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Abst ract

All the available freedom in selecting the closed-loop Jordan block

structure associated with deadbeat controllers is described and the parameters

associated with this freedom are characterized. It is shown that in general

one has freedom in selecting the Jordan block structure as well as the

eigenvectors of deadbeat controllers. Although in general the feedback matrix

is a nonlinear function of the eigenvectors that are assigned it is shown that

for one important Jordan block structure the deadbeat controller feedback

matrix is a linear function of the parameters of the system. The feedback

matrix of minimum norm is then calculated for this special case.
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1. Introduction

In this paper we will examine the problem of deadbeat control. This

problem involves the return to the origin of an arbitrary initial state , ofI

the linear discrete time system

Xn + I=An + nu(1

in as few steps as possible. It has been shown in [1,2] that the solution is

achieved with linear, time-invariant, state feedback and the resulting

closed-loop matrix is nilpotent. It was suggested in [1 that one possible

structure of the closed-loop system has m Jordan blocks of dimensions

* J the controllability indices, and all subsequent work in this

area has taken this to be an inviolable fact. It is shown here that when the

controllability indexes are not all identical there is considerably more
S

freedom in the selection of the closed-loop Jordan block structure for the

deadbeat control problem, beyond merely selecting the closed-loop

eigenvectors. The results of [5,6] are applied to the analysis of the

relationship between the feedback matrix that produces deadbeat control and

the possible closed-loop eigenvectors. In general there is a nonlinear

relationship between the feedback matrix and the parameters associated with
-4

the assignable eigenvectors. However, it is shown that when the dimensions of

the Jordan blocks are selected to be the controllability indexes, the feedback

matrix is a linear function of the parameters describing the freedom in

selecting the closed-loop eigenvectors. Some applications are discussed and

an example is presented to illustrate the results.
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2. Background and Notation

The notation will follow that of 131 and [41. Specifically, for the

linear map M, we denote the image of the subspace spanned by the columns of M

as Im(M), the dimension of Im(M) by dim(Im(M)), the nullspace by ker(M) and

the Frobenius norm of M as

F= j )1/2

The space of polynomials with coefficients in the field Rm is denoted by

pm( A I and the set of integers (1,2,..., k) by k

The discrete time system is modelled by (1) with A i R rem, B Rnn and

the pair (A,B) is assumed controllable. The controllability indexes will be

assumed to be ordered so that

The associated free generators for ker [A- A I,B] given by z (A), pnA[l].

are of degree f i

where

z ( =(

and deg [si A A

All results will be given in terms of this set (arbitrary) of [z ,i mI. If

then it follows from the results of [1,21 that one solution to the deadbeat

control problem satisfies

-3-
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FV=W (2)

where V= [v ... 1 v"'

a ' "', I)3.(j ..~ 1 0

IA A -3=' A-U A ;,
The closed-loop system (A+BF) then satisfies A

(A+BF) v i ,j v i, j- V.

One can "link" these eigenvector chains together to form longer chains. For 0

example, if w. were replaced in (4) by W_ + u/ then1)I , III ¢ t +l

(A+BF) satisfies'
~V. V i

i.e. the eigenvector chains of length Aands. have been "linked" to form a

chain of length f 7 + . " This corresponds to the construction of the 0

polynomial

to generate a controllability subspace of dimension E [7,lemma 2] The key

observation to note is that eigenvector chains can be "linked" by adding

linear combinations of the columns of the j. to theI j t4;41

columns of W in (2). This idea will be developed further.

3. Discussion

3.1 Eigenstructure Constraints of Deadbeat Control _

The key observations to understanding deadbeat control are that the

closed-loop system matrix must be nilpotent and the longest closed-loop I
eigenvector chains must be of length at most . The first observation is 5

well known [1,2J. However, in 11,2J and most subsequent work on deadbeat

control, it has been assumed that the elgenvector chains must have the lengths

-4- 4
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as determined by the controllability indexes, the degrees of the z (A ).

Now it is clear that the number of steps required to achieve a deadbeat

response is determined by the length of the longest eigenvector chain (or

chains) and none other. Thus there is in fact no reason to impose any special

structural constraints on the eigenvector chains other than the longest chain

or chains be of length . From the discussions in [1,41 it follows that

this length constraint represents a min-max relationship; the smallest

possible length of the longest eigenvector chain of a deadbeat controlled

system is given by f,

The other constraint that one need be concerned about is that the

closed-loop set of generalized eigenvectors be linearly independent. This

merely involves using a linearly independent combination, of the colutmns of V

in (L ). In terms of the set L 5(A, ic Al ,a Linearly independent

combination of the coefficients must be used to determine the feedback matrix

F. This mathematical constraint is fairly simple to comply with.

In summary, a deadbeat controller must comply with two major constraints.

The feedback matrix must of course make the closed-loop system nilpotent but

it must also

(1) assign generalized eigenvector chains of length at most

(2) assign a set of linearly independent generalized elgenvectors

Any choice of eigenstructure that complies with these two requirements is

in fact acceptable for deadbeat control. The set of all deadbeat controllers

can then be characterized by examining all possible eigenstructures and the

class of all feedback matrices that assign them, using the results of (5,6,71.

One can thus select the lengths of the eigenvector chains as well as the

eigenvectors comprising the chains. We also note that the structural

information about the polynomial set Z.,;ECj in (4,101 is useful in

* -5-



understanding the available freedon in selecting deadbeat controllers.

3.2 Parameterization of Deadbeat Controllers

The selection of a deadbeat controller involves both the choice of

eigenstructure or eigenvector chain lengths as well as a choice of the

generalized eigenvectors themselves. Let us first examine the freedon

associated with the selection of the eigenvectors for the simplest case where

4the lengths of the chains are the same as the controllability indexes. In

this case, it was shown in [81 that the set of all controllers that assigns

chains of these canonical lengths can almost always be described through
* 5 - . z;-I)1 -

parameters. An alternate proof of this result is included in the statement of

the following results:

Proposition I

Given [ Z.(,-A) 16. /n) a set of free generators of Ker [A- f 3 ] then

1) any other set of free generators T c- can be uniquely

written as

where '3_3

00P L

2) There are S free parameters associated with the coefficients of the

*0) that parameterize the choice for F ; £2.)

L 3) The coefficients of each of the S(A) can be assigned to the closed-loop

system as an eigenvector chain with eigenvalue 0. The entire set of

eigenvector chains results in an eigenstructure that produces deadbeat

response.

Proof:

.- 6-



1) This result is stated for completeness and is found in 14, Prop. 1).

2) This result is based on the observation that if the length of the

elgenvector chains is given by the controllability indexes, then the S

feedback matrix that assigns the coefficients of the 5. (2) as

eigenvector chains is invariant for all X ' Z. is changed to

+i

where

This result is shown in the appendix. Thus, the total number of

coefficients of the x ( ) that will affect the feedback matrix isgJ

given by

3) The first part of this result follows from [7, Prop. 11. Since the

chains have lengths given by the controllability indexes, the closed-loop

. system has a valid deadbeat control eigenstructure. [

Note that the freedom in selecting the coefficients of the t,< is directly

related to the freedom in selecting the generalized eigenvectors once the

chain lengths have been specified.

One is of course not restricted to eigenvector chains of lengths given by

the tit Consider a general polynomial •
A

A

where none of the coefficients of 5.C ) are zero. It was shown that the

-7-



space spanned by the coefficients of S. is in fact a controllability

subspace and one can select the dimension of this space or the degree of

according to the results of [4, Thm 11. These coefficients can also be

assigned as a closed-loop eigenvector chain which thus spans a controllability

subspace. But, in the selection of deadbeat controllers, one need not assign

only eigenvector chains that span controllability subspaces. In general, for

deadbeat control, one can assign eigenvector chains of virtually any length

from I to t, provided the two constraints described earlier are met. This is

summarized by the following result:

Proposition 2:

Given Z and Z ) the lengths of the eigenvector chains

that can be formed to be compatible with deadbeat control is given by

where U-- ,n) ( ;' P-I)) )
Nnz i n iifl-7

Furthermore, all the chains except those of lengths C p 4. )P can be formed

in two distinct configurations.

Proof:

Let

~Z 4o< A 7--t

Then, from the previous discussion the coefficients of S form an eigenvector

chain of length k + . To be compatible with constraint 2 one must have a

total of + generalized eigenvectors generated from the coefficients of

S Thus a complementary chain of length /A- must be

assigned to the closed loop system using the first Lk.-k coefficients

of S (A) . The feedback matrix that asssigns these two chains satisfies

-
-8-



where (, ) is a vector of appropriate length with zeros everywhere except

I

the (l element which is 1.
A

The two distinct configurations result from the formation of either Z , or

z/

These two configurations result from linking the chains in different orders.

The maximum chain length is a result of constraint 1. E1

The two configurations in Prop. 2 are distinct in that each configuration has

a parameter not referred to in Prop.1. These parameters are associated with

the selection of the chain lengths.

One can form eigenvector chains in a more general way than indicated in

Prop. 2. Given d, the desired length of an eigenvector chain, one can form

and assign the related generalized eigenvectors. This can be done provided

that none of the coefficients of S are 0 which is assured if for some subset

U of the controllability indexes one has [41

and constraint 2 is met for the entire set of assigned generalized

eigenvectors. This latter requirement might necessitate assigning one or more

eigenvector chains of length less than/ . Therefore, the allowable lengths

of eigenvector chains compatible with deadbeat control are given by the

following result:

Proposition 3:

Given the controllability indexes f f ) g C _)

the allowable lengths of eigenvector chains compatible with deadbeat control

are: /A).,.) /A,

--,

.• . ... _-. : : ..



Proof:

Follows directly from the previous discussion and [4, Thm, 11 or [3, Thm,

Note especially that even the number of eigenvector chains can be adjusted

within a range. Because there are at most m polynomials that span

ker [ / -7Z , 3] the maximum number of chains is m. One can of course

always construct one eigenvector chain of length n provided the system is

controllable but for deadbeat control the smallest number of chains possible

is given by k+l where

n 1= )R P3 , fjYf

and k and j are integers

The total number of free parameters is a function of the number and

dimension of the Jordan blocks or eigenvector chains. A naive calculaton can

be performed given the chain lengths to show that the number

of free parameters is

The term ( + I ) represents the total number of coefficients of "

while the -1 takes into account the reduncancy associated with multiplying

each polynomial by a nonzero scale factor. This scale factor clearly has no

affect on the calculation of the feedback matrix. A discussion of the number

of redundant parameters will be deferred to a later date.

3.3 Minimum Norm Deadbeat Control

Consider now the problem of minimizing the Frobenius norm of the deadbeat

controller. The problem is of course dependent on the Jordan block structure

that is selected. The feedback matrix that produces deadbeat control can be

determined from the following:

-10-
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Proposition 4:

Let V, W and be defined as in section (2) and let J be defined as

-/ J "' - C._

o -.- o

with each J. having l's on the first super diagonal and zeros everywhere elae

and also ) > .,,

If the dimensions of the Jordan blocks correspond to a set of dimensions

consistent with a deadbeat control eigenstructure then the feedback matrix

that realizes the eigenstructure satisfies

FVT ' QT+ - 7-J -5
or '+

where T is a nonsingular matrix whose entries are determined from the

coefficients of thew in ( 1 ).

Proof:

Straightforward but tedious algebra. It is important to note that T is

not an arbitrary matrix but has a specific structure. This can be seen when

the polynomial relationships are translated to the matrix form of ( 5" ).

Since T relates [Z . to I - - } it must be invertible to ensure that the

generalized eigenvectors are linearly independent. 0
ID

The feedback matrix is in general a complex function of the coefficients

•of the C However, when the dimensions of the Jordan blocks are chosen

• "-- '... . " 4 A.. - " " - ". -S. .. :i -.% ,



to be the controllability indexes the relationship simplifies and the minimum

norm solution can be found explicitly as shown by the following.

Theorem I

Assume that the dimensions of the Jordan blocks in ( S ) are given by the

controllability indexes. Then the feedback matrix is a linear function of the

parameters describing the freedom and can be written as

FV-: 'WVWT
where T is a matrix of parameters. The feedback matrix of minimum Frobenius

norm is achieved for

t - L4 Z' W Cg \OWJ Y

whe re:

t= vector formed from the columns of T

fo= vector formed from the columns of F "

u*= conjugate transpose of the ith row of V-

Proof:

The first part can be shown in a recursive manner by noting that for

one always has

then 0

FV +V usng T + oJ T""

and by using( ( )one has FvL +)-J -
12 -c



where and J are the appropriate blocks from t&/ and J in ( 5 ).

A similar approach can be used to show the more general case.

The second part follows from the results of (7,Prop.3]

4. Example

The system matrices from [111 were

A= 1 1 0 1 0 B= 1 O
O 0 100 000
-h 0 0 01 01

0 0 0 00

O 0 1O
The controllability indexes were found to be (3,1,11 and so the only possible S
chain lengths compatible with deadbeat control are (3,1,11 or [3,21. The
mat rix

1- F=(0 0 - / 1 / -1

- -L -I 0 -1

0 -1/3 0 -2/3 -1/3j

I Fl = 6 2/3

is the minimum norm feedback matrix that assigns the eigenvector chain

lengths [3,1,11 But, the feedback matrix

-1 -1 .5 0 O .5"

-.25 -.25 -.75 -.25j o

IAF '- 5 1/4

assigns an eigenstructure of chain lengths [3,21 and has smaller norm.

o

5. Conclusions

The restrictions on the eigenstructure of systems with deadbeat response

-13-



were described. These observations were then used to describe all the

allowable freedom one has in selecting the eigenstructure of such a system.

The freedom in selecting the eigenvectors was than described in terms

of the allowable eigenstructures. Finally, it was shown that the feedback

matrix that assigns the elgenstructure that has Jordan blocks of dimensions

given by the controllability indexes is a linear function of the available

parameters. An explicit analytic expression was then derived for the feedback

matrix of minimum Frobenius norm that assigns this canonical eigenstructure.

* -14-
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Appendix

Lemma

Given 16 'ni cA, n i C&,r

* ~withzk. ' ( )ZAl

then the feedback matrix that assigns the coefficients of [ , as

closed-loop etgenvector chains remains invariant if

for

c~e(E)c4el (z)

Furthermore, the feedback matrix that assigns the S satisfies

FY: -z J+ LA'

where'4 is a matrix whose columns are linear combinations o; 1J"

Proof:

Consider the sequence of feedback matrices that assign the coefficients of the

polynomioals in (Al) as the new polynomials Z are introduced to replace the

Z. First, consider the set C z ) " Z.

where

The feedback matrix associated with this set satisfies 0

II "' 1
R !3

I(
2.'" 'i- " ' ." , " ,'" ._ .. " ." i "" " . . ." .I



7% 7 -TI , W ,W

0

where the V. and A. are the coefficients of the - and . Let us

JJ

assume that Z in (Al) can be written as

- r ) + <A

where (*) represents all the other terms not involving Z and k, -t

The coefficient matrix V can then be written as

!SV X_ 4.' 0) V '

where the zeros represent the shilft produced by A . Now a stmilar

relationship holds for 1%/ with one important exception. If k . M, - 4

then \, involves 1.4 and if kJ-J then/ does not involve

One can now simplify (A3) by using the appropriate expression form (A2) and

(A4) to show thatF V F1 V*,'-CI~O,...,,1 ,FC).'.oil,

F V~
FL w J' (A5).

The term involving %J is present only -if kmpA Therefore, ifh

satisfies

then the feedback matrix is invariant for any value of o( . It is important to

* emphasize that this resulting expression (AS) does not involve either V' or~t'
This approach can of course be repeated to eliminate all the references to

in (A2). Note however that there can still be terms involving the (.

a:k 41,..t j in the equations that define F. Thus the V* and W* only involve

linear combinations of [ . , _ in (AS). Now the set 0

must incorporate a linearly independent combination of the

(v ;e _ if the entire set of eigenvectors is to span the whole space.
space.



This means that the equations in (AS) can be written as S

where X is a matrix involvtng the J:.,,, /J, @indicates the

Kroenicker matrix product and

Vi S

Since the [V _and _ 3Z must both be linearly

independent sets, the matrix r must be invertible and so (A6) can be

rewritten asFE,,. I/ V,., (A ( -b 7),

Now the process just described can be repeated on the set

where

Since none of the Z involves the polynomials of degree the feedback

matrix that assigns these cofficients as eigenvector chains can also satisfy

(Al). This process can be repeated for all the distinctA, . Finally we

note that the equations relating to the polynomials of degree . satisfy

since none of these can involve any tJ.

As a final point, we emphasize that the assumption that the Z have

II

degrees given by the I# is crucial. If a polynomial

Z Z, (A8)



is defined then the terms involving V in polynomials of degree less than -- L.

are no longer "redundant" and cannot be eliminated by the previously

described process, even if a polynomial of degree less than tA; +fir is
J

of the form

z OLe A Z

with

This is due to the fact that the inclusion of (A8) eliminates the equation

FV :W
from (A2) and Is no longer required to define F [

LS

S
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I't.uliphing (19) b ,' +- I blo:k matrices of dimension (tilt x ilt). V Dist. t ssION ANI) CON(I IISIONS

i n order will result Ini0) An algorithm for solving a matri, polynomial equation has been

presented This algorithm, bcsidcs being Intuitively simple, has the im-
ii

Y, portani advantage of requiring operations on constant mances rather

0 L, LF It should be noted that this algorithm can be applied, as well. to the
C ' P, solution of

1, 1..,,ot.4 1, (v,)X + 4,()+ s A.s)(s) +B(s)Y(s)- C(s)
j L V'4.W(NI )L tI by rewriting it in the form

() (4,(.v) (s) A_, +8(s)() - C(s)(20) X' t

lie l,ock matrix equation (20) is composed of (15) and (18). Thercfore, a where C(s) is not necessarily a square matrix, or to the solution of

*,luioiln of (15) and (18) is also a solution of (20). B( )Y(s) = C(s).
From condition 5) it follows that if the degree of some rows of B1(s)

.,r less than Vft - 1. then some rows in Z.4 (16) must vanish identically.
Thi implies that the corresponding columns of Lh ,,,(Nj) may be
,,miled resulting in . and Z. Furthermore, denoting the matrix composed RkteEmNcEs

of the independent rows of L by L and the matrix composed of the same I1 I. H Rowcnbro.k. State.Vpas. and Afuthwruhle Thti,n. London: Nclson. 1971)

row, of P h' P. (15) can be rewritten as 121 W A Wolhvih. ineur Afultnwriaclr S'rtsis New i -k: Spnngcr-Vcrlag. 1974
13 II. tf Ronsenhrok and (i E flayton. "The general prohlem of pole a.ss&ignicnt."

In J Contr. vol 27. pp 837-1.52. 1978
4 - ,, f,( '-N) ZM, - Pk NI). (21) 141 J A Feinsin. "Polynomals and polynomial equation .in conirol theory.- l11h D

diss rtation. Shool of Engincenngl Tel-Aviv Univcrsilty. Tcl-Avis. Israel. 1979
[rom the uniquenes, of (X(s),YI(s)) it follows that the matrix I51 C A. Desocr. Rucy-Wcn Liu. J. Murray. and R. Saks. "Feedback system de.sign

The fractional rcpresentaion approach to analysis and synthesis." IEI E Trans

1, , Itl %,) must be square and nonsingular. 4utrnal Cnir. vol AC-25. pp 399-412. 1990
In order to get the unique solution { X(s), Y(s)), we increase, at each 161 D C Youla. I J2. lorivno. and H A Jabs. "Modern Wiener-ticpt design f

optimal conroltlers--Par It. The multivasiahe cas:%." IEEE Trans. Aut,miat C,t.
liCe die degree of Y,(s) by one. starting with deg Y = deg A - I. and sol AC-21, pp 319-139. 1976

:hU, ckamine the existence of a solution (using consistency rank condi- IIl V Kwcra. "StoI-hasic muluianahle Lonirol: A polynomial equation ippri.h."
111 Trans 4u.at Cnnt,. sol AC-25, pp 913-919. 1980

iii and totinu this process until condition (17), with deg Y, - NI - 1. IM] T Kailaih. I haar Srti ve l-nglcwos-l Chis. NJ Prcntice-ttall. 1911)

, .iified The solution ( XI(s), Y(s)) is then obtained by solving (21) 191 Y Shamnash. "Construction of the insvese of linear timr-invanant mults.arbic

for VM. and finally Y (s) is given by (18). ysicins.'" It J Si'it Sit. vol 6. pp 733-740. 1976
f . . f t dn I101 C C Macduffce. The Theon- fl .farneT New York Chelsea. 1956

IV. EXAMPLE

( (,)=[l+ 2 s+sl5 s2

I ,,m, ',i Ard i(b). we get On the Relationship Between Controllability Indexes,
Elgenvector Assignment, and Deadbeat Control

i I- -1 I ]' 1 0 GEORGE KLEIN

[ 0 1 13 5 9]
I.- 1 -2 110 -4 ' Absiract -The subpace%. to which closed-loop generalized eigensectors

) 5 1 -3 1 1 are res.tricted, are deicribed in term- of the controllability indexes of the
12 pair (A. B) and the polynomials of minimal degree that span ker[.4 -

Irin i 11). we get 1. B]1. This characterization of the eigenspoces is then used to calculate
the deadbeat controller of minimum Frolbenius norm.

P,0 II 1lI I I - 2 I 11  11 NTRODJC-tON

Thc unique solution obtained by solving (16) for X,(s) and (23) for Y,(s) The freedom afforded by state feedback beyond pole placement was
i, Viscn by described in (31. (121 as that of assigning generalized cigenvectors from

specific subspaccs. This characterization has been used 151. 1151. 1161 to

)t, 1 -4 3 5 +s -3-2 design state feedback controllers with desirable properties. In this note.
3 5S 3 4s] 6 5 the available freedom in selecting eigenvcctor chains is examined and

clarified to facilitate the design of such controllers. An algebraic relation-
n.ship between the subspaces from which successive elements of eigcnvetor

X(s)] chains must be selected is developed in terms of the controllability
rank 2

YI(S) j Manus-'npt rvievcd Apnl 26. 1 2. r vised Auusl 2, 19R2 and rk-cmher 7, 14X2
The author i with he Itanmen of Me.shann.al ngincring. (olumbia Unosositv.

hir all i therefore K' I) and YI(s) are right comprnme. Nevi Yok. NY ,(W327
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