
RD-Ri49 948 INTERFACE SPECIFICATIONS FOR SCR (SOFTWdARE COST t/2
REDUCTION) (A-7E) EXTENDED COMPUTER MODULE REVISED(U)
NAVAL RESEARCH LAB WASHINGTON DC D L PRRNAS ET AL.

|BIIE3E4L-2V62

mhmhhhhhhhhmmu
mmhhhhhhhhhhhl
EhhlllllllIIhl
mIIIIIIIIIIIIII

1 .' II
111NMI -7 11112.

- IIII1.8
IIIII125 11111"__-----4 11.6

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 19b.A

•,,..- ,. ., ..-, ;7-:. - - .

l 41

_04

4" . S

0') . Z,

A 7'

14

U3't

SFCURITY CLASSIFICATION F -141S PAGE

REPORT DOCUMENTATION PAGE
i E'R EA ~C.ASS -CA' ON 'b ;SRC:VE MARKINGS

UN,,CLASiiFIED
'a;E "A7 DN A-Oi 3 DISTRIBUTION AVAiLA8I~lTY OF REPORT

'D DECASS; CA' ON DOWNGRADING SC.IEOUIE Approved for public release; distribution unlimited.

.2 PERFORMING :)RGANIZAT'ON REPORT NUMBER(S) 5 MONITORING ORGANIZATION REPORT N4UMBER(S)

NRL Memorandum Report 5502

6a N4AME OF PERFORMING ORGANIZArTON OF;ICE SvM8OL 7a NAME OF MONITORING ORGANIZATIONI Ifapplicable)
Naval Research Laboratory Code 7590

6c ADDRESS City, State. and ZIP Code) 7b. ADDRESS ,City, State. and ZIP Code)

Washington, DC 2037 5-5000

9a. NAME OF ;UNDING, SPONSORING 8b OFFICE SYMBOL 9 PROCUREMENT iNSTRUMENT IDENTIFICATION %UMBER
ORGANIZATION (if applicable)

Naval Electronic Systems Command Code 613 ______________________

Sc ADORE SS (City. State, and ZIP Code) 10 SOURCE OF FUNDING NUMBERS
PROGRAM IPROJECT ITASK IWORK UNIT

Washington, DC 20360 ELEMENT No No0. NO. SF212- JACCESSION NO

-I'LE (include Security Classification) 672 30 500--

Interface Specifications for the SCR (A-7E) Extended Computer Module

" P ERSONAL AUTHOR(S)
Parnas, D.L,* Weiss, D.M., Clements, P.C., and Britton K.He**
Ia. TYPF OF REPORT 1 3b. TIME COYERED IA DATE Of REPORT (Year, hoonts. Day) S. PAGE COUNT
Interim FROM To 1984 December 31 129k
6 SUPPLEM0ENTARY NOTATION *Also at University of Victoria, Victoria, BC
**IBM, Research Triangle Park, NC 27709 1This in an updated version of NRL Memorandum Report 4843.

17COSATI CODES Is. SUBJECflTERMS (Continuje on reverse if necessary and identify by block number)
'tELD GROUP SUB-GROUjP Abstract interfaces Information hiding

I ~Avionics software Modular decomposition(C tiu)
9 ABSTRACT (Continue on reverse if necessary and identify by block numnber)

This document describes the programmer interface to a computing machine partially implemented in soft-
ware. The Extended Computer is part of NRL's Software Cost Reduction (SCR) project, to demonstrate the
feasibility of applying advanced software engineering techniques to complex real-time systems in order to
simplify maintenance. The Extended Computer allows code portability among avionics computers by providing
extensible addressing, uniform i/o and data access, representation-independent data types, uniform event signal-
ling, a standard subprogram invocation mechanism, and parallel process capability. The purpose of the Extended
Computer is to allow the remainder of the software to remain unchanged when the host computer is changed
or replaced.

This report describes the modular structure of the Extended Computer, and contains the abstract interface
specifications for all the facilities provided to users. It serves as development and maintenance documentation
for the SCR software design, and is also intended as a model for other people interested in applying the
abstract interface approach on other software projects.

20 DISTRIlir ON AVAILABILITY OF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATION
CXUNCLASSIF-EDUNLMIrED C SAME AS RPT CD0TIC uSERS UNCLASSIFIED

"2a 'JAMEO EPNILNOVUL 22b TELEPHONE (Include Arta Code) 22c. OFFICE SYMBOL :
Paul C. Clements (202) 767-3477 Code 7595

00 FORM 1473,34 MAR 33 APR edition mnay be used until exhausted
All other editions are obsolete

SECURITY CLASSIFICATION OF 'HIS PAGE

iEC:LRi1Y CLASSIFICATION OCF THIS PAGE

18. SUBJECT TERMS (Continued)

Modules
Real-time systems
Software engineering
Software maintenance
Software specifications

Accession For

N.~, t 1 S -

.4 SECURITY CLASSIFICATION OF THIS PAGE

CONTENTS

EC.INTRO Introduction ... 1

EC.DATA Data Manipulation Facilities 3

EC.IO Input/Output ... 32

EC. MEM Virtual Memory ... 38

EC.PAR Parallelism Control ... 39

EC.PAR.1 Process Mechanisms ... 39

EC.PAR.2 Exclusion Regions ... 43

EC.PGM Programs 45

EC.PGM.1 Program Construction ... 45

EC.PGM.2 Program Entities ... 50

EC.PGM.3 Program Invocation Facilities 53

EC.SMPH Synchronization Variables and Operations 55

EC.STATE State Control ... 58

EC.TIMER Timer Facilities ... 60

EC.INDEX Indices ... 63

APPENDIX 1 - Design Issues ... 73

APPENDIX 2 - Implementation Notes ... 95

APPENDIX 3 - Assumptions Lists ... 97

APPENDIX 4 - Unimplemented Features of the Extended Computer 114

APPENDIX 5 - Input/Output Data Item Name List 118

APPENDIX 6 - Data Representation Catalogue 122

REFERENCES ... 123

ACKNOWLEDGMENTS ... 124

°oo11I
. " 4 .. i " i ii; ") - i . i ; .. ' ,.' " ' ' " " " '

Release 7 INTERFACE SPECIFICATIONS FOR THE SCR (A-7E) EC. INTRO

EXTENDED COMPUTER MODULE

INTRODUCTION

The Extended Computer (EC) is a computing machine partially implemented in

software. It was designed as part of the Software Cost Reduction (SCR)

% project at the Naval Research Laboratory. The design goals are 1) code
portability, 2) abstraction from computer hardware idiosyncracies, 3) more

easily understood code, and 4) sharing of solutions to common machine
dependent coding problems. The Extended Computer is designed to be

efficiently implemented on avionics computers such as the IBM 4PI TC-2. The
instruction set allows straightforward, efficient code generation using a

macroprocessor.

The Extended Computer has the following features:

I) Extensible addressing: There is no syntactic limit to the amount of
memory that can be addressed. The actual memory size is a parameter

that is set at system-generation time.

2) Uniform data access: Hardware addressing techniques, such as use of
base and link registers, are hidden from programmers.

3) Uniform subprogram access: All subroutines are invoked in a uniform
manner; linkage mechanisms are hidden from users.

4) Uniform input/output: Variations in 1/O operations are hidden. All

input (output) data items are read (written) using the same
statements.

5) Uniform event signalling: The difference between hardware interrupts

and software-detected events is hidden. All interrupt handling is
hidden.

6) Data types: Data types representing reals, bitstrings, and time

intervals are provided together with the necessary conversion
functions. Data representations are hidden. Hardware arithmetic and

bitstring operations are hidden.

7) Parallel processes: Programs can be written as a set of cooperating
sequential processes. The number of hardware processors and their
scheduling are hidden.

8) State control: Computer state transitions among various states

(including off, operating, and failed) are signalled to the user
programs. The mechanics of state transitions are hidden.

9) Built-in test: Diagnostic programs to test the integrity of memory
and the correct operation of the hardware are built-in. The tests

and evaluation criteria are hidden.

Manuscript approved October 23, 1984.

7718a

..

Release 7 EC.INTRO

10) Exception handling: Both a development version, with extensive
checks for programming errors, and a production version are
available. Programs that cause no undesired events [WUER76] on the
development version will compute the same values on both versions.
The version can be selected at system-generation time.

The Extended Computer has been designed to hide the interface
characteristics of a computer with capabilities similar to those of the IBM
4PI/TC-2. Were the present A-7 computer to be replaced by one with different
capabilities, we would shift some responsibilities to/from other parts of the
software. For example, if the new computer used an external device for

timing, the implementation of the timeint data type would become a part of the

I device interface modules. Or, if the new computer included a capability for
angle implementation, the machine-independent implementation of an angle data
type would be replaced by a machine-dependent module that was part of the EC,
but with the same interface as the present angle data type. Of course, under
such unlikely circumstances, the appropriate documentation (such as [REQI,

* [MG], and [AT], as well as this document) would be changed to remain
4 consistent with the new hardware. If the EC design were to be used in an
* application that did not require all of its capabilities, a compatible subset

could be used.

We recommend that this procedure be followed by anyone maintaining this

system, and by those who are designing other systems using a similar approach.

This document specifies the user interface to the Extended Computer. The

contents, form, and notation are in accordance with the guidelines given in
* [SO], with the following addition.

Events_1signalled by incrementing a semaphore: The EC signals all
events by incrementing semaphores. The semaphores and the events they
represent are listed in this section. The semaphores are built-in (users
need not declare them), and are given an initial value of zero at system
generation time.

4

* CRF 095 227 247

27718a

EC.DATA"

DATA MANIPULATION FACILITIES

EC.DATA.1 INTRODUCTION

EC.DATA.I.1 ENTITIES

The Extended Computer provides literals, constants, and variables. We

refer to these as entities. Literals are values appearing in programs.

Constants have names and values; run-time programs can read the values but not

change them. Variables have names and values; the values can be read or

written by run-time programs. A !tiLter is a variable with a faster access

time than other variables. There is one register for each process (see

EC.PAR). All constants and variables other than registers may be accessed

from any process of the program. It is possible to declare arrays of
variables or constants. An element of an array may be used as an individually

declared entity of the same type. Users are given the facility for providing
information to the Extended Computer about the relative speeds with which

declared entities should be accessed.

EC.DATA.l.2 TYPES

Types are classes of entities. The Extended Computer provides a hierarchy

of types; an entity is either numeric, bitstring or pointer. Numeric types
are characterized by range and resolution. Bitstring types are characterized

by length. The value of a pointer is another entity. Pointer types are
characterized by the type of entity to which members of the pointer type may

refer. The value of a characteristic for an entity is called an attribute.

For a particular numeric type, every numeric value between the upper bound

and lower bound (inclusive) has a representative in its type. Any
representative will differ from its nearest neighbors by no more than the

resolution of the type, and no numeric value will differ in value from its
representative by more than half the resolution.

For numeric types, users may require that the representatives include
exact multiples of the resolution between the lower and upper bounds,
inclusively.

A type class is a type that contains entities with different behavior. A

specific type (also called specie) is a subclass of a type class in which
all variables have identical behavior; i.e., they can take on the same set of
values and one may perform the same operations on them with the same results.
The behavior of the program will not change if two variables of the same
specific type are interchanged throughout the program.

For each type class, there are any number of specific types. These either

have fixed attributes, or attributes that may vary at run-time.

CRF 092 181

3
7726a

" ." '"'" "'- .".-* . " " •* .' ,. . -. . .. " ". -. " - ". '. * " • - • '- . , , . . " .,

Release 7 EC.DATA

Figure 1 provides an overview of the EC data types by showing the Extended

Computer's type classes and specific types. Lines connect a type with its

sub-types. The terminal nodes represent specific types, of which entities may

be declared. Not all of the types in the table are currently implemented; to

see which ones, refer to Appendix 4.

The Extended Computer provides two numeric type classes illustrated in

Figure 1, but not described in this chapter. They are semaphores and timers,
whose operations are described in EC.SMPH and EC.TIMER, respectively. The

Extended Computer also provides the program type class. This is described in
EC.PGM.2.

,
pointer bitstring

fixed-type varying-type varying- fixed-

pointers pointers length length
bitstrings bitstrings

data program
pointers pointers boolean other

numeric specific
bitstring

types

varying ranres fixed-ranres
numerics numerics

ranres ranre: ranres ranres ranres ranres

reals time reals timers semaphores time-! ervals intervals

varying- varying- integers nonintegers specific specific specific

ranres ranres * timer semaphore time interval
semaphores timers types types types

specific specific
integer noninteger
types types

* Figure 1

CRF 181 182 4

7726a

,'. . -..- -.. -.. v.. . -. " - . . .-. . : -. _- _ _: ,: , . i i .

* Release 7 EC. DATA

EC.DATA.1.3 SCALAR LITERALS

A scalar literal belongs to exactly one of the type classes bitstring,

real, or timeint, and may belong to more than one specific type of its type

class. Formats for writing literals of these type classes are specified in

the type definitions for these type classes in EC.DATA.3.

Numeric literals will be represented with at least the precision implied

by their written representation.

0

S

CRF 156

75
-. 7726a

• : , , , . - • ; ° ; , - . - " . - . ' - " . * .° . . i - " - - - .

Release 7 EC.DATA

EC.DATA.1.4 REGISTERS

A single register is provided for each process. Run-time operations using

the register are likely to be faster than operations on other variables. (A
system-generation-time program cannot use the register.) A register is a
variable with varying type class and varying attributes; each operation that
uses a register must include information sufficient to determine a type class

and the appropriate attributes.

A process cannot access the register of another process.

The contents of a register may be changed by a) using the register as a
!!destination!!, or b) performing an operation without specifying that the

register contents be preserved. Each run-time access program defined in this
chapter may appear with or without a suffix "-SAVE" (e.g. +MINUS+ or
+MINUS-SAVE+). Use of the suffix specifies that the contents of the register
will be preserved by the operation. Omission of the suffix specifies that the

contents of the register shall be the same after execution of the program as
immediately before.

Table EC.DATA.b shows how the value of a register is affected by an
operation. Value undefined indicates that the value contained in the register
is unspecifija.If a program reads a register when its value is undefined,

the results will be unpredictable.

Table EC.DATA.b: Effects of Operations on Register Contents

Register use Suffix Effect of the operation on Register

read only none value undefined

read only -SAVE value not changed

written or none new value produced

read and written by operation

written or -SAVE undesired event

read and written

not referenced none value undefined

not referenced -SAVE value not changed

CRF 155 251 252

7726a

qS

. . . * - * . . * *

. *. * -" - .: ." - . .'° . . *i - *.. L.- *
"..--..- .* " C - " . ,: • ' . • . " ' '*. . . - . - . C -

. - . - - •--. ,, - . ..-

Release 7 EC.DATA

EC.DATA.2 INTERFACE OVERVIEW

EC.DATA.2.0 DECLARATION AND RANKING OF DATA SETS

The EC requires users to assign entities to data sets. The user is then

allowed to specify a partial ordering on the data sets to determine speed of

access to the sets' members. The rankings apply to sections of code.

Significant performance improvements are possible if the entities used in a

section of code belong to a data set that is highly ranked.

Program name Parm type Parm info Undesired events

++DCL DATASET++ pl:name;I name of data set %Zname in use%%

++RANK DATA SET++ pl:data-set-reln;l None.

Effects

++DCL DATASET++ Declares pi to be the name of a data set, and allows that

name to be used as p5 of ++DCL ENTITY++ and/or p6 of ++DCL

ARRAY++.

++RANK DATA SET++ Defines a partial ordering on all data sets; if (A,B) is

in the relation given by pl, then data set A has a higher 1

rank than data set B. Data sets not named in pl have an

arbitrary rank lower than any set named in pl.

The ranking applies until the next textual occurrence of
++RANK DATA SET++.

Access to entities and arrays in a data set will be made

not slower than access to members of a lower ranked data

set.

CRF 266

7
7726a

-" " . - i : -.. : i:

Release 7 EC.DATA

EC.DATA.2.1 DECLARATION OF SPECIFIC TYPES

All specific types must be declared and given a name. Numeric types are
characterized by !!range!! and !!resolution!!, bitstring types by length.
Pointer types are characterized by the name of a previously-declared specific

type. The type declaration must indicate whether or not these attributes can

vary at run-time. The EC allows users to choose among different versions of

the implementation for each type; each version is especially efficient for

performing certain operations. The versions, and the advantages and
disadvantages of each, are specified in Appendix 6.

Proaram name Prtye Parm info Undesired events

++DCL TYPE++ pl:name;l name of new type %%name in use%%

p2:typeclass;I containing type class %%inappropriate

p3:attribute;l attributes of type attributes%%

p4:binding;l Can attributes vary %%length too

at run-time? great%%

p5:version;I implementation version %%range too
great%%

%%ranres too

great%%

%%res too fine%%

%%unknown operand

in attribute%%
%%undeclared

spectype%%

Program Effects

A specific type that is a member of type class p2 and has binding p4 and

implementation version p5 is declared to have identifier pl. If p4=FIX, then

all entities and arrays of this specific type will have the attributes given

by p3. If p4=VARY, then p3 gives the !!hardest attributes! that any entity

or array of this spectype will ever assume. If p5 is not a version associated

with the given type, as specified in Appendix 6, then the EC implementation
* will use an appropriate version of its own choosing. The identifier can be

used as the spectype (p2) parameter in calls on ++DCL ENTITY++ and

+DCL ARRAY++ in programs that follow the declaration.

CRF 152 154 168 181 205 209 221 262

7726a

Release 7 EC. DATA

EC.DATA.2.2 DATA DECLARATIONS

EC.DATA.2.2.1 DECLARATION OF VARIABLES AND CONSTANTS

Variables and constants must be declared before they are used. The

declaration must specify the name of the new entity, a previously declared

specific type (one of the terminal nodes on the tree of figure 1), whether the

entity is a constant or a variable, and an initial value.

Program name P Parm info Undesired events

++DCLENTITY++ pl:name;I entity name %%name in useZ%

p2:spectype;I entity's specific type %%undeclared

p3:convar;I when writeable? spectype%%

p4:constant or initial value %%unknown initial

literal whose valueZ%

value is in Uvarying

domain of type constant%%

named by p 2 ;I %%wrong init
p5:data set;I data set name value type%%

%%loadcon too big%%

%%literal or ascon

too big%%

Program Effects

An entity with identifier pl, spectype p2, and initial value p4 is

declared. If p3=VAR, the entity may be used as a !!destination! in a

* subsequent operation. The entities that have been declared may be used as

operands in the programs that follow. The entity is assigned to data set p5.

CRF 154 209 266

9
7726a

. . . . - .. *.... .. i ' ! . -," , , - "-
..* - *. ..* ' . .. _ ._ ,_"*

Release 7 EC.DATA

EC.DATA.2.2.2 DECLARATION OF ARRAYS

Program name Parm tye Parm info Undesired events

++DCL ARRAY++ pl:name;I array name as for ++DCL ENTITY++

p2:spectype;I element type plus:

p3:convar;l when writeable?
p4:array-init;I initial value %%wrong init

p5:indexset;l array indices value size%%
p6:data_set;l data set name %%illegal index set%%

Program Effects

A one-dimensional array with identifier pl, spectype p2, initial value p4,
and index set p5 is declared. If p3=VAR, the elements of the array may be
used as !destination:ls in subsequent operations. The array is declared to
belong to data set p5 . Elements of the array can be used wherever an entity
of the same specific type could be used. An array may also be a parameter to
a user-defined program.

CRF 154 186 266 10

1
7726a

Release 7 EC.DATA

EC.DATA.2.3 ACCESS SPEED RANKING OF DATA

The Extended Computer can implement a "not-slower-than" relation between

any two variables, constants, or arrays.

Program name Parm type Parm info Undesired events

++RANK DATA++ pl:rank-data-relation;I %%undeclared

operand%%

%%inconsistent data

ranking%%

Program effects

Let A and B be previously declared arrays, constants, or variables. If

the rank-data-relation for this invocation of the program includes (A,B), then

using A (or an element of A if A is an array) as an operand in an EC program

will take no longer than using B (or an element of B if B is an array) in the

same program, if both are in the same data set. The rank relation for all EC

data objects is composed of the rank-data-relations given in each invocation

of this program. The relation is transitive, antireflexive, and antisymmetric.

S

CRF 131 132 266

I7

7726a

.I+

Release 7 EC.DATA

EC.DATA.2.4 OPERAND DESCRIPTIONS

EC.DATA.2.4.1 INDIVIDUAL PARAMETERS

Table EC.DATA.c summarizes the description of operands for EC run-time

access programs and user-defined programs. Brackets shown are required.

Table EC.DATA.c INDIVIDUAL PARAMETER SPECIFICATION

Nature of Parameter Form of Parameter

Literal Literal value

Scalar constant or variable Name of entity

without qualifier(s)

Qualified parameter (Name of entity or array, qualifier-list>'e

where qualifier-list ::-
qualifier OR

qualifier-list, qualifier

Entity referred to by a DEREF , entity

pointer

The latter two forms are discussed below.

EC.DATA.2.4.1.1 QUALIFIED PARAMETERS ,

Variable with varying attributes: The attributes must be specified. A

qualifier is given that is the name of a previously-declared specific type

with fixed attributes. If the attributes thus specified when the variable is

used as a !!source!! are not the same as when that variable was most recently

used as a !!destination!!, the results are undefined.

Register: If the parameter is the register, the name of the entity is

REG. The typeclass and attributes must be specified by giving a qualifier

that is the name of a previously-declared specific type with fixed

attributes. If the attributes thus specified when REG is used as a !source!!

are not the same as when it was most recently used as a !:destination!!, the

results are undefined.

Array elements: If the parameter is an element of an array, the index is

given as a qualifier. It may be any integer entity (including an element of

an integer array). The element specified is chosen before the operand in

which the parameter appears is performed. An array element may be used

anywhere that an entity with the same attributes may be used.

CRF 109 126 163 245 261

12
7726a

!S
I . , . . -

Release 7 EC. DATA

Rounding numeric results: The qualifier ROUND may be given with any

numeric !destination! variable with the EXACTREP attribute. This has the
effect of storing into the variable the integer multiple of the variable's

current !resolution! that is closest to the actual result of the operation

in which it appears.

Truncating numeric results: The qualifier TRUNC may be given with any

numeric !!destination! variable that has the EXACT REP attribute. This has
the effect of storing a value into the variable such that (a) y is one of the

two integer multiples of the variable's current !!resolution!! closest to the

value resulting from the operation; and (b) absv(y) It absv(computed result).

Specifying subrange information for variables: The user may supply range

informationwhen a numeric variable is used as a parameter. The qualifier is

of the form
lb :ub

where "Ib" and "ub" are the lower and upper bound, respectively, of the

variable, given as literals or ascons within the range of the variable.

Specifying a subrange for a !!destination!! of an operation asserts that the

result of the operation will be within the subrange given. Specifying a

subrange for a !!source! of an operation asserts that, at the time of the
call, the operand will have a value within that subrange. A subrange

specification for an 10 parameter is interpreted as the conjunction of both

!!source! and !!destination!! assertions. The implementation may be based on

the assumption that the assertion is true, and results will be unpredictable

if the assertion is violated.

Meaningful combinations of qualifiers: The following combinations of

qualifiers, and of entities and qualifiers, are not allowed:
- ROUND and TRUNC both occurring in the same parameter specification;
- more than one occurrence of the same kind of qualifier;
- attribute specification for a fixed-attribute variable or a constant;

- ROUND or TRUNC with an entity not having the EXACTREP attribute, or 7
with an entity that is not a !!destination!;

- an array index with an entity that is not an array;
- a subrange specification for a non-numeric entity.

EC.DATA.2.4.1.2 USING POINTERS

Anywhere that an entity may be used, the reference may be replaced by

<DEREF,pointer>

where "pointer" is the name of a previously-declared entity of the PTR

typeclass. This has the same effect as using the entity that is the current
value of the pointer.

CRF 109 111 121 163 196 198 261

13
7726a

, ." , - . - . _ . - . .

Release 7 EC.DATA

EC.DATA.2.4.2 LISTS OF DESTINATIONS

Any !!actual parameter! given for an 0 (output) parameter in an EC access

program may be given as a !list! of operands (possibly including the

register). Each element of the !!list!! must be suitable for use as a

destination of the operation. All of the parameters will receive the same

value (subject to any ROUND or TRUNC effects); the assignments may be made in

an arbitrary order or simultaneously.

EC.DATA.2.4.3 NOSTORE

The special identifier (not an entity) NOSTORE may be used in place of an

!actual parameter! for an 0 (output) parameter in an EC access program.

This has the effect of not storing the computed result into any entity,

although the computed value can be used to determine the exit of the program

(see EC.PGM.1).

EC.DATA.2.4.4 UNDESIRED EVENTS

The following undesired events can occur when parameters are specified

using the forms described in this section:

%assertion violation%

Zattribute not allowed%%
%%attribute not givenZ%

%illegal array index%
%%illegal ptr target%%

%illegal round/trunc%

%%inappropriate attributes%%

%%inconsistent register accessZ%
%%index not allowed%%

ZMliteral or ascon too big%%
%%multiple qualifiers%

ZZREG not allowed%%
%%res too fine%%

%%subrange not allowedZ%

%%undeclared operand%%

Uundeclared spectype%%

CRF 169 170 171 172 173 181 240 252 267

14
7726a

! •

I I : . "<.

Release 7 EC.DATA

EC.DATA.2.5 TRANSFER OPERATIONS

Program name Parm type Parm info Undesired events

+SET+ pl:see below;I :+source+: %inconsistent lengths%
++SET++ p2:see below;O !+destination+! %range exceeded%

Parameters

p1 and p2 must be either both real, or both timeint, or both bitstrings of
the same length, or both pointers of the same specific type.

Program Effects

p2 the value of pl before the operation.

CRF 143 181 182

7726a 1

4 S

. , . • • .. 0

Release 7 EC.DATA

EC.DATA.2.6 NUMERIC OPERATIONS j

EC.D"TA.2.6.1 NUMERIC COMPARISON OPERATIONS

Program name Parm type Parm info Undesired events

+EQ+ pl:see below;I !+source+! None
+NEQ+ p2:see below;I !+source+!

+GT+ p3:boolean;O !+destination+!
+GEQ p4:see below;I !+user threshold+!

+LT+
+LEQ+

Parameters

pl,p2,p 4 must be either all real types or all timeint types.

Program Effects

+EQ+ p3 = (pl = p2)*
+NEQ+ p3 = NOT (pl = p2)*

+GT+ p3 = p1 - p2 is positive and NOT (pl = p2)*
+GEQ p3 = (pl p2)* OR (pl - p2 is positive)
+LT+ p3 = pl - p2 is negative and NOT (pl = p2)*
+LEQ+ p3 - (pl = p2)* OR (pl - p2 is negative)

*Definition of equality ():

absv(pl - p2) is less than or equal to !+user threshold+!.

* CRF 091 168 250

16
.. .7726a 16

Release 7 EC.DATA

EC.DATA.2.6.2 NUMERIC CALCULATIONS

Program name Parm type Parm info Undesired events

+ABSV+ pl:see below;I !+source+! %range exceeded%
+COMPLE+ p2:see below;O !+destination+!

+ADD+ pl:see below;I !+source+!
+MUL+ p2:see below;I !+source+!

+SUB+ p3:see below;O !+destination+!

+DIV+ pl:see below;I !+source+! %range exceeded%
p2:see below;I !+source+! %divide by zero%

p3:boolean;I check for success? %%variable parm%%

p4:see below;I !+destination+!

+SIGN+ pl:see below;I !+source+! of sign None.

p2:see below;I !+source+! of magnitude
p3:see below;I !+destination+!

Parameters

+ADD+ (1) all operands real, or
+ABSV+ (2) all operands timeint

+COMPLE+
+SUB+

+MUL+ (I) all operands real, or

(2) one of pl or p2 real, the other operands timeint

+DIV+ (i) pl,p2 and p4 real, or

(2) p1 and p2 timeint and p4 real, or
(3) pl timeint, p2 real, p4 timeint;

p3 must be given by a literal or ascon.

+SIGN+ (I) pl, p2, p3 real; or

(2) pl, p2, p3 timeint.

* S

CRF 107 167 198 232

'77726a

.......................................

Release 7 EC.DATA

Program Effects

+ABSV+ p2 = magnitude(pl)
+ADD+ p3 = pl + p2

COMPLE+ p2 = - p1
MUL+ p3 = pl * p2

+SIGN+ p3 = sign(pl) * absv(p2), where sign(O) is defined to be 0.

+SUB+ p3 = pl - p2

+DIV+ If a subrange assertion (lb:ub) was given for p4 AND

absv(ub) It absv(pl/p2) then:

(a) if p3=$true$ then sign(p4)=sign(pl/p2), magnitude

of p4 is undefined, and the built-in program
entity DIV FAIL is invoked;

(b) if p3=$fal7se$ then p4 is undefined.

Otherwise, p4 - pl/p2.

Built-in Objects

DIV FAIL A program variable of spectype El (defined in EC.PGM.2.3).
DIV FAIL has no initial value; if it is invoked before

assigning a value to it, the UE %uninitialized pgm% (defined

in EC.PGM. 2.5) will be raised.

4.

CRF 107 167 232 254

18
7726a

• . .5

Release 7 EC.DATA

EC.DATA.2.6.3 OPERATIONS CONVERTING OTHER TYPES TO REALS

Program name Parm type Parm info Undesired events

+R BITS 2COMP+ pl:bitstring;I !+source+! %range exceeded%

+R BITS POSITIVE+ p2:integer;I !+radix pt ident+!
+R BITS-SIGNMAG+ p3:real;O !+destination+!

+R TIME HOUR+ pl:timeint;I !+source+!
+R TIME-MIN+ p2:real;O !+destination+!

+R TIME-MS+
+R-TIME-SEC+

Program effects

+RBITS_2COMP+ p3 = real value equivalent to pl assuming that bitstring pl
is in a two's complement representation, bit 0 is the most

significant bit, and the radix point is specified by p2.

+R BITS POSITIVE+ p3 = real value equivalent to pl assuming that bitstring pl

represents a positive number, with bit 0 the most
significant bit, and the radix point is specified by p2.

+R_BITSSIGNMAG+ p3 = real value equivalent to pl assuming that bitstring pl
is in a sign magnitude representation, bit 0 is the most

significant bit, and the radix point is specified by p2.

+RTIMEHOUR+ p2 = a real value giving the time pl in hours.

+RTIME MIN+ p2 = a real value giving the time pl in minutes.

+R_TIME_MS+ p2 = a real value giving the time pl in milliseconds.

+R TIME SEC+ p2 = a real value giving the time pl in seconds.

72a19
7726a

m Release 7 EC.DATA

EC.DATA.2.6.4 OPERATIONS CONVERTING TO TIME INTERVALS

Program name Parm type Parm info Undesired events I

+T REAL MS+ pl:real;I !+source+! %range exceeded%

+T REAL SEC+ p2:timeint;O !+destination+!
+T-REAL MIN+

+T REALHOUR+

Program effects

+TREALMS+ p2-timeint value equivalent to pl assuming pl to specify
the time interval in milliseconds.

+T REAL SEC+ p2-timeint value equivalent to pl assuming pl to specify
the time interval in seconds.

+T REAL MIN+ p2=timeint value equivalent to pl assuming pl to specify
the time interval in minutes.

+T REAL HOUR+ p2-timeint value equivalent to pl assuming pl to specify
the time interval in hours.

CRF 177

7726a 20

J

."*" - " "'1 i; "
• . .. ,, :. ". " "., ' .- •'. " ' "

Release 7 EC.DATA

EC.DATA.2.7 OPERATIONS FOR THE BITSTRING TYPE CLASS

Bits in all bitstring types are numbered from 0 upward. We refer to bit 0
as the leftmost bit and a shift of information from higher numbered bits to
lower numbered bits as a left shift.

EC.DATA.2.7.1 BITSTRING COMPARISON OPERATIONS

Program name Parm type Parm info Undesired events

+EQ+ pl:bitstring;l !+source+! None.

+NEQ+ p2:bitstring;I !+source+!
p3:boolean;O !+destination+!

Program Effects

+EQ+ p3 = (p1 = p2)*
+NEQ+ p3 = NOT (p1 p2)*

*Definition of equal () length(pl) = length(p2) and
for all i such that 0 Iseq i It length(pl)

bit (i) of p1 = bit (i) of p2

CRF 143 200

21
7726a

Release 7 EC.DATA

EC.DATA 2.7.2. BITSTRING CALCULATIONS

Program name Parm type Parm info Undesired events

+AND+ pl:bitstring;I !+source+! %inconsistent
+CAT- p2:bitstring;I !+source+! lengths%
+INUS+ p3:bitstring;O !+destination+!
+NAND+

+OR+

+XOR+

+NOT+ pl:bitstring;I !+source+!

p2:bitstring;O !+destination+!

+SHIFT+ pl:bitstring;I :+source+!

p2:integer;l shift length
p3:bitstring;O !+destination+!

+REPLC+ pl:bitstring;I !+source+! %nonexistent

p2:integer;l source start position position%
p3:integer;I destination start position %inconsistent
p4:integer;I length lengths%
p5:bitstring;I background !+source+!

p6:bitstring;O !+destination+!

Program Effects

+AND+ p3 = pl AND p2
+CAT+ p3 = pl followed by p2

+MINUS+ p3 = pl AND (NOT p2)
+NAND+ p3 = NOT (pl AND p2)
+NOT+ p2 = NOT pl
+OR+ p3 = pl OR p2

+REPLC+ p6[p3:p3+p 4 -1] = pl[p2:p2+p4-l]
p6[all other bits] = corresponding bits in p5

+SHIFT+ p4 = shift of pl by p2 positions to the right (or -p2
positions to the left). The vacated bits are set to "O:B".

+XOR+ p3 (pl AND (NOT p2)) OR (p2 AND (NOT pl))

CRF 090 143 195 201

7726a
22

• _ . ,_- - - -- "' - - ° .,*.;. ... * i ;,i 'i , ,tl

r

Release 7 EC.DATA

EC.DATA.2.7.3. OPERATIONS CONVERTING TO BITSTRING

Program name Parm type Parm info Undesired events

+BREAL_2COMP+ pl:real;I !+source+! %left truncation%

+B REAL POSITIVE+ p2:integer;I !+radix pt ident+!
+BREALSIGNMAG+ p3:bitstring;O !+destination+!

Program Effects

+BREAL_2COMP+ p3 = two's complement representation of pl, such that the

radix point of the resulting bitstring is positioned
according to p2. Bit 0 of p3 will be the most

significant. The operation truncates all bits beyond the

highest numbered bit in the !+destination+! bitstring.

+B REAL POSITIVE+ p3 = bitstring representation of ABSV(pl), such that the

radix point of the resulting bitstring is positioned

according to p2. Bit 0 of p3 will be the most

4 significant bit. The operation truncates all bits beyond

the highest numbered bit in the !+destination+! bitstring.

+BREALSIGNMAG+ p3 = sign magnitude representation of pl, such that the

radix point of the resulting bitstring is positioned
according to p2. Bit 0 will be the sign bit and bit I

the most significant bit of the magnitude. The p: ration
truncates all bits beyond the highest numbered 'it in the

!+destination+! bitstring.

EC.DATA.2.8 OPERATIONS FOR THE POINTER TYPE CLASS

Except for the transfer operations specified in EC.DATA.2.5, there are no
operations provided for pointers.

CRF 261

23
7726a

Release 7 EC.DATA

EC.DATA.3 Local Type Definitions

array-init A description of a list of constant or literal initial

values for an array. The list must contain exactly as many
members as there are elements in the array. If the array

is numeric, all values must be within the !range!! of the
specific type of the array. If the array is bitstring, all

values must be of the the same length as the specific type
of the array. The syntax is:

array-init :: count.prod C elem.list)

count.prod ::= empty OR count.prod * count

count :: positive integer constant or literal
elem.list ::= elem OR elem.list , elem

elem constant or literal of type appropriate to
the array

OR array-init

empty

An empty count has the value of I. The meaning of

count.prod * count is the product of count.prod and count.
The meaning of count.prod (elem.list) is count.prod

occurrences of elem.list, with the parentheses removed and
the occurrences separated by commas. Examples:

*3(a,b) == (a,b,a,b,a,b)

*3*2(a) (a,a,a,a,a,a)

*2(*3(a),*l(b)) == (a,a,a,b,a,a,a,b)

(a) == (a)

attribute An attribute for a bitstring is a positive integer

specifying length.

A real or timeint attribute is a parenthesized list:
(lower bound, upper bound, !!resolution!!, EXACT REP)

The fourth element is optional; if omitted, the third coima

is also omitted. The lower bound and upper bound are often
collectively called "range" (see !range!!). If present in

a type declaration, EXACT REP specifies that results to be
stored in a variable of that type may be truncated/rounded

(at the discretion of the user) to a value that is a
multiple of the variable's current !!resolution!!.

!Range!! and !resolution!! for reals must given by real
0 entities, and by timeint entities for timeints.

A pointer attribute is the Liame of a previously-declared or
built-in specific type.

Attributes for other typeclasses are given in EC.SMPH and
* EC.TIMER.

CRF 093 129 164 180 181 213 24

7726a

... *"

Release 7 EC.DATA

binding Either FIX (meaning attributes do not change at run time)

or VARY (meaning attributes may change at run time)

bitstring An ordered list of values, each value represented by "0" or

"I". The number of such values is called the l of the

bitstring. A bitstring literal is written as a string of
Os and Is suffixed by ":B". E.g.,

0:B bitstring of length I

1011:B bitstring of length 4

boolean Bitstring of length I. Where convenient, $true$ may denote

"I:B", $false$ may denote "O:B".

convar Either ASCON (meaning constant that will not change without

a reassembly) or LOADCON (meaning constant that may be
changed by a memory loading device while the program is not

running) or VAR (meaning variable).

dataset A group (previously declared by ++DCL DATA SET++) of

user-defined entities that the user may rank according to
desired access speed.

data-set-reln A partial ordering on the set of all data sets, given as a
!!relation!!.

indexset A set of permissible indices. Only sets of contiguous

integers may be created. The set must be specified in the 0

following way:

(si,li)
where "si" denotes the smallest index and "li" denotes the
largest index. Both si and li must be integer ascons or

literals. For example, (7,12) indicates a six-element
array indexed by the integers from 7 through 12. (-4,-4)

indicates a one-element array whose index is -4.

integer Real with !!resolution!! 1.

name An identifier for an object created. A name must consist
only of alphanumerics or one of the following: +#%@/$()

pointer A type that provides indirect referencing to other declared
entities. A pointer literal is given by <REF,x> where "x"

is another non-literal entity; "x" may not be REG or an i/o
data item (see EC.IO).

rank-data- A !relation! between entity and/or array names.
relation

CRF 054 093 136 151 181 185 195

198 240 266 267

25
7726a

S ... " . . ,' '. ..-. * .. ,. ,* . . . ,... . . -. ,.- ."--. .. .

Release 7 EC.DATA

real An approximation to conventional real numbers. Real
literals are denoted in one of the following formats:

standard decimal notation e.g. -112.345, .000234, 127

exponent notation: decimal number, followed by :En,

where n is an integer, meaning that the value is the

number multiplied by 1On

e.g. 1.12345:E2 (- 112.345); 2.34:E-4 (=.000234)

power of two notation 2**n, where n is an integer;

e.g., 2**3 (= 8); 2**-4 (=.0625); -2**4 (-16)

spectype An identifier that has been previously declared as a type

in a ++DCL TYPE++ operation, or the name of a spectype

built in to the EC. The latter includes BOOLEAN

(representing the built-in bitstring type "boolean"), as

well as those named in EC.PGM.2 and EC.IO.

timeint Representation of a time interval. Literals of type

4 timeint are denoted by using the name of one of the

real-to-timeint conversion programs of EC.DATA.2.6.4 and a

real literal. The form is:

(program-name , real-literal>

Where a blank appears, any number of blanks (including

zero) may appear. The value thus specified is that which

would be returned by the named program were it called with

the real as the input parameter. For example,

(+TREALSEC+, 4.0> denotes a timeint value of 4 seconds.

typeclass Either BITS (meaning bitstring), PTR (meaning pointer),

REAL, or TIMEINT (meaning time interval). Other values are

*SEMAPHORE (see EC.SMPH), PGM (see EC.PGM.2), and TIMER (see

EC.TIMER).

version A version name applicable to the specific type being

declared. Version names and characteristics are listed in

Appendix 6.

4

CRF 093 105 179 180 181 182 199

224 260

• 26

7726a
'iS

Release 7 EC.DATA

EC.DATA.4 Dictionary:

Term Definition

.+destination+! variable, register or a list of such entities;

will contain results of operation.

!!destination!! An 0 or 1O !!actual parameter!! to an EC access

program or a user-defined EC program.

!!hardest attributes!! For bitstring types, the maximum length that an

entity of this spectype will ever assume.

For real or timeint types, the !!range!! and

!!resolution!! such that the ratio of !!range!!

to !!resolution!! is the maximum that an entity
of this spectype will ever assume, where

!!range!! is defined as ABSV(upper bound

lower bound). Further, if an entity of this
spectype will ever have the EXACTREP attribute,
it must be specified here.

The syntax for specifying !!hardest attributes!!

is the same as for attributes, defined in
EC.DATA. 3.

!!list!! An unordered sequence of elements. The syntax of

a !!list!! is:

= item

OR (item,..., item)

!+radix pt ident+! Interpreting the bitstring as a binary real

number with bit 0 the most significant bit, 2
raised to the !+radix pt ident+! power is the

significance of the rightmost (highest numbered)

bit. For instance, a value of zero means that
the bitstring represents an integer.

I4

..range!! The set of values between (and including) the

lower bound and upper bound of a numeric data

type.

!!relation!! A set of ordered pairs. In EC, a !!relation!! is

specified by giving two !!list!!s; the ordered
pairs is that obtained by taking the

cross-product of the !!lists!!. The syntax is:

::= !list!! , ! list!

CRF 119 154 192 206 226 267

2?
7726a

Release 7 EC.DATA

!resolution!! The maximum difference between any two

consecutive representatives of the values of a
real or timeint data type.

!+source+! variable, register, literal or constant; has a
value to be used as input to the operation.

!!source!! An I or EQ !!actual parameter!! to an EC access
program or a user-defined EC program.

!+user threshold+! A difference that user programs specify for a
comparison operation; i.e., two numbers whose

difference is less than this are considered equal.

EC.DATA.5 Undesired Event Dictionary:

%assertion violation% A variable's value was not in the [lb,ub]

!!range!! specified in a subrange assertion.

%%attribute not allowed%% A fixed-attribute entity was given using the

variable-with-varying-attributes form of
parameter specification.

%%attribute not given% An attribute qualifier was not given for an

operand that is of varying-attribute spectype.

%divide by zero% A user program attempted to divide by zero.

%illegal array index% The index supplied in an array reference is

not in the index set of the array.

%Zillegal index set%% The index set of an array is not:

(a) contiguous
(b) in ascending order
(c) integers
(d) given with ascons or literals.

%%illegal ptr target%% A pointer may not point to REG, nor to an i/o

I data item.

%illegal round/trunc% A user specified ROUND or TRUNC for a variable
that does not have the EXACT REP attribute or
is not a !!destination!, or-tried to round
and truncate the same numeric result.

%%inappropriate The attributes given are not valid for the

attributes%% type class at hand.

CRF 107 ill 121 133 139 143 158 170

171 240 262

28

* 7726a 2

a*

pS

- . --
•

Release 7 EC.DATA

%Zinconsistent data There are EC data entities x and y (not

ranking%% necessarily distinct) such that, if we assume
the rank relation for data to be transitive,

both (x,y) and (y,x) are in the accumulated
relation.

%inconsistent lengths% The length of the result of a bitstring
operation differs from the length of the

destination variable.

%%inconsistent register An operation that changes the value of a

access%% register has the "-SAVE" suffix.

%%index not allowed%% An index was provided as a qualifier for an

operand that is not an arra>.

%left truncation% The most-significant bits are lost in a real

to bitstring conversion. This results from
the user specifying a radix point too close to

the most significant bit in the destination
bitstring.

%%length too great%% The length of a bitstring type exceeds the
maximum allowed.

%%literal or ascon The value of a non-variable is greater in
too big%% magnitude than that allowed for an entity of

%%loadcon too big%% that typeclass, as given by a system

generation parameter.

%mdr outside range% A !+max div result+! was given that exceeded
the !range!! of the destination variable.

%%multiple qualifiers%% More than one qualifier of the same type was

given for a single operand.

%%name in use%% An attempt has been made to redefine a name of
one of the following:

- a built-in object;
- an EC access program;
- an EC UE;
- an EC reserved word;

- an EC system generation parameter;
- a user-defined spectype, entity,

array, region, or program.

CRF 107 112 114 120 138 151 157 172
173 205 209 221 247 257

29
7726a

Release 7 EC.DATA

%nonexistent position% A user has specified (1) a start position that
does not exist in the bitstring; or (2) a
start position and a length that define a
substring not contained in the bitstring.

%range exceeded% The value being stored into a variable is
outside the !rangelt of the variable.

/%%range too great%% The magnitude of the declared !!range!!

exceeds the maximum allowed for that

typeclass, as given by a system generation
parameter.

%Zranres too great%% The ratio of the declared !range! to the
declared !resolution!! exceeds the maximum
allowed for that typeclass, as given by a
system generation parameter.

%Zres too fine%% Declared resolution (or implied resolution of
a literal) was less than the minimum allowed
for that typeclass, as given by a system
generation parameter.

%%subrange not allowed%% A subrange qualifier was given for a
non-numeric operand.

%%undeclared operandZ A !sourceU or !destination! is or refers
to (a) an entity not declared previously using
++DCLENTITY++; and (b) not an element of a
previously-declared array; and (c) not an EC
built-in object or system generation parameter.

%%undeclared spectype%% The user has supplied an undeclared spectype

in an entity or array declaration, or as the
attribute of a varying-attribute variable or a
PTR spectype.

%%unknown initial value%% A variable has been used as an initial value
of a declared entity.

%%unknown operand in An attribute has been given using an entity
attribute%% not previously declared using ++DCLENTITY++

as a value.

%%variable parm%% User supplied a variable or loadcon for an
!!actual parameter! when an ascon or literal
was called for.

0 CRF 181 193 205 209 232

7726a 30

•W

Release 7 EC.DATA

-%varying constant%% A user sought to declare a constant of a

specific type that has varying attributes.

%%wrong init value size%% The set of initial values is not the same size

as the array.

owrong init value type%% A constant or literal used as an initial value

is not in the domain of the type of the entity
being initialized.

EC.DATA.6 System Generation Parameters

Parameter Type Definition

#max bits length# integer The maximum number of bits allowed for
a bitstring.

imax real ascon# real Maximum allowable magnitude for a real
Ihnax timeint ascon# timeint (timeint) ascon or literal.

#max real loadcon# real Maximum allowable magnitude for a real
#max timeint loadcon# timeint (timeint) loadcon.

#max real ranres ratio# real Maximum allowable magnitude of the
#max timeint ranres timeint ratio of a type's !range!! to its

ratio# !!resolution!!.

Ihmax real range# real Maximum allowable magnitude for the
#max timeint range# timeint absv(upper bound - lower bound) for a

real (timeint) type.

Imin real resolution# real Minimum allowable resolution for a
#min timeint resolution# timeint real (timeint) entity.

CRF 209 214 221

31

7726a

°S

I. EC. 10

INPUT/ OUTPUT

EC.1O.l Introduction

This module implements two types of bitstring entities known as input data

items and output data items, which are used to communicate between the

computer and external devices. This interface also includes facilities for

i/o used during channel diagnostics.

Each data item may be enabled or disabled by user programs. When enabled,

communication with the outside world is possible. The values of input data

* items may be set by external devices. The values of output data items are

transmitted to external devices. When a data item is disabled, its connection
* with the outside world is severed.

Although input data items are normally "read-only" and output data items

are normally "write-only", a few may be both read and written when they are

disabled. These may be used as storage at such times. An input (output) data

item may always be used as a !!source!! (!!destination!!) in an EC statement.

User programs are able to check to see if an external communication has

been successful.

Within these constraints, an input or output data item may be used exactly

as other bitstring variables.

En addition to the input data items described above, some input from the

outside world is handled only through semaphores. For these inputs, which

* correspond to transient events occurring in external devices, a semaphore is

incremented when the event occurs. There are no corresponding bitstrings for

these inputs.

CRF 265

32
8929a

Release 7 EC.IO

EC.IO.2 Interface Overview

EC.IO.2.1 Access programs S

Program name Parm type parm info Undesired Events

+DISABLE+ pl:dataitem;l name of data item %already disabled%

+ENABLE+ pl:dataitem;I name of data item %already enabled%

+G SUCCESS+ pl:dataitem;I name of data item None.
p2:boolean;O !+i/o success+!

Program effects

+ENABLE+ Enables transmission to/from the external environment. If pl

is an input data item, then external values for this input
item will now become available internally as soon as
practicable. If pl is an output data item, the value is now
available externally. If the item is read-write input, use of

the item as a !!destination!! in an EC statement is now
prohibited until disabled. If the item is read-write output,

use of the item as a !!source!! in an EC statement is now
prohibited until disabled.

At system-generation time, all data items are enabled.

+DISABLE+ Transmission to/from the external environment will be

inhibited. If the item is read-write input, it may now be

used as a !!destination!! in an EC statement. If the item is

read-write output, it may now be used as a !!source!! in an EC
statement.

4

CRF 264

33
8929a

I

Release 7 EC.IO

EC.10.2.2 Access programs for 10 diagnostics

Program name Parm type Parm info Undesired Events

+TESTAC+ pl:boolean;O !+io test result+! None
+TEST CSA+ pl:boolean;O !+io test result+!
+TESTCSB+ pl:boolean;O !+io test result+!

+TEST DC+ pl:boolean;O .+io test result+!
+TESTDIOWI+ pl:boolean;O !+io test result+!
+TEST DIOW2+ pl:boolean;O !+io test result+!
+TEST-DIOW3+ pl:boolean;O !+io test result+!

+TEST XACC+ pl:boolean;O !+io test result+!
+TESTYACC+ pl:boolean;O !+io test result+!

+TESTZACC+ pl:boolean;O !+io test result+!

Effects

These programs report the results of input/output hardware diagnostic

tests. If the test is performed periodically or independent of user request,

the result given will be that of the most recent test. If the test is
performed on request, the command will initiate the test and report the result
when the test is complete. In addition, the following effects are observable.

+TEST AC+ This program reports the results of the AC signal converter

check. It may interfere with:

output, when the data item is

//BRGDEST// //GNDTRK//
//RNGHND// //RNGTEN// //RNGUNIT//

//STEERAZ// //STEEREL//

+TESTCSA+ This program reports the results of the cycle-steal channel
A and serial channel 1 check. It may interfere with:

output, when the data item is

//ASAZ// //HUDCTL// //USOLCUAZ//
//ASEL// //LSOLCUAZ// //USOLCUEL//

//ASLAZ// //LSOLCUEL// //VERTVEL//
//ASLEL// //MAGHDGH// //VTVELAC//

//ASLCOS// //MAPOR// //XCOMMF//
//ASLSIN// //PTCHANG// //XCOMMC//
//AZRING// //PUACAZ// //YCOMM//
//BAROHUD// //PUACEL//
//FLTDIRAZ// //ROLLCOSH//

//FPMAZ// //ROLLSINH//
//FPMEL//

input, when the data item is /LOCKEDON/ or /SLTRNG/.

CRF 263

8929a
34

- ' - . *'-. .- . , i - . .- . .

Release 7 EC.IO

+TEST CSB+ This program reports the results of the cycle steal channel
B and serial channel 2 check. It may interfere with:

output, when the data item is
//CURAZCOS// //CURAZSIN// //CURPOS//

input, when the data item is
/ANTGOOD/ /DGNDSP/ /DRFTANG/
/DRSFUN/ /DRSMEM/ /DRSREL/
/ELECGOOD/

+TESTDC+ This program reports the results of the DC signal converter
check. It may interfere with:

output, when the data item is

//FPANGL// //GNDTRVEL// //STERROR//

+TEST DIOWI+ These programs report the results of the checks on discrete
+TEST DIOW2+ input and output word pairs 1, 2, and 3 respectively. These
+TEST DIOW3+ programs may interfere with:

output, when the data item is
//DOWI// //DOW2//

input, when the data item is
/DIWl/ /DIW2/ /DIW3/
/DIW4/ /DIW5/ /DIW6/
/ANTGOOD/ /DGNDSP/ /DRFTANG/
/DRSFUN/ /DRSMEM/ /DRSREL/
/ELECGOOD/ /LOCKEDON/ /SLTRNG/
/SINSDD/

+TEST XACC+ These programs report the results of checks on the
+TEST 'YACC+ accelerometer and torque registers associated with the X, Y,
+TEST_ZACC+ and Z axes of the IMS respectively. These programs may

cause the IMS to lose its alignment and velocities, and may
interfere with:

output, when the data item is

//XGYCOM// //YGYCOM// //ZGYCOM/!

input, when the data item is
/XGYCNT/ /XVEL/ /YGYCNT/

/YVEL/ /ZGYCNT/ /ZVEL/

CRF 263

8929a 35

4

Release 7
EC.IO

EC.1O.2.3 Built-in Objects

The names of all data items are listed in Appendix 5 of this document.

Undesired Events associated with Built-in Objects

The following undesired events may occur when data items are used in EC
statements:

%read-write violation%
%%read/write-only violation%%

EC.IO.2.4 Events signalled by incrementing a semaphore

For some inputs, an event is signalled (by incrementing a semaphore)
when a new value of an input data item has been transmitted. The event is of
the form

@T(!+ x ready+:)
where "x" is the name of the data item.

* Some inputs correspond to an event occurring in an external device.
When such an event occurs, this module will signal a corresponding event of
the form

@T(!+ x occurred)
where "x" specifies the event.

GThese events and their corresponding semaphores are enumerated in
Appendix 5.

EC.IO.3 Local Type Definitions

* dataitem The name of any input or output data item. The data
items are listed in Appendix 5 of this document. The
semantics of the data items are given in Chapter 2 of
(REQI.

* CRF 094 098 129 263 265

36
8 929a*

Release 7 EC.10

EC.1O.4 Dictionary

Term Definition 0

Any item of the form
:+ x ready+! The named data item is now available for read

operations.

Any item of the form
!+ x occurred+! The named event has just occurred in an

external device.

:+i/o success+! true iff the last transmission associated with

the named data item was successful.

.+io test result+! true iff the i/o hardware passes built-in test.

EC.I0.5 Undesired Event Dictionary

%already disabled% A user program has tried to disable a data item

already disabled.

,already enabled% A user program has tried to enable a data item

already enabled.

%%read/write-only A read-only (write-only) data item appears

violation%% as a !:destination!! (!source!).

%read-write violation% A program call was executed with a read-write

input (output) data item as a !!destination!!
(!!source!) when that data item was enabled.

EC.IO.6 System-Generation Parameters

Parameter Type Explanation

#max i/o time x# timeint (where "x" is replaced by the name cf
each data item) The maximum time
interval that can elapse between the
beginning of the access program that
reads/writes the named item, and the
time it takes for the external

transmission to take place.

#nbr fltrec elements# integer Defined in Appendix 5.

CRF 102 214 231 264 265

37
8929a

-! i i:i i~ i .-.., .: , ,. ., .-- :- - : :: . ,, .. : Si

EC.MEM

Virtual Memory Module

EC.MEM.l Introduction

This module provides a uniformly addressable memory for the Extended
Computer, as well as hiding the particular addresses to which data and

instructions are allocated.

The only part of the interface that is not hidden from EC programmers

(who do not need to use it) is that which reports to the user the results of a

diagnostic test on the memory hardware. The specifications for the remainder

of the module appear in [VM].

EC.MEM.2 Interface Overview

EC.MEM.2.1 Memory diagnostic access programs

Program name Parm type parm info Undesired Events

+TESTMEMORY+ pl:boolean;O !+memory test result+! None

Effects

Reports the result of the memory diagnostic test. If the test is

performed periodically or independent of user request, the result given will

be that of the most recent test. If the test is performed on request, the

command will initiate the test and report the result when the test is complete.

EC.MEM.3 Local Type Definitions: None.

EC.MEM.4 Dictionary

!+memory test result+! true iff the memory diagnostic test is

passed.

EC.MEM.5 Undesired Event Dictionary: None.
S

EC.MEM.6 System Generation Parameters: None.

0

CRF 263

0

38
7725a

EC.-PAR. I
PROCESS MECHANISMS

EC.PAR.l.l introduction

The process mechanism allows the definition of a set of sequential

processes that will proceed in parallel and unknown relative speeds. Demand
processes are activated when specific events occur. Periodic processes may be

turned on or off, but are re-started at regular intervals when turned on.

EC.PAR.1..2 Interface Overview

EC.PAR-l.2.1 Access program table

Program name Parm type Parm info Undesired events

++D PROCESS++ pl:timeint;I !+deadline+! ~ %inconsistent

p2:invocation;I process body time parmsZ
%%undec lared

program%%

%%variable timing
parms %%

++PPROCESS++ pl:timeint;I !+deadline+! %inconsistent

p2:timeint;I !+period+! time parms%
p3:semaphore;I !+starting event+! %illegal synch%%

p4:invocation;I process body %%undeclared
p5:boolean;I !+on/off+! program%%

%missed deadline%

%%variable timing

parms%

+TESTINTERRUPTS+ pl:boolean;O !+interrupt test None.
result+!

Parameters

pi must be given by a literal or an ascon.

CRF 104 146 153 168 234 263

39
7 722 a

Release 7 EC.PAR

Program effects

++DPROCESS++ establishes a demand process that becomes active after
@T(!+power up+!). The body of the process is the program
named by p3. The process remains active until it is
suspended as a result of a synchronization operation (see
EC.PAR.2, EC.PAR.2) or executes the last statement in its
body. During the interval when it is active, it will
execute before p2 real time has elapsed. A process that is
suspended as a result of a synchronization operation may
start again. A process that executes its last statement
will start again only after a system generation.

++PPROCESS++ establishes a periodic process that becomes active after the
semaphore named by !+starting event+: becomes nonnegative.

The body of the process is the program named by p5. While
the boolean named by p6 is true, a built in semaphore, NEXT
PERIOD, will be incremented at the start of each !+period+!
amount of real time. After the start of a !+period+!, the
process will complete exeuction before p2 real time has
elapsed. The process must perform [+DOWN+,NEXTPERIOD]

[+PASS+,NEXT PERIOD].

If p6 is given as a variable, and that variable becomes
false during execution, the process will stop when it waits
for the start of its next !+period+! (by invoking

4+PSS+,NEXT_PERIODD).

If p3 is given as a variable, and that variable changes
value during execution, the pro a s will change its
!+period+! within an amount of time equal to the previous
value of p3.

Both If two (or more) processes simultaneously execute sequences
of statements that read and/or alter the value of some data,
the results are unpredictable because the executions may
overlap in time. However, EC access programs are considered
indivisible. If two EC access programs are executed
simultaneously by two processes, the effect will be as if
one of the processes executed its access program before the
other; the order is not specified. Note that the invocation
of a user-supplied routine is the execution of a single EC
access program, but the execution of the body of that

routine is a sequence of EC statements.

I"I + 407722a

[o*

Release 7 EC.PAR

Program effects (continued)

+TESTINTERRUPTS+ Reports the results of the interrupt hardware checks. If
the test is performed periodically or independent of user
request, the result given will be that of the most recent
test. If the test is performed on request, the command
will initiate the test and report the result when the test
is complete. it may interfere with normal operation of
timers and input/output commands in unpredictable ways.

EC.PAR.I.2.2 Built-in objects

Name Used to Refer to

NEXT-PERIOD semaphore variable, private to each periodic process, that
will be incremented by the EC at the start of each period.
Each periodic process only has access to its own
NEXTPERIOD. Semaphores are described in EC.SMPH.

EC.PAR.1.3 Local Type Definitions

invocation An occurrence of a program invocation, as described

in EC.PGM.3.2.

EC.PAR.I.4 Dictionary

Term Definition

!+deadline+! The maximum amount of real-time that can be allowed
to elapse between the time that a proc'ess can
proceed and the time that it reaches the next point

of suspension.

!+interrupt test true iff the interrupt hardware passes built-in test.
result+!

-+on/off+! the boolean whose value will be used to start/stop

the periodic process in whose definition it
appears. Its value must be $true$ whenever the
periodic process is supposed to proceed. If it is
$false$ when the process next reaches its starting
point, the process will be suspended until it
becomes $true$ again. Of course, the value may only

be changed if the boolean was given as a variable.

CRF 090 129 153 168 234 243 263

41
7722a

77-

Release 7 EC.PAR

!+period+! The timeint whose value will be interpreted as

the amount of real-time that should elapse
between the beginning of one execution of a
periodic process and the beginning of the next
execution. If !+period+! is given as a variable,
changing its value has the result of changing the
period of any process for which it was used as

the !+period+!.

.+starting event+: The name of a semaphore that, when becoming

nonnegative, will cause the periodic process in
which it is named to become active.

EC.PAR.l.5 Undesired Event Dictionary

%%illegal synch%% a synchronization operation other than the
required +DOWN+(NEXT PERIOD) and
+PASS+(NEXT PERIOD) Tsee EC.SMPH) appears in the

body of a periodic process; or those required
* operations were omitted.

%inconsistent time the timing parameters are contradictory; e.g.
parms% !+max CPU time req+! exceeds !+deadline+!, or

!+deadline+! exceeds the current value of
!+period+!.

%missed deadline% a process has missed its deadline because too
many demand processes have occurred, or because

its !+deadline+! was less than the CPU time
required for it to execute.

%%variable timing !+deadline+! or !+max CPU time req+! was given
parms%% using a variable or a loadcon.

EC.PAR.1.6 System Generation Parameters: None

0 CRF 175 198 214 234

42
77 22a

Release 7 EC. PAR

EC. PAR. 2
EXCLUSION REGIONS

EC.PAR.2.1 Introduction .0

This module allows constraints to be placed on the potential concurrency

of processes executing regions of code by defining an exclusion relation among
them. Region 1 excludes region 2 if starting to execute region 2 is forbidden

while region i is being executed. Mutual exclusion is a special case of this
exclusion relation, which is based on [BELP73].

[" EC.PAR.2.2 Interface Overview

EC.PAR.2.2.1 Access program table

Program name Parm type Parm info Undesired events

++REGION++ pl:name;I region name %%name in use%%

p2:statement-list;I region body

++EXCLUSION++ pl:exclusion-relation;I %%undeclared

region%%

Effects

++EXCLUSION++ If the exclusion relation includes (A,B) then no process
will begin to execute region B in the interval that starts
when a process begins execution of region A and ends when

that process completes execution of region A. The
exclusion relation for all regions is composed of the

exclusion relation given in each invocation of this program.

++REGION++ pl may be used to stand for the section of code that is

given in p2. If the last action before the region causes a
process to wait, then the process is considered to be

inside the region when it is allowed to proceed. If the
last statement in p2 is a wait operation, then the process

is considered to have left the region when it begins to
wait. Including regions in a process will prevent the

process from waking up, if doing so would result in a
violation of an exclusion region.

CRF 257

43[" 7722a lS

.'--'* , . , • - ._--- ..,"- :, - j ..

Release 7 EC.PAR

EC.PAR.2.3 Local Type Definitions:

exclusion-relation A !!relation!! on region names.

statement-list A sequence of :command!!s.

EC.PAR.2.4 Dictionary: None

EC.PAR.2.5 Undesired Event Dictionary

%%undeclared region%% an exclusion relation includes regions that have

not been identified in the program.

EC.PAR.2.6 System Generation Parameters: None

0

0

0

* CRF 093 119 129 214 247 267

44

7722a

0

* , .. , •. . .,, . .-.

- . 7 W I_ - _ a : , 7. t, I .I - . , ". .. . 1. , % . -• ' ..". ' ." ' --- " - .. :.- 1 ..

E C. PGM. I
PROGRAM CONSTRUCTION

EC.PGM.1.1 Introduction

Using the facilities of this module, a user can construct programs

composed of invocations of EC built-in access programs and user-defined

programs. This is done by naming the entrances and exits of these programs

and describing connections between them. Each exit is connect to one

entrance. The resulting structure is called a !!constructed program!!. On

completion of its execution, a program selects an exit; the next program

executed will begin execution at the entrance connected to that exit.

All EC access programs have one entrance. Many have one exit, but some

(see EC.PGM.l.2.1) have as many exits as there are values in the range of the

output parameter. When such a program is executed, it chooses the exit that

corresponds to the value it has computed.

A !!constructed program!! is a literal of the typeclass PGM. In EC.PGM.2

we describe the declaration and use of entities of that typeclass. In

EC.PGM.3 we describe facilities for invoking programs as closed subroutines.

EC.PGM.1.2 Interface Overview

EC.PGM.I.2.1 Entrances"and-exits-of-Ee'access-programs

Every EC access program has exactly one entrance.

Every EC access program that has a single output parametpr has n exits,

where n is the number of values that can be computed for the output

parameter. The exits are named Ev, where "v" is replaced by the literal

representation of the value (except that "-" is replaced by "m"). For

example, an exit corresponding to the real -32.7 is named Em32.7. If the
value computed is a bitstring of length 1, the exits can be Etrue and Efalse.

If a program computes a value u as its result, it takes exit Eu.

All other EC access programs have exactly one exit.

45
0235a

UJ

Release 7 EC.PGM.I

EC.PGM.I.2.2 Entrances and-exits-of-!constructed-program!s

Program name Parm type Parm-info Undesired events

++ENTRANCE++ pl:name-list;l entrance name(s) %%duplicate name%%
%%port not defined%%

%%port defined twice%%

%%no such entrance%%
............

++EXIT++ pl:name-list;l exit name(s) %%duplicate name%%

%%port not defined%%
%%port defined twice%%

Parameters

Each name in pl of ++ENTRANCE++ must be an entrance to a !!command!! in

the !!constructed program!.

Effects

++ENTRANCE++ Defines the given name(s) as entrance(s) to the !constructed
program!! in which they appear. The name(s) may be used when

the !constructed program! in which this !invocation! appears
is invoked (see EC.PGM.3).

++EXIT++ Defines the given name(s) as exit(s) to the !!constructed
program!! in which they appear. An exit of a !command!: in the

same !constructed program!! may be connected to one of these
exits as specified in EC.PGM.l.2.3; i.e., %%not an exit%% is
disabled for the given names in this !constructed program:!.

46
0235a

Release 7

EC.PGM.1.2.3 Connecting exits with entrances

ALL :!invocation::s are preceded by a label-1, iis form:

label-list
,R label-list label

label ::= name

The UE %%name in use%% applies to label-lists.

All :!invocation::s are followed by an exit-connector, in this fcr-

exit-connector ::f (exit-list : label , ... , exit-list label

OR label
OR

The second form of the exit-connector is an abbreviation

that is equivalent to pairing all exits Df the Drogram
with the same label. The third (null) form is equivalent

to ":L L:" where L is some name not used anywhere else.

exit-list :: exit
OR (exit, exit, ... , exit)

OR (Em : En)

The third form is equivalent shorthand for (Em, Em+l,

Em+2, ..., En-l, En) where m and n are integer literals, m
not greater than n.

exit :: name (naming an exit of the !!command:!)

label ::= name (naming a label of any :command!! in the

!!constructed program!! in which this
!!command!! appears; or naming an exit of
the :constructed program!! in which this
!!command! appears.

After a :!command:! is executed, the next :command: to be executed will
be the one whose label is paired in the exit-connector with the exit that
the :command!: selected.

These UEs apply to exit-connectors: %%dest unknown%%

%%illegal exit-list%% 0

%nowhere to go%
%%not an exit%%

47

0235a

Release 7 EC.PGM. 1

EC.PGM.1.3 Local Type Definitions

name-list A !'list!! of names.

EC.PGM.1.4 Dictionary

:command! An !:invocation!!, preceded by a label-list, and

suffixed by an exit-connector.

!!constructed program!! A sequence of !!command!!s, beginning with one

!:invocation! of ++ENTRANCE++ and ending with
one invocation of ++EXIT++ specifying the

entrances/exits to the sequence considered as a

whole. No other invocations of ++ENTRANCE++ or
++EXIT++ may appear.

!!invocation!! A program invocation, as defined in section

EC.PGM.3.

EC.PGM.1.5 Undesired-Event-Dictionary

%%dest unknown%% An exit-dest in an exit-connector was neither (a)

a label preceding any other !!command!! in the
..constructed program.; nor (b) the name of an

exit to the !!constructed program!!.

%%duplicate name%% A name appeared twice in the same list.

%%illegal exit-list%% An exit-list of a !command! either (a) names
the same exit twice; or (b) is of the form

(Em:En) and m is greater than n.

%%no such entrance%% The name given as the entrance of a !!constructed

program!! is not used as a label preceding any
!comand!! in the !!constructed program!!.

48

0235a

bS

Release 7 EC.PGM. 1

%%not an exit%% The exit-connector contained an exit that is not
an exit of the program being invoked.

%nowhere to go% A program took an exit that was left unconnected.

%%port defined twice%% A !!constructed program!! contained more than one

!!invocation!! of ++ENTRANCE++ or ++EYTT++.

%%port not defined%% A !!constructed program!! did not contain an

!!invocation!! of ++ENTRANCE++, or did not
contain an !!invocation!! of ++EXIT++.

EC.PGM.I.6 System'Generation-Parameters: None.

0

S

49
0235a

. . .. • . : - :- -- : .. - ...

. . . o . /. . . -'I- " ' . . . - . .- - -- - " - - , - -

EC •PGM. 2

PROGRAM ENTITIES

EC.PGM.2.1 Introduction

This module provides mechanisms for declaring entities of type program and
assigning a value to them. The EC access programs are built-in program
constants; see EC.PGM.2.2.3.2.

EC.PGM.2.2 Interface Overview

EC.PGM.2.2.1 Declaring a Program type

To declare specific program types, use the ++DCL-TYPE++ program specified
in EC.DATA.2.1, with:

p2 = PGM;
p3 a pgm-attribute, defined in section EC.PGM.2.3;

and the other parameters as described there.

EC. PGM. 2.2.2 Creating -a -Program

To create an entity of the program typeclass, use ++DCL-ENTITY++ (see
* Section EC.DATA.2.2.1) with:

p2 = a program sDectype (builtin or user-declared);

p4 = a program literal, or a parameterless program constant
of spectype p2 ;

and the other parameters as described there.

To create an array of program entities, use ++DCL APRAY++ (see Section
EC.DATA.2.2.2) with:

p2 a program spectype (builtin or user-declared);

p4 = an array-init (defined in EC.DATA.2.3) of program
literals or parameterless program constants of

spectype p2;
and the other parameters as described there.

CRF 093 100 103 106 108 115 117 119 121
129 133 134 144 145 150 161 162 165
178 182 186 247 266

0236a

50

o .. . -, -. . - . --.- - --- .

Release 7 EC.PGM. 2

EC.PGM.2.2.2 Other Operations on-Program Entities

Program Parmtvpe ?arm-info 13ndesired-events

++RANKPGM++ pl:rank-pgm- %%inconsistent ogm

relation;I ranking%%

+SET+ pl:program;I !+source+ ! %%inconsistent ogms%%

++SET++ p2:program;O .+destinacion+!

Parameters

+SET+ pl and p2 must be program entities having the same attributes.

++SET++ Neither may have parameters.

Program-Effects

++RANK P1G4++ Let A and B be program entities previously declared using
++DCL ENTITY++, or arrays of program entities previously

4 declared using ++DCL ARRAY++. If (A,B) appears in the

rank-pgm-relation for this invocation of the program, then the

time it takes to invoke A will be no longer than the time it
takes to invoke B in the same program. (If A (B) is an array,

then read "all program entities in A (B)".) The rank relation

for all user-defined program entities is the union of the

rank-pgm-relations given in each invocation of this program.

The relation is transitive, antireflexive, and antisymmetric.

+SET+ As described in EC.DATA.2.5.
++SET++

EC.PGM.2.2.3 Built-in Objects

EC.PGM.2.2.3.1 Undesired-Event Programs

Every run-time UE specified in this document is a built-in uninitialized

program variable, which will be invoked when the error condition corresponding

to the UE definition is detected by the EC program(s) to which the UE

applies. It is up to the user to assign a value to each of these variables;

if one of these variables remains uninitialized at the time of its invocation

by an EC access program, the UIE %uninitialized pgm% is raised. The variables

are of the builtin spectype El.

For every run-time UE %x% defined in this document, there is a built-in

boolean variable Bx with the following properties:
(a) its initial value is $true$;

(b) it may not be used as a !source:!;

* (c) it may only be used as a !!destination!! in the ++SET++ program;

hence, ++SET++ is the only way its value may be changed.

(d) the EC will check for %x% only in code segments for which Bx is

$true$.
51

0236a6'

Release 7 EC.PGM. 2

EC.PGM.2.2.3.2 EC-Built-in Access Programs

Each EC access program is a built-in constant of the program typeclass.
For most programs, the spectype of the program is not named. If the access
program has no parameters, its spectype is El.

EC.PGM.2.3 Local Type Definitions

El A built-in specific type of the program typeclass. It is

characterized by a single entrance named ENTRANCE1 and a
single exit named EXITl.

pgm-attribute An ordered pair (!!list!! , !!list!!). The first
!!list!! names the entrance(s) to programs of the type;
the second !!list!! names the exit(s) of programs of the
type.

program An entity of the program typeclass previously declared via
++DCL ENTITY++, or a member of a program array previously
declared via ++DCL-ARRAY++, or a built-in EC access
program, or a program literal. A program literal is a
!!constructed program! as defined in section EC.PGM.1.

rank-pgm- A :!relation!! of user-declared program entities.
relation

EC.PGM.2.4 Dictionary: None.

EC.PGM.2.5 Undesired-Event-Bictionary

%%inconsistent pgms%% An assignment was attempted between entities

of different attributes; or, one of the
entities is not a parameterless program.

%%inconsistent pgm There are user-declared program entities x
ranking%% and y (not necessarily distinct) such that,

given the transitivity of the rank relation
for programs, both (x,y) and (y,x) are in the

relation.

0 %uninitialized pgm% An undesired event program variable has been

invoked by an EC program, but that program
was never given a value by the user.

EC.PGM.2.6 SystemGeneration-?arameters: None

52
CRF 267

.. 0236a

i.-- i,:. : !: .i::ii : . -. i .. i i - . : :- i i ;! . -.- .~~i i.._i ii

EC. PGM. 3
PROGRAM INVOCATION FACILITIES

EC.PGM.3.I Introduction

This module provides mechanisms for invoking programs (either built-in or

user-defined) as closed subroutines and, in the former case, passing
parameters to those programs.

EC.PGM.3.2 Interface-Overview

Syntax

The syntax for invoking a program is as follows:

invocation ::z [pgm parm-list]

For programs with no parameters, the parm-list is empty.

Effects

If an EC run-time access program is named, the effect is that which is
specified for that program. If an EC system-generation-time access
program is named, there is no run-time effect. If a user-defined program
is named, the effect is that of executing the run-time '.command!'s in the
!!constructed program!! that has been assigned to the program (either as
the initial value as described in EC.PGM.2.2.1, or subsequently as
described in EC.PGM.2.2.3) beginning at the entrance named. ,

Undesired- events

The following undesired events apply to program invocation:
%%constant destination%%

Uentrance incorrectly omitted%%
%%not an entrance%%
%%parm wrong type%%
%recursive call%
%%too few parms%%
%%too many parms%%

%%undeclared program%% -

CRF 247

53
0237a

- .' i ..' . o .

Release 7 EC.PGM. 3

EC.PGM.3.3 Local Type Definitions

entrance The name of an entrance to the program that is
the value of the invoked entity, previously
specified by ++ENTRANCE++ for that program.

parm-list
OR , parm parm-list

parm An !!actual parameter!! to the program.

pgm program

OR (program , entrance)
The first form may be used when the program

only has one entrance.

EC.PGM.3.4 Dictionary

!!actual parameter!! An entity that appears in the parameter list

of a program invocation. The forms that this
may take are specified in EC.DATA.2.4.

EC.PGM.3.5 Undesired Event Dictionary

%%constant destination%% The user has supplied a constant or a literal
as a !!destination!!.

%%entrance incorrectly The user has filed to specify an entrance in

omitted%% an invocation of a program that has more than
one entrance.

%%not an entrance%% The entrance named in the invocation is not an
entrance to the program being invoked.

%%parm wrong type%% The type of an !!actual parameter!! is not of
the type called for in the specification of
the program.

%recursive call% A program has invoked itself, either directly,

or indirectly through an invocation of a
program variable.

%%too few parms%% The programmer supplied a different number

%%too many parms%% of !!actual parameters!! than the number

called for by the program's specification.

%%undeclared program%% Program called or referenced is neither an EC

access program nor a program declared by the
user.

EC.PGM.3.6 System Generation Parameters: None

0237a 54

. . . .I. . '

EC. SMPH

SYNCHRONIZATION VARIABLES AND OPERATIONS

EC.SMPH.l Introduction

This module provides a run-time synchronization mechanism, semaphores,

with associated operations. They can be used where exclusion regions cannot

express the constraints. This mechanism is based on [BELP73]; the semaphore

operations are a more primitive version of Dijkstra's P and V [DIJK68].

Semaphores can also be affected by timers; see EC.TIMER.

EC.SMPH.2 Interface Overview

EC.SMPH.2.1 Creating a Semaphore

To create specific semaphore types, use the ++DCL TYPE++ program

specified in EC.DATA.2, with:
p2 = SEMAPHORE; S

p3 a semaphore-attribute, defined in EC.SMPH.3;

and the other parameters as described there.

4 Semaphore entities must be declared before they can be used. Use the

++DCLENTITY++ program of Section EC.DATA.2.2, with:

p4 (the initial value) given as an integer literal;

and the other parameters as described there.

To create an array of semaphores, use the ++DCL ARRAY++ program of

EC.DATA.2.2.2, with:
p4 as described there, with initial values given as

integer literals;
and the other parameters as described there.

*

CRF 110 130 154 188 189 258 266

55
0260a

Im

Release 7 EC.SMPH

EC.SMPH.2.2 Access programs

Program name Parm type Parm Info Undesired Events

+DOWN+ pl:semaphore;IO %range exceeded%
+UP+

+SET+ pl:semaphore;I

p2:semaphore;O

+PASS+ pl:semaphore;I None.

Program effects

In this section, we characterize informally the effects of the
synchronization operations. For a more precise description, see the formal

specifications in [TRACE]. "State(self)" means the state of the process in
which the synchronization operation appears.

Terminology:

Term Explanation

state Either "active" or "suspended".
state(self) the state of the process executing the operation
state(waiters) the state of all processes in the middle of a +PASS+

operation for that semaphore 9

Effect on the integer
Operation equivalent of the Effect on process state(s)

named semaphore

+UP+ incremented by 1 if the semaphore gteq 0 then

state(waiters) := active*

+PASS+ none if the semaphore It 0 then
state(self) : waiting

+DOWN+ decremented by 1 none

+SET+ p2 set to value of pl same as if the value of p2 were

arrived at by the smallest possible
number of consecutive operations of
+UP+ and +DOWN+.

a change in "state(waiters)" means that all the other processes in
pending +PASS+ operations on that semaphore may be made active in an
unspecified order. A process that becomes active may make the semaphore

negative, causing any other processes in the midst of a +PASS+ to remain in
the waiting state. Processes will be activated and complete the pass as long
as the semaphore is nonnegative.

CRF 175 176 207 208 242 56

0260a

Release 7 EC. SMPH

EC.SMPH.3 Local Type Definitions

semaphore A run-time synchronization object created

previously by a user program by calling ++DCL

ENTITY++; or one of the EC's built-in semaphores

listed in EC.INDEX.

semaphore-attribute An ordered pair of integers specifying the lower

bound and upper bound of the type.

EC.SMPH.4 Local dictionary: None
S

EC.SMPH.5 Undesired Event Dictionary: None

EC.SMPH.6 System Generation Parameters

Parameter Type Definition

#max semaphore ascon# semaphore Maximum allowable magnitude for a
semaphore ascon or literal.

#max semaphore loadcon# semaphore Maximum allowable magnitude for a
semaphore loadcon.

#max semaphore range# semaphore Maximum allowable value for

absv(upper bound - lower bound) for

a semaphore type.

CRF 119 129 187 209 214

57

0260a
S

" - - "- '-,.. ' -i .

o-t---' --

I

EC. STATE

EXTENDED COMPUTER STATE

EC.STATE.l Introduction

This module controls and reports transitions between Extended Computer
states.

EC.STATE.2 Interface Overview

EC.STATE.2.1 Access programs

Program name Parm type Parm info Undesired Events

+SFAILSTATE+ -- None

EC.STATE.2.2 Events signalled by incrementing a semaphore

Event Semaphore incremented when event occurs
T=T.power up+:) ECPOWUP
@T(:+failed state+:) ECFAILED S

Program and Event effects

+S-FAILSTATE+ The Extended computer enters its failed state,
increments ECFAILED, and executes an internal

shutdown procedure.

@T(!+failed state+!) Programmers should assume that when #close down time#
has elapsed after this event, no more software
actions can occur.

@T(!+power up+!) The Extended Computer has entered the operating state
and is functioning correctly. All demand processes
are started.

IEC.STATE.3 Local Type Definitions: None.

D

i" CRF 129

I S-

7723a 58

*. . .. ' - * - * * .

Release 7 EC.STATE

EC.STATE.4 Dictionary

Term Definition

!+power up+! computer is in the operating state and may be

assumed to be functioning properly.

.+failed state+! computer is malfunctioning.

EC.STATE.5 Undesired Event Dictionary: None.

EC.STATE.6 System Generation Parameters:

Parameter Tye Explanation

#close down time# timeint The minimum expected time interval between

the moment that the extended computer

enters failed state and the moment when no

more software actions may occur.

6J

a CRF 214

59

7723a

EC.TIMER

TIMER FACILITIES

EC.TIMER.l Introduction

This module provides facilities for measuring real time intervals via S

timers. A timer is a timeint variable that, when running, will increment or

ecrement at a rate commensurate with real time.

A timer may be used anywhere a timeint variable may be used, but there

are two additional operations, START TIMER and HALTTIMER, that may be used.

START TIMER increments or decrements the timer until a limit is reached. S

When a timer is declared, the user may choose between timers that

increment and timers that decrement, as well as between timers that halt when

they reach their limit and timers that "wrap around". The user may also

specify a semaphore that will be incremented when the timer reaches its limit.

EC.TIMER.2 Interface Overview

EC.TIMER.2.1 Declaring a Timer

Timers are a numeric type class, as described in EC.DATA.I. To declare

specific timer types, use the ++DCLTYPE++ program specified in EC.DATA.2.1,

with:
p2 = TIMER;
p3 a timer-attribute, defined in section EC.TIMER.3;

and the other parameters as described there.

Timer entities must be declared before they can be used. Use the 5

++DCL ENTITY++ program of Section EC.DATA.2.2.1, with:
p3 - VAR; and

p4 the initial value given as a timeint literal;

and the other parameters as described there.

4To declare an array of timers, use the ++DCLARRAY++ program of

EC.DATA.2.2.2, with:
p3 = VAR;
p4 as described there, using timeint literals as initial

values;

and the other parameters as described there.

4S

CRF 110 154 188 189 238 266

4S

60
7721a

4

, 4 . . . , - .

Release 7 EC.TIMER

EC.TIMER.2.2 Access programs

Program name Parm type Parm Info Undesired Events

++TIMER EVENTS++ pl:timer;I timer name None.
p2:semaphore;I limit value event

+START TIMER+ pl:timer;I timer name
+HALT T1IMER+

EC.TIXER.2.3 Timer tests

Program name Parm type Parm Info Undesired Events

+TEST TIMER+ pl:boolean;O !+timer test result+! None

Program Effects

+HALTTIMER+ Causes running timer pl to halt. Halting a non-running
timer has no effect.

+START TIMER+ Causes the value of pl to be changed in value in real
time. The value will be increased or decreased according

to the declaration of the specific type to which pl
belongs. According to the declaration of the specific

timer type to which pl belongs, the timer will either
stop when it reaches its minimum (maximum) value, or
"wraparound"; i.e., continue from its maximum (minimum)

value. Starting a running timer has no effect.

++TIMER EVENTS++ Causes an event to be signalled (by incrementing p2)

every time pl reaches its minimum range value (if pl is a

decrementing timer) or its maximum range value (if pl is
an incrementing timer). -

+TEST TIMER+ Reports the results of the timer hardware tests. If the

test is performed periodically or independent of user

request, the result given will be that of the most recent
test. If the test is performed on request, the command

will initiate the test and report the result when the
test is complete. It may interfere with normal operation
of timers and input/output commands in unpredictable ways.

CRF 129 175 263

61
7721a

4S

Release 7 EC.TIMER

EC.TIMER.3 Local Type Definitions

timer The name of a time-keeping mechanism declared

previously by a user program.

timer-attribute An ordered 5-tuple of the form

(timeint, timeint, timeint, HALT/WRAP, UP/DOWN)
The first three elements specify the lower bound,

upper bound, and minimum !!resolution!!, respectively,

of entities of the type. The fourth element is either

"HALT" (meaning that the timer should stop when it

reaches a limit) or "WRAP" (meaning that the timer

should wrap around when it reaches a limit). The

fifth element is either "UP" (meaning that the timer

increments when started) or "DOWN" (meaning that the
timer decrements when started).

EC.TIMER.4 Dictionary

.+timer test result+! true iff the timer hardware passes built-in test.

EC.TIMER.5 Undesired Event Dictionary: None.

EC.TIMER.6 System Generation Parameters

Parameter Type Definition

#max timer error# real maximum allowable error rate of all

timers, given as a fraction of the time
interval measured.

imax timer range# timeint maximum allowable value of absv(upper
bound - lower bound) for a timer type.

#max timer ranres ratio real maximum allowable magnitude of the

ratio of a timer type's !range!! to

its !resolution!!.

#min timer resolution# timeint for all timers, the minimum resolution.

* CRF 119 175 184 214 263

62
7721a

EC.INDEX INDICES TO THE DOCUMENT

This section provides the following indices to the facilities described
in this document:

Access programs

Builtin objects

Events signalled by incrementing a semaphore
S

Types provided

Dictionary terms

Undesired events

System generation parameters

Reserved words

CRF 157

63
8574a

- - - . a , i "

6Release 7 EC.INDEX

Access Programs

Access program Where-defined

+ABSV+ SC. DATA
+ADD+ EC.DATA
+ANDfl+ SC.DATA
+B-REAL 2GOMP+ EC.DATA
+B REALPOSITIVE+ SC. DATA
*B'REASIGN4AG+ EC.DATA
+CAT+ EC. DATA
+COMPLE+ EC.DATA
++DPROCESS++ EC.PAR. I
++DCLARRAY++ EC.DATA
++DCL 'DATA-SET.+ EC. DATAC++DCL7ENTITFY++ EC.DATA
++DCLTYPE++ SC. DATA
+DISABLE+ EC. 10
+-DIV+ EC.DATA
+DOWN+ EC.SMPH

6++ENTRANCE++ EC.PCM.
+EQ+ (bitstring) SC. DATA
+EQ+ (numeric) EC. DATA
+-ENABLE+ SC. 10
++EXCLUSIN++ EC.PAR. 2
++EXIT++ EC.PGM. 1
+G SUCCESS+ EC. 103
'GEQ+ EC.DATA

+GT+SC. DATA
+HALT TIMER+ EG.TIMER

+LEQ+-SC. DATA
+LT+ EC.DATA

* +MINUS+- EC.DATA
+MUL+ EC.DATA
+NAND+ SC. DATA
+NEQ+ (biestring) SC. DATA
+NEQ+ (numeric) SC. DATA
+NOT+ EC.DATA

* ~+OR+, SC. DATA
++P PROCESS++ EC.PAR. I
+PASS+ SC. 9MPH
+R-BITS 2COMP+ EC.DATA
+R BITSPOSTIIVE+ EC.DATA
+RBITSSICNMAG+ EC.DATA

* +R TIME7HOUR. SC. DATA
+RTIMEMIN+ EC.DATA
*R TIME MS+ SC.DATA

CRF 167 232 247 266

8574a 64

. .U.

Release 7 EC. INDEX

Access Programs (continued)____I

Access program Where-defined

+RTIME-SEC+ EC. DATA
++RANK- DATA++ EC.DATA

++AKDATASET++ E C. DATA
+-+RANKI PGM++ EC.PCM. 2
++REGION+. EC. PAR. 2 40
+REPLC+ EC.DATA
4SFAIL-STATE+ EC. STATE
+SET+ EC.DATA, EC.SMPH, EC.PGM.2
++SET+-+ EC.DATA, EC.PGM.2 -*
+SHIFT+ EC.DATA
+SIGN+ EC. DATA
+STARTTIMER+ EC.TIMER
+SUB+ EC. DATA
T- REAL HOUR+ EC.DATA

+T7REAL-MIN+ EC.DATA
4.i REAL MS+ E C. DATA
4-T REAL SEC+ EC.DATA
+TEST AC. EC. TO
+TEST CSA+ EC. TO

+TEST CSB+ EC. TO
+TESt-DC+ EC. tO
+TEST-DIOWI+ EC.IO
+TESTDIOW2. EC. 10
+TEST-DIOW3+ EC. TO
+TEST-INTERRUPTS+ EC.PAR.1
*TEST MEMORY+ EC .MEM
+TE STTIMER+ EC.TIMER
*TESTXACC+ EC. 10

4 +TEST-YACC+ EC. tO
+TEST-ZACC+ EC. tO
+'-TI~4REVENTS++ EC.TIMER

+-UP+ EC.SMPH .-eXOR+i EC.DATA

CRF 097 118 167 182 207 232 257 266

8574a 6

Release 7 EC.INDEX

Builtin'Objects

Name Type of'object Where"defined

DIV FAIL program EC.DATA.2.6.2

ECFAILED semaphore EC.STATE
ECPOWUP semaphore EC.STATE

ENBLSEM semaphore EC.IO
ENTSWSEM semaphore EC.IO

KBINTSEM semaphore EC.IO
MARKSEM semaphore EC.IO

NEXT PERIOD semaphore EC.PAR.1
REG data object EC.DATA.I.4

All i/o data items bitstring EC.IO
All undesired events program EC.PGM.2

All EC access programs program EC.PGM.2
Boolean UE variables boolean EC.PGM.2

Events Signa~led-by-Inerementing'a'Semaphore

Event Semaphore Where-de fined

@T(!+/ENTERSW/ occurred+!) ENTSWSEM EC.1O (Appendix 5)
@T(!+failed state+:) ECFAILED EC.STATE

@T(!+/KBDENBL/ occurred+!) ENBLSEM EC.IO (Appendix 5)
@T(!+/KBDINT/ ready+!) KBINTSEM EC.IO (Appendix 5)

@T(!+/MARKSW/ occurred+!) MARKSEM EC.O (Appendix 5)
@T(!+power up+!) ECPOWUP EC.STATE

In addition, users may request timer-related
events by supplying their own semaphores. See EC.TIMER

CRF 182 232 247 265

8574a 66

5

Release 7 EC. INDEX

Types Provided

Type-name Wdhere -defirted

array-init EC.DATA
attribute EC. DATA
binding EC. DATA
bitstring EC.DATA
boolean EC. DATA
convar EC.DATA
data set-rein EC.DATA
dataitem EC. TO
El EC.PGM.l
entr ance EC.PGM.3
exclusion-relation EC.PAR. 2
indexset EC.DATA
integer EC.DATA
invocation EC.PAR.1
name EC. DATA
parm EC. PGM. 3
parm-lis t EC.PGM.3
pgm-attribute EC.PGM.2

pointer EC. DATA
program EC.PGM.2I
rank-data-relation EC.DATA
rank-pgm-relation EC.PGM.2
real EC.DATA 1
semaphore EC.SMPH
semaphore-attribute EC. SMPH
spectype EC.DATA
statement-list EC.PAR.2
timeint EC.DATA
timer EC. TIMER
timer-attr ibute EC.TIMER
typeclass EC. DATA
vers ion EC.DATA

In addition, Appendix 5 lists a set of builtin
bitstring spectypes.

CRF 1.15 1.18 181 1.82 195 247 266

85 74a
6

Release 7 EC.tNDEX

Bictionary-Terms

Term Where -defined

!actual parameter!! EC.PGM.3

2comuand2 EC.PGM.1
!!constructed program!! EC.PGM.I

!+deadline+! EC.PAR.1
!+destination+! EC.DATA

!!destination: EC.DATA
!+/ENTERSW/ occurred+! EC.IO

!+failed state+! EC.STATE
+fall back value+! EC.DATA
!hardest attributes!! EC.DATA
!+interrupt test result+! EC.PAR.I

!!invocation!! EC.PGM.1
!+io test result+! EC.IO
!+i/o success+! EC.IO
!+/KBDENBL/ occurred+! EC.IO

!+/KBDINT/ ready+! EC.IO
'list" EC.DATA

!+/MARKSW/ occurred+! EC.IO
!+max CPU time req+! EC.PAR.l
!+max div result+! EC.DATA
!+memory test result+! EC.MEM
+on/off+ EC.PAR.1
!+period+! EC.PAR. I
!+power up+! EC.STATE
!+radix pt ident+! EC.DATA

!!range.! EC.DATA
!!relation!! EC.DATA

!!resolution:! EC.DATA
+source+! EC.DATA

!!source" EC.DATA
+starting event+! EC.PAR.I

!+timer test result+! EC.TIMER
!+user threshold+! EC.DATA

i

* CRF 086 154 182 206 247 263 265 267

8574a 68

Release 7 FC.INDEX

Undesired- Events

UE name Where-defined Alse-appears -in

%already disabled% EC.IO

%already enabled% EC.I0
%assertion violation% EC.DATA

%%attribute not allowed%% EC.DATA
%%attribute not given%% EC.DATA

%%constant destination%% EC.PGM.3
%%dest unknown%% EC.PGM.I

%divide by zero% EC.DATA
%%duplicate name%% EC.PGM.1

%%entrance incorrectly omitted%% EC.PGM.3
%illegal array index% EC.DATA
%%illegal exit-list%% EC.PGM.I

%%illegal index set%% EC.DATA
%%illegal ptr target%% EC.DATA
%illegal round/trunc% EC.DATA

%%illegal synch%% EC.PAR.I
%%inappropriate attributes%% EC.DATA

%%inconsistent data ranking%% EC.DATA
%inconsistent lengths% EC.DATA

%%inconsistent pgm ranking%% EC.PGM.2
%%inconsistent pgms%% EC.PGM.2

%%inconsistent register access%% EC.DATA
%inconsistent time parms% EC.PAR.l

%%index not allowed%% EC.DATA
%left truncation% EC.DATA

%%length too great%% EC.DATA
%%literal or ascon too big%% EC.DATA

%%loadcon too big%% EC.DATA
%max CPU time exceeded% EC.PAR.l

%mdr outside range% EC.DATA
%missed deadline% EC.PAR.1

%%multiple qualifiers%% EC.DATA
%%name in use%% EC.DATA EC.PAR.2, EC.PGM.1
%%no such entrance%% EC.PGM.1
%nonexistent position% EC.DATA

CRF 102 103 107 1l1 119 123 127 128 143 144
145 147 158 169 170 173 182 183 186 209

221 240 247 262 264

8574a 69

6 Release 7 EC.INDEX

Undesired-Events (continued)

UE name Where -defined Also-appears -in

%%not an entrance%% EC.PGM.3

%%not an eit%% EC.PGM.1
%nowhere to go% EC.PGM.1
%%parm wrong type%% EC.PGM.3
%%port defined twice%% EC.PGM.I
%%port not defined%% EC.PGM.1
%range exceeded% EC.DATA EC.SMPH
%%range too great%% EC.DATA
%%ranres too great%= EC.DATA

%%read/write-only violation%% EC. 10
%read-write violation% EC. 1O
%recursive call% EC.PGM.3
%%REG not allowed%% EC.DATA
ores too fine%% EC.DATA
%%subrange not allowed%% EC.DATA
%%too few parms%% EC.PGM.3
%%too many parms%% EC.PGM.3
%%undeclared operand%% EC.- CTA
Uundeclared program%% EC.PGM.3 EC.PAR.l

%%undeclared region%% EC.PAR.2
%%undeclared spectype%% EC.DATA
%%unimplemented attribute Appendix 4

via variables%%
Uunimplemented binding%% Appendix 4
%%unimplemented disabling%% Appendix 4
%%unimplemented EXACT-REP resolution%% Appendix 4
%%unimplemented multi-exit EC Appendix 4

*access program%%
%%unimplemented pgm ptr%% Appendix 4
%%unimplemented variable period%% Appendix 4
Nunimplemented variable Appendix 4

shift length%%
%unimplemented variable substring= Appendix 4

6 %%unimplemented varying EXACT-REP%% Appendix 4
%unititialized pgm% EC.PGM.2

%%unknown initial value%% EC.DATA
%%unknown operand in attributes%% EC.DATA
%%variable parm%% EC.DATA
%%variable timing parms%% EC.PAR. I
%%varying constant%% EC.DATA
%Uwrong init value size%% EC.DATA

%%wrong init value type%% EC.DATA

CRF 104 107 119 165 172 175 198 205 209

212 232 247 249 252 259

8974a 70

* o

Release 7 EC.INDEX

System- Generation Parameters

Parameter name Bata-tvpe Where-defined

#close down time# timeint EC.STATE

-max bits length# integer EC.DATA

:max i/o time (data item name)# timeint EC.IO

#max real ascon@ real EC.DATA

#max real loadcon# real EC.DATA

#max real range# real EC.DATA
#max real ranres ratio# real EC.DATA

#max semaphore ascon# semaphore EC.SMPH

Omax semaphore loadcon# semaphore EC.SMPH

#max semaphore range# semaphore EC.SMPH

#max timeint ascon# timeint EC.DATA

#max timeint loadcon# timeint EC.DATA

4kmax timeint range# timeint EC.DATA
#max timeint ranres ratio# real EC.DATA

4max timer error# real EC.TIMER

4max timer range# timeint EC.TIMER O
-,..ax timer ranres ratio# real EC.TIMER

#min real resolution# real EC.DATA

#min timeint resolution# timeint EC.DATA

i#min timer resolution# timeint EC.TTMER

#nbr fltrec elements# integer EC.IO

S

I

7

CRF 209 221 222 265 •

g574a 71 --

]

- . .2 -... P Ca- "

Release 7 EC.INDEX

Reserved Words

Word Tvpe-of-word Where-defined

ASCON Enumerated type value EC.DATA
BITS Typeclass EC.DATA
BOOLEAN Builtin spectype EC.DATA

DEREF Keyword in pointer use EC.DATA
DOWN Attribute keyword EC.TIMER
EXACT-REP Attribute keyword EC.DATA
EXITI Exit of certain EC programs EC.PGM.2
tfalse$ Boolean value EC.DATA
FIX Enumerated type value EC. DATA
HALT Attribute keyword EC.TIMER
INTEGER Typeclass EC.DATA
LOADCON Enumerated type value EC.DATA
NOSTORE !!destination:! identifier EC.DATA
PGM Typeclass EC.PGM.2
PTR Typeclass EC.DATA
REAL Typeclass EC.DATA
REF Keyword in pointer literal EC.DATA
ROUND Operand keyword EC.DATA
-SAVE Keyword EC.DATA.1.4
SEMAPHORE Typeclass EC.SMPH
TIMEINT Typeclass EC.DATA
TIMER Typeclass EC.TIMER
$true$ Boolean value EC.DATA

TRUNC Operand keyword EC.DATA
UP Attribute keyword EC.TIMER
VAR Enumerated type value EC.DATA
VARY Enumerated type value EC.DATA
WRAP Attribute keyword EC.TIMER

*i

CRF 157 181 182 184 195 239 247

8574a 72

" - S
• °". • • ,• - . ,o. "-.1

APPENDIX I

INTERFACE DESIGN ISSUES

73
8944a

Appendix I Design Issues
Release 7

EC. DATA

1. We decided to give the prograimmer some control over the register, so
that he could take care of reducing register loads and stores by

being careful with the order of operations. The alternatives we
considered were notations much closer to high-level programming

languages. These notations make complex expressions easier to read,

but require a more sophisticated translator if we are to make

efficient use of registers.

2. There is a danger with fixed point division that the results will be

meaningless; this problem occurs when the numerator has more
significance than the denominator. An assembly language programmner

has some information that he uses to avoid this danger. The only way

we can get this information is to ask the progranmmer to provide it,

since it is dependent on the context and meaning of the division.

3. Two ways were proposed for user programs to indicate the radix of the

number for a bitstring-real conversion:

* a. by giving an integer literal "i" such that the rightmost bit of

the bitstring represents 2 raised to the ith power;

b. by giving an integer literal "i" such that i is the number of the

bit immediately to the right of the radix pt.

Alternative 2 most closely resembles the scaling notation used in the
current program, but we chose alternative 1 because most designers
felt that it was easier for newcomers to understand and remember.

4. There are two main reasons for including variables whose attributes

6 may vary:

a) they can be reused at different points in a computation, thereby

reducing the amount of space that must be reserved;

b) they allow the same code to be used to manipulate values in

widely differing ranges.

5. We require the programmer to specify a type For results stored into

and retrieved from variables. We considered permitting, but not
requiring, specification of the type of intermediate results and

letting the Extended Computer determine the specific type when the
* programmer omitted the specification. We ruled out this alternative

because it requires a run-time support package to keep track of the
specific types of varying-type variables.

74

8944 a

Appendix 1 D~esign Issues
Release 7

6. We considered several alternatives for providing registers:

a) Having a common register for all type classes. This register can -
be very simply mapped to the accumulator.

b) Having a separate register for each type class, implementing them
with the single accumulator, and leaving the problem of interference
between them up to the programmer. This was originally accepted
because it is the simplest alternative that provides type checking for
results in the register. However it gives away the underlying
limitation, and imposes restrictions on the programmer that would not
be needed if the underlying hardware had more registers or if there
was multi-processor hardware.

C) Having a separate register for each type class, implementing them
with the single accumulator, and completely automating the problem of
interference between the registers, freeing the progranmmer from any
concern about it. This could be done by saving and restoring the
accumulator contents whenever a different register is used. While it
would be the most convenient alternative, the overhead would be
prohibitive.

d) Having a separate register for each type class, implementing them
with the single accumulator, and partially automating the problem of
interference between the registers. The programmer would have to
indicate when he wants to reuse results in a particular register and
when he does not care.

We chose alternative (a) because it is the simplest and treats a
register as a variable with varying attributes.

7. We felt it important that the EC implementation avoid saving contentsS
of a register if they would never be needed and therefore put that
burden on the programmer rather than try to do register usage
analysis. We considered several ways to allow the programmer to
specify whether or not the value in the register would be needed
again. Among them:
a. Associate the information with the name of the register. 9
b. Associate the information with the name of the operation.

We chose (b) because we did not want to have two names for the same
object. Further, it allows us to localize the information in a place
related to the operations (of which it is a property) rather than the
registers.

8. An earlier version of this interface included operations such as
squareroot, exponentiation, log, and root-sum-squared. We decided to
move these operations to another module because they can be
implemented in a machine-independent fashion. These concerns do not
belong in the Extended Computer.

75
8944a

Appendix 1 Design Tssues
Release 7

9. An earlier version of this module had two bitstring sizes,
corresponding to halfwords and fullwords on the target computer. We
then decided to have only one size because it results in a simpler
data type. We finally decided to have bitstrings of any size because
we noted that insisting on a fixed but unknown size made it difficult

to write efficient but machine independent code. The present choice
makes the interface unbiased with respect to word length and puts the
burden for effective use of the actual hardware on the implementor of
the EC.

10. We considered specifying bitstring sub ranges in terms of
(starting point, length) instead of (starting point, ending point).
One parameter fewer would be needed on bitstring compares and

transfers, and we could avoid the unmatching lengths undesired event.
However, we found that people working with bitstrings find it easier
to work by identifying the boundary bits.

Il. We considered having the EC monitor arithmetic operations for

excessive loss of significance but decided that this was a programmer
responsibility and could be done in a machine independent way. This
eliminated the undesired event %too much lost significance%.

12. We considered relegating time to the application data type module and

implementing it in terms of reals. We chose to include it in the EC
because the concept of time is basic to the specification and

implementation of real-time processes in the EC and because the A

representation should be that used in the hardware timers.

13. We considered allowing array declarations to be shared by several
variables. We found this not particularly useful unless one has

operations that take whole arrays as operands.

14. We decided not to allow array elements to be structures. We lose the

ability to have arrays of arrays, but if this were necessary, it could
be implemented in a machine independent way and could be provided by

some other module.

15. We considered allowing index sets to be more general, but this seemed

unnecessary even for future extensions. Such extensions could be done
using the present arrays and the extension would be machine
independent. We also considered restricting the lower array bound to
be either 0 or 1. This seemed unnecessarily restrictive, especially

as it may be desirable to select array indices at sysgen time.

I
16. We considered fixing the value of the array index set at declaration

time, system generation time, or run time. Declaration time is too
restrictive; it is sometimes useful for the array index set to be a
system generation parameter. Run time fixing reauires dynamic storage
allocation, which is not needed or practical for avionics applications.

0

'6

8Q4Aa

Appendix 1 Design Issues
Release 7

17. We rejected the option of operations that apply to arrays as units,
e.g. multiplying arrays by scalars or arrays by arrays. Such
operations depend on mathematical algorithms, rather than on
characteristics of the computer and can be implemented in a
machine-independent way. The present design is the simplest way to
hide the hardware addressing mechanism. Fxtentions can be provided by
user programs.

18. We considered not allowing arrays of variables whose attributes vary
at run-time as it might simplify the implementation if all elements
had the same attributes at all times. Although the implementation of
arrays with varying attributes will probably be less efficient than
arrays of fixed attribute elements, this feature is occasionally

4needed. 0

19. More than one reviewer asked if the Extended Computer shouldn't
provide stacks as a builtin data structure. If we need stacks, they
can be provided using the current EC facilities. The interface to
those facilities (probably in the ADT module) would be carefully
modelled after the EC. Should we transfer to stack machine, we could
move the interface into the EC, and user programs would not have to
change. This rationale also applies to floating point arithmetic,
multi-dimensional arrays, array operators, etc.

20. Entity names are global in the EC. This is because that is what
avionics computers provide; one can limit the scope of a name (if
desired) in a machine-independent way (e.g., using naming conventions,
or a pre-processor).

21. We recognize the need to represent data most efficiently for the
operations in which it will be used. Since only users can determine
hcw a datum will be used, the best the EC can do is provide a menu of
representations and tell the users what each one is best and worst at
doing. Hence, the "version" attribute in specific types.

22. We considered allowing non-homogenous arrays; that is, arrays with
different specific types. However, that would mean that if an operand
was a member of such an array, we couldn't discover its type until
run-time. Because of this great run-time penalty, we deleted the

capability.

8944a

Appendix I Design issues

Release 7

23. The +SHIFT+~ program used to take a list of bitstrings as its input

parameter; it shifted the concatenation of the list. The idea was to
T allow the same 'Kind of shifting that occurs in the TC-2 between

adjacent registers. However, it became clear that the implementation
of such a feature would simply +CAT+ the strings together first

anyway, and shifting the result, and we would gain no efficiency. So
for consistency, +SH1IFT+ now takes a single source parameter.

*24. We have made the decision to design the EC to be implemented on a
machine that supports fixed-point arithmetic and not floating-point

arithmetic. The resolution required in a numeric variable is
expressed in our machine as a constant, independent of the magnitude

of the value of the variable. In fixed-point represenatations, there

M is a uniform distance between values that can be represented exactly.

in floating-point, the distance is small for small values, large for

Were we to go to a floating-point machine, we would need to enhance
the interface, because fixed-distance representations on a floating-
point machine would be very inefficient. We would let the user

specify a worst-case distance between representatives as a fraction of
the value of the variable. The implementation would choose a

representation so that the mantissa of the number had a resolution (in

the current sense) less than the fraction.

The present interface mav be considered a subset of a more complete
FA interface in which we let the user specify resolution either in

absolute form (in which case a fixed-point representation would
probably be chosen) or in relative form (in which case we would

represent the number using the floating-point hardware, or by
simulating floating-point). The present interface reflects our

decision to make EC apply to typical avionics machines, which are

0 fixed-point.

25. The pointer typeclass is a recent addition, included when we realized

that we had denied users the capability found in all von Neumann
machines of indirect referencing, or postponing operand specification

until run-time. Since the goal of EC was to abstract from the
idiosyncrasies of particular avionics computers, yet provide the
capabilities that they provide, this was clearly an appropriate
addition to the EC architecture.

CRF 148 131 210

8944a

7

Appendix l Design issues

Release 7

26. When declaring a specific type, it used to be an error to specify a

version that did not exist for that particular type. We now say

merely that the EC will pick one of its own choosing in that case.

That is so that should an Application Data Types type ever migrate
into the EC because of a change that enhances the type repertoire of

the hardware, we would like for user programs to remain correct.
However, the versions that we would provide in the EC for that type

might be entirely different than what were provided for it in the ADT.

10

CRF 26

79S

8947a

Appendix I einIse
Release 7Degnsus

EC.TO

1. We considered five alternatives for handling retries of unsuccesful
1/0 operations:

1) having two different commands for these two cases: one that

retries, either once or until it succeeds, and one that instead of
retrying returns a failure indicator;

2) having a parameter on the command specifying how often to retry,
and having the command return a failure indicator;

3) having a failure indicator, and having the user program try again
if it needs to retry transmission;

4) having a special "retry" command, with a label operand, which the
user can call to have the I/O command with the specified label4 retried.

5) omitting the failure indicator for the data items where it is not

currently used.

The first and fourth alternatives yield a more complicated interface

than the third and provide no extra capability. The second results in
extra (non-machine dependent) programs in the'EC. The fifth

alternative would build knowledge of the application into the Er. The
third alternative relegates decisions about retrying to the user

programs, and we chose this one.

3. We have considered four alternatives for handling the discrete inputs

C and outputs.

Alternative 1: Treating input and output differently, allowing user

programs to use a READ command to read in entire discrete input words,
but providing a special WRITEBOOL command so that user programs could

write individual bits appearing in the discrete output words.

Alternative 2: Adding a READBOOL command that would read in a

discrete input word, pick out the bit for a particular discrete input
data item, and return it as a boolean value. Alternative 2 was

rejected because not all the data items in discrete input words have

4boolean values. For example, /IMSMODE/ has five values, one for each

switch position.

Alternative 3: Provide the user programs with a way to specify a

range of bits within both a discrete output word that they want to
write out and within an input word, so that they can request

individual discrete inputs in a symmetrical fashion. Alternative 3
leaves some of the responsibility for non-interference between

discrete outputs to the device interface modules, since they must
specify the correct ranges.

80

8944a

Appendix 1 Design Issues

Release 7

Current: All of the above alternatives were based on the decision

6 that the EC would sometimes identify outputs and inputs by class name

rather than the individual data item name. This was done both for

efficiency reasons and because it was believed that knowledge of the

location of a data item within a discrete input or output word was

device dependent rather than computer dependent. A much more

consistent interface is achieved by always using the data item name.

The EC implementer is now responsible for knowing the identity of a
TC-2 1/0 item, but not responsible for knowing its meaning. The

efficiency problems are resolved by allowing a single command to take
a list of parameters so that the EC implementation may perform

operations to a single 1/0 word simultaneously rather than
sequentially. This also eliminates special treatment of double data

items.

4. We originally designed the reading of intermittent data with an access

function that indicated whether or not the data were available and an
undesired event if a user program tried an intermittent read operation

when the data were not available. This seemed dangerous, since a

slight timing difference could cause an undesired event, and the user

programs could not avoid the lYE. Instead, we have chosen to allow the
read command at any time. If the data are not available, the success

indicator returns false. This is consistent with our general policy

that it should be 5os--Tble to avoid UEs by correct programming.

Because the intermittent data is read just like any other, we decided0
not to have a separate command name for it.

5. We considered having serial inputs identified by class names ratherI

than by individual data item name. Interpretation of the
identification bits was considered the responsibility of the
associated device interface module. We decided that identification of

the data item is an EC responsibility, but interpretation of the item

remains the responsibility of the DIM.

6. Note that sometimes an output should go to more than one data item.

We originally handled this by letting users repeat sets of parameters

to i/o commands. and saying that the order was unspecified. Since we

no longer have i/o commands per se, but rather use assignment (and
other bitstring) operations, we have expanded our general assignment .
Statement so that many sources and many destinations can be given at

once; the assignment happens in an linspecified order.

8944a

Appendix I Design Tssues
Release 7

7. We promise that an output transmission will occur when an enabled

output data item is used as a destination. We do not say when an

input transmission will occur. This is because we can get away wi~h

it in the latter case, but not in the former (because an output

transmission has visible effects). We hide when input takes place

because someday there may be direct-memory-access input, and the

computer really won't be able to control when an input item changes

value.

8. We did not include the names of the data items in the main document,

because we wanted to emphasize the fact that the architecture of the

Extended Computer's i/o operations doesn't depend on those particular

names. If the design of the Extended Computer were used with the TC-2

for some other application, the names of the data items would not be

part of the technology transferred.

9. We chose special names for the data items' bitstring spectypes because

we felt that the representation for each was likely to change in the

event of a device replacement, and probably wouldn't be the same as

that of a non-data-item bitstring anyway. For instance, we might

choose to represent "normal" bitstrings as contiguous and

left-justified within a word, but we clearly don't have this option

with most of the data items (see //FPANGL//, for instance).

10. The signal converter is tested by sending particular values to it and

then reading back the results of the internal signal converter
amanipulation on the values. The proper relationship between the

values sent out and the value read in can be characterized by a set of

equations. The design issue is how much of the knowledge should be

hidden within this module: both the equations and the choice of test

values, just the equations, or neither. The equations are based on

the behavior of the channel, and therefore belong within this module.

The choice of values could be considered part of the software

requirements; they affect the displays seen by the pilot, and are

documented in section 4 of the requirements. However, the choice of

these particular values is partly influenced by hardware

characteristics. Further, if they are not hidden, the interface to

this module becomes much more complex. We have chosen to hide all of

the information even though it means hiding some details about the

required functions in this interface. We assume that the test values

are likely to change with the hardware and not for any other reason.

11. We decided to hold user programs responsible for avoiding interference

between the diagnostics and the regular commands rather than build

monitors into the I/0 commands and diagnostics. The diagnostics are

not expected to be run when the software is doing anything else.

Monitors impose a run-time cost in the regular commands.

82

8944a

*n-

Appendix 1 Design Issues
Release 7

EC MEM

1. We considered dividing memory into banks that would be tested
separately, allowing partial rather than complete shutdown. We
decided not to do so -t this time because the system lacks the ability
to exploit it and we could do so easily in the future.

2. A previous design implied that invoking the access program associated
with a test actually started the test. Because future computers may
have tests ongoing, or running in the background, we changed our
design to indicate that invoking a program merely returns the most
recent result of that test. If a future computer is required to start
a test at a certain time, we can add start-test commands later.
Returning the value may take a substantial amount of time in some
cases. The major change this caused was in the case of the memory
test. Before, there was a command to start the test, an event
signalled when it was done, and a program to retrieve the result. The
motive was that the invoking program would want to do something else
while waiting for the test to be completed. However, some program
would have to wait idly for the event to occur anyway, and so we lose
nothing by letting the memory test program just take a long time to
return. We gain a uniform interface, with no special cases.

Other design issues dealing with the hidden portion of the interface are
contained in [VII].

CRF 263

83
8944&a

Appendix IDesign Issues
Release 7

EC.PAR. I

I. in earlier designs of this interface, timing constraints wer -

arloie verionspmaeianl oueriga"d borevr"soo implcit.Ths the
process would texsceun a nts TII"bokoneweehe process wasaim a
staredesandl theorpeiatedly epute an "restrilckutil o the pntrces

2 a pe. We nsedeidereaigSATad nO tomminclde an impit lpops ecas
exdictl wantfect the witernal strte of the processes.h

epolmcit PrSOcsmbodis cato be pocifed jusnt baesubproam
bodies aretar makinte ovel spxectiicain of"hemn Eptend, Comut

s.Ateipint wein hadintermittenltrces wat floriatar eetmn
tencrunutptp odtion extd We frpehderligond itr simplerntiona

droefinu xeue a single boooek ande haveve the process pasisatrsoitol
whae the booen wepaste.l Thisut eiate theEO blneedfo the peven

*~a intfaed inte ECandelidntted amigcuus ase suplcht aso thecstar
eednt warrng whenm the tpcnton held.eofte rcess

exptloeiit wres addaspa cass nof bspocesses jualle subitra
poiess. Wre recongni theeas speciaicse of themaxtnde proesse
andpdecier os.lf heitraeb xlitn htfc.Ti

4. Allows somet processesnto emuedoht processes watfrasand uvnern
thenrunutls conditions.itd efun tsmlrt

dein It iposible fo a prodraae thwritecasprocss itthat sout ol
stten ts tool execute. We i conider aed the lenaes:frthvn

in tatein tht EtCi an undesirted eventgfors case procss te nshrt
eve., makring ihnth a to reuiemndtio thateclroesdotana

i. A nf pint e loop;eilcls f rcsssclldi

6. Atispssige that a copleted re process thayate bus ut tha

it has a null statement list to execute if it becomes running;

84
8944a

*Appendix I. Design issues
* Release 7

c) Assuming that a completed process is in a waiting state, waiting

for an event that will never occur.
0

We rejected a) because it builds too much information into the

Exctended Computer and it is an unnecessary restriction. We rejected
b) because there is no point in having a completed process compete

for a processor. Alternative 3 is a reasonable compromise for the
Extended Computer interface. If it is considered undesirable to have

completed processes, this should be prohibited by programming -

conventions.

7. We have decided not to include relative priorities for the different

processes because fixed priorities do not generally work when there
are real-time constraints.

8. In an earlier version, we had no distinction between periodic and

demand processes because a periodic process can be viewed as one that
waits for a particular stimulus, i.e., the passage of a particular

amount of time. However, one of the timing parameters needed for
periodic processes is not useful for demand processes. in addition,

periodic processes must have restrictions on the syncthronization0
operators within the periodic loop because the indeterminate wait

associated with synchronization operators makes it difficult to prove

that the loop can be scheduled regularly as required.

9. in an earlier design, we did not explicitly distinguish intermittent
periodic processes. We now distinguish them in order to increase the
likelihood that we can take advantage of the intermittency in the

scheduling of processes. Earlier we distinguished them by calling

them intermittent, now we use the presence of the optional ON OFF to

distinguish them.

4 10. We considered specifying periodic processes in terms of frequency0

rather than in terms of time intervals. Because we wanted to specify
the deadline as an interval, we decid'd4 it would be more

straightforward to use two intervals. These two parameters
adequately constrain the variations in regularity.

11. We have an undesired event assumptions that says there won't be too0
many demand processes for a periodic process to miss its deadline.

The assumption is worded with that orientation because it is

impossible to tell how often a demand process must run.

12. We used to allow the body of a process to be any statement list. We
now restrict it to a call on a previously-declared program. In this

way we maintain a clear distinction between process and program, and
therefore allow future extensions to include run-time creation of

processes without run-time creation of programs, vice versa. The
restriction does not restrict what we can do with the current
version; it merely paves the way for future extensions. S

8944a
8

Appendix I Design Issues

Release 7

13. Previously, there was a parameter in the process definitions with

which the user specified the maximum CPU time required by his

process. We removed this from the high-level EC interface because

(a) the user doesn't have enough information to provide it; (b) the

information is machine-dependent; and (c) the length oE time an

operation takes can vary greatly, depending on the storage and

representation of the operands, for example. This is information is

now provided to the EC implementation at a lower level, where the

processes are divided into scheduling blocks; it may be provided by

* software that examines the source code, or it may be done manually.

0

a

CRF 234

86

"8944a

*Appendix I Design Issues

* Release 7

EC.PAR.2

1. Regions with an exclusion relation were selected for Extended
Computer synchronization imitives because
a. the'y allow concurrency constraints to be expressed directly

rather than as an implication of run time synchronization;
b. they express the exclusion relationships in a form that can be

interpreted efficiently by a pre-run-time scheduler;
C. there is an algorithm for generating run-time synchronization

from the exclusion relations;

This is the simplest acceptable alternative. Rejected alternatives
included:
a. disabling inte-rupti -on: once an identified section of code

starts executing, it must run to completion. This alternative
was rejected because it is prejudiced toward a single
processor: it overly restricts the parallelism by stating that
no other actions can be taken simultaneously with the code
section, rather than specifying which other actions may not be
taken;

b. simple mutual exclusion: specifies all exclusion relations as
equivalent, i.e., a section of code that excludes any other
excludes all others. This alternative still places too many
restrictions on the parallelism because many of the identified
code sections need not exclude eac'h other.

c. named regions with mutual exclusion. Rejected because it
assumes that the exclusion relation is symmetric.

d. exclusion via synchronization primitives: using synchronization
primitives such as those in EC.SMP{ to effect mutual exclusion.
Rejected because (1) synchronization primitives that are being
used for other interprocess synchronization or communication

4purposes cannot be distinguished from those used for exclusion 9,
without additional commentary, (2) the exclusion requirements
are implicit in a solution based on synchronization primitives,
rather than stated explicitly as they can be with identifiable
regions, and (3) the exclusion information (implying scheduling
constraints) is embedded in and scattered throughout the text.

to do pre-run-time scheduling without substantial preprocessing.

2. M4any useful forms of synchronization were rejected for the Extended
Computer because they do not depend on the implementation of parallel
process. Application-oriented synchronization operations may be
developed using the exclusion relations, and semaphores.0

3. Can a region be excluded from itself? is that useful? Yes, because
in the case of non-reentrant code, this is how we will probably
prevent disastrous re-invocations.

87

8944a

Appendix 1 Design Issuesq

Release 7

EC.PGM. I

NOTE: Design issues 1 through 7 refer to a previous control structure we had

included in the EC which is documented informally in [APCI. That control

structure is no longer a part of EC, because we concluded that it required too

much sophistication in implementation, and that simpler constructs hid the

hardware characteristics just as well.

I. Alternatives considered for the syntax of a guard are shown below.

a. Boolean variables or constants only. All the boolean variables

must be assigned values before the limited program is executed.

b. Any sequence of statements assigning a boolean value to a

special guarded command register.

c. Allowing a limited program list as a guard.

d. Allowing a program to define the value of a guard (defined

guards).
e. All of the above.

Discussion: We chose (e). The semantics can easily be defined

0 formally [ITTI2]. Defined guards save code by avoiding duplication

of statement lists, which would otherwise be required because of

syntactic limitations.

2. We chose to have the Extended Computer provide the IT-TI construct

rather than the more common IF-THEN-ELSE, CASE, and DO-WHILE

constructs because IT-TI serves for all purposes. It allows some

programs to be written as one loop that would otherwise require

several, thereby saving variables and predicate evaluation. IT-TI

has a mathematical semantics that allows systematic construction of

the program's function rITTII].

3. Dijkstra's guarded commands are nondeterministic; of the true guards,

only one is selected, but there are no rules defining which one is

selected. We chose a deterministic construct because they allow

simpler guards.

4. We considered providing a FOR command (FOR I
= I to 10 DO...) but

decided against it because
a. the same purpose can be served with the IT-TI command;

b. many special cases and questions arise with the FOR command.

5. We considered having an implicit final LP of the form (true,SKIP).

* We decided not to do this in order to encourage the prograrmner to

consider every case carefully.

CRF 247

88

8944a

0

Appendix I Design Issues
Release 7

6. Should statement lists be allowed to contain declarations, and what

is their scope? We decided that it was harmless (from this module's
point of view) to allow it. The scope of all declarations is global

and items must be declared before they are used, but these are issues
belonging to the EC submodules that provide the declarations.

7. In an earlier version we allowed Dijkstra's cor and cand. We have
eliminated them because the same effect can be obtained with the use

of defined guards.

39

8944a

Appendix I Design Issues

Release 7

EC.PGM. 2

NOTE: Design issues 1 through 3 refer to a design that allowed user-defined
programs to have parameters. Because the semantics of parameter passing do
not depend upon the hardware, we concluded that users could emplov other
facilities to achieve a parameter protocol (e.g., assignment before and after

a program call).

1. Should actual and formal parameters be specified by type class,

specific type name, or using type attributes such as range and
resolution? We decided that type agreement should depend on the
specification chosen by the programmer. Other alternatives would
force us to write separate programs for each specific type or to

include a parameter passing mechanism that would be more general than
needed for most cases.

2. We added PARMGIVEN because programs must be able to tell if an

optional parameter was supplied or not. We thought about making it a
built-in value that any type of variable could take on; then

programmers could ask, e.g., if pl=PARM GIVEN. However, because
output parameters can be optional, we didn't want programmers

checking their "value".

3. Programmers need not supply trailing commas when optional parameters

at the end of a parameter list are omitted. That is, instead of
+pgml+(a,b,,,) one may write +pgml+(a,b). Besides the obvious

convenience, this will allow us to add optional parameters to the end
of any access program parameter list, yet not force all calls on that

program to change.

4. We added the feature of ranking programs' access speed because the
current computer has the capability of doing fast subroutine linkages S
in certain areas of memory. Because a replacement machine may not

have such a capability, we made the relationship "not-slower-than",
which we can trivially implement by doing nothing. We make no firm
promise about the ordering, however, because we recognize that we
cannot make access to a subroutine not-slower-than access to an
expanded macro that simply lives in-line. S

5. We considered giving the user the ability to specify whether a

program was to be invoked by subroutine linkage or in-line (macro)
expansion. Howver, we realized that macro-expansion can be done

independently of the host machine, and hence is not an appropriate EC
facility. .

I

90
8944a

4

Appendix 1 Design Tssues
Release 7

EC.SMPH

I. We originally had more complex synchronization operators that met

many immediate demands of our application. As we prefer the Extended

Computer to be as application-independent as oossible, we chose
synchronization operations for the Extended Computer primitives that
would be as simple as possible, but that could be used as building
blocks for more specialized synchronization operators. For the more

t. complex synchronization operations, see the specifications of the

Application Data Type module [ADT].

All of the following alternatives for the Extended Computer
synchronization operations were rejected either because they are more
complex than the operations selected or because they can be built,
given the operations selected.

a. P and V operations on semaphores;

b. eventcounts (REED79]: Also rejected because we weren't sure we

would need them;

c. P and V supplemented by eventcounts;

d. UP, DOWN, and PASS supplemented by event variables. A simple
generalization of event variables, event-booleans can be

implemented in the Application Data Type module in a machine
independent way.

e. V, DOWN, PASS, and eventcounts.

2. At one point, we provided a semaphore-to-integer conversion program.

These were deleted when we could think of no reason to use it. If
such a need arises, it would be a straightforward extension, allowing

upward-compatability between programs written now and later.

3. This used to be a submodule of EC.PAR, because semaphores are used to

synchronize processes. However, the secret of implementing them has

4 nothing to do with processes, so semaphores belong in a module of

their own.

CRF 258

91
8944a

Appendix I Design issues
Release 7

EC. STATE

1. The following transitions are not included in this interface for the

following reasons:

off to failed: not relevant to user programs;
failed to off: aser programs cannot respond to anything
operating to off: when the computer is off;

Note that failed to operating does not occur with the current
Computer; it must be cycled through "off" to get back to operating
from failed. However, future computers may make this transition
possible (perhaps by re-booting), and so this transition is subsumed
by the definition of power up.

2. There may not always be a grace period after @T(!+failed state+!).
Two alternatives were considered: to leave out the grace period
altogether, or to include it as a system-generation parameter. We
selected the- latter to allow for future use of an improved computer.

3. H-ow do we distinguish between malfunctions that user programs must
detect and handle (possibly by calling +SFAILSTATE+) and
malfunctions that are detected inside the ExtenTded Computer?
Malfunctions are detected by this module if they are reported by the
computer without software action; for example, malfunctions signalled
by interrupts. Whenever a malfunction is detected because of an
action dictated by the requirements, such as a diagnostic test,
detection is left to a user program. The malfunctions described in
various test programs (EC.PAR.I, EC.IO, EC.MEM, EC.TIMER) belong to
the latter category; all others, the former.

4. Future technology may make our three-state model appear
oversimplified, because a system may have degraded states: that is,
states without the full capability of "operating", yet not dead in
the water like "failed". A degraded state -nay occur in a
single-processor system, or in a multi-processor system where one or
more processors have ceased to operate. It is important that
acquiring this capability results in adding to (not revising) the
present specification. We cannot add a degraded state now, because
we cannot implement and programs depending on it would be not be
correct. However, we can plan for the addition by assuming that
there are "at least three states", etc.

45. Which module is responsible for the close-down procedures? We
decided that any shutdown action that is required for every computer
failure and is computer-dependent should be done by this module. If
the action is device-dependent, such as setting the bomb-release
output to a safe value, it should be done by the device interface
module.

92
8944a

4

AD-fi49 948 INTERFACE SPECIFICATIONS FOR SCR (SOFTWARE COST 2/2
REDUCTION) (A-7E) EXTENDED COMIPUTER MODULE REVISED(U)
NAVAL RESEARCH LAB WASHINGTON DC D L PARNAS ET AL.

UNCLASSIFIED 31 DEC 84 NRL-MR-5582-REV F/G 9/2 NL

Emilillhl/IllIEl"".I''''''sommomommos ,

10

11111 ~ Q ___1____.5~

1~ 36

BR 1.1NIII= m '4 11111S
.25 l

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU OF STANDARDS l9bA A

Appendix I1.ig sse

Release 7Deinsus

EC.TIMER

I. In earlier versions, we had clocks and timers; clocks counted up and
timers counted down. They were completely distinct from timeint

entities; they were declared separately and had their own set of
operations. We removed the distinction as the interface grew and
grew, and we realized that it would be both useful and consistent to
let a clock/timer do most anything that a timeint can do.

2. We considered providing only clocks or only timers (in the sense of
issue #1). Clocks are useful for measuring elapsed time; timers are

useful for detecting the end of a previously specified time
interval. We wanted the capabilities of both because otherwise user

programs would have to use one to simulate the other. This would
lead to inefficiency and possible duplicate efforts especially on a

computer that provided both.

3. We considered having this module offer a special "waittime" command,

instead of using the general semaphore mechanism. There seems to be
no advantage in using a special mechanism for timed events.

3. We considered treating the following actions as errors:
- starting a running timer,
- setting a running timer,
- stopping a non-running timer,
- reading a non-running timer,
- stopping a timer that has run down,
- reading a timer that has run down,

but these actions are not necessarily senseless.

4. We considered having a timer signal a tiE if it runs past its
capacity. To have it start over seems the most useful. Further, a
timer might run past its usual limit, for no fault of the
software. In contrast, setting timer with too large a value is a
clear software error. Therefore we made exceeding the maximum
capacity an undesired event in a set operation.

5. in an earlier design, there was a single maximum capacity for all
clocks and a single maximum for all timers. it was pointed out that
clocks and timers are used for very different purposes, some for
measuring very small changes over a small period of time, and some

for keeping track of a long period of time, with less concern for
small changes. In order to achieve this flexibility without undue

use of resources, we decided to allow programmers to specify capacity

and minimum measurements for individual timers and clocks.

6. in an earlier version, clocks could only be set to zero, but this
seems unnecessarily restrictive. Dwight Hill: "I believe we may

need a +SET CLOCK+ for clock corrections or for time-of-day clocks."
The restriction went away when we merged timers and timeints.

93

8944a

Appendix I Design Issues
Release 7

7. Timers used to be a submodule of what was called the "Sequential

Execution" module, because programmers would presumably want to
transfer control based on the value or action of a timer. However,

the secret of the timer module has nothing to do with flow of
control, and so it became a module of its own.

4

CRF 238

94

- 8944a
I

APPENDIX 2

IMPLEMENTATION NOTES

99

8945a

Appendix 2 Implementation Notes
Release 7

EC.DATA

1. If the user provides a subrange assertion, the information may be

used to reduce the amount of operand shifting necessary before an

operation takes place.

EC.o

1. The part of the 1/0 submodule that handles the relation between data
item names and TC-2 instruction sequences should be a sysgen time

program and should be table driven. It should be organized into
submodules in accordance with the structure of the Device Interface

Module, because changes are likely to be concentrated on individual
devices.

EC.MEM: Contained in (VM]

EC.PAR.l: None.

EC.PAR.2: None.

EC.PGM.I: None.

EC.PGM.2

I. This module does not determine where programs are located in memory.

It uses programs in the memory allocator module to request space.

2. This module uses the System Generation module to do assembly-time
parameter type checking.

EC.PGM.3: None.

EC.SMPH: None.

6 EC.STATE: None.

EC.TIMER: None.

I

CRF Ill

96

8945a6

i : -:. -:.: :::. .. :.- ..-- . ;: ::- -: -:; i: :: :.! : ? -. .. : ".:. " " . " .- . .==== ====== ===== :!:ii iii : .:i

APPENDIX 3

ASSUMPTIONS LISTS

97

9162a

Appendix 3 Assumptions Lists

Release 7

* BASIC ASSUMPTIONS *

EC.DATA

I. The Extended Computer can provide one private variable per process

(the register) that can store values of any type. Access to a
register will usually be quicker than access to other variables.

2. The attributes of a value will be known whenever a variable is used
as a source or a destination. If the attributes specified for the

variable when it is used as a source are not the same as were

specified when its value was determined, the result may be any value.

3. The Extended Computer can store numeric quantities with any desired

range and resolution. It can be expected that (a) variables with a

small range-to-resolution ratio will require less actual memory space

*than variables with a large range-to-resolution ratio, and (b) that

operations on such variables will be faster than operations on

variables with a larger range-to-resolution ratio.

4. Range and resolution are adequate characterizations of a numeric
variable; i.e., the needs of an application programmer can be

adequately expressed by a lower bound, upper bound and guaranteed
resolution.

5. The Extended Computer can store bitstring quantities of any desired

length. Longer bitstring entities may require more storage than
shorter ones. Operations on longer bitstring entities may require

more computer time than operations on shorter ones.

6. Whenever a numeric value is stored into a variable with a resolution

different from the source, the value stored should always be the
closest value that can be represented in the destination. The

programmer need not specify the conversions to be made; the best

choice can be made by the EC implementation.

7. There is no need for operations that allow a bitstring value of one
length to be assigned to a bitstring variable with a different length.

8. The operations needed for calculating new numeric values are:

addition, multiplication, division, subtraction, absolute value,

complement and conversions.

98
9162a

I
6]

Appendix 3AsupinLst
Release 7 ASlpin it

9. Division may result in a loss of all significance. This danger
cannot be hidden entirely from the prograummers, since they may have
information that can be used to choose safe, efficient algorithms.
The following division options are sufficient:

a. The quickest division can be performed if the prograimmer
provides an upper bound for the result. The better the bound,
the more significance is preserved. If the bound is too low,
all significance may be lost.

b. A slower algorithm can be used if the programmer cannot provide
an upper bound.

C. If the progrmer cannot provide an estimate of the maximum
result and prefers to avoid the expense of the slower algorithm,
the Extended Computer can determine whether or not division can
be safely performed. The EC can return the sign of the quotient
even when the operation cannot be safely performed.

10. For any variable, it is always possible to implement a uniform
resolution over the entire range of that variable.

11. Whenever the program compares two numeric operands for equality,
programmers need to define a threshold, such that if the difference
between two numbers is less than or equal to the threshold, the
numbers are considered equal.

12. It is acceptable for the results of an operation to have a larger
resolution than the resolution of the destination. The
approximations needed to store the result can be assumed to be
acceptable for the application.

13. Only four kinds of entities are needed: variables, which can be
changed at any time; ascons and literals, which can be changed by
reassembling the program; and loadcons, which can be changed when the
program is first loaded into the computer but not while it is running.

99

9162a

Appendix 3 Assumptions Lists
Release

7

14. The following operations are sufficient for efficiently producing new
bitstring values from existing bitstring values:

a. AND, OR, NAND, NOT, MINUS, and XOR, defined in the usual way,
operating on corresponding bits in two operands of equal length;

b. SHIFT operation: A bitstring is shifted either right or left a
specified number of bits with zeros shifted into positions
vacated by the shift;

C. REPLACE operation: A portion of a bitstring is replaced by the
value found in an equal-length portion of another bitsring;

d. CAT operation: A bitstring is formed by concatenating two

previously existing bitstrings.

15. If the result of converting a real to a bitstring has more bits than
the bitstring operand, the bits to the right of the rightmost bit of
the destination bitstring may be ignored.

16. Arrays with dimensions that vary at run time are not needed in
avionics applications.

17. Avionics applications do need arrays in which the type class is real,
and the elements are variables with attributes that may vary
independently of the attributes of other elements of the same array.

18. Arrays in which the indices are not a contiguous subset of the
integers are not needed in avionics applications.

19. Avionics applications need to take advantage of any capability that
the computer has to allow faster memory access to certain data. The
Extended Computer can implement a "not-slower-than" relation for any
two declared entities x and y, so that x will be accessed no slower
than y. User programs can determine desired rankings at system
generation time; it is not necessary to change the rankings at
run-time.

o

I

6 100

9162a

i ,- . N. . • .

Appendix 3 Assumptions Lists
Release 7

EC. to

1. The only information needed by user programs to identify inputs or
outputs is the data item name given in the requirements document

[REQi. it is possible to characterize all transmissions between the
Extended Computer and its associated hardware as either input or
output.

2. Input data items and output data items are bitstring entities. Some

can only be used as a source in a statement (read-only); some can
only be used as a destination in a statement (write-only); some can

be used as either (read-write). No input data item is write-only.
No output data item is read-only.

3. it is possible to, turn off (disable) input/output transmissions. A
disabled data item has no effect on and is not affected by the

external environment.

4. No application program will need the identity code and subitem
identifiers in Serial Input Register Data (see TREOI).

5. It is possible for the software to determine the success of I/0

operations. (Of course, this assumption is obviously false if we
consider hardware failures. However the correctness of our software

is contingent on that assumption.) An unsuccessful operation may not
change the value of the associated data item.

6. Some input data items are only available intermittently and the EC
can notify user programs when new values for such data become

available.

7. Each i/o operation can be guaranteed to complete within a fixed

period of time. This worst-case timing requirement varies among data
items; the time associated with each data item can be determined at

system-generation time.

8. Each channel diagnostic program may interfere with a specified subset
of the input/output commands. They will not interfere with any other
commands.

9. Use of either the discrete diagnostics or the accelerometer-torque
diagnostics may cause the IMS to lose its alignment and velocities
(i.e., have the same effect as disabling the INS temporarily).

CRF 263

101

9162a

Appendix 3 Assumptions Lists

Release 7

10. The following aspects of the input/output can be tested independently:

the AC aspects of the signal converter channel,
the DC aspects of the signal converter channel,
the cycle steal channel A and serial input channel 1,
the cycle steal channel 3 and serial input channel 2,
discrete input word 1 and discrete output word 1,
discrete input word 2 and discrete output word 2,
discrete input word 3 and discrete output word 3,
the EMS gyro torque registers and the accelerometer accumulators.

102

* 9162a

Appendix 3 Assumptions Lists
Release 7

EC.MEM

1. A memory diagnostic program can check whether portions of memory are

reliable. This program does not interfere with other programs. The

test may take a substantial amount of time to complete.

Basic assumptions concerning the hidden portion of the interface may be 9
found in [17M].

S

CRF 263

103

9162a

S

I I:.' " - . .,• " . .. 'S

-, -

Appendix 3 Assumptions Tists

Release 7

EC.PAR. 1

1. Processes (executions of programs) may execute in parallel with no

restrictions on their relative speeds, except where they are

explicitly synchronized with each other (see EC.PAR.2).

2. The number of processes need not vary at run-time. It may be set at

system generation time.

3. All demand processes can start when the system is turned on (i.e.,

when @T(!+power up+!) occurs); some will perform initialization

routines; the remaining demand processes will wait for a semaphore to

become nonnegative.

4. The process mechanism will be able to detect the event

@T(!+power up+!).

5. Processes are not called as subroutines by other programs and do not

return control to other programs.

6. We need only distinguish two process states: active or suspended. An

active process can progress. A suspended process is ineligible to

progress (continue execution).

7. The state of a process changes between active and suspended only when

it uses the process synchronization mechanisms described in sections

EC.PAR.2 and EC.SMPH or when it has executed the last statement in

its body.

S. All processes are either periodic or demand and exist throughout the

life of the system;

The bodies of periodic processes are to be executed at regular

intervals (their period). The period of a process may change during

system execution. A periodic process may be suspended when a

specified boolean variable is false and start again when it is true.

Demand processes wait for a semaphore to be nonnegative. They should

be executed each time the semaphore is incremented. They will

decrement the semaphore once per execution.

9. Demand processes can be adequately characterized by specifving the
values of two timing parameters: maximum CPU time requirement and

deadline for completion.

10. Periodic processes are adequately characterized by three timing

parameters: maximum CPU time requirement, deadline, and period.

104

9162a[I

Appendix 3 Assumptions Lists
Release 7

EC. PAR. 2

1. User programs may contain contiguous sections or regions of

run-time-executable statements that may not be executed

concurrently. These concurrency constraints can be expressed in

terms of an exclusion relation on the regions, i.e., where region 1

excludes region 2 if region 2 may not start while region 1 is
execut ing.

2. Regions may overlap other regions or be embedded in other regions.

105

9162a

.

.105

Appendix 3 Assumptions Lists
Release 7

EC.PGM. 1

1. The only sequence control constructs needed are those that choose a
path based upon the results of the invocation of a program.

2. The number of entrances and exits of a program is finite, and the
upper bound can be determined at system generation time.

9162a

Appendix 3 Assumptions Lists-
Release 7

EC.PGM.2

1. Some program entities should be invoked faster than others. Such a
relation will not depend on when the programs are invoked; the

relative ranking can be determined at system generation time.

2. it is not necessary to provide users with the capability to create

programs that take parameters. Other mechanisms available to him
(such as assignment before and after the "body" of the program)
suffice.

3. it is necessary to provide facilities for recovery if a programming.

error is detected by a program during execution. It is up to the
author of a called program to determine what programming errors his

program can detect; it is up to the caller of a program to determine
the action that should be taken if one of those errors occurs. It is

not necessary to pass parameters to the recovery program.

107

9162a

Appendix 3 Assumptions Lists

Release 7

EC.PGM. 3

1. If a program will be reentered while already in use by another
process, it is the responsibility of the programmer to make sure that

local storage is saved and restored as needed. EC programs are .iot

automatically provided with new storage when they are reentered.

2. There is no need for a mechanism to allow programs to cause the
calling program to resume execution anywhere else than immediately

after the call.

3. The identity of a data entity that is passed to an EC access program

as an actual parameter will not be changed while the program is
executing. For example, when an array element is passed as an actual

I parameter to a program, if that program alters the value of the
variables that determined the index, the results will be undefined.

4. Parameters always fall into one of three classes: input, output, or
input-output.

10

9R19a

Appendix 3 Assumptions Lists

Release 7

E C. SMPH

1. There are two process states relative to synchronization: active
(which includes processes that are running and processes that are

ready) and suspended (ineligible to make progress). The active
processes are the only ones eligible for execution.

2. The only operations on semaphores that need to be executed in a way
that guarantees non-interference with other operations on semaphores
are the following:
a. An operation that does not affect the counter value of the

semaphore, but may put the process in the waiting state.
b. An operation to decrement the semaphore counter without any

effect on the state of the process that executes it.
c. An operation to increment the semaphore counter that may put

other processes in the active state.

109
9162a

* *, ° •

* * *'I -

* *5 5 5 *,-

Appendix 3AsupinLst
Release 7AsupinLst

EC. STATE

1. The Extended Computer has at least three states: off, operating, and
failed. Only the following transitions between states affect user
programs:

- from off to operating
- from operating to failed.

2. User programs cannot cause the transition into the operating state.

3. A transition from operating to failed can either be caused by user
programs or occur when malfunctions internal to the Extended Computer
are detected. These internal malfunctions are other than those
described in test programs contained in EC.PAR.1, EC.TIMER, EC.MEM,
and EC.IO. It should be assumed that after this transition occurs,
user programs will have at least a short interval to execute
shut-down sequences before the computer stops operating. The minimum
length of the interval before shut-down can be determined at
system-generation time.

4. Any actions that must be taken when a computer failure occurs are
independent of the state of the user programs, and can be built into
the EC.

110

9162a

Appenix 3Assumptions Lists

EC.TIMER

1. Avionics programs need timers that keep track of elapsed time, and
that may signal when a given time interval has elapsed. They need to
be able to set a timier to a starting value, start it, stop it, and
read it whether it is running or not.

2. The maximum timing capacity of a clock or a timer can be determined
at system generation time.

3. If a timer runs beyond a limit specified at run time, it should
either halt or start over. Sometimes it should signal that a range
limit has been reached.

5 The worst acceptable error rate for all timers can be determined by
users at system generation time. This error can be specified as a
fraction of the running time.

6. Any number of timers can be implemented, provided that the number is
known at system-generation time. There is no need to create or
delete timers at run time.

7. There are diagnostic programs that can test the hardware timers and
the interrupt mechanism separately, but may interfere with proper
execution of other programs.

CRF 263

9 162a
-1

Appendix 3 Assumptions Lists
Release 7

* ASSUMPTIONS ABOUT UNDESIRED EVENTS *

EC.DATA

1. User programs will not divide by zero.

2. The result of any operation will not be outside the range of the
destination variable.

3. In a replace operation, user programs will not specify positions that
do not appear within bitstrings or specify a substring with a start
position that is higher than the stop position.

4. After converting a numeric value to a bitstring, there will be no
bits to the left of the most significant bit of the destination

bitstring.

5. Users will not supply a parameter in an array reference that is not
in the index set of the array.

EC.IO

I. User programs will not attempt to
- use an enabled read-write input data item as a !!destination!!;

or
- use an enabled read-write output data item as a !source!.

2. User programs will not disable (enable) a data item that is already
disabled (enabled).

EC.MEM

None. For UE assumptions about the hidden portion of the interface, see [VM].

EC.PAR. 1

1. Demand processes will not need to run so often as to cause a periodic

process to miss its deadline.

2. A periodic process will have a period greater than its deadline.

CRF 129 263

112
9162a

0:

Appendix 3
Release 7

Assumptions Lists

EC.PAR.2
None.

EC.PGM. I

I. Every program exit that will be chosen during execution will be
connected to a succeeding conuand.

EC.PGM.2

1. A user will not fail to assign a value to a built-in EC program
variable.

EC.PGM.3

1. A program will not invoke itself.

EC.SMPH

1. There is a range of values that will suffice for all semaphores, and
will not be exceeded by user programs.

EC.STATE.3
None.

EC. TIMER
None.

CRF 129 247

113
9162a

'" """ " " ". 2 ' "" " ''J " ". " *" " . "

I

APPENDIX 4

UNIMPLEMENTED EXTENDED COMPUTER FACILTIES

Not all of the capabilities described in this document have been provided

in the current version of the Extended Computer. A few facilities, which are
not currently needed by the application program, have not been implmented. An

attempt to use an absent facility will result in an undesired event in the
development version. The unimplemented features are described below.

FEATURE: Periodic processes with periods that vary at run-time
WHERE DESCRIBED: EC.PAR.I

UNDESIRED EVENT: Uunimplemented variable period%%
CURRENT USE: The !+period+! parameter in the ++P'PROCESS++ must be

given as an ascon or a literal.

FEATURE: Ability to enable/disable all data items

WHERE DESCRIBED: EC.IO
UNDESIRED EVENT: %%unimplemented disabling%%

CURRENT USE: Only the following data items may be disabled;
attempting to +DISABLE+ or +ENABLE+ any other is
prohibited.
//ASAZ// //ASEL// //ASLAZ//

//ASLEL// //ASLCOS// //ASLSIN//
//AZRINGI/ //BAROHUD// //CURAZCOS//
//CURAZSIN// //CURPOS// //DESTPNT/f
//FLTDIRAZ// //FPMAZ// //FPMEL//

//HUDAS// //HUDASL// //HUDFPM//
//HUDPUC// //HUDSCUE// //HUDVEL/f

//HUDWARN// //LSOLCUAZ// //LSOLCUEL//
//MAGHDGH// //MAPOR// //PTCHANG//

//PUACAZ// //PUACEL// //ROLLCOSH//
//ROLLSINH// //USOLCUAZ// //USOLCUEL//

//VERTVEL// //VTVELAC// //XCOMMCI/
//XCOMF// //YCOMM//

FEATURE: Bitstrings/timeints/Dointers with attributes that can
vary at run-time

WHERE DESCRIBED: EC.DATA
UNDESIRED EVENT: %Zunimplemented binding%%

* CURRENT USE: In the ++DCLTYPE++ program, users may not declare the

binding of bitstring or timeint or pointer specific
types to be VARY.

CRF 154 198 243

114

9158a
I

-

Appendix 4 Unimplemented Features
Release 7

FEATURE: Timers with attributes that can vary at run-time

WHERE DESCRIBED: EC.TIMER
UNDESIRED EVENT: %Zunimplemented binding%%

CURRENT USE: In the ++DCL TYPE++ program for timers, users may not
declare the binding of timers to be VARY.

FEATURE: Semaphores with attributes that can vary at run-time
WHERE DESCRIBED: EC.SMPH

UNDESIRED EVENT: %Zunimplemented binding%%
CURRENT USE: In the ++DCL TYPE++ program for semaphores, users may

not declare The binding of semaphores to be VARY.

FEATURE: Programs with attributes that can vary at run-time

WHERE DESCRIBED: EC.PGM.2
UNDESIRED EVENT: %%unimplemented binding%%

CURRENT USE: In the ++DCL TYPE++ program for programs, users may

not declare the binding of programs to be VARY.

FEATURE: Undesired events in the production EC
WHERE DESCRIBED: Throughout

UNDESIRED EVENT: none
CURRENT USE: In the production version of the Extended Computer, no

undesired events will be checked for; no undesired 0
event handling programs will be assembled or
executed. It will be assumed that user programs will
invoke the EC facilities correctly.

FEATURE: Specifying substrings of bitstrings with variables
WHERE DESCRIBED: EC.DATA.2.7.2

UNDESIRED EVENT: %%unimplemented variable substring%%
CURRENT USE: In the bitstring +REPLC+ program, p2, p3, and p4 must

be given by literals or ascons.

FEATURE: Specifying the length of a bitstring shift with a

variable
WHERE DESCRIBED: EC.DATA.2.7.2
UNDESIRED EVENT: Zunimplemented variable shift length%%

CURRENT USE: In the +SHIFT+ program, p2 must be given by a literal
or an ascon. S

CRF 154 198 247

9158a

_ ". ., d & - .i .'a .i

Appendix 4 Unimplemented Features
Release 7

FEATURE: Using variables to specify attributes of a specific

type, or of a variable or array with varying attributes
WHERE DESCRIBED: EC.DATA.3, EC.SMPH.3, EC.TIMER.3

UNDESIRED EVENT: %,ounimplemented attribute via variables%%
CURRENT USE: To specify an attribute (as defined in EC.DATA.3), a

timer-attribute (as defined in EC.TIMER.3), or a
semaphore-attribute (as defined in EC.SMPH.3),

literals or ascons must be used.

FEATURE: Allowing the EXACT-REP attribute to vary for numeric

types.
WHERE DESCRIBED: EC.DATA.2.4, EC.DATA.3
UNDESIRED EVENT: %%unimplemented varying EXACTREPU

CURRENT USE: If a type is declared to have varying attributes, and
is given an initial attribute that includes EXACT-REP

then it may not later be assigned attributes that do
not include EXACT-REP; the converse is also true.

FEATURE: Using the EXACTREP attribute for any resolution.

WHERE DESCRIBED: EC.DATA.3

UNDESIRED EVENT: %%unimplemented EXACT REP resolution%%
CURRENT USE: Whenever a type has the EXACT REP attribute, its

resolution must be an exact power of two.

FEATURE: Checking parameter type when it is given by a pointer.

WHERE DESCRIBED: EC.DATA
UNDESIRED EVENT: None.
CURRENT USE: If an .!actual parameter!. is given by naming a

pointer to an entity, and that entity is not of the
proper type as required by the program being invoked,

the result will be unpredictable; no UE will be raised.

FEATURE: Checking if a !!destination!! is not a variable when

it is given by a pointer.
WHERE DESCRIBED: EC.DATA
UNDESIRED EVENT: None.
CURRENT USE: If an !!destination!! is given by naming a pointer to

an entity, and that entity is not a variable, the
result will be unpredictable; no UE will be raised.

FEATURE: Pointers pointing to programs that have parameters.
WHERE DESCRIBED: EC.DATA, EC.PGM.2
UNDESIRED EVENT: %%unimplemented pgm ptr%%
CURRENT USE: A pointer may only refer to user-defined programs or

to parameterless EC access programs.

CRF 191 198 212 230 241 259
116

" 9158a

* - , .; m[- . 5-.-..- - .5- ... -'....

Appendix 4 Unimplemented Features

Release 7

FEATURE: Defining a program with more than one entrance.

WHERE DESCRIBED: EC.PGM.1
UNDESIRED EVENT: %%unimplemented multi-entrance pgm%%.

CURRENT USE: A user may not supply more than one entrance name in
any invocation of ++ENTRANCE++. The UE %%entrance

incorrectly omitted%% of EC.PGM.3 will not be checked

for, in lieu of the above UE.

FEATURE: EC access programs that compute a single output
parameter having more than one exit, unless the

parameter is real or boolean.

WHERE DESCRIBED: EC.PGM.1
UNDESIRED EVENT: %Zunimplemented multi-exit EC access program%%

CURRENT USE: Only EC access programs computing a single output
parameter that is real or boolean have more than one

exit as described in EC.PGM.lI2.1. Invocations of

other EC access programs that compute a single result

must be followed by an exit-list of the form :label

or by a null exit-list.

J0

.S

CRF 247

9158a 117

i-:. .:- -.:- " .----. .: - -: ::: ::: ::::: ::::::::: : -. " :!:.: : " :? -: .i- :: :) ::!::: -:i: .i:!:! i.iS '

4

APPENDIX 5

INPUT/OUTPUT DATA ITEM NAMES

The following table lists all data items available from the Extended

Computer, gives the bitstring spectype of each, and tells whether each one is
read-only (R), write-only (W), or read-write (RW). The length of each item is

embedded in its spectype name.

INPUT DATA ITEMS OUTPUT DATA ITEMS

Data item Data item
name R or RW Spectype name W or RW Spectype

//ACAIRB/ R BIOl //ANTSLAVE// W BIOl

/ADCFAIL/ R BTOI //ASAZ// RW BHUD12
/AOA/ R BAQA12 //ASEL// RW BHUD12

/ANTGOOD/ R BIOI //ASLAZ// RW BHUTD12
4 /ARPINT/ R BARP8 //ASLCOS/f RW BHUD12

/ARPPAIRS/ R BIOI //ASLEL// RW BRUDI?
IARPQUANT/ R BARP8 //ASLSIN// RW BHUD12

/BAROADC/ R BADC12 //AUTOCAL// W BTI
/BMBDRAG/ R BIOl //AZRING// RW BMAP12

/BRGSTA/ R BTAC11 //BAROHUD// RW BHUD11
/DI1.1WC/ R BIQI //BMBREL// W BIOI
/DGNDSP/ R BDRS14 //BMBTON// W BIOl
/DRFTANG/ R BDRS14 //BRGDEST// W BHSI13

/DRSFUN/ R BDRS3 //COMPCTR/f ti 8IOL
/DRSMEM/ RBiQI //COMPFAIL// W BIQI
/DRSREL/ R B1OL //CURAZCOS/I RW BFLRCUR13

e/ELECGOOD/ R BIOI //CURAZSIN// RWBFRU1
/FLYTOTOG/ R BPNL2 /fCURENABL// W 5101
/FLYTOTW/ R BPNL4 //CURPOS// RW BFLRCUR12

/GUNSSEL/ R B101 //DESTPNT// RW BMAP12
/HUDREL/ R Bilt //ENTLIT// w BloI

*/IMSAUTOC/ R B101 //FIRRDY// W BlOI
/IMSMODE/ R BIMS5 /IFLTDIRAZ/I RW BHUTD12

/IMSREDY/ R B101 f/FLTREC// W See note 3
/IMSREL,/ R B101 /IFPANGL// W BFLRFPA1I

//FPMAZ// RW BHUD12
//FPMEL// RW BHUD12

4//GNDTRK// W BTIST13

* CRF 204

118

* 9159a

.

*
47

-

* - ** * *- w"

Appendix 5 Data Item Names

Release 7

INPUT DATA ITEMS OUTPUT DATA ITEMS

Data item Data item
naeR or RW Spectype name W or RW Spectype

/IKBDTNT! R BPNL1O //GNDTRVEL// W BFLRIO
!LOCKEDON/ R 8101 I/HUDAS// RW 3TO1
/MA/ R Biol //HUDASL// RW BIOl
/MACH/ R BTMS12 //HUDFPM// RW 8101
/MAGHCOS/ R BIMS13 !IHUDPUC// RW B101
/MLACHSIN/ R BIMS13 //HUDSCUE// RW BTI
/MFSW/ R BMFS5 //HUDVEL// RW 8101
/MODEROT/ R BPNL6 //HUDWARN// RW B101
/MULTR.ACK/ R 8101 //IMSNA// W B101
/PCHCOS/ R BIMS13 //114SSCAL// W 8101
/PCHSIN/ R BIMS13 //KELIT// W 8101
/PMDCTR/ R B101 //LATGT70// W B101
/PMHOLD/ R 8101 //LFTDIG// W BT01
/PMNORUP/ R 8101 //LLITDEC// W B101
/PMSCAL/ R B81 //LLITE// W B101
/PMSLAND/ R B101 //LLIT322// W B101
/PNLTEST/ R BIQI //LLITW// W B101
/PRESP0S/ R BPNL3 I ILSOLcUAZ/I RW BHUD12
IRADALT/ R BRA12 /ILSOLCUEL// RW BHUD12
/RE/ R B10I //LWDIG1/f W BPNL7
/RNGSTA/ R BTAC14 //LWDIG2// W BPNL7
/ROLLCOSI/ R BIMS13 I/LWD1G3// W BPNL7
/ROLLSINI/ R BIMS13 //LWDIG4// t4 BPNL7
ISINEVEL/ R See note 1 //LWDTG5// W RPNL7
/SINHDG/ R See note I IILWDIG6// W BPNL7
/SINLAT/ R See note I. //LWDIG7// W BPNL7

4/SINLONG/ R See note I. //MAGEDGH// RW BHUD11
/SINNVEL/ R See note 1 //MAPOR// RW BMAP12
/SINPTH/ R See note 1 /IMARKWIN// W BPNL7
/SINR0L/ R See note 1 /IPTCHANG// RW BHUJD12
ISLEWRL/ R BSLEW13 //PUACAZ/f RW BHUD12
/SLEWUD/ R BSLEW13 I/PUACEL/f RW BHUTD12
ISLTRNG/ R BFLRSR13 //RNGHND// W BMAP8
ISTAIRDY/ R B101 //RNGTEN// W BMAPR
/STA2RDY R B101 //RNGUNIT// W BMAP8
/STA3RDY/ R B1OL //ROLLCOSH// RW BRUD12
/STA6RDY/ R B101. f/ROLLSINHI I RW BHUD12
/STA7RDY/ R B101 //STEERAZ// W BFLRSTR13
/STA8RDY/ R BI01 //STEEREL// W BFLRSTR130
/TD/ R B101 //STERROR// W BADT11l
/TAS/ R BADC12 //TSTADCFLR/I W BT01
/THDGCOS/ R BIMS13 //ULITN// W 8101
/THDGSIN/ R BIMS13 IIULITS// W B101
/UPDATTW/ R BPNL4 /1ULIT222 W B101

CRF 204

119
91 59a

Appendix 5 Data Item Names
Release 7

INPUT DATA ITEMS OUTPUT DATA ITEMS

Data item Data item
name R or RW Spectype name W or RW Spectype

/WAYLAT/ R See note 2 //ULIT321// W BIOl

/WAYLON/ R See note 2 //USOLCUAZ// RW BHUDI2
/WAYNUMl/ R See note 2 //USOLCUEL// RW BHUD12
/WAYNUM2/ R See note 2 /IUWDIGI// W BPNL7
/WEAPTYP/ R BASCU8 //UWDIG2// W BPNL7

/XGYCNT/ R BIMS2 //UWDIG3// W BPNL7
/XVEL/ R BIMSIO //UWDIG4// W BPNL7

/YGYCNT/ R BIMS2 //UWDIG5// W BPNL7

/YVEL/ R BIMSIO //TWDIG6// W BPNL7
/ZGYCMNT/ R BIMS2 //VERTVEL// RW BHUD12
/ZVEL/ R BIMS10 //VTVELAC// RW BHUD12

//XCOMMC// RW BMAPQ
//XCOMMF// RW BMAP13
I/XGYCOM// W BIMS4

/!XSLEW// W BIOl

//XSLSEN// W BIOl

//YCOMM// RW BMAPIl

//YGYCOM// W BIMS4

//YSLEW// W BIOI
//YSLSEN// W BIOl

//ZGYCOMll W BIMS4
//ZSLEW// W BTOL
//ZSLSEN// W BTOI

Notes

I. The spectype of this item is BSINSn, where "n" is the length of the
item. The length may be determined by consulting the confidential

addendum to [REQ].

2. The spectype of this item is BWISn, where "n" is the length of the

item. The length may be determined by consulting the confidential
addendum to [REQ].

3. //FLTREC// is an array of type BFLTREC16. The number of elements is

given by the integer system generation parameter Anbr fltrec elements.

CRF 204 222 231

120
9159a

6 5

Appendix 5Release 7 Data ttem Names

The following data items have events (signalled by incrementing a
semaphore) associated with them:

Event Semaphore

!T(!'/EIrTERSW/ occurred+!) ENTSWSEM
@T(:+/KBDENBL/ occurred.) ENBLSEM
@T(:+/MARKSW/ occurred+!) MARKSEM@T(+/KBDINTI ready+!) KBINTSEM

CRF 265 S

121
9159a

%n

APPENDIX 6

DATA REPRESENTATION CATALOGUE

For some specific types, the Extended Computer is capable of providing

more than one kind of representation. The version has no effect on the
outcome of an EC operation, but some versions allow some operations to be

performed more efficiently than other versions.

The following table lists the provided version names for each EC specific

type which has more than one version. When declaring a specific type, users

may request a particular version by using these names.

Typeclass Specific type Version names Version properties

REAL Any RI N/A
BITSTRING Any B1 N/A
TIMEINT Any TI N/A

TIMER Any C1 N/A

SEMAPHORE Any Sl N/A

PGM Any PI N/A

]p

CRF 105Ii

122
"" 9244a
0 6

. . .
+

Release 7

REFERENCES

(ADT] Clements P. C., Faulk S. R., Parnas D. L.; Interface
Specifications for the SCR (A-7E) Application Data "voes
Module; NRL Report 8734, 23 August 198.3 (AD-AI32717)

[APC] Faulk, S.; "Pseudo-Code Language for the A-7E OPP", internal
memorandum, April 1Q82

[BELP731 Belpaire, Wilmotte; "A Semantic Approach to the Theory of
Parallel Processes"; in International Computing Symposium 1973.

[DIJK68] Dijkstra, E. W.; "Co-operating Sequential Processes", in

Programming Languages, ed. F. Genuys; Academic Press, 1968.
pp. 43-112.

[DIJK771 Dijkstra, E. W.; A Discipline of Programming; Prentice Hall,

1976.

[DIM] Parker, Heninger, Parnas, Shore; Abstract Interface

Specifications for the A-7E Device Interface Module, NRL
Memorandum Report 4385, November, 1980. (AD-AOQ2-6Q6)

[REED79] Reed, Kanodia; "Synchronization with Eventcounts and
Sequencers"; Comm. of the ACM, v. 22, no. 2 (197Q).

[REQ] Heninger K. L., Kallander J. W., Parnas D. L., Shore J. E.;
Software Requirements for the A-7E Aircraft; NRL Memorandum
Report 3876; Nov 1978. (AD-A061-751)

[SO] Clements P. C., Parker R. A., Parnas D. L., Shore J. E.,
Britton K. H.; A Standard Organization for Specifying Abstract
Interfaces, NRL Report 8815, 14 June 1984.

[TRACE] Parnas, "Trace Specifications for D-Operations", NRL Technical
Memorandum 7590-000:DP, to be published.

(VM] Alspaugh, Weiss, "Virtual Memory Interface Specifications",
NRL Report in progress, draft copy 16 April 1M84.

[WUER76] Parnas D. L., Wuerges H.; "Response to Undesired Events in
Software Systems"; Proc. 2nd Tnt. Conf. Software Eng.,
pp. 437-446; 1976

CRF 247 303

123

ACKNOWLEDGMENTS

The authors gratefully acknowledge the hard work and careful reviews

provided by the following peovle:

Naval Weapons Center, China Lake, CA:
Jack Basden
Richard Fryer

Sandra Fryer
Dawn Janney
Ray Martinusen
Jo Miller
Lee Thomson
Robert Westbrook
Richard Wolff

Janice Zenor

Vought Corporation, Dallas, TX:

Glenn Cooper
Dwight Hill

USAF A-7D/K OFP Detachment, Tucson, AZ:
Mark Jacobson
Richard Breisch

Bell Telephone Laboratories, Columbus, O:
Don Utter

Grunmman Aerospace Corp., Bethpage, NY:
Stephanie White

Computer Science and Systems Branch, Naval Research Laboratory,
Washington, DC:

Tom Alspaugh
Stuart Faulk
Bruce Labaw
Larry Morell
Preston Mullen
Dr. John Shore

CRF 087 233

124

9161a S
*

FILMED

3-85

DTIC
.- ,6

