhed this problem without search, again indicating that the
system can handle scaled-up transfer. Although the normal statement of the puzzle does not allow reversible
moves, alternate initial and goal states can be formulated if they are allowed. However, in its current form,
the program would not have been able to transfer its expertise to an arbitrary problem of this type, for the
same reaisons as the Tower of Hanoi version.

7.2. Tiles and Squares

Ohlsson (1982) has described the Tiles and Squares puzzle. in which one is presented with N tiles and N
+ 1 squares on which they are placed. Each square is numbered from I to N + 1, and each tile is labeled
with a unique letter. Only one legal move is possible: moving a tile from its current position to the blank
square. The goal is simple: get all the tiles from the initial positions to some explicitly specified end position.
For example, the initial configuration might be B C - A, while the goal configuration might be A - C
B. Since an), tile may be moved into the blank space, the moves are much less constrained than in most
puzzles. One of the interesting features of this task is that while the branching factor of the search space is
quite high (3 for three tile tasks, 4 for four tile tasks, etc.), two simple heuristics are sufficient to avoid search
entirely. Indeed, one might even question whether the task is challenging enough to be called a puzzle. We
have included it here primarily to clarify SAGE's ability to acquire disjunctive rules.

SAGE.2 was presented with the above problem. as well as a single nile for proposing legal moves. Based
on the two optimal solution paths it discovered for this task, the system generated (and sufficiently
strengthened) seven variants for directing the search process. along with some 73 less useful rules. Two of the
useful variantsn1 may be paraphrased as:

llThe other five useful variants were semantically equivalent to TS-2, and proposed the same moves in all eases.

A L

TS-1
If you hae a file on cturrent-square in currentl-stale,

and other-quare is hllanlk iii current-state,
and in the flial g-oal iou iant tie" in othei-square,

then consider nio% ing tile from current-square to other-square.

and

TS-2
If you have a tile on current-square in current-state,

and other-square is blank in current-state,
and in the final !oal iou %iant other-tile in current-sauare,
and it is [lot tile Case that:

pr!r-fmml-c led-fronl prior-shtte to Cu'ei't- t ate, and
prioi-ove v a a nii e of tie froin ,fl (thsinre to current-square,

then consider nio% ing tile froun current-square to other'square.

Note that dCse rules are disjunctive, in that they co'er different situations that arise in the problem. For
example. the first variant is useful in suggesting that C be moved to the third position at the outset of the
aboe problem. leading to the state B - C A. Once this has been done. the second rule is useful in proposing
that either B or A be mo~ed into the second square. leading to the states - 1B C A and 11 A C -. At this point
the first rule again comes into play, proposing the move ofA into square I or B into square 4, and finally, this
same nile proposes moving B to 4 or A to 1, reaching the goal state. The point here is that neither of the above
heuristics is sufficient to completely direct the search process by itself, but taken together they eliminate
search. Thus. the ability of SAGE's discrimination process to consider disjunctive heuristics shows its
potential in the Tiles and Squares puzzle.

Another interesting characteristic of this problem is that SAGE incorporated information about the goal
state in the conditions it discovered. This was possible because the goal description was present in working
memory, and so was considered during the condition-finding process. As a result, the heuristics the system
learned from the above problem can be applied not only to more complex problems with longer solution
paths. but to other problems in the same space with differing initial and goal states. Thus. SAGE's behavior
on the Tiles and Squares task shows that the system is capable of acquiring goal-sensitive heuristics, as we
proposed earlier, provided information about the goal state is present in working memory.

* In addition to learning from complete solution paths, the credit assignment heuristic for noting loops
and longer paths was also applicable to this domain. The detection of longer paths led to TS-1, the first
variant, which moves a tile into its goal square whenever possible. Similarly. the detection of loops led to an
initial version of TS-2 that contained only the no-backup condition. However. none of the learning while
doing heuristics were sufficient to learn the TS-2 condition "in the final goal you want other-tile in
current-square". This resulted from the fact that whenever TS-2 was applicable. all of die legal moves (other
than backtracking moves) lay along optimal solution paths of equal length. Since the learning while doing
rule MARKED-BAD only compares instances originating from the same state, and since there were no bad
moves from such states. SAGE could never master the complete form of TS-2 during the search process. As a
result. the system fell back on its complete solution path strategy to learn the final version of this variant.

7.3. The Mattress Factory Puzzle

Like the Slide-Jump problem. the Mattress Factory puzzle requires two operators for moving through
its search space. In this task, one is told that N employees are working at a mattress factory.. Due to losses, the
factory must be closed down, and so all the workers must be fired. 11o0ever, union regulations require that
hiring and firing follow cer-ain rules. The least senior worker may be hired or fired at any time: this

* . -,

-26-

corresponds to the first operator. -lo kevcr, other %%orkers ma only be hired or fired if the person directly
below them in seniorit% is currentb emplo.ed. and furthermore, provided that no other person below them is
also emplo. ed. This complex rule corresponds to the second operator. Since each of these operators is
rccrsible. one can al'ka~s immediately undo an action that was just taken. Thus. this task shares an
abundance of possible loop moves with the lower of I lanoi. Although this problem has an even smaller space
than the Toker of lanoi. it also gives human problem sohers considerable difficulty. Cahn (1977) has
studied human learning on the Mattress Factory problem.

SAGE.2 was initially presented %ith the three-person version of the problem. along with rules for
proposing the tmo tpes of moves described above. After finding the single solution path, it generated and
sufficiently strengthened a straightforward \ariant of the original lo\kest worker rle:

NIF-I
If sou has c a workcr is itlh curreni-siatus in current-stale,

and storkcr is not senior to any oiheliworker,
and current-stalus is the opposite of otherl-staus,
and it is nor the case that:

Lr)r-,;)-ove led-from [,r.;nr-state to cirrrnt-state, and
pri'r-mpii)vt ,,ias ;1 cliw1u' (if H :-r froni uhrr- wa!ts to_ 'urretr-stztu&,

then consider changing worker froin cidrrcnt-status to othel-statuls.

In this production. the variables current-status and o!hcr-stamts match against the possible states in which a
worker can find himself - either employed or utnwr .'um ed. The additional negatted conjunction on this rule
Ssimply preents one from undoing the previous move. Together with a similar variant of the second operator,

this production is nearly sufficient for directing search on the Mattress Factory puizlc.

However, one additional piece of information is required. If one avoids oackups, then only two legal
paths can be traversed in this problem space. and these paths are entirely deternined by whether one initially
fires the least senior worker or his immediate superior. In the three-worker problem. the correct choice is to
fire the lowest person. SAGE acquires this strategy by weakening the variant on the second operator, so that

-the MFI rule shown above is preferred. This strategy transfers to scaled-up problems concerning five, seven,
or any odd number of workers. but not to problems concerning even numbers of employees. If we had been
willing to add to SAGE's memory the parity of the number of workers, this could conceivably have been
learned as a condition across problem types.

A significant feature of this class of problems is that learning from complete solution paths does not
provide any more accurate credit assignment information than does learning while doing. In the latter case,
the majority of credit is assigned by the NOTE-LONGER rule in response to the large number of loop moves
that are made. In addition, although SAGE explores both of the paths leading from the initial state, one of
these eventually leads to a dead-end. At this point, the DEAD-END rule chains back up the search tree,
marking each state along the way as undesirable. However, no learning can occur until it reaches the two
moves made from the initial state, since it requires both a positive and negative instance before learning can
occur. Since different operators were applied at this point, no discriminations can result, but the rule

* proposing the move down the dead-end path is weakened, giving preference to the other operator.

7.4. Algebra

We have also presented SAGE.2 with algebra prob'ems in one variable, such as 4x - 5 = 3. The goal
here is to simplify the expression, arriving at an equation with the variable on one side and a number on the
other, such as x = 2. For this domain, the system was given a single operator for adding, subtracting,
multiplying. or dividing both sides of an equation by the same number. Moreover, the initial proposer for this
operator required that any numeric arguments to these functions occur somewhere vithin the current

.-

* -27-

expression. In addition. S.\GF was prov ided vith a domain-specific credit assignment heuristic: this informed
the program that expressions which were not simpler in form that the previous expression "ere no closer to
the goal, and so \ere undesirable.

Given this information, the system's behavior when learning while doing was identical to that when
learning from complete solution paths. l)uring both runs, SAGE arrived at a variant of its original proposer
that would alvh ays direct it to an optimal solution. This rule can be stated as:

ALGEBRA-1
If .ou see a number as the argument offinction in current-state,

and other-.iunction is a function,
* and fitliun,/n', i,; the inierse or other- fit clion,
- and hun'tco occurs at the tot) tIm l of the expression in current-state,

then consider appl ing otic?-jiunction to both sides i ith number as its argument.

This production contains two conditions beyond these in the initial rule. both of \khich are underlined. The
first of these constrains attention to functions that are the inverses of furc ns occurring in the expression.
For example. given the expression 4x - 5 = 3. AILGEBRA-1 would consider adding a number (since
addition is the invcrse of subtraction) or dividing by a number (since division is the inverse of multiplication),
but not subtracting or multiplying. The second condition further constrains the function that is selected.
SAGE represents such expressions as trees or list structures with forms like (= (-(* 4 x) 5)3). Since
subtraction occurs at the top level of this structure, it would bind against the variable finction, so that adding
5 to both sides would be suggested.

Since algebra problems such as the above always assume similar goals. transfer to problems with
different goals is not appropriate for this domain. However, scaled-up transfer is possible,. and the variant
SAGE generated for the above problem can be used to solve more complex problems, such as (3 (x + 1) -
5)/2 = 2. Obviously, it can also be used to solve different problems of the same complexity involving
differeir, functions. In principle, we could have given SAGE four different proposers at the outset - one for
addition, one for subtraction, and so forth. If we had not given the system information about the inverses of
functions, it would still have been able to learn not to add unless subtraction occurred in an expression, and

* analogous rules with similar conditions. However, given a problem like 4x - 5 = 3 on which to practice, the
system would then have only partial transfer to a problem like 2x + 1 = 7, in which there occurred only one
of the operators with which it had experience. This form of transfer is similar to that studied by Mitchell,
Utgoff, and Banerji (1983) in their work on symbolic integration.

7.5. Seriation

Scriation behavior has been widely studied by developmental psychologists, starting with Piag et (1952),
and production system models of children's behavior on this task have been constructed by Young (1976) and
by Baylor. Gascon. Lemoyne, and Pother (1973). In one version of this task, the child is presented with a set
of blocks in a pile. and is asked to line them tip in order of descending height (say from left to right). As
simple as this may sound, young children have considerable difficulty with this sorting task, and many adults
do not solve the problem very efficiently. Since this class of problems was someA hat different from the others
SAGE had been given, we felt it would be useful to include it in our tests of the system.

In this case. the program was given a single operator for moving a block from the pile to the end of the
current line (or to the first position in the line if none existed). Also, SAGE was given a domain-specific rule
for determining illegal states. 'I his stated that if a taller block had been set to the right of a shorter block, the
move that led to this state "as undesirable. For example, suppose the system vere presented %ith four blocks
- A, B. C. and) - where A is the tallest and 1) is the shortest. rurther suppose that on the first move,

0 "

W.-J.

-28-

SAG F mo'ed 1) into the line. On tie next move. the program could move any of A. 11. or C next to I). but
each of these moes ssould imnediatel, be classified as illegal.

S.\Gt. 2 was presented '%ith four blocks and given the goal of ordering them according to height.
Learning from complete solution paths (and using only the illegal move detector to constrain the initial
search), the s stem generated one useful variant, along ith some 67 others. This production exceeded the
original ruie in strength after a single learning run, and led to perfect beha% ior on the second time drough the
problem: it can be stated as:

SERIATE-l
If sou hae a block in the pile in current-state,

and it is not tihe case that:
there is some othr-lck in the pile in current-state,
and o',,-A,,ck is taller oin block,

then consider ninoing bl'ock to the end of the line.

This production contains a single new condition that is stated as a negated conjunction. Effectively. it says that
one should mu10e a bhlck only if there is no other block in the pile dat is taller than dat piece. This constraint
is related to conditions in de illegal state detector, since the S-RIAlE-1 variant v.ill ne, er place a taller block
to the right of a shorter one. Howexer. one can imagine a rule that would never propose illegal moves, and yet
would still start off down the wrong path. say by placing the smallest block in the line first. Such a variant was
generated during the seriation run, but did not become as strong SE.lATE-I, %%hich ncer makes this
mistake. Thus, the negated conjunction in SERIATE-1 incorporates both the test for illegal states and look-
ahead in formation, enabling the rule to avoid moves that will lead to dcad-ends.

SAGE.2 was also capable of learning during the initial search on this task. In addition to the rule for
notinn illegal states, the I)E.D-END heuristic also came into play. Consider again our example from above,
in which block D is placed first in the line. In this situation, the system attempted moving each ofA, B, and C
next to the smallest block, and each move was marked as illegal. However, since no other moves were possible
from this state, the D-AD-END nile applied, marking the initial 1) move as undesirable. Since the three
other moes considered at the outset were still acceptable (the 13 and C moves did not lead to dead ends until
later), the D move was compared to each of these moves by MARKED-BAD. The resulting call on
discrimination led to the SERIATE-1 rule shown above. Later dead-ends led to similar comparisons, and this
rule was strengthened, until it came to efficiently direct the search process even before an initial solution had
been found.

8. Discussion

Now that we have examined SAGE and its behavior on a number of tasks, we can begin to evaluate the
program. In the case of a !earning system, one of the most important dimensions is generality. One way to test
a system's generality is to run it in a number of domains, and as we have seen, SAGE fares well on this
criterion. However, one could in principle construct a program that employed one heuristic for one domain, a
different heuristic for another domain, and so forth. In other words, one must also test the components of a
system for generality. On this dimension, SAGE's discrimination/strengthening strategy passes with flying
colors, since it played a central role in each of the rns described above. However, the situation ,&ith respect to
the credit assignment heuristics is more complex. so let us consider it in more detail.

Table 5 presents the six credit assignment rules used in SAGE.2, along with the six task domains in
which de system w as tested. As can be seen from the table, and as has been apparent throughout the paper,
the complete solution path heuristic is very general, and was (or could have been) applied on each of the
tasks. The other heuristics were less useful, but still shok ed evidence of generalit.. Both the loop move/longer
path rule and the dead-end rule led to learning in four of the six problem classes.

o -29-

Table 5. Generalit\ of SAGl..'s credit assignment heuristics.

SOI.LIION lONGER DEA1) EN DS ILI.IEGAI. NO PROGRESS

IOW R OF IIANOI X X X
SIDI)l:-JUNIP X X X
III IS.\ND SQUARFS X X
MAI RUSS FACI ORY X X X
AL G FBRA X X

SI RIA[rON X X X

The ilIleal state dCtector w as stated in a domain-specific manner and was used only in the seriation task.

l toe\cr. on cir imainc versions of the "lower of Hanoi. Mattress Factory, and Slide-Jump puzzIles in
which tic cOnditions 'r lec-al moves must be learned along with the conditions for good moves. It might even
be possible to state these constraints as elements in SAGE's working rnemor\, So that a quite general illegal
state detector could be implemented. Finally, the no progress rule was used only in the algebra domain, but
one can imagine a \eision of SAGE that always computed the distance between the current state and the goal
state, and a very general no progress heuristic that matched off the results of this computation.

Another issue relates to the fonn of the acquired heuristics. As we have seen. thc discrimination
approach is in principle capable of learning disjunctive rules, and this potential proved useful on the Tiles and
Squares task. Since disjunctive heuristics are likely to occur in a significant fraction of task domains, the
ability to acquire them is certainh',, desirable, and SAGE shows promise along this dimension. On the other
hand, we found that on most tasks. SAGE was not able to learn heuristics that incorporated information about
the goal state. Such rules are important, since they would let the system to transfer its acquired expertise to
problems with different initial and goal states from those on which it practiced.

The one area in which the system did achieve such transfer was the Tiles and Squares problem, and the
key in this case was the e~xplicit representation in working memory of the goal state toward Ahich the system
was working. Since this information was available for inspection by the discrimination mechanism, it could be
included in the conditions on variants spawned by this process. As a result, variants containing such
conditions could direct the search in different directions, depending on the particular goal that was being
sought. Presumably, before SAGE can be expected to manage similar transfers for other domains, its
representation for these tasks must be augmented to include explicit representations of their goal states.
Whether such an addition will be sufficient or merely necessary is a question that can best be answered
experimentally.

A second natural extension relates to the search strategy that SAGE employs. Many problems (such as
winning a chess game) are so complex that they can only be solved by breaking the task up into manageable
components. One such approach involves setting up subgoals, each of which must be solved before the
supergoal is accomplished. If SAGE's search control were augmented to allow the introduction of subgoals,
then the heuristic for assigning credit based on complete solution paths could undergo an important but
subtle alteration. Rather than requiring solutions to an entire problem, the method could be applied
whenever a particulai subgoal had been achieved. Variants learned from this path would be specific to that
subgoal: that is. they would include a description of the current subgoal as an extra condition, in addition to
the other conditions found through discrimination. Even if SAGE later determined that this subgoal was not
particularly desirable in the current context, the rules that had been learned might still prove useful in

4 "

-30-

satisf ing the subgoal in some other situation at a later date. This approach % ould also require the system to
learn the conditions under \%hich various subgoals should be set, but this could be handled by the existing
mechanisms f'or learning the conditions on operators.

In summary, the existing version of SAGE has a number of desirable features, but our understanding of
the strategy lea:rning process is far from complete. and more \kork remains to be done. In our future research,
we plan to restructure the s. stem's problem solving and learning methods to take advantage of information
about goals. as %%C outlined above. In addition. S\GE has so far been tested onl'y on problems with relatively
small search spaces. and we are now ready to explore the system's behavior on more complex tasks.
Undoubtedly. our experiences in these domains will lead to additional insights into SAGE's limitations, and .

to further reisions that, hopefully. will lead to a more powerful and robtust system Ifr learning search
heuristics.

- -J

I

* -31-

References

Anderson. J. R. ILanguage. .Memo-n;, and Thought. Hillsdale. N.J.: ILawrence Erlbaum ."ssociates 1976.

Anderson. J. R. and Kline, P. J. A learning system and its psychological implications. Proceedings of the Sixth
International Joint Conference on Artificial Intelligence, 1979 , 16-21.

Anderson. J. R. Tuning the search of the problem space for geometry proofs. Proceedings of the Seventh
International Joint Conference on Artificial Intelligence, 1981 , 97-103.

Anzai. Y. How one learns strategies: Processes and representation of strategy acquisition. Proceedings of the
Third .I ISB/GI Conference, 1978, 1-14.

Anzai. Y. Learning strategies by computer. Proceedings of the Canadian Society jbr Computational Studies of

Intelligence. 1978, 181-190.

Bavlor. G. NV.. Gascon, J., Lemovne. G., and Pother, N. An information processing model of some seriation
tsks. Can(adian Psychoiogist, 1973. 14, 167-196.

Brazdil. P. Ixperimentai learning model. Proceedings ofthe Thirdl iSsl/Ul Conference, 1978,46-50.

Bundv, A. and Silver. B. A critical survey of rule learning programs. Proceedings of the European Conference
* on Artiicial Intelligence, 1982, 151-157.

Cahn, A. A Puzzle with a Goal Recursive Strategy: The Mattress Factory. Master's thesis, Department of
Psychology, Carnegie-Mellon University, 1977.

Carbonell, J. G. Learning by analogy: Formulating and generalizing plans from past experience. In R. S.
Michalski, J. G. Carbonvll. and T. M. Mitchell (Eds.), Machine Learning: An Artificial Intelligence
Approach. Palo Alto, CA: Tioga Press, 1983.

Hagert, G. On procedural learning and its relation to memory and attention. Proceedings of the European
Conference on Artificial Inteihigence, 1982, 261-266.

Hayes-Roth, F. and McDermott, J. An interference matching technique for inducing abstractions.
Communications of the ACM, 1978, 21, 401-410.

Iba, G. A. Learning disjunctive concepts from examples. Master's thesis. Massachusetts Institute of
Technology, 1979.

Keller, R. M. A surey of research in strategy acquisition. Technical Report DCS-TR-115, Department of
Computer Science, Rutgers University, 1982.

Korf, R. E. A program that learns to solve Rubik's cube. Proceedings of National Conference on Airtificial
Intelligence, 1982, 164-167.

Langley, P., Neches, R., Neves, D., and Anzai, Y. A domain-independent framework for learning procedures.
International Journal of Policy Analysis and Igbrmation Systems, 1980, 4, 163-197.

Langley, P. and Neches, R. Prism User's Manual. Technical Report, Department of Computer Science,
Carnegie-Mellon University, 1981.

Langley. P. Strategy acquisition governed by experimentation. Prcxccedings of thc 1urcpean Conference on
Artificial Intelligence. 1982, 171-176.

Langley, P. Languae acquisition through error rc2 1r. (,,'2it: ,: ,:! Pr,,': T7:'' . 0 S2, 5, 2! 1-255.

-32-

L anzlex, P. 1 earning, search strategies throug-h discrimination. International Journal of Ain~i-.lach-inie Studies,
19S3. IM. 513-541.

\Iitchell. T. M. Version spaces.: A candidate elimination approach to rule Ilearning. Proceed ings of the rijth
International 101,2 Confcrence on .. rtificial Intelligence. 1977 , 305-310.

Mitchell, T. M.. Ltgoff. P.. and lBaner-ji. R. 13. L earning problem so]% ing heuristics by experimentation. In R.
S. Mlichalski. J.G. Carbonell, and T. NI. Mitchell (Eds.), M~achine Learning: :1)1 irtificitil Intelligence
Approach. Palo Alto. CA: Tioga Press. 1983.

Neches. R. A Computational formalism for heuristic procedure modification. Proceedings of the Seventh
Iniernational Joint Conference on .irtificial Inteligenice, 19S1 I 23-288

Newes. D). M. A\ computer program that learns algebraic procedures by examining examples and working
problems in a textbo.ok. IProceeding-s of the .Secon~d .Vational Coircce of tihe Canadian Society for
Comnputational .Studies (fIntelligence 1 97S , 191-195.

Ne'ACI., A. an~d Simon. IFI. A. llwonan Problecm .Sol,.ing. Fnealewood Cliffs. N.J.: lPren-tice-Hall, Inc. 1972.

Nilsson. N. J. Problem Solving M1ethods in Ilrti ci71 Intelligence. New York: McGraw-H-ill 1971.

Ohlsson. S. On the automated learning of problem sol% ing rules. Proceedings of the S5ixth European M~eeting

Repot 1, Upsaa Uivesit, CmpuingScinceDepartment, 1932.

@ybcr . T ethlds anceptions stNubratg Haifts n es a 1952.aain?.Tchia

Slenean, L. IAnc. P. aand sytmich.T.earning feamr suiontepacthos: AProachg o the cEcdth
ainentrolem Ain Mager ineo Srtiiiltingce 1982 , 3,648-52.

Samerl A. Lnduone oftcoes in he perednic t acuusmPoeeg of ile FB ourhaInternationalhJoin
Dee opmn t fca Intllg9ce 197 2101229.

Winson. . . ann g strutura S.KM desrptonsifom exaprle l Tec nic a Co niiv PITsach usetts976
sttue8f6 ehnloy,190

Winston. P. H1. Learning structural descriptions from examples. Iecnia P.eHpWintn(d) The Pschlogtofs

Computer Visio, New York: M'vcGraw-Hill, 1975.

Young. R. M. Scriation by Chil1dren: .4n lirtfcial Intelligence Analysts of a P.'agctian Ta s k Base]:
Ilirkhauscr 1976.

FILMED

13-85

* DTlC

