

6

Ĩ

1

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 196-14 USAFA-TN-84-9

129

Department of Aeronautics Dean of the Faculty United States Air Force Academy Colorado Springs Colorado 80840-5831

THE SEVEN-HOLE PRESSURE PROBE

TECHNICAL NOTE USAFA-TN-84-9

APPROVED FOR PUBLIC RELEASE: DISTRIBUTION UNLIMITED $\mathbf{55}$

Any views expressed in this paper are those of the authors. They should not be interpreted as reflecting the views of the USAF Academy or the official opinion of any governmental agency. Notes are not reviewed for content or quality by the USAF Academy but are published primarily as a service to the faculty to facilitate internal research communication.

This Technical Note has been cleared for open publication and/or public release by the appropriate Office of Information in accordance with AFR 190+1 and DODD 5230.9. There is no objection to unlimited distribution of this Technical Note to the public at large or by DDC to the National Technical Information Service.

This Technical Note is approved for publication.

Zms

THOMAS E. McCANN, Lt Colonel, USAF Director of Research and Computer Based Education

Forward

This technical note is the final report covering the period 1 Oct 83 to 30 Sep 84 in response to NASA A 10498C sponsored by the NASA Ames Research Center and administerd by Mr. W.P. Nelms, and in response to AMD/RDS 84m16 sponsored by AFAMRL/CC (CREST) and administered by Major A.M. Higgins. Majors Frederick M. Jonas and Jack D. Mattingly were the principal investigators for this effort, aided by the faculty and cadets at the Air Force Academy. Of particular note is the contribution of 2Lt Lawrence Reed, former student and now Air Force officer, who is the principal author for this paper. The paper documents the current status of the seven-hole probe developed at the Air Force Academy under the stonsorship of the NASA Ames Research Center.

Accession For
NTV3 GRA&I
Per Fferturing 20/
Avenue Codes Avenue and/or Dist Decelal
A-1

Ĩ

THE SEVEN-HOLE PRESSURE PROBE

Lawrence Reed*, Jack D. Mattingly**, and Frederick Jonas**

Abstract

This paper documents recent and past developments with respect to the seven-hole pressure probe. Included are discussions on probe design, construction, calibration, and measurement capabilities. The effects on probe measurements in shear flows, as well as methods of correction, are also included. Finally, research applications in the measurement of unknown flowfields are presented. As shown, the seven-hole pressure probe is a valuable and highly accurate cevice for qualitatively or quantitatively documenting unknown flowfields.

. Introduction

The purpose of this paper is to document recent and past developments with respect to the seven-hole pressure probe developed at the United States Air Force Academy in conjunction with the NASA Ames Research Center. As with all pressure probes, the producted probe can be used to map unknown internal or external flowfields, giving valuable information to the aerodynamiciat. The advantage of the seven-hole probe over other flowfield measuring devices is its widely expanded measurement range and flexibility. To document this effort, Section II products brief background material about the probe's design and use. Section III includes an overview of probe calibration in antiform flows, both compressible and incompressible. In Section IV, recont results of investigations into probe measurement capatilities in shear flow environments are presented. Measurement capabilities as well as measurement sources of error

*End Ut., USAF, Graduate Student, Univ. of Washington **Mijor, USAF. Associate Profe por, Dept. of Aeronautics

are presented in Section V. Finally, recent research efforts on the application of seven hole probe measurements in unknown flows are presented in Section VI.

11. Background

Numerous techniques are available to measure unknown flow fields. While methods such as tufts, streamers, and vanes are primarily used for flow visualization, they are insufficient for quantitative information. Detailed data on flow size, direction, an: pressure usually require direct obtrusive flow measurement.

One of the oldest known quantitative techniques may be found in the pressure probe. Although other techniques, such as hot wire anemometers and laser doppler anemometers, have been developed, pressure probes are desirable from a flight vehicle standpoint because of their simplicity and ruggedness (Ref 1). Coupled with relatively low cost, pressure probes are an excellent measurement device for research, development, and industrial applications.

One of the classic problems in chirubive flux assurpment is the disturbance caused by a probe to the flow field it is measuring. For certain applications, such as tir raft pitet-static tukes, this purior to per contarbation is reintively unisportance in examinant and a second provide the providence of the second providence of the second providence of the . and the second A MARINE FOR THE MARINE RACEOUS AND low distance is for other apparent when ۰., 1. 1997 1. townstrain and the transfer of and the second ·· 1 · . and the second

was developed at the United States Air Force Academy to increase the measurement range of a non-nulling pressure probe while minimizing probe size.

A. Nulling Versus Stationary Probes

(

The increased measurement range of a multi-hole probe revolves on its ability to sense more pressures at the face of the probe. Two procedures, nulling and stationary, may be used to acquire the pressure data. A nulling probe is rotated in one or two planes until opposing peripheral ports measure equal pressures. The corresponding angle of rotation determines the flow angle. For the non-nulling approach, the probe is neld stationary as pressures in opposing peripheral ports are recorded. The pressure differences are then transformed to flow angles through previously known calibration relationships. Although the nulling procedure allows analysis of high angle flow, it is mechanically complex, time consuming, and hence, may not be cost effective. On the other hand, stationary probes with up to five holes are incapable of accurate measurements at high local flow angles (greater than 30degrees) because of flow separation around the probe tip. Explained in detail in a later section, the seven hole probe is the only non-nulling probe that can determine flow angles up to 70 degrees relative to its axis. When combined with a computerized data acquisition system, the probe may record nearly two data points per second. This rate is significantly faster than current nulling devices, which require considerable time for the balancing of probe tip pressures before each measurement can be taken (Ref. 21.

B. Analytical Model of Pressure Probe

Pressure probes used for measurement of flow direction and magnitude normally consist of an aerodynamic body with a symmetrical arrangement of sensing holes (Figure 1). Some typical decomptnies for pressure probes are reviewed in References 3 through by and pressure probes are treated in more general terms in mathematical 18 and 19.

FIGURE 1. TYPICAL FLO V DIRECTION PROBE (EACH UNE ON SOALE REPRESENTS & amount

While numerically solving the three-dimensional potential flow equations for the flow around an aerodynamic probe may be more accurate than slender body theory under some conditions (Ref. 21 and 22), it does not lend itself to synthesis of probe shapes. The alender body approach to the analysis of the probe provides a basis for formulating analytic calibration relations and considerable insight into the physical process.

Figure 2. SLENDER BODY OF REVOLUTION IN A CROSS-FLOW (REF.18)

Buffman modeled the probe as a yawed body of revolution as town in Figure 2. For a slender body, the equation of motion is timear and Buffman wrote the velocity potential as the sum of the trial flow and the cross flow components (this follows a method specified by Liepmann and Roskeo, Ref. 23). Solution of the equation of motion yielded the following velocity field in cylindrical coordinates:

$$\frac{v_r}{v_{\infty}} = R'\frac{R}{r} (\cos \alpha \cos \beta) + (1 - \frac{R^2}{r^2}) (\sin \beta \cos \theta + \sin \alpha \cos \beta \sin \theta)$$

$$\frac{v_{\theta}}{v_{\infty}} = (1 + \frac{R^2}{r^2}) (\sin \alpha \cos \beta \cos \theta - \sin \beta \sin \theta)$$

$$\frac{v_z}{v_{\infty}} = (1 + \frac{f}{2}) (\cos \alpha \cos \beta) + 2R'\frac{R}{r} (\sin \beta \cos \theta + \sin \alpha \cos \beta \sin \theta)$$
(1)

where f denotes the body-geometry function given by

C

$$\mathbf{t} = -\frac{1}{2} (\mathbf{R}^{-})^{+} \left(\sqrt{\mathbf{z}^{2} + \delta^{2} \mathbf{r}^{2}} - \sqrt{(\ell - \mathbf{z})^{2} + \delta^{2} \mathbf{r}^{2}} \right)$$

$$+ \frac{1}{2} (\mathbf{R}^{+})^{+} \left[\sqrt{\ell - \mathbf{z}} + \frac{\mathbf{z}}{2 + \delta^{2} \mathbf{r}^{2}} + \sqrt{\mathbf{z}^{2} + \delta^{2} \mathbf{r}^{2}} + \ell \mathbf{n} \left(\sqrt{\ell - \mathbf{z}^{2} + \delta^{2} \mathbf{r}^{2}} + \frac{2}{(\ell - \mathbf{z})^{2} + \delta^{2} \mathbf{r}^{2}} \right) \right]^{-(2)}$$

$$- \frac{1}{4} (\mathbf{R}^{2})^{+} \left(\sqrt{\mathbf{z}^{2} + \delta^{2} \mathbf{r}^{2}} - \sqrt{(\ell - \mathbf{z})^{2} + \delta^{2} \mathbf{r}^{2}} + 2 \sqrt{(\ell - \mathbf{z})^{2} + \delta^{2} \mathbf{r}^{2}} - 2 \sqrt{\mathbf{z}^{2} + \delta^{2} \mathbf{r}^{2}} \right) + \dots$$

The superscript prime (') denotes the derivative with respect to the variable z, and $\delta = 1 - M_{\infty}$.

The pressure coefficient is defined as

$$C_{\rm p} = \frac{P - P_{\omega}}{1 + V_{\omega}^2} = 1 - \frac{V^2}{V_{\omega}^2}$$
(3)

And when evaluated on the body the following expression results:

$$\frac{(4)}{4} = \frac{1 + (2 + 1) + (2 +$$

where f is to be evaluated on the body surface, i.e. r=R, Equation 4 represents the major result of Huffman's analysis and can be used to determine probe angular and static pressure sensitivity for arbitrary geometries.

The pressure difference between ports on opposite sides of the probe is used to determine the flow angularity. Since the side ports of the probe are at the same z and r locations, the pressure difference is proportional to the difference of C_p values at different 0 locations and

 $\sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{j=1}^{n} \sum_{i=1}^{n} \sum_{j=1}^{n} \sum_{j$

FRONT VIEW

SIDE VIEW

Figure 3. SEVEN-HOLE PROBE

For the seven-hole probe shown in Figure 3, the six holes on the side face are located at $\theta_1 = 90^\circ$, $\theta_2 = 150^\circ$, $\theta_3 = 210^\circ$, $\theta_4 = 270^\circ$, $\theta_5 = 330^\circ$, and $\theta_6 = 30^\circ$. The resulting three pressure coefficient differences for opposite side holes are

$$\Delta C_{1} = C_{P_{4}} - C_{P_{1}} = 4R'(1+f/2) \sin 2\alpha \cos^{2}\beta$$

$$\Delta C_{2} = C_{P_{3}} - C_{P_{6}} = 2R'(1+f/2)[3 \cos \alpha \sin 2\beta + \sin 2\alpha \cos^{2}\beta]$$

$$\Delta C_{3} = C_{P_{2}} - C_{P_{5}} = 2R'(1+f/2)[3 \cos \alpha \sin 2\beta - \sin 2\alpha \cos^{2}\beta]$$
(6)

These three pressure coefficients can be combined into a coefficient that is mainly dependent on the flow angle α and another coefficient that is mainly dependent on the flow angle β as follows:

$$\Delta C_{\mu} = \frac{2 \wedge C_{1} + \Delta C_{2} - \Delta C_{3}}{3} = 4R^{*}(1 + f/2) \sin 2u \cos^{2}\beta$$
(7)
$$\Delta C_{\mu} = \frac{\Delta C_{2} + C_{3}}{\sqrt{3}} = 4R^{*}(1 + f/2) \cos \alpha \sin 2\beta$$

. 11

The sensitivity to changes in flow angle is defined as $\frac{\partial \Delta C_{\alpha}}{\partial \alpha}$ or $\frac{\partial \Delta C_{\alpha}}{\partial \alpha}$ or $\frac{\partial \Delta C_{\alpha}}{\partial \alpha}$. There can be arable as

 $\frac{1}{1} = 8R^{1}(1+f/2) \cos (2\pi \cos 2)$

An end of the end

Also, the sensitivity is proportional to the slope of the probe's surface, R'. Equation 8 is plotted in Figure 4 for f=0. It is quite apparent from the figure that the probe angularity sensitivity -- regardless of shape -- depends on α and β . Approximately a 10% reduction in sensitivity occurs for α and β values of 10⁰. Note that $\beta \Delta C \alpha / \beta \alpha$ is the same for both positive and negative values of α and β .

1

5

Figure 4. PROBE ANGULAR SENSITIVITY AS A FUNCTION OF α AND β (REF. 18)

The average pressure coefficient can be used to determine the flow-field static pressure, P_{∞} . C_p is evaluated at a number of theta values and the results summed and divided by the number of theta values. For the seven-hole probe of Figure 3, this process vields

$$\langle C_{p} \rangle = [1 - f - f^{2}/4 + (R^{*})^{2}] \cos^{2} \alpha \cos^{2} \beta - [1 + 2(R^{*})^{2}]$$
 (10)

Huffman developed an expression for a quasi total pressure from his analysis by integrating the pressure over the body surface, resolving this force into an axial component, and dividing by the cross sectional area. His relationship is

$$\left< \frac{U_{p}}{2} = -\frac{\cos^{2}\alpha - \cos^{2}\beta}{R_{g}^{2}} \int_{0}^{g} (R^{2}) \left[f + f^{2}/4 + (R^{2}) \right] dz - \sin^{2}\theta - \sin^{2}\theta - \cos^{2}\theta$$
(11)

where i denotes the integration length.

For a conical shaped body, R' is constant and Equation 11 reduces to

$$\left< \frac{C_p}{2} \right>_{z} = \left[\frac{1 - f - f^2}{4 - (R^{\dagger})^2} \right] \cos^2 \alpha \cos^2 \beta - 1$$
(12)

/ erobe predering a continent that is proportional to the dynamic probative can be obtained by subtreating Equation 10 from Egestion

and a dynamic with the construction of

(19×

$$\left\langle C_{p} \right\rangle_{1} = \left\langle C_{p} \right\rangle = -2(R^{+})^{2} \left(1 - \cos^{2}\alpha - \cos^{2}\beta\right)$$

Some insight into probe calibration can be obtained by studying the plot of a and B versus Ca and CCB in Figure 5, the plot of $\langle C_p \rangle$ versus a and B in Figure 5, the plot of $\langle C_p \rangle_Z$ versus a and B in Figure 7, and the plot of $\left[\langle C_p \rangle_Z - \langle C_p \rangle \right]$ versus a and B in Figure 5. Figures 5 through 8 were calculated for R'=.268 and f=0. Note the near linear relation between each angle and its respective pressure coefficient as shown in Figure 5. Also, the nearly circular contours of constant $\langle C_p \rangle$, $\langle C_p \rangle_Z$, and $\left[\langle C_p \rangle_Z - \langle C_p \rangle \right]$ as shown in Figures 6,7, and 8, respectively. Probe manufacturing imperfection and angular misalignment of the pressure ports will cause these curves to become somewhat distorted.

5

(..

1 .

Ō

٠.

۱.

•

Figure 5. To VERSUS TO FOR A TYPICAL FLOW DIRECTION PROBE (REF. 18)

· ·.

• •

14

· .' .

Figure 7. CONTOURS OF CUNSTANTED

• • •

.

CONTOURS OF CONSTANT<C ,>z

•. •_* •

CONTOURS OF CONSTANT $[\langle c_p \rangle_z - \langle c_p \rangle]$

Ì

16

٠.

. ,

C. Seven-Hole Probe Design

1

The seven-hole probe is characterized by six periphery ports surrounding one central port (Fig. 9). The probe is constructed by packing seven properly sized stainless steel tubes into a stainless steel casing. For the current probe used at the Air Force Academy, the inner seven tubes have an outside diameter of .023 inches with a .005-inch wall thickness. Once assembled in the order shown below, the tubes are soldered together and machined to the desired half angle ε (usually 25 or 30 degrees) at the tip (Bef. 2). It should be noted that the manufacture of seven-hole probes (versus four/five hole probes) is much simpler due to this packing arrangement.

III. Seven-Hole Probe Calibration Theory

1

Because of their small size and individual construction, all probes have inherent manufacturing defects that require the unique calibration of each probe. Gallington (Ref. 24) developed the calibration theory required for incompressible, uniform flows. His power series method produces explicit polynominal expressions for the desired aerodynamic properties and is easily programmed. The following section presents a synopsis of Gallington's scheme for incompressible, uniform flow calibration as presented by Gallington (Ref. 24) and by Gerner and Maurer (Ref 2).

A. Low Versus High Flow Angles, Incompressible Flow

In this calibration technique for incompressible, uniform flow, the probe face is divided into two sectors. The inner flow sector deals with low flow angles in which the angle between the probe's axis and the freestream velocity vector is less than 30 degrees. The other or outer sector deals with high flow angles of over 30 degrees. Thirty degrees is the dividing point because flow typically begins to detach over the top surface of the probe tip around this local flow angle. The hole numbering system used for both sectors and the remainder of the report is as follows:

FRONT VIEW

Figure 10. PORT NUMBERING CONVENTION AND PRINCIPAL AXES

The x-axis is defined to be positive in the unperturbed freestream flow direction. The origin is a point at the tip of the cone formed by the probe (Fig. 10).

B. Probe Axis System for Low Flow Angles

The axis system for low flow angles is the tangential alphambeta system depicted below (Fig. 11). The angle of attack, alpha (α_T) , is measured directly as the projection on the xmplane. To preserve symmetry, the angle of sideslip (β_T) is measured directly as the projection on the y-plane.

TANGENT
α _T ≠ arctan ₩ u
$\beta_{T} = \arctan \frac{v}{v}$
, , , , , , , , , , , , , , , , , , ,

Figure 11. LOW ANGLE REFERENCE SYSTEM

1. Pressure Coefficients for Low Flow Sagues

The flow angle is determined as a function of dimensionless pressure coefficients. Three pairs of opposing peripheral ports measure the differences in pressure from one side of the probe to the other is: form the following three relationships:

$$C_{1} = \frac{P_{4} - P_{2}}{P_{2} - \overline{P}_{1} - c}, \quad C_{2} = \frac{P_{3} - P_{4}}{P_{2} - \overline{P}_{1} - c}, \quad C_{2} = \frac{P_{3} - P_{3}}{P_{2} - \overline{P}_{1} - c}$$
(4)

As the numerator measures changes in flow angularity, the denominator nondimensionalizes the expression with the apparent dynamic pressure. The center port pressure, P_7 , approximates the local total pressure while the average of the circumferential port pressures \overline{P}_{1-6} approximates the local static pressure. To transform these pressure coefficients to the tangential reference system, Gallington (Ref. 24) formulates the following relationships:

$$C_{\alpha} = \frac{1}{3} (2C_{\alpha_1} + C_{\alpha_2} - C_{\alpha_3}) , \quad C_{\beta} = \frac{1}{\sqrt{3}} (C_{\alpha_2} + C_{\alpha_3})$$

It is important to realize that $C\alpha$ and $C\beta$ are not independent of each other; that is, $C\alpha$ is a function of all six peripheral ports while $C\beta$ is a function of all but ports 1 and 4.

Besides the two angular pressure coefficients, two other low angle pressure coefficients, C_0 and C_q , are defined in Gallington's work (Ref. 24):

$$C_{0} = \frac{P_{7} - P_{0L}}{P_{7} - \overline{P}_{1} - 6} \qquad C_{q} = \frac{P_{7} - P_{1} - 6}{P_{0L} - P_{1}} \qquad (10)$$

 C_0 is the apparent total pressure coefficient with respect to each hole and is a means to convert actual pressures measured by the probe to accurate values of local total pressure. The numerator measures the difference between the approximate total pressure measured by the center port P7 and the actual local total pressure $P_{\rm oL}$. As with the previous coefficients, the denominator nondimensionalizes the expression with the apparent local dynamic pressure.

The velocity pressure coefficient, Cq, serves a similar conversion function as C_0 except that it relates the probe

pressures to the actual dynamic pressure. The numerator in this coefficient represents the probe's approximation of the local dynamic pressure while the denominator represents the actual dynamic pressure of the freestream test conditions. D. Probe Axis System for High Flow Angles

The real advantage of using the non-nulling seven-hole probe over other multi-hole probes appears in the ability to measure high-angle flows. At high angles of attack (greater than 30 degrees), the flow detaches over the upper surface of the probe, and pressure ports in the separated wake are insensitive to small changes in flow angularity (Fig. 12).

Figure 12. FLOW PATTERN OVER SEVEN-HOLE PROBE AT HIGH ANGLE OF ATTACK

Consequently, high angle measurements must only be made from ports in the attached flow. Five-hole and other pressure probes have been ineffective in this regime due to this flow separation and lack of sensing ports in the attached flow region. The seventhole probe avoids this problem because at least three ports remain in the attached flow region, allowing sufficient data to be recorded to document the flow angle.

According to Gallington, the tangential reference system is inappropriate at high flow angles because of indeterminate angles and singularities (Ref. 24). Instead, the polar reference system is used (Fig. 13) where θ represents the pitch angle and ϕ represents the roll angle.

 \bigcirc

TANGENT
u _T =arctan <mark>w</mark> u
$r_{T} = \arctan \frac{v}{u}$

Figure 13. HIGH ANGLE REFERENCE SYSTEM

More specifically, 9 denotes the angle that the velocity vector forms with respect to the probes's x-axis, and ϕ signifies the azimuthal orientation of the velocity vector in the y-z plane. We should note that a positive ϕ is measured counterclockwise from the the negative z axis when the probe is viewed from the front. Based on Gallington's original work with the seven-hole prote at high angles of attack, Gerner and Mauer accomplished the following analysis (Ref 2). Kuethe and Chow's Foundations if Aerodynamics: Bases of Aerodynamic Design, explains that the Separation points of a cylinder in turbulent flow are over 100 decrees from the frontal stagnation point. Flow around a conical bedy such as a probe tip was likely to remain attached longer, and the develocity component was prone to extend the separation points d wootheam even further. Therefore, for the high angle flow shown in Figure 14, ports 3, 4, 5, and 7 lie in attached flow, and port 1 lies in separated flow. The flow over ports 2 and 6 is compredictable, and their readings a p discarded (Ref. 2).

Figure 14. FLOW OVER PROBE AT HIGH ANGLE OF ATTACK

. Free Angles Angles

pressure differences. Unlike low flow angles, however, the center port pressure is now the most dependent port on local flow angle. Consequently, a pitch angular pressure coefficient should measure the difference between the center port and a new stagnation port. In the example below, the pressure at P_4 approximates the local total pressure.

$$C_{O_{4}} = \frac{P_{4} - P_{7}}{\frac{P_{5} + P_{5}}{2}}$$
(17)

The expression is again nondimensionalized by the apparent dynamic pressure. The average of P_3 and P_5 approximates the static pressure and is relatively independent to changes in roll.

Although the average is independent of ϕ , the difference is sensitive to roll angle. As the probe's azimuthal orientation changes, the windward pressure rises and the leeward pressure falls. The result is a roll angular pressure coefficient (example for port 4 is Equation 8 below) that is also nondimensionalized by the apparent dynamic pressure.

[[

C

$$C_{\frac{1}{2}4} = \frac{P_{3} - P_{5}}{P_{4} - \frac{P_{3} + P_{5}}{2}}$$
(13)

The high flowmangle C_0 and C_q coefficients are translated from their low flow angle counterparts using the same rationale found in the development of C_u and C_{ϕ} . The lowmangle C_0 and C_q coefficients are changed to account for the different ports that represent total and static pressures in the high-angle regime. The equations for C_u , C_{ϕ} , C_0 , and C_d are as follows:

$$C_{\Theta_{1}} = \frac{P_{1} - P_{7}}{P_{1} - \frac{P_{2} + P_{6}}{2}}, \qquad C_{\phi_{1}} = \frac{P_{1}}{P_{1}}$$

$$O_2 = \frac{P_2 - P_3}{P_2 - \frac{P_1 + P_3}{2}}$$

$$P_1 = \frac{P_6 + P_2}{P_1 - \frac{P_6 + P_2}{2}}$$

$$P_{2} - \frac{P_{1} + P_{3}}{2}$$

(19)

$$C_{\Theta_3} = \frac{P_3 - P_7}{P_3 - \frac{P_2 + P_4}{2}}$$
, $C_{\phi_3} = \frac{P_2 - P_4}{P_3 - \frac{P_2 + P_4}{2}}$

$$C_{\Theta_4} = \frac{P_4 - P_7}{P_4 = \frac{P_3 + P_5}{2}}$$
, $C_{\phi_4} = \frac{P_3 - P_5}{P_4 - \frac{P_3 + P_5}{2}}$

$$C_{\partial_5} = \frac{P_5 - P_7}{P_5 - \frac{P_4 + P_6}{2}}$$
, $C_{\phi_5} = \frac{P_4 - P_6}{P_5 - \frac{P_4 + P_6}{2}}$

$$C_{\Theta_{\varepsilon}} = \frac{P_{\varepsilon} - P_{\tau}}{P_{0} - \frac{P_{0} + P_{1}}{2}}, \qquad C_{\phi_{\delta}} = \frac{P_{\delta} - P_{1}}{P_{0} - \frac{P_{0} + P_{1}}{2}}$$

$$C_{01} = \frac{P_1 - P_{0L}}{P_1 - \frac{P_2 + P_6}{2}}$$

$$C_{02} = \frac{P_2 - P_{0L}}{P_2 - \frac{P_3 + P_1}{2}}$$

$$C_{03} = \frac{P_3 - P_{0L}}{P_3 - \frac{P_4 + P_2}{2}}$$

$$C_{04} = \frac{P_4 - P_{0L}}{P_4 - \frac{P_5 + P_3}{2}}$$

$$C_{05} = \frac{P_5 - P_{0L}}{P_5 - \frac{P_6 + P_4}{2}}$$

$$C_{06} = \frac{P_6 - P_{0L}}{P_6 - \frac{P_1 + P_5}{2}}$$

r

G

(-

$$C_{q_{1}} = \frac{P_{1} - \frac{P_{2} + P_{6}}{2}}{P_{oL} - P_{ooL}}$$
$$C_{q_{2}} = \frac{P_{2} - \frac{P_{3} + P_{1}}{2}}{P_{oL} - P_{ooL}}$$

 $C_{q_3} = \frac{P_3 - \frac{P_4 + P_2}{2}}{\frac{P_0 - P_{\infty L}}{2}}$

(20)

.

$$C_{q_4} = \frac{P_4 - \frac{P_5 + P_3}{2}}{P_{oL}}$$

$$C_{q_{5}} = \frac{P_{5} - \frac{P_{6} + P_{4}}{2}}{P_{oL} - P_{oL}}$$

$$C_{q_6} = \frac{P_6 - \frac{P_1 + P_5}{2}}{P_{oL} - P_{oL}}$$

F. Division of Angular Space

The most obvious difference between low and high pressure coefficients is that six high coefficients are needed for the high angles. This fact leads to the question of what factors determine when a certain set of coefficients should be employed. Gallington proposes the "division of angular space" shown in Figure 15 (Ref. 24).

This method separates probe measurements into seven sectors HH a central low angle sector and six circumferential high angle sectors. Data points are placed in a given sector based on the highest port pressure measured on the probe.

G. Polynomial Power Series Expansion

Once the pressure coefficients are calculated, they must be converted to u_T , β_T , C_0 , or C_q for low angle flows and θ , ϕ , C_0 , or C_q for high angle flows. This conversion is accomplished by solving the following fourth order power series:

	order of ferms
$A_{i} = K_{i}^{A} +$	Oth
$K_2^A C_{\alpha_1} + K_3^A C_{\beta_1} +$	lst
$\kappa_{4}^{A}C_{\alpha_{1}}^{2} + \kappa_{5}^{A}C_{\alpha_{1}}C_{\beta_{1}} + \kappa_{6}^{A}C_{\beta_{1}}^{2} +$	2nd (21)
$K_{7}^{A}C_{\alpha i}^{3} + K_{\theta}^{A}C_{\alpha i}^{2}C_{\beta i} + K_{9}^{A}C_{\alpha i}C_{\beta i}^{2} + K_{10}^{A}C_{\beta i}^{3} +$	3rd
$K_{11}^{A}C_{\alpha_{1}}^{4} + K_{12}^{A}C_{\alpha_{1}}^{3}C_{\beta_{1}} + K_{13}^{A}C_{\alpha_{1}}^{2}C_{\beta_{1}}^{2} + K_{14}^{A}C_{\alpha_{1}}C_{\beta_{1}}^{3} + K_{15}^{A}C_{\beta_{1}}^{4}$	4th

Order of Torma

"A" signifies the desired output quantity with the subscript denoting the ith such quantity. "K" denotes the presently unknown calibration coefficients. The calibration process entails finding these calibration coefficients with the A's as known conditions and the C's as measured pressure coefficients at these known conditions.

H. Determination of Calibration Coefficients

Rewriting in matrix notation for n terms, the power series becomes

(23)

(24)

ar simply

[A] = [C] [K]

Solving for [K] by the least squares curve fit outlined by Netter and Wasserman in Gallington (Ref. 24), the following is obtained:

 $[K] = [C^{T}C]^{-1}[C]^{T}[A]$

With Prows and Patien the fibertal the orthopan of and the determine output constities $(a_{f}, B_{f}, \dots, a_{f}, \dots, a_{f}, \dots, a_{f}, \dots, a_{f}, \dots, a_{f})$ by 1.111 off of unknown flow field has been uniform and that to this point the flow field has been uniform and the solution of velocity grificats have not been to us of fort. Fightly, while the local total and dynamic for other power of the solution of point the placet.

ų.

easily determined by substituting C_0 and C_q into Equation 16 (low angles) or Equation 20 (high angles).

I. Extension to Compressible Flows

1

C

Gerner and Maurer (Ref. 2) expanded the technique to subsonic compressible flows with the introduction of a nondimensional preasure coefficient representative of compressibility effects. This coefficient, C_M , had to become insignificant at very low Mach numbers; thus, any terms bearing C_M in the power series expansion would have to approach zero as Mach approached zero. This would leave essentially an incompressible power series with the regular two angular pressure coefficients as previously described. Because pressure probes are unable to determine Mach number in the hypersonic range, C_M had to approach a finite limit at very high Mach numbers. Consequently, large changes of Mach numbers in this region would have negigible effect on the compressibility coefficient.

Gerner and Maurer (Ref. 2) found that these requirements were satisfied by the apparent dynamic-to-total-pressure ratio (low angles).

$$C_{M} = \frac{P_{7} - \overline{P}_{1} - 6}{P_{7}}$$
 (25)

Similarly, for high angle flow, the compressibility coefficient in each sector is:

One of the primary problems of extending the seven-hole probe's capabilities into compressible flow lies in the mathematics. First, by adding a third coefficient to the fourth order power series, the number of terms and hence calibration excificients jumps from 15 to 35. Gerner and Mauer say that approximately 80 data points in two variables ($C\alpha$ and $C\beta$) for each of the seven sectors are needed for a complete incompressible calibration. That fact results in 560 data points, and the addition of a Mach number compressibility coefficient marks the data set unwieldy (Ref. 2). These two factors create complex and time consuming matrix operations. Additionally, the amount of run time needed to operate the wind tunnel for all of the calibration data points is prohibitive as well as costly.

Gerner and Maurer suggest a two-part solution to make the addition of C_M feasible. By reducing the fourth order power series to a third order, the number of calibration coefficients is reduced to 20. Gerner and Maurer also decrease the number of data points required for calibration by employing a 6x6Latin Square technique (Ref. 2) for purposes of obtaining calibration data. The Latin Square is a numerical method that ensures a homogeneous, he dem circle of a obtained method that purposes.

C

Deven note probe work incorporating these use changes is auto in the following incorporating these use changes is auto in the following incorporations for compressible flow. The third inter terprofile likes of n accurately represente the parameter place as the inclusion when TA degrees of sitch. Next, based on there as in the constraint of the standary degrations of enumeration according to the standary degrations of enumeration according to the standary degration, taking

<u>.</u>

Squares produce a sample which accurately represents a very large three-dimensional parameter space.

With these changes, the seventhole probe may now be used in an unknown uniform, compressible flow. Since the seventhole probe has never been subjected to supersonic applications, no shocks will lie thead of the probe, and the isentropic flow relationship is employed to find Mach number (Ref. 2).

$$M_{\rm m}^{\prime} = \frac{2}{\gamma - 1} \left(\left[1 - \frac{P_0 - P_{\rm m}}{P_0} \right]^{(1 - \gamma)/\gamma} - 1 \right)$$
(27)

Knowing C_0 , C_q , and the seven port pressures, the local Mach number may be determined explicitly from the dynamic to total pressure ratio. This ratio for the inner sector is represented in Equation 28 below (Ref. 2).

$$\frac{P_{oL} - P_{oL}}{P_{oL}} = [Cq (\frac{P_7}{P_7 - P_{1-6}} - C_0)]^{-1}$$
(28)

Similar equations for the outer sectors may be derived, using the appropriate port pressures for approximate total and dynamic pressures.

IV. Seven-Hole Probe in Shear Flow

Under the present calibration scheme, the existence of a velocity gradient in the flow will cause the probe to measure an erroneous uniform flow at fictitious flow angle. For example, a flow having the properties $M=.3, \alpha=0^{\circ}, \beta=0^{\circ}$, with a velocity gradient (Fig.16) might cause the probe to "think" that it sees a flow with a certain angularity, say $\beta=10^{\circ}$ (see Fig. 17).

FIGURE 17. APPARENT FLOW CONDITION

different of ensure operations and seven values estimate a single - 1997 - Source coefficient, all seven values estimate a single - 1997 - Source Court The use of these of the second time that - 1997 - flow call continue and apparent flow condition that - 2007 - the object of the act of the second time to be - 1997 - the object of the second time to be act of the second time.

• •

determined. Then using the "backstepping" technique developed in the following sections, the apparent measured values can be connected to the actual flow values.

A. Slender Body Theory

The slender body theory developed by Huffman is utilized in this section to model flow around the probe (Ref. 20). With this model, the probe's port pressure coefficients can be estimated as a function of flow angularity. Using Huffman's method of viewing the probe as a small perturbation to an otherwise uniform stream, the pressure coefficients are determined by analytic means. Further, the model determines the variation of pressure coefficients with flow direction. Not included are viscous or flow separation effects as the theory is based on potential flow.

The body-geometry function, f, is a parameter used to define the geometric characteristics of a slender body and is given in Equation 2. Huffman incorporates the body shape function into calculations for the pressure coefficient as given by Equation 4. A simplified form of Equation 4 was used in this analysis ap given below.

 $C_{P_{i_{c}}} = \cos^{2} \alpha \cos^{2} \beta [-f - (R')^{2}] + \sin^{2} \beta [1 - 4 \sin^{2} \theta]$ (29) $+ \sin^{2} \alpha \cos^{2} \beta [1 - 4 \cos^{2} \theta] + \cos \alpha \sin 2\beta [-2R' \cos \theta]$ $+ \sin 2\alpha \cos^{2} \beta [-2R' \sin \theta] + \sin 2\alpha \cos \beta [4 \sin \theta \cos \theta]$

where R' is dR/dX with R as the radius of the probe, and (O) is the angle measured from the ymaxis to the pressure port in question. The subscript "c" signifies that the approximation is valid for uniform incompressible flow.

The function that Huffman develops for the pressure coefficient at port 7 simplifies to Equation 30.

•

$$C_{p_{7_{c}}} = \cos^2 \alpha \, \cos^2 \beta - \sin^2 \beta - \sin^2 \alpha \, \cos^2 \beta \qquad ((0))$$

he must realize that slender body theory is only an astronomite model of flow around the sevenmhole probe. The reason I : the use sters from the conditions that the body radius is much it than the body length (slender body), and that it is easily applied to compressible flows. The only problem with this approach is that it assumes that the nate of change of body radius with respect to body length must be small. The seven-hole probe does not completely conform to this assumption for two reasons. First, the probe has a blunt tip with a slope discontinuity, while slender body theory assumes an aerodynamically smooth body coming to a point. Because the tip is blunt, flow disturbances priginate at that tip. Second, due to the orientation of the peripheral hele sumfaces, separation became on the browners at reperite process of attack. Slender body theory assumes non-separated flow over the body for all flow angles. Even with these discrepancies, clender andy theory is after two in predicting basic therds for coefficient A set of the and the state of the See a gall, the set of a second second and the second second states of a second the state of a test of a uniform flow with no flow angularity the and the second second

n stand 100 water of the standard life states of presence firemens. For the states and states and states a

í

(

35a

b. The Shear Grationt

3

In order to work with a two-dimensional shear gradient, an alpha-beta plane in defined normal to the direction of the actual vectority and through the letter point of port number 7 (Fig. 19a). The velocity at port for a sector point a reference velocity; hence, by styler a construction of the sector.

Figure 19a. SEVEN-HOLE PROBE IN A SHEAR GRADIENT

Varido oraș în contra de contra Contra de contra de

Figure 19b. CLOSE-UP OF NORMAL PLANE

Ę

E

equation can be used to define the gradient's effect on the velocity.

$$V = V_7 + \frac{dV}{dy} y + \frac{dV}{dz} z$$

where y and z are the components of the gradient distance and dV/dy are indicators of the magnitude of the alpha and beta shear gradients respectively. To put this equation in a more usable form, the gradients are non-dimensionalized:

$$V = V_7 \left(1 + \frac{s}{V_7} \frac{dV}{dy} \frac{y}{s} + \frac{s}{V_7} \frac{dV}{dz} \frac{z}{s}\right)$$

where s is the distance retween the centers of opposite ports. With this new equation, the terms $\frac{s}{V_7} \frac{dV}{dy}$ and $\frac{s}{V_7} \frac{dV}{dz}$ can be assimute a magnitude of relative gradient.

C. Gradient Effects on Port Pressure Coefficients

For a uniform calibration the pressure at the peripheral holes may be found by the following expression.

$$C_{p_{1}} = C_{p_{1}} \left(1 + \frac{s}{v_{7}} \frac{dv}{dy} \left(\frac{y}{s}\right) + \frac{s}{v_{7}} \frac{dv}{dz} \left(\frac{z}{s}\right)\right)^{2}$$
(33)

Since C_{P_1} is a uniform coefficient based on the geometry of the slender body theory, V_1 is the only term that accounts for gradient effects. Consequently, V_1 in shear flow differs for each peripheral hole. If the velocity term is kept constant at V_7 and the gradient effects are accounted for by the coefficients of pressure, the following expression results:

$$P_{i} = P_{\infty} + C_{p_{i}} (s_{2}v_{i}^{2})$$
 (34)

Solving Equations 53 and 34 for \mathbb{C}_p , it is evident that pressure is proportional to the square of velocity in incompressible flow.

$$P_{i} = P_{\infty} + C_{P_{i}} (l_{2} p V_{7}^{2})$$
(35)

lan one-male of the second provide the second states the second second second second second second second second

and the second second

$$\frac{\partial}{\partial t} = \frac{\nabla_{t}}{\nabla_{t}} \left(\frac{\nabla_{t}}{\nabla_{t}}\right)^{2}$$

Ô

the determination of point (x,y,z). The vector analysis behind the location of point (x,y,z) is explained in detail in Johnson and Reed (Ref. 25). The results are as follows:

 $x = x_{1} + (x_{7} - x_{1}) \cos \alpha \cos \beta - \cos \alpha \cos \beta [y_{1} \sin \beta + z_{1} \sin \alpha \cos \beta]$ $y = y_{1} + (x - x_{1}) \tan \beta / \cos \alpha$ $z = z_{1} + (x - x_{1}) \tan \alpha$

Port (i)	×i	^y 1	^z i
1	s/2tan ε	(s/2)cos0,	(s/2)sin⊖,
2	s/2tan c	$(\mathbf{s}/2)\cos \theta_{j}$	$(s/2) \sin \frac{1}{2}$
3	$s/2tan \epsilon$	(в/2)сов0 ₃	(s/2)sin0 ₃
4	s/2tan ε	(s/2)cos94	$(s/2)sin\Theta_4$
5	$s/2tan \epsilon$	(s/2)cos0 ₅	(s/2)sin05
6	s/2tan ε	(s/2)cos06	(s/2)sin0
7	d/2tan c	0	0

Since x_i , y_i , z_i , and x_7 are known values, the knowledge of alpha and beta will locate the point (x,y,z).

E. Shear Flow Measurement Corrections

At this point, the mathematical relationships necessary to compare the effects of velocity gradients are available. Equation 15 provides the ability to calculate C_{α} , $C_{\alpha_{c}}$, and C_{β} , and $C_{\beta_{c}}$ realizing that

$$C_{\alpha_{1}} = \frac{P_{4} - P_{1}}{P_{7} - \overline{P}_{1-6}} = \frac{C_{p_{4}} - C_{p_{1}}}{C_{p_{7}} - C_{p_{1-6}}}$$
$$C_{\alpha_{2}} = \frac{P_{3} - P_{6}}{P_{7} - \overline{P}_{1-6}} = \frac{C_{p_{3}} - C_{p_{6}}}{C_{p_{7}} - C_{p_{6}}}$$

$$C_{\alpha_{3}} = \frac{P_{3} - P_{5}}{P_{7} - P_{1} - 6} = \frac{C_{p_{3}} - C_{p_{5}}}{C_{p_{7}} - C_{p_{1} - 6}}$$

(37)

by comparing the actual to the apparent angular pressure confficients, the actual angles can be incremented until the apparent and actual coefficients are equal. This procedure indicates the flow angle errors inherent in the measurement of velocity gradients.

in order to determine the effects of different shear gradients at varying alphas and betas, Johnson and Reed (Ref. 25) calculated the apparent flow angles resulting from a span of actual flow angles and shear gradients. The calculations show the errors between the apparent angles and actual input values. Consequently, the actual flow angles can be determined by backstepping from the apparent angles. Although these calculations only allow manual corrections to apparent measurements, the theory of this section can be used to generate a family of data points. These points may then be input into a computer surface fitting scheme for highly accurate, near real-time correction to the apparent data.

J. Seven-Hole Probe Measurement Capabilities

Three key elements of the seven-hole probe's measurement effectiveness in unknown flows are discussed further in order to provide an understanding of the basics behind its actual and solunitation provide the transformation be discussed are the orp total optimized on an inclusion for the theory total optimized on an inclusion for the

a. a.iurat.or.

ĩ

(

The structure of such that an iquely calibrated due to enough the proceedings. The specifies of the peventhole procets is the second construction with a sublimed in the sublime is a second to go a second that as a second structure substructure bound to probes, seven-hole probe calibration allows for the relative flow angles, total pressure, and static pressure to be determined explicitly. With computer processing, these calculations are performed in near real time.

As discussed earlier, problems with the present calibration arise when attempting to make measurements in shear flow. This is because the present calibration and associated calibration coefficients are determined in a uniform flow. Jonas recorded measurement discrepancies in his attempts to use the seven-hole probe to map unknown flow fields with suspected shear (Ref. 26). Specifically, he compared seven=hole and total pressure probe measurements in a vortex wake created by the wing leading-edge extensions of a Northrop VATOL model.

Figure 20. NORTHHER TOP-MOUNTED INLET VATOL CONCEPT

41.,

In a vertical flow, legal total pressure should be even through the wake 'scale of viscous effects. This require the coefficient ' $\left(\frac{p_{oL} - P_o}{P_o - P_o}\right)$ to be a negative value. The results of Janas' pressure measurement comparison are shown in Table 1 below (hef. 26).

	Total Pressure Prope			
	beven-Hole Fressure Probe	Arlenet with Eppersonaum	A Clear Contractor	
Nurber of Realising (56 Esta Complea Petrovadings	ì			
Average Value	+0.197	- <u>``</u> ``	1	
os de la Defeille : Devintior,	-0.005	• • • • •		
Maximum Value		-0.),	• 0 • • •	
Origen Mikifan Velak		-6.607	→ ¹ . (
Creative State Positive State Positive	 .	1 T.	• ;	

Jonas in plant the fulless of discussion based entrements of latter index. As the end of latter the ister for the determinant of agree with power where the terminant presents the start pressure present that the ister is the terminant of the index of the measurements existed where $f_{\rm power}$ was possible. Here, these values may not be an absuration measure of local total pressure because flow angularity may have eaused of , which the local flow, the percent of the measurements resulted on a field total pressure greater that that of the freestroid value. These measurements, however, are lower than those obtained to be the start of the freestroid value.

the seven-hole probe. One must realize that the total pressure probe was bent at an angle based on measurements made using the seven-hole pressure probe. Since the seven-hole measurements were made in a region of high shear flow, the local flow angularity reading may also be erroneous. Consequently, the flow around the tip of the total pressure probe supposedly aligned with the local flow might also be separated, again leading to false pressure neadings. The average value for $C_{\rm TOTAL}$ of the bent total pressure product, however, remains negative. This evidence seems to confirm our theoretical expectations of viscous effects.

Although the contradictive probe readings seem to indicate incorrect probe measurements in the high shear regime, the possibility of positive C_{TOTAL} regions may not be totally excluded. A vortex flow is very complex and not completely understood. Comparisons in a low shear flow environment (airfoil wake) of tever-hole probe measurements and bot-wine anemometer measurements are, however, very favorable and no discrepancies or positive C_{TOTAL} measurements exist (Ref. 26). This seems to indicate that the problem of positive C_{TOTAL}'s are only associated with high shear trakes, and a concertate to the mode (manufacture, calibration, etc.) to actually exclude to the mode (manufacture, calibration,

A pressure prove cloud be us small as possible to keep the down to be a contraction of the unbest nowever the site encoded by whereal entities that disadvantages. For example, smaller prober repairs on the pressures of a contraction. As side descenares,

, 1

builds and other manufacturing imperfections cause creater and the construction errors, and the port tubes are more likely to a set

Although the fir shale probe may devise rich to south it that the seven-hole, the exact opposite is true. The construction of the seven-hole probe is greatly simplified bines the part taked are arranged in the only geometric fitting of this satisfyion and Bollerbaugh (Ref. 27) explain three roll calls the this permetric arrangement everyopes, with the back of each in the five-hole probe.

Figure 21. SEVEN-HOLE PROBE CONSTRUCTION

Figure 22. CONVENIENT PROBE DESIGN

First, it is difficult to hold five-hole tubing parallel with the center tube and in perfect azimuthal position for soldering. Second, a high-powered magnifier is required to assure equal sneather on the four side tubes. Finally, there is no guarantee that the four solder fillets shown below will be equal or even nearly equal.

Figure 23 FIVE-HOLE PROBE ASSEMBLED FROM TUBES As a quick note, a simpler geometric arrangement for five tubes is shown below. This order, however, lacks the required center tube.

Figure 24. FIVE TUBES IN THE SMALLEST CIRCUMSCRIBED CIRCLE

over the years, multi-hole probe construction has uncovered certain features that increase the accuracy of pressure measurement. Total pressure measurement can be largely desensitized to alpha and beta by flaring the stagnation port at an angle of 30 to 60 degrees. Yet, the probe's overall sensitivity to flow angularity can be increased by decreasing the tip half-angle (c). The drawback to a small half-angle is that the flow will separate from the leeward surface when α_T exceeds to (Ref. 1).

C. Measurement Error Sources

Once smaller probes are built, they are more sensitive to measurement errors caused by flow debris and damage. These two effects condemnimized prior to use by reverse airflow through blogged ports, by dust covers over port entrances, and by simple.

varieful handling of smaller probes.

ſ

Huffman identifies three other error sources that adversely iffect a probes measurement of pressure, orientation, and velocity but 1). These sources include the time lag between sensed and actual pressures, the pressure transducer resolution and frequency roop use, and the resolution of the analoghtomdigital conversion. los pressure transducer resolution and analoghtomdigital resolution are both beyond the scope of this report; however, the other error conversion are discussed in the following paragraphs (Ref. 1).

As flow field conditions change, the probe surface pressures of once nearly instantaneously. These pressure changes are transmitted to the pressure transducers by a finite amount of air through a connection tube. Huffman discusses the fact that the pressure lag caused by this finite travel time is related to the capeed of pressure propagation and the pressure drop due to the vice of facts of the tubing (Ref 1). Three physical electricities directly affect this time lag:

- 1. Subing diameter
- 2. Tubing length
- . Partducer cavity

Similapkohl and Buzzell (Ref 28) define frequency response in

the inverse of the maximum dwell time necessary for the probe system to react to the maximum pressure difference expected where the pressure sensed by the pressure transducer reaches 99 percent of the actual (surface) pressure.

Although pressure time lag is the major factor in the probe's inequency response, it is not the sole contributor. The frequency response of the transducer, the computational time required to souvert the measured pressure to the desired output, the pressure differential between the probe tip and the transducer face, and the fluid density all affect the probe's overall frequency response metrical.

Probe frequency response rates are generally of a few Hertz. Because modern transducers and microprocessors require only milliseconds to operate, their operation is essentially instantaneous, and little can be accomplished in these areas to decrease the overall frequency response. The final two factors are associated with the fluid dynamic properties of the flow. The difference between the fluid pressure at a port entrance and the pressure at the transducer face acts as a driving potential, and a greater differential increases the frequency response (Ref. 28). Cince a higher density increases the collision rate between molecules, and therefore, increases the propagation rate of a pressure pulse, greater density is synonymous with greater frequency restance. In considering the effect of featily, see rereater the assumption of a constant static pressure acression to free of the probe. Remembering P=2KT, one should realize that the density of the flow is dependent upon pressure.

 \mathbf{O}

() Contracting the state of the state of

The second second start flow, a finite wing section of a NACA second wind between the two by three foot subsonic wind there externs nites States Air Force Academy (Figure 25). The fector with the wing at an angle of attack of 8 degrees and substruction with the wing at an angle of attack of 8 degrees and

. 6

Computer graphing techniques were used to map out the flow velocities and directions for all the points in a series of parallel two-dimensional planes, all of which were perpendicular to the uniform flow.

Figure 26. WING VORTEX DATA PLANES

4

The two-dimensional planes or test girds, started twelve inches aft of the wing's trailing edge and moved forward (toward the wing) by two inch increments for every data set. From these test runs, capabilities and limitations of the seven-hole probe under mild gradient conditions are examined and a wingtip vortex is mapped.

The first step in vortex analysis is to examine the crossflow velocities in each plane. Crossflow velocity plots, which are scaled by a factor of two are shown in Figures 27a to 27h (Ref. 20). With past errors in gradient regime, one would expect errors in seven-hole readings. Suspect data of this nature (Ref. 29) are identified by inconsistencies in the crossflow plots, such as an isordinately large or small arrow (Fig. 28) or an arrow in the wrong direction. However, the actual crossflow plots do not confirm these expectations. The velocities are well-behaved, and no inconsistancies are seen near the vortex core where high shear exclats.

C

- 6

Ъlа

· .

•

. Reciplete a lot velocity data may be shown on a velocity . . contentive plot for ease of analysis (Figure 29).

52a

٠.

This new representation of the velocity data shows how the vortex expands and decays as it moves downstream. Represented by the velocity magnitude, the vortex strength decreases as the vortex expands. The vortex velocity gradient also decreases since the vortex is diffusing. Discontinuities do occur, however, at the eight-inch plane. As seen in Figure 29, the velocity magnitudes are smaller than those for the six-inch plane, but they are also smaller than those in the ten-inch plane. This data must be incorrect, for the vortex cannot be weaker at eight inches downstream than it is at ten inches. Because of the suspect data, the eight-inch plane is removed from future analysis.

In order to find a point at which the velocity gradient in the flow is great enough to induce noticeable error, additional measurements were taken at planes one-quarter and one-half inch behind the trailing edge. Again, the seven-hole probe exceeds expectations by revealing no such noticeable error. The crossflow plots for the two additional planes are shown in Figures 30a and R0b and are scaled by a factor of ten.

Fraine 30. CROSSFLOW VELOCITY OF WING TIP VORTEX

, **k**

C. Definition of Flow Field Pressure Coefficients

Because pressure measurements are affected by slight shifts in wind tunnel velocity and temperature, pressure coefficients are used when the local and total tunnel pressures are compared and non-dimensionlaized by the tunnel dynamic pressure. These three coefficients are defined below:

$$C_{\text{STATIC}} = \frac{P_{\omega L} - P_{\omega}}{P_{o} - P_{\omega}}$$

$$C_{\text{TOTAL}} = \frac{P_{oL} - P_{o}}{P_{o} - P_{\omega}}$$

$$C_{\text{DYN}} = C_{\text{TOTAL}} - C_{\text{STATIC}} = \frac{P_{oL} - P_{\omega}}{P_{o} - P_{\omega}} - 1$$
(39)

Probe measurement errors may be found by determining the correct values for these three pressure coefficients, either theoretically or experimentally with another device, and comparing these values with actual seven-hole probe data. Vortex pressure coefficient trends may be found through analysis of a two-dimensional vortex.

D. CTOTAL

(27

 \bigcirc

For an ideal two-dimensional vortex, angular velocity increases inversely as the distance to the vortex center decreases (Figure 31). Real vortices, however, are subject to viscous effects. Outside of point A, the flow is essentially inviscid. Inside that point, viscous forces reduce angular velocity until it reaches zero at the vortex center.

These two flow regions directly affect C_{TOTAL} values. Because total pressure is constant in incompressible, inviscid flow, C_{TOTAL} is zero in the inviscid region. On the other hand, the viscous forces found within the vortex core decrease the flow's fluid-mechanical energy. P₀ decreases causing C_{TOTAL} to become have. Figure 1 diagrams C_{TOTAL} 's expected behavior.

>>

C TOTAL

Figure 32. VORTEX CTOTAL

The expected snape was derived by Jonas (Ref. 26) from theoretical considerations of a 2-D vortex decaying with time (Equation 40).

$$\frac{\frac{dP_{oL}}{dr}}{dr} = \frac{r}{r} \left(\frac{\Gamma_{L}}{2\pi}\right)^{2} - \frac{1}{2\nu t} e^{-\frac{r^{2}}{r^{2}/4\nu t}} (1 - e^{-\frac{r^{2}}{r^{2}/4\nu t}})$$
(40)

As discussed, the bucket-shape phenomenon is present in the experimental vortex data shown in Figure 33.

 \mathbf{O}

As the flow progresses downstream, lower velocity gradients produce smaller viscous forces, smaller deficits of fluid-mechanical energy, and small bucket-shaped area plots. The two areas of positive C_{TOTAL} in each of the centerline plots is unexpected. The first that the magnitude of the positive C_{TOTAL} values is always greater on the outboard side of the wing than on the inboard side is inexplicable. The sets of contour plots and axonometric plots (Appendix A) show that C_{TOTAL} is positive only on the two sides of the vortex parallel to the wing. The vortex data behaved normally above and below the wing. In duplicating Jonas's previous positive C_{TOTAL} results the vortex data seem to indicate a limitation in the newer-hole probe's measurement capabilities. It is still possible, nowever, that the positive C_{TOTAL} values may be the result of a transfer mechanism that is not yet understood.

·. ·.

COTATIC

5

Like $C_{\rm FOTAL}$, the presence or absence of viscosity affects the values of $C_{\rm STATIC}$. At freestream conditions, $C_{\rm STATIC}$ equals zero. Progressing inward from the freestream conditions to point A, the angular velocity increases, static pressure drops, and $C_{\rm STATIC}$ decreases from zero to a negative value. To determine what happens in the viscous region, the following mathematical analysis is required.

$$\frac{d\mu}{dr} = \frac{\mu u^{*}}{r}$$

For a free vortex $u = \frac{c}{r}$ so, $\frac{dp}{dr} = \frac{pc^2}{r^3}$

For solid body rotation $\mathbf{u}_{\hat{\theta}} = -\mathbf{r} \cdot \mathbf{so}, \quad \frac{\mathrm{d}\mathbf{p}}{\mathrm{d}\mathbf{r}} = -\mathbf{w}^{T}\mathbf{r}$

integrating for p results in the following:

$$P = C_1 - \frac{\mu C^2}{2r^2}$$
 (4.1.1)

$$P = C_2 + \frac{3w^2 r^2}{2}$$
 (4.15)

First of 2_{TOTAL} . The entire C_{STATIC} curve is shown in Figure 34.

P. CHYNAMIC

Cornamic is supply the subtraction of C_{STATIC} from C_{TOTAL} as on which solution 70. Again, at the Speestneam, Cornamic is iteally zero. Opynamic equals the absolute value of C_{STATIC} from the freestneam conditions inward to point A since C_{TOTAL} is zero. It were thneshold the ordex, local velocity and therefore local synable pressure are zero eausing C_{DYNAMIC} to equal -1. From point A to the benchm, Cornamic changes as in Figure 35. Insert Figure 35

T

ä

Experimental data supports the theoretical analysis of $\mathbb{C}_{\mathrm{MYN}}$.

This seems somewhat surprising in lieu of the questionable positive $C_{\rm TOTAL}$ values. The important factor missing from the coefficient plots are the relative magnitudes. Because $C_{\rm TOTAL}$ values are very cloce to zero, the contribution of $C_{\rm TOTAL}$ is not very significant in the calculation of C_{DYNAMIC}.

1. Geographic Applications

1

Today's flow mapping efforts are much more complex than the vortex example. Besides Jonas' VATOL flow field measurements, heven-hole probe work at the Air Force Academy has examined canar: wares, lifting surface wakes of canard/swept wing mineraft, and flow field characteristics of square cross-sectional missile bodied. Probe calibration and measurement of unknown flowfields have also been conducted at the NASA Ames Research Center in the CRP feot and 14 foot transonic wind tunnels (Ref. 30). Sectorements of wing and canard jet-flap effects as well as the effects of prop fan installations have been made with multiple as: dingle proble installations. Yet, these more complex research efforts are founded on the basic analysis and data presentation ex; Lained in the vortex example.

Friffin (Ref. 31) used cross velocity and pressure contours in this study of canard/forward swept wing aircraft. Figures 37 and in these two types of data plots in the same spatial relationships that their data points have to the model.

Figure 37. TYPICAL VELOCITY DATA PLANE LOCATION RELATIVE TO MODEL

C

Figure 38. TYPICAL PRESSURE DATA PLANE LOCATION RELATIVE TO MODEL

Jonas (Ref 26) superimposed these two types of plots in his investigation of $C_{\rm TOTAL}$ (see Figure 39).

1,

Figure 39. REGIONS OF POSITIVE C TOTAL , DATA PLANE ZMP75

÷

G

Jonas also used a series of axonometric projections to analyze the growth (diffusion) and decay (dissipation) of vortices. Evidence of mixing is found in the relative flattening of the CTOTAL values (negative CTOTAL being up or out of the plane of projection).

٠.

Gerner and Durston at NASA Ames took Jonas' data and produced a series of 12 color contour photographs that span the development through decay of the VATOL vortices. The study was limited to the examination of local total pressure or C_{TOTAL} . The color contours allow more detail in data representations by making pressure differences easier to see. Regions of positive C_{TOTAL} are clearly distinguished from other points in the flow field. As seen in the other data schemes, the color contours reveal that the VATOL is in a slight sideslip. This causes the right vortex to burst prior to the left vortex.

VII. Conclusions

1

As shown, the seven-hole pressure probe remains a valuable measurement tool for the documentation of unknown flowfields. The device has a greater measurement range and flexibility than other similar obtrusive flow measuring devices. The seven-hole probes themselves are easily constructed and calibrated for use in subsonic compressible flows. Measurements in adverse shear flows can be corrected to give actual flow conditions based on the methodology developed in this paper. Finally, as shown in the application section, the probe is not only a valuable research device but educational as well in demonstrating fundamental flow properties.

VIII.Acknowledgement

The authors would like to acknowledge Lt. Col. Roger Gallington, who developed the methodology for the seven-hole preusure probe. The authors would also like to thank Mr. Don Durston of the NASA Ames Research Center and the faculty and cadets of the USAF Academy who aided in the completion of this effort.

Symt	ols
------	-----

Aį	the ith value of a particular data point either known or determined from calibration equations
CBYN	local dynamic pressure coefficient
САрМ	coefficient representative of compressibility effects
C o	apparent total pressure coefficient
C ₁ ,	coefficient of pressure
C 1	apparent dynamic pressure coefficient
CITATIC	local static pressure coefficient
CTOTAL	local total pressure coefficient
e e	angle of attack pressure coefficient
C_{μ}	angle of sideslop pressure coefficient
C ;	roll angle pressure coefficient
C J	pitch angle pressure coefficient
f	body geometry function
Кi	calibration coefficients
l	length
М	Mach number
P	pressure
3	dynamic pressure
(r_{10}, z_{2})	cylindrical coordinates
i.	P 4 5 1 4 S
3	distance between centers of opposing holes
J	local velocity, perturbation velocity component
ų.	velocity
(x,y,z)	Cartesian doordinates
i	angle of attack
р	angle of sideslip

δ	$\sqrt{1-M_{\infty}^2}$
ε	probe tip half angle
ζ	ratio of specific heats
¢	roll angle
ρ	density
υ	pitch angle
	subscripts
С	uniform incompressible flo

(i,j) local property or conditiono total or stagnation condition

freestream conditions

References

 Huffman, G.J.D., Theory, Performance and Design of Flow Direction and Mach Number Probes, AFATL TR-81-44, Air Force Armament Laboratory, Eglin AFB, Florida, April 1981.
 Gerner, A.A. and C.L. Mauer, "Calibration of Seven-Hole Probes Suitable for High Angles in Subsonic Compressible Flows," Aeronautics Diges, USAFA-TR-81-4, USAF Academy, Co., May 1981.
 Schultz, W.M. et.al., "Several Combination Probes for Surveying Static and Total Pressure and Flow Direction, NACA TN 2830, 1952.
 Kettle, D.J., "Design and Calibration at Low Speeds of a Static Tube and Pitot-Static Tube with Semi-Ellipsoidal Nose Shapes," J. Ray. Aero. Soc., Vol. 58, p. 835, 1954.

5. Smetena, F.O. and J.W.M. Stuart, A Study of Angle-of-Attacks Angle-of-Sideslop Pitot-Static-Probes, WADC TR 5723A, AD 118209, 1957.

b. Bryer, O.W. et.al., "Pressure Probes Selected for

Three-Dimensional Flow Measurement," Rep.Mem. Aero Res. Coun. London, No. 3037, 1958.

F. Morrison, D.F. et.al., "Hole Size Effect on Hemisphere Pressure listributions." J.Roy. Aer. Soc., Vol. 71, 1967.

aright, M.A., "The Evaluation of a Simplified Form of
Encentation for Spherical and Hemispherical Pitometer Calibration
Data, " J. Sci. Instr. (J. Phys. E). Vol. 3, p. 456, 1970.
Scinaub, V.W. et.al., An Investigation of the Three-Dimensional
Concursion of Canada, Aero Rpt. LR-393, NRC No. 7964, 1964.
Dudzinski, J.T. and L.N. Krause, Flow Direction Measurement
with Fixed-Position Probes, NASA TMX-1904, 1969.

11. Beecham, L.J. and S.J. Collins, Static and Dynamic Response of a Design of a Differential Pressure Yawmeter at Supersonic Speeds, Roy. Aer. Est. Report No. GW 19, 1954.

12. Hutton, P.G., Static Response of a Hemispherical-Headed Yawmeter at High Subsonic and Transonic Speeds, Roy. Aero. Est. Tech. Note N. Aero 7525, CP No. 401, 1957.

13. Nowack, C.F.B., "Improved Calibration Method for a Five-Hole Spherical Pitot Probe," J. Sci. Instr. (J. Phys. E.), Vol. 3, p. 11, 1979.

1. See, F., ettal., "Ine Probes for the Measurement of the Complete Velocity Vector in Subsonic Flow," Aero. J., Vol. 72, p. Lett, 1963.

15. Spaid, F.W. et.al., "Minature Probe for Transonic Flow Direction Measurement," AIAA J., Vol. 13, p. 253, 1975.
14. Glawe, S.M., et.al., A Small Combination Sensing Probe for Measurement of Temperature, Pressure and Flow Direction; NASA TN

D-4816, 1968.

17. Treaster, A.L. and A.M. Yocum, The Calibration and Application of Five-Hole Probes," Penn. State Univ. Applied Research Laboratory Report TM 78-W, 1978.

18. Bryer, D.W. and D. W. Pankhurst, Pressure Probe Methods for Determining Wind Speed and Flow Direction, Published by Her Majesty's Stationery Office, London, England, 1971.

19. Wuest, W., "Measurement of Flow Speed and Flow Direction by Aerodynamic Probes and Vanes," Paper Presented at the 30th Flight Mechanics Panel Meeting in Montreal, Canada, 1967.

20. Huffman, G. David, "Flow Field Characteristics of Flw Direction and Mach Number Probes Using Slender Body Theory," Aeronautics Digest, USAFA-TR-79 1, USAF Academy, CO, Feb. 1979.

21. Hess, J.L. and A.M.O. Smith, "Calculation of Potential Flwo about Arbitrary Bodies," Progress in Aeronautical Sciences, Vol. 8, Pergammon Press, p.81, 1966.

22. Smith, A.M.O. and A.B. Bauer, "Static-Pressure Probes that are Theoretically Insensitive to Pitch, Yaw and Mach Number," J.Fl. Mech., Vol.44 p. 513, 1970.

23. Liepmann, H.W. and A. Roshko, Elements of Gas Dynamics, John Wiley and Sons, New York, 1958.

24. Gallington R.W. "Measurement of Very Large Flow Angles with Non-Nulling Seven-Hole Probes," Aeronautics Digest, USAFA-TR-80-17, USAF Academy, Co., October 1980.

25. Reed,L.S. and G.H. Johnson, "Seven-Hole Probe in Shear Flow," AIAA Paper 85-0076 (to be published).

APPENDIX A

C

.

O

5.

- -

٦.

· . · . ·

. .

· • ¶

Wing Tip Vortex $C_{\mbox{TOTAL}}$ Plots

A-1

7

C.

2

Ó

ſ

(

1

A - 3

.

ſ

Ę

٦

Ĩ

 $\lambda = \frac{1}{4}$

.

•

G

Ľ.,

Q

A-8

