AD-A149 948 INTERFRCE SPECIFICRTIONS FOR SCR (SOFTHHRE COST
REDUCTION) (A-TE) EXTENDED COMPUTER MODULE REVISED(U)
NAVAL RESEARCH LAB WASHINGTON DC D L PARNAS

UNCLASSIFIED 31 DEC 84 NRL-MR-5582-REV

=
3

-
m
-

e

iz

fl2

FPPEEE

rrr
r
rr

| G

o E =
« filcos
| ENS

3

B
o

2.8
=

TN
N [

[o e}

|

o

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963 A

Lot ol ar ok SR SRS SRS R o ('J.‘JL"

J

2 e e e 3

) puiins i Custe Sues Sie R e iion e At luam Rie. SO Jait

SECURITY CLASSIFICATION 2F "HIS PAGE

TR W WL TR AT Ty WLETTE R VAT e T s e T e T TR T

REPORT DOCUMENTATION PAGE

*a FEPORT SZCLATY CLASS S CATON

‘b RESTRICTIVE VARKINGS

UNCLASSIFIED
Za SECLRITY IA85.ACAT-GN ALTRORITY 3 DISTRIBUTION ' AVAILABILITY OF REPORT

D DJEC.ASSF CATON DOWNGRADING SCHEDULE

Approved for public release; distribution unlimited.

NRL Memorandum Report 5502

4 3ERFORMING IJRGANIZAT'ON REPORT NUMBER(S)

S MONITORING ORGANIZATION REPORT NUMBER(S)

5a NAME OF PERFORMING QRGANIZATION

Naval Research Laboratory

6b OFFICE SYMBOL
(If applicable)

Code 7590

7a NAME OF MONITORING ORGANIZATION

6¢ ADDRESS City. State. and ZIP Code)

Washington, DC 20375-5000

7b. ADDRESS \City, State, and ZIP Code)

3a. NAME OF FUNDING; SPONSORING

8b. OFFICE SYMBOL

9 PROCUREMENT INSTRUMENT iDENTIFICATION NUMBER 1

Avionics software Modular decomposition

ORGANIZATION (If applicable) -]
Naval Electronic Systems Command Code 613 4
8c. ADDRESS (City, State, and ZIP Code) 10. SOURCE OF FUNDING NUMBERS)
PROGRAM PROJECT TASK WORK UNIT M,
c -

Washington, DC 20360 CLEMENT NO [NO NO. SF212- |ACCESSION NO) .‘
62712N 43601 175-0106-0-4 s

TITLE fincluge Security Classification) "
Interface Specifications for the SCR (A-7E) Extended Computer Module .
12 PERSONAL AUTHOR(S)

Parnas, D.L.,* Weiss, D.M., Clements, P.C., and Britton, K.H.** .*
*la. TYPE QF REPORT 13b. TIME COVERED 14. DATE OF REPORT (Year, Month, Day) [1S. PAGE COUNT N
Interim FROM TO 1984 December 31 129 4 DRI
'6 SUPPLEMENTARY NOTATION *Also at University of Victoria, Victoria, BC)
**IBM, Research Triangle Park, NC 27709 ! This is an updated version of NRL Memorandum Report 4843. \ -
7 COsATI CODES ___4 T8 SUBJECT TERMS (Continue on reverse /f necessary and dentify by block number)
FIELD GROUP SUS-GROUP Abstract interfaces Information hiding - "

4

.

(Continues)

‘9 ABSTRACT (Continue on reverse if necessary and :dentify by block number)

This document describes the programmer interface to a computing machine partially implemented in soft- 1
ware. The Extended Computer is part of NRL's Software Cost Reduction (SCR) project, to demonstrate the
feasibility of applying advanced software engineering techniques to complex real-time systems in order to 4
simplify maintenance. The Extended Computer allows code portability among avionics computers by providing -
extensible addressing, uniform i/o and data access, representation-independent data types, uniform event signal- ®
ling, a standard subprogram invocation mechanism, and parallel process capability. The purpose of the Extended

Computer is to allow the remainder of the software to remain unchanged when the host computer is changed
or replaced,

This report describes the modular structure of the Extended Computer, and contains the abstract interface
specifications for all the facilities provided to users. It serves as development and maintenance documentation
for the SCR software design, and is also intended as a model for other people interested in applying the
abstract interface approach on other software projects. o

20 DSTRIGLT-ON AVAILABILITY OF ABSTRACT

21 ABSTRACT SECURITY CLASSIFICATION

e

®uncLasSIFEDUNLMITED [J SAME ag apT Cloric users

UNCLASSIFIED

22a NAME OF RESPONSIBLE ‘NOIVIDUAL
Paul C. Clements

22b TELEPHONE (Inciude Area Code)
202) 767-3477

22¢. OFFICE SYMBOL
Code 7595

00 FORM 1473, 34 vaRr

33 APR ecition may be used until exhausted

All other editions are obsolete

SECURITY CLASSIFICATION OF "HIS PAGE

Y - I

., "
v .
.

A
.

DA A AT

RN
e S e T e

SECURITY CLASSIFICATION OF THiIS PAGE

18. SUBJECT TERMS (Continued)

Modules

Reai-time systems
Software engineering
Software maintenance
Software specifications

ccession For
-

NTIS o3R8 g
nyTcoT ry

SECURITY CLASSIFICATION OF THIS PAGE

E;‘xv,v-.www:vwr AR LN R L A i e S T T T e T T T T T O
s
CONTENTS
EC.INTRO INEOQUCHON .. vvessr e et e e e e e e e e e 1 \
EC.DATA Data Manipulation Facilitiescoounerueeeeinennen... 3 .
EC.IO INPUt/OUtPUt ... e e it et e e 32
ECMEM Virtual MEMOTIYot tititit e teietetinne i ineneaeeennenns 38 }
EC.PAR Parallelism Controlcciiitiiiiiiiiiiiiiniiniieninneannss 39 .
EC.PAR.1 ProcessMechanismscciiiiitiiiiiieinernennnennnnns 39 ;
EC.PAR.2 Exclusion Regionsciitiiimiinnetinintnenneennennnanns 43 1
EC.PGM g o~ o 3+ - 2 45 .
s EC.PGM.1 Program Constructioncuotiutineiininerneennrenenneennns 45 31
L-‘ EC.PGM.2 Program Entitiescoiiuitiiiiiiiiiiiiirinieaennna.. 50 _j‘
¢ EC.PGM.3 Program Invocation Facilities it iinnnnnnnnn 53 .1
EC.SMPH Synchronization Variablesand Operationsc...ciivivneennn.. 55 ',: J
i EC.STATE State COntroleuernrneeerarnnenreenaraanaraenanoenann, 58 i
EC.TIMER Timer Facilities00ttt iiiiinnrnneenneans 60 ®
ECINDEX INdicesiuiniiininiitinenrnnoneninoonseeeaeneensneenesas 63
APPENDIX 1 — Design Issuesiuttittennntisereanaoeseanosanssosnannns 73
APPENDIX 2 —Implementation Notes ittt reennnsnonanns 95
APPENDIX 3 — Assumptions Listsivveitntnnninnnneeeiennnenaneeseeees 97
APPENDIX 4 — Unimplemented Features of the Extended Computer 114
APPENDIX 5 — Input/Output Data Item Name Listt 118
APPENDIX 6 — Data Representation Catalogueoviiiirininneerennnennnn 122
] REFERENCES it i ittt ittt ittt teanstitnenensnannas
E. ACKNOWLEDGMENTS ... it itin ittt inetrasinsasenacnens
i
;.
L
A
-
T I S R S e j

Release 7 INTERFACE SPECIFICATIONS FOR THE SCR (A-7E) EC.INTRO
EXTENDED COMPUTER MODULE

INTRODUCTION

The Extended Computer (EC) is a computing machine partially implemented in
software. It was designed as part of the Software Cost Reduction (SCR)
project at the Naval Research Laboratory. The design goals are 1) code
portability, 2) abstraction from computer hardware idiosyncracies, 3) more
easily understood code, and 4) sharing of solutions to common machine
dependent coding problems. The Extended Computer is designed to be
efficiently implemented on avionics computers such as the IBM 4PI TC-2. The

instruction set allows straightforward, efficient code generation using a
MACTOprocessor.

The Extended Computer has the following features:

1) Extensible addressing: There is no syntactic limit to the amount of i#
memory that can be addressed. The actual memory size is a parameter]
that is set at system-generation time.

. 2) Uniform data access: Hardware addressing techniques, such as use of -
*i base and link registers, are hidden from programmers. i;
p g

3) Uniform subprogram access: All subroutines are invoked in a uniform C

manner; linkage mechanisms are hidden from users. :j
§ 4) Uniform input/output: Variations in I/0 operations are hidden. All -
i input (output) data items are read (written) using the same .4‘
- statements. .

5) Uniform event signalling: The difference between hardware interrupts :f
and software-detected events is hidden. All interrupt handling is R
hidden.]

6) Data types: Data types representing reals, bitstrings, and time ?$
intervals are provided together with the necessary conversion Y
functions. Data representations are hidden. Hardware arithmetic and »
bitstring operations are hidden. iy

7) Parallel processes: Programs can be written as a set of cooperating i?
sequential processes. The number of hardware processors and their Ty
scheduling are hidden. -

8) State control: Computer state transitions among various states K
(including »ff, operating, and failed) are signalled to the user)
programs. The mechanics of state transitions are hidden. P

host

9) Built-in test: Diagnostic programs to test the integrity of memory
and the correct operation of the hardware are built-in. The tests
and evaluation criteria are hidden. 3

‘ Manuscript approved October 23, 1984. ,
‘ 1
-
i 3

7718a
@
"]

s t cngh AL REE St S A i Y Ll Mty LA ._ﬂwvrff:r'f.v-"'.'_’-."-‘:'-". FTUNTINTT T e T TS T T T e T T oW T T PR)
o

3
L
b.
p .
{
b
[

g

Release 7 EC.INTRO

10) Exception handling: Both a development version, with extensive
checks for programming errors, and a production version are
available. Programs that cause no undesired events [WUER76] on the
development version will compute the same values on both versions.
The version can be selected at system-generation time.

The Extended Computer has been designed to hide the interface
characteristics of a computer with capabilities similar to those of the IBM
4LPI/TC-2. Were the present A-7 computer to be replaced by one with different
capabilities, we would shift some responsibilities to/from other parts of the
software. For example, if the new computer used an external device for
timing, the implementation of the timeint data type would become a part of the
device interface modules. Or, if the new computer included a capability for
angle implementation, the machine-independent implementation of an angle data
type would be replaced by a machine-dependent module that was part of the EC,
but with the same interface as the present angle data type. Of course, under
such unlikely circumstances, the appropriate documentation (such as [REQ],
(MG], and [AT], as well as this document) would be changed to remain
consistent with the new hardware. If the EC design were to be used in an

application that did not require all of its capabilities, a compatible subset
could be used.

We recommend that this procedure be followed by anyone maintaining this
system, and by those who are designing other systems using a similar approach.

This document specifies the user interface to the Extended Computer. The
contents, form, and notation are in accordance with the guidelines given in
[s0], with the following addition.

Events signalled by incrementing a semaphore: The EC signals all
events by incrementing semaphores. The semaphores and the events they
represent are listed in this section. The semaphores are built-in (users
need not declare them), and are given an initial value of zero at system
generation time.

CRF 095 227 247

7718a

RS\

REPLIPN,.

K

M) " LU AL IR

L e g

LS S5

PP PAS - St

Tt Y LR T

Y

R SRS 2 ol o o ug

-y

s ad et ied Ut g

e dran - aim e G grad bl N AFAL TN SrY Eatul aaul ey et abel aste Rt aNACMACHIEMIMERSNENIME afMC A DRIt sl Cali i M Pl ol

EC.DATA
DATA MANIPULATION FACILITIES

EC.DATA.1 INTRODUCTION

EC.DATA.1.1 ENTITIES

The Extended Computer provides literals, constants, and variables. We
refer to these as entities. Literals are values appearing in programs.
Constants have names and values; run-time programs can read the values but not
change them. Variables have names and values; the values can be read or
written by run-time programs. A register is a variable with a faster access
time than other variables. There is one register for each process (see
EC.PAR). All constants and variables other than registers may be accessed
from any process of the program. It is possible to declare arrays of
variables or constants. An element of an array may be used as an individually
declared entity of the same type. Users are given the facility for providing
information to the Extended Computer about the relative speeds with which
declared entities should be accessed.

EC.DATA.1.2 TYPES

Types are classes of entities. The Extended Computer provides a hierarchy
of types; an entity is either numeric, bitstring or pointer. Numeric types
are characterized by range and resolution. Bitstring types are characterized
by length. The value of a pointer is another entity. Pointer types are
characterized by the type of entity to which members of the pointer type may
refer. The value of a characteristic for an entity is called an attribute.

For a particular numeric type, every numeric value between the upper bound
and lower bound (inclusive) has a representative in its type. Any
representative will differ from its nearest neighbors by no more than the
resolution of the type, and no numeric value will differ in value from its
representative by more than half the resolution.

For numeric types, users may require that the representatives include

exact multiples of the resolution between the lower and upper bounds,
inclusively.

A type class is a type that contains entities with different behavior. A
specific type (also called spectype) is a subclass of a type class in which
agi variables have identical behavior; i.e., they can take on the same set of
values and one may perform the same operations on them with the same results.
The behavior of the program will not change if two variables of the same
specific type are interchanged throughout the program.

For each type class, there are any number of specific types. These either
have fixed attributes, or attributes that may vary at run-time.

CRF 092 181

7726a

- .. a -
L S . .)

e e e T CC e L S - .

Y- et et e AR N AR Lot LRI
T PP U7 N, VN Uy "B TP TP el el B L P PR WP P PPN WP WP WP WPy WO -

' 1]
na®

Rt ek Set B o

2 At S Ja ae

| e

v

—pE——

Ty rd
Y .

At o g
v

S a il ean Sagh cnd S ok 0 o dndh Aag b b Wi oM

Release 7

hatt 8 ead St Galt Ans Sad sl %o S Al Shi AR Sadl Nl g Ladl bl Sl tnd siadh Tl S O e

EC.DATA

Figure 1 provides an overview of the EC data types by showing the Extended
Computer's type classes and specific types.

sub-types.
be declared.

see which ones, refer to Appendix 4.

Lines connect a type with its
The terminal nodes represent specific types, of which entities may
Not all of the types in the table are currently implemented; to

The Extended Computer provides two numeric type classes illustrated in
Figure 1, but not described in this chapter.
whose operations are described in EC.SMPH and EC.TIMER, respectively. The

Extended Computer also provides the program type class.

EC.PGM. 2.

All
pointer
fixed-type varying=-type
pointers pointers
data program
pointers pointers
numeric
varying ranres
numerics

varying- varying- fixed-

ranres ranres ranres

reals time reals

intervals

varving- varying- integers nonintegers

ranres ranres !

semaphores timers

specific specific
integer noninteger
types types
Figure 1

CRF 181 182 4
7726a

They are semaphores and timers,

This is described in

bitstring
varying- fixed-
length length
bitstriiijflfiiiii:ings
boolean other
specific
bitstring
types
fixed-ranres
aumerics
fixed- fixed- fixed-
ranres ranres ranres
timers semaphores time
intervals
specific specific specific
timer semaphore time interval
types types types

19

.’_',,, v
. .,

:

N *
BN, RTINS LN

Laae o/

v
B
il
.

pep

— I el gk on susuoass i S
., Lo e .-
[AN L

. . - .
- . . R - e L e
o T h e e —an Al e aratinal 4 a e PRIV, "N Y. . . WS AW

Release 7 EC.DATA

EC.DATA.1.3 SCALAR LITERALS

A scalar literal belongs to exactly one of the type classes bitstring,
real, or timeint, and may belong to more than one specific type of its type
class. Formats for writing literals of these type classes are specified in
the type definitions for these type classes in EC.DATA.3.

Numeric literals will be represented with at least the precision implied
by their written representation.

CRF 156

77264

e e
. .

. -" . s . ST e
ate s tenAat At al i ALAl Rl et PR Y W G-,

«

Lt gk uBa o - —y - v v T A BT AMeie g Lt e el ek e el e S S0 At A AW A b R ptd el e SN
L. S A R ARt A St AL SO B o aa= A e B dupe dige 2 an est bt -Rd AR SR L AL S T L8 -
-

k—v\\‘\'ﬂ‘(

Tl

Rl b i)

T——

PPy
RS
R .

FEE S aran o gh ras e o aeel Mt avvl A SEEE e TR LN e e AR MR N R i g R AN O T .

Release 7 EC.DATA

EC.DATA.1.4 REGISTERS

A single register is provided for each process. Run-time operations using
the register are likely to be faster than operations on other variables. (A
system-generation-time program cannot use the register.) A register is a
variable with varving type class and varying attributes; each operation that
uses a register must include information sufficient to determine a type class
and the appropriate attributes.

A process cannot access the register of another process.

The contents of a register may be changed by a) using the register as a
.idestination!!, or b) performing an operation without specifying that the
register contents be preserved. Each run-time access program defined in this
chapter may appear with or without a suffix "-SAVE" (e.g. +MINUS+ or
+MINUS-SAVE+). Use of the suffix specifies that the contents of the register
will be preserved by the operation. Omission of the suffix specifies that the
contents of the register shall be the same after execution of the program as
immediately before.

Table EC.DATA.b shows how the value of a register is affected by an
operation. Value undefined indicates that the value contained in the register
is unspecified. If a program reads a register when its value is undefined,
the results will be unpredictable.

Table EC.DATA.b: Effects of Operations on Register Contents

Registeguggg Suffix Effect of the operation on Rggigter
read only none value undefined

read only -SAVE value not changed

written or none new value produced

read and written by operation

written or ~SAVE undesgsired event

read and written
not referenced none value undefined

not referenced —-SAVE value not changed

CRF 155 251 252

7726a

.

SOSPNEMEA] _

i PR PR IIPE VR WP, A s WP

A

2

L ‘__A.. NS

I
o

i M

e .., e,

L]

a

s 1‘..".)

¢t o ’

D

, 4 v T
L G SR O -

Yy

T~y

Release 7 EC.DATA

EC.DATA.2 INTERFACE OVERVIEW

EC.DATA.2.0 DECLARATION AND RANKING OF DATA SETS

The EC requires users to assign entities to data sets. The user is then
allowed to specify a partial ordering on the data sets to determine speed of
access to the sets' members. The rankings apply to sections of code.
Significant performance improvements are possible if the entities used in a
section of code belong to a data set that is highly ranked.

.o 4 n At -y
TN L TpwTwYIT Yy Ty TR R Lol T ‘

Program name Parm type Parm info Undesired events
++DCL_DATA_SET++ pl:name;I name of data set Z%Zname in useZZ
++RANK_DATA_SET++ pl:data-set-reln;l None.
Effects
++DCL_DATA_SET++ Declares pl to be the name of a data set, and allows that
name to be used as p5 of ++DCL_ENTITY++ and/or pé of ++DCL
ARRAY++.

++RANK_DATA_SET++ Defines a partial ordering on all data sets; if (A,B) is
in the relation given by pl, then data set A has a higher
rank than data set B. Data sets not named in pl have an
arbitrary rank lower than any set named in pl.

The ranking applies until the next textual occurrence of
++RANK DATA_SET++.

Access to entities and arrays in a data set will be made

not slower than access to members of a lower ranked data
set.

CRF 266

7726a

_“,L‘

1
A

+
B

TR NSRS RN S

RS et. S DO Ak
. : @

Pl

AR R i I A R T TR R R T TR N T U T NI R T T TS T AT A TAT AT TN VI e T

Release 7 EC.DATA

EC.DATA.2.1 DECLARATION OF SPECIFIC TYPES

All specific types must be declared and given a name. Numeric types are
characterized by !irange!! and !lresolution!., bitstring types by length.
Pointer types are characterized by the name of a previously-declared specific
tvpe. The type declaration must indicate whether or not these attributes can
vary at run-time. The EC allows users to choose among different versions of
the implementation for each type; each version is especially efficient for
performing certain operations. The versions, and the advantages and
disadvantages of each, are specified in Appendix 6.

Program name Parm type Parm info Undesired events

++DCL_TYPE++ pl:name;I name of new type %%name in useZZ
p2:typeclass;I containing type class %%inappropriate
p3:attribute;l attributes of type attributes’?
p4:binding;1I Can attributes vary %%length too
at run-time? greatZ%
p5:version;I implementation version %%range too
great?i
Z%ranres too
great’?%
%%res too fineZZ

%Z%unknown operand
in attributeZZ

%Z%Zundeclared
spectypelZ

Program Effects

A specific type that is a member of type class p2 and has binding p4 and
implementation version p5 is declared to have identifier pl. If p4=FIX, then
all entities and arrays of this specific type will have the attributes given
by p3. If p4=VARY, then p3 gives the !lhardest attributes:! that any entity
or array of this spectype will ever assume. If p5 is not a version associated
with the given type, as specified in Appendix 6, then the EC implementation
will use an appropriate version of its own choosing. The identifier can be
used as the spectype (p2) parameter in calls on ++DCL_ENTITY++ and
++DCL_ARRAY++ in programs that follow the declaration.

CRF 152 154 168 181 205 209 221 262

7726a

- . . - .
N A et LR ST AL S WU S S, T WSS

. T .t A - Y . .
PR SR ST, UVt ST W I WA SR LAY W W W W DA TV DS G WD SN AP Ty U A WP,

P

y PR X s e e

“a s

. WL

.90 a7 0 7

PR PV IEPERON S BN ok T T

P

LR

e — i - - . w
W R T NIRRT RN T TR et T Lt Eiats g e JLgth Sare it Jro iatoSabufiibt e i N R P e it et i et

Release 7 EC.DATA
EC.DATA.2.2 DATA DECLARATIONS 7?3
EC.DATA.2.2.1 DECLARATION OF VARTABLES AND CONSTANTS J

Variables and constants must be declared before they are used. The
declaration must specify the name of the new entity, a previously declared
specific type (one of the terminal nodes on the tree of figure 1), whether the
entity is a constant or a variable, and an initial value.

Program name Parm type

Parm info Undesired events

++DCL_ENTITY++ pl:name;I entity name %%name in useZZ

p2:spectype;l entity's specific type Z%Zundeclared
p3:convar;I when writeable? spectypeX?
p4:constant or initial value %Z%Zunknown initial
literal whose valueZZ
value is in %ZZvarying '
domain of type constant2?%]
named by p2;1 %%wrong init]
p5:data set;I data set name value typeZZ -
- %%loadcon too big%% o
%%literal or ascon d
too bigiZ
Program Effects °

An entity with identifier pl, spectype p2, and initial value p4 is
declared. If p3=VAR, the entity may be used as a !ldestination::! in a .
subsequent operation. The entities that have been declared may be used as
operands in the programs that follow. The entity is assigned to data set p5.

s\

2

_ 3
o

CRF 154 209 266 e
~

9 E

7726a
®

T

LY

R

- - Y . B

e o vA';'.'_'- PR} L et a.auad

AP k. e A N Lo PRI O

.

L

L

W

o

- il

Release 7

EC.DATA.2.2.2 DECLARATION OF ARRAYS

Program name Parm type Parm info Undesired events
++DCL_ARRAY++ pl:name;1 array name as for ++DCL ENTITY++
p2:spectype;1l element type plus: -
p3:convar;1 when writeable?
p4:array-init;I initial value Z%wrong init
p5:indexset;1 array indices value sizel%
p6:data_set;I data set name %%illegal index setZ%

Program Effects

A one-dimensional array with identifier pl, spectype p2, initial value p4,
and index set p5 is declared. If p3=VAR, the elements of the array may be
used as !ldestinationi!s in subsequent operations. The array is declared to
belong to data set p5. Elements of the array can be used wherever an entity

of the same specific type could be used. An array may also be a parameter to
a user-defined program.

CRF 154 186 266

10

7726a

N ,_LA‘I’.J JJJ L 1’. o

' ! ’
A s .

) S e
PRI

. .0 __

A I e an

————
RN

R

— M JEme S M el el am A REMECHE- g e A Aaaee dinee ~Base s atre et gt Sert At Bt Sad A Aadh Dalh Rhaf BafRaf et iR T
R . IMEaRE RO Pl . . ol i Al

Release 7 EC.DATA

EC.DATA.2.3 ACCESS SPEED RANKING OF DATA

The Extended Computer can implement a "not-slower-than" relation between
any two variables, constants, or arrays.

Program name Parm type Parm info Undesired events
++RANK_DATA++ pl:rank-data-relation;I %%undeclared
operand%7
Z%inconsistent data
ranking??

Program effects

Let A and B be previously declared arrays, comnstants, or variables. If
the rank-data-relation for this invocation of the program includes (A,B), then
using A (or an element of A if A is an array) as an operand in an EC program
will take no longer than using B (or an element of B if B is an array) in the
same program, if both are in the same data set. The rank relation for all EC
data objects is composed of the rank-data-relations given in each invocation
of this program. The relation is transitive, antireflexive, and antisymmetric.

CRF 131 132 266

7726a

R,)N

. N . - .
5 VR - .
4 _a a4 &M Aa'a’a & 2 2 4 AW 0

@
- I

L e

P ——

i e AR AR

Release 7 EC.DATA

EC.DATA.2.4 OPERAND DESCRIPTIONS

EC.DATA.2.4.1 INDIVIDUAL PARAMETERS

Table EC.DATA.c summarizes the description of operands for EC run~-time
access programs and user-defined programs. Brackets shown are required.

Table EC.DATA.c INDIVIDUAL PARAMETER SPECIFICATION

Nature of Parameter Form of Parameter
Literal Literal value
Scalar constant or variable Name of entity

without qualifier(s)

Qualified parameter (Name of entity or array, qualifier-list}
where qualifier-list ::=
qualifier OR
qualifier-list, qualifier

Entity referred to by a (DEREF , entiti>
pointer

The latter two forms are discussed below.

EC.DATA.2.4.1.1 QUALIFIED PARAMETERS

Variable with varying attributes: The attributes must be specified. A
qualifier is given that is the name of a previously-declared specific type
with fixed attributes. If the attributes thus specified when the variable is
used as a !'source!'! are not the same as when that variable was most recently

used as a !‘'destination!!, the results are undefined.

Register: If the parameter is the register, the name of the entity is
REG. ~ The typeclass and attributes must be specified by givirg a qualifier
that is the name of a previously-declared specific type with fixed
attributes. If the attributes thus specified when REG is used as a :
are not the same as when it was most recently used as a ..destination
results are undefined.

source!!
«, the

]
.
[}
.

Array elements: If the parameter is an element of an array, the index is
given as a qualifier. It may be any integer entity (including an element of
an integer array). The element specified is chosen before the operand in
which the parameter appears is performed. An array element may be used
anywhere that an entity with the same attributes may be used.

CRF 109 126 163 245 261

7726a

o e e e e el Kmiaiah i R NEEATGL VUS W aAda i

. ‘
P S 3 Aaoa

)R n® .

’-'1'..‘4.. 4 ’

.;.u P

)
24

o o K
P
a'e_a

Al W bt Mgt Gu Jingl b d holb kol Sl Lgw it S stk sauth Siadh Sl Sdl Sadl Anl A e Ak Sadadl A dh R Nl S Al il STETVTET SIS TeT s AT, LI D O

*) M BU T_X 2 7§ Y

TSV Y T e T -

T T

Lime i s b0 NN Rn i

T

Aind SEE L S0 i vt B0 S it/

.

T

Release 7 EC.DATA

Rounding numeric results: The qualifier ROUND may be given with any
numeric ! 'destination.: variable with the EXACT_REP attribute. This has the

effect of storing into the variable the integer multiple of the variable's
current !'resolution!! that is closest to the actual result of the operation

in which it appears.

Truncating numeric results: The qualifier TRUNC may be given with any
numeric *'destination!! variable that has the EXACT_REP attribute. This has
the effect of storing a value into the variable such that (a) y is one of the
two integer multiples of the variable's current !iresolution!! closest to the

value resulting from the operation; and (b) absv(y) lt absv(computed result).

Specifying subrange information for variables: The user may supply range

information when a numeric variable is used as a parameter. The qualifier is
of the form

1b : ub
where "1b" and "ub" are the lower and upper bound, respectively, of the
variable, given as literals or ascons within the range of the variable.
Specifying a subrange for a !!destination!! of an operation asserts that the
result of the operation will be within the subrange given. Specifying a
subrange for a !!source!! of an operation asserts that, at the time of the
call, the operand will have a value within that subrange. A subrange
specification for an I0 parameter is interpreted as the conjunction of both
‘!source!! and !!destination!! assertions. The implementation may be based on
the assumption that the assertion is true, and results will be unpredictable
if the assertion is violated.

Meaningful combinations of qualifiers: The following combinations of
qualifiers, and of entities and qualifiers, are not allowed:

- ROUND and TRUNC both occurring in the same parameter specification;

- more than one occurrence of the same kind of qualifier;

- attribute gpecification for a fixed-attribute variable or a constant;

~ ROUND or TRUNC with an entity not having the EXACT_REP attribute, or :

with an entity that is not a !!destination!!;

- an array index with an entity that is not an array;

a subrange specification for a non-numeric entity.

A

e

Koo o el

EC.DATA.2.4.1.2 USING POINTERS

Anywhere that an entity may be used, the reference may be replaced by

e

]
<DEREF,poin:er> id
L)
where "pointer'" is the name of a previously-declared entity of the PTR "7
typeclass. This has the same effect as using the entity that is the current r
value of the pointer. :i
@,
CRF 109 111 121 163 196 198 261)
13 :

7726a '
L
R

, e Y T W TR TR R T W T M T W W TR T YT W T WU W T W T WTTR TR YR TV T T TR T
Lnd M s el s Sest Aanr Shar Rt St D S Tha S AJIAG ARSLand 2e Sr el nS ar S AC AT ANECAREP AT AR Pl AN SRR R S T TFTS moFTETRETEFTR . . A

Release 7 EC.DATA

EC.DATA.2.4.2 LISTS OF DESTINATIONS :ﬂ

Any !.actual parameter!. ngen for an 0 (output) parameter in an EC access
program may be given as a i!list!! of operands (possibly including the
register). Each element of the !!llst.. must be suitable for use as a
destination of the operation. All of the parameters will receive the same

value (subject to any ROUND or TRUNC effects); the assignments may be made in #

an arbitrary order or simultaneously.

EC.DATA.2.4.3 NOSTORE K

The special identifier (not an entity) NOSTORE may be used in place of an g
'actual parameter!! for an O (output) parameter in an EC access program.

4

Th1s has the effect of not storing the computed result into any entity,

although the computed value can be used to determine the exit of the program
(see EC.PGM.1).

- 'TTE.! v .y

\D
[

EC.DATA.2.4.4 UNDESIRED EVENTS

2 4
-

The following undesired events can occur when parameters are specified
using the forms described in this section:

o __J_!L . s

%Zassertion violationZX
Z%attribute not allowed%Z
%“Xattribute not givenZZ

%Zillegal array indexZ

ZZillegal ptr targetZ?

%illegal round/trunc?
ZZinappropriate attributes??
%%inconsistent register accessi?
ZZindex not allowedZ?

%%literal or ascon too bigZ% R
ZZmultiple qualifiersiX ..
%ZZREG not allowedZ2 R
ZZres too fineXZ

O

o ov Ty et e
i PI W S

%Z%subrange not allowedZZ |)
i %“Zundeclared operand2Z 5
= %%undeclared spectypeii i
. A
b 4
| e
3 ;
g J
b L
f »
E -r
,C CRF 169 170 171 172 173 181 240 252 267 3
\ A
1 ;
. 14 R
; 7726a 1
. »
t.)

. . B . T N .-
A L. C ot o o PPN o < PRI WA AT YR WU WU L AP RPN, B0 SN Wl WL WS- W WS

A I "‘ i

o

P

% Msaaanada e

T

N

——

B s e Jee AV SN AR N T AN A/ A Sade Mk e St han) MU ast s gai as-sas o

Release 7

EC.DATA.2.5 TRANSFER OPERATIONS

Program name Parm type Parm info

+SET+ pl:see below;I 1+source+.

++SET++ p2:see below;0 !+destination+!
Parameters

L et aatari BT PR

EC.DATA

Undesired events

%inconsistent lengths?
%Zrange exceeded?

Pl and p2 must be either both real, or both timeint, or both bitstrings of
the same length, or both pointers of the same specific type.

Progggm Effects

p2 = the value of pl before the operation.

CRF 143 181 182

7726a 3

L
A

2O,

e

K _JRERIS

L |
.

..

CHMRAILD S 2 A it an -2 AT i i’ avite ShR AN Al S Sl S 6 B ATl b R B A A B WTO . TR R RN N TR ST R T A

hFa |
S
L
P

v

Release 7 EC.DATA

v

p— o
Py w',/'rv“ rr.[e ’1

EC.DATA.2.6 NUMERIC OPERATIONS

EC.DAaTA.2.6.1 NUMERIC COMPARISON OPERATIONS

Program name Parm type Parm info Undesired events
+EQ+ pl:see below;I !+source+! None o
+NEQ+ p2:see below;I !+source+.
+GT+ p3:boolean;0 !+destination+.
+GEQ+ p4:see below;I i+user threshold+!
+LT+
+LEQ+
+" Parameters

pl,p2,p4 must be either all real types or all timeint types.

Program Effects

4
f. +EQ+ p3 = (pl = p2)* »
{ +NEQ+ p3 = NOT (pl = p2)* 7
3 +GT+ p3 = pl - p2 is positive and NOT (pl = p2)* g
: +GEQ+ p3 = (pl = p2)* OR (pl - p2 is positive)]
+LT+ p3 = pl - p2 is negative and NOT (pl = p2)*
+LEQ+ p3 = (pl = p2)* OR (pl - p2 is negative)

N, SN

*Definition of equality (=):

absv(pl - p2) is less than or equal to !+user threshold+!,

EEREREEY M
L T ’

el

v

CRF 091 168 250

M i SR g e u i RRU N B
Y LR

16

Caiil ad

7726a

e

e . ORI . Lt
A R S T L R T e te e e . .

- . .. i YAt e RN e N A - -t - - . . . - . . . - . - \ . N .
PP, PRI, V. DL IR W R0 . P TPV WA SV ST NP SR W W O . L Stedetcheg sl Skt e, .

-
- M
. t

P
a

e .v_y‘ ey —
f l . .

T 't'. T ’Y. -

v

>y
° a
]

L e e e p— L dhen e B o sbun Boge JBoth mth Sl R, I Je B e Bt et SRRt A b A AN S

Release 7 EC.DATA

EC.DATA.2.6.2 NUMERIC CALCULATIONS

Program name Parm type Parm info Undesired events
.
+ABSV+ pl:see below;I l+source+! Zrange exceeded’ N
+COMPLE+ p2:see below;0 ‘+destination+!)
+ADD+ pl:see below;I ‘+source+. A
+MUL+ p2:see below;I ‘+source+! .(
+SUB+ p3:see below;0 ‘+destination+! -
+D1IV+ pl:see below;I t+source+. Zrange exceeded 1
p2:see below;I t+source+! Zdivide by zeroZ -
p3:boolean;1 check for success? %4%variable parmZZ |
p4:see below;I t+destination+! 4
+SIGN+ pl:see below;I ‘+source+! of sign None. ;
p2:see below;I {+source+: of magnitude g
p3:see below;I i+destination+! :
:
Parameters !
+ADD+ (1) all operands real, or !
+ABSV+ (2) all operands timeint
+COMPLE+ 1
+SUB+ -1
+MUL+ (1) all operands real, or ®
(2) one of pl or p2 real, the other operands timeint =
N

+DIV+ (1) pl,p2 and p4 real, or
(2) pl and p2 timeint and p4 real, or
(3) pl timeint, p2 real, p4 timeint;
p3 must be given by a literal or ascon.

.

+SIGN+ (1) pl, p2, p3 real; or
(2) pl, p2, p3 timeint.

4

CRF 107 167 198 232 ’3
7726a 17

.

- L s I - i C
Ly NN SO e . S o

et L. - . > - e e,) AP . . R . .
A S, AT SO, AN WUU P WA A atmte bmbiaboa s memoa A o a at AL L L e T N J

-

t

LA

" 20 A ELE o o A SRR SR AL A ORCR: (L Su SR SRR EM I P Y
- . - I RN 7 LRI IN PR

) it e AR A R o A S

Release 7

+ABSV+
+ADD+
+COMPLE+
+MUL+
+SIGN+
+SUB+
+DIV+

DIV_FAIL

~

EC.DATA
Program Effects
p2 = magnitude(pl)
p3 = pl + p2
p2 = - pl
p3 = pl * p2
p3 = sign(pl) * absv(p2), where sign(0) is defined to be O.
p3 = pl - p2

If a subrange assertion (lb:ub) was given for p4 AND
absv(ub) 1t absv(pl/p2) then:

(a) if p3=$true$ then sign(p4)=sign(pl/p2), magnitude
of p4 is undefined, and the built-in program
entity DIV_FAIL is invoked;

(b) if p3=$false$ then p4 is undefined.

Otherwise, p4 = pl/p2.

Built-in Objects

A program variable of spectype El (defined in EC.PGM.2.3).
DIV_FAIL has no initial value; if it is invoked before
assigning a value to it, the UE Zuninitialized pgm% (defined
in EC.PGM.2.5) will be raised.

CRF 107 167 232 254

7726a

18

5 - TR W TS TV W
& Lol ot ot ond ang aen Bad Sl S Bad i el Re il Madl el T '\'-‘~'-_~.‘_-, - TR R T Tw YT TR N - - .

.

Aad

1

K.

o

2 AL)

AN

P

Release 7

EC.DATA.2.6.3 OPERATIONS CONVERTING OTHER TYPES TO REALS

Mt et A s Jauis St B A At S el a2 a2 N A AN

T yrwTYrRTY

Program name

+R_BITS_2COMP+
+R_BITS_POSITIVE+
+R_BITS_SIGNMAG+
+R_TIME_HOUR+
+RTIME MIN+

+R_TIME_MS+
+R_TIME_SEC+

+R_BITS_2COMP+
+R_BITS_POSITIVE+
+R_BITS_SIGNMAG+
+R_TIME HOUR+
+R_TIME_MIN+

+R_TIME_MS+

+R_TIME_SEC+

7726a

Parm type

pl

tbitstring;I
integer;I

p2:

p3

:real;0

pl:
:real;0

p2

p3 = real value equivalent to pl assuming that bitstring pl
is in a two's complement representation, bit O is the most

timeint;

I

Parm info

t+source+!
i+radix pt ident+!
‘+destination+!

'+source+!
!+destination+!

Program effects

EC.DATA

Undesired events

%range exceededZ

significant bit, and the radix point is specified by p2.

p3 = real value equivalent to pl assuming that bitstring pl

represents a positive number, with bit 0 the most
significant bit, and the radix point is specified by p2.

p3 = real value equivalent to pl assuming that bitstring pl

is in a sign magnitude representation, bit 0 is the most
bit, and the radix point is specified by p2.

significant
P2 = a real
P2 = a real
P2 = a real
p2 = a real

value

value

value

value

giving the time pl
giving the time pl
giving the time pl

giving the time pl

19

DU PP S ST T SO U GV S0 P UGN WD, W R WV WO WY

in hours.
in minutes.
in milliseconds.

in seconds.

L
@

‘a A‘- 'a I‘ ‘2 ‘I‘J

e L

Release 7 EC.DATA

EC.DATA.2.6.4 OPERATIONS CONVERTING TO TIME INTERVALS

T IR

Program name Parm type Parm info Undesired events
+T_REAL_MS+ pl:real;T l+source+! %Zrange exceeded¥
+T REAL SEC+ p2:timeint;0 i+destination+!

+T_REAL_MIN+
+T_REAL_HOUR+

T gt

Prquam effects

+T_REAL_MS+ p2=timeint value equivalent to pl assuming pl to specify
the time interval in milliseconds.

+T_REAL SEC+ p2=timeint value equivalent to pl assuming pl to specify
the time interval in seconds.

+T_REAL MIN+ p2=timeint value equivalent to pl assuming pl to specify
the time interval in minutes.

+T_REAL HOUR+ p2=timeint value equivalent to pl assuming pl to specify
the time interval in hours.

L
]
A
)
b
]
e)
= .
X
< _ o
‘ i
]
!
b .]
¥

1
e o1
F CRF 177 A
7726a 2 '
<]

’ AR ° O .. L -e . L - “
L P . WA, T N R U U (Lo W S S Wy v S \ e intee i et A |

s

A e e ey B Ect aran A Sl Bedk S Nadh A N MRS Sadh et M SR N LT Al A Sl Sl e A e T

Release 7 EC.DATA

EC.DATA.2.7 OPERATIONS FOR THE BITSTRING TYPE CLASS

Bits in all bitstring types are numbered from 0 upward. We refer to bit 0 o
as the leftmost bit and a shift of information from higher numbered bits to
lower numbered bits as a left shift.

EC.DATA.2.7.1 BITSTRING COMPARISON OPERATIONS

Program name Parm type Parm info Undesired events
+EQ+ pl:bitstring;1 l+source+! None.
+NEQ+ p2:bitstring;I t+source+.

p3:boolean;0 t+destination+!

Program Effects

+EQ+ p3 = (pl = p2)*
+NEQ+ p3 = NOT (pl = p2)*

*Definition of equal (=) length(pl) = length(p2) and
for all i such that 0 lseq i 1t length(pl)
bit (i) of pl = bit (i) of p2

- o

e

e O

1
[S —

) CRF 143 200 ‘ l

21 i
7726a i

Release 7 EC.DATA

EC.DATA 2.7.2. BITSTRING CALCULATIONS

Program name Parm type Parm info Undesired events
+AND+ pl:bitstring;I i+source+. Zinconsistent
+CAT+ p2:bitstring;I L+source+. lengths?
+MINUS+ p3:bitstring;0 t+destination+!
+NAND +
+0OR+
+XOR+
+NOT+ pl:bitstring;1I l+source+!
p2:bitstring;0 i+destination+!
+SHIFT+ pl:bitstring;I l+source+!
p2:integer;I shift length 1
p3:bitstring;0 t+destination+!
4
+REPLC+ pl:bitstring;I ‘+source+! Znonexistent 4
p2:integer;I source start position positionZ Q
p3:integer;I destination start position %Zinconsistent
p4:integer;1 length lengths?% .
p5:bitstring;I background !+source+.]
p6:bitstring;0 !+destination+. 1
y
)
Program Effects E
+AND+ p3 = pl AND p2 N
+CAT+ p3 = pl followed by p2 b
+MINUS+ p3 = pl AND (NOT p2) !
+NAND+ p3 = NOT (pl AND p2) o
- +NOT+ p2 = NOT pl :
5 +OR+ p3 = pl OR p2 K
- +REPLC+ p6{p3:p3+ps-1] = pl[p2:p2+p4-1] E
- p6lall other bits] = corresponding bits in p5 :
- +SHIFT+ p4 = shift of pl by p2 positions to the right (or -p2? 4
F’ positions to the left). The vacated bits are set to "0:B". !
: +XOR+ p3 = (pl AND (NOT p2)) OR (p2 AND (NOT pl)))
.. ’
. 1
: .
°]
L CRF 090 143 195 201
-
[22
| 7726a
3
. ’
p
‘. . e . . -
| S T T - PRI AN PPN AT S A ST TG A DI VA WA W v

O

L P

-

Release 7

B Aa A i i=a b v e an it e e Ae 2t R SV S A it S S S e M N P

EC.DATA

EC.DATA.2.7.3. OPERATIONS CONVERTING TO BITSTRING

Program name

+B_REAL_2COMP+
+B_REAL_POSITIVE+
+B REAL_SIGNMAG+

+B_REAL_2COMP+

+B_REAL POSITIVE+

+B_REAL_SIGNMAG+

Parm type Parm info Undesired events
pl:real;I ‘+source+! %left truncation?
p2:integer;I ‘+radix pt ident+!

p3:bitstring;0 ‘+destination+.

Program Effects

p3 = two's complement representation of pl, such that the
radix point of the resulting bitstring is positioned
according to p2. Bit 0 of p3 will be the most
significant., The operation truncates all bits beyond the
highest numbered bit in the .+destination+! bitstring.

p3 = bitstring representation of ABSV(pl), such that the
radix point of the resulting bitstring is positioned
according to p2. Bit 0 of p3 will be the most

significant bit. The operation truncates all bits beyond
the highest numbered bit in the !+destination+. bditstring.

p3 = sign magnitude representation of pl, such that the
radix point of the resulting bitstring is positioned
according to p2. Bit 0 will be the sign bit and bit 1
the most significant bit of the magnitude. The cp.ration
truncates all bits beyond the highest numbered >it in the
!+destination+: bitstring.

EC.DATA.2.8 OQPERATIONS FOR THE POINTER TYPE CLASS

Except for the transfer operations specified in EC.DATA.2.5, there are no
operations provided for pointers.

CRF 261

7726a

23

SRR TN

‘ a
EIA,._J

.LA A >" Snd

o JORR

2

L.

Soa

T B D
LI e,

* -V ¥ e T T e e
LS Sa eut e et e Bath Pt s e A "M S MM P A A N S Pl i S < - - D . I

[]
]

. Release 7 EC.DATA

EC.DATA.3 Local Type Definitions

array-init A description of a list of constant or literal initial
values for an array. The list must contain exactly as many
members as there are elements in the array. If the array
is numeric, all values must be within the !lrange.! of the
specific type of the array. If the array is bitstring, all
values must be of the the same length as the specific type
of the array. The syntax is:

array-init ::= count.prod (elem.list)
count.prod ::= empty OR count.prod * count
count ::= positive integer constant or literal
elem.list = elem OR elem.list , elem
elem ::= constant or literal of type appropriate to
the array
OR array-init
empty 1:= .

An empty count has the value of 1. The meaning of d
count.prod * count is the product of count.prod and count. L
The meaning of count.prod (elem.list) is count.prod ?
occurrences of elem.list, with the parentheses removed and
the occurrences separated by commas. Examples:

= (a,b,a,b,a,b) §
*3%2(a) = (a,a,a,a,a,a) %
*2(*3(a),*1(b)) == (a,a,a,b,a,a,a,b) :
(a) == (a)

*3(a,b)

attribute An attribute for a bitstring is a positive integer
specifying length.

A real or timeint attribute is a parenthesized list:

(lower bound, upper bound, !!resolution!!, EXACT_REP)
The fourth element is optional; if omitted, the third comma
is also omitted. The lower bound and upper bound are often
collectively called "range" (see !!range!!). If present in
a type declaration, EXACT_REP specifies that results to be
stored in a variable of that type may be truncated/rounded
(at the discretion of the user) to a value that is a
multiple of the variable's current !!resolution!!.

AL L L A

!!Range!! and !!resolution!. for reals must given by real ‘

[entities, and by timeint entities for timeints. - T

A pointer attribute is the uname of a previously-declared or
built-in specific type.

PP

Attributes for other typeclasses are given in EC.SMPH and -
° EC.TIMER. .’

-y

CRF 093 129 164 180 181 213

7726a

PP
.

.
:
r
3
]
s
R
b
3
2
b 7
«
3
g
'-1
'l
d

2

.
r
tl
» 7
8

-

]

p

2

4

7

vy

g

Lt Tl] .v'V _“V’ . :l.

R A A

Release 7

binding

bitstring

boolean

convar

data_set

data-set-reln

indexset

integer

name

pointer

rank-data-
relation

CRF 054 093 136 151
198 240 266 267

7726a

v T v Y At ot VT WL Y Y. T T T T TN T A

EC.DATA

Either FIX (meaning attributes do not change at run time)
or VARY (meaning attributes may change at run time)

An ordered list of values, each value represented by "0" or
"1", The number of such values is called the length of the
bitstring. A bitstring literal is written as a string of
Os and 1ls suffixed by ":B". E.eg.,

0:8 bitstring of length 1

1011:B bitstring of length 4

Bitstring of length 1. Where convenient, $true$ may denote
"1:B", $false$ may denote "0:B".

Either ASCON (meaning constant that will not change without
a reassembly) or LOADCON (meaning constant that may be
changed by a memory loading device while the program is not
running) or VAR (meaning variable).

A group (previously declared by ++DCL_DATA_SET++) of
user-defined entities that the user may rank according to
desired access speed.

A partial ordering on the set of all data sets, given as a
.irelation!!.

A set of permissible indices. Omnly sets of contiguous
integers may be created. The set must be specified in the
following way:

(si,11)
where '"si'" denotes the smallest index and "1i" denotes the
largest index. Both si and li must be integer ascoms or
literals. For example, (7,12) indicates a six-element
array indexed by the integers from 7 through 12. (-4,-4)
indicates a one-element array whose index is -4.

Real with !!resolution!! = 1.

An identifier for an object created. A name must consist
only of alphanumerics or one of the following: +#%@/$()_

A type that provides indirect referencing to other declared
entities. A pointer literal is given by <REF,£> where "x"
is another non-literal entity; "x" may not be REG or an i/o
data item (see EC.IO).

A !lrelation!! between entity and/or array names.

181 185 195

25

B
:.:J
1
7
b

e et - '
b -:1!¢, &

.

I AN

Y PR
NP R -

PR

N,

L PO
ala

'
A

'
AT .
A A A % ",ll

o, [
o e 'alts o aa’'a

1
@

e

v

[l 200 A U

L o I

—
PR
’

g

MO
D

T e

"..

Lam i
]

Lo T et e
. .

'-

TerYy Ty vYw
N « .

9
-
b, .-
i_‘_)A._ B e

Release 7

real

spectype

timeint

typeclass

version

L RO A R e ASE e A han e B/ e 2 et A A A S

EC.DATA

An approximation to conventional real numbers. Real
literals are denoted in one of the following formats:

standard decimal notation e.g. =112.345,

.000234, 127

exponent notation: decimal number, followed by :En,
where n is an lnteger, meaning that the value is the
number multiplied by 10n
e.g. 1.12345:E2 (= 112.345);

2.34:E-4 (=.000234)

power of two notation 2%*n, where n is an integer;
e.g., 2%¥*3 (= 8): 2%*-4 (=.0625); -2*%*4 (=-16)

An identifier that has been previously declared as a type
in a ++DCL _TYPE++ operation, or the name of a spectype
built in to the EC. The latter includes BOOLEAN
(representing the built-in bitstring type "boolean"), as
well as those named in EC.PGM.2 and EC.IO.

Representation of a time interval. Literals of type
timeint are denoted by using the name of one of the
real-to-timeint conversion programs of EC.DATA.2.6.4 and a
real literal. The form is:

{ program-name , real-literal
Where a blank appears, any number of blanks (including
zero) may appear. The value thus specified is that which
would be returned by the named program were it called with
the real as the input parameter. For example,
(+$_REAL_$EC+, 4.0) denotes a timeint value of % seconds.
Either BITS (meaning bitstring), PTR (meaning pointer),
REAL, or TIMEINT (meaning time interval). Other values are
SEMAPHORE (see EC.SMPH), PGM (see EC.PGM.2), and TIMER (see
EC.TIMER).

A version name applicable to the specific type being

declared. Version names and characteristics are listed in
Appendix 6.

CRF 093 105 179 180 181 182 199

224 260

7726a

- -
)
il W

» - . . o
w_‘;_l.h‘qh))-d A;..)...‘A_-'- LY

S . .‘._

26

NSRRI, W

S . U
SOOI) e 2

N ¥
L —-

y
1
4
[]

ey vy

= B

Lar S PR LR

Release 7

EC.DATA.4 Dic:ionarz:
Term

t+destination+!
‘ldestination!!

!'hardest attributes!!

$ilist!!

«+radix pt ident+!

!lrange!!

slrelation!!

CRF 119 154 192 206 226 267

7726a

AP S A A S B S i

Ll A Sl S it i il '—.“'. .\!—‘_W‘._-_T_‘ Coiac S e 0 R vt 3

EC.DATA

Definition

variable, register or a list of such entities;
will contain results of operation.

An O or 10 !!actual parameter!! to an EC access
program or a user-defined EC program.

For bitstring types, the maximum length that an
entity of this spectype will ever assume.

For real or timeint types, the !.range.! and
!'resolution!! such that the ratio of !lrange..
to !lresolution!! is the maximum that an entity
of this spectype will ever assume, where
«.range!! is defined as ABSV(upper bound -
lower bound). Further, if an entity of this
spectype will ever have the EXACT_REP attribute,

it must be specified here.

The syntax for specifying !lhardest attributes::
is the same as for attributes, defined in
EC.DATA.3.

An unordered sequence of elements. The syntax of
a !llisti! is:

::= item
OR (item , ... , item)

Interpreting the bitstring as a binary real
number with bit 0 the most significant bit, 2
raised to the .+radix pt ident+! power is the
significance of the rightmost (highest numbered)
bit. For instance, a value of zero means that
the bitstring represents an integer.

The set of values between (and including) the
lower bound and upper bound of a numeric data
type.

A set of ordered pairs. 1In EC, a .!relation!! is
specified by giving two !!list:ils; the ordered
pairs is that obtained by taking the

cross-product of the !!lists!!. The syntax is:

si= (!llist!! , fllistil)

27

(2R A s LANL &' o G ML St g gl e ger eat ARt T
.
)

vy v
PR

Release 7

siresolution!!

T

'+source+.

T e
.

!!'source!!

!+user threshold+!

L M A o n aren e AVELIR * Al el M B PRt Rt P o e

EC.DATA

The maximum difference between any two
consecutive representatives of the values of a
real or timeint data type.

variable, register, literal or constant; has a
value to be used as input to the operation.

An I or 10 !!actual parameter.. to an EC access
program or a user-defined EC program.

A difference that user programs specify for a
comparison operation; i.e., two numbers whose
difference is less than this are considered equal.

‘ EC.DATA.5 Undesired Event Dictionary:
r -

%assertion violationZ

%%attribute not givenZi

? Zdivide by zeroX

%illegal array indexZ

%%illegal index setZZ

%%illegal ptr targetZZ

%illegal round/trunc?

:
r

s atn 2l ol Y
o,

A variable's value was not in the [1b,ub]
!!range!! specified in a subrange assertion.

t ZTZattribute not allowedZZ A fixed-attribute entity was given using the

variable-with-varying-attributes form of
parameter specification.

An attribute qualifier was not given for an
operand that is of varying-attribute spectype.

A user program attempted to divide by zero.

The index supplied in an array reference is
not in the index set of the array.

The index set of an array is not:
(a) contiguous
(b) 1in ascending order
(¢) integers
(d) given with ascons or literals.

A pointer may not point to REG, nor to an i/o
data item.

A user specified ROUND or TRUNC for a variable

that does not have the EXACT REP attribute or
is not a !!'destination!!, or tried to round
and truncate the same numeric result.

q
E; Z%inappropriate The attributes given are not valid for the
- attributes?Z type class at hand.
:A

g CRF 107 111 121 133 139 143 158 170

171 240 262

-
! 28
F4 7726a

q

9L

ot

R JUSWIIOAN, s

0. JEVRNNII . D

3. SRRSO

Release 7
Z%inconsistent data

ranking’a

Zinconsistent lengths?%

ZZinconsistent register
accessii

%%index not allowedZ%

Zleft truncationy

%%length too greati%

%Z%Zliteral or ascon
too bigiZ
%Z%loadcon too big?%

Zmdr outside rangeZ

4Zmultiple qualifiers%?

Z%name in useX¥

D I S A A . R I e U D 20 T

EC.DATA

There are EC data entities x and y (not
necessarily distinct) such that, if we assume
the rank relation for data to be tranmsitive,
both (x,y) and (y,x) are in the accumulated
relation.

The length of the result of a bitstring
operation differs from the length of the
destination variable.

An operation that changes the value of a
register has the "-SAVE" suffix.

An index was provided as a qualifier for an
operand that is not an arra:.

The most-significant bits are lost in a real
to bitstring conversion. This results from
the user specifying a radix point too close to
the most significant bit in the destination
bitstring.

The length of a bitstring type exceeds the
maximum allowed.

The value of a non-variable is greater in
magnitude than that allowed for an entity of
that typeclass, as given by a system
generation parameter.

A l+max div result+! was given that exceeded
the !l!range!! of the destination variable.

More than one qualifier of the same type was
given for a single operand.

An attempt has been made to redefine a name of
one of the following:

- a built-in object;

- an EC access program;

- an EC UE;

- an EC reserved word;

- an EC system generation parameter;

- a user-defined spectype, entity,

array, region, or program.

CRF 107 112 114 120 138 151 157 172

173 205 209 221 247 257

7726a

29

-

v . v
.

.

Al

.

AGIL AR AP b a ar g
e o .

&

P

Wy

R

WP
A

L a0l ama an. M SO Bt g s - Mk -l i i f At st Al

Release 7

%Znonexistent position¥

%“range exceededX

“range too greatiX

Z%ranres too greatZ?

Z%Zres too fineZ%Z

%Z%subrange not allowedZ%

%ZZundeclared operand?%%

ZZundeclared spectype%%

%Z%unknown initial valueZZ

ZZunknown operand in
attributeXZ

ZZvariable parmZ%

CRF 181 193 205 209 232

7726a

(R ol el AP T2t e M JUa i e Al Sen e B Jusn iame S e i I

EC.DATA

A user has specified (1) a start position that
does not exist in the bitstring; or (2) a
start position and a length that define a
substring not contained in the bitstring.

The value being stored into a variable is
outside the !!range!! of the variable.

The magnitude of the declared !irange!.
exceeds the maximum allowed for that
typeclass, as given by a system generation
parameter.

The ratio of the declared !lrange!! to the
declared :!resolution!! exceeds the maximum
allowed for that typeclass, as given by a

system generation parameter.

Declared resolution (or implied resolution of
a literal) was less than the minimum allowed
for that typeclass, as given by a system
generation parameter.

A subrange qualifier was given for a
non-numeric operand.

tisource:! or !ldestination!! is or refers
to (a) an entity not declared previously using
++DCL_ENTITY++; and (b) not an element of a
previously-declared array; and (c) not an EC
built-in object or system generation parameter.

The user has supplied an undeclared spectype
in an entity or array declaration, or as the
attribute of a varying-attribute variable or a
PTR spectype.

A variable has been used as an initial value
of a declared entity.

An attribute has been given using an entity
not previously declared using ++DCL_ENTITY++
as a value.

User supplied a variable or loadcon for an

:tactual parameter!! when an ascon or literal
was called for.

30

P

Release 7

%%varying constant%%

TAwrong init value sizeX%

4wrong init value tvpel%

EC.DATA.6 System Generation P

EC.DATA

A user sought to declare a constant of a
specific type that has varying attributes.

The set of initial values is not the same size
as the array.

A constant or literal used as an initial value
is not in the domain of the tvpe of the entity
being initialized.

Parameter

f#max bits length#

#max real ascon#
#max timeint ascon#

arameters
Type Definition
integer The maximum number of bits allowed for

a bitstring.

#max real loadcon#

‘max

#max

timeint loadcon#

real ranres ratio#

#max timeint ranres
ratio#

#max real range#
#max timeint range#

#min real resolution#

real Maximum allowable magnitude for a real

timeint (timeint) ascon or literal.

real Maximum allowable magnitude for a real

timeint (timeint) loadcon.

real Maximum allowable magnitude of the

timeint ratio of a type's !irange:! to its
iiresolution!..

real Maximum allowable magnitude for the

timeint absv(upper bound - lower bound) for a
real (timeint) type.

real Minimum allowable resolution for a

#min timeint resolution# timeint

real (timeint) entity.

CRF 209 214 221

7726a

31

Li:t

Sl
A

'
b s

rr Pt - aEP G M A RS it S e Ar e e Ao S Bep Stu ARSI BUR TV CFTEIATAT WL T L TUTITAT LY TR O

EC.I0
INPUT/OUTPUT

EC.I0.1 Introduction

This module implements two types of bitstring entities known as input data
items and output data items, which are used to communicate between the
computer and external devices. This interface also includes facilities for
i/o used during channel diagnostics.

communication with the outside world is possible. The values of input data
items may be set by external devices. The values of output data items are
transmitted to external devices. When a data item is disabled, its connection 4
with the outside world is severed. -

Each data item may be enabled or disabled by user programs. When enabled, #

YT TTY

> Although input data items are normally "read-only" and output data items J
j! are normally "write-only", a few may be both read and written when they are

e disabled. These may be used as storage at such times. An input (output) data 3
: item may always be used as a !.source:. !!'destination!!) in an EC statement.]
: User programs are able to check to see if an external communication has K
1 been successful.

b

Within these constraints, an input or output data item may be used exactly
as other bitstring variables. ‘]

b
:
3 P

_ In addition to the input data items described above, some input from the
h! outside world is handled only through semaphores. For these inputs, which
s

ol

correspond to transient events occurring in external devices, a semaphore is '

incremented when the event occurs. There are no corresponding bitstrings for R

: these inputs. o
- N
;

d

]

3

R

DO
PR _J SN

)
PO

3
E CRF 265

32

8929a

|]
L .l
1 .
)
i
{
'i
|
]
Al
L]

.
i

.

, -
.
.

Lt e aal el seuth Mt S A S d A Al St B el AR R A At ST SC A A e AR W i A A i Sl A g

b .
(

ﬁ- Release 7 EC.IO

r

[

- EC.10.2 Interface Overview

Ti EC.I10.2.1 Access programs
Program name Parm type Parm info Undesired Events
+DISABLE+ pl:dataitem;I name of data item %already disabledZ
+ENABLE+ pl:dataitem;I name of data item ZYalready enabledZ

+G_SUCCESS+

+ENABLE+

+DISABLE+

CRF 264

8929a

pl:dataitem;I name of data item None.
p2:boolean;0 '+i/0 success+!

Program effects

Enables transmission to/from the external environment. If pl
is an input data item, then external values for this input
item will now become available internally as soon as
practicable. If pl is an output data item, the value is now
available externally. If the item is read-write input, use of
the item as a !!destination!! in an EC statement is now
prohibited until disabled. If the item is read-write output,
use of the item as a !!source!! in an EC statement is now
prohibited until disabled.

At system-generation time, all data items are enabled.

Transmission to/from the external environment will be
inhibited. If the item is read-write input, it may now be
used as a !!destination!! in an EC statement. If the item 1is

read-write output, it may now be used as a !lsource!! in an EC
statement.

N, SNV,)

S M)

’

f
ol g g

T a

.‘.,44.

)

. o s Vo
.t ‘o . .
2 a a’ al AW Lt

-z_.A.A; LLLAL‘A.

LRI A R

Release 7 EC.IO
EC.10.2.2 Access programs for IO diagnostics ;
4
Program name Parm type Parm info Undesired Events)
+TEST_AC+ pl:boolean;0 ‘+io test result+! None !
+TEST_CSA+ pl:boolean;0 «+10 test result+! R
+TEST_CSB+ pl:boolean;0 i+io test result+! f
+TEST_DC+ pl:boolean;0 i+i0 test result+. ;
+TEST_DIOWl+ pl:boolean;0 ++i0 test result+! Y
+TEST_DIOW2+ pl:boolean;0 ‘+io test result+! B
+TEST_DIOW3+ pl:boolean;0 t+io test result+!
+TEST_XACC+ pl:boolean;0 1+i0 test result+!]
+TEST_YACC+ pl:boolean;0 1+io test result+!
+TEST ZACC+ pl:boolean;0 t+io test result+. 4
-)
Effects .i
These programs report the results of input/output hardware diagnostic
tests. If the test is performed periodically or independent of user request, 3
the result given will be that of the most recent test. If the test is »
performed on request, the command will initiate the test and report the result %
when the test is complete. 1In addition, the following effects are observable. .
+TEST_AC+ This program reports the results of the AC signal converter -]
check. It may interfere with: '
output, when the data item is .
//BRGDEST// //GNDTRK//
/ /RNGHND// / /RNGTEN// / /RNGUNIT//
//STEERAZ// //STEEREL//
+TEST_CSA+ This program reports the results of the cycle-steal channel »
A and serial channel 1 check. It may interfere with: T
output, when the data item is 1
//ASAZ// / /RUDCTL// / /USOLCUAZ//]
//ASEL// //LSOLCUAZ// //USOLCUEL// 1
//ASLAZ// //LSOLCUEL// //VERTVEL// i
//ASLEL// / /MAGHDGH/ / //VTVELAC//
//ASLCOS// / /MAPOR// / / XCOMMF/ / 3
4 //ASLSIN// / / PTCHANG// / /XcoMMc/ / Y
. //AZRING// / /PUACAZ// //ycomM// B
T / /BAROHUD// //PUACEL// -]
- //FLTDIRAZ// //ROLLCOSH// »
@ //FPMAZ// //ROLLSINH// ~
3 //FPMEL// 1
-
.- input, when the data item is /LOCKEDON/ or /SLTRNG/. 4
3
f]
o CRF 263 .
1
4 :
8929a 3 1
° J
._‘\ X

: i y ¥y - e e U et ata L.
. - . e e PP U, PP S G ST G O . AP P SN W W Dt T R Y AR NG At -M‘
P L L P LAY S W Uy I UL AP S P G PR Y W WP e G WA W WY DWW WIVER WA UEONY W WY U VESN GRS WA TP W Ty ey, e e

Release 7

+TEST_CSB+

+TEST_DC+

+TEST_DIOWL+

+TEST_DIOW2+
+TEST _DIOW3+

RAKEAELLS “ SN

+TEST_XACC+
+TEST_YACC+
. +TEST_ZACC+
g
)
<
{
—
[
g
.
q
3
-
F.
CRF 263
8929a
|

o

EC.IO
This program reports the results of the cycle steal channel
B and serial channel 2 check. It may interfere with:

output, when the data item is
//CURAZCOS// //CURAZSIN// //CURPOS//

input, when the data item is

/ ANTGOOD/ /DGNDSP/ /DRFTANG/
/DRSFUN/ /DRSMEM/ /DRSREL/
/ELECGOOD/

This program reports the results of the DC signal converter
check. It may interfere with:

output, when the data item is

//FPANGL// //GNDTRVEL// //STERROR//

These programs report the results of the checks on discrete
input and output word pairs 1, 2, and 3 respectively. These

programs may interfere with:

output, when the data item is

//DOWLl// //DOW2/ /

input, when the data item is
/DIW1/ /DIW2/ /DIW3/
/DIW4G/ /DIWS/ /DIW6/
/ ANTGOOD/ /DGNDSP/ /DRFTANG/
/DRSFUN/ /DRSMEM/ /DRSREL/
/ELECGOOD/ /LOCKEDON/ /SLTRNG/
/SINSDD/

These programs report the results of checks on the
accelerometer and torque registers associated with the X, Y,
and Z axes of the IMS respectively. These programs may

cause the IMS to lose its alignment and velocities, and may
interfere with:

output, when the data item 1is

//XGYCOM/ / //YGYCOM// //ZGYCOM/ /
input, when the data item is

/XGYCNT/ /XVEL/ /YGYCNT/

/YVEL/ /ZGYCNT/ /2ZVEL/

35

RINE AR IS AR Jben 2ee B on ARSI SR Tde i 20t Sl EnID. Sl S il B Ml A Aail A
e e e s RO T S S

L 'Ax. l‘-'- oo a’

X
. N

£

v
P

e
L

ey

"

T T e T

L4

A Jindl s 20 e 2ash o — T T T T T T Dl T C A Mali e i Sk i il S I B T I T IR

EC.10.2.3 Built-in Objects

statements:

the form

where "'x"

the form

Appendix 5.

CRF 094 098 129 263 265

8929a

Release 7 EC. IO
“o
The names of all data items are listed in Appendix 5 of this document. :

Undesired Events associated with Built-in Objects

<
- 3 . « I3 \
The following undesired events may occur when data items are used in EC 9y
3
%Zread-write violation% ’
%t%Zread/write-only violationZ%¥% g
EC.10.2.4 Events signalled by incrementing a semaphore N
y
For some inputs, an event is signalled (by incrementing a semaphore) ’

when a new value of an input data item has been transmitted. The event is of

@T(1+ x ready+!)
is the name of the data item.

3
Some inputs correspond to an event occurring in an external device. J
When such an event occurs, this module will signal a corresponding event of]
@T(!+ x occurred)]
where "x'" specifies the event. .
A
These events and their corresponding semaphores are enumerated in ’
EC.10.3 Local Type Definitions]
dataitem The name of any input or output data item. The data %

items are listed in Appendix 5 of this document. The
semantics of the data items are given in Chapter 2 of -
[REQ].]
-«
3
J
)
2
~
»
e |
36 §
)
-
1

-y v T > ke, Rt e J
| e e a et A St S Al T Sl A S AR AV S e A e i A e i e i A AR T AT el

X
-
9 Release 7 EC.IO
S .Y
3 4
h. -
i EC.10.4 Dictionary -]
: i
a Term Definition '.ﬁ
¥
N Any item of the form]
A «+ X ready+! The named data item is now available for read ;
F‘ operations.]
, - 4
l Any item of the form ‘.1'
f i+ x occurred+! The named event has just occurred in an]
E? external device. -4
t ‘+i/o success+! true iff the last transmission associated with]
ki the named data item was successful. .4
E «+io test result+! true iff the i/o hardware passes built-in test.]
1
EC.I10.5 Undesired Event Dictionary j
! .
Y %already disabled¥% A user program has tried to disable a data item ®
} already disabled. "
r ” . .
X %already enabledX A user program has tried to enable a data item]
already enabled.]
. . . o
Z%read/write-only A read-only (write~only) data item appears ‘j
< violationZ% as a !!destination!! (:lsource!ll). B
Zread-write violationZ A program call was executed with a read-write :}
input (output) data item as a !l!destination.:]
(tisource!!) when that data item was enabled. ®
.
b EC.I10.6 System—Generation Parameters 1:
. <Y
"
S Parameter Type Explanation <Y
q #max i/o time x# timeint (where "x" is replaced by the name cf . f
- each data item) The maximum time 29
y interval that can elapse between the ,;
. beginning of the access program that]
. . <
reads/writes the named item, and the 9
time it takes for the external @
¥ transmission to take place. _i
p T
- #nbr fltrec elements# integer Defined in Appendix 5. 2
& R
P‘. "x
1
K
3 CRF 102 214 231 264 265 *i
[~ ~
! :q
.. 37
] 8929a -]
R
]

T . Ty T AT R

EC.MEM
Virtual Memory Module

EC.MEM.1 Introduction

This module provides a uniformly addressable memory for the Extended
Computer, as well as hiding the particular addresses to which data and
instructions are allocated.

The only part of the interface that is not hidden from EC programmers
(who do not need to use it) is that which reports to the user the results of a
diagnostic test on the memory hardware. The specifications for the remainder
of the module appear in [VM].

EC.MEM.2?2 Interface Overview

EC.MEM.2.1 Memory diggpostic access programs

Program name Parm type Parm info Undesired Events
+TEST MEMORY+ pl:boolean;0 !+memory test result+! None
Effects

Reports the result of the memory diagnostic test. If the test is
performed periodically or independent of user request, the result given will
be that of the most recent test. If the test is performed on request, the
command will initiate the test and report the result when the test is complete.

EC.MEM.3 Local Type Definitions: None.

EC.MEM.4 Dictionary

I+memory test result+! true iff the memory diagnostic test is
passed.

EC.MEM.5 Undesired Event Dictionary: None.

EC.MEM.6 System Generation Parameters: None.

CRF 263

7725a 38

. = . SN

. . R -, S S .
e PO IR W, SIS DD U Y v VO - S

UBannen 2ng gy YRat S R iEie- Ak S it Bl B e B Ik Yo S A ad -".‘"’.".".v-"".\T
SRS T R S i It

—~ Ty T T YT T W AT T e T T W N T T T T T T T T YT T T R R A

.

.

E EC.PAR.1

& PROCESS MECHANISMS

: EC.PAR.1.1 Introduction

h The process mechanism allows the definition of a set of sequential

processes that will proceed in parallel and unknown relative speeds. Demand
processes are activated when specific events occur. Periodic processes may be
turned on or off, but are re-started at regular intervals when turned on.

ey

EC.PAR.1.2 Interface Overview

EC.PAR.1.2.1 Access program table

Program name Parm type Parm info Undesired events
++D_PROCESS++ pl:timeint;I ‘+deadline+: Zinconsistent
p2:invocation;I process body time parms?
%%Zundeclared
programiZ
%%variable timing
parmsZ% v#
.
++P_PROCESS++ pl:timeint;I t+deadline+! Zinconsistent :
p2:timeint;I !+period+! time parms?Z
p3:semaphore;1 i+starting event+! %%Zillegal synchZ%
p4:invocation;I process body %%undeclared :
pS5:boolean;I ‘+on/off+. ‘ programZZ ;
Ymissed deadline? :j
%%variable timing R
parmsZ? .
+TEST_INTERRUPTS+ pl:boolean;0 «+interrupt test None. ‘
result+! j
Parameters]
pl must be given by a literal or an ascon. .j
®
-3
A
{ @
3 =
1 'j.i
:
Lq CRF 104 146 153 168 234 263 .
:j
39 N
7722a
o
]

TS e W T W T W AT ¥ T Ty T A S T A S At "t

—_—

Release 7 EC.PAR

[y’

Program effects

++D_PROCESS++ establishes a demand process that becomes active after
@T(l+power up+!). The body of the process is the program
named by p3. The process remains active until it is
suspended as a result of a synchronization operation (see
EC.PAR.2, EC.PAR.2) or executes the last statement in its
body. During the interval when it is active, it will
execute before p2 real time has elapsed. A process that is
suspended as a result of a synchronization operation may
start again. A process that executes its last statement
will start again only after a system generation.

v - P AT T
. e, .

»

v

W T T Yy Y

++P_PROCESS++ establishes a periodic process that becomes active after the
semaphore named by !+starting event+! becomes nonnegative.
The body of the process is the program named by p5. While
the boolean named by pé6 is true, a built in semaphore, NEXT
PERIOD, will be incremented at the start of each !+period+.
amount of real time. After the start of a !+period+!, the
process will complete exeuction before p2 real time has

e elapsed. The process must perform [+DOWN+,NEXT_PERIOD]

[+PASS+,NEXT_PERIOD].

T Y-

If p6 is given as a variable, and that variable becomes
false during execution, the process will stop when it waits
for the start of its next !+period+! (by invoking
[+PASS+,NEXT_PERIOD]).

e

If p3 is given as a variable, and that variable changes
value during execution, the proc s 3 will change its
+period+! within an amount of time equal to the previous
value of p3.

DN

3

::- Both If two (or more) processes simultaneously execute sequences

¢ of statements that read and/or alter the value of some data,

- the results are unpredictable because the executions may

L overlap in time. However, EC access programs are considered

2 indivisible. If two EC access programs are executed

7’ simultaneously by two processes, the effect will be as if
one of the processes executed its access program before the
other; the order is not specified. Note that the invocation
of a user-supplied routine is the execution of a single EC

- access program, but the execution of the body of that

o routine is a sequence of EC statements.

b

]

9

@

g

- 40

b 7722a

o

Y Y

.

'

"

)
y

[

Ve
*

»

'

3

'

L

e
K

.

r*

Y.

P

b,

4

B

_ A t PP O TR DY R W U S R AP U Sy

RN

. _J

NI

"7\

nJy

WLrRrary ko

A

N\ IR PYURAT . U Y XN PAN .J SOR

ey Ry At Setn Jhos e Mat e s Jhedh T Jhode Bk e
PP e - o Ml Il < Rl

-t

BT

(Gl o o aeain

T ——y

Release 7

+TEST_INTERRUPTS+ Reports the results of the interrupt hardware checks. If
the test is performed periodically or independent of user

‘d
A
-
p
o
B
f

R

4
{
o
4
[]
'
[
I
1
-
4

EC.PAR

Program effects (continued)

request, the result given will be that of the most recent

test.

If the test is performed on request, the command

will initiate the test and report the result when the test
is complete. It may interfere with normal operation of
timers and input/output commands in unpredictable ways.

EC.PAR.1.2.2 Built-in objects

Name Used to Refer to

NEXT_PERIOD semaphore variable, private to each periodic process, that
will be incremented by the EC at the start of each period.
Each periodic process only has access to its own
NEXT_PERIOD. Semaphores are described in EC.SMPH.

EC.PAR.1.3 Local Type Definitions

invocation

EC.PAR.1.4 Dictionary

Term

{+deadline+!

‘+interrupt test
result+!

t+on/off+!

An occurrence of a program invocation, as described
in EC.PGM.3.2. ‘

Definition

The maximum amount of real-time that can be allowed
to elapse between the time that a process can
proceed and the time that it reaches the next point
of suspension.

true iff the interrupt hardware passes built-in test.

the boolean whose value will be used to start/stop
the periodic process in whose definition it

appears. Its value must be $true$ whenever the
periodic process is supposed to proceed. If it is
$false$ when the process next reaches its starting
point, the process will be suspended until it
becomes $true$ again. Of course, the value may only
be changed if the boolean was given as a variable.

CRF 090 129 153 168 234 243 263

7722a

e e i a . R W

41

PR e .) . o o
I RS V5, WUINE SR SAY W, ¥ S0 W W S ey PR AP VR S WP O W g ey

@

t
L

®L. .

lalalaa

»

i@

P———
: e

e e S

- .

L RSt S G A i ¢

MR A

Ty el o I At ™ o

Release 7

«+period+!

s+starting event+!

LSS aRd-on s and aed aee s IR SaduahbbAc ke el te AR As et Aad sad salb tai Faae ReCRIREe TSI T S I O }

EC.PAR

The timeint whose value will be interpreted as
the amount of real-time that should elapse
between the beginning of one execution of a
periodic process and the beginning of the next
execution. 1If !+period+! is given as a variable,
changing its value has the result of changing the
period of any process for which it was used as
the !+period+!.

The name of a semaphore that, when becoming
nonnegative, will cause the periodic process in
which it is named to become active.

EC.PAR.1.5 Undesired Event Dictionary

Zt%Zillegal synchZ%

Zinconsistent time
parms?

Zmissed deadline%

Z%variable timing
parms%%

a synchronization operation other than the
required +DOWN+(NEXT PERIOD) and
+PASS+(NEXT_PERIOD) (see EC.SMPH) appears in the
body of a periodic process; or those required
operations were omitted.

the timing parameters are contradictory; e.g.
:+max CPU time req+! exceeds !+deadline+!, or
++deadline+! exceeds the current value of

s+period+!.

a process has missed its deadline because too
many demand processes have occurred, or because
its !+deadline+! was less than the CPU time
required for it to execute.

++deadline+! or !+max CPU time req+. was given
using a variable or a loadcon.

EC.PAR.1.6 System Generation Parameters: Nomne

CRF 175 198 214 234

1722a

42

2 bt awma

aumn a2 -

= w v memramoa

Pt

TN T

v —w T TN T TV Y Y v MEEra o aw e L S B oh Sen 84 Man Men SAccR AR At A AEch i RRrh i R R
[. - - . . |

T

T

Y Ve

. ’) . " ‘r'r'<-‘A‘

Py

:%ﬂ
Release 7 EC.PAR e
EC.PAR.?2
EXCLUSTION REGIONS o]
1T
EC.PAR.2.1 Introduction -®
This module allows constraints to be placed on the potential concurrency .
of processes executing regions of code by defining an exclusion relation among]
them. Region 1 excludes region 2 if starting to execute region 2 is forbidden :
while region 1 is being executed. Mutual exclusion is a special case of this -
exclusion relation, which is based on [BELP73]. ".4
EC.PAR.2.2 1Interface Overview j
EC.PAR.2.2.1 Access program table .J
Program name Parm type Parm info Undesired events 1
++REGION++ pl:name;I region name Z%name in usei%
p2:statement-list;1 region body
.1
++EXCLUSION++ pl:exclusion-relation;I %Zundeclared :
regionZ?Z .%
Effects)
++EXCLUSTON++ If the exclusion relation includes (A,B) then no process 7
will begin to execute region B in the interval that starts =
when a process begins execution of region A and ends when]
that process completes execution of region A. The "
exclusion relation for all regions is composed of the ®
exclusion relation given in each invocation of this program. 1
++REGION++ pl may be used to stand for the section of code that is
given in p2. If the last action before the region causes a
process to wait, then the process is considered to be]
inside the region when it is allowed to proceed. If the o,
last statement in p2 is a wait operation, then the process -]
is considered to have left the region when it begins to]
wait. Including regions in a process will prevent the A
process from waking up, if doing so would result in a -
violation of an exclusion region. ik
®
1
o
‘
.‘
CRF 257
43
7722a

P T VL A G VU ST W SIS ST SN G0 AU TUTR: S SORE S S T A A

-)
A Release 7 EC.PAR
3
%%f EC.PAR.2.3 Local Type Definitions:
, exclusion-relation A !'relation!! on region names. J
statement-list A sequence of !lcommand!.s.

EC.PAR.2.4 Dictionary: None

EC.PAR.2.5 Undesired Event Dictionary

X%undeclared regioniZ an exclusion relation includes regions that have
not been identified in the program.

EC.PAR.2.6 System Generation Parameters: None

L4 CRF 093 119 129 214 247 267

44

l
1
i
E t
L o . L. . . NI .
. D . CoL - e . .] . e
. . A . - . R NI . s .“ .
- ' P SN N . Lo St e - W . Y oL S - .«
e T e e N d e sl o e i Bk B COROERT T SUICY.. ¥ V) i

DO MED — R

v
i S

T p———

i SR A

-

Y

LA el

T o] e S ran A s i o dr- -l Sadl Mt Sk AL B
L Saliand gt g J0es St Al S S PN R A S I S et Mgl Sl o, TSl A NN R

EC.PGM.1
PROGRAM CONSTRUCTION

EC.PGM.1.1 Introduction

Using the facilities of this module, a user can construct programs
composed 2f invocations of EC built-in access programs and user-defined
programs. This is done by naming the entrances and exits of these programs
and describing connections between them. Each exit is connect to one
entrance. The resulting structure is called a !!constructed programi:. On
completion of its execution, a program selects an exit; the next program
executed will begin execution at the entrance connected to that exit.

All EC access programs have one entrance. Many have one exit, but some
(see EC.PGM.1.2.1) have as many exits as there are values in the range of the
output parameter. When such a program is executed, it chooses the exit that
corresponds to the value it has computed.

A !!constructed program!! is a literal of the typeclass PGM. In EC.PGM.2

we describe the declaration and use of entities of that typeclass. In
EC.PGM.3 we describe facilities for invoking programs as closed subroutines.

EC.PGM. 1.2 Interface Overview

EC.PGM.1.2.1 Entrances-and-exits-of -EC-access -programs

Every EC access program has exactly one entrance.

Every EC access program that has a single output parameter has n exits,
where n is the number of values that can be computed for the output
parameter. The exits are named Ev, where '"v" is replaced by the literal
representation of the value (except that "-" is replaced by "m"). For
example, an exit corresponding to the real -32.7 is named Em32.7. If the
value computed is a bitstring of length 1, the exits can be Etrue and Efalse.
If a program computes a value u as its result, it takes exit Eu.

All other EC access programs have exactly one exit.

45

0235a

PP o
.,.‘u.‘

K JPERPANN

BN
i

M g

T

B

Release 7 EC.PGM. 1]

.4

EC.PGM.1.2.2 Entrances and-exits-of-!!constructed-program!!ls]

Program name Parm type Parm info Undesired events b,

++ENTRANCE++ pl:name-1list;T entrance name(s) Z%duplicate nameZX%

%%port not defined%%

%%port defined twiceZ% 3

%Z%Zno such entranceZ% -

.. »,

++EXIT++ pl:name-list;I exit name(s) %%duplicate nameZ%Z% :

%%port not defined%% ¥

Z%port defined twiceZZ ;

Parameters %

Each name in pl of ++ENTRANCE++ must be an entrance to a !!command!! in {

the }!constructed program!!. o

Effects =

— ’,

++ENTRANCE++ Defines the given name(s) as entrance(s) to the !!constructed
program!. in which they appear. The name(s) may be used when K
the !lconstructed program!! in which this !!invocation!! appears)
is invoked (see EC.PGM.3).

. . ®
++EXIT++ Defines the given name(s) as exit(s) to the !!constructed b
program!. in which they appear. An exit of a !!command!! in the -

same !l!constructed program!! may be connected to ome of these

exits as specified in EC.PGM.1.2.3; i.e., %Znot an exit%Z is
disabled for the given names in this !l!constructed program!!.

®

!
L.

LDV

46
0235a

g - .) - . PR . ~ -
D L L T e WA T U U T T " S VDT ST SN WY TS Syl S S S e |

o v e -
SN S e EC O afa - r'al - ¥ . hd

T, T

Release 7 FC.PCM, !

LA R S
[T I

EC.PGM.1.2.3 Connecting exits with entrances

A

i
o o

All !linvocation!!s are preceded bv a label-1: . 11s form:

i@

label-list ::=
OR label-list label

label 1= name 4

The UE ZZname in useXX applies to label-lists,

All !linvocation.!s are followed Sv an exit-connector, in this form:]
exit-connector ::= (exit-list : label , ... , exit-list : label) ®
OR : label
OR

The second form of the exit-connector is an abbreviation
that is equivalent to pairing all exits >f the nrogram
with the same label. The third (null) form is equivalent

®

to ":L L:" where L is some name not used anvwhere 2lse. 1

-

exit-list 1= exit 1
OR (exit, exit, ..., exit) - 4

OR (Em : En) {

o

The third form is equivalent shorthand for (Em, Em+l,
Em+2, ..., En-1, En) where m and n are ‘nteger literals, m
not greater than n.

exit ::= npame (naming an exit of the !!command!!)

label ::= pame (naming a label of any !!command!! in the
!lconstructed program!! in which this
{icommand.. appears; or naming an exit of

E the !lconstructed program!! in which this

L !!lcommand!! appears.

E After a !lcommand!! is executed, the next !!command!! to be executed will
be the one whose label is paired in the exit-connector with the exit that

B the !lcommand!.! selected.

! These UEs apply to exit-connectors: %%dest unknownZ%

' %%illegal exit-1ist%Z%

5 Znowhere to go’

Z%Znot an exit?%Z%

Y

A
.

47
0235a

At il M N A A i P

Release 7

EC.PGM.1

EC.PGM.1.3 tocal Type Definitions

name-list

EC.PGM.l.4 Dictionary

{lcommand!’

{iconstructed program!!

! tinvocation!!

A !llist!: of names.

An !linvocation!!, preceded by a label-list, and
suffixed by an exit-connector.

A sequence of !lcommand:.s, beginning with one
!linvocation!! of ++ENTRANCE++ and ending with
one invocation of ++EXIT++ specifying the
entrances/exits to the sequence considered as a
whole. No other invocations of ++ENTRANCE++ or
++EXIT++ may appear.

A program invocation, as defined in section
EC.PGM. 3.

EC.PGM.1.5 Undesired Event-Dictionary

%Z%dest unknown?ZZ

%2%duplicate nameZ%

Z%illegal exit-1istZZ%

%Z%Zno such entranceZ?

0235a

An exit-dest in an exit-connector was neither (a)
a label preceding any other !!command!. in the

!lconstructed program!!; nor (b) the name of an

exit to the !lconstructed program!..

A name appeared twice in the same list,

An exit-list of a !!command!! either (a) names
the same exit twice; or (b) is of the form
(Em:En) and m is greater than n.

The name given as the entrance of a !l!constructed
program!! is not used as a label preceding any

!lcommand!! in the !lconstructed program:..

48

B VPRI, W

-

ORI, ™

L L L T

DL J

- - - v e el
—— T T MR AN AN e S AR " Ty vy T T T Y Y e A Al

Release 7

%%not an exit¥%

%“nowhere to go%

%%port defined twiceX%%

Z%port not defined’%%

EC.PGM.1.6 System Generation-Parameters: None.

Pl

EC.PGM. 1

The exit-connector contained an exit that is not
an exit of the program being invoked.

A program took an exit that was left unconnected.

A !lconstructed program!. contained more than one
Jlinvocation!! of ++ENTRANCE++ Or ++EYIT++,

A !lconstructed program!. did not contain an
!'invocation!! of ++ENTRANCE++, or did not
contain an !!invocation!! of ++EXIT++.

N235a

@,

@ .

Sandemionde

49

r—————— Y T ham e St s S oSl SE
. .
Y . .

SC.PGM.?2
PROGRAM ENTITIES

EC.PGM.2.1 Introduction

This module provides mechanisms for declaring entities of type program and
assigning a value to them. The EC access programs are built-in program
constants; see EC.PGM.2.2.3,2,

EC.PGM.2.2 1Interface Overview

EC.PGM.2.2.1 Declaring a Program type

To declare specific program types, use the ++DCL-TYPE++ program specified
in EC.DATA.2.1, with:

p2 = PGM;
p3 a pgm-attribute, defined in section EC.PGM.2.13;
and the other parameters as described there.

EC.PGM.2.2.2 <Creating-a-Program

To create an entity of the program typeclass, use ++DCL-ENTITY++ {see
Section ZC.DATA.2.2.1) with: -
p2 = a program spectype (builtin or user-declared);
pé4 a program literal, or a parameterless program constant
of spectype p2;
and the other parameters as described there.

To create an array of program entities, use ++DCL ARRAY++ (see Section
EC.DATA.2.2.2) with: -
p2 = a program spectype (builtin or user-~declared);
p4 = an array-init (defined in EC.DATA.2.3) of program
literals or parameterless program constants of
spectype p2;
and the other parameters as described there.

CRF 093 100 103 106 108 115 117 119 121

129 133 134 144 145 150 161 162 165
178 182 186 247 246

0236a

[

Fawy._J e O

. J"

S S
PO S 2

W\ 4

e I,

LN

- v " M- abiisrnns ot TN W W SN TR T T g T W T T N TWMT oA s .y
pr—— —— e g te \haaen A b7 20 ot Sat RadiBait i el 3 i gid el pN AP A SAadtoN T TN bt

E; Release 7 EC.PGM.2
o
EC.PGM.2.2.2 Other Operations on-Program Entities P
1 Program Parm- type Parm-info Undesired-events .
5 ————— e SN ity e ———————]
: ++RANK_PGM++ pl:rank-pgm- %%inconsistent pgm 1
relation;I ranking?%%]
F_-" ... :
1 ' . . »
A +SET+ pl:program;I .+source+, %4%inconsistent pgms’Z _
[++SET++ p2:program;0 t+destination+! :
4 "
- Parameters -
- -]
L‘ +SET+ pl and p2 must be program entities having the same attributes. »
4 ++SET++ Neither may have parameters.]
} -
:
{ Program-Effects
[++RANK_PGM++ Let A and B be program entities previously declared using b
3 ++DCL_ENTITY++, or arrays of program entities previously »
, ¢ declared using ++DCL_ARRAY++. TIf (A,B) appears in the 'f
[rank~-pgm~relation for this invocation of the program, then the
] time it takes to invoke A will be no longer than the time it _
- takes to invoke B in the same program. (If A (B) is an array, -~
- then read "all program entities in A (B)".) The rank relation q
a: for all user-defined program entities is the union of the »
: rank-pgm-relations given in each invocation of this program.
iﬁ_ The relation is transitive, antireflexive, and antisymmetric.
3 +SET+ As described in EC.DATA.?2.5.
. ++SET++
]
1

EC.PGM.2.2.3 Built-in Objects

EC.PGM.2.2.3.,1 UYndesired-Event Programs

Every run-time UE specified in this document is a built-in uninitialized
program variable, which will be invoked when the error condition corresponding
to the UE definition is detected by the EC program(s) to which the UE
applies. It is up to the user to assign a value to each of these variables;
if one of these variables remains uninitialized at the time of its invocation
by an EC access program, the UE Zuninitialized pgm% is raised. The variables
» are of the builtin spectype El.

RO VT

dn

L R

[For every run-time UE %x% defined in this document, there is a built-in
F_ boolean variable Bx with the following properties: K
: (a) its initial value is $true$; B
L (b) it may not be used as a !.source..; ;
e (¢) it may only be used as a !l!destination!! in the ++SET++ program; L)
5 hence, ++SET++ is the only way its value may be changed.
- (d) the EC will check for %x% only in code segments for which Bx is .
& $trues.)
L..'; 51 .
= 0236a ‘

. L. - - - - . . . N - N - - e Y|
I T R L S P S T o . e P WU W W S, §

e A A S A S B da D Aare de St Al At S Sedie Sl Sl il Sl Sufl B (5 S A0 A AP) Nd Wa ¥ 5 W N W e, T T T T T e D e a’

Release 7 EC.PGM.2

EC.PGM.2.2.3.2 EC-Built-in Access Programs

Each EC access program is a built-in constant of the program typeclass.
For most programs, the spectvpe of the program is not named. If the access
program has no parameters, its spectype is El.

EC.PGM.2.3 Local Type Definitions

El A built-in specific type of the program typeclass. It is
characterized by a single entrance named ENTRANCEl and a
single exit named EXITL.

pgm-attribute An ordered pair (:!list!! , !llist!!). The first
::list!! names the entrance(s) to programs of the type;
the second !!list!! names the exit(s) of programs of the
type.

program An entity of the program typeclags previously declared via
++DCL_ENTITY++, or a member of a program array previously
declared via ++DCL ARRAY++, or a built-in EC access
program, or a program literal. A program literal is a
.iconstructed program!! as defined in section EC.PGM.1.

rank-pgm- A l!lrelation!! of user-declared program entities.
relation

EC.PGM. 2.4 Dictionarz: None.

EC.PGM.2.5 Undesired -Event-BPictionary

ZZinconsistent pgms %% An assignment was attempted between entities
of different attributes; or, one of the
entities is not a parameterless program.

%Z%Zinconsistent pgm There are user—declared program entities x
ranking%% and y (not necessarily distinct) such that,
given the transitivity of the rank relation
for programs, both (x,y) and (y,x) are in the
relation.

® %Zuninitialized pgm% An undesired event program variable has been
{ invoked by an EC program, but that program
- was never given a value by the user.

EC.PGM.2.6 System Generation-Parameters: None

CRF 267

0236a

MR |

E‘.
.
.

AR g

EC.PGM. 3
PROGRAM INVOCATION FACILITIES

EC.PGM.3.1 Introduction

This module provides mechanisms for invoking programs (either built-ia or
user-defined) as closed subroutines and, in the former case, passing
parameters to those programs.

EC.PGM,3.2 Interface-Overview

e ¥ . YW W R .
M A 0 Mt e Sk Jogn Bhath At iichiemy J T T g EReETTTe T e T s TR R e e e w e Ve T T BT e T e T W T e T e U T e T e o7 W e
w Al i e i, - e A P . Rl e MR e . R

Syntax f;
The syntax for invoking a program is as follows: 5%
invocation ::= [pgm parm-list) .
1
For programs with no parameters, the parm-list is emptv.]
Effects]
If an EC run-time access program is named, the effect is that which is '.'
specified for that program. If an EC system-generation-time access =
program is named, there is no run-time effect. If a user-defined program .
is named, the effect is that of executing the run-time !!command!!s in the
!lconstructed program!! that has been assigned to the program (either as
the initial value as described in EC.PGM.2.2.1, or subsequently as 4
described in EC.PGM.2.2.3) beginning at the entrance named. o
Undesired-events .
The following undesired events apply to program invocation: 3:
Z%constant destination2? o
%Z%entrance incorrectly omittedZZ L J
'-1
%ZZnot an entrancel% -
Z%parm wrong typeZZ
%recursive callZ
%Z%too few parms%%
%%too many parms%? y
%%undeclared programZZ I%
|
J
L)
CRF 247 J
L)
53
0237a
L
N N . \; - SRS W R PO Lo ta "; .

— B il i Sy “taol REg M el AR N o S MM AR

Release 7

- MW TR T T WL N, T L W4 e AT RTETT T T e Y e e e

EC.PGM.3

EC.PGM.3.3 Local Type Definitions

entrance

parm-list

parm

pgm

EC.PGM.3.4 Dictionary

‘tactual parameter!!

The name of an entrance to the program that is
the value of the invoked entity, previously
specified by ++ENTRANCE++ for that program.

OR , parm parm-list
An !lactual parameter!. to the program.

t:= program
OR (program , entrance)

The first form may be used when the program
only has one entrance,

An entity that appears in the parameter list
of a program invocation. The forms that this
may take are specified in EC.DATA.2.4.

EC.PGM.3.5 Undesired Event Dictionary

%ZZconstant destinationZ

%Zentrance incorrectly
omitted%?

Z%not an entranceZ?

Z%parm wrong typeZZ

%Zrecursive callZ

%%too few parms%Z%
%%too many parms%¥

%%undeclared program’%

The user has supplied a constant or a literal

as a !!destination!!.

The user has filed to specify an entrance in
an invocation of a program that has more than
one entrance.

The entrance named in the invocation is not an
entrance to the program being invoked.

The type of an !lactual parameter!! is not of

the type called for in the specification of
the program.

A program has invoked itself, either directly,
or indirectly through an invocation of a
program variable.

The programmer supplied a different number
of !lactual parameters!! than the number
called for by the program's specification.

Program called or referenced is neither an EC
access program nor a program declared by the
user.

EC.PGM.3.6 System Generation Parameters: None

0237a

54

R .) . . - - N S e - N ¥
- - - o e . LY LY Y . s . N L . WP Y Y U W TP ST W U NI JENNIG Y Y

N IO

s, B RN

B

A

e
3

P R W

L
- ammnash.

1
Fu

el

@

_-ta -

)
R Y

@

ol

r—. - v ks A I et e & et A AR 8 A T A S S e 4\ aan mun Rem it s e A AT i YT T W T T T Y
-t . RGN S M Bt - S e A, B B - N
4

i .
s

2

i.———

: EC.SMPH
?~ SYNCHRONIZATION VARIABLES AND OPERATIONS

EC.SMPH.l Introduction

This module provides a run-time synchronization mechanism, semaphores,
with associated operations. They can be used where exclusion regions cannot
express the constraints. This mechanism is based on [BELP73]; the semaphore
operations are a more primitive version of Dijkstra's P and V [DIJK68].

LEt g Rt TN SR

Semaphores can also be affected by timers; see EC.TIMER.

) EC.SMPH.2 Interface Overview

oS

e n an A pan

EC.SMPH.2.1 C(Creating a Semaphore

To create specific semaphore types, use the ++DCL_TYPE++ program ®
specified in EC.DATA.2, with: :
p2 = SEMAPHORE; |

p3 a semaphore-attribute, defined in EC.SMPH.3;
and the other parameters as described there.

9

= |

Semaphore entities must be declared before they can be used. Use the !
++DCL_ENTITY++ program of Section EC.DATA.2.2, with: :
p4 (the initial value) given as an integer literal; -

and the other parameters as described there. B

To create an array of semaphores, use the ++DCL_ARRAY++ program of ®
EC.DATA.2.2.2, with: 4
p4 as described there, with initial values given as '

integer literals; -1

and the other parameters as described there. -

)

1

o Uy

CRF 110 130 154 188 189 258 266

55

0260a

S D D UL S SRS VL T P Sy [SP T U, SOy, S, e, - P R WL S TP . e

W e ml . g W W W W W RO Ty TR TR T R TR T T T
o LA ol i s o i S A i AN AR S L e e L. Db e Bl Bl Pl Rl -

N |

T e

$ Release 7 EC.SMPH g

{i EC.SMPH.2.2 Access programs E?

¥ 7

s Program name Parm type Parm Info Undesired Events ;i
+DOWN+ pl:semaphore;I0 %range exceeded% !?
+UP+ B
+SET+ pl:semaphore;I

p2:semaphore;0

N O

+PASS+ pl:semaphore;I None.
Program effects]
o]
In this section, we characterize informally the effects of the - 4
synchronization operations. For a more precise description, see the formal)
specifications in [TRACE]. "State(self)'" means the state of the process in]
which the synchronization operation appears. |
, 8
Terminology: ®
Term Explanation —¥
state Either "active'" or '"'suspended". f
state(self) the state of the process executing the operation
state(waiters) the state of all processes in the middle of a +PASS+ i
operation for that semaphore .1
Effect on the integer
Operation equivalent of the Effect on process state(s)
named semaphore
Ny
+UP+ incremented by 1 if the semaphore gteq 0 then .'1
state(waiters) := active* R
N
+PASS+ none if the semaphore lt 0 then i
state(self) := waiting -
!
+DOWN+ decremented by 1 none g
+SET+ p2 set to value of pl same as if the value of p2 were]

arrived at by the smallest possible
anumber of consecutive operations of
+UP+ and +DOWN+.

e r Ty
N T e e
e,

* a change in "state(waiters)" means that all the other processes in

pending +PASS+ operations on that semaphore may be made active in an
unspecified order. A process that becomes active may make the semaphore -~
| negative, causing any other processes in the midst of a +PASS+ to remain in -
| the waiting state. Processes will be activated and complete the pass as long
) as the semaphore is nonnegative.

@
N N

CRF 175 176 207 208 242 56

L 0260a

2 - T T T T [W e FT i YT TR T T T T 4T & T 8" 4T T T M.
e S T Jhih S S s AR Ani At TR TEDATA W s - ST AT AT AT
N Sad S Aedr Sl e Vel et Mt St S B i AR ® Pl TR

g Release 7 EC. SMPH]
- -
i EC.SMPH.3 Local Type Definitions A
[semaphore A run-time synchronization object created
: previously by a user program by calling ++DCL
ENTITY++; or one of the EC's built-in semaphores -
’ listed in EC.INDEX. "]
E semaphore-attribute An ordered pair of integers specifying the lower o
bound and upper bound of the type. N
; R
; EC.SMPH.4 Local dictionary: None ?ﬁ
®
. EC.SMPH.5 Undesired Event Dictionary: None j
& EC.SMPH.6 System Generation Parameters ’j
-)
kf Parameter Type Definition '}
' #max semaphore ascon# semaphore Maximum allowable magnitude for a ’
semaphore ascon or literal.
#max semaphore loadcon# semaphore Maximum allowable magnitude for a °
| semaphore loadcon.)

#max semaphore range# semaphore Maximum allowable value for

absv(upper bound - lower bound) for
a semaphore type.

PrpT———
- '
.t

RSP S

. MR |

-

2 B

3 .

b o

’ ®
(

CRF 119 129 187 209 214 ’E

; 57 <
0260a

. « TN - ~ .. .
- - - “a ~ TN
- - ‘ . . . - - - - - Tt e
e AR e et ’ . e i taate e e e s s PR P AP |
: - ° o M - b i = ° A . . A 1 2. a 3 D = k3
" el wm T e AL L e tat - L "oy - P S VUSRS - 2.

e v e e -—;'vv AR et i At A T M ARG A T S A S

EC.STATE
EXTENDED COMPUTER STATE

EC.STATE.l Introduction
This module controls and reports transitions between Extended Computer

states.

EC.STATE.2 1Interface Overview

EC.STATE.2.1 Access programs

Program name Parm type Parm info Undesired Events
+S_FAIL_STATE+ - None

EC.STATE.2.2 Events signalled by incrementing a semaphore

Event Semaphore incremented when event occurs
GT(T+power up+!) ECPOWUP
@T(!+failed state+!) ECFAILED

qug;am and Event effects

+5_FAIL_STATE+ The Extended computer enters its failed state,
lncrements ECFAILED, and executes an internal
shutdown procedure.

@T(i+failed state+!) Programmers should assume that when #close down time#
has elapsed after this event, no more software
actions can occur.

@T(!+power up+!) The Extended Computer has entered the operating state
p

and is functioning correctly. All demand processes
are started.

EC.STATE.3 Local Type Definitions: None.

CRF 129

I,
o0

7723a

- -+ PP PO S W A S '

")

g

9] R DRI
. IR .) ,

OB IR AP

NORDIRIUNA L

- ad B vad B an i Retdh " T SRGe BRI S
g —————— W e T R TR T T - % .~_.._.,_._‘... »
Ea Pl . B

Release 7 EC.STATE

EC.STATE.4 Dictionary

Term Definition
be.Linit on

{+power up+! computer is in the operating state and may be

assumed to be functioning properly.

‘+failed state+. computer is malfunctioning.

EC.STATE.5 Undesired Event Dictionary: None.

EC.STATE.6 System Generation Parameters:

Parameter Type Explanation

#close down time# timeint The minimum expected time interval between
the moment that the extended computer
enters failed state and the moment when no
more software actions may occur.

CRF 214

N
o

7723a

TR L P

T Ee._J VLS

w_J% I,_N

-y .

LN] SO

" 4a: s

g~

M~ BAEOan

N e e e 4

r———————
MASACYORS P

—
1

(e aagt el aevs e pesth il iiadh dedi Path i Sl AN R W WY T T T Eaa e s s st andh Sk Jad i I IR Sl Sl Al AL Al R

EC.TIMER
TIMER FACILITIES

EC.TIMER.1 Introduction

This module provides facilities for measuring real time intervals via
timers. A timer is a timeint variable that, when running, will increment or
decrement at a rate commensurate with real time.

A timer may be used anywhere a timeint variable may be used, but there
are two additional operations, START_TIMER and HALT_ TIMER, that may be used.
START_TIMER increments or decrements the timer until a limit is reached.

When a timer is declared, the user may choose between timers that
increment and timers that decrement, as well as between timers that halt when
they reach their limit and timers that "wrap around". The user may also
specify a semaphore that will be incremented when the timer reaches its limit.

EC.TIMER.2 Interface Overview

EC.TIMER.2.1 Declarigg;a Timer

Timers are a numeric type class, as described in EC.DATA.l. To declare
specific timer types, use the ++DCL_TYPE++ program specified in EC.DATA.2.1,
with: -

p2 = TIMER;
p3 a timer-attribute, defined in section EC.TIMER.3;
and the other parameters as described there.

Timer entities must be declared before they can be used. Use the
++DCL ENTITY++ program of Section EC.DATA.2.2.1, with:
- p3 = VAR; and
p4 the initial value given as a timeint literal;
and the other parameters as described there.

To declare an array of timers, use the ++DCL_ARRAY++ program of
EC.DATA.2.2.2, with:

p3 = VAR;
p4 as described there, using timeint literals as initial
values;

and the other parameters as described there.

CRF 110 154 188 189 238 266

7721a 60

‘_'A;g_g,gv" b

1
a

|

S |

ot

.
b
\
3

- \Bea m i aa s oo o0 as o mus o enave T vy
s A A R e 2 2t e A e Ty T Ty .

Release 7

EC.TIMER

EC.TIMER.2.2 Access programs

Program name

++TIMER_EVENTS++

+START_TIMER+
+HALT_TIMER+

Parm type Parm Info Undesired Events
pl:timer;I timer name None.
p2:semaphore;I limit value event

pl:timer;I timer name

EC.TIMER.2.3 Timer tests

Program name

+TEST_TIMER+

+HALT_TIMER+

+START _TIMER+

++TIMER_EVENTS++

+TEST_TIMER+

CRF 129 175 263

7721a

- Al oAt L a et

Parm type Parm Info Undesired Events
pl:boolean;0 !+timer test result+) None

Program Effects

Causes running timer pl to halt. Halting a non-running
timer has no effect.

Causes the value of pl to be changed in value in real
time. The value will be increased or decreased according
to the declaration of the specific type to which pl
belongs. According to the declaration of the specific
timer type to which pl belongs, the timer will either
stop when it reaches its minimum (maximum) value, or
"wraparound"; i.e., continue from its maximum (minimum)
value. Starting a running timer has no effect.

Causes an event to be signalled (by incrementing p2?)
every time pl reaches its minimum range value (if pl is a

decrementing timer) or its maximum range value (if pl is
an incrementing timer). -

Reports the results of the timer hardware tests. If the
test is performed periodically or independent of user
request, the result given will be that of the most recent
test. If the test is performed on request, the command
will initiate the test and report the result when the

test is complete. It may interfere with normal operation
of timers and input/output commands in unpredictable ways.

6l

A Ale et aTale e Ao Ao B PR PP WP ETN . e tada

O

.4

N
Aol e

5

e S

'
—,

ed e A A A4

@ Lia @

T

0 4

Ty T

\ B G SEEN S ua Ga S]

L/20 AN B e e o

Y

-y

pr———

" T A e
> T T T T, L3 b S I A s AL ee b s iU AR IR R AR 5/ S e MY VT RS
~ Il B R h o . . R e -

Release 7 EC.TIMER

EC.TIMER.3 Local Type Definitions

AN b A e A ledadhe

timer The name of a time-keeping mechanism declared
previously by a user program.

timer-attribute An ordered 5-tuple of the form
(timeint, timeint, timeint, HALT/WRAP, UP/DOWN)

The first three elements specify the lower bound,
upper bound, and minimum !!resolution!!, respectively,
of entities of the type. The fourth element is either
"HALT" (meaning that the timer should stop when it
reaches a limit) or "WRAP" (meaning that the timer
should wrap around when it reaches a limit). The
fifth element is either "UP" (meaning that the timer
increments when started) or "DOWN" (meaning that the
timer decrements when started).

P AP A

Ao

EC.TIMER.4 Dictionary

‘+timer test result+! true iff the timer hardware passes built-in test.

EC.TIMER.S5 Undesired Event Dictionary: Nomne.

EC.TIMER.6 System Generation Parameters

Parameter Type Definition y
#max timer error# real maximum allowable error rate of all «
timers, given as a fraction of the time X

interval measured.

#max timer range# timeint maximum allowable value of absv(upper :
bound - lower bound) for a timer type.)
#max timer ranres ratio real maximum allowable magnitude of the !
ratio of a timer type's !l!range!. to -
its !!resolution!..
#min timer resolution# timeint for all timers, the minimum resolution. .
)
CRF 119 175 184 214 263 ‘

62
7721a

T ——— - e T T ——wm—w - A o e - N P S SR A R S i Sl dind il
PO &« « - - - - . [- .

EC.INDEX TINDICES TO THE DOCUMENT

) This section provides the following indices to the facilities described
in this document:

Access programs

Builtin objects

Events signalled by incrementing a semaphore

Types provided

Dictionary terms

Undesired events

System generation parameters

Reserved words

CRF 157

63

8574a

, @, .

_A_l" dadan

S Ao Aadb el A A Wadi S A S AL AL S8 T . A2

Release 7

Access Programs

Access program

+ABSV+

+ADD+

+AND+

+B ‘REAL 2COMP+
+B_REAL_POSITIVE+
+B-REAL SIGNMAG+
+CAT+
+COMPLE+

++D PROCESS++
++DCL ARRAY++
++DCL_DATA SET++
++DCL_ENTITY++
++DCL_TYPE++
+DISABLE+

+DIV+

+DOWN+
++ENTRANCE++
+EQ+ (bitstring)
+EQ+ (numeric)
+ENABLE+
++EXCLUSION++
++EXIT++
+G_SUCCESS+
+GEQ+

+GT+

+HALT TIMER+
+LEQ+

+LT+

+MINUS+

+MUL+

+NAND+

+NEQ+ (bitstring)
+NEQ+ (numeric)
+NOT+

+0R+

++P PROCESS++
+PASS+
+R_BITS_2COMP+
+R_BITS_POSTIIVE+
+R BITS SIGNMAG+
+R_TTME - HOUR+

+R TIME MIN+
+R_TIME_MS+

CRF 167 232 247 266

P e AP . B PO P AP U R

Where -defined

EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.PAR.1
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.IO
EC.DATA
EC.SMPH
EC.PGM.1
EC.DATA
EC.DATA
EC.TIO
EC.PAR.2
EC.PGM. 1
EC.I0
EC.DATA
EC.DATA
EC.TIMER
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.PAR.1
EC.SMPH
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA

EC. INDEX

RGN, » JU

Wt

. - CN
YR Y AP Y Y

Release 7

Access Programs (continued)

Access program

+R_TIME-SEC+
++RANK -DATA++
++RANK_DATA SET++
++RANK PGM++
++REGION++
+REPLC+
+S_FAIL-STATE+
+SET+

++SET++
+SHIFT+

+SIGN+
+START_TIMER+
+SUB+
+T_REAL_HOUR+
+T REAL MIN+
+T_REAL_MS+
+T_REAL_SEC+
+TEST_AC+
+TEST_CSA+
+TEST_CSB+
+TEST_DC+
+TEST DIOW1+
+TEST-DIOW2+
+TEST-DIOW3+
+TEST_INTERRUPTS+
+TEST_MEMORY+
+TEST TIMER+
+TESTXACC+
+TEST- YACC+
+TEST - ZACC+
++TIMER_EVENTS++
+UP+
+XOR+

CRF 097 118 167 182 207 232 257 266

65

Whera-defined

EC.DATA
EC.DATA
EC.DATA
EC.PGM.2
EC.PAR.2
EC.DATA
EC.STATE

R s A Aty Bie b A I b B Ae By

EC. INDEX

EC.DATA, EC.SMPH, EC.PGM.2

EC.DATA, EC.PGM.2

EC.DATA
EC.DATA
EC.TIMER
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC. IO
EC.I0
EC. IO
EC.I0
EC. IO
EC.IO
EC.IO
EC.PAR.1
EC .MEM
EC.TIMER
EC.IO
EC.IO
EC.I0
EC.TIMER
EC.SMPH
EC.DATA

X Je

~are e chns St NEAMMEE Aa. prat g Vi ASELG S D At Ihett Ai ii S . b A S ieia o e ket i e AN S VG N S N S AT L S S et

Release 7 EC. INDEX -
-
Builtin-Objects ;
Name Type -of object Where-defined
DIV_FAIL program EC.DATA.2.6.2]
ECFAILED semaphore EC.STATE -3
ECPOWUP semaphore EC.STATE
ENBLSEM semaphore EC.IO B
ENTSWSEM semaphore EC.I0 .3
KBINTSEM semaphore EC.IO 3
MARKSEM semaphore EC.10 .
NEXT_PERIOD semaphore EC.PAR,1 l]
REG data object EC.DATA.1.4 ®
All i/o data items bitstring EC.IO 1
All undesired events program EC.PGM.2 =
All EC access programs program EC.PGM.2
Boolean UE variables boolean EC.PGM.2
|
L4
{
Events Signalled-by-Incrementing-a-Semaphore
Event Semaphore Where-defined
®
@T(!+/ENTERSW/ occurred+!) ENTSWSEM EC.1I0 (Appendix 5) .
@T(!+failed state+!) ECFAILED EC.STATE
@T(:+/KBDENBL/ occurred+!) ENBLSEM EC.I0 (Appendix 5)
@T(.+/KBDINT/ ready+!) KBINTSEM EC.I0 (Appendix 5)
@T(!+/MARKSW/ occurred+!) MARKSEM EC.I0 (Appendix 5)
@T(!+power up+!) ECPOWUP EC.STATE o
In addition, users may request timer-related
events by supplying their own semaphores. See EC.TIMER
'_4\.1
L
p
[_.
‘ L)
L‘ ‘.‘
. 1
;
CRF 182 232 247 265 s
‘ L)
f f
5)
5 8574a 66 .
;' :
‘ ®
]
!
! 1

TR

P“ r RN

y—— LR Bt Saais Zhecs 2 it A A Al A o "B R M R N A AR
e - R, - SOETE

Release 7

Types Provided

Type name Where-defined
array-init EC.DATA
attribute EC.DATA
binding EC.DATA
bitstring EC.DATA
boolean EC.DATA
convar EC.DATA
data_set reln EC.DATA
dataitem EC.10

El EC.PGM. 1
entrance EC.PGM.3
exclusion-relation EC.PAR.2
indexset EC.DATA
integer EC.DATA
invocation EC.PAR.1
name EC.DATA
parm EC.PGM.3
parm-list EC.PGM. 3
pgm-attribute EC.PGM.2
pointer EC.DATA
program EC.PGM.2
rank~data-relation EC.DATA
rank-pgm-relation EC.PGM.2
real EC.DATA
semaphore EC.SMPH
semaphore-attribute EC.SMPH
spectype EC.DATA
statement-list EC.PAR.2
timeint EC.DATA
timer EC.TIMER
timer-attribute EC.TIMER
typeclass EC.DATA
version EC.DATA

In addition, Appendix 5 lists a set of builtin
bitstring spectypes.

CRF 115 118 181 182 195 247 266

8574a 67

EC.INDEX

LAA.AA

. L
. .
A

..J'JL.A_‘.;.- - :

ey Ty
T Pl e A il S i e oA SR A S L.

Release 7 EC. INDEX

Pictionary-Terms

Term Where-defined
..actual parameter!! EC.PGM.3
JJcommand.! EC.PGM. 1
..constructed program!! EC.PGM.1
++deadline+. EC.PAR.1
«+destination+! EC.DATA
J+destination)! EC.DATA
++/ENTERSW/ occurred+! EC. 10 J
t+failed state+! EC.STATE N
:+fall back value+! EC.DATA iy
!lhardest attributes!! EC.DATA >
‘+interrupt test result+! EC.PAR. 1} |
!linvocation!! EC.PGM.1 R
:+i0 test result+! EC. IO g
!+1/0 success+! EC.IO d
. +/KBDENBL/ occurred+! EC. IO X
1+/KBDINT/ ready+. EC.I0 -
silise!! EC.DATA q
++/MARKSW/ occurred+. EC.I0
«+max CPU time req+! EC.PAR.1]
t+max div result+! EC.DATA
.+memory test result+! EC.MEM
+onfoff+! EC.PAR.1 A
!+period+! EC.PAR.1)
! +power up+! EC.STATE]
«+radix pt ident+! EC.DATA
Jirange!! EC.DATA .
!‘relation!! EC.DATA 3
!!resolution!! EC.DATA R
l+source+! EC.DATA)
!lsource!! EC.DATA '
.+starting event+! EC.PAR.1
‘+timer test result+! EC.TIMER =
t+ugser threshold+! EC.DATA]
.
.Y
1
" 4
o "
9 Y
{
{
° CRF 086 154 182 206 247 263 265 267 [
8574a 68

. L ot e S -
. o . . - N B e Y Y W R P STy Y S U W

AR AUINA SR i @ St et S Al At S A Wi ST YA S AT e S TR R e A M AP A N AL S Sl Sl i Pl

Release 7 =C.INDEX

Undesired-Events

UE name Where-defined Also-appears-in 3
%already disabledZ EC.I0]
%Zalready enabled? EC. IO
%Zassertion violation% EC.DATA]
Z%attribute not allowedZZ EC.DATA ®
%tZattribute not givenZ? EC.DATA o
%ZZconstant destinationZZ EC.PGM.3 -
%%dest unknownZ% EC.PGM.1 N
%Zdivide by zeroZ EC.DATA Y
%Z%duplicate nameZ%% EC.PGM.1 j
Z%entrance incorrectly omittedZ? EC.PGM.3 s
Zillegal array index% EC.DATA
%%illegal exit-listZ% EC.PGM.1
%%illegal index setZX EC.DATA
%%illegal ptr target?% EC.DATA 1
Zillegal round/trunc’ EC.DATA]
%Zillegal synchiZ EC.PAR.1 ®
%%inappropriate attributesZ% EC.DATA]
Z%inconsistent data rankingZ% EC.DATA]
%Zinconsistent lengths? EC.DATA :
%Z%inconsistent pgm rankingZ% EC.PGM.2 =
Z%inconsistent pgmsZ% EC.PGM. 2]
%%inconsistent register access?%’ EC.DATA o
%inconsistent time parms? EC.PAR.1 ﬁi
%%index not allowedZ% EC.DATA o
Zleft truncation¥ EC.DATA e
%Z%length too great?Z EC.DATA -
%ZZliteral or ascon too big%Z EC.DATA o
%Z%Zloadcon too bigiZ EC.DATA ®
%max CPU time exceeded? EC.PAR.1]
: %mdr outside rangeZ EC.DATA J
f “missed deadline’ EC.PAR.1 f
: %%multiple qualifiers?% EC.DATA]
3 %ZZname in useZ% EC.DATA EC.PAR.2, EC.PGM.1 -1
- %%no such entrance%% EC.PGM.1 @,
¢ %Znonexistent position% EC.DATA .
I
A/
1 R
. 4
CRF 102 103 107 111 119 123 127 128 143 144 y
145 147 158 169 170 173 182 183 186 209 :
221 240 247 262 264 "‘
<N
8574a 69 Z
. .

v, v L aus SR " anlr R i e e R A Aat i S AR A e e S A e i i T A

Release 7 EC.INDEX

Undesired Events (continued)

UE name Where-defined Also-appears-in
%Z%not an entranceZ’ EC.PGM. 3
Z%not an exit%% EC.PGM. 1
Znowhere to go% EC.PGM.1
%Z%parm wrong type%% EC.PGM.3
ZZport defined twiceZ% EC.PGM. 1
Z%port not defined%X EC.PGM.1
%4range exceeded’ EC.DATA EC.SMPH
ZZrange too greatl? EC.DATA
%Z%Zranres too greatZ% EC.DATA
Z%read/write-only violationZZ EC.I0
%“read-write violationX EC.I0
Zrecursive callZ EC.PGM. 3
Z%ZREG not allowed%Z% EC.DATA
%“%res too fineZ% EC.DATA
%%Zsubrange not allowedZ%¥ EC.DATA
%%too few parms%Z EC.PGM.3
%%4too many parms?%% EC.PGM.3
Z%undeclared operandZ? EC.IATA
%Z%undeclared program%% EC.PGM.3 EC.PAR.1
Z%undeclared regionZZ EC.PAR.2
%%undeclared spectype’Z EC.DATA
Z%Zunimplemented attribute Appendix &
via variablesZ%%
%Z%Zunimplemented binding%% Appendix 4
Z%unimplemented disabling%Z% Appendix 4
%Z%Zunimplemented EXACT-REP resolutionZZ Appendix 4
%Z%unimplemented multi-exit EC Appendix 4
access program?ZZ
Z%Zunimplemented pgm ptrZ% Appendix 4
%Zunimplemented variable period?%Z Appendix 4
ZZunimplemented variable Appendix &

shift lengthZZ
Z%Zunimplemented variable substring?Z Appendix 4

'@ %ZZunimplemented varying EXACT -REPZ% Appendix 4
':, Zunititialized pgmZ - EC.PGM.2
T Z%unknown initial valueZZ EC.DATA
%Zunknown operand in attributesZ? EC.DATA
! Z%Zvariable parmZ% EC.DATA
) %%Zvariable timing parms?%% EC.PAR.1
] Z%varying comnstant?% EC.DATA
¢ ZZwrong init value sizelX% EC.DATA
j Zlwrong init value typeZZ EC.DATA
b

CRF 104 107 119 165 172 175 198 205 209
e 212 232 247 249 252 259

na o

8574a

p——
:

i

:

i

|

:

r

’

.

4

l

f

r

!

r

P

l‘

F

E
-
A
}I

Release 7

System Generation-Parameters

Clain " St Tt Mgl

Llads Sl 3 i g Y . -
PR o

EC.INDEX

Parameter name Pata-type Where-defined
#close down time# timeint EC.STATE
#max bits length# integer EC.DATA
#max i/o time (data item name)# timeint EC.10 B ;
#max real ascon# real EC.DATA e
#max real loadcon# real EC.DATA J
#max real range# real EC.DATA <
#max real ranres ratio# real EC.DATA ‘ij
#max semaphore ascon# semaphore EC.SMPH ~
#max semaphore loadcon# semaphore EC.SMPH -
#max semaphore range# semaphore EC.SMPH P
#max timeint ascon# timeint EC.DATA]
#max timeint loadcon# timeint EC.DATA :
#max timeint range# timeint EC.DATA
#max timeint ranres ratio# real EC.DATA
#max timer error# real EC. TIMER 1
#max timer ranpe# timeint EC.TIMER Y
#max timer ranres ratio# real EC.TIMER s
#min real resolution# real EC.DATA
#min timeint resolution# timeint EC.DATA
#min timer resolution# timeint EC.TIMER
#nbr fltrec elements# integer EC.I0
[
N J
2
CRF 209 221 222 265 '1
o]
R8574a
e . o e aias e L e

Release 7

Word

ASCON
BITS
BOOLEAN
DEREF
DOWN
EXACT ‘REP
EXITL™
$false$
FIX
HALT
INTEGER
LOADCON
NOSTORE
PGM

PTR
REAL
REF
ROUND
-SAVE
SEMAPHORE
TIMEINT
TIMER
$trued
TRUNC
UP

VAR
VARY
WRAP

Reserved Words

Type-of ~word

Enumerated type value
Typeclass

Builtin spectype

Keyword in pointer use
Attribute keyword
Attribute keyword

Exit of certain EC programs
Boolean value

Enumerated type value
Attribute keyword
Typeclass

Enumerated type value
{idestination..: identifier
Typeclass

Typeclass

Typeclass

Keyword in pointer literal
Operand keyword

Keyword

Typeclass

Typeclass

Typeclass

Boolean value

Operand keyword

Attribute keyword
Enumerated type value
Enumerated type value
Attribute keyword

CRF 157 181 182 184 195 239 247

72

EC.INDEX

fhere-dsfined

EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.TIMER
EC.DATA
EC.PGM.2
EC.DATA
EC.DATA
EC.TIMER
EC.DATA
EC.DATA
EC.DATA
EC.PGM.2
EC.DATA
EC.DATA
EC.DATA
EC.DATA
EC.DATA.1.4
EC.SMPH
EC.DATA
EC.TIMER
EC.DATA
EC.DATA
EC.TIMER
EC.DATA
EC.DATA
EC.TIMER

e

PGP U

i.

A

1
P

PPN

o
e A

S T T T T T g T g

P -

PR W A S

73

APPENDIX 1
INTERFACE DESIGN ISSUES

PR

8944a

. @

v r v v sea-
L A
¢

e

o

Appendix 1

> ot —— - -~ - ————————— W T = T TR TR YT TR T TR TR T T T

Design Issues

Release 7

894423

EC.DATA

We decided to give the programmer some control over the register, so
that he could take care of reducing register loads and stores by
being careful with the order of operations. The alternatives we
considered were notations much closer to high-level programming
languages. These notations make complex expressions easier to read,
but require a more sophisticated translator if we are to make
efficient use of registers.

There is a danger with fixed point division that the results will be
meaningless; this problem occurs when the numerator has more
significance than the denominator. An assembly language programmer
has some information that he uses to avoid this danger. The only way
we can get this information is to ask the programmer to provide it,
since it is dependent on the context and meaning of the division.

Two ways were proposed for user programs to indicate the radix of the
number for a bitstring-real conversion:

a. by giving an integer literal "i" such that the rightmost bit of
the bitstring represents 2 raised to the ith power;

b. by giving an integer literal "i" such that i is the number of the
bit immediately to the right of the radix pt.

Alternative 2 most closely resembles the scaling notatiom used in the
current program, but we chose alternative 1l because most designers
felt that it was easier for newcomers to understand and remember.

There are two main reasons for including variables whose attributes
may vary:

a) they can be reused at different points in a computation, thereby
reducing the amount of space that must be reserved;

b) they allow the same code to be used to manipulate values in
widely differing ranges.

We require the programmer to specify a type for results stored into
and retrieved from variables. We considered permitting, but not
requiring, specification of the type of intermediate results and
letting the Extended Computer determine the specific type when the
programmer omitted the specification. We ruled out this alternative
because it requires a run-time support package to keep track of the
specific types of varying-type variables,

74

3\ TP e L AW S P

PPN . ¥

i

6.

8944a

|

Appendix 1 Design Issues
Release 7

We considered several alternatives for providing registers:

a) Having a common register for all tvpe classes. This register can
e very simply mapped to the accumulator.

b) Having a separate register for each type class, implementing them
with the single accumulator, and leaving the problem of interference
between them up to the programmer. This was originally accepted
because it is the simplest alternative that provides type checking for
results in the register. However it gives away the underlying
limitation, and imposes restrictions on the programmer that would not
be needed if the underlying hardware had more registers or if there
was multi-processor hardware.

c) Having a separate register for each type class, implementing them
with the single accumulator, and completely automating the problem of
interference between the registers, freeing the programmer from any
concern about it. This could be done by saving and restoring the
accumulator contents whenever a different register is used. While it
would be the most convenient alternative, the overhead would be
prohibitive,

d) Having a separate register for each type class, implementing them
with the single accumulator, and partially automating the problem of
interference between the registers. The programmer would have to
indicate when he wants to reuse results in a particular register and
when he does not care.

We chose alternative (a) because it is the simplest and treats a
register as a variable with varying attributes.

We felt it important that the EC implementation avoid saving contents
of a register if they would never be needed and therefore put that
burden on the programmer rather than try to do register usage
analysis. We considered several ways to allow the programmer to
specify whether or not the value in the register would be needed
again. Among them:

a. Associate the information with the name of the register.

b. Associate the information with the name of the operation.

We chose (b) because we did not want to have two names for the same
object. Further, it allows us to localize the information in a place

related to the operations (of which it is a property) rather than the
registers.

An earlier version of this interface included operations such as
squareroot, exponentiation, log, and root-sum-squared. We decided to
move these operations to another module because they can be
implemented in a machine-~independent fashion. These concerns do not
belong in the Extended Computer.

75

P PRI A ST Y NP G V'Y L oo o o

P
v"-'-.
e

. | :
PUDN._JRNANs.]

U @

Lo e
.

- Adha g - W
— —— s e e e g e ——r A2 S AL ‘B E T Aav A R Ae NN Wl Nt iy AR = f

Appendix 1 Desizgn Tssues
Release 7
9. An earlier version of this module had two bitstring sizes,

corresponding to halfwords and fullwords on the target computer. We
then decided to have only one size because it results in a simpler
data type. We finally Jdecided to have bitstrings of anv size because
we noted that insisting on a fixed but unknown size made it difficult
to write efficient but machine independent code. The present choice
makes the interface unbiased with respect to word length and puts the

burden for effective use of the actual hardware on the implementor of
the EC.

l0. We considered specifying bitstring sub ranges in terms of
(starting point, length) instead of (starting point, ending point).
One parameter fewer would be needed on bitstring compares and
transfers, and we could avoid the unmatching lengths undesired event.
However, we found that people working with bitstrings find it easier
to work by identifying the boundary bits.

l1. We considered having the EC monitor arithmetic operations for
excessive loss of significance but decided that this was a programmer
responsibility and could be done in a machine independent wav. This
2liminated the undesired event %tooc much lost significance?.

12, We considered relegating time to the application data type module and
implementing it in terms of reals. We chose to include it in the EC
because the concept of time is basic to the specification and
implementation of real-time processes in the EC and because the
representation should be that used in the hardware timers.

13. We considered allowing array declarations to he shared by several
variables. We found this not particularly useful unless one has
operations that take whole arrays as operands.

l4. We decided not to allow array elements to be structures. We lose the
ability to have arrays of arrays, but if this were necessary, it could
be implemented in a machine independent way and could be provided by
some other module.

15. We considered allowing index sets to be more general, but this seemed
unnecessary even for future extensions. Such extensions could be done
using the present arrays and the extension would be machine
independent. We also considered restricting the lower array bound to
be either 0 or 1. This seemed unnecessarily restrictive, especially
as it may be desirable to select array indices at sysgen time.

16, We considered fixing the value of the array index set at declaration
time, system generation time, or run time. Declaration time is too
restrictive; it is sometimes useful for the arrav index set to be a
system generation parameter. Run time fixing requires dvnamic storage
allocation, which is not needed or practical for avionics applications.

76
8944a

D A,

Mol |

RFL POV) N SR)

L P A AR “r“{

— LA rhalir
-t

o

e

T T Tw Ty Ml \d hefh Sl RS T el et I TES YT I T T wTETTTE

Appendix 1

Design Issues

Release 7

17. We rejected the option of operations that apply to arrays as units,

18.

19.

20.

21,

22.

894423

N Y TP, A Sy S Ry WP Sy ¥

e.g. multiplyving arrays by scalars or arrays by arrays. Such
operations depend on mathematical algorithms, rather than on
characteristics of the computer and can be implemented in a
machine-independent way. The present design is the simplest way to

hide the hardware addressing mechanism. Fxtentions can be provided by
user programs.

We considered not allowing arrays of variables whose attributes vary
at run-time as it might simplify the implementation i1f all elements
had the same attributes at all times. Although the implementation of
arrays with varying attributes will probably be less efficient than
arrays of fixed attribute elements, this feature is occasionally
needed.

More than one reviewer asked if the Extended Computer shouldn't
provide stacks as a builtin data structure. If we need stacks, they
can be provided using the current EC facilities. The interface to
those facilities (probably in the ADT module) would be carefully
modelled after the EC. Should we transfer to stack machine, we could
move the interface into the EC, and user programs would not have to
change. This rationale also applies to floating point arithmetic,
multi-dimensional arrays, array operators, etc.

Entity names are global in the EC. This is because that is what
avionics computers provide; one can limit the scope of a name (if
desired) in a machine-independent way (e.g., using naming conventions,
or a pre-processor).

We recognize the need to represent data most efficiently for the
operations in which it will be used. Since only users can determine
hcw a datum will be used, the best the EC can do is provide a menu of
representations and tell the users what each one is best and worst at
doing. Hence, the "version" attribute in specific types.

We considered allowing non-homogenous arrays; that is, arrays with
different specific types. However, that would mean that if an operand
was a member of such an array, we couldn't discover its type until

run—-time. Because of this great run-time penality, we deleted the
capability.

A PP ek S P SR Y

UL RN

.'.'.A_;._‘A.‘

‘_.L;_..

- ‘A.

-y

v

w

VY

‘e

TV VY

v

Appendix 1 Design Issues
Release 7

23. The +SHIFT+ program used to take a list of bitstrings as its input

parameter; it shifted the concatenation of the list. The idea was to
allow the same kind of shifting that occurs in the TC-2 between
adjacent registers. However, it became clear that the implementation
of such a feature would simply +CAT+ the strings together first
anvwav, and shifting the result, and we would gain no effictiencv. So
for consistency, +SHIFT+ now takes a single source parameter.

24, We have made the decision to design the EC to be implemented on a

machine that supports fixed-point arithmetic and not floating-point
arithmetic. The resolution required in a numeric variable is
expressed in our machine as a constant, independent of the magnitude
of the value of the variable. In fixed-point represenatations, there
ls a uniform distance between values that can be represented exactly.
In floating-point, the distance is small for small values, large for
large values.

Were we to go to a floating-point machine, we would need to enhance
the interface, because fixed-distance representations on a floating-
point machine would be very inefficient. We would let the user
specify a worst-case distance between representatives as a fraction of
the value of the variable. The implementation would choose a
representation so that the mantissa of the number had a resolution (in
the current sense) less than the fraction.

The present interface may be considered a subset of a more complete
interface in which we let the user specify resolution either in
absolute form (in which case a fixed-point representation would
probably be chosen) or in relative form (in which case we would
represent the number using the floating-point hardware, or by
simulating floating-point). The present interface reflects our

decision to make EC apply to typical avionics machines, which are
fixed-point.

25. The pointer typeclass is a recent addition, included when we realized

that we had denied users the capability found in all von Neumann
machines of indirect referencing, or postponing operand specification
until run-time. Since the goal of EC was to abstract from the
idiosyncrasies of particular avionics computers, yvet provide the
capabilities that they provide, this was clearly an appropriate
addition to the EC architecture.

CRF 148 131 210

89444

78

Faaar s m ieastosk hat at a el ML aaadi

i i e tegr)

L 4

Y W

——y

Appendix
Release 7

26.

CRF 262

8944a

1 Design Tssues

When declaring a specific type, it used to be an error to specify a
version that did not exist for that particular tvpe. We now say
merely that the EC will pick one of its own choosing in that case.
That is so that should an Application Data Types type ever migrate
into the EC because of a change that enhances the type repertoire of
the hardware, we would like for user programs to remain correct.
However, the versions that we would provide in the EC for that type
might be entirely different than what were provided for it in the ADT.

79

j]
R
]
4
'l

vy YW xTw w

.

v ¥ v 17V

-~

Y il

. T ook St et A e a s moraee e st
At it g s —— >

Appendix 1 Design Issues
Release 7
EC.IO
1. We considered five alternatives for handling retries of unsuccesful

1/0 operations:

1) having two different commands for these two cases: one that
retries, either once or until it succeeds, and one that instead of
retrying returns a failure indicator;

2) having a parameter on the command specifying how often to retry,
and having the command return a failure indicator;

3) having a failure indicator, and having the user program try again
if it needs to retry transmission;

4) having a special "retry" command, with a label operand, which the
user can call to have the I/0 command with the specified label
retried.

5) omitting the failure indicator for the data items where it is not
currently used.

The first and fourth alternatives yield a more complicated interface
than the third and provide no extra capability. The second results in
extra (non-machine dependent) programs in the EC. The fifth
alternative would build knowledge of the application into the EC. The
third alternative relegates decisions about retrying to the user
programs, and we chose this one.

We have considered four alternatives for handling the discrete inputs
and outputs.

Alternative 1l: Treating input and output differently, allowing user

programs to use a READ command to read in entire discrete input words,
but providing a special WRITEBOOL command so that user programs could
write individual bits appearing in the discrete output words.

Alternative 2: Adding a READBOOL command that would read in a

discrete input word, pick out the bit for a particular discrete input
data item, and return it as a boolean value. Alternative 2 was
rejected because not all the data items in discrete input words have

boolean values. For example, /IMSMODE/ has five values, one for each
switch position.

Alternative 3: Provide the user programs with a way to specify a

range of bits within both a discrete output word that they want to
write out and within an input word, so that they can request
individual discrete inputs in a symmetrical fashion. Alternative 3
leaves some of the responsibility for non-interference between

discrete outputs to the device interface modules, since they must
specify the correct ranges.

80

-

o T % %

.L' WL "J

n

)

s sl ARSI B L s s B E i AR A C D AT DAt AU |

- .

J
b <
3 Appendix 1 Design Issues
t Release 7 .
‘ "
+ Current: All of the above alternatives were based on the decision 4
- that the EC would sometimes identify outputs and inputs by class name .'
v rather than the individual data item name. This was done both for T
: efficiency reasons and because it was believed that knowledge of the]
' location of a data item within a discrete input or output word was '
- device dependent rather than computer dependent. A much more]
3 consistent interface is achieved by always using the data item name. Y
The EC implementer is now responsible for knowing the identity of 2 ;
TC-2 I/0 item, but not responsible for knowing its meaning. The 1
r efficiency problems are resolved by allowing a single command to take "
a list of parameters so that the EC implementation may perform)
operations to a single I/0 word simultaneously rather than]
L §equentially. This also eliminates special treatment of double data)
‘ items. ®

We originally designed the reading of intermittent data with an access

function that indicated whether or not the data were available and an 1
undesired event if a user program tried an intermittent read operation |
when the data were not available. This seemed dangerous, since a

slight timing difference could cause an undesired event, and the user ®
programs could not avoid the UE. TInstead, we have chosen to allow the .1
read command at any time. If the data are not available, the success 1
indicator returns false. This is comsistent with our general policy 1
that it should be possible to avoid UEs by correct programming. 1

-

f Because the intermittent data is read just like any other, we decided ®
E not to have a separate command name for it. %
. 5. We considered having serial inputs identified by class names rather o

than by individual data item name. Interpretation of the
identification bits was considered the responsibility of the
associated device interface module. We decided that identification of ®
the data item is an EC responsibility, but interpretation of the item '
remains the responsibility of the DIM.

— T

6. Note that sometimes an output should go to more than one data item.
We originally handled this by letting users repeat sets of parameters =
to i/o commands. and saying that the order was unspecified. Since we L J
no longer have i/o commands per se, but rather use assignment (and

3 other bitstring) operations, we have expanded our general assignment

statement so that many sources and many destinations can be given at)

once; the assignment happens in an wnspecified order. .

AR e 2

1
1 81
| 8944a

A T T T LR U SO, WU i~ SPr Y S e’ ¥ - T Za W d SN W SR SO | Y it o et s otinaSiaimll

’ 8.
G
: 3.
o
10.
11.
o
{
®
!
8944a
®

d T T TR T Y T Y T W T TR TV T MYV TR T e m T A TR T T T

Appendix 1 Design Tssues
Release 7
7. We promise that an output transmission will occur when an enabled

output data item is used as a destination. We do not say when an
input transmission will occur. This is because we can get away wi:ch
it in the latter case, but not in the former (because an output
transmission has visible 2ffects). We hide when input takes place
because someday there may be direct-memory-access input, and the

computer really won't be able to control when an input item changes
value.

We did not include the names of the data items in the main document,
because we wanted to emphasize the fact that the architecture of the
Extended Computer's i/o operations doesn't depend on those particular
names. If the design of the Extended Computer were used with the TC-2
for some other application, the names of the data items would not be
part of the technology transferred.

We chose special names for the data items' bitstring spectypes because
we felt that the representation for each was likely to change in the
event of a device replacement, and probably wouldn't be the same as
that of a non-data-item bitstring anyway. For instance, we might
choose to represent '"mormal" bitstrings as contiguous and
left-justified within a word, but we clearly don't have this option
with most of the data items (see //FPANGL//, for instance).

The signal converter is tested by sending particular values to it and
then reading back the results of the internal signal converter
manipulation on the values. The proper relationship between the
values sent out and the value read in can be characterized by a set of
equations. The design issue is how much of the knowledge should be
hidden within this module: both the equations and the choice of test
values, just the equations, or neither. The equations are based on
the behavior c¢f the channel, and therefore belong within this module.
The choice of values could be considered part of the software
requirements; they affect the displays seen by the pilot, and are
documented in section 4 of the requirements. However, the choice of
these particular values is partly influenced by hardware
characteristics. Further, if they are not hidden, the interface to
this module becomes much more complex. We have chosen to hide all of
the information even though it means hiding some details about the
required functions in this interface. We assume that the test values
are likely to change with the hardware and not for any other reason.

We decided to hold user programs responsible for avoiding interference
between the diagnostics and the regular commands rather than build
monitors into the I/0 commands and diagnostics. The diagnostics are
not expected to be run when the software is doing anything else.
Monicors impose a run~time cost in the regular commands.

82

ea et idenmienc i

PEDTY.

e te e WM ol

A A a4 e A AL L

-t . AW X

P T s

: Appendix 1 Design Issues "4
- Release 7)
EC.MEM : jf-';

. s . - @

1. We considered dividing memory into banks that would be tested a

separately, allowing partial rather than complete shutdown. We
decided not to do so -t this time because the system lacks the ability
to exploit it and we could do so easily in the future.

b
3
2. A previous design implied that invoking the access program associated ;

with a test actually started the test. Because future computers may R
have tests ongoing, or running in the background, we changed our
design to indicate that invoking a program merely returns the most
recent result of that test. If a future computer is required to start
a test at a certain time, we can add start-test commands later.
Returning the value may take a substantial amount of time in some ®
cases. The major change this caused was in the case of the memory {
test. Before, there was a command to start the test, an event
signalled when it was done, and a program to retrieve the result. The
motive was that the invoking program would want to do something else

o
.
pu

while waiting for the test to be completed. However, some program)
would have to wait idly for the event to occur anyway, and so we lose .
nothing by letting the memory test program just take a long time to _"1

return. We gain a uniform interface, with no special cases.

Other design issues dealing with the hidden portion of the interface are

contained in [VM]. : J
@
@
i
i
o
.1
°
o
CRF 263

83 R

89444 ‘

- . .- .- . N . ~ e -~
R R c . -7 - - . : . -0 - . R
. .- - s s Y e
. N . . AT W S
- - LY oo P FEDIRL W AU, WU U N UPH W U W DN WAl o W W e Sy il
B S L T .

S
-

Y

Appendix 1 Design Issues
Release 7
EC.PAR.1
l. In earlier designs of this interface, timing constraints were

PR
.

394423

associated with specially designated blocks, implying that these
blocks were the scheduling units. The orocess mechanism was
unnecessarily complicated, put too many restrictions on the internal

structure of processes, and gave away more information than the one
here.

We considered having START and STOP commands so that one process can
explicitly affect the ready/waiting state of another process. The
problem with a STOP command is that a process cannot be safely stopped
at any arbitrary point. We fixed this by adding “homing points", but
specifying homing points also cluttered up the algorithm

descriptions. So we dropped the idea, relying on more conventional
synchronization mechanisms instead.

Earlier versions made an outer "do forever" loop implicit. Thus the
process would execute a "INIT" block once whenever the process was
started and then repeatedly execute a "FREO" hlock until the process
was stopped. We have decided not to include an implicit loop because
we do not want to Limit the internal structure of the processes.

Also, the process would be easier to read if all the control was shown
explicitly, Process bodies can now be specified just as subprogram

bodies are, making the overall specifications of the Extended Computer
simpler.

At one point we had intermittent processes wait for a start event and
then run until a stop condition existed. We found it simpler to
define a single boolean and have the process pass its start point only
when the boolean was true. This eliminated the need for the event
interface in the EC and eliminated ambiguous cases such as the start
event ocurring when the stop condition held.

At one point we had a special class of processes called init
processes. We recognized these as a special case of Demand processes
and decided to simplify the interface by exploiting that fact. This
allows some processes to be used both as init processes and under
other conditions.

It is possible for a programmer to write a process that runs out of
statements to execute. We considered three alternatives:

a) Stating that it is an undesired event for a process to finish,
t.e., making it a requirement that each process contain an
infinite loop;

b) Assuming that a completed process i3 in the ready state, but that
it has a null statement list to execute if it becomes running;

84

— l

JUr O SR

vy

2

®, .

S

— CRAR s 0 PN v, e uediandadat T S SR A S " R UL ARV AL VI Rl N AV e
A AID meuic ol sl E . LA A AdMa A L. - . - i A RN . A R A . A [l el IR - -

cdx At A ahd

Appendix 1

Design Issues
Release 7

v

c) Assuming that a completed process is in a waiting state, waiting
for an event that will never occur.

We rejected a) because it builds too much information into the

- Extended Computer and it is an unnecessary restriction. We rejected
[b) because there is no point in having a completed process compete

. for a processor. Alternative 3 is a reasonable compromise for the
Extended Computer interface. If it is considered undesirable to have

completed processes, this should be prohibited by programming
conventions.

- 7. We have decided not to include relative priorities for the different
- processes because fixed priorities do not generally work when there
P are real-time constraints.

" 8 .

In an earlier version, we had no distinction between periodic and

demand processes because a periodic process can be viewed as one that

[waits for a particular stimulus, i.e., the passage of a particular

amount of time. However, one of the timing parameters needed for

{ periodic processes is not useful for demand processes. In addition,
periodic processes must have restrictioms on the synchronization

P operators within the periodic loop because the indeterminate wait

associated with synchronization operators makes it difficult to prove

j that the loop can be scheduled regularly as required.

9. In an earlier design, we did not explicitly distinguish intermittent
periodic processes. We now distinguish them in order to increase the
likelihood that we can take advantage of the intermittency in the
scheduling of processes. Earlier we distinguished them by calling

them intermittent, now we use the presence of the optional ON_OFF to
distinguish them.

10. We considered specifying periodic processes in terms of frequency
rather than in terms of time intervals. Because we wanted to specify
the deadline as an interval, we decid~d it would be more
straightforward to use two intervals. These two parameters
adequately constrain the variations in regularity.

11. We have an undesired event assumptions that says there won't be too
many demand processes for a periodic process to miss its deadline.

7 The assumption is worded with that orientation because it is

g impossible to tell how often a demand process must run.

12. We used to allow the body of a process to be any statement list. We
now restrict it to a call on a previously-declared program. In this
way we maintain a clear distinction between process and program, and
therefore allow future extensions to include run-time creation of
processes without run-time creation of programs, vice versa. The
restriction does not restrict what we can do with the current
version; it merely paves the way for future extensions.

Py

85

1

A

i . ‘ . L N
. PP ._.. A s e .k; ".1H

PPN ,
e
FURP VRS ORPS N W T N,

P

PRI P U, W . Y U S s - . T, WAL . SO L W S SR, T RN I SRSV

Appendix
Release 7

13.

CRF 234

8944a

L Design Issues

Previously, there was a parameter in the process definitions with
which the user specified the maximum CPU time required by his
process. We removed this from the high-level EC interface bdecause
(a) the user doesn't have enough information to provide it; (b) the
information is machine~-dependent; and (c) the length of time an
operation takes can vary greatly, depending on the storage and
representation of the operands, for example. This is information is
now provided to the EC implementation at a lower level, where the
processes are divided ints scheduling blocks; it may be provided by
software that examines the source code, or it may be done manually.

36

”

Ml PSP EE

P

a A\ A

..

-, e

o [o bt ek

i

2oak

y

hn han o

|-

-

ag

() T T

IRga Gl o aa aLe-

ey R

Bt 2

Appendix 1 Design Issues
Release 7

EC.PAR.2

1. Regions with an exclusion relation were selected for Extended

Computer synchronization , imitives because

a. they allow concurrency constraints to be axpressed directly
rather than as an implication of run time synchronization;

b. they express the exclusion relationships in a form that can be
interpreted efficiently by a pre-run-time scheduler;

c. there is an algorithm for generating run-time synchronization
from the exclusion relations;

This is the simplest acceptable alternative. Rejected alternatives

included:

a. disabling inte-rupt’'on: once an identified section of code
starts executing, 1t must run to completion. This alternative
was rejected because it is prejudiced toward a single
processor: it overly restricts the parallelism by stating that
Do other actions can be taken simultaneously with the code
section, rather than specifving which other actions may not be
taken;

b. simple mutual exclusion: specifies all exclusion relations as
equivalent, i.e., a section of code that excludes any other
excludes all others. This alternative still places too many
restrictions on the parallelism because many of the identified
code sections need not exclude each other.

c. named regions with mutual exclusion. Rejected because it
assumes that the exclusion relation is symmetric.

d. exclusion via synchronization primitives: using synchronization
primitives such as those in EC.SMPH to effect mutual exclusion.
Rejected because (1) synchronization primitives that are being
used for other interprocess synchronization or communication
purposes cannot be distinguished from those used for exclusion
without additional commentary, (2) the exclusion requirements
are implicit in a solution based on synchronization primitives,
rather than stated explicitly as they can be with identifiable
regions, and (3) the exclusion information (implving scheduling
constraints) is embedded in and scattered throughout the text.
These properties of the synchronism primitives make it difficult
to do pre-run-time scheduling without substantial preprocessing.

2. Many useful forms of synchronization were rejected for the Extended
Computer because they do not depend on the implementation of parallel
process. Application-oriented synchronization operations may be
developed using the exclusion relations, and semaphores.

3. Can a region be excluded from itself? TIs that useful? Yes, because

in the case of non-reentrant code, this is how we will probably
prevent disastrous re-invocations.

87
8944a

PO PR UL W WA RO\

114 Aol Bladh Shods St SN Rath e Jdin Bt e
P—— Lt C At 2 > G A R A AT La -

3
@

AT R |
B . L’

vy vrwr r

RPN,
gﬂf.,,]
P LI

Cintl and

POt s e sl M e IS

el e e ? o

- \ gl 2R St My Yy N ArtE 20 A ZusiEhAur Saar BRI Y MM AL N A Boar-a et e e L Ar A S AV A Al SO AVR N
RGN . « PR - P Y Lt ST 3

Appendix 1 Design Issues
Release 7

EC.PGM. 1
NOTE: Design issues 1l through 7 refer to a previous control structure we had

included in the EC which is documented informally in [APC]. That control
structure is no longer a part of EC, because we concluded that it required too
much sophistication in implementation, and that simpler constructs hid the
hardware characteristics just as well.

1.

CRF 247

8944a

Alternatives considered for the syntax of a guard are shown below.

a. Boolean variables or constants only. All the boolean variables
must be assigned values before the limited program is executed.

b. Any sequence of statements assigning a boolean value to a
special guarded command register.

c. Allowing a limited program list as a guard.

d. Allowing a program to define the value of a guard (defined
guards).

e. All of the above.

Discussion: We chose (e). The semantics can easily be defined
formally [ITTI2). Defined guards save code by avoiding duplication
of statement lists, which would otherwise be required because of
syntactic limitations.

We chose to have the Extended Computer provide the IT-TI construct
rather than the more common IF-THEN-ELSE, CASE, and DO-WHILE
constructs because IT-TI serves for all purposes. It allows some
programs to be written as one loop that would otherwise require
several, thereby saving variables and predicate evaluation. IT-TI
has a mathematical semantics that allows systematic conmstruction of
the program's function [ITTI1].

Dijkstra's guarded commands are nondeterministic; of the true guards,
only one is selected, but there are no rules defining which one is

selected. We chose a deterministic construct because they allow
simpler guards.

We considered providing a FOR command (FOR I = 1 to 10 DO...) but
decided against it because

a. the same purpose can be served with the IT-TI command;

b. many special cases and questions arise with the FOR command.

We considered having an implicit final LP of the form (true,SKIP).

We decided not to do this in order to encourage the programmer o
consider every case carefully.

88

Lt
N e e ML ome A At Ak e mlal LR NN Tl PR S W S U DT R VR AT SR Y S Sy ¥ P PEAPY. Y

nentihi b

PRV S 2 W'y

OV d VPP L awa . - L wm e

[N Yndl I DL NG VORI

A A A T e et R A% i 20 0 0 A A 0 e QAN A DA IR e R et T

Appendix 1
Release 7

Design Issues

§ 5. Should statement lists be allowed to contain declarations, and what

i is their scope? We decided that it was harmless {from this module's
- point of view) to allow it. The scope of all declarations is global
and items must be declared before thev are used, but these are issues
3 belonging to the EC submodules that provide the declarations.

In an earlier version we allowed Dijkstra's cor and cand. We have
eliminated them because the same effect can be obtained with the use
of defined guards.

s SR B o vu e SRR
~4
.

0

——Y

39
894423

A

.g de b mas’ ‘_LA.

- A

CEPY TP SR

PPy

Appendix 1 Design Issues
Release 7

EC.PGM.2

NOTE: Design issues 1 through 3 refer to a design that allowed user-defined
programs to have parameters. Because the semantics of parameter passing do
not depend upon the hardware, we concluded that users could emplov other

facilities to achieve a parameter protocol (e.g., assignment before and after
a program call).

l. Should actual and formal parameters be specified by type class,
specific type name, or using type attributes such as range and
resolution? We decided that type agreement should depend on the
specification chosen by the programmer. Other alternatives would
force us to write separate programs for each specific type or to

include a parameter passing mechanism that would be more general than
needed for most cases.

i~

. We added PARM GIVEN because programs must be able to tell if an
optional parameter was supplied or not. We thought about making it a
built-in value that any type of variable could take on; then
programmers could ask, e.g., 1f pl=PARM GIVEN. However, because
output parameters can be optional, we didn't want programmers
checking their '"value'".

3. Programmers need not supply trailing commas when optional parameters
at the end of a parameter list are omitted. That is, instead of
+pgml+(a,b,,,) one may write +pgml+(a,b). Besides the obvious
convenience, this will allow us to add optional parameters to the end

of any access program parameter list, yet not force all calls on that
program to change.

4. We added the feature of ranking programs' access speed because the
current computer has the capability of doing fast subroutine linkages
in certain areas of memory. Because a replacement machine may not
have such a capability, we made the relationship '"mot-slower-than",
which we can trivially implement by doing nothing. We make no firm
promise about the ordering, however, because we recognize that we
cannot make access to a subroutine not-slower-than access to an
expanded macro that simply lives in-line.

5. We considered giving the user the ability to specify whether a
program was to be invoked by subroutine linkage or in-line (macro)
expansion. Howver, we realized that macro-expansion can be done

independently of the host machine, and hence is not an appropriate EC
facility.

R _. l. ala

PP N Y

L]

Sy et
et .
PP U

e ..A_L'

g y
: Appendix 1 Design Tssues
Release 7
o EC.SMPH)
“ |
F 1. We originally had more complex synchronization operators that met
many immediate demands of our application. As we prefer the Extended
Computer to be as application-independent as possible, we chose
synchronization operations for the Extended Computer primitives that
would be as simple as possible, but that could be used as buildiag .
F‘ blocks for more specialized synchronization operators. For the more e
- complex synchronization operations, see the specifications of the -
- Application Data Type module [ADT].
. All of the following alternatives for the Extended Computer
A synchronization operations were rejected either because they are more
}e complex than the operations selected or because they can be built, (]
4 given the operations selected.
: a. P and V operations on semaphores;
&
i b. eventcounts [REED79]: Also rejected because we weren't sure we
P would need them; ¢
c. P and V supplemented by eventcounts;
d. UP, DOWN, and PASS supplemented by event variables. A simple
! generalization of event variables, event-booleans can be
»‘ implemented in the Application Data Type module in a machine q
independent way.
! e. Vv, DOWN, PASS, and eventcounts.
;' 2. At one point, we provided a semaphore-to-integer conversion program.
(] These were deleted when we could think of no reason to use it. If L
r such a need arises, it would be a straightforward extension, allowing
1 upward-compatability between programs written now and later.
. 3. This used to be a submodule of EC.PAR, because semaphores are used to
! synchronize processes. However, the secret of implementing them has
¢ nothing to do with processes, so semaphores belong in a module of ¢
! their own.
¢ |
1
]
‘ q
CRF 258
91
8944 a
¢ {
X
L

Appendix 1 Design Issues

Release 7

=T

~w

-

3
b
b
N
7 4.
(]
3
b
3
q
p——
i
i
,
0 5.
r
[
2
3
q
‘.
[8944a
‘

EC.STATE

The following transitions are not included in this interface for the
following reasons:

off to failed: not relevant to user programs;
failed to off: user programs cannot respond to anvthing
operating to off: when the computer is off;

Note that failed to operating does not occur with the current
computer; it must be cycled through "off" to get back to operating
from failed. However, future computers may make this transition

possible (perhaps by re-booting), and so this transition is subsumed
by the definition of power up.

There may not always be a grace period after AT(!+failed state+!).
Two alternatives were considered: to leave out the grace period
altogether, or to include it as a system-generation parameter. We
selected the latter to allow for future use of an improved computer.

How do we distinguish between malfunctions that user programs must
detect and handle (possibly by calling +S FAIL STATE+) and
malfunctions that are detected inside the Extended Computer?
Malfunctions are detected by this module if they are reported bv the
computer without software action; for example, malfunctions signalled
by interrupts. Whenever a malfunction is detected because of an
action dictated by the requirements, such as a diagnostic test,
detection is left to a user program. The malfunctions described in
various test programs (EC.PAR.1l, EC.IO, EC.MEM, EC.TIMER) belong to
the latter category; all others, the former.

Future technology may make our three-state model appear
oversimplified, because a system may have degraded states: that is,
states without the full capability of "operating'", vet not dead in
the water like '"failed". A degraded state may occur in a
single-processor system, or in a multi-processor system where one or
more processors have ceased to operate. It is important that
acquiring this capability results in adding to (not revising) the
present specification. We cannot add a degraded state now, because
we cannot implement and programs depending on it would be not he
correct. However, we can plan for the addition by assuming that
there are "at least three states", etc.

Which module is responsible for the close -down procedures? We
decided that any shutdown action that is required for every computer
failure and is computer-dependent should be done bv this module. If
the action is device-dependent, such as setting the bomb-release

output to a safe value, it should be done bv the device interface
module.

92

AD-A149 948 INTERFACE SPECIFICATIONS FOR SCR_(SOFTHWARE COST
REDUCTION) (A-7E) EXTENDED COMPUTER MODULE REVISED(U)
NAVAL RESEARCH LAB WASHINGTON DC D L PARNAS ET AL.
UNCLASSIFIED 31 DEC 84 NRL-MR-5582-REV

22

2.2

2.0

m

]
(B
IS
[«)

=
[x]
~

FRrCE
-
| B

[
Ir.
[=3

l

rr
T
r

s s

NL25 i gl

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A

=0 el

AR Jnon) aa 3n e Jhie - e A v BN Win DAR R AN Sl WL D N M il Al A A

Appendix 1 Design Issues
Release 7

EC.TIMER

1. In earlier versions, we had clocks and timers; clocks counted up and
timers counted down. They were completely distinct from timeint
entities; they were declared separately and had their own set of
operations. We removed the distinction as the interface grew and
grew, and we realized that it would be both useful and consistent to
let a clock/timer do most anything that a timeint can do.

2. We considered providing only clocks or only timers (in the sense of
issue #1). Clocks are useful for measuring elapsed time; timers are
useful for detecting the end of a previously specified time
interval. We wanted the capabilities of both because otherwise user
programs would have to use one to simulate the other. This would
lead to inefficiency and possible duplicate efforts especially on a
computer that provided both.

3. We considered having this module offer a special "waittime" command,
instead of using the general semaphore mechanism. There seems to be
no advantage in using a special mechanism for timed events.

3. We considered treating the following actions as errors:

- starting a running timer,

~ setting a running timer,

- stopping a non-running timer,

~ reading a non-running timer,

- stopping a timer that has run down,

-~ reading a timer that has run down,

but these actions are not necessarily senseless.

4. We considered having a timer signal a UE if it runs past its
capacity. To have it start over seems the most useful. Further, a
timer might run past its usual limit, for no fault of the
software. In contrast, setting timer with too large a value is a
clear software error. Therefore we made exceeding the maximum
capacity an undesired event in a set operation.

5. In an earlier design, there was a single maximum capacity for all
clocks and a single maximum for all timers. It was pointed out that]
clocks and timers are used for very different purposes, some for SN
measuring very small changes over a small period of time, and some .f}?
for keeping track of a long period of time, with less concern for e
small changes. TIn order to achieve this flexibility without undue R
use of resources, we decided to allow programmers to specify capacity o

----- B
and minimum measurements for individual timers and clocks. 3
ce

5. In an earlier version, clocks could only be set to zero, but this]
seems unnecessarily restrictive, Dwight Hill: "I believe we may T

need a +SET_CLOCK+ for clock corrections or for time-of-day clocks." :

The restriction went away when we merged timers and timeints. : .<

1

_ﬁ

X

93 A

8944a

. SN . .
ML, 1A LA SO W LA WAL ST AT S N

Appendix 1 Design Issues
Release 7

7. Timers used to be a submodule of what was called the "Sequential
Execution" module, because programmers would presumably want to
transfer control based on the value or action of a timer. However,
the secret of the timer module has nothing to do with flow of
control, and so it became a module of its own.

CRF 238

9
8944a

A S e i a el oyt e Mbn s s aren o pade 4

APPENDIX 2

IMPLEMENTATION NOTES

95 3
8945a

"B Bl 2t el Sl el T S R AL D Bl S A Y T . Ay
-

Appendix 2 Implementation Notes
Release 7

EC.DATA .
1. If the user provides a subrange assertion, the information may be
used to reduce the amount of operand shifting necessary before an
operation takes place.
EC.IO
1. The part of the I/0 submodule that handles the relation between data
item names and TC-2 instruction sequences should be a sysgen time
program and should be table driven. It should be organized into
submodules in accordance with the structure of the Device Interface
Module, because changes are likely to be concentrated on individual
devices.
EC.MEM: Contained in [VM]
EC.PAR.1l: None.
EC.PAR.2: None.
EC.PGM.1: Nonme.
EC.PGM.2

1. This module does not determine where programs are located in memory.
It uses programs in the memory allocator module to request space.

2. This module uses the System Generation module to do assembly-time
parameter type checking.

EC.PGM.3: None.
EC.SMPH: None.
EC.STATE: Nonmne.

EC.TIMER: None.

CRF 111
96
8945a

- PSR IS . . .« - s - . e et et e e
e Tt .t

PRI
PRI . e .. L. . . . PP -
PRI TR PR VP VX VDU PN, UL VAL WAL TP PN

APPENDIX 3

ASSUMPTIONS LISTS -

9162a

Appendix 3 Assumptions Lists
Release 7

dededemtedededododede dededededededodedevededede

* BASIC ASSUMPTIONS *
Jededededededed dededededededede dodededede dok

EC.DATA

l. The Extended Computer can provide one private variable per process
(the register) that can store values of any type. Access to a
register will usually be quicker thanm access to other variables.

2. The attributes of a value will be known whenever a variable is used
as a source or a destination. If the attributes specified for the
variable when it is used as a source are not the same as were
specified when its value was determined, the result may be any value.

3. The Extended Computer can store numeric quantities with any desired
range and resolution. It can be expected that (a) variables with a
small range-to-resolution ratio will require less actual memory space
than variables with a large range-to-resolution ratio, and (b) that
operations on such variables will be faster than operations on
variables with a larger range-to-resolution ratio.

4, Range and resolution are adequate characterizations of a numeric
variable; i.e., the needs of an application programmer can be

adequately expressed by a lower bound, upper bound and guaranteed
resolution.

5. The Extended Computer can store bitstring quantities of any desired
length. Longer bitstring entities may require more storage than
shorter ones. Operations on longer bitstring entities may require
more computer time tham operations on shorter omes.

6. Whenever a numeric value is stored into a variable with a resolution
different from the source, the value stored should always be the
closest value that can be represented in the destination. The
programmer need not specify the conversions to be made; the best
choice can be made by the EC implementation.

7. There is no need for operations that allow a bitstring value of omne
length to be assigned to a bitstring variable with a different length.

8. The operations needed for calculating new numeric values are:

addition, multiplication, division, subtraction, absolute value,
complement and conversions.

98

9162a

PULIT RIS G W W W PRSP SR St S S Wy A

Appendix 3
Release 7

9.

10.

11.

12'

13.

9162a

Assumptions Lists

Division may result in a loss of all significance. This danger
cannot be hidden entirely from the programmers, since they may have
information that can be used to choose safe, efficient algorithms.
The following division options are sufficient:

a.

Ce

The quickest division can be performed if the programmer
provides an upper bound for the result. The better the bound,
the more significance is preserved. If the bound is too low,
all significance may be lost.

A slower algorithm can be used if the programmer cannot provide

an upper bound.

If the programmer cannot provide an estimate of the maximum
result and prefers to avoid the expense of the slower algorithm,
the Extended Computer can determine whether or not division can
be safely performed. The EC can return the sign of the quotient
even when the operation cannot be safely performed.

For any variable, it is always possible to implement a uniform
resolution over the entire range of that variable.

Whenever the program compares two numeric operands for equalitv,
programmers need to define a threshold, such that if the difference
between two numbers is less than or equal to the threshold, the
numbers are considered equal.

It is acceptable for the results of an operation to have a larger
resolution than the resolution of the destination. The
approximations needed to store the result can be assumed to be
acceptable for the application.

Only four kinds of entities are needed: variables, which can be
changed at any time; ascons and literals, which can be changed by
reassembling the program; and loadcons, which can be changed when the

program is first loaded into the computer but not while it is running.

99

2

2, 2 o
_

\
'y

S
o, ..

'
4

3
e

el

i
.'u’

SOJO0

g oy

Appendix 3
Release 7

14,

15.

16.

17.

18.

19.

9162a

Assumptions Lists

The following operations are sufficient for efficiently producing new
bitstring values from existing bitstring values:

a. AND, OR, NAND, NOT, MINUS, and XOR, defined in the usual way,
operating on corresponding bits in two operands of equal length;

b. SHIFT operation: A bitstring is shifted either right or left a
specified number of bits with zeros shifted into positions
vacated by the shift;

c. REPLACE operation: A portion of a bitstring is replaced by the
value found in an equal-length portion of another bitsring;

d. CAT operation: A bitstring is formed by concatenating two

previously existing bitstrings.

If the result of converting a real to a bitstring has more bits than
the bitstring operand, the bits to the right of the rightmost bit of
the destination bitstring may be ignored.

Arrays with dimensions that vary at run time are not needed in
avionics applications.

Avionics applications do need arrays in which the type class is real,
and the elements are variables with attributes that may vary
independently of the attributes of other elements of the same array.

Arrays in which the indices are not a contiguous subset of the
integers are not needed in avionics applicationms.

Avionics applications need to take advantage of any capability that
the computer has to allow faster memory access to certain data. The
Extended Computer can implement a "not-slower-than" relation for any
two declared entities x and y, so that x will be accessed no slower
than y. User programs can determine desired rankings at system
generation time; it is not necessary to change the rankings at
run-time.

100

. - . S . -" m .. -~ . . - n‘.i

2

. SR

RSN ISRt

LA L L L

Appendix 3 Assumptions Lists
Release 7

EC.IO

i. The only information needed by user programs to identify inputs or
outputs is the data item name given in the requirements document
[REQ]. It is possible to characterize all transmissions between the
Sxtended Computer and its associated hardware as either input or
output.

2. Input data items and output data items are bitstring entities. Some
can only be used as a source in a statement (read-only); some can
only be used as a destination in a statement (write-only); some can
be used as either (read-write). No input data item is write-only.
No output data item is read-only.

3. It is possible to turm off (disable) input/output transmissions. A
disabled data item has no effect on and is not affected by the
external environment.

4, No application program will need the identity code and subitem
identifiers in Serial Input Register Data (see [REQ]).

5. It is possible for the software to determine the success of I/0
operations. (Of course, this assumption is obviously false if we
consider hardware failures. However the correctness of our software
is contingent on that assumption.) An unsuccessful operation may not
change the value of the associated data item.

5, Some input data items are only available intermittently and the EC

can notify user programs when new values for such data become
available.

7. Each i/o operation can be guaranteed to complete within a fixed
period of time. This worst-case timing requirement varies among data
items; the time associated with each data item can be determined at
system-generation time.

8. Each channel diagnostic program may interfere with a specified subset
of the input/output commands. They will not interfere with any other
commands.

9. Use of either the discrete diagnostics or the accelerometer-torque
diagnostics may cause the IMS to lose its alignment and velocities]
(i.e., have the same effect as disabling the IMS temporarily). 4

A
CRF 263

101 T
9162a :

Appendix
Release 7

10.

CRF 263

9162a

L e P IR WP P Uy PRI PR VR a Py

3 Assumptions Lists

The following aspects of the input/output can be tested independently:

the AC aspects of the signal converter channel,

the DC aspects of the signal converter channel,

the cycle steal channel A and serial input chamrnel 1,

the cycle steal channel B and serial input channel 2,

discrete input word 1 and discrete output word 1,

discrete input word 2 and discrete output word 2,

discrete input word 3 and discrete output word 3,

the IMS gyro torque registers and the accelerometer accumulators.

102

L fadiing pt AdeiniCiud Wl it LAl Gl Sl 4

Appendix 3 Assumptions Lists
Release 7

EC.MEM

1. A memory diagnostic program can check whether portions of memory are
reliable. This program does not interfere with other programs. The
test may take a substantial amount of time to complete.

Basic assumptions concerning the hidden portion of the interface may be
found in [WM].

CRF 243

103
9162a

4

T

Lot Sl Gy

g —g— " - e ry Lot _ahdil sl i Al et A S S

~ Appendix 3 Assumptions T.ists
i Release 7

EC.PAR. !
:‘ 1. Processes (executions of programs) may execute in parallel with no
: restrictions on their relative speeds, except where they are

- explicitly synchronized with each other (see EC.PAR.2).

» 2. The number of processes need not vary at run-time. It may be set at
i system generation time.

3. All demand processes can start when the system is turned on (i.e.,
when @T(!+power up+!) occurs); some will perform initialization
routines; the remaining demand processes will wait for a semaphore to
become nonnegative.

4, The process mechanism will be able to detect the event
@T(!+power up+.).

5. Processes are not called as subroutines by other programs and do not
return control to other programs.

!)
*' 6. We need only distinguish two process states: active or suspended. An -
{ active process can progress. A suspended process is ineligible to]
] progress (continue execution). -
7. The state of a process changes between active and suspended only when 1

it uses the process synchronization mechanisms described in sections !

EC.PAR.2 and EC.SMPH or when it has executed the last statement in "

its body. ’

-4

8. All processes are either periodic or demand and exist throughout the =1

life of the system; 1

.\

The bodies of periodic processes are to be executed at regular
intervals (their period). The period of a process may change during
system execution. A periodic process may be suspended when a
specified boolean variable is false and start again when it is true.

.-

‘ Demand processes wait for a semaphore to be nonnegative. They should
be executed each time the semaphore is incremented. They will
decrement the semaphore once per execution.

.'.‘.4'

9. Demand processes can be adequately characterized by specifving the
values of two timing parameters: maximum CPU time requirement and -
‘ deadline for completion. o

]
'Y

10. Periodic processes are adequately characterized by three timing
parameters: maximum CPU time requirement, deadline, and period.

104

Appendix
Release 7

9162a

3 Assumptions Lists

EC.PAR.?2

User programs may contain contiguous sections or regions of
run-time-executable statements that may not be executed
concurrently. These concurrency constraints can be expressed in
terms of an exclusion relation on the regions, i.e., where region 1

excludes region 2 if region 2 may not start while region 1 is
exc_.udes
executing.

Regions may overlap other regions or be embedded in other regions.

"3

.o
P) O

{ .
o,

,);‘

PULITGY G G uN U

o .
\ ST
A
el

105

@

' B

‘o

LAk Sl sl Sl Sl A el A At Al niciad -7

Appendix 3 Assumptions Lists
Release 7
- EC.PGM.1
1’ 1. The only sequence control constructs needed are those that choose a
f path based upon the results of the invocation of a program.
1 2. The number of entrances and exits of a program is finite, and the
upper bound can be determined at svstem generation time.

— i

106

K
PSP

9162a

- '
Dol

R '-.F:w-_'rr e are @ T e ar el St AR T

Appendix 3
Release 7

Assumptions Lists

EC.PGM.2

1. Some program entities should be invoked faster than others. Such a
relation will not depend on when the programs are invoked; the
relative ranking can be determined at system generation time.

2. It is not necessary to provide users with the capability to create
programs that take parameters. Other mechanisms available to him
(such as assignment before and after the "body" of the program)
suffice,

3. It is necessary to provide facilities for recovery if a programming
error is detected by a program during execution. It is up to the
author of a called program to determine what programming errors his
program can detect; it is up to the caller of a program to determine
the action that should be taken if one of those errors occurs. It is
not necessary to pass parameters to the recovery program.

107

NN, _

9162a

e

DA e 2o e i B P i S el A A

Appendix 3 Assumptions Lists
X Release 7

EC.PGM.3]

l. If a program will be reentered while already in use by another
process, it is the responsibility of the programmer to make sure that
local storage is saved and restored as needed. FEC programs are 1ot
automatically provided with new storage when they are reentered.

2. There is no need for a mechanism to allow programs to cause the

calling program to resume execution anywhere else than immediately
after the call.

3. The identity of a data entity that is passed to an EC access program
as an actual parameter will not be changed while the program is
executing. For example, when an array element is passed as an actual
parameter to a program, if that program alters the value of the
variables that determined the index, the results will be undefined.

4, Parameters always fall into one of three classes: input, output, or
input-output.

CRF 191

108
9162a

. . L B . .
S S, PP L P R P G LS. A .

.4_44. PRI S LI]

RO

A Ty

Y

Appendix 3
Release 7

Assumptions Lists

EC.SMPH

1. There are two process states relative to synchronization: active
(which includes processes that are running and processes that are

ready) and suspended (ineligible to make progress). The active
processes are the only ones eligible for execution.

2. The only operations on semaphores that need to be executed in a way

that guarantees non-interference with other operations on semaphores
are the following:

a. An operation that does not affect the counter value of the
semaphore, but may put the process in the waiting state.

b. An operation to decrement the semaphore counter without any
effect on the state of the process that executes it.

c. An operation to increment the semaphore counter that may put
other processes in the active state.

109
9162a

° v N L .
" 44.;.444

e

PPN 5

Lo e

\ J

‘
ok b 4

Appendix 3 Assumptions Lists
Release 7

9162a

EC.STATE

The Extended Computer has at least three states: off, operating, and

failed. Only the following transitions between states affect user
programs:

- from off to operating
- from operating to failed.

User programs cannot cause the transition into the operating state.

A transition from operating to failed can either be caused by user
programs or occur when malfunctions intermal to the Extended Computer
are detected. These internal malfunctions are other than those
described in test programs contained in EC.PAR.l, EC.TIMER, EC.MEM,
and EC.I0. It should be assumed that after this transition occurs,
user programs will have at least a short interval to execute
shut-down sequences before the computer stops operating. The minimum
length of the interval before shut-down can be determined at
system-generation time.

Any actions that must be taken when a computer failure occurs are

independent of the state of the user programs, and can be built into
the EC.

110

Appendix 3 Assumptions Lists
Release 7

EC.TIMER

Avionics programs need timers that keep track of elapsed time, and
that may signal when a given time interval has elapsed. They need to
be able to set a timer to a starting value, start it, stop it, and
read it whether it is running or not.

The maximum timing capacity of a clock or a timer can be determined
at system generation time.

I1f a timer runs beyond a limit specified at run time, it should
either halt or start over. Sometimes it should signal that a range
limit has been reached.

The worst acceptable error rate for all timers can be determined by
users at system generation time. This error can be specified as a
fraction of the running time.

Any number of timers can be implemented, provided that the number is
known at system-generation time. There is no need to create or
delete timers at rum time.

There are diagnostic programs that can test the hardware timers and
the interrupt mechanism separately, but may interfere with proper
execution of other programs.

%
. 1
N
N
K]

CRF 263

. s

@...

o d

Yo Jate 0 Aa-tien e Vet It bae b0 i A AR AR A

Appendix 3 Assumptions Lists
Release 7

Aededede e e Je e de e de o Yo de de e de e de e do e dododededede dede dedededededededede de

* ASSUMPTIONS ABOUT UNDESIRED EVENTS *
dededededede dedede dede dededededededededederdederderde dedededederde dededederdedede dede

EC.DATA
1. User programs will not divide by zero.

2. The result of any operation will not be outside the range of the
destination variable.

3. In a replace operation, user programs will not specify positions that
do not appear within bitstrings or specify a substring with a- start
position that is higher than the stop position.

4. After converting a numeric value to a bitstring, there will be no
bits to the left of the most significant bit of the destination
bitstring.

5. Users will not supply a parameter in an array reference that is not
in the index set of the array.

EC.I0
1. User programs will not attempt to
- use an enabled read-write input data item as a !'destination!!;
or
- use an enabled read-write output data item as a !!source!!.

2. User programs will not disable (enable) a data item that is already
disabled (enabled).

EC.MEM

None. For UE assumptions about the hidden portion of the interface, see [VM].

EC.PAR.1

1. Demand processes will not need to run so often as to cause a periodic
process to miss its deadline.

2. A periodic process will have a period greater than its deadline.

CRF 129 263

9162a

L e b 4 e w Bdle e P o i o
.................. PREVEL TS TN TR TR TS TN R R L

Appendix 3 Assumptions Lists
Release 7

EC.PAR.2
None.

EC.PGM. 1

l. Every program exit that will be chosen during execution will be
connected to a succeeding command.

EC.PGM.2

1. A user will not fail to assign a value to a built-in EC program
variable.

EC.PGM.3

1. A program will not invoke itself.

EC.SMPH

1. There is a range of values that will suffice for all semaphores, and
will not be exceeded by user programs.

EC.STATE.3
None.

EC.TIMER
None.

CRF 129 247]

APPENDIX &4

UNIMPLEMENTED EXTENDED COMPUTER FACILTIES

Not all of the capabilities described in this document have been provided
in the current version of the Extended Computer. A few facilities, which are
not currently needed by the application program, have not been implmented. An
attempt to use an absent facility will result in an undesired event in the
development version. The unimplemented features are described below.

FEATURE:
WHERE DESCRIBED:

UNDESIRED EVENT:
CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:
CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:

CURRENT USE:

CRF 154 198 243

9158a

Periodic processes with periods that vary at run-time
EC.PAR.1

%%unimplemented variable periodZ%

The !+period+. parameter in the ++P PROCESS++ must be
given as an ascon or a literal. -

Ability to emable/disable all data items

EC.10

Z%Zunimplemented disabling?Z

Only the following data items may be disabled;
attempting to +DISABLE+ or +ENABLE+ any other is
prohibited.

//ASAZ// //ASEL// //ASLAZ//
//ASLEL// //ASLCOS// //ASLSIN//
//AZRING// //BAROHUD// //CURAZCOS//
//CURAZSIN// //CURPOS// //DESTPNT//
//FLTDIRAZ// //FPMAZ// //FPMEL//

/ /HUDAS// //HUDASL// / /AUDFPM//

/ /HUDPUC// / /HUDSCUE// / /HUDVEL//

/ /HUDWARN// //LSOLCUAZ// //LSOLCUEL//
/ /MAGHDGH/ / / /MAPOR// / / PTCHANG/ /
/ /PUACAZ// / /PUACEL// //ROLLCOSH//
//ROLLSINH// //USoOLcuAzZ// //USOLCUEL//
//VERTVEL// / /VTVELAC// //xcoMMc//
//XCOMMF// //YCOMM/ /

Bitstrings/timeints/pointers with attributes that can
vary at run-time

EC.DATA

%%unimplemented bindingZZ

In the ++DCL_TYPE++ program, users may not declare the
binding of bitstring or timeint or pointer specific
types to be VARY.

114

TR, Trra——— DR ot ant Ak sl nadt Yt Shdl A Ao Al Sl Sull St Al Al ON

Appendix &4

Unimplemented Features
Release 7

O N
B S, P
. PRAARTRIE Tl .

. .)0

DN I I
[P SRR PRI, Y. VS, Wy SR e

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:

CURRENT USE:

FEATURE:
WHERE DESCRIBED:

UNDESIRED EVENT:
CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:
CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:
CURRENT USE:

FEATURE:
WHERE DESCRIBED:

UNDESIRED EVENT:
CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:

CURRENT USE:

CRF 154 198 247

9158a

Co-

POREPY)

Timers with attributes that can vary at run-time
EC.TIMER

ZZunimplemented binding%Z

In the ++DCL_TYPE++ program for timers, users mav not
declare the binding of timers to be VARY.

Semaphores with attributes that can vary at run-time
EC.SMPH

ZZunimplemented binding’Z

In the ++DCL_TYPE++ program for semaphores, users may
not declare the binding of semaphores to be VARY.

Programs with attributes that can vary at run-time
EC.PGM.2

%Z%unimplemented bindingZZ%

In the ++DCL TYPE++ program for programs, users may
not declare the binding of programs to be VARY.

Undesired events in the production EC

Throughout

none

In the production version of the Extended Computer, no
undesired events will be checked for; no undesired
event handling programs will be assembled or

executed. Tt will be assumed that user programs will
invoke the EC facilities correctly.

Specifying substrings of bitstrings with variables
EC.DATA.2.7.2

Z%unimplemented variable substringlZ

In the bitstring +REPLC+ program, p2, p3, and p4 must
be given by literals or ascons.

Specifying the length of a bitstring shift with a
variable

EC.DATA.2.7.2

Z%unimplemented variable shift lengthZZ

In the +SHIFT+ program, p2 must be given by a literal
or an ascon.

115

Appendix 4

Unimplemented Features
Release 7

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:

CURRENT USE:

FEATURE:

WHERE DESCRIBED:

UNDESIRED EVENT:
CURRENT USE:

FEATURE:
WHERE DESCRIBED:

UNDESIRED EVENT:

CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESTIRED EVENT:
CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:
CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:
CURRENT USE:

9158a

Using variables to specify attributes of a specific

type, or of a variable or array with varying attributes

EC.DATA.3, EC.SMPH.3, EC.TIMER.3

Z%unimplemented attribute via variablesZ%

To specify an attribute (as defined in EC.DATA.3), a
timer-attribute (as defined in EC.TIMER.3), or a
semaphore-attribute (as defined in EC.SMPH.3),
literals or ascons must be used.

Allowing the EXACT REP attribute to vary for numeric
types.

EC.DATA.2.4, EC.DATA.3

ZZunimplemented varying EXACT REPZZ

If a type is declared to have varying attributes, and
is given an initial attribute that includes EXACT-REP
then it may not later be assigned attributes that do
not include EXACT_REP; the converse is also true.

Using the EXACT_REP attribute for any resolution.
EC.DATA.3

%%unimplemented EXACT_ REP resolutionZZ

Whenever a type has the EXACT REP attribute, its
resolution must be an exact pSﬁet of two.

Checking parameter type when it is given by a pointer.
EC.DATA

None.

If an !lactual parameter!! is given by naming a
pointer to an entity, and that entity is not of the
proper type as required by the program being invoked,
the result will be unpredictable; no UE will be raised.

Checking if a !'destination!! is not a variable when
it is given by a pointer.

EC.DATA

None.

If an !ldestination.! is given by naming a pointer to
an entity, and that entity is not a variable, the
result will be unpredictable; no UE will be raised.

Pointers pointing to programs that have parameters.
EC.DATA, EC.PGM.2

%Z%unimplemented pgm ptrZZ

A pointer may only refer to user-defined programs or
to parameterless EC access programs.

CRF 191 198 212 230 241 259

116

N

'. TP
J g e s 1. -

. ’
e aa

1
Y

Appendix 4
Release 7

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:

CURRENT USE:

FEATURE:

WHERE DESCRIBED:
UNDESIRED EVENT:

CURRENT USE:

CRF 247

9158a

A T s — ACRACR AL IVEL A 2 A 0 AR My iie A A A

Unimplemented Features

Defining a program with more than one entrance.
EC.PGM.1

Z%unimplemented multi-entrance pgmZXZ.

A user may not supply more than one entrance name in
any invocation of ++ENTRANCE++. The UE %ZZentrance
incorrectly omitted%% of EC.PGM.3 will not be checked
for, in lieu of the above UE.

EC access programs that compute a single output
parameter having more than one exit, unless the
parameter is real or boolean.

EC.PGM.1

ZZunimplemented multi-exit EC access programZZ

Only EC access programs computing a single output
parameter that is real or boolean have more than one
exit as described in EC.PGM.1.2.1. TInvocations of
other EC access programs that compute a single result
must be followed by an exit-list of the form :label .
or by a null exit-list. o

PN

' - R
i ® s

YN

o, ..

ahoaa & a8 ik

@

117

YLt
PO PR YN N P

1
@

P e ses mdb el ani Snh Shd Ak et eul Aed Al Sall it Al Auiic el il An iRl Jonll W o LA Vel Aol Sk W

APPENDIX 5

INPUT/OUTPUT DATA ITEM NAMES

The following table lists all data items available from the Extended
Computer, gives the bitstring spectype of each, and tells whether each one is
read-only (R), write-only (W), or read-write (RW). The length of each item is
embedded in its spectype name.

INPUT DATA ITEMS OUTPUT DATA ITEMS 5
Data item Data item »
name R or RW Spectype name W or RW Spectype

/ACAIRB/ R B10l //ANTSLAVE// W BI01
/ADCFAIL/ R B101 //ASAZ// RW BHUD1?
/AOA/ R BAOAL?2 //ASEL// RW BHUD12 A
/ ANTGOOD/ R BIO1 //ASLAZ// RW BHUD12 ®
/ARPINT/ R BARPS //ASLCOS// RW BHUD12
/ARPPAIRS/ R BI01 //ASLEL// RW BHUD1?2
/ ARPQUANT / R BARPS //ASLSIN// RW BHUD12
/BAROADC/ R BADC12 // AUTOCAL// W BIO1
/BMBDRAG/ R BI0O1 //AZRING// RW BMAP12 -
/BRGSTA/ R BTAC11 / /BAROHUD// RW BHUD13 ®
/DIMWC/ R BIO1 //BMBREL// W BIOl -
/DGNDSP/ R BDRS14 //BMBTON// W BIO1l
/DRFTANG/ R BDRS14 / /BRGDEST// W BHSI13
/DRSFUN/ R BDRS3 / /COMPCTR// W BIOL
/DRSMEM/ R BIOl //COMPFAIL// W B101 :
/DRSREL/ R BIOl //CURAZCOS// RW BFLRCUR13 Y
/ELECGOOD/ R BIOl //CURAZSIN// RW BFLRCUR13 i
/FLYTOTOG/ R BPNL2 //CURENABL// W BI01 2
/FLYTOTW/ R BPNL4 //CURPOS// RW BFLRCUR12
/GUNSSEL/ R BIO1 //DESTPNT// RW BMAP12
/HUDREL/ R BIO1 / /ENTLIT// W BIO1 B
/IMSAUTOC/ R BIOl //FIRRDY// W B101)
/ IMSMODE / R BIMS5S //FLTDIRAZ// RW BHUD12
/ IMSREDY/ R BIO1 //FLTREC// W See note 3
/ IMSREL/ R BIO1 / /FPANGL// W BFLRFPAll

//FPMAZ// RW BHUD12

//FPMEL// RW BHUD12

//GNDTRK// W BHST13

CRF 204

9159a

Appendix S Data Ttem Names

Release 7
INPUT DATA ITEMS OUTPUT DATA ITEMS
Data item Data item
name R or RW Spectype name W or RW Spectype
/KBDINT/ R BPNL10O //GNDTRVEL// W BFLR10
/LOCKEDON/ R BIO1 / /HUDAS// RW BTO1
/MA/ R BIOL / /HUDASL// RW BIO1
/MACH/ R BIMS12 //HUDFPM// RW BIO1
/MAGHCOS / R BIMS13 //HUDPUC// RW BIO1
/MAGHSIN/ R BIMS13 / /HUDSCUE// RW BIO1
/MFSW/ R BMFS5 / /HUDVEL// RW BI0O1
/MODEROT/ R BPNL6 / /HUDWARN// RW BIO1
/MULTRACK/ R BIO1 //IMSNA// W BIO1
/PCHCOS/ R BIMS13 //IMSSCAL// W B1I01
/PCHSIN/ R BIMS13 //KELIT// W BIO1
/PMDCTR/ R BIO01 //LATGT70// W B101
/PMHOLD/ R BI10O1 //LFTDIG// W BIO1
/PMNORUP/ R BIOl //LLITDEC// W BI01
/PMSCAL/ R BIOL //LLITE// W B101
/PMSLAND/ R BIO1 //LLIT322// W BIOL
/PNLTEST/ R BIOl //LLITW// W BIO1
/PRESPOS/ R BPNL3 //LSOLCUAZ// RW BHUD12
/RADALT/ R BRA12 //LSOLCUEL// RW BHUD12
/RE/ R BIO1 //LWDIG1l// W BPNL7?
/RNGSTA/ R BTACLl4 //LWD1G2// W BPNL?
/ROLLCOST/ R BIMS13 //LWDIG3// W BPNL7
/ROLLSINI/ R BIMS13 //LWDIG4// W BPNL7
/SINEVEL/ R See note 1 //LWDIGS// W BPNL7
/SINHDG/ R See note 1 //LWDIG6// W BPNL7
/SINLAT/ R See note 1 //LWDIG7// W BPNL7
/ SINLONG/ R See note 1 / /MAGHDGH/ / RW BHUD11
/SINNVEL/ R See note 1 //MAPOR// RW BMAP12
/SINPTH/ R See note 1 / /MARKWIN// W BPNL7
/SINROL/ R See note 1 / /PTCHANG// RW BHUD12
/ SLEWRL/ R BSLEW13 //PUACAZ// RW BHUD12
/SLEWUD/ R BSLEW13 / /PUACEL// RW BHUD12
/ SLTRNG/ R BFLRSR13 //RNGHND// W BMAPS
/STA1RDY/ R BIO1 / /RNGTEN// w BMAPS
/STA2RDY R BIOl //RNGUNIT// W BMAPS
/STA3RDY/ R BIOL //ROLLCOSH// RW BHUD12 -}
/STA6RDY/ R BIO1 //ROLLSINH// RW BHUD12 R
/STA7RDY/ R BIOL //STEERAZ// W BFLRSTR13 1
/STASRDY/ R BIOL //STEEREL// W BFLRSTR13 "
/TD/ R BIO1 //STERROR// W BADT11 :
/TAS/ R BADC12 //TSTADCFLR// W BIO1 :
/ THDGCOS/ R BIMS13 //ULITN// W BIO1 <
/ THDGSIN/ R BIMS13 //ULITS// W BIOL)
/UPDATTW/ R BPNL4 //ULIT222 W B1O1 : .1
CRF 204 J
.. :1
o
119
9159a

A~ o s bon S en A Ae JhAe —REno A i SN S A

Appendix 5 Data Item Names
Release 7
INPUT DATA ITEMS OUTPUT DATA ITEMS
Data item Data item
g name R or RW Spectype name W or RW Spectyvpe
L' 3+ + + i+ -t -t 2 4¢3+ 53t i E 1t 3t P+ T P E P T+ 2 2 2 & 2 4 1]
& /WAYLAT/ R See note 2 //ULIT321// W B10Ol
: /WAYLON/ R See note 2 //USOLCUAZ// RW BHUD12
/WAYNUM1/ R See note 2 //USOLCUEL// RW BHUD12
*i JWAYNUM2/ R See note 2 //UWDIGL// W BPNL7
- /WEAPTYP/ R BASCUS8 //UWD1G2// W BPNL7
= /XGYCNT/ R BIMS2 / /UWD1IG3// W BPNL7
- /XVEL/ R BIMS10 //UWDIG4// W BPNL7
! /YGYCNT/ R BIMS2 / /UWDIGS// W BPNL7
/YVEL/ R BIMS10 //UWDIG6// W BPNL7
/ZGYCNT/ R BIMS2 //VERTVEL// RW BHUD12
/ZVEL/ R BIMS10 //VTVELAC// RW BRUD12
//XcoMMc/ / RW BMAPY
/ /XCOMMF/ / RW BMAP13
//XGYCOM// W BIMS4
/ /XSLEW// w BIO1
//XSLSEN// W BIO1
//YcoMM// RW BMAP11
//YGYCOM// W BIMS4
//YSLEW// W BI101
//YSLSEN// W BIOL
//ZGYCOM// W BIMS4
//ZSLEW// W BIO1
//ZSLSEN// W BTO1
Notes

1. The spectype of this item is BSINSn, where "n" is the length of the
item. The length may be determined by consulting the confidential
addendum to [REQ].

2. The spectype of this item is BWISn, where "n" is the length of the
item. The length may be determined by consulting the confidential
addendum to [REQ].

3. //FLTREC// is an array of type BFLTRECl6. The number of elements is
given by the integer system generation parameter #nbr fltrec elements#.

. SN L

CRF 204 222 231

120

9159a

- e . . LY
W PR, AL W W S Wy W . W . e

e SAPIRPPURY

Appendix 5 Data Item Names
Release 7

The following data items have events (signalled by incrementing a
semaphore) associated with them:

Event Semaphore
AT(1+/ENTERSW/ occurred+!) ENTSWSEM
@T(:+/KBDENBL/ occurred+!) ENBLSEM
QT(i+/MARKSW/ occurred+!) MARKSEM
@T(!+/KBDINT/ ready+!) KBINTSEM
o
x
o
.'\T
D
]
]
T
- o
"..‘
CRF 265 : i
s
121 1
9159a ,

,
o [
o e all

DS

APPENDIX 6

h DATA REPRESENTATION CATALOGUE

For some specific types, the Extended Computer is capable of providing
more than one kind of representation. The version has no effect on the
outcome of an EC operation, but some versions allow some operatioms to be
performed more efficiently than other versions.

The following table lists the provided version names for each EC specific
type which has more than ome version. When declaring a specific type, users
may request a particular version by using these names.

Typeclass Specific type Version names Version properties

REAL Any R1 N/A
BITSTRING Any Bl N/A
TIMEINT Any Tl N/A
TIMER Any cl N/A
SEMAPHORE Any s1 N/A
PGM Any Pl N/A

]

»

g

CRF 105 ,

9

122 :

92448 'y

""'J’J'A_:.A__'_".'_A'J'-"'A s g oB

Cidi Cadt" el A "

Release 7

. REFERENCES

[ADT] Clements P. C., Faulk S. R., Parnas D. L.; Interface
Specifications for the SCR (A-7E) Application Data Tvpes
Module; NRL Report 8734, 23 August 1983, (AD-A132717)

{APC] Faulk, S.: "Pseudo-Code Language for the A-7E OFP", internal
memor andum, April 1982

[BELP73] Belpaire, Wilmotte; "A Semantic Approach to the Theorv of
Parallel Processes"; in International Computing Symposium 1973,

[DIJK68] Dijkstra, E. W.; "Co-operating Sequential Processes", in
Programming Languages, ed. F., Genuys; Academic Press, 1968,
pp. 43-112,

[D1JK77] Dijkstra, E. W.; A Discipline of Programming; Prentice Hall,
1976.

[DIM] Parker, HMeninger, Parnas, Shore; Abstract Interface
Specifications for the A~7E Device Interface Module, NRL
Memorandum Report 4385, November, 1980. (AD-A092-696)

[REED?79] Reed, Kanodia; "Synchronization with Eventcounts and
Sequencers'"; Comm. of the ACM, v. 22, no. 2 (1979),

[REQ] Heninger K. L., Kallander J. W.,, Parnas D, L., Shore J. E.;

Software Requirements for the A-7E Aircraft; NRL Memorandum
Report 3876; Nov 1978. (AD-A061-751)

[s0] Clements P, C., Parker R. A., Parnas D. L., Shore J. E.,
Britton K. H.; A Standard Organization for Specifying Abstract
Interfaces, NRL Report 8815, 14 June 1984,

[TRACE] Parnas, "Trace Specifications for D-Operations', NRL Technical
Memorandum 7590-000:DP, to be published.

(vM) Alspaugh, Weiss, "Virtual Memory Interface Specifications",
NRL Report in progress, draft copy 16 April 1984,

[WUER76] Parnas D. L., Wuerges H.; "Response to Undesired Events in
Software Systems'"; Proc. 2nd Int. Conf. Software Eng.,
pp. 437-446; 1976

CRF 247 303 -

123

mat 2ot 2ad o e aad ACA AL AR gt Bad sl A Rl N W W TR T T o Y L

ACKNOWLEDGMENTS

The authors gratefully acknowledge the hard work and careful reviews
provided by the following people:

Naval Weapons Center, China Lake, CA:
Jack Basden
Richard Fryer
Sandra Fryer
Dawn Janney
Ray Martinusen
Jo Miller
Lee Thomson
Robert Westbrook
Richard Wolff
Janice Zenor

VYought Corporatiom, Dallas, TX:
Glenn Cooper
Dwight Hill

USAF A-7D/K OFP Detachment, Tucson, AZ:
Mark Jacobson
Richard Breisch

Bell Telephone Laboratories, Columbus, OH:
Don Utter

Grumman Aerospace Corp., Bethpage, NY:
Stephanie White

Computer Science and Systems Branch, Naval Research Laboratory,
Washington, DC:

Tom Alspaugh

Stuart Faulk

Bruce Labaw

Larry Morell

Preston Mullen ®

Dr. John Shore

87 233]

CRF 0 R
3

124 }

9161a o

. S eh e
. . Te, - . . < 2ou 0 SA
LIPS PO AP) P W N astmendiS etk 3

RAKAMASLL LN I AR SRR N SRR

