L"AD-A145 785 DESIGN OF A BIT-SLICED PROCESSOR ARRAY WITH
BUILT-IN-SELF-TESTCU)> ILLINOIS UNIY AT URBANA COMPUTER
SYSTEMS GROUP P C MUI AUG 84 CSG-31
UNCLASSIFIED F/G 9/4

g e e ot i aew AL AFE B s b RRIC A Sl Ak Sal WL Bl sl e le . ~aie ind i " ite. i St i et hSietit St i INRIME AN MRS b

i P Sl A W

o/ S W

128 2

<22
ol

(I X'

"m TR =

I
IEzs fis g

o

3
|

.
Pt S VI AT

o

MICROCOPY RESOLUTION TEST CHART

NATUNAL BUREAL b STANDARDS She - o

-

&
Ve
i
'P"
o

- - cyn
[

1

ey

oty S R A, R L |

s e o e e e MRAR e ~ .
]
REPORT CSG-3] JULY 1984
R
; .
]
4
P 1o 1
8
o DESIGN OF A BIT-SLICED }
< PROCESSOR ARRAY WITH 1
< BUILT=-IN-SELF-TEST
. Qo PAUL CHUNME! MUI
< a
" f,
]
3
) 1
]
. - -
. &3 _
, o
"’ APPROVED FOR PUBLIC RELEASE. DISTRIBUTION UNLIMITED.
za.
=3
[]
® . . hd
' §5 01 16 062
t'. . e e e e ; L __,

e A e e 3 A — MOt AR A e S R R A A Ao et ot el A0 RS A RARA DAL A o |

Inclassified
SECURITY SLASSIFICATION OF THIS PAGE

m - .
REPORT DOCUMENTATION PAGE v

N 1a. REPORT SECURITY CLASSIFICATION 1b. RESTRICTIVE MARKINGS M
Cnclassified N/A R—_—
= 28. SECURITY CLASSIFICATION AUTHORITY 3 DISTRIBUTION/AVAILABILITY OF REPORT - ’
'} N/A - @
2. DECLASSIFICATION - DOWNGRADING SCHEDULE APPFOYed for public release; distribution 7
, unlimited X
N/A .
4 PERFOAMING ORGANIZATION AREPOAT NUMBERIS) 5. MONITORING ORGANIZATION REPORT NUMBER(S)]
CSG #31 N/A 1
s 6a. NAME QF PERFQCRMING QRGANIZATION b. OFFICE SYMBOL 7a. NAME OF MONITORING ORGANIZATION . . 94
' Coordinated Science Lab. (If sppiicadie) Semiconductor Research Corporatio S
. . - . . n R
Universitv of Illinois N/A P o
Sc. ADDRESS (City State and ZIP Code) 7b. ADDRESS (City. State and ZIP Code) A
1101 W. Springfield Ave. .) R
Urbana IFl’liniis 61801 300 Park Drive, Suite 215 S 1
’ P.0. Box 12053 °
Resegrch Triangle Park., NC 27709
8s. NAME OF FUNDING/SPONSORING 8b. OFFICE SYMBOL |9. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER 1
ORGANIZATION (1f applicable;
Semiconductor Research Corp. \/A SRC RSCH 83-01-014
8c. ADDRESS (City. State and ZIP Code) 10. SOURCE OF FUNDING NOS.
. 300 Park Drive, Suite 215 PROGRAM PROJECT TASK WORK UNIT . y
i P.O. Box 12053 ELEMENT NO. NO. NQ. NO. .
Research Triangle Park, NC 27709 R
11. TITLE ‘Inciuge Security Classification) Deslgn of a Bit-
-- fSliced Processor Array with Built-in Self-Test" N/A N/A N/A , N/A
12. SERASONAL AUTHCRI(S) -
MUI, PAUL CHUNHEI '1
I 13a. TYPE OF REPCRT 13b. TIME COVERED 14. DATE OF REPORT (Yr, Mo., Day) 15. PAGE COUNT)
’ Technical ERGM To August 1984 82 l
18. SUPPLEMENTARY NOTATION 1
N/A
vl
17. COSATI CODES 18. SUBJECT TERMS /Conlinue on reverse if necessary and identify by dlock number)
SIELD GROUP sug. GA. } :
’ Built-in Test, Self-Test, bit-sliced ALU, VLSI circui:s . ’ 1
i

19. ABSTRACT Continue on reverse :f necessary and identify by block number)

The overall objective of this report is to present an integrated approach tc the
design of bit-sliced processor arrays with built-in self-test. The conventional approach -
of making each bit-sliced processor chip self-testing is not used. Rather, a new approach)
of using an extra chip to test a processor array of any size and itself is used. The
classical stuck-at fault model is not suitable for VLSI circuits. Rather, a functional
level fault model is used. Each module of the processor array is tested exhaustively.

The test responses of a fault-free processor arrav are made identical so that they can

-- be easilv monitored with no loss in fault coverage. The tester chip tests itself while

it is testing the processor array. The fault coverages for both the tester chip and the -
processor arrav are high; the performance degradation is minimal; the area overhead is
low, especially for large processor arravs; and the test length is short so tests can be

performed more frequently. A VLSI design of the tester chip has been done witih a l-microns
*MO

20. SISTRIBUTION/AVAILABILITY CF ABSTRACT 21 ABSTRACT SECURITY CLASSIFICATICN

228 NAME CF RE3PONSIBLE INCIVICUAL 22b TELEPHCNE NUMSER 22¢c. OFFICE SYMBOL T
tinciuae Area Cude:

WONE .
DD FORM 1473, 83 APR SOITICN GF 1 JAN 73 'S OBSCLETE. Unclassified -~

SECURITY SLASSIF . CAT 7N 2F "wic 2

-k

° 1

on— a— * » . .
UNCLASSIFIED/UNLIMITED X SAME AS RPT. — DTIC USEARS Unclassified 1
. 1
wad

L,_.-.L.,-;-,. PO U SR, SRUUE WL S SRR V. W ceala a et e el e RLA e A AL AIA A A aa e alia -~

ETICYY Y T

,.
L_aEs
.

T

LS Seg Pogl g Ral iep tad b b At it ot h Sl e A AR/l g il Al e S e T e

DESIGN OF A BIT-SLICED PROCESSOR ARRAY
WITH BUILT-IN-SELF-TEST

BY
PAUL CHUNHEI MUI

B.S,, University of Illinois, 1982

THESIS

Submitted in partial fulfiilment of the requirements
for the degree of Master of Science in Electrical Engireering
in the Graduate College of the
University of lllinois at Urbana-Champaign, 1984

—®

ol .

—)
| Accesston For o |
v txl ,w '
e e e [
Lo } . 4
‘ ®
. o
.. ~‘
’ e
_ . .1
. - L]
Urbana, Illinois . S
1 .. ‘
) el °
- S - -
» %,
>
L. !
. ,
A --
’ ®

e S g ug e S C L SA e e aanhann s re -8 r goa SRS s b ol WAL AL AAEE ML S it i Mt St et A SR ALk T

[A

i

E ACKNOWLEDGMENT

I would like to express my gratitude to Professor J. H. Patel for his assistance, techni-

cal guidance, and support in the production of this thesis. - .

N

|
et e ia s Bk

IR B K c ot
- P e e
. . + y v
L o

C ey

A JMA B0 2 an A a e e

TABLE OF CONTENTS

Chapter

1. INTRODUCTION

1.1 Motivation

1.2 Problem Statement

1.2.1 Bit-Sliced Processor Array

1.3 Background

1.3.1 Testing Techniques

1.3.1.1 Built-In-Test

1.3.1.2 Faults in VLSI Circuits

1.3.1.3 Exhaustive Testing vs. Random Testing
1.3.1.4 C-Testability

1.3.1.5 Test Pattern Generation for Built-In-Test
1.3.1.6 Test Response Verification for Built-In-Test

1.3.2 Sridhar and Hayes’ Design

1.4 Research Overview

2. APPROACH FOR BUILT-IN-TEST IN BIT-SLICED PROCESSOR ARRAY ...

2.1 Basic Cell Model

2.2 Functional Fault Model

2.3 Testing Algorithm

2.4 Test Generation for a Single Cell

2.4.1 The Shifter

2.4.2 The RAM

2.4.3 The ALU Source Multiplexer

2.44 The ALU

2.4.5 The Output Multiplexer

2.5 Test Generation for the Processor Array and Cl-Testability

2.5.1 The Shifter

2.5.2 The RAM

2.5.3 The ALU Source Multiplexer

2.5.4 The ALU

2.5.5 The Output Multiplexer

2.5.6 Common Control Lines

2.6 Impiementation

2.7 Self-Testable Tester Chip

2.8 Performance

2.9 Fault Coverage

2.9.1 The Processor Array

iv

Page

O 00 00 2 N v v & N N =

—
[S I <)

15
15
18
23
26
28
29
31
32

34
35
38
38
38
41
41
43
49
54
55
58

S P SOV S S S S

e
T

»
UL D DL R

PR N RN

2.9.2 The Tester Chip

3. PHYSICAL DESIGN OF THE TESTER CHIP

3.1 Global Description

3.2 Modular Description

3.2.1 The ROM Address Counter

3.2.2 The ROM Address Decoder

3.2.3 The ROM

3.2.4 The Signature Analyzer

3.2.5 The Circuit for Monitoring Signatures and Equality Checker Output

3.3 Timing

3.4 Built-In-Test Area Overhead

4. CONCLUDING REMARKS

APPENDIX TEST PATTERNS

REFERENCES

.....

55

56
56
S8
58

62
65

66
67
67

69

70

75

|

bk

P v

LA .
JORIV ST RPN

-,

-

vvvvvvvvvvvv v - L SAANEN ASm & A0 Aas 4 v A i e ML AAR S 28 Y At H Bk i S ST i St e i) T T T -
e i SR - A - A

vi S

LIST OF TABLES -@

Page

. @ 4

2.1 Microinstruction Control Fields of Processor 21 :
. e

2.2 Generation of T(SH) from 7 (SH) 30 T

2.3 Generation of T(SM) from 7 (SM) 30

2.4 Generation of T(ALU) from T (ALU) 33]

2.5 Generation of T(OM) from 7 (OM) 33

A.1 Test Patterns for the RAM 70 ®,

A.2 Test Patterns for the Shifter 71 o ".'-.’

A.3 Test Patterns for the ALU Source Multiplexer 72 R

A4 Test Patterns for the ALU 73 Do

¥
Ry

A.S Test Patterns for the Output Multiplexer 74

S Al

A.6 Test Patterns for the Common Control Signals 74

e

et aas

faa aiad

......

LR A A . T s e N . L.
. " B I . . At et s . . S . . I
LS FO N o R R A I T R A VPN 14 DIPR WE NUPA RS

hd - . - - . . - - v . ~ M i g S Sas S
| a2l he S o M aa w & Subag S o G ok N ARSI MEMMEMEMERE A e - .

w

vii
B LIST OF FIGURES
Page e
- ~ e
. 1.1 General Structure of ILA 3
. 12 Overall Built-In-Test Scheme 14 I
-~ 2.1 Block Diagram of Four-Bit Processor Chip 16 . o “
2.2 Structure of Bit-Sliced Processor Array 19
2.3 Block Diagram of One-Bit Processor Slice 20
b 2.4 More Detailed Built-In-Test Scheme 27 J 1
2.5 Test Pattern Cycles for the Shifter Array 37 :
2.6 Some Tests for the ALU 40

2.7 Showing Problems of Common Control Signals in I-Tests 42

. e .
AR -
L4 PO

2.8 ILA Implementation of the Equality Checker 44 T;f:_' R

u 2.9 Block Diagram of the Modified Four-Bit Processor Chip 45 °® :

}' : 2.10 Connections of the Four Different Patterns of Test D-Input 48 . 1

“ ' 2.11 Circuit for Monitoring Signatures and Equality Checker Output ceeeuccneess - 52]:

_ 2.12 State Diagram of the Three-Bit Counter 53 :—_!—-}

3.1 Block Diagram of the Tester Chip 57) . }

3.2 Floor Plan of the Tester Chip 59 - <

. 3.3 Block Diagram of the ROM Address Decoder 61 -® B
3.4 Block Diagram of the ROM 63

) 3.5 Memory Elements 64 ' . :

....... S R
- . - . 4 Y. . . to. - -~ - - - . - - ~ . . - -
L PV A UL SRR SRR SO SRV T RSICISISAT 5. W VP WL TP WL T A S SO L S S e S 4% ata aw

K

— v vy M Bl S v e Mbe Jhans-iseCR A D At Sl Sl i Ty
M0 A M s v LA S AL N ML AR P G AR L S DR MG e At A S Pl

CHAPTER 1

INTRODUCTION

1.1. Motivation

Nowadays, in many applications, the use of computers that will not fail is a necessity.
The computers used in processing transactions in the banking industry, the computers used
to control the switching of telephone calis, the computers aboard the Space Shuttle, just to
name a few, are the ones that cannot afford to fail. Hence, there are fault-tolerant com-
puter systems: computers systems that will continue to function even if part of the system

fails.

In recent years, the idea of a self-testing computer has become more popular. A self-
testing computer is one that can test itself without any external equipment. Wakerly
(Wak 78] proposed a completely self-testing computer using modulo 15 residue code to check
the CPU continuously for error, using duplication and comparison to check the micropro-
gram sequencer continuously, and using parity code to check the ROM continuously.
Sridhar and Hayes [Sri81] proposed another self-testing computer which requires a test
mode in order to test itself. The test patterns that are required to test the CPU and the
microprogram sequencer are stored in a ROM. During test mode, they are read out and
applied to the CPU and the microprogram sequencer. The ROM itself is tested by duplica-
tion and comparison. Forbes et al. [For65] at [BM designed the DX-1, an experimental self-
diagnosable computer in which the CPU is partitioned into two identical slices each capable
of testing the other. Recently, Konemann et al. [Kon79] proposed the use of built-in pseu-
dorandom test pattern generators and signature analyzers to make an individual bit slice

self-testing. The overhead in a self-testing computer is always less than 50 percent since

O DU SIS G UG DU VO S S PO U W VT N VT WL PR aa & alale w

PO S WP

.
T
Al

deade,

ad

MR Ao
T

-

.

T e

LT

v

Y

T

————— T 7Y

duplication is not used in every module to make it self-testable. Therefore, it is essential to0
design computer modules such as processor, microprogram sequencer, etc., using VLSI tech-
nology that requires low overheads for self-testing requirements. Then, the total overhead
of a self-testing computer would be low. A self-testing computer module has further
advantages in that the test can be performed at circuit speed and the fault coverage is

higher because of better controllability and observability.

1.2. Problem Statement

The goal of this research is to develop a processor with self-testing ability under the

following requirements:

(1) Low overhead compared to the size of the processor required to provide the self-
testing ability.

(2) Small or no degradation in performance of processor due to the incorporation of self-
testing features.

(3) Fault coverage should be high.

(4) Test time should be short compared to the interval between testings.

1.2.1. Bit-Sliced Processor Array

A device U performing a set of operations on n-bit operands is said to be bit-sliced if a
svstem that performs the same set of operations on Nn-bit operands can be constructed by
interconnecting N identical copies of U in a regular way, as shown in Figure 1.1. The basic
device U is called a cell or slice. The interconnection structure usually takes the form of a
cascade, i.e., a one-dimensional iterative logic array (ILA). In a bit-sliced processor, the cell

U performs the functions of the arithmetic-logic unit (ALU) and the register file of a

LY - g N PP T R 3 AP VT

. -
—— e

Rt

Bl Sl At ok Bus Ser e hutd

T

Aalat S S o

V711 JO 31n3dnng [e1auan 1°q arndi

V1ivdad
/N

104 1NOD

PR W W W

DR N . S T . P

e SUTND (- stk i
-

| A

T

T Y Y

v

computer [Fri73)], [Kau67), [Par81].

(1)

(2)

(3)

The advantages of using a bit-sliced processor array are:

Processors implemented with the same basic bit slice have a common set of control
signals or microinstructions. Thus, bit-slicing helps in designing families of comput-

ers of different word sizes, but use the same basic sof tware.

The use of bit-sliced processors introduces structural simplicity and regularity in the

interconnections between IC chips.

The short word size of an individual processor slice permits the use of high-level cir-
cuit models and powerful functional fault models. Using these models it is possible
to construct test sets of near-minimal size that are guaranteed to detect all faults of
interest. Moreover, the regular interconnection structure that characterizes bit slicing
simplifies testing of the entire bit-sliced array. The test length (time) is much shorter
for testing a regularly interconnected bit-sliced processor array than for testing a sin-
gle large processor cell in order to obtain the same percentage of fault coverage

whether random or exhaustive test patterns are being used.

Therefore, the goal of this research is to develop a bit-sliced processor with self-testing

ability which satisfies the above requirements.

1.3. Background

In this section a brief survey of testing techniques and previous work in this area of

self-testing bit-sliced processor are presented.

. e R - e B e PO UL S S S S

s et s T Tt TSPt ot s tnee Ane Saskh NUL AL S SRR AL NEE S P A I Thdl Fadl Sadh S S

-5 s s e o e, At d Jes S RO At n SRl Ref I At st Sutuind At S i it Shn Shtt it At mTRTITRTRTR

1.3.1. Testing Techniques

1.3.1.1. Built-In-Test

Usage of integrated circuits requires periodic testing to ensure that they are function-
ing properly. Testing of integrated circuits involves the generation of specific test patterns
for the particular circuit concerned and the monitoring of test responses. The traditional
approach to this testing problem is to design a tester which can apply the test patterns to
the integrated circuit under test (which can be a chip, a card, a board, etc.) and monitor the
test responses. Test patterns can be generated by using Automatic Test Generation (ATG),
which can give a certain percentage of fault coverage. A high percentage of fault coverage
can be obtained by supplementing the automatically generated test patterns with manual

_[test patterns. The problems with this approach are:

(1) Since the tester is used to test integrated circuits, the correct operation of the tester is

necessary which means that the tester itself has to be tested by some other means.

(2) Automatic Test Generation works well for combinational circuits, but as the propor-
tion of sequential circuits increases, Automatic Test Geperation breaks down and the
percentage of faults covered by automatically generated test patterns can be very low
which means that manual test patterns have to be used in order to bring the fault
coverage high. This will cause a long delay in the production cycle, and the work of

writing manual test patterns can be very tedious.

Current developme:t in the area of design for testability made the testing of
integrated circuits easier. Testing techniques such as L.SSD, Scan Path and Scan/Set Logic
reduce the test pattern generation problem of a design which consists of both combinational
and sequential circuits down to the test pattern generation of the combinational part only

[Wil82] But a tester is still needed to shift in the test patterns and monitor the test

e

. L P . .
N - -, . N ~ < e os - S .o
PR TR o S ST U G A SR UL AT L WP USSP SV LB S a

v ———p—y Ty = w oy
e o S i A B AN AP S e S i aee S e A R P—— T . e . =

¢
;! responses. The test time can be long because of the time required to shift in and shift out - .
2 the test patterns. ‘
: In recent years, a new testing technique called built-in-test (BIT) has become very - i
F popular. By adding extra circuits and logic to the original design, the modified design can .V .
T now test itself without the use of an external tester. The functions of the added circuit are j
E'b to generate test patterns to test the original circuit and possibly itself, and to monitor the . fJ
{e test responses [Wil82], [McC81]. The attractiveness of this approach is that no external tes-]

ter is needed, the circuit can test itself. The emerging of this testing technique comes from
the fact that in today’s technology, VLSI circuits are becoming cheaper and cheaper, so the
addition of extra circuits to provide self-testing ability seems to give more advantages than

disadvantages.

Most of the work in this area of built-in-test is on the chip level. Extra circuits are

e

added to chips so that each chip can test itself. When the chip is in test mode, it can gen-

]

s
)

erate test patterns necessary to test itself and monitor the test responses. The success of the
test is usually indicated by an output pin or pins at the end of the test. Not much work)

has been done in this area of built-in-test for higher levels of the hierarchy (levels above

LV S Y e

the chip level), i.e., designing an extra chip which can generate test patterns to test a certain
number of other chips and itself, and, at the same time, monitor the test responses. This is L‘q

exactly the area upon which this research is focused.

)
1.3.1.2. Faults in VLSI Circuits "]
]
Circuit level studies of physical failures of NMOS and CMOS circuits, which are two .]
of the dominant technologies in VLSI today, reveal the existence of many non-stuck-at]

faults. A short or open on a line could have many effects that cannot be explained by a

stuck-at fault model, and a physical failure in the circuit could affect a small area of the

PSRRI YU SR W P, SRR . DR, e ata e a M) i PP -~ Aaarth 2 s Sontirels

bl

P

PP TPTT——— . RO — ToT——— Lt Bt Bt b on S0 s~ A e St Ak B A i A

chip and thus affect several gates. Circuit simulation of faulty logic devices indicates that
a S-valued logic algebra was needed to describe MOS circuit behavior under physical failure
[Ban82] Therefore, the classical fault model of describing physical failures as lines in the

gate level description of the circuit stuck at zero or one is inadequate.

Therefore, for this research, a functional fault model is being used instead of the clas-
sical stuck-at fault model. Relatively complex functional units such as registers and multi-
plexers are treated as primitives. These primitives are tested for functional failures; faults

affecting their internal lines are not explicitly considered.

1.3.1.3. Exhaustive Testing vs. Random Testing

Exhaustive testing of a device means that the device is tested with test patterns that
are Juaranteed to detect all possible faults in the device as long as the number of states does
not increase. For example, a combinational device can be exhaustively tested by 2% test
patterns where N is the number of primary inputs of the device. Random testing of a dev-
ice means that the device is tested by random test patterns which are subsets of the set of
test patterns necessary to test the device exhaustively. Therefore, the fault coverage
obtained from random test patterns is not as high as that obtained from exhaustive test pat-

terns.

The simplicity of random testing, the ease of generation of random test patterns and
the increasing size of circuits made random testing very attractive. Whether random or
exhaustive testing should be used to test a particular device depends on the number of pri-
mary inputs to the device, the number of gates in the longest path between the primary
inputs and the primary outputs, and the average fan-in which is the sum of fan-ins of all

gates in the circuit divided by the number of gates [Agr78].

- -~ - . -
P Y I - T - . N

. - N - - T e Ty e . .) A . - .
POE D S S U VEIT ST VR AL VO WA YAl S W VA VY WA G S Wt U UL W W Dol WA S U - M Bt b PRV ¥ -l N

-

1.3.1.4. C-Testability -

An ILA is C-testable if it can be tested by a constant number of test patterns, the
length of which is independent of the size of the array [Sri81]). Therefore, test pattern gen-
eration only has to be done for a single cell, and the test patterns generated can be easily

extended to test the whole array. ILA’s that are not C-testable can be made C-testable by

modifying the basic cell. An example is a2 non C-testable I[LLA that is made up of 1-bit -
incrementer cells, an extra input added to each 1-bit incrementer cell and tied together as a

single input for the [LA would make it C-testable [Sri81).

i,

1.3.1.5. Test Pattern Generation for Built-In-Test

For Built-In-Test, there are several methods of generating test patterns:

(1) A pseudo-random number generator (some form of linear-feedback registers) can be
used to generate pseudo-random test patterns. lf random testing is found to be more

advantageous than exhaustive testing, then this method can be used to generate ran-

e daa aa .

dom test patterns.

S (2) A counter can be used t0 generate test patterns to test a combinational device exhaus-
tively. It cannot be used to generate patterns to test a sequential device completely
- because specific testing sequences are needed in order to test a sequential device com- -
! pletely. Large combinational modules should be broken down into smaller combina-

tional modules with smaller numbers of primary inputs to make the use of counters

Y o 1o generate test patterns feasible.
}
} (3) A ROM can be used to store test patterns that are needed to test a device or a group of
devices in a chip. For sequential circuits. such as registers, which can only be tested
o

properly by specific testing sequences, a ROM would be mcre suitable as a source of

test patierns.

3
p
b
L-,' .. - S aTA e a . - A PR n Lal o at i T VT SOV TN G| A S et oo ala e

v

""""" L and g o Jet St SRR A Mgt Shat Mg T BN Bl i Seadh Sl e N G B A A e - "l“r_‘v_"_—v_—-<-'v—v-'._—.'—-.--_~-_1
- . - Y Ta te . - e A -

SRR B mal e e 4 e ma o aa s - s a A = e ~ . ——————

K

1.3.1.6. Test Response Verification for Built-In-Test) -0

For Built-In-Test, there are several methods of monitoring test responses:

(1) Signature analysis is an economical way to deal with large amounts of test data and <
operating speed that are often required for testing digital systems. It works by

compressing test data using simple compression algorithms. It can result in a consider-

SIS

able reduction of test data storage. The data compression algorithm used in signature -
analysis is based on the linear feedback shift registers (LFSRs). Beginning with all
the registers in an initial state (typically all O's), serial test data are shifted into the
first register for a serial signature analyzer, or parallel test data are applied to the : J

input of each register for a parallel signature analyzer. Test data are not simply

)

shifted off the end of the signature analyzer but are shifted back in a way that
depends on the feedback polynomial. This data compression algorithm is simple
enough to be performed at high speeds. This process will compress the stream of test
data to the length of the LFSR and form the signature which is the final contents of
the registers. The signature can then be compared with the known correct signature ‘
to determine if there are faults in the circuit being tested.]
As with any other data compression techniques, signature analysis allows some errors

to go undetected. Hence, some circuit faults may go undetected. But with a carefully

)

chosen primitive feedback polynomial, the percentage of errors, hence circuit faults,

that go undetected can be made very low. There are signature analvzers with feed-

. .
U AT Wy e

back polynomials that can detect all single errors, signature analyzers with feedback X
polynomials that are geared to detect certain types of burst errors, and signature
analvzers with feedback polynomials that can detect certain tvpes of errors due to

repeated-use faults [Smi80], [Sri82]. . °

T ———— - e A Mt L B e o TRl BRI

p
- 4
d

10

. v
aa a2

£

(2) An equality checker is a device that can produce a zero as its output if all its inputs - !
are equal, a one as its output if its inputs are not identical. They can be used to moni-

tor test responses of a circuit which produces identical test responses when it is fault-

free, but non-identical test responses when it is faulty. Equality checkers are most ~

N v

of ten used to monitor test responses of [LA.

I-Testability and ClI-Testability:
An ILA is I-testable if the test responses from every cell of ILA can be made identical. -

Let T be a test set that tests an LA completely under the single-cell fault assumption.

The LA is I-testable with respect to T if the expected responses to T appearing at the
outputs of every cell of the ILA are identical. The input patterns forming T are
called I-tests [Sri81].
An ILA is Cl-testable if it is both C-testable and I-testable with respect to some test]
set. Let T be a test set that tests an ILA completelv under single-cell fault assump-
tion. The ILA is Cl-testable with respect to T if the expected responses to T appearing
at the outputs of every cell of the ILA are identical and the length of T is indepen- ‘ 8
dent of the size of the ILA [Sri81] ']
Therefore, equality checkers are often used to monitor test responses of ILA’s that are

I-testable or Cl-testable with respect to some test set. One advantage of the use of

equality checkers to monitor test responses is that there is no loss in fault coverage
due to the process of monitoring test responses, because there is no compression of test -
data.

A

I

1.3.2. Sridhar and Hayes’ Design

Sridhar and Haves proposed the design of a self-testing computer [Sri81). The proces- - :

{.. sor and microprogram sequencer are both made up of bit-sliced cells. The bit-sliced proces-

AR - NP L - . . N - .
e a e e e amE it ar o daA e S_A_man_ A PPN .S Y WP PPN - A-,_ﬂ--,;__vg_,._,,._._.,.._‘,/,,‘-.....-*J

7]

-y Fuhars A e e Meme e Snce St Jugt et Tate et Jhath Rierl et Sttt M i AR i i - el SR S I S N N

1

sor cell is similar to the AMD2901. The mapping ROM and control store are both dupli-
cated to provide continuous testing. According to their paper, the bit-sliced processor is Cl-
testable with 168 test patterns, and the bit-sliced microprogram sequencer is I-testable with
499+2N test patterns where N is the microinstruction address length. Therefore, the test
responses can be monitored by simple equality checkers. The test patterns for testing the
bit-sliced processor and microprogram sequencer are stored in the control store, so they can

be regarded as test programs at the microinstruction level.

There are two modes of operation for their computer: normal mode and test mode.
During test mode, microinstructions are read out from the part of the control store where
the test patterns are stored. These test patterns are then applied to the processor and the
microprogram sequencer. This will continue until the last test pattern has been read and
executed. If there are no error signals from the equality checkers, this means there are no
faults in the circuit. Actually, the equality checkers themselves are also being tested by

test patterns stored in the control store.

On first look, their self-testing computer seems to be a good design and every com-
ponent is tested thoroughly. But, on closer look, their design is not workable at least for

the processor part.

Careful studies show that for a bit-sliced processor to be Cl-testable, not only do
specific control signals have to be applied to the bit-sliced processor during testing, but
specific data signals have also to be applied to the bit-sliced processor during testing. The
shifter and the ALU are not Cl-testable or even C-testable unless specific data patterns are
applied to the bit slices of the processor. Since data signals come from the memory of the
computer, this means specific test data patterns have to be stored in the memory and there
have to be some ways to read them out during testing. But the word in memory to be read

out during a read cycle is controlled by the contents of the external instructions. In Sridhar

PP

TR ‘*.‘_T‘f&‘vff‘

.
-

.
O TR .

L

Al Al

i d bl

.
o 0.
e WAV N

L od d

e
a.a 4 g a2y o

.

¥ W — = — v n W <= wmwT—w <% —wewe A ww e m W~ W <—m—w—w <y -w—w = = = w--w-m -
e e R P — Il e R A T . RAAA S SE LA R A T S e R

.

DA I v g Lo

]

g

T

12

and Hayes' design, the test patterns, which are control signals for the processor, and which
are stored in the control store as microinstructions, have no control over which word in
memory should be read out during the next read cycle. Therefore, their design would not
work unless external instructions which specify the address of the word in memory to be
read out are also used. Then, in this case, the test patterns would be made up of both exter-

nal instructions and microinstructions.

1.4. Research Overview

The overall objective of this research is to present an integrated approach to the design
of a self-testing bit-sliced processor array. The self-testing mechanism is not built into each
bit-sliced processor chip, but is built into the whole bit-sliced processor array. This research
is based on a bit-sliced processor chip similar to the commercially available AMD2901. The

approach can be easily extended to other types of bit-sliced processor chips.

In Chapter 2, the algorithms used in making a bit-sliced processor array self-testing
are presented. The processor array is made C-testable and I-testable without having to
make any modifications on any modules of the bit-sliced processor chip. Exhaustive testing
is used as opposed to random testing for higher fault coverage consideration. The test pat-
terns are stored in a ROM as opposed to the use of counters and pseudo-random number gen-
erators. The test responses are monitored by equality checkers to avoid any loss in fault
coverage due to the compression of test responses. The reasons for not using the conven-
tional approach of making each bit-sliced processor chip self-testing are discussed. The
advantages of using an extra tester chip to test a cascade of bit-sliced processor chips are
presented. The algorithms used to make the tester chip able to test itself are also presented.
Functional fault mode!s suitable for the current VLSI technology are discussed. The opera-

tions of the bit-sliced processor array in normal and test modes are presented. Finally,

..

Py

* et T B OB SR o *D B e nAgag il ool it SR B B St Rall A SN R AN A S et sl s RS AL SN S S

13

performance degradation due to the incorporation of self-testing features is discussed. The

bit-sliced processor array with built-in-test is illustrated in Figure 1.2.

In Chapter 3, the design of the tester chip using an NMOS process is discussed. The
timing is based on a two-phase clock. The area of the chip, the area of each module and the
speed of each module are also presented. A discussion of area overhead to provide the self-

testing ability is included.

In Chapter 4, some design experiences acquired during this research are discussed.

Also presented are the extensions of the algorithms developed for other types of ILAs.

. - R - et e
PN P Sl S S S A A P S ST W S SN AL W) e L) L S

L,
Ve
®
e ek a

Y

2
f
“a boas &

v

b,

PRy

|
PP VA

. o .-"-' P :
.. LY T A W)

Y

P Y

— T batia A Rarns Y v aal ~ Yy v Y P ETLY T g MR AN
j ~. o - |- a ia - a - - -
L |
2 | i i i ' |
b
v.
b
v
b s ‘
r 1
:]
4 AWIYOS ISV -U[-3[Ing [[e12AQ ' 3Ind1y
_-s
F
r.
g sjndino
_ VAN _—]
r
P \ \ ;
1 .
' % 5 O |
a a @ @ !
Qo Qo Qo .
m A— L m — Aﬁ_.lnv © o © © ©o o o A._HH\/ L. m m 7@ L “ m v 4
149 - O - O
m. §8° g8 | |88 o |
3 =8 ¢ = a ﬂ =& | wuisiyed] 9! w
X co »
, 4 _ 4 ¥ lyaLsan "
g 4
ﬁ-. .
h.. e
B
3
}?»-I»'. 'y kl.-.b..nw..I.lny k‘? i.r.l . r‘t e ’.k’.P.b, .o .-ll.»b PR rl‘[o LLrl}.} . P L

15

CHAPTER 2

APPROACH FOR BUILT-IN-TEST IN BIT-SLICED PROCESSOR ARRAY

2.1. Basic Cell Model

The bit-sliced processor chip on which our research is based is similar to the commer-
cially available AMD2901 which is a four-bit slice [AMD76]. The block diagram of our

four-bit processor chip is shown in Figure 2.1.

The circuit is a four-bit slice cascadable to any number of bits. Therefore, all data

paths within the circuit are four bits wide.

Data in any of the four words of the Random Access Memory (RAM) can be read
from the A-port of the RAM as controlled by the four-bit A address field input. Likewise,
data in any of the four words of the RAM as defined by the B address field input can be
simultaneously read from the B-port of the RAM. The same code can be applied to the A
select field and B select field in which case the identical file data will appear at both the
RAM A-port and B-port outputs simultaneously. When enabled by the write enable (RAM
EN), new data are always written into the file (word) defined by the B address field of the
RAM.

The RAM data input field is driven by a shifter. The shifter scheme allows the data
to be shifted up one bit position, shifted down one bit position, or not shifted in either
direction. The RAM A-port data outputs and RAM B-port data outputs drive separate
four-bit latches. These latches hold the RAM data during phase-two. This eliminates any

possible race conditions that could occur while new data are being written into the RAM.

The high-speed Arithmetic Logic Unit (ALU) can perform three binary arithmetic

and five logic operations on the two four-bit input words R and S. Both R and S are

T MR TR T T TR LI e i R e "B RSt it A CHIE —— I R S 20 AU AR Aut i ren

'
PP

i ad L_J.

P v e en i et o e a e a4 v T T —p B Jen ul cmn o o o —y Y Vv ﬂl v —~— [PR S
B . : \ A

-—

\
”. dry) 10s53001d ug-1n04 Jo wesdmq yooig 17 sndiy
¥ ©
! - indino
] I
. Xnn ,
2 1ndino % 104ju0d jndyno
| —
: - A
sno—&T309 % niv 'C1013U0d uoj3auny Ny
1 uj—-Kkisa0d
AY oY
X
wo.%md,:m T 1043u0d ®dunos NV
om h_ Vad *ﬁ
nvy 4 ejqous ny
y X L1) 0 o
Y eceosppo nyy
v
¥3Ldihs % 10a3u0s 35y
4
uj-3jiys 3o ° BOEIETICLRY TP
uj Faav

PIRSORNRNNN ./ §'— P ® \ ot . . ®. . .. ®
N R A oA Al . o4l PRI | L PR G I S WPIYY N S - " PR A S) [- " —A'a AlAa 4 A ool Ann

W T g g gy Wy R W TER-TTWRE TR T e e W

v W W T W T e e

m—

(]

 (

- ey - v PBaint o & Meed SrME Srdh 4ei e eacatad s Rate st S e
w - -~ - g Chte 2R A e "D R A halindl Sl Vel AT N
DR N N . - - ~ \

17

outputs of a four inputs to two outputs multiplexer; the four inputs are: outputs of A-
latches, outputs of B-latches, external data inputs (D) and logic 0. This multiplexer scheme
gives the capability of selecting various pairs of the A, B, D and "0" inputs as source
operands to the ALU. The microinstruction inputs used to select the ALU source operands
are the I, and 7, inputs. The D input is the four-bit wide direct data field input. This
port is used to insert all data into the working registers inside the device. Likewise, this

input can be used in the ALU to modify anv of the internal data files.

The I, I;and 7, microinstruction inputs are used to select the ALU function. The
ALU data output is routed to several destinations. 1t can be a data output of the device and

1t can also be stored in the RAM.

A two-input multiplexer is also used at the data output such that either the A-port of
the RAM or the ALU outputs (F) are selected at the device Y outputs. This selection is con-

trolled by the 7 ; microinstruction inputs.

As was discussed previously, the RAM inputs are driven from a shifter. This allows
the ALU outputs to be entered non-shifted, shifted up one position (multipty by 2) or
sifted down one position (divide by 2). The shifter has two tri-state ports labeled RI and
LI Either one of these two ports will act as an input port while the other one will act as
an output port depending on whether the shifter is in shift up or shift down mode. Both

of these two ports wili be in high impedance state when the shifter is in no shift mode.

The clock input controls the RAM and the A and B data latches. During phase-one,
the A and B latches are open and will pass whatever data is present at the RAM outputs.
During phase-two, the latches are closed and will retain the last data entered. If the
RAM-EN is enatled, new data will be written into the RAM file (word) defined by the B

address field during phase-two.

e e ae - D . A ol o na

VNPT

4 A al

J

PO ISR SIS LI L

ehedde datth

Y Ao a4 o

4 4 4 s als a o

1
L

Rt e S i e ® e i iae A PP S S P WD ST W W OA SV FIPIRP Y W TN RIS SO S Y

D T " “e e~ T et SHute Tae 2 = —_— T T T T T VY Bt fe et e B S R S St ach AUR RIL AT I RIS 52 et |

18

A bit-sliced processor array based on our four-bit slice has the II.A structure depicted
in Figure 2.2. To allow arithmetic operations to be extended to operands of arbitrary
length, neighboring cells communicate via carry (borrow) signals. Each cell generates a
carry output signal CO which can be connected to the carry input line CI of the cell to its
right. This allows ripple carry propagation through the entire array. Similar left-shift
and right-shift connections between adjcent cells allow shift operations to take place

across the ILA. No communication between cells is needed by the logical operations.

In order to obtain a manageable vet reasonably realistic processor cell model, and to
make the use of the powerful functional fault model feasible, the operand size of the cell is
Iimited to one bit. In other words, the functional fault model used in this research, the test
set generated, etc., are based on a one-bit processor slice. But the test set and all the results
obtained from this research are applicable to wider processor slices [Sri81]. The block
diagram of our one-bit processor slice C and its microinstruction control fields are shown in

Figure 2.3 and Table 2.1.

2.2. Functional Fault Model

For testing purposes, C is treated as a network of small register-ievel modules as dep-
icted in Figure 2.3. The modules are regarded as black boxes whose input-output behavior
is completely defined. For example, components like multiplexers and registers are treated
as primitive modules in our analysis. The internal structure of these modules is not con-
sidered. Corresponding to this functicnal view of primitive module behavior, we now

define a fault model based on functional considerations.

l.et M be a primitive combinational or synchronous sequential logic module in a cir-
cuit U under test. Let z denote the function realized bv M and let s be the number of inter-

nal states of M; s = 1 if M is combinational. A malfunction ¥ of M is called a (functional)

!

-

‘..ﬁ..ﬁ..\. ﬁ ..-,..«.,.n.... T TTTTTTTWTTy T ey YTy ey 4I1|q|-lnul1111 T————— T T T Ty ‘— .. ¥ SR oo - -~ v ..1.1 > 7

e . ® e . e ® N ® ® Y e ... e - e

S - _ .

'-

b

g

b

b

b K

3 o k

b - 3

b

p

| >.ﬁ.:< 108S201] pPNS-1IgY JO aUMMNINS T o.::m_..—

4 CY

3 yndino ojop 1

3 P — 2

'.

.

d \f \T % .

s 4

-— R

T -— w z <--0 © © © © © ©o o o - mz e “ m1 VA!n_oco_“ —OL“:OU

W - o [7Y] j— 0 © © © © ©o o o 0 - wn _\l\‘ (7] ‘mlc—lxhhoo

g W Ww 7 W W

. 123k ° -« 82 7 &2 I ceouppo

. c— o o © © © o © - -— b - - — — <

b -« 0. fc-ro 06 0 6 © 0 6 6 o =« O O " \\F _»} a un - > O&oo N&mCﬂ

b _ : :

; » b iz

<

%

{ N

3 yndu| o3op

e

b

T “

3 .

,]

b . 9

b
4
1

3 K

. 1

r 4..4

S N

‘ q
.“..
K
N

A S M
N TN

Y

T

TR

.-

A ANe e 4 Nsie WV e b A

T

20

a .H '4111”_...14 - - 14,.-4 - . - . - L . -
I |
NS 108530014 11g-2uQ JO weadeiq 1o0[y €7 2131, ,.
indjno "3
A .“..,
xXnn s 0_ \.
indino "
K <
- A L 7K YT ¢
7 | | |
£ nv £
~A £ -
yno=adae ® 10 uj—-Kiapd g
kb ._M
XNN .
33¥N0S Z h'o .
nv 2 b g
0, B
2190 al v
nvy - h_
¥ X Lig— S i o .
Y g 'y
N
43LJIHS M\ v 'S L
11 1o

——— e -4
U=} 14S 339 Up—3j1ys 3yb6)4]
uj oyop]
.
3
el — T TN I RN e

k-_w‘ | S A Aaar " b B e S SRR Pl S L e i S o) PR ey b 2D e e MY P Padiiigd >
b T e
21 E i*;fi_»
! Table 2.1 Microinstruction Control Fields of Processor - @
I, I,|{R S Iy 1, L
0 O A B 0 o F °
= 0 1A o 0 1 RI
1 0O||D B 1 0 Ll
1 1 D O 1 1 not used
ALU source control shift control
o
I I Y
s 7 8 !
0 || disable RAM 0 || F)
1 enable RAM 1 A
RAM control output control
l @
1, 1, I, F
o
u
0 0 O R plus S
0 0 1 S minus R
0 1 0 R minus §
0 1 1 RORS
1 0 0 RANDS R
1 0 1 RAND S o
1 1 0 R EXCLUSIVE-OR S R
1 1 1 R EXCLUSIVE-NOR S
ALU function control .
.
) ®
)

rvv'r_-_v_v_ L St eh Shal ik Sedratdbangt il e Bded Sni tedh Sagh M Al At /Al S et Lk sttt Saf St S Sl And Ad Sadaet et Sndh Sudb Sadl Aodh Sad Suth Sl At Setl Sk Sudl Aid

———y

b e ae s

22

fault of M if f permanently changes M to a module M’ realizing 2", where z = z© and

F F
the number of states s° of M~ is not greater than s.

Thus, faults in a combinational module can induce arbitrary changes in the truth
table of the module but cannot convert it into a sequential circuit. To detect these faults, it
is necessary and sufficient to apply all 2Y input vectors to an N-input module. This fault
model is relatively powerful. It includes as a proper subset all single and multiple faults
of the standard stuck-line fault model. The restriction excluding sequential behavior

appears to be relatively minor.

When M is a sequential circuit, we allow faults to cause any change in the state table

of M that does not increase the number of states. This is quite realistic in the case of
. . . k

modules in which there are k binary memory elements and exactly 2 states; only sequen-

tial modules of this type will be considered.

Based on physical failures in memory, like metallization shorts and capacitive cou-

pling, the following functional fault model is proposed for the memory cell array [Tha77]).

(1) One or more cells are stuck at O or 1.

(2) There exist one or more pairs of cells which are coupled. By this we mean that a
transition from X to ¥ in one cell of the pair, say cell i, changes the state of the other
cell, say cell j, from x to y or from y to X, where x € {0, 1} and y = x. This, of course,
does not necessarily imply that a similar transition in cell j will influence cell i in a
similar manner. (Note that we allow arbitrary pairs of cells with such coupling.

Thus, a cell k could be coupled to cell i or cell j in another coupled pair.)

It is further assumed that only one module in the circuit U is faulty at any time.
This single fault assumption is included in most tault models. It is justified if the module

failures are independent, and if U is tested frequently.

PR 30 TN

v
4 4 e s a4

a

"""" - - T T, - TTT LA S i ine & S AL AR ACE S S gan o8 SR “"_‘J'"."-"."‘

' 1]
‘.’

* v
. !
It should be emphasized that the foregoing model will only be applied to n-input s- L1 1
state modules where n and s are relatively small. The modules of the cell C, for example, ‘]
are all of this type. The small size of the modules is necessary to make practical the essen- .
tially exhaustive testing methods required by the fault model. Although individual : . 1
modules are tested exhaustively, networks of these modules are tested in an efficient nonex-) j
haustive manner. |]
*
2.3. Testing Algorithm
The conventional approach of built-in-test is to put extra circuits into each bit-sliced [] j
processor chip to make it self-testing. The approach we are using in this research is to use]
an extra chip (tester chip) which can generate test patterns to test a cascade of bit-sliced
processor chips (independent of the size of the array) and monitor the test responses. The L
tester chip can test itself also.
The advantages of this approach over the conventional approach are:
®
(1) Circuit overhead and area overhead required to provide the self-testing ability are 1
lower because for our approach, one extra tester chip is required to test a bit-sliced
processor array of any size. The size of the tester chip is about the same as the size of
each bit-sliced processor chip. The modification on each bit-sliced processor chip is R
minimal and results in very little area overhead. Therefore the percentage of area
overhead required to provide the self-testing ability becomes smaller as the size of the o
processor array increases since the major area overhead is the extra tester chip. For]
the conventional approach, the percentage of area overhead is independent of the size
of the processor array since each bit-sliced processor chip has the same percentage of o

area overhead required for self-testing.

T

A .'1

24

(2) For our approach, there is very little performance degradation resulting from the

addition of extra circuits to provide the self-testing ability because in normal opera-
tion, the tester chip is isolated and is transparent to the processor array. The small
performance degradation comes from the fact that each normal D-input has to go
through a two-to-one multiplexer whose function is to choose between normal and
test D-inputs before arriving at the input of the ALU source multiplexer.

For the conventional approach, each bit-sliced processor chip has to be isolated from
each other during testing because each processor chip is supposed to test itself indepen-
dently of the others. Therefore, all the connections between bit-sliced processor chips
have to be broken during testing, possibly using multipiexers. The left-shift and
right-shift inputs/outputs have to be separated from the left-shift and right-shift
inputs/outputs of neighboring chips by multiplexers. The carry-in input has also to
be separated from the carry-out output of the neighboring chip by multiplexer. Dur-
ing normal operation, these muitiplexers will let signals from neighboring cells to
pass through. During test mode, these multiplexers will cause each chip to isolate
from each other and will allow signals from the test pattern generation circuits
within the chip to pass through.

The problem is that during normal operation, signals that connect the bit slices
together like the shift inputs/outputs, carry-in inputs and carry-out outputs have to
go through extra circuits of multiplexers that are used to separate the bit slices. This
will introduce delay in the propagation of these signals since multiplexers are made
up of pass transistors. This problem becomes more serious for the critical carry chain
since carry signals ripple through the entire processor array in the bit-sliced architec-
ture. Th'erefore, for the conventional approach, there is performance degradation due
to the addition of extra circuits to provide the seif-testing ability. The larger the size

of the processor array, the larger the degree of performance degradation.

Y B S W AU I o Y

—

».

v - —— BB S ace Shaateus Sn b < L At Sai i tiar Sund " o Ll N A S P

25

(3) For our approach, all the connections between bit slices are tested since all bit slices
are connected in the same fashion in test mode as they are in normal mode.
For the conventional approach, no connections between bit slices are tested because all
bit slices are isolated from each other during testing. The muitiplexers used to
separate the bit slices from each other, as previously discussed, cannot be tested for

their correct operation in normal mode.

Based on the functional fault model described earlier, each module of the basic cell
(Figure 2.3), namely, shifter, RAM, ALU source multiplexer, ALU, output multiplexer are
tested exhaustivelv. But the basic cell itself is not tested exhaustively. It is necessary and
sufficient to test a combinational module with 2" test patterns where N is the number of
its primary input lines. For the RAM, the memory functional fault model described earlier
can be used in constructing the test set. Therefore, the test patterns for the shifter, the
ALU source multiplexer, the ALU and the output multiplexer which are combinational
modules can be easily generated by counters. But the test patterns for the RAM which is a
sequential module cannot be generated by a counter and have to be stored in 2 ROM because
a sequential module needs a specific sequence of test patterns in order to be tested com-

pletelv.

A set of four counters and a ROM in the tester chip can be used to generate test pat-
terns for a processor array of any size. The problem with this approach is that the test pat-
terns for a combinational module generated by a counter are valid and can test the combi-
national module exhaustively if and only if all the primary inputs of the module are also
the primary inputs of the basic cell. Otherwise, each test pattern T for the combinational
module has to be transformed to a test pattern T which, when applied to the primary

inputs of the basic cell, will cause T to apply to the primary inputs of the combinational

module. But now the test pattern T may not be able to be generated by a regular counter.

e oo wy

s, s,

)

UL DU W U TP U G W S

, ‘
. K .
POV S OF S

L St A e e TR, T MRS B gl S S/ A0 SN A0 Bun. shr ane - S uiiraducaen et aee Bt B S al AR ATt AR

26

Therefore, for this research, a ROM is used which contains test patterns to exhaustively test -
each module, namely, the shifter, the ALU source multiplexer, the RAM, the ALU and the
output multiplexer. A pseudo-random number generator is not used because the fault cov-
erage obtained from random test patterns is not high enough and is dependent on some pro- -

perties of the circuit under test as discussed in Chapter 1.

In Chapter 1, different methods of verifying test responses were discussed. For this

research, the bit-sliced processor cells are made Cl-testable so that test responses can be mon-
itored by simple equality checkers. The Y output from each bit slice is monitored by equal-

ity checkers built into each processor chip. The CO output of the chip is also monitored by

an equality checker built into the chip whose other input is the CI input of the chip. Sig- . ‘ }
nature analyzers are not used because there is a loss in fault coverage due to the compres- : o
sion of test data. Signature analysis has a further disadvantage that the signature is depen-
dent on the size of the processor array. A more detailed block diagram of the processor ' 1
array with the tester chip is shown in Figure 2.4.]
»
2.4. Test Generation for a Single Cell :
¢
g The basic processor cell is divided into 5 modules. The shifter, the ALU source multi-)
F‘ plexer, the ALU and the output multiplexer are combinational while the RAM is sequen- !«_

tial. The primary inputs of the basic processor cell are:

|
R

I, I, — control inputs of the ALU source multiplexer

1,1, 1,— control inputs of the ALU ’ 7
4 I o I — control input of the shifter]
4 .
b
{ I, — RAM enable i
’
3 ‘ I 4 — control input of the output multiplexer :
.
{ A, A,— A address field of RAM
g
-
]
¢ >

E P T Tt S P (PO R U P AP VS UL PURY RSP AU AT NN OO NS TS G T VU UL SRR, SRS U S,....a..‘.:-i

v——v

b
ﬁh

, -
'
ﬁ‘

‘-

’

’

;

»

)
P

L
i

)

b 2L St S Tae 3

T T T T T YU T T T W T W

Glad, gt Bt s it Aten et Sk Sl

° ° ° °. ° d
QWIS 153 [-U[-A[INg PA[IRIX(| IOW T 1nd1y
sj}ndino
2N \
, A
._. » \/ _\/.
Tﬂﬂxoo: -soxoo:u sieno0y
. APPPNPM . , |%3110nb P £} 1 100b
- .) \ o o o o o o o Au v —_ . 1—\ . J
{ a’\o i v ‘.\o £ ‘to v
Patl X3 creoe cleo
Soel oo Sres
T38% T8 o (s10uBje
o v o o D)op pvo
a Qa a
{o43uoo yjoq)
x| T G T ST L
ERTRE 32178 3017S €23
¥0SS3003d ¥0SS300¥d YOSSIO0N
a3 31 aoNn ag3i1J4100N a3l 100N
i ' .a , - |

-a.ao;_u

40430

{¥£$::3

(co
pe

dIHO
d31S31

P — |

- .'_'A- _“
AP W I S I

A adi aRa and ann S peet Sua e g s d e A MAC RS Mad Aol i il Sedh unlh Suf vl __1

28

B, B, — B address field of RAM

RI — right shift-in/shift-out of shifter
LI — left shift-in/shift-out of shifter
D — external data input

Cl — carry-in input
The output of everv module is observable at the Y and/or CO outputs of the cell.
Each test pattern T should have the f ollowing properties:

(1) Application of 7~ to the primary inputs of the basic cell will cause test pattern T to
be applied to the primary inputs of the module intended to be tested by this test pat-

tern, where T is one of the test patterns required to test this module exhaustively.

(2) Application of T to the primary inputs of the basic cell will propagate the outputs

of the module being tested to the observable outputs of the basic cell.

2.4.1. The Shifter

Since the shifter has five primary inputs, the test set T(SH) has thirty-two members.
From T(SH) we can easily construct T (SH). For example, suppose that both control lines
I g and I of the shifter are set to 0, so that the output L of the shifter is F. There are eight
tests in T(SH) of the form (/ , I, RI, F, LD) = (0, 0, d, d, d), where d denotes DON'T CARE.
To extend these eight tests to the corresponding members of 7 (SH), we need 1o define suit-
ablv all the other primary inputs of C. The input D mav be selected so that the desired F
input required in the next test for the shifter is generated. The other primary inputs of C
are kept at a constant value throughout the testing of the shifter. These constant values
are chosen to permit the signal L to be observed at the primary output Y. One way of

doing this is to write signal L into the RAM. then propagate it to the output by setting

s
Py

29

Ul 1,1,1,14)=(1,0,1,1,0,0). Table 2.2 shows the resulting sequence cf eight
test patterns applied to the shifter by 7 (SH). A similar sequence of eight tests can be
derived for each of the other three combinations of I jand /.. Hence, there exists a test

sequence 7 (SH) for the shifter of length thirty-two.

2.4.2. The RAM

The set of necessary and sufficient conditions for all faults in the stated memory fault
model to be detected by a test sequence are listed below. In the following discussion, a
forced transition of a cell is defined as one that is initiated by the testing algorithm by

writing into the cell; this may cause transitions in other cells because of coupling.
Condition 1. Each cell must undergo

(a) a Q- 1 transition,

(b) a1 -0 transition

and must be read after each transition, before undergoing any subsequent forced transitions.

Condition 2. For every pair of cells (i.j), cell i (i.e., the cell with address i) must be read
after cell j makes a forced transition and before cells i and j make any further forced tran-

sitions for the following states of cell i and transitions in cell j.
(a) cell i in state O, cell j making a O - 1 transition,
(b) cell 1in state 1, cell j making a O - 1 transition,
(c) cetl i in state O, cell j making a 1 - O transition,
(d) cell i in state 1, cell j making a 1 - O transition.

The sequences of the algorithm which can detect all the faults in the stated fault

model can be found in Table 1 of [Nai78). This algorithm takes thirty-two vectors to test

Py

Sie-Rte e 2hi Tt e

T

TV

YT, oW

30

.

Table 2.2 Generation of T(SH) from 7 (SH)

R F LI |D

1,

I

Test No.

Table 2.3 Generation of T(SM) from T (SM)

[)
—g
B SO = D e e
g [|[cococococo
[JY
< ||[oecococceco
A lo~0o=0m~mo —~
M OO0 m = O =~
A QO QOO vt rmu ot v
~ [[cococooe
< flocooococococoe
.8
z,
m - TN\~
=
-’ ... A

F R A L

Yp—

and logic 1 was stored 1n address (1

note: logic O was stored 1n address 00
prior to this test

b m man r*&rr.tp

\ Aamd

31

the 4 x 1 bit RAM.

The latches are tested while the RAM is being tested; therefore, no special test pat-

terns are required to test the latches.

2.4.3. The ALU Source Multiplexer

The ALU source multiplexer has three data inputs and two control inputs; therefore,
it can be tested exhaustively by thirty-two tests. The two control inputs and the external
data input are primary inputs of the basic cell; therefore, they can be set to any logic values
by T (SM). The other two data inputs of the ALU source multiplexer, which are outputs
of the A-latch and the B-latch, can be controlled by storing appropriate logic values in
different addresses of the RAM. By specifying appropriate A address field and B address
field of the RAM, the outputs of the A-latch and the B-latch can be set to any logic values.
Therefore, T (SM) can be constructed from T(SM). Table 2.3 shows the resulting sequence
of eight test patterns applied to the ALU source multipiexer by T (SM). A similar
sequence of eight tests can be derived for each of the other three combinations of /,and 7 ;.

Hence, the ALU source multiplexer can be exhaustively tested in thirty-two tests.

Since the ALU source multiplexer has two inputs, any fault exercised by the test set
can either cause one of the outputs to switch from the the correct logic value or both out-
puts to switch from the correct logic value. In order to detect faults in the ALU source
multiplexer, the following should be done to propagate the outputs of the ALL source mul-

tiplexer to the primary outputs of the basic cell:

{1) If the expected R and S outputs are 00, the ALU should perform an OR operation on

these two operands.

NV RV S SO SR J - [BUR.EPL Y

R S

v

YT,

~r
ol

[a#™ SRS

A Sl B DA Y Ao St

—_p Y —— e T . - A R

32

(2) If the expected R and S outputs are O and 1, respectively. the ALU should perform an

S - R operation on these two operands with the borrow-in equal to zero.

(3) If the expected R and S outputs are 1 and O, respectively, the ALU should perform an

R - S operation on these two operands with the borrow-in equal to zero.

(4) If the expected R and S outputs are 11, the ALU should perform an AND operation on

these two operands.

2.4.4. The ALU

The ALU has three data inputs, three control inputs; therefore, it can be tested
exhaustively by sixty-four tests. The three control inputs and the carry-in input are pri-
mary inputs of the basic cell; therefore, they can be set to any logic values by T (ALU).
The other two data inputs of the ALU which are outputs of the ALU source multiplexer
can be set to any logic values by controlling the external data input D and the B address
field of the RAM. By setting (J, 7) to (1, 0) and by storing appropriate logic values in
different addresses of the RAM, the R and S outputs of the ALU source multiplexer can be
made dependent on the D-input and the B address field of the RAM. Therefore, T (ALU)
can be constructed from T(ALU). Table 2.4 shows the resulting sequence of eight test pat-
terns applied to the ALU by T (ALU). A similar sequence of eight tests can be rived for
each the other seven combinations of 7, I and /, The outputs of the ALU can be pro-
pagated to the primary outputs of the basic cell by setting / ; = O throughout the testing of

the ALU. Hence, the ALU can be exhaustively tested in sixty-four tests.

. a . . B e e e e m e e - e

E
.
-

]

P URES N S S

NI SUL PP TP

i A anm 4 & aa

P k.

R N A

AR A S MR A AL A Al N Tl Sl i A

Table 2.4 Generation of T(ALU) from 7 (ALU)

Ly

TestNo. |1, I, I,|R S C|B, B, D
1 0o 0 o0 O 01O 0 0
2 0O 0 o0 0 0 1 0 0 o
3 60 0 0|0 1 07O 1 0
4 0 0 0O [0 1 1 0 1 0
) 6o o o1 0 OO 0 1
6 0 0 0 1 0 1 0 0 1
7 0 0 0 1 1 O 0 1 1
8 0 0 o1 1 110 1 1

note: logic O was stored in address 00
and logic 1 was stored in address 01
prior to this test

Table 2.5 Generation of T(OM) from T (OM)

TestNo. || Ig | A F|A, A, D
1 00 o]0 o0 o0
2 0/0 1[0 0 1
3 0|1 0o|lo0o 1 o0
4 01 1]0 1 1

note: logic 0 was stored in address 00
and logic 1 was stored in address 01
prior to this test

AT AR e

33

i
|

LI

A e & i a 3

A a4

ot
PR PRSI BN

Tl e e S e s e St ns Sem B aae S i i WA S e A S S At i SRSt SR A A A A AR St SRR AN SR SR AP R R AP RIS

34

2.4.5. The Output Multiplexer -

The outp't multiplexer has two data inputs, one control input; therefore, it can be
tested exhaustively by eight test patterns. The control input is a primary input of the basic
cell; therefore, it can be set to any logic values by T (OM). The two data inputs of the out-
put multiplexer are outputs of the ALU and the A-latch, respectively. If appropriate logic
values are stored in different addresses of the RAM, the output of the A-latch can be set to
any logic values by controlling the A address field of the RAM. The output of the ALU
can also be set to any logic values by controlling the external data input D and by setting
(Io1,1,1,1)w0(1,1,0,1,1). Table 2.5 shows the resulting sequences of four test pat-
terns applied to the output multiplexer by 7 (OM). A similar sequence of four tests can be
derived for the other combination of I Hence, the output multiplexer can be exhaus-

tively tested in eight tests.

2.5. Test Generation for the Processor Array and CI-Testability

A linear cascade of N copies of the 1-bit cell C is required to expand the word size of
[the operands being processed to N bits. For shift operations, the Y output of each cell is con-
!
, nected to the left shift-in line of the cell on its left and also to the right shift-in line of the
CEEN
‘». cell on its right. The ILA thus executes the same operations as the basic cell C using N-bit
L instead of 1-bit operands. The fault model for an individual cell is the same as before with
at most one cell in the array assumed to be faulty.
L @
[Each module of the basic cell can be made Cl-testable with respect to some test set.
g
All modules of the same tvpe in the processor arrav can be tested by a constant number of
L tests independent of the size of the processor array, and the test outputs of the modules can
]
- ; . 3
[be propagated to the primary outputs of the processor array in such a way that: A
g
s
°
L L e e an . s - . 4

[
[

T ~— ~ ERSMER A g et e e S e A R Al R T A

35

(1) The test outputs of the modules do not become masked in propagating to the outputs

of the processor array.

(2) All test outputs from the processor array that have to be verified are identical so that

theyv can be monitored by equality checkers.

2.5.1. The Shifter

To apply the test patterns obtained in the previous section for the shifter of a single
processor cell to any shifter cells in a processor array, the desired RI or LI input signal must
be generated at the Y output of the left cell C,;_,, or right cell C,,,,, respectively. This
can be done by appropriately selecting the D inputs of the neighboring cells C,,_,, and

C.; .1~ The shifter slices in the processor array can be made Cl-testable if:

(1) During the first clock cycle, the test patterns for testing each shifter slice are gen-
erated by appropriately selecting the D inputs of all the cells in the array. By setting
(Upl,1,14,1)=(1,1,0,1,1),the F, input of each shifter slice can be made equal
to D;, while the R/; and LI, inputs of each shifter slice can be made equal to D,, _,,

and D, ,, respectively.

As far as making the shifter slices C-testable is concerned, the following is true:

(a) Test pattern (I, I, RL F, L) = (d, d, 0, 0, 0) can be applied to every shifter
slice of the processor array at the same time. The same is true for test pattern

(I41,RLF,LD=(d,d,1,1,1)

(b) The other combinations of RI, F and LI cannot be applied to every shifter slice at
the same time. Since the RI and LI inputs for each shifter slice have to be gen-
erated by its neighboring cells, the minimum length of the cycle which is the

minimum number of shifter slices that test patterns can repeat is three. Using

‘ |
g ; ! ;J
. e et e a ' i A s F

tbha

PP S I

it

L oA i A S
‘ PN

v v

—~—

(2)

Rl A tae Nae Sl bas wul Nagh tah il Sed AEEE A JENAAN A SO SIS A ” AR AR st s Ao St Mt T T YT e Y Y
. B R . R E . . . R

36

this minimum length cycle, the other combinations of RI, F and LI can be
applied to every shifter slice in six tests as shown in Figure 2.5(a). Therefore,
the shifter slices can be made C-testable and can be exhaustively tested in

thirty-two tests.

(c) For reasons that will become obvious later in the chapter, the minimum length
cycle is not used. Rather, a cycle of length four is used, i.e., test patterns applied
to shifter slices can repeat themselves every four shifter slices. as shown in Fig-
ure 2.5(b). In this case, the shifter slices are still C-testable and can be exhaus-
tively tested in thirty-two tests.

During the clock cycle that a test vector is applied, the outputs of the ALU slices

should not be propagated to the primary outputs of the processor array to be moni-

tored because they are not identical. Therefore, during this clock cycle, the outputs of
the A-latches, which can be made identical for all the cells in the array, should be
propagated to the primary outputs of the array to be monitored. The test responses of

the shifter slices are stored in the RAM slices.

During the next clock cycle, the test responses of the shifter slices are verified. They
are first read out of memory, then each of them is exclusive-ored with a D-input. The
D-input patterns are arranged in such a way so as to make the outputs of all the ALU
slices in the processor array identical. The outputs of the ALU slices are then pro-
pagated to the primary outputs of the array where they can be monitored by equality

checkers.

Therefore, two test patterns of 7 (SH) are actually needed to realize one test pattern

of T(SH). So the shifter slices tn the processor array can be made Cl-testable and can be

exhaustivelv tested in sixty-four tests.

A Zne Sns Bin Sel M WYY —wTw T - W W w - -5 FRR 8 "Bt TRl Tt Mt

37

000 @ 010 @

— J

Figure 2.5 Test Pattern Cycles for the Shifter Array

o

RO _‘
T «
..~‘. e
AA‘ \.
- 4’ " -.
- 1
e

~ .-
- . e T AN .

Lo e o T . . . N . R S

S IR U, A ST U A . S U Sy SR W S S |

4 A MRS oy v W et S A Ao e s A e S ity S S S DU S S .

.]
.. 2
| 38 =
| E
{ 4 2.5.2. The RAM - v
; Since the RAM slices in each processor cell do not interact with the RAM slices in
other processor cells, the test patterns developed for the RAM slice in a single cell are also o
applicable to any RAM slices in a processor array without any modifications. Therefore, ' 1
the RAM slices are Cl-testable and can be completely tested in thirty-two tests. :‘_ . -:
- 1
’
2.5.3. The ALU Source Multiplexer ;
Since the ALU source multiplexer slice in each processor cell does not interact with
the ALU source multiplexer slices in other processor cells, the test patterns developed for ' J
th. ALU source multiplexer slice in a single cell are also applicable to any ALU source -:
multiplexer slices in a processor array without any modifications. Therefore, the ALU
source multiplexer slices are Cl-testable and can be exhaustively tested in thirty-two tests. " ;
K
25.4. The ALU N -
The ALU performs eight functions; five are logical functions, and the remaining three ‘1
are arithmetic functions. For logical operations, the ALU slices do not interact with each *
other, i.e. no data is passed between the ALU slices although they perform the same func- L;
tion. For arithmetic operations, each ALU slice in the processor array interacts with the : \

ALU slices in the neighboring cells through its carry-out or borrow-out output and its

f——

carry-in or borrow-in inputs. To apply the test patterns obtained in the previous section
* for the ALU of a single processor cell to any ALLU slices in a processor array. the desired CI

input signal must be generated at the CO output of the neighboring ceil. For the ALU

v
e b 2 d Aalx 4

o slices to be Cl-testable, the following conditions must be satisfied: '

b e i

| s am an amad
.
o

e B T DU S VY P S P, SR SV AL S NI S U I i SSRGS VRS AT AR N

v - - w—— P ——— S A Sl S ae A e Sa Aen A Jran b A e RER e Aany
P,‘._f_,tf_‘. ——— - 2e e cnar o Dl ahaapa — A S - A

39

l (1) The ALLU slices in the processor arrav must be exhaustively tested by a number of L
tests, the length of which is independent of the size of the array. It can be readily

seen that this does not present any problems as far as the logical operations of the

dently of the array size if the R and S inputs of the ALU slices can be controlled. As

sa ALU are concerned. The arithmetic operations of the ALU can also be tested indepen- - .._
shown in Figure 2.6, the ALU slices can be made C-testable if the R and S inputs of 1

neighboring ALU slices can be set to different vaiues for some tests and the same i

values for other tests.

can be seen that the outputs of the ALU slices in the processor array are not identical

(2) The test outputs of the ALU slices to be verified must be identical. From Figure 2.6, it }
for some tests on arithmetic operations. Therefore, these outputs should not be pro- }
i

pagated to the primary outputs of the array to be verified by the equality checkers.
The above conditions can be satisfied as follows:

(1) By controlling the D-inputs, appropriate logic values can be stored in the RAM slices

of the processor array.

¢ | *

(2) By setting the ALU source multiplexer control signals (Z, 7,) to (1, 0), and by con-

trolling the B address field of the RAM and the D-input, the R and S inputs of the .

ALU slices of neighboring cells can be made the same or different. » ;1

(3) The test results are not verified during the first clock cycle but are stored in the RAM o |

instead. By controlling the A address field of the RAM, and by propagating the out-)

puts of the A-latches t the primary outputs to be monitored, the inputs to the equal- ¢ !

ity checkers can be made identical. , J

’

(4) During the next clock cycle, the test responses of the ALU slices are read out of
memory, then they are exclusive-ored with D-inputs to make the outputs of the ALU *

slices identical, which are then propagated to the primary outputs to be verified. o 1

. ® |

t,_.. S S S il A sl a v s

A
oa e
v N

[) SO, i tu s Ra Rl o GBE L oa g

GanCaun
’

T vr.T '.",-" g

|
40 _;i
R
]
' -
0o 0 U 0 U v ;.1
D |
0 —ALU —>0— ALU—>0—{ ALU}—0 o 0000 0 o }
1 1 | |
0 0 0
1 1 00 1 1]
| | | 1 »
0 —jALUF—=1—] ALUI—=0—| ALU}—1 o 06 0 0 0 0 o -
.l I)
0 1 0 '
(a) ADDITION
? 0 00 00
L L L ,
1 —ALU F—>1 —| ALUF—> 1 —{ ALU|—=1 0 0 0 0 o o & |
| I |
1 1 1
0 1 10 9 1
0 —ALU — 1 —| ALUL— 0 — AlLUl—1 o0 0 0 0 0 o & ;"
! : !
{b) SUBTRACTION '
Figure 2.6 Some Tests for the ALU
¥ - - N A, U .:

Chadl Sudh 4

o~

T w T - A I TR SR AP T S S = PRI AR —~- - MR dis AL ol b i

41

Steps (3) and (4) are not necessary if the test results are identical for all ALU slices.
In this case, the test results are propagated to the primary outputs to be monitored during

the first clock cycle.

Therefore, some members of T(ALLU) can be realized by one test pattern of T (ALU),
while other members of T(ALU) require two test patterns of T (ALU) to be realized.

Overall, seventy-two test vectors are required to test the ALU.

2.5.5. The Output Multiplexer

Since the output multiplexer slice in each processor cell does not interact with the
output multiplexer slices in other processor cells, the test patterns developed for the output
multinlexer slice in a single cell are also applicable to any output multiplexer slices in a
processor array without any modifications. Therefore, the output multiplexer slices are CI-

testable and can be exhaustively tested in eight tests.

2.5.6. Common Control Lines

From Figure 2.7, it can be seen that if one or more of the common control signals of
the processor array stuck at 1 or O at the positions indicated, then this fault may not be
detected by the test patterns generated so far because the effect of the fault is the same for
every cell of the array. In other words, if the effect of the fault is to change an intended
test to an unintended valid I-test, then the equality checker will fail to indicate an error.
This would further result in causing some other fauits developed later in a processor chip
to be non-detectable because some of the modules may not be tested exhaustively due to the
faults in the common control lines. Therefore, twenty-eight more test patterns are required

to test each control line and address line for stuck at 1 or 0. Under the single fault assump-

H

e
e
.‘
- 'A_A’k.‘J A S

el e e
bt PP S U U ST TP UV I 2 T

\

Py

an

ﬂ\W... — Y o B e o o o S S e e B e e e e e e o B oo o ~< T———— v
. . L . et . LR .

3
b
r hed
m. SI1S3] - ut sjeudi§ [o13u0) uoWwO)) Jo swaqoId Jutmoys £ asndi g
f
4
3 NOILISOd SIHL LV O ¥0 | LV YONiS
. STIVNOIS TOYMINOD NONNOD 3HLI JO 3M¥ON HO 3INO S3LVIOIONI %k
4
P,
- + -
: ® 1| @ AN] @ SN
» R (-] Q © o o o o [
w a " a. w a RYLLPY]
a- ai- a_ soyyo
” wcmlucm WCW ejoub e
W oon L M L m 1943 w00 X~
- by howg UOLLID D e
. at Q% aQt e
ﬂ Q o <] Yk LT B e
. 3 = = [
r +) s
S a

N d!1HO
¥318s34

P
A _Aatel Al alatiala et ala e aiaiameataAh tata” et et et at e iatalata ettt ae e e e Aot A A A L_A.}

U A WU AY T AU SO, A

ra

a

Py Rg——— . —— SRR s Ay S S i

43

tion, these twenty-eight test patterns, specially designed, can cause the inputs to the equal-

ity checker to be non-identical if one of these faults exists.

2.6. Implementation

From the previous sections, it should be obvious that the only modification required
on each bit-sliced processor chip in order to make an array of these to be self-testable is the
addition of equality checkers and multiplexers. There are five equality checkers in each
four-bit processor chip. Four of them are for monitoring the Y outputs of the four bit
slices, while the fifth one is for monitoring the CI input and CO output of the chip. The
equality checkers themselves are bit-sliced t00 and are therefore cascadable. An ILA imple-
mentation of the equality checker is shown in Figure 2.8. Since the equality checkers are
cascaded together as a one-dimensional ILA, there is only one output from the equality
checker ILA that has to be monitored by the tester chip. There are four two-to-one multi-
plexers for choosing between the normal D-inputs and the test D-inputs. The control signal
for these multiplexers is the TEST input. The modified four-bit processor chip is shown in
Figure 2.9. A comparison of this figure with the unmodified four-bit processor chip shown
in Figure 2.1 would show that there is very little modification on each processor chip and

that the area overhead required for self-testing is basically the extra tester chip.

The tester chip contains a ROM which stores the test patterns for testing a bit-sliced
processor array of any size. We now determine the width of the ROM in bits. As previ-
ously discussed, the ROM contains all the test control signals of the processor array. This
includes 7, to 7 { which are control signals of the ALU source multiplexer, the ALU, the
output multiplexer, the shifter, and the enable signal of the RAM. The RAM also contains
A, A, B, B, which are the A address field and B address field of the RAM. All the sig-

nals described so far are common to all bit slices.

TN

)

- = e = = T

’
'

- T B .Y — oo s v bl hnd b
' & Y Y - ' - -
1Y) Kvfenby 3y jo wonwuswddwy vy §'¢ 2and|
joub s
10136 AVHIV HINIIHD ALIIVND3 (Q)
| T eeoceoscooe —WK [T St
o (-] o o Q L-] (-] (-] I,IAL _ll J—
7730 ¥3MNI3HO ALIIVNDI (P)
ltﬁﬁmluf -
1
11
~ N B T e RN\ PN b DR

| L YUY

S N U VS NUTN UUNUIIUS S

T QPN O

0l

A SM A SRA SRE & e ane oAt SRS MIRCL AN w———— TeprTw——

e Aran e A Y

45

normal teet

date dete
o o
TEST 1, 4 2-T0-1
- MUX
right shift-in 1 T v left shift-In
TEREY
's, a3 SHIFTER
L
“?
A
‘;A’ BB s $-—B8IT X 4
7 1, L RAM
I s logle
_’,ﬂ"' . 0"
\
oo (]
5
carry~in 1 (1) o M &
co | 1, carry—out
! 3, ALU s X 4
I: L) ‘3 * ‘ 7 ~T I '
| f g i
K |
| 1, OLTPUT |
. i MUX |
Y74 1
1, ol — 1
7 T ¥ g
1 o | EQUAL IITY 1 N
" [| CHECKERS
!
; outputs

Figure 2.9 Block Diagram of the Modified Four-Bit Processor Chip

L I IR et B s

PR

at

46

From the discussion on making the shifter slices Cl-testable, and as shown in Figure
2.5, we know that four different combinations of test D-inputs are necessary to make the
shifter slices Cl-testable. Therefore, the ROM should also contain four different patterns of

test D-inputs, namely, D, D, Djyand D,

During normal operation, the LI and RI inputs of each shifter slice come from neigh-
boring cells except the RI input of the first slice and the LI input of the last slice which
come from some source external to the processor array. During testing, as we mentioned
before, the connections between processor slices do not change, but now the Rl input of the
first slice and the LI input of the last slice have to come from the ROM of the tester chip
instead of from come external source. Therefore, in addition to the test patterns of /,t0 g,
A, A, B, B, D, w0 D; the ROM also contains the test patterns of the Rl input of the
first slice and the LI input of the last slice. There should be one test pattern of the Rl input
of the first slice, and one test pattern of the LI input of the last slice. If the minimum
length cycle was used to apply test patterns to the shifter slices, then three different test
patterns of the LI input of the last slice would be needed because of the consideration of
variable processor array sizes. The major function of the test patterns of the Rl input of
the first slice and the LI input of the last slice is to test the shifter. During the testing of
the other modules of the processor array, these test patterns are immaterial. Therefore, the
test pattern of the RI input of the first slice can be the same as the test pattern D , while
the test pattern of the LI input of the last slice can be the same as the test pattern D . So,
no extra test patterns of the RI input of the first slice and the LI input of the last slice are

needed.

From the previous discussion on making the ALU slices Cl-testable, and as shown in
Figure 2.6, we know that two different combinations of test D-inputs are necessaryv to

make the ALU slices Cl-testable. Since four is a muluple of two, the four different combi-

47

nations of test D-inputs that are required to make the shifter slices Cl-testable can also be
used t0 make the ALU slices Cl-testable. But if the minimum cycle of length three was
used to apply test patterns to the shifter slices, six different combinations of test D-inputs
would be necessary to make both the shifter and the ALU slices Cl-testable. The way in
which these different patterns of test D-inputs are connected to the D-input pins, the RI
input of the first slice and the LI input of the last slice of the array of four-bit processor

chips is shown in Figure 2.10.

The carry-in (CD) input of the first slice comes from an external source during normal

operation; it should come from the ROM of the tester chip during testing.

Finally, the I-input of the first equality checker slice should come from the ROM of

the tester chip instead of being tied to logic one in order to make the equality checker array

more testable.

Therefore, the width of the ROM is nineteen bits; these are: I, t0 I3 A, A, B,

B, D, D, Dy D,CLL

We now determine the number of test patterns that have to be stored in the ROM.
From the previous discussions, we know that all the modules in the processor array and the
common control and address lines can be exhaustively tested by 32 + 64 + 72 + 32 + 8 + 28

= 236 test patterns.

Two more test patterns are required to test the equality checker, while three more
test patterns are added as part of the scheme to make the tester chip able to test itself as
will be discussed in the next section. Therefore, the total number of test patterns is 241.
The size of the ROM in the tester chip is 19 bits by 241 words. The complete test set is

listed in the Appendix.

The nineteen bits output field of the tester chip features tri-state outputs. During test

mode (when the TEST input is high), these outputs of the tester chip are the same as the

) R R S TP T T TP S I U WoU Ol L S ety P WS I W WY T P

A Y

T

P

PR VR |

-

F'v—(f;v—vv AAA

«©
-

Y TR | M aad T Y g 1.4.1...!: ..\... A ﬁ.. Con ot AR IO A T T
»
,A.L
4
induj~(] 359, JO SuIa1ed WA YI(] IN04 Y1 JO suoidsuuo)) ([g 31ndi,|
...L
dlHD n__uo dIHd 1
JOSS3IV0NI J0OSSIV0A ¥OSS3D0ud
118+ 18— 118— !
a3sidiaon a3i1 31 00N astdiaon g
. &
a ol P ;
FTITEY) 4
L
sjndu s3ndu syndu LY
oyap. 030p v o R %
o V8% ¥ 100} 9 ey | | cal Ewe
19] - s — [5~
jlead ;
ia
+ - dIHD N
¥31S31]
b e e —— . ——— e ————— [U PPN " G R —— - —_ . _A
ISR — ———— - B USSP S S, -)
j
4
- 4
d
<
‘ J
{
4
N T T L . s

[
[N

T P i ————— ny St vt A ot At A Pl i Al D

49

outputs of the ROM. During normal mode (when the TEST input is low), these outputs are
in the high-impedance state. By the same token, the outputs of the microprogram sequencer
should also be tri-state. During test mode, the outputs of the tester chip should become the
inputs of the processor array. During normal mode, the outputs of the microprogram

sequencer should become the inputs of the processor array.

2.7. Self-Testable Tester Chip

The tester chip has been determined in the previous section to contain a ROM of 19
bits by 241 words. The other modules in the tester chip other than the ROM are an eight-
bit counter and a decoder for the counter. The function of the eight-bit counter is to gen-
erate the address of the ROM which is then decoded by the decoder to select a certain word
of the ROM. The counter is just a regular count-up counter. During normal operation, the
content of the counter remains at zero. Once test mode is initiated, the counter will start
counting upwards from zero until it reaches the address of the last test pattern stored in
the ROM, then the counter will stop counting and its content remains to be the address of
the last test pattern in the ROM. After the test responses have been verified, the TEST
input can be brought low (normal mode), at which time the content of the counter would

go back to zero.

A nineteen-bit parallel signature analyzer with the outputs of the ROM as its nine-
teen parallel inputs can be used to test the counter, the decoder and the ROM. Parity code
or hamming code can only detect errors in the ROM, they cannot detect faults in the
counter or the decoder, i.e., whether the test patterns are read out in the proper order or not
cannot be checked by parityv or hamming codes. But a nineteen-bit parallel signature
analyzer can determine if the test patterns are read out in the proper order and the correct-

ness of the contents of the ROM; therefore, a signature analyzer is used. The feedback

|
@

O Y N

. & e LAt

T S —— - v ——
- T e e —— " TTR——— CAM A e FaCNE A d R . A e B

Pr RS

|

e A

50

..":.‘.

-

. , oyl 7 16 15 10 9 8
polyvnomial of the signature analyvzer used i1s X PexTexPaxPaxPix’+xt+ -

X"+ 1 which is a primitive polynomial whose roots are linearly independent [Pet61].

During normal operation, the signature analyzer contains all 0’s. Once test mode is

_H-v-—f—rr_y
. e
'@
n

initiated, the signature analyzer will start shifting in the outputs of the ROM. This data

compression process will continue until the TEST input is brought low (normal mode)

RO T e
. .

again after the signature at the end of the test has been verified, at which time the contents
of the signature analyzer will go back to all 0’s. The signature can be verified by an AND

gate with the address following that of the last test pattern used in producing the signature

Kaoaaona aaa wla

t as the enable input.

e

The signature analyzer can detect most of the faults in the counter, the decoder, the

4
i
Al
1
[}
]

ROM and even itself except for the following types of fault:

(1) One or more of the outputs of the signature analyzer stuck at the logic value of the

| -

correct final signature.

T

(2) There are faults in the counter, the decoder, the ROM and/or the signature analyzer

g‘ whose effects are equivalent to the fault described in (1) above.

It is important to detect this type of fault because it is possible that some other faults

developed later in one of the modules which should result in a bad signature, but will not

-
{—' because of the existence of this type of fault.
¢
’] In order to detect this type of fault, a testing scheme which involves the monitoring
o of three separate signatures is used. The three signatures monitored (S1, S2 and S3 where
{ . S3 is the final signature as previously discussed) must satisfy the following condition:
{ ForO<i<18, S1,o0rS2 =583
!
« where the signature with the subscript i denotes the logic value of the bit at bit position i »
{ of the signatu: .

. S . . e
PP I PP UL PP, e P — - . AP e m i eme e amhm A2 ana e e n L vaia L AL

¢

51

The monitonng of three separate signatures that satisfv the above condition not only
can detect the type of fault listed above, but it can also increase the fault coverage in gen-
eral. As is known for all test response verification methods that involve data compression,
loss of fault coverage due to the compression of test responses is inherent. By monitoring
three separate signatures evenly spread throughout the test set, this loss in fault coverage

can be reduced.

Some programs in C-language have been written to determine the final signature at
the end of the test and the other two signatures to be monitored that satisfy the above con-
dition. They are found to be octal 204062, 575703 and 522055 which are the contents of
the signature analyzer right after test patterns 33, 191 and 239, respectively, have been

verified. It can be seen that they are evenly spread throughout the test set.

The circuit for monitoring the three signatures and the output of the equality checker
is shown in Figure 2.11. As previously discussed, the AND gate that is used to verify the
signature is enabled by the address following that of the test pattern used in producing the
signature. This scheme is used so that the output of the AND gate would not become logic
one unless the correct signature arrives at the right time. The outputs of the three-bit
count-up counter are connected to the output pins of the tester chip and function as an
indicator of the success of the test. The state diagram of the counter is shown in Figure
2.12. During normal mode, the output of the counter is 001. At the end of the test, a
fault-free bit-sliced processor array and tester chip is indicated by a 110 at the output of
the counter, while the presence of one or more faults in the bit-sliced processor array
and/or tester chip is indicated by any outputs of the counter other than 110. The counter
will stop counting once it reaches 111 regardless of the input. Each correct signature causes
the counter to advance one, so three correct signatures cause the counter to couat up to 100;

two more logic one outputs from the equality checker will advance the counter to 110.

mew —w_ Al aial 4 e M mmaaa PPy a - .

- o e ————p—— T T W W, T '—v"'*"*’fv*'-’-wvl
- B - ’ R - “ e <. - - -

4

WP

U Y U

Ad

.‘4 aaah v N <<. v D JJ.[*‘].Iﬂi 1‘4 4, M g - v D) ey v ~ N .. \. Canl LA \‘ T AR - (P AR
AR ‘. N ' & S - - - a ’ﬁ R ¥ ‘ - . -
A n — [l 1 .
. -
ﬁ” o inding) Jay03y)) Alppenbs;g pue saxmeudis Junioyiuopy 10§ 1ndoa) [1°¢ 21ndg ‘
b .)
- ‘ “¥3INNOD | !
1 I ¥ 1 - e _
. 7
} 1
. o ’
{ 1
r . ;
] J9%39Yyd 3
5 K3 | jonbe .

woJ; : ﬁ 1
1 _

N Rar s

2 /8 (a9pooep s (aepoaep s (48posep
4 = sesippo =0 se24ppo e 8804ppD :
] m noY jo W noy 39 m rnoY jo g
4 [ooo] ynd3no) Toeo ndyino) [oea] yndjno) |
“.. - ynduy N L, ynduy el ynduy ‘
¢ o W i RN .
1 4e2£jpup ®190Ue isezfjoup ®IQqoue a8z jouo ®190ue _
. sunjoubjs j0 einjoul)e ;o osnjoubje o :
) syndyno g4 syndyno gi syndyno gy
_\-
‘
.
F
wu .
f
-
..
#
4
s
SRR » JSUOUUON - SRR . DTS WU .. ST . WEUUE b AU s

Lo WA SNttt sl Rl S

T

“
v

11Un0)) G-3RIy, 3y Jo wesdey] ANers g 2andiy

3SIMY¥3HIO O=D

I=LlNd1N0 JIMNI3IHO ALiIVNO3
80 SAIHOLVA 3JMNLVNOIS V 4| L=D
D TVNOIS LV S3IONVAQY ¥ILNNOD

b s oo

9}03}¢€
101} juy

h it et

T,-‘- YT'in-. —— —y

.
®

el

B T

54

The counter output during normal mode is chosen to be 001 while the output at the end of
a successful test is chosen to be 110 so that the output of the counter and/or the output pins

of the tester chip can be known not to stuck at any logic values.

The tester chip is equipped with another output pin which is normally low and will
only go high when the end of the test is reached. The return to normal mode will cause
this output to go low again. Therefore, during test mode, the three-bit counter output is
not checked to determine the success of the test until this test-end indicator pin becomes

logic one.

2.8. Performance

We now discuss the performance degradation due to the incorporation of extra cir-
cuits to provide the self-testing ability. As was previously discussed, the tester chip is iso-
lated from and transparent to the processor array during normal operation. The control sig-
nals and data signals arrive at the inputs of the processor array as if the tester chip does not
exist because the outputs of the tester chip are in high-impedance state during normal mode.
The only modification within each processor chip is the addition of equality checkers to
monitor the Y outputs and multiplexers to choose between normal and test D-inputs. The
equality checkers are not in the path of any signals; therefore, they do not induce any per-
formance degradation. The only performance degradation comes from the mulitiplexers
because normal D-inputs have to go through them before arriving at the inputs of the ALU
source muitiplexer. Hence, there is very little performance degradation which is one of the

advantages of this approach.

Aadont o

PP LU e Y

- - - -~ - ~ ™ P
D s ot St el one s S0 LI or T Pl Vi A Bl Sl T a SO W A i P Aah Sl A TN TR I T TR NI TR T T "‘1

aa's 8 222 w

Ao

-

- - - v“v‘.

L A

Ty

d > - ~—T
ML ate e SRRt B AR

55

2.9. Fault Coverage

2.9.1. The Processor Array

As was previously discussed, the processor array is Cl-testable. Each combinational
module of each cell in the array is tested exhaustively based on the functional fault model.
The RAM slice of each cell is tested completely based on the memory functional fault
mode] [Nai78). Therefore, any faults confined to a single module (shifter, RAM, ALU
source multiplexer, ALU, output multiplexer) can be detected by our test set. The added
equality checkers are partially tested because they are not Cl-testable; an exhaustive test
would require a special tester chip for each array size. The added multiplexers are also par-
tially tested because their operation in normal mode cannot be tested. Therefore, the fault
coverage for the processor array is almost 100 percent. Since the test respanses are moni-

tored by equality checkers, there is no loss in fault coverage resulting from the verification

of test responses.

2.9.2. The Tester Chip

The signature analyzer can detect most of the functional faults in the ROM address
counter, the ROM address decoder, the ROM and itself. The loss in fault coverage due to

test results compression is minimized by the monitoring of three signatures instead of one.

The circuit for monitoring signatures and equality checker output is designed in such

a way, as previously discussed, that any line stuck at 1 or 0 would almost certainly be

detected.

Therefore, the fault coverage of the tester chip should be very high although no fault

simulation has been done.

o ~ EISRS V. . L. .

ey

PN)

kL

v
L

MRS A S M

P T

—~ T -~

I

~g i w - w

—TEY d Y —~—T

56

CHAPTER 3 -

PHYSICAL DESIGN OF THE TESTER CHIP

3.1. Global Description

The logic circuitry and physical layout of the tester chip are presented in this chapter.
The physical layout is implemented in a single metal layer NMOS process with lambda

equal to two microns [Mea80}.

The area of the chip, not including input/output pads, is about 9500 * 1900 square
microns. The power and ground busses are arranged as interlocking forks to avoid the

crossover of power lines.

The tester chip is made up of five modules. They are the ROM address counter, the
ROM address decoder, the ROM, the signature analyzer and the circuit for monitoring signa-
tures and equality checker output. The block diagram of the tester chip is depicted in Fig-

ure 3.1.

The tester chip has thirty-one input/output pads:
VDD, GND - Power and ground, respectively.

CLK1, CLK2 — Phase-one and phase-two clocks, respectively.

TEST — Test mode is initiated by applyving a logic one to this input and terminated

by applying a logic zero.
R,t0 Ry~ Tri-state pads of the nineteen outputs of the ROM. They are in high-
impedance state if the TEST input is low (normal mode).

EQCK - Input from the equality checker of the processor array.

™ . a, PP = AL A S al AN e am A a A .

°

. K - A

g T Y TR T AT R T '}
® OA}
57 ;
r e
- o
A
TEST —» ROM ADDRESS]
COUNTER]
(8-B1TS) o
3
Blr

ROM ADDRESS 3
. DECODER °
TEST—END x> B
INDICATOR BT]

3 - ' [}
. 1 [19 BITS X 5
241 WORDS =

ROM L

|
19 :
) 1 19,/ ®
‘ TEST
SIGNATURE VECTORS
ANALYZER

.]
38 T
SI1GNATURES AND o
EQUAL I TY o
1 > CHECKER OUTPUT :
MON I TOR .
FROM EQUALITY ¥ T
CHECKER i 5
TEST RESULTS | !
’ °
!
Figure 3.1 Block Diagram of the Tester Chip ‘

» °
L e l . ;

- T T Rt S macanc aasre S s redh e St i 2hat et B 6 DR il o b AN SN SRR PR Rl oA e

58

TEST END — A logic one at this output pin indicates that the end of the test has been

reached. In normal mode, this pin is at logic zero.

Qo Q. Q.,— The three outputs of the three-bit counter indicating the success of the

test.

The floor plan of the tester chip is depicted in Figure 3.2.

3.2. Modular Description

3.2.1. The ROM Address Counter

The outputs of the eight-bit counter are all O's when the TEST input is low. The
counter will start counting upwards as soon as the TEST input becomes high. The counter
outputs do not change in phase-one, they will only change in phase-two. The counter will
stop counting as soon as the TEST END signal from the ROM address decoder becomes logic
one. A logic zero applied to the TEST input will cause the outputs of the counter to return

to all O’s.

The eight-bit ROM address counter is formed by cascading eight one-bit counters
together in a one-dimensional ILA. Each one-bit counter cell has a count enable input E.
This input E is generated by the one-bit counter cell of the previous stage except for the
first stage. The input E ; for the first stage is given by:

E,=TEST. TEST END

The count enable signal for any stage of the counter will not be valid until the count
enable signals for all its previous stages are valid. Therefore, the count enable signal pro-

pagates like the carry signal of the ALU of the processor array we discussed earlier.

NP P P TN LAY VAT WY S S W Gy W PPN W W W ST PR W

’
Pl

w
el A

I

At

A

.

m a8 e e a & e

A A d

‘!. O v v D B oL A P g had — L - v bl v b 4 LR g e £ v
e ° ® .. - ° ° ° ° ° ° ° °
g
g
: z
g
‘<_
3 dig) 191831, Y1 Jo urpf 100l ' 2ndug
4 L
1“.
”A HOLINOM LNdINO M3IMNOIHD ALITVNDI GNY SINNLVNOIS
] L |
ﬁ ¥3ILINNOD SS3¥AAY NOM —— 1
C-——] EMN%._J\Z(JYNLVNII m_
b T 1
9 4
: WO SQMOM Ltvg X S1i18 61
v- j
3 1
, d43d0034 SS3¥adv Wod ;
Ws - .
. :
- h
4]
]
' ‘
1. |
‘. i
ﬁ. ..
. j
- - N . e N :
4 e

- —— - —— e e e e - —_—— L St aven anan e e

60

A timing simw'ation has been done on the eight-bit ROM address counter. The
minimum phase-one duration plus phase-two duration is found to be 70 nanoseconds, while
the minimum phase-one duration is 1G nanoseconds and the minimum phase-two duration
1s 20 nanoseconds. The reason for the discrepancy is that some of the operations can be
done in either phase-one or phase-two. The decision on how long a phasecne and a phase-
two duration should be used is dependent upon the operations and delays of the other

modules of the tester chip.

3.2.2. The ROM Address Decoder

The block diagram of the ROM address decoder is shown in Figure 3.3. The inputs of
the decoder are the outputs and the complements of the outputs of the ROM address
counter. These input lines run vertically through all the cells of the ROM address decoder.
The ROM address decoder consists of 241 decoder cells. Each decoder cell is basically a NOR
gate because it takes less area and is much faster than a corresponding AND gate (much
larger pull-up for an eight-input AND gate). The outputs of the decoder are the word
select lines of the ROM. Only one of the output lines can be at logic one at anv time for a

valid input.

Since the inputs of the decoder are iong metal and polvsilicon (polvsilicon at the
inputs of NOR gates, metal otherwise) lines that run verticallv through all 241 decoder
cells, there is a long delay before these lines are charged up or discharged to the proper vol-
tages by the outputs of the address counter. This means that the outputs of the ROM
address decoder wouid not be valid untl after a long delay. Therefore. the following steps

have been taken 0 minimize this delav:

(1} The outputs of the ROM address counter drive larger transistors at the inputs of the

ROM address decoder: these larger transistors can in turn drive the long metai and

"

| -

A P A LN SN S S A h T A P - s A

AR A e o a o a2 a2 Ao - S — 1
61

|)
4
e - . j‘
gégpgggdcounter ;;;1
- 16y "-.' ':
INPUT DRIVERS]
phase—1 ﬂ
; 16/ o
DECODER CELL O S
DECODER CELL 1 > .

l o o ®
° o connect]
° o to word S
D | o o select ‘J
o o lines of]
o o ROM j
. . f ®
t 4
DECODER CELL 240 p]
1 e} . *
phase—2 1

PRECHARGE DRIVERS

' [
Figure 3.3 Block Diagram of the ROM Address Decoder 7

' °

T T T W oy et
"~y :

MR St an an o8 s 4

-~

-

e 2 SRR e e o

(it i

e

62

polvsilicon lines faster.

(2) All the input lines of the address decocer are precharged to logic one during phase-
two (even for input lines that are normally complements of each other), so that all
the outputs of the address decoder, which are word select lines of the ROM, would go
to logic zero. Therefore, during phase-two, none of the words of the ROM are
selected. During phase-one, half of the input lines of the ROM address decoder
would be discharged, resulting in the selection of one word of the ROM. This
precharge scheme provides speedup because pull-down is faster than pull-up. The

other advantages of this precharge scheme are discussed in the next section.

Timing simulation has been done on the decoder and the ROM; the results are

presented in the next section.

3.2.3. The ROM

The block diagram of the ROM is shown in Figure 3.4. The size of the ROM is 19 bits
by 241 words. The inputs of the ROM are its word select lines which are the outputs of
the ROM address decoder. Therefore, the ROM has 241 inputs. The ROM consists of 19 *
241 = 4579 memory elements. Each memory element is quite small and two neighboring
elements share the same power bus and ground bus as shown in Figure 3.5. Each word
select line runs horizontally through the nineteen memory cells that make up each word.
The power bus. ground bus and bit lines all run vertically through all 241 words of the

ROM. The nineteen bit lines are connected to output buffers.

Since the bit lines are long metal lines that run vertically through all 241 words, it
takes a long time in order to charge them up to the proper voltage. In order to reduce this

charge-up time, the bit lines are precharged during phase-two.

VT TR T T W TV Y TN Ty v T e

AT S Al |

L

U P L L S Y tatal

P

I

O
S A A

et alhnaii

A A4 A

e m e A

t-‘ R T N s W L T, TR, e 0 T, W W oW SR LS AP AR ARE A=A S Al T
‘ Cp
: 63)
; q
L .
'
I - o
b 19 L
N o
N .
, pre— pre—
‘ phase—2 charge o charge ®
b driver driver
word memory memory N
{ select ! emen ¢ I emen ®
line]
it | llne bit | tine i
o o l
} =] o 1
; [‘ o o * a
| ° : |
o e N 1
» <
o o - 1
. o o L4 1
o o 1
! 1
[#] o]
! \L -
b word memory . memory l —_‘
select { emen § lement 3
{ine r L /
output ° output L
L phaose~1 buffer buffer
i
¥ ¥
. 1
Figure 3.4 Block Diagram of the ROM B
®

VS

PR

P |

Lol i O o _am aofe avem a0

I A B8 A Ian v A s aec)

Ty
.

| ASMCMRCR O Wp—p—— g ” - - ——Y v —p on o SN anareas v AR I are A2 Al o L d v VT “ —— (NG v v v—v > vy
-

SIUAWS[T] AW §'g 21ndiyg

64

uMOYys 3}Oou 34D

19mod 40 punoub 3D suo|3}doduuod sy} :ajou

BIT LINE
POWER BUS
GROUND BUS
BIT LINE

L
T

Hr

ANIT 10313S aiom

 (

w—rw b Yt s s e bl ol i N ol
AR ve i on AR Shin i ~hvite il Sl - e RS Sl S Rl el - <. . P .

65

During phase-two, the bit lines are precharged and isolated from the output buffers.
This is required so that the outputs of these buffers do not change in phase-two because
they have to drive the signature analyzer and the processor array. In order for all the bit
lines to be properly precharged, none of the words should be selected during phase-two;
therefore, as discussed in the previous section, all the input lines of the ROM address
decoder are precharged during phase-two so that all its output lines, which are the word

select lines of the ROM, are at logic zero.

During phase-one, a word is selected which results in some of the bit lines being

discharged. The bit lines are connected to the output buffers in phase-one.

A timing simulation has been done on the decoder and the ROM. The minimum
phase-two duration, which is the time required for the input lines of the decoder to be
precharged and the bit lines of the ROM to be at least partially precharged after all the
word select lines have been discharged, is found to be 55 nanoseconds. The minimum
phase-one duration, which is the time required for the bit lines and the output buffers to be
properly charged or discharged after one of the word select lines becomes logic one, is found

1o be 150 nanoseconds.

3.2.4. The Signature Analyzer

The signature analyzer has nineteen inputs which are outputs of the ROM buffers. Its
thirty-eight outputs form the signature and its complement. During normal mode, the out-
puts of the signature analyzer are all 0’s and the inputs have no effect on the outputs. Dur-
ing test mode, the inputs are compressed to form signatures. The outputs do not change in
phase-two, they change only in phase-one. The inputs have to be stable during phase-two
when they are monitored. From the previous section, the outputs of the ROM buffers are

known to be stable during phase-two.

.. ‘., e
. . AT
'l'yl
._-,.A,A‘.).l

®
A sd

LIPS P

’ L
.
I SR A T S STy oy

. * e .. v
ool S
s
Py . .
. r e e,

Iy

\ g

PPy
a

66

A timing simulation has been done on the signature analyzer. The minimum phase-
one plus phase-two duration is found to be 180 nanoseconds, while the minimum phase-one
duration is S nanoseconds and the minimum phase-two duration is 80 nanoseconds. The
reason is again that some operations can be performed in either phase-one or phase-two.
The decision on how long a phase-one and a phase-two duration should be used is again

dependent upon the operations and delays of the other module of the tester chip.

3.2.5. The Circuit for Monitoring Signatures and Equality Checker Qutput

The circuit for monitoring the three signatures and the equality checker output is
shown in Figure 2.11. The three signatures are monitored by three twenty inputs NOR
gates. The reason for using NOR gates instead of AND gates here is the same as that for
using NOR gates in the ROM address decoder. The nineteen inputs 1o each NOR gate are the
regular outputs or their complements of the signature analyzer. The other input is an out-
put of the ROM address decoder which functions as an enable input of the NOR gate, as

explained in Chapter 2.

The three-bit counter is made up of three one-bit counters cascaded in a one-
dimensional ILA similar to the ROM address counter. The count enable input for the first
stage of the counter E, is given by:

E,=(output of OR gate) . 05-0,.0,
where Q,, O, and Q , are the outputs of the three-bit counter.

Since the input lines of the ROM address decoder are precharged during phase-two,
the outputs of the NOR gates for monitoring the signatures are not valid during phase-two.

The outputs of the three-bit counter do not change in phase-one, they change only in

phase-two.

LA A A o "y AU i aenn omacaseL su o e

e

T
! —— T LY, >~ - EArid -
CalE- aiat Sreg ane mat g A SRR T - A3 g LY e K . .o . -

67

A timing simulation has been done on this circuit. The minimum phase-one duration

is found to be 95 nanoseconds while the minimum phase-two duration is 30 nanoseconds.

3.3. Timing

The overall minimum phase-one and phase-two durations of the tester chip are now

determined.

During phase-two, the outputs of the ROM address counter change, but they are iso-
lated from the ROM address decoder because the input lines of the ROM address decoder are
being precharged during this phase. The bit lines of the ROM are also precharged and are
isolated from the output buffers in phase-two. The outputs of the ROM buffers, being
stable during phase-two, are shifted into the signature analyzer. Therefore, the minimum
phase-two duration of the tester chip is just the largest of the minimum phase-two dura-

tions of all the modules, which is 80 nanoseconds.

During phase-one, the ROM address counter outputs are connected to the ROM address
decoder. Half of the input lines of the ROM address decoder are discharged which results
in the selection of a word of the ROM. The bit lines and output buffers are then charged or
discharged to the proper voltages. The signature analyzer outputs and the equality checker
output are verified during this phase. Therefore, the minimum phase-one duration of the

tester chip is just the minimum phase-one duration of the decoder and the ROM, which is

150 nanoseconds.

3.4. Built-In-Test Area Overhead

Since the tester chip can test a processor array of any size and also itself, the percen-
tage of area overhead decreases as the size of the processor array increases. The additional

circuitry on each bit-sliced processor chip is just the equality checkers and the four two-to-

AP R s I A N S S S ; e a i ac oA A are m

i

S a

-r T ;0 Jhndl Shase Bens Biads T T e YT YL T LTy e T -
(MR 000 2o o den Mt e e /Ol 0 N 4 0 A M SRS N SR TS T T TR

‘
I
e ad

‘
PR

68

one multiplexers; therefore, the major area overhead is the tester chip. The tester chip has
. thirty-one input/output pins which is about the same as that of a four-bit processor chip.
Therefore, for a sixteen-bit processor array, the area overhead is just over twenty percent;

for a thirty-two bit processor array, the area overhead is just over eleven percent.

CHRL A Jae sl E .
o
aad A

f

v

(®
(|
= 4
. -
- R
T
(®
d 1
f 4
)
o
9
_ 4

2

‘r —
b
3
]
'C
-
:
q - . 4
_1
- o

69

CHAPTER 4

CONCLUDING REM ARKS

This thesis presents an approach to designing self-testing bit-sliced processor arrays.
The conventional approach of making each bit-sliced processor chip self-testing is not used.
A new approach of using an extra chip (tester chip) which can test a bit-sliced processor
array of any size and itself is used. As the VLSI technology improves, it will be possible to

integrate the tester in the same chip as the processor.

There is very little performance degradation due to the incorporation of extra circuits
to provide the self-testing ability. The fault coverage of the bit-sliced processor array is
almost 100 percent of the assumed faults with all the interconnections between chips
tested. The fault model is a functional fault model and assumes that any single module of
any one-bit slice can be faulty. The fault coverage of the tester chip itself is also very
high. The area overhead is small especially for large processor arrays. The test length

(time) is short so tests can be performed more frequently.

Although the approach developed is based on our processor slice which is similar to
the commercially available AMD2901, it can be easily extended to any other types of pro-

cessor slice.

The approach developed in this research can be extended to other types of one- or
two-dimensional iterative logic arrays. Non C-testable and non I-testable ILA’s can be made
Cl-testable by modifying the basic cell and/or designing special test sets. A possible appli-

cation of this approach is the designing of a self-testing bit-sliced microprogram sequencer.

.
’

[RPN

|

R

. '
.]
A
an'aaa a’a'a e

=

S,
4

- - . B . . . T . ~ ~ . - . - " X
P PN SA N Ul S L PRSI S US ORI U0 SRR JOUE DTSRRI LS ST S L L S 4SSt i MM—.-LJ&]

wor

70

APPENDIX

TEST PATTERNS

Table A.1 Test Patterns for the RAM

I

1,1, I,1,1,1,1, AjA, ByB, 1,1,D,D,D,D,Cl

[=NeRoleBololoRolo ool
COOCOOO0OOOO0OOCO

QO COOOCOCOOOOO0O0C0O
[eNeRoNeNoNeoNoNoBoNoNole o Nl
[eNeNoNoloNeloloNoNoNoloNo Nl
CCOOCOOCOQOCOOOCO
COQOOCOOOOOCOOOO
e e et O OO e e
OCrmMO OO O =00 O
COMmMrm OO mmemOOOC—
OO O ™mOmO =00 =0
CO OO mm~O OO0~
[=NeloNeNeoNoNeNoloNolNoNoNeNal
oNeoRoRoloNoNoNoNoNeNoNoNoNeo)
QO OO Mt ==~ OO
OO OO v v rt vt v vl v v

L B IR o B B B R B e R aa i B B B]

M- C OO QCOQOOOCO

HEE OO QO OO0 O0OOCOOOO0OOOO0OOOCOO0O0COOUOO0O0OOCO

oNeNoNoNeNoNeNeNoNoloNololeNo ool =)
=NeRoRoNoNoRoNoNoNeoolojoRoloNeRo N o)

QOO O COOOOOOOCOOOOC
COO0ODOO0OO0OOOOOCOO0OOO0
COQCOOOO0OOO0OCOOoCCOOO0 -4
[eNeoReoNeoNeoNoNoNaNoNololeloNoNoNoNoNo) Fd
CO000O00COO0OQPOOO0OO0 D
O OO ™Mmm OO0 ™ wm=mOOO |
O MO MO RNO MO O mO O — -
At OO M T OOCOC ™t O OO ™mwm™
O MmO MmO m OO OO O w—
AP OO M OOO = OOO m™w)
COC OO0 OCOOOCOCOoOCOC0_
eNeNoNoNoNoNoleNolololoNoNoloNoRoNal u
COQO M rm e ~O0O0O00O00C0 0 v
e .

L

P et v v e v v e P vt v v vt e v e v vt U
e

{

L

eReRelojofoooloolelcRe ool Rol =

vy, b B i aahuy aut L BNERS 4 raerns SNM at aah o s v Py 111 4:..
A e .
) ’ .) .
oo _o . ™Y ® ® ° ° ° o °
Y Lt il R
»
'
'
'
'
'
r
N~
3
)
13
;
_\ -
. ~
'
.
. Lan)
) [eReReNeRoRaNoNoNoNoRoloNoNoNeNel=Nalooieoj=leleiie) [-EoNoN=NoNoNoNoNoNoNoNoNaNoNojoealle o) [eNeoNeN+NoloNeNoloieeNae)
' [eX-X=J-X=-N-N-N-Nol-N=NoN-NoNeNeNoReloNeloloNaoRe kel [e¥eR-NololloNoNeNeNoNoRoNoRolloNoN oo Nal COOOO0O0O000OCO0OC
i
v 00O~ =00~ =00 == OO0 —"=000 00 === =~0000 00 ===Q—==0 =~ -t D) vt D o
y
i
¢ COmmO0O00000 ==~ O==000000 =~~~ ="~00C =00 ~00O~ =0 = —~O =0 = O
[
. Mt O 00000 Mttt OO =OOOOQO ===t OO ~—mOO0=00QO=O = m =~ o N o R
I
m. OO OO Hm et = OO =" QOOOO MmO m = =OO===0O="0000 Q= =—=0—=0 O - O o~ -
b O MO PO A O RO mOmMOmMO~MO—"O =m0 ~0="0="OmO=0=0=0~0~0=~0—~0~0 OO =0 =0 =O=0=0
! .t O RO RO MO O —"O0 O "0 =m0 mOmO OO~ =~0—~0="0=0=0=0~0—~0—~0—~0 OO =0 ===~
3
COO0OCOOOOCOVLOOOOOOOOOOOO0OQ [~ReNoRoNoNoNoNoNoNaNoNoNoNaRelegolaleNele] [eNoNeNoNoRoRelolaleNoojo]
¥
[eR=RoNoReReloNoNoNoNoNoll=Nol-NoNeol~RoRloNoloNole o] [=NeNeoN-NoRoNoNRalleNeRoNoNoReRoNoja ool COO0OO00OQOOQOOOO0O

Table A.2 Test Patterns for the Shifter

e e T T e

Io1,1,1,1,1,1,A,A,ByB,1,1,D, D,D,D,Cl

WP, Y0

P

P WA T ST T S

b L SV

E

I T T R iadi e T e L At At SR U R B S e R R R ey
1] . .
. . . .

o - .
. o]

I

1

1
1
1
1
1
1
1
1

0O 0 0 00 0 0 00
1

0 0 O
1

60 0 06 0 00 0 00O
1

0 0 0
1
0 6 0 0 0 0 0 0O
1
1
0O 0 0 0 0 0 6 00O
0 0 0 1 1
1
6 0 0 0 0 0 0 00
1
1
0 0 0 0 0 0 0 00
0 0 0 1 1
1
0 06 0 0 0 0 0 00O
1
1
0O 0 0 0 0 0 0 00O
1

0O 0 O
1
1 0 0 O
0 0 0O
1
1 0 0 O

1
0 0 6 0 0 0 0 0 0 00O
1

0O 6 0 0 O
1
1

0 0 6 00 00 0 0O 0 O O0O00O0

0O 0 0 0 0 00 0 0 O
0
0

1
1

1
0 0 0 0 006 0 0 0 00O
0 0 0 0 0 1

1
1
1
1
0 0 0 O

0 0 0 0 O

1
1
1
1
1
1

1
0O 0 0 0 0 0 0 0 0 00O
1

0O 0 0 0 O

1
1

1
0 6 0 0 0 0 00 O 00O
1

0O 0 0 0 O

0
0
0
0

1
1
1
1
1
1
1
1

¢ 0 0 O
0 0 0 0 O

0 0 0 0 000 0 0 0 0 0 00O
0O 0 0 0 0 0 0 0 O

1

0 0
0 0 O
0 0
0 0 O

1

0 0
0 0
0 0O
0 0
0 0 0 0 O
0 0 0 0 O
0 0O
0 0
0 0
0 0 0 0 O
0 0
0 0

0 0
6 0 06 000 0 0 0 0 0 0 0 O00O0

0 0 0 0 O
0O 0 6 0 0 0 0 0 O
1 0
0
1
0O 0 O
1

1
1
1
1
1

6 0 06 00 0600 0 0 0 0 00 00
0O 06 0 0 0 0 0 0 0 0

1

1

1

1
0 0 0 O

1
1
0O 0 0 O
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1
1

Table A.3 Test Patterns for the ALU Source Multiplexer

1
1
0
0
0
0
0
0
0
0
0O 0 0
1
0
0
0
0
0
0
0
0

0 0 0
0 1
0 0
0 0
0
1
1
1
1
1
1
1

lo1,1,1,1,151,AqA,ByB,1,14D,D,D,D,Cl
0 0

0 0 0 0
0 0 O

0 0 0
0 0
0 o
0 1
0 1
0 1
0 1
1
1
1
1
0 0O

0O 0 O
0O 0 0

COQOQO v~

1
1
1
1
1
1
1
1
1
1
1
1
1
1

—an ez s

- —————

73

\d

v

————

Table A.4 Test Patterns for the ALU

—r— vy Pt 7y + - ———- —r MR R P v v v m —e— r- |.. ,‘za' .(J
—
00
G 0.[0I.OIOIO]OlD.IOIOIOlOIO!.O]O10101010]0.!010001.\-1000\‘10001llllooooo.l.llooo.l.l
<
D 001100000001100000000!0101
-
D 0011001000000001100000001010
~
D 00110000000110000000010101
-
D 00110010000000011000000010]0
%0
~ 00|.I»Olooooooo1.0100000001011.0
-
~ 001101000000010]000000010.!1.0
-
B o000.l.llllloooooo.l.l]locoooo-l.l'.l-l
[=}
q OO m OO mMOOmm OO =" QO QO= =00~ m0O0=m—~00 "~ 00O mO Nt =t OQ =D e 0= GO ==
-
A 00000000000000000O000O00
[=}
A et At OO O0C A=~ mCOOD mr = mOOOO = mODOOO i mOOOO =m0 ~mOO ~mmma= =0 mOO0 =~ e = QO =m0~~~
o
~ 000000000000900000000000000000000000000000000000900000000000000000090000
v
~ 00
<
~ 0000000011]1‘1]1000000001[|.|.|.|..l|.ll..l.ll111000090100001111\1101000000000.100
-
~ CO00CO000000O000CO0mmMMmemmmem o A mm et =m 000000 ~0~O0~O00000 00 =0 e memtn ==
~
~ et o 1 ot o e o ot it At A M e = O00000C000000000O0 MO ~0000000 "0 ~O0O000CDO0O~00 ~
~ 00000000000000OO0000000000OO000O0000000000000010ODOOOOOOOOOOOOOOOOOOOIOO
-I‘O 0011111000000111100000011ll.l

P

4 o A

TYPIL WS WL W

74

| - B
= SO DOOOo OO0 - cNeoNeNoNoloNoloBoloRoloBaloloNolelo oo Baola ol e AR
4
G ODOCOO OO0 G [oNeNoNoNoNoNoNoNoloNeNolololeloloBoleNojo o e lolo ol e Ne)
< <
Q O C S e O 9 Q O OO~ OO0 mOC O CCSCOOCTCOO T m—m—
« - J
m D3 OO OO 5 Q OO0~ OmMOO—~OmCOmOCoOCCROOCCOC
R ~ Z ~
o Q QOO —mO — 3 Q QM O~ OO OO0~ rmr OO0 C —CO -
- [=
- — - -
2 Q SO =m0 m Q QOO MO mrmODO~O000CCCOOCCODOOCCOoOooCcCecC
< o
S ~ oo~~~ a Ix 0000000000 —OmO RS OO COC —~0O —~C
Q. Q
-
ﬁuu - |lcococcococo m ~ [locococococoocococo~0o~0o-mc w000 COCTO~C
Q -
& xQ coocococoo O q MO O OO m v O vt 1 vt vt vt A Ot O v et e
= g
b=
° Q mmOO~—moO < q |[m~~o0~0~~~~~rcocoocccCmmmOomocOoCOC
-~)
7] Qo —
m < DO OODOOO .M.. < HF OO OO0 CCCC OO ~0OCOC
Y
=
=3
-
I3
2 floocoocooccoc A - |[ocoocococoocococococo~~coocooc00ocOoCCT SO
= 2
" - |looooccooco & ~ |lococccococococorro0ocOoCcCcOoOOCOCOCOO
@ < o) <
L ~ LB B o B B IR A. ~ OOt~ O~ OO~ O C OO e~ — O
£
Tnm 13 v e et et m 13 — e et O vt DO v e v vt e et D0 OO v v v e e
~ flooococococo = - o~ r0cOo00 RO RS R R C O R~ OO S~ O~
11 e e e .I.... O OO0~ m OO =000 C 0 —C
10 — e e e e e .IO O e O v e vt v et et e = = OO0 OO e

EY

[Agr78]

[AMD76]

[Pun§2]

(Fores]

(Fri73]

(Kau67]

[Kon79]

[McCB1]

[Mea80]

[Nai178]

[Par81]

[Petol]

(Smigo!

75

REFERENCES

V. D. Agrawal, "When to Use Random Testing," /EEE Transactions on
Computers, vol. C-27, pp. 1054-1055, November 1978.

Advanced Micro Devices, Am2900 Bipolar Microprocessor Family, Sun-
nyvale, CA, 1976.

P. Banerje and J. A. Abraham, "Fault Characterization of VLSI MOS Cir-
cutts,” Proc. IEEE Int. Conf. on Circuits and Computers JCCC '82', pp.
564-568, September - October 1982.

R. E. Forbes et al, "A Self-Diagnosable Computer,” Proc. FJCC, pp. 1073-
1086, 1965.

A. D. Friedman, "Easily Testable Iterative Systems,” / EEE Transactions on
Computers, vol. C-22, pp. 1061-1064, December 1973.

W. H. Kautz, "Testing for Faults in Cellular Logic Arrays," Proc. 8th Symp.
on Switching Automata T heory, pp. 161-174, 1967.

B. Konemann et al., "Built-In Logic Block Observation Techniques,” Dig.
1979 Test Con f., Cherry Hill, NJ, pp. 37-41, 1979.

E. J. McCluskey and S. B. Nesbat, "Design for Autonomous Test," /EEE
Transactions on Computers, vol. C-30, pp. 866-875, November 1981.

C. Mead and L. Conway, Introduction to VLSI Systems, Reading, MA:
Addison-Wesley, 1980.

K. Nair, S. M. Thatte and J. A. Abraham, "Efficient Algorithms for Testing
Semiconductor Random-Access Memories,” I/ EEE Transactions on Comput-
ers, vol. C-27, pp. 572-576, June 1978.

R. Parthasarathy and S. M. Reddy, "A Testable Design of Iterative Logic
Arravs,” IEEF Transactions on Computers. vol. C-30, pp. 833-841,
November 1981,

W. W. Peterson, Error-Correcting Codes, Cambridge, MA: The M.LT. Press.
1961.

J. K. Smith, "Measures of the Effectiveness of Fault Signature Analvsis,”
TEEF Transactions on Computers. vol. C-29, pp. 510-514, June 1980.

PP

A

alhoadban.

Aa s aaa

ad Y
A . -

(€

— Y

{Sri81]

[Sri81]

[Sri82]

{Tha77]

[Wak 78]

[wWil82]

76

T. Sridhar and J. P. Haves. "A Functional Approach to Testing Bit-Sliced
Microprocessors,” /EEE Transactions on Computers. vol. C-30, pp. 563-
571, August 1981.

T. Sridhar and J. P. Hayes, "Design of Easily Testable Bit-Sliced Systems,"
1 EEE Transactions on Computers, vol. C-30, pp. 842-854, November 1981.

T. Sridhar, D. S. Ho, T. J. Powell and S. M. Thatte, "Analysis and Simulation
of Parallel Signature Analyzers,” Proc. [EEE Irut. Test Conf. November
1982.

S. M. Thatte, "Fault Diagnosis of Semiconductor Random-Access Memories,"
Coordinated Science Laboratory, University of Illinois, Urbana, Rep. R-769,
May 1977.

J. Wakerly, Error-Detecting Codes, Sel f-Checking Circuits and Applica-
tions, New York: North-Holland, 1978.

T. W. Williams and K. P. Parker, "Design for Testabilitv - A Survey,”
IEEE Transactions on Computers, vol. C-31, pp. 2-15, January 1982.

T T

f
R

g T w T W W - T F WL S =TT R .

S S A S 2 AT Y eV T,

(<

VDR W W W)

rat
O

2—-85

DTIC

