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replaced by one with a still smaller bandwidth, the size of the signal from the
larger bandwidth material decreases (sometimes dramatically), and the part of
the spectrum due to scattering by 2kF phonons is relatively enhanced.
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Heterocontact effects in point contact electron-phonon
spectroscopy of the alkali metals

H. U. Baranger

Laboratory of Atomic and Solid State Physics, Cornell University,
Ithaca, N. Y. 14853

A. H. MacDonald and C. R. Leavens

Division of Microstructural Science, National Research Council of Canada.
Ottawa, Canada K1A ORS

ABSTRACT

For a small contact between two different materials (a hetero-
contact), we derive the free electron expression for the electron-
phonon spectral function determined from the measured [-V charac-
teristic. The heterocontact spectral function differs strikingly from
the homocontact spectral function in that it excludes scattering
through angles less than a minimum angle in the larger bandwidth
material. We calculate realistic heterocontact spectra for pairs of
alkali metals. If in a given pair of alkalis the smailer bandwidth
material is replaced by one with a still smaller bandwidth, the size
of the signal from the larger bandwidth material decreases (some-
times dramatically), and the part of the spectruin due to scattering
by 2k phonons is relatively enhanced,
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I. Introduction

Point contact spectroscopy has been successfully used to study the electron-
phonon interaction in a wide variety of metals,! including the alkali metals.®>? In
this technique, one measures the derivatives of the [-\" curve of a small contact
between two bulk materials. If the size of the contact is smaller than the inelas-
tic mean free path, the non-ohmic part of the resistance is proportional to a
weighted average over the Fermi surface of the scattering rate at the applied vol-
tage.!'* Most work to date has used contacts between the same material (homo-

contacts), and for this case the weight factor is well known (see Eq.(7) below).*3

Contacts between two different materials (heterocontacts) differ from homo-
contacts in two important ways: the difference in Fermi velocity leads to
reflection and refraction of electrons at the interface (kinematic effects), and the
charge density at the interface scatters the electrons. Experiments done on

187 show phonon structure from both materials and are roughly

heterocontacts
consistent with adding the individual spectra of the two materials, but have not
been subjected to a detailed shape analvsis. Heterocontacts have been investi-

gated theoretically using the methods developed for homocontacts. The distribu-

tion of electrons in a heterocontact in the approximation of no scattering has
been caleulated,® and interface scattering effects (modelled by a é-function bar-
rier) and kinematic cffects for two materials with very different Fermi energies
have been investigated.? However, the weight factor for electron-phonon scatter-

ing in the heterocontact case has not previously been caleulated.

In this paper we find the weight factor for a heterocontact, taking into

account the kinematic effects of the interface but not the interface scattering, and
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calculate realistic point contact spectra for pairs of alkali metals. In deriving our
expression for the weight factor we assume that both materials are free electron
metals at zero temperature. (The experiments are usually done at low tempera-
turc.) We use the method of Kulik, Omel'yanchuk, and Shekter! in which one
solves the Boltzmann equation to first order in the electron-phonon interaction.
We find. first, that the weight factor for a heterocontact differs from that for a
homocontact only in the larger bandwidth material. Second, in the larger
bandwidth material, scattering through angles less than a minimum angle is
excluded and the phase space for allowed scattering is reduced. Third, the
overall magnitude of the spectrum from the larger bandwidth material decreases,
sometimes dramatically, because of the smaller bandwidth material. Fourth, the
portions of the spectrum with a high contribution {rom scattering by 2kr pho-

nons are enhanced relative to other portions of the spectrum.

In section II. we discuss the geometry of the contact and the current through
the contact in the absence of scattering. Then we add the electron-phonon
scattering and derive the weight factor in sections Il and IV. Sections V and VI
present the method of calculating the spectra of the alkali metals and the results,
respectively. Finally, we summarize and comment on the possibility of more gen-

eral applicability of our results (section VI,

II. Ccometry and No Scattering Current

Throughout this paper, the geometry that we consider 15 an idealized form of
the point contact geometry.! As shown in Fisure 1(a), we consider two free

electron metals of differing densities, and hence bandwidth, joined at an interface
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in the z=0 plane. The difference in bandwidth, A = pt; - pa, is the intrinsic
potential step seen by electrons crossing between material 1 and material 2. The

interface is insulating except for a small round hole of radius a which represents

the point contact.

Before discussing the distribution of eclectrons under an applied bias, we
point out some important features of the equilibrium case. In equilibrium the
distribution, f (7,F), depends on ¥ only through the kinetic energy, ¢, , and is

given by the Fermi function appropriate to the material at the point 7:

[0 = 3 1  forz <0
- e Ly
S (FF) = | (1)
fe) = , forz >

eJ(f: —I-‘:)_+_1

The crucial difference between a heterocontact and a homocontact is the
intrinsic potential step between materials 1 and 2. This siep affects electrons
crossing between materials 1 and 2 in two important ways: an electron's momen-
tum perpendicular to the step must be greater than a critical value in order to
pass from material 1 to 2, and any electron crossing from material 2 to 1 gains

perpendicular momentum at the step. We define a critical wavevector,

kc =\/2m (111'112), t=v2m _\ﬁ' , (2)

in terms of which all the kinematic effects of the heterocontact can be written:

an clectron in material 1 must have &, >k, in order to enter material 2, and an
electron which has crossed from material 2 to 1 must have k, <-k,. Figure 1(b)

shows the equilibrium distribtuion and indicates which clectrons will cross or

have crossed the potential step.
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Turning now to the situation when a voltage is applied. we first consider the
limit when there is no scattering and obtain the distribution. f* (F.%). both by a
qualitative argument8 and from the Boltzmann equation. We restrict ourselves to
the case of a small applied voltage. | eV | «Zpa. applied so that the net electron
flow is from material 1 to 2 (i.e. V'>0). Our final results are equally valid if the
net electron flow is from material 2 to 1. In this case the trajectories of the elec-
trons are essentially straight within either material because the applied potential
drop, which is concentrated near the hole because of the constriction resistance, is
not large enough to bend electrons near the Fermi level. the oniy electrons that
contribute to the net current. An clectron crossing the hole in the z=0 plane is,
of course, bent: its parallel wave veector is conserved. but %, changes in order to
accomadate the change in energy, £,

Because electrons crossing the hole from left to right gain kinetic energy
from the applied field while ones crossing from right to left lose kinetic energy, at
any point in space electrons originaily from the Fermi level of material 1 will
have ¢V more energy than electrons originally from the Fermi level of material 2.
Thus the distribution of electrons at a point 7 is broken into two distinct regions
in £ with different filling levels: the maximum cnergy of electrons from material 1

is eV greater than the maximum energy of electrons from material 2.

The geouietry of the contact determines the size of each of these regions in

k. Given a point 7 in material 1, the number of electrons from material 2 and

their & are restricted by the solid angle subtended by the hole from 7; we lot
Q(7) be the set of & that point at the hole from 7. However. beeause of the

internal potential step, all electrons with | &, | <2k, in material 1 originated in
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material 1 (see Eq. (2)). Thus in material 1, the solid angle restricts the electrons
from material 2 only if this restriction is more severe than simply k. < -k,. On
the other hand, given a point in material 2, the only restriction on the electrons
from material 1 is the solid angle subtended by the hole, as in the case of a
homocontact. Figure 2 shows the distribution without scattering, f™ (7.%),
obtained by applying the solid angle restriction while keeping in mind that

k, <-k, for any electron in material 1 which came from material 2.

To obtain this same result formally, we follow the method of Kulik. et al.t
and solve the collisionless Boltzmunn equation where the force acting on an elec-
tron. F(F), has a contribution both from the applied potential encrcy, U(7)

(defined so U==0 at the hole), and from the internal step A:

F(r) o Kk ar

=0 (3)

!

(7) = —ai?u'(?)wo(:) ).

Integration along a trajectory T' defined by ¥=#k/m and I"':F('r‘),ff -

transforms  the Poltzmann  equation to the set of equations
df " (F(t),k(t))/dt =0, there being one equation for each trajectory T'. The
solution of these equations is clearly that /™ is constant along each trajectory.
The value of f* along any given trajectory depends on which side of the
contact the particle originated and on the boundary condition, which we take to
be [ —f2 as :—-co and f™ —f2 as r—-00. States which originate in
material 1 are filled to a higher energy than those which originate in material 2
because the Fermi level as : —-00 is eV above the Fermi level as z =00, We

denote by E (7) the maximum Kinetic energy of clectrons in material i at
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h point ¥ which came from material 1 and call this energy the higher filling level.
Likewise, we denote by E _ ;(¥) the maximum Kkinetic energy of electrons in

material i at point 7 which came from material 2 and call this energy the lower

filling level. The filling levels vary in space because of the applied potential and o
the expressions E _ ;(F)=p, -U(¥)-eV /2 and E_ ;(F)=pu,-U(F)=el” 2 relate
the lower and higher filling levels respectively to the applied potential and the 1
Fermi energies. In terms of these filling levels the following two statements com- J
pletely specify [ . (1) If the state k at point T came from material 1, it is filled 1
(that is f* (F.F)=1) if ¢, <E . ;(7) and empty otherwise (f* (F.F)=0). () If :
the state k at point 7 came from material 2, it is filled if ¢, <E . (¥) and ;
empty otherwise. )
An explicit expression for f** (F.%) requires 2 seif-consistent solution for
—
U (7). the paths T and the density n(F)=[f (7,k) d3k . 423, which is coupled - ‘J
back to U(7) through Poisson’s equation. We side-step the question of self- - ‘_i'é
consistency by assuming, as above, that the paths of the particles are straight _j
lines within each material and bend at the interface. This assumption leads to an R
explicit form for /™ (7,k):
fOex +U(F)-eV /2), 2 <0, -k not in Q(F) or k. -k, )
. S, +U(F)+eV/2), - <0, -k in Q(F) and k. -k o
TUTERY =0 o, U (F)-eV j2), = >0, -k in QfF) SR I
[, +U(F) eV /2), 2 >0, -k not in QF) o
where $)(7) is the set of & that point at the hole from 7. ]
The feature of f*(7,k) for a heterocontact (Eq. (1)) which distinguishes it
from the homocontact case is the additional restriction in material 1: only states q
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i;‘ with k; <-k, are filled to the lower filling level £ _ | because all electrons from
material 2 must have k, <-k,. The distribution in material 2 is independent of

material 1 and so is identical to the distribution in a homocontact made from

i material 2 at the same applied voltage.® Consequently, all the eflects of the bi-
material nature of the contact are felt in material 1 and are determined by the
critical wavevector £, .

h The current implied by the distribution in Eq. (4) can be calculated from

J=-e 7/ (F.k)d3k /4=* and is the same as in a homocontact made from

material 2:8

III. Elcctron Phonon-Scattering: Discussion of the main effects

The general effect of electron-phonon scattering is to modulate the current

through the contact because the electron scattering is inelastic. In order for

scattering in a given channel, A =&’ to affect the current, two conditions must

be satisfied: there must be available initial states (¥) and final states (£'), and

the electron must either scatter out of or into a state that contributes to the
<
current through the hole. These two conditions lead to restrictions both on the
encrgics of the final and initial states, and on k¥ and &' because of the geometry -
of the point contact (which in our case is a simple circular hole). The restrictions ;
on k and k' mean that each scattering channel contributes to the change in ]
current, A7, with a different weight. In the rest of this section, we deduce the
restrictions on energies and on & and k' first for material 2 and then for 1
.4
]
R
"1

R S N e T e, L e L. . L U SR A S DR ST SR U WY . PR Tt
L A - B L% et . o et T T et e T L A S LU I S S ST PR
. LA T K AR POV AN . A PR RS ;A_" x‘;\.'.ﬂ

PEFREIUAPESR .'..\‘.“. CEPa PRI LR . o e
PSPPI I 2P I I PRP ST PN L T P B S L N, S s )




P ——

material 1, and we present the weight factor. W (k.#'). and the chance in
current that these restrictions mmply. Section IV contains a more detailed deriva-
tion of the weight factor. Because we assume that the mean free path is much
larger than the size of the hole, electron-phonon seattering does not greatly per-
turb the distribution of electrons. Thus, the restrictions on k& and k' can be
deduced by looking at f* (¥.k) in each material (see Fig. 2). At zero tempera-
ture, only phonon emmission occurs and hence the energy of the initial state

must be greater than that of the final state.

In material 2, the energy of an initial state must be less than the hicher
filling level. E'_ o(7). and the enerzy of a final state must be greater than the
lower tilling level £ (7). Thus the maximum encrgy difference between initial
and final states, and hence the maximum phonon energy, is the applied voltage
eV FE _S{7)-E . 7). In order to have the initial energy greater than the final
energy (phonon emission), the initial electron & must have come throuch the hole
from material 1 (<& in ©3(7) ). And in order to affect the current, the electron
must go back through the hole, which restricts the final states to &' in Q7).
Thus in material 2 at a point 7. the current is affected by scattering from states
near the Fermi level with -£ in Q(F) to states with £/ in Q(7) where
€, € <el". The situation described here for material 2 is identical to the case
248

of a homocontact of material and hence the current modulation caused by

the seattering in material 2 is identical to that in a homocontaet.

In materisd 1, the energy of an initial state must be less than the hicher
(lling devel, £ (7). and the energy of a final state jnust be vreater than the

lower filline level A7) Thus as in material 2, the maximum phonon encrgy
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is the applied voltage eV =E_ ((F)-E . (7). In order to have the initial energy
greater than the final energy, the f{inal state £’ must come from material 2.
which implies that k' <~k, because of the internal potential step as well as that
-k' in F). And in order to affect the current, the initial electron must be one
which would go through the hole if it did not scatter, which impiies k., >, and
k in Q(F). Thus in material 1 the scattering that affects the current is that from
states near the Fermi level with £ in Q(F) and k. >k. to states with

~k" in Q(F) and k'. <-k. where ¢ —€4r <el'.

The difference between the restrictions in material 1 and those in the case of

a homocontact is the two additional restrictions k, >k, and &,'-Z-k,. Notice

.
the crucial role plaved by the critical wavector £, (defined in Eq. (2}). These
additional restrictions imply two important effects. First, scattering channels in
which the perpendicular momentum changes by less than 2k, do not change the
current through the hole. Thus, the only detectable scattering events are those
whose scattering angle GF’L_-,:COSJ(LA‘ k') is greater than a minimum scattering
angle 8, defined by sin{6,,;,/2)=4k.  'kz, (sce Fig. 2). B,;;, eliminates small

angle scattering from the measured signal and enhances the relative importance

of large angle scattering. Second, for scattering angles larger than 6 the res-

min?
trictions on k, and k,' reduce the total amount of scattering contributing to the
change in current compared to the homocontact case. Thus the magnitude of
Al in the heterocontact will be smaller than in the corresponding homocontact.
We summarize these arguments by giving an expression for the change in
current which is derived in more detail below. The change in current because of

scattering in material i is usually written in terms of a spectral function G9)(L),
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which in turn is written in terms of the phonon frequencies wf'), the matrix ele-

q

ment g}%) (which we assume depends only on 7=k-k"), and the density of

states at the Fermi level N{') =mkg 775

E o ii0)~el’
. P . (13
Al = e r 2N (—3—) f f de’(’(' {e~¢") (6a)
l E<,x’(0) < ,
; ds ds,'
G = g { | f — [ (6b)
1_ ' o fl-i l'k i h-} l‘ky |
X | gt | Po(w-fraf ) WUk K

Here WUENE £7) is the weight factor due 1o geometrical effects and the integrals
over dS; and dS;s are over the Fermi surface. For the contribution to A/ from

scattering in material 2,

WEE ") = 0(-k,)0(k, ") X

].kl
[IIII} )

O
which is one-half of the homocontact weight factor? because the right side of a
homocontact contributes one-half of the signzal. In material 1, the weight factor

is

.. ol k!
WOIGE £') = 6k, —k )0k, k. ')x [8 L& 1k )

Uk Rk F ) ®)

For comparison. the Eliashberg spectral function of superconductivity theory uses
W(k,k")=1.
The energy integrals in Eq.(6a) mean that as the applied voltage V increases,

more phonon channels contribute so that the resistance of the contact increases.
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In the weight factors (Eq. (V) and (8)), the 6- functions take care of the restric-
tions on k, and k,' which is where the homocontact and heterocontact weight
factors differ, and the solid angle restriction results in the expression in braces in
both equations (derived in the next section). We note that the spectral function
G )w) does not depend on the sign of the voltage; forward and reverse bias

measure the same spectral function.

I1V. Electron-Phonon Scattering: derivation of the weight fzctor

In this section we give a detailed derivation of Egs. (6)-(8). We follow the
method of Kulik. et al.! which consists of solving the Boltzmann equation using

/™ (7,k) in the collision integral:

L — =L = O (7 K], i=12. (9)

The scattering integral I() is that appropriate to the material at the point 7.

This equation can be solved by writing f =f " -+6f and integrating the resulting

equation along the path T defined above which yields*!?
t
8 (PO FUN = [drt 1O ) F (e (10)
-00

The change in current, obtained by multiplying by v.. and integrating over
both & and the hole, is

3

I = _efd‘-‘rgx-,,g")f de IOV F ) E (), i=1,2 (11)

hole k -o0,I’

where t is the time at which the particle reaches the hole. Note that v lf) is
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material dependent and that AJ can be evaluated either on the left side of the
hole (in material 1) or on the right side (in material 2). For convenience, we
choose to evaluate A7 so that for any ¥, I is entirely in material 1 or material
2. Thus, for electrons from the right (v;. <0), we evaluate A/ in material 2. For
electrons from the left (v, >0), we evaluate AJ in material 1 with the condition
that only electrons which would be able to get into material 2 are considered.

vy, >Nk, /m. Our expression for the current, therefore, is

Al =AM A R
t

=—efd2r20(l::~kc)ka.”f de ! I F ) E(e))] (12)

Role k -~

t

—efd rS0(-k. )v()fdz'n“’/"'(r(e LE(ET)) .

kole k -co,I

To simplify equation {12) we combine the integral over the hole and over
time into a single volume integral over the half tube, T (%), parallel to k¥ which
intersects the hole and which lies upstream from the hole (see Fig. 3). The elec-
trons which can scatter are close to the Fermi level and have straight paths, so
that dt'=ds /| T (s)| =ds /vp where s is the distance along the path. The
Jacobean for converting from d°rds to d°r is | vy, /vp |, so that the current

is: 11
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The electron-phonon scattering integral.

: - o — N n
W7 F) = ==V gl | 2x
k’

{f'” (?.I:I ):l‘f ne (-F.Z'.)(S(fk _(kl‘?'fi-w'k —k') (14)

~fFEE)I-f (TR ) S e Ty o)

- 4
o
in which we assume that g, .+ depends only on 7=~k -k'. places constraints on j
the possible energies through the Fermi factors. In the first term (into the beam), : 3
€' >¢; because only phonon emissicn is included {T=0). ¢4+ Zel" =L _ ;(¥) in :
order to have an initial state, and ¢, >E _ ;(7) in order to have an empty final '
state.  Similarly  for the second term of the scattering integral,
—
E'i,u'(?)‘<€k’<‘k <€'*'+'E<‘,'(—T.). ’ -
The Fermi factors of the scattering integral also contain geometrical restric- }
tions on & and £'. In material 1, because of the restriction 4. >k, in Eq.(13). k¥ __4
is necessarily a filled state, so that only the second term in the scattering integral - ?
contributes (out of the beam). Looking at the distribution f* (F.X7) (Figure 2), .
all possible empty final states have &,/ -k, , and have ~&' in Q7). Similarly
in material 2, the restriction in Eq. (13) implies that & is an empty final state, 3
and hence only the first term of the seattering integral contributes (into the -"-Zji
|
beam). All initial states have £,/ >+0 and have -&' in (7). The restrictions on B
k, can be included by using 9 functions. The restriction -k in ©Q(F) can be :
included in the region of spatial integration because at any point 7, the state &/ .
is available as a final (initial) state in material 1 (2) only if 7 is in the half tube, j

EE T A TR VLA T e T T Y T T St T S S . e e LS. . . R N T S N
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T(k'), parallel to &' which intersects the hole and is downstream from the hole
(the complement of T(k), see Fig. 3). Thus, restricting the region of spatial
integration to the intersection of T (k) and T (k') satisfies -k in Q(F).

With the energy and geometric restrictions included, the expressions for the
change in current caused by scattering in material 1 and material 2 are:

E ., 1(0)1»¢V

0 d5k d.gkl
AT = 4 =T f f f (n, 12
B 1P G FTR T Fe e

X (e —€pr - ) Lok, <k, )0 -k, ~k.") f d%] (15a)
T(ENTF") ]

E < 2(0)+el ¢
T ' dS,.. o
AI(Q):-“% f 5 f 'ff]z |f7‘|l |gk('7‘"l-
Elan £l R k k!
)
X 8eg —€pr + T ) LIk, )0k, ") f N (15b)

TR T (k")

The spatial dependence of L; _ (7} has been neglected because we assume that

—

=k -k' and not on ¢, or ¢

_..

the eletron-phonon interaction depends only on
independently.
The volume of the intersecting tubes T'(&) and 7°(&) which is necessary to
evaluate [2q. (15) has been caleulated by Kulik, et al.®:
. . .
8ad |k | l k. l

d3r = 3 ~“ TR (16)
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Taking the second derivative of the current enhances the sensitivity to the pho-

nons and vields :

d:I 4 e3m3a® .
_ = == = A Gy — 2,1t ~
‘.2 3 714 [ZFX(' (81 ) l‘t.‘:_\(l (Cl )] (ll)

where G/ and G are given in Egs. (6)-(8).

This completes the derivation of the weight factor in the heterocontact case
(Egs. (7) and (8) ). The derivation can be repeated for the case of net electron
flow from material 2 to material 1 and yields the same result for d*/, dV* in the
case | el | <«Zpuo. We now turn to the effect that this weight factor has on point

contact spectra.

V. Method for Calculating Alkali Spectra s

————y
LI

In order to investigate the effect of the heterocontact weight factor on realis-
tic point contact spectra, we carried out Jetailed calculations of the spectra for
point contacts made from poirs of the alkali metals Li, Na, K, Rb, and Cs. The .“...]
alkali metals are particularly appropriate for illustrating the arguments given

above because they have nearly spherical Fermi surfices and eflective muasses

close to the free electron value. The fact that the Li and Cs effective masses are . A

{ larger than the free electron value!® could influence our quntitative results;!3 -»; . 1
:t however, we wish in this paper to emphasize the qualitative effects of the hetero- g
.’ contact weight factor and these should not be significantly affected by the . X
)

effective mass in Li and Cs. In addition, the alkalis have a sufficiently complex

phonon structure to illustrate nicely the main effects of the additional restrictions

on scattering in material 1 : the reduced phase space available, and the minimum
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scattering angle.

The heterocontact weight factor differs from that for a homoecontaet only for
scattering in material 1, so we will normalize the total spectral functicn that we
calculate, G (w), using the velocity vp :

{ v(” l‘F? (-\) -
G(v) = GV(w) + — G (L) (1)
"F1
where G')(w) is defined in Eq. (6). The minimum scattering angle 6, (see Fig.
2) determines how different the heterocontact spectrum will be from the average

of the two homocontact spectra. Table I lists the values of 6, used in this

min
work for all combinations of the five alkalis studied: 8, ranges from 41.7% for a
K_Rb contact to 109.2° for a Li. Cs contact.

To perform the calculations we use the same method as in reference 14
which we summarize here. We assume that the Fermi surface is spherical and
express the electron-phonon  matrix element in terms of the ionic mass and
number density (M and N), the phonon energics and polarization vectors
(wq')‘ *?q',x)' and the screened electron-ion psceudopotential  form  factor

(V]9 1)) by using the one-orthogonalized-plane-wave result :

MK )T o VHIE R )

IMN 2y

lopjral® = (19)

"O‘rl‘
TG

A first principles calculation of the lattice dynamies and electron-phonon interac-
tion'® developed originally by Dagens, Rasolt and Taylor!S, provides the inputs 1
Wi yr €y and V(|4 |) to our calculation. The pseudopotential is a result of ]
N . - . . . . ..’
fitting the linear response of the charge density induced about an isolated ion B
. . . . h
embedded in an electron gas to Dagen’s full nonlincar caleulation of the same '
K
1
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quantity. This pseudopotential has proven successful in caleulitions of various
properties of Na. K. and Rb.'¥ giving us confidence in our results for these
metals. While the one-OPW result is pot strictly valid for Li or Cs. we believe

that our qualitative results should apply to these metals as well.

In previous calculations of the homocontact spectral functions of the
alkalis,' it has been shown that inspite of the large anisotropy of the phonons in
these materials, the spectral function does not vary greatly as the crystal face on
which the contact is made changes. Hence we negleet the anisotropy of the pho-
nons by calculating the average of the spectral function over all -rystal directions
of the contact. This is equivalent to using a weight factor which depends only on
the angle between £ and k', Op ;. =cos WE-E'), or equivalently only on
q:‘.’szin(GE'k-,/‘l). Such a weight factor is simply the averazge of Wikt
eiven in Eqgs. (7) and (8) over all &£ and k' keeping £k fixed. In material 2 this
average weight factor is the same as that for the right side of a homocontact

which is simply one-half of the full homocontact result:®

o 1
“/(")( (l ) _ I(l-’@?le ,‘/tilnek"k‘l ) . (20)

In figure 4 we show the ratio of the average weight factor in material 1,
Wg), caleulated numerically to WEl{(g) given in I2q. {20) for four values of
the critical wavevector, k, . Notice three important features of the heterocontact
weizht factor. (1)W(q) is zero for q -2k, since scattering through an angle
less than O ;, in material 1 does not affect the current through the hole
(2) WMy ) is less than WE(g) for all q because the phase space for phonon emis-

sion with q >-2k, is smaller. (3)The (integrable) singularity in W (g) at ¢ - 2kp

-
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remains in W ((q), but the strength of the singularity decreases because fewer

2kp scattering channels satis{y the restrictions k, >k, and k.' <I-k,.

VI. Alkali Spectra

Figures 5-9 show the heterocontact spectral functions for all combinations of
the five alkali metals Li, Na. K, Rb, and Cs. For the purpose of comparison with
the material 1 portion of each heterocontact function, figures 5, 7, 8, and 9 show
one-half of the homocontact spectrum for Li, Na, KK, and Rb. respectively. (One
half of the homocontact spectrum is the portion caused by scattering in material
1.) In many of the spectra (Rb. Cs being 2 notable exception). the phonon strue-
ture of the two materials is well separated in energy, a great advantage in analyz-
inz the spectra. All five fizures illustrate the two main effects caused by increas-
ing k, : the decrease in magnitude of the material 1 portion of the spectra, and

the deerease in relative magnitude of the highest energy peak. We comment on

the reasons for cach of these effects in turn.

The caunse of the decrease in overall magnitude of the spectra for contacts to
a material with smaller bandwith, particularly dramatic in the case of Na and K
(Figures 6 and 7), is simply the reduced scattering implied by the restrictions
k., >k, and k,'<-k,. First, of course, scattering with O¢ 0 <. 6, is elim-
inated from G (w) which decreases the magnitude of G (w). Second, the number

of channels with 8¢ 1, >80, is reduced as k. grows, furtiier decreasing the mag-

min

nitude of G (w).

The different behavior of the different metals is due to the different strengths

of 2k scattering relative to small angle scattering. Quantitatively, the ratio
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| V(2kp) V'(0)| measures the relative strength of '_’l:/ scattering: the value of
this ratio 1s .273 for Li, .025 for Na. .057 for K. .172 for Rb. and .272 for Cs.
Thus in Na and K, 2kp scattering is weak and dees not contribute a large part of
the spectrum. As a result, the eifect of eliminating scattering with 6, ., <O,
is a sharp decrease in the overall magnitude of the Na and KX spectra.

The decrease in relative magnitude of the highest energy peak compared to
other peaks in the spectra is particularly visible in the Li spectra (Fig. 5). This
effect is related to the amount that 2kp scattering contributes to each peak in
the spectra: if the contribution of 2k scattering to the highest energy peak is

min Will

smaller than to the other peaks, the exclusion of scatiering with Or g <O
affect the highest energy peak more than the others. To show the relative impor-
tance of 2kg phonons to the different spectral peaks, we have plotted in Figure
10 the effective density of states of 2kp phonons, f,,, (). in Li. By the effective
density of states, we mean the density of states obtained by weighting each 2kg
state by the factor (QI:I"'E.:/?,A)Q/“':E,,X which appears in the clectron phonon
matrix element (Eq.(19)). Notice that the contribution of 2&r scattering to the
highest energy peak is smaller than to any other peak. As 2k scattering
becumes more dominant for increasing ©,.,.. the point contact spectral function
should approach the shape of f,,, (<), Figure 10 shows the Li;Li and Li, Cs
spectral functions normalized like f, ¢, () so each has a maximum value of 1.0;
the Li'Cs spectrum (8,,;,=109.2°) is indced more like fest (W) in shape than the

Li, Li spectrum (8,,;,-=0).
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. VII. Concluding Remarks -3
f +
We conclude that point contact spectroscopy in the heterocontact case meas- N
;o T
:_-_.:_' ures a substantially different <pectral function than in the homocontact case. ]
. corresponding to a different weighted average of the scattering rate over the ‘
Fermi surface. The weight factor we have calculated for free electron metals in ]

the absence of interfacial scattering (Eq. (7) and (38)) rostricts the observed
r"‘. scattering in material 1 to that between initial states with &, >4, and final ‘
states with k' <<-k,, where k, =\/2m;-p2) 7 is the transverse wavevector :
3 4
necessary to cross the internal potential barrier. The weight factor for scattering )
in material 2 is the same as in the humocontuct. Application of the heterocontact :

weight facior to the calculation of realistic alkali metal spectra shows that the

heterocontact weight factor has a dramatic effect on the speetra, an effect that
-
should be experimentally observable. First. the relative strength of the materiasl -
1 portion of the spectra decreases relative to the material 2 portion as &,
increases. Second, the shape of the material 1 portion changes so that 24p pho- ;‘
-y
non scattering is more prominent as X, increases. 1
While we have derived results only for free electron metals. it is possible to :
extend the results in a speculative way to more realistic systems. The feature of .
the heterocontact problem that leads to a substantially different weight factor s :
the réstrictions on which electrons can enter material 2 from 1 and on which j
states electrons enter when crossing from material 2 to 1. In free electron metals, g
;
these restrictions are neatly given in terms of &, as in the last paragraph, or _:
equivalently by the requirement that momentum parallel to the interface is con- j
served. Clearly at a real, possibly disordered interface the crystal momentum
A
o
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parallel to the interface is not recessarily conserved. A simple model of interfa-
cial scattering (&function barrier) indicates that scattering at the interface
changes the shape of the signal and the relative contributions of scattering in
material 1 and 2.% At a realistic interface, to the extent that parallcl erystal
momentum is conserved, there will be severe restrictions on electrons passing
betweer two materials with very different Fermi surface sizes (ie., different kg 's).
These restrictions will lead to a heterocontact weight factor that is substantially
different from the homocontact one (though perhaps not given by Eqs.(6)-(8)) and
may lead to observable differences in the point contact spectrum. We suggest
that the Al/In heterocontact is a fruitful system for future experimental and
theoretical work because the Fermi surfaces are relatively simple, the vaiues of
kg are sufficiently different (10-1579), and the phonon spectra are reasonably well

separated in energy (€p = 394 K for Al, 129 K for In).
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#‘ TABLE 1. The minimum scattering angle in maternal 1, 6., for pairs of alkali
metals. 8;, is defined by sin(O ./ 2)=k, /kpy=/2m (y1,-pto) ke, The Fermi
wavevector, kpao. is listed below each materiali a dash in the table signifies

< .

material 1 material 2

Li Na K Rb Cs

kpo (A7Y) ] 1121 923

-1
—
o

663 645

Li 0

(o]
-1

.3° 05.8° 101.8° 109.2°

Na - 0 72.0° 81.3° 91.3°

1N - - 0 41.7° 60.3° ——

Rb - - - 0 14.5°
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Figure Captions

Fig. 1. Ideal interface between two metals. (a) The conduction bands in equilibri-
um are shown. A=p -, is the intrinsic barrier seen by electrons coming from
the left. (b) The equilibrium distribution just to the left and just to the right of
the interface are shown. k, :m % is the critical wavevector: electrons
must have k, >k, to pass from material 1 to material 2, and electrons in materi-
al 1 which came from material 2 must have k. <<=k, . Electrons in the shaded re-
gions will cross the interface; those in the hatched regions have crossed the inter-

face; those in the blank region stay in metal 1.

Fig. 2. Point contact of radius a under a forward bias without seattering. The

distribution function f™ (7.%) for electrons is shov'n at 6 points in space. The x

indicates the point in space at which the distribution in & is drawn. Shaded and

hatched regions are as in figure 1. The shape of f* severely restricts the possible
electron-phonon scattering events: the initial state in material 1 must have
k, >k, in order for the scattering event to affect the current, and any empty

final state must have k,'<-%t,. The indicated angle © defined by

min®
sin(6,,;,/2)=k, /kp, 15 the smallest angle of scattering in metal 1 that contri-

butes to decreasing the current.
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Fig. 3. The regions of space for calculating Al due to the electron-phonon in- -
teraction. T (k) (vertical shading) is the half-tube parallel to k| upstream from
the hole, while T (k.) (plus shading) is the corresponding tube for Fa. T(L—:,) (X
shading) and T (F.) (horizontal shading) are the downstream complements of
T(k,) and T(I?Q) respectively. The contribution of scattering between Fl and I"f_,
to A/ the change in current in material 1, comes from the intersection of

T (k,) and T (k.) (grid shading). Likewise, the contribution to AI®), the change

in current in material 2, comes from the intersection of T(/\_'.._,) and T(I'.,) (starred
shading).
Fig. 4. The ratio of the weight factor for scattering in material 1, H'“)(q), to

that for scattering in material 2, W(*)(g) as a function of the magnitude of the

phonon wavevector ¢ =2kpsin{O, o /2). W g ) is equal to one-hall of the
homocontact weight factor ( %(1—-95';‘-, /tanek"g,), where GF'F,Zcos“l(I:' &) ).

Curves are shown for four values of the the critical value of the wavevector,
ke =+\/2m (p—pa)/ B+ k, /ke,= 0.1, 0.5, 0.7, and 0.9. W{l(q) is zero for q less

than 2%, , so that scattering through angles less than 6,  does not contribute to

min
the spectral function. W((q) is smaller than W)(q) for all q because the res-
trictions k, >k, and k,' <-k, reduce the amount of scatiering at every q. As in

the homocontact case, W(¢) diverges at ¢ =2k, enhancing the effect of 2kg,

phonons.

'.'.':.‘-'.'-4.'- T S T N e s S e e e T T S

- PR RN - .. R . R
PN, PP . | /N VP Py NPT W W W TR SR W IR . PO W W U P W T TP P Gy Y WhE WP W TR U WA S AP WPAS IR W Wy SR GP, PO, S-S




.08

Fig. 5. The spectral function, G(x). for a Li Na contact (dotted line) and a -
Li. Cs contact (solid line) compared to one-hall of the Li homocontact spectral
function (dashed line). The magnitude of the Li portion of the spectrum de-
creases as the bandwith of the second material, o, decreases because the phase
space for scattering becomes more restricted. The shape of the Li portion
changes as po decreases reflecting the increasing importance of 2kr phonons and
the lack of small angle scattering. In particular, the relative height of the high
energy peak decreases. The shape of the Na and Cs portions of the spectrum i3
the same as in the homocontact case; however., the normalization differs by the
ratio tpa'tpy.

Figz. 6. The spectral function, G (»). for Li X contact (dashed line), a Li Rb con-

2 4

tact (solid line), and a Li Cs contact {dotted line, the same as in IFig. 5). In the

case of the Li Rb and Li. Cs contacts, the Li portion of the spectra is well

separated from the Rb and Cs portion. The spectrum of the Li, K contact has a -

L
I T W W SR

Lo

particularly large peak near 9 meV because the highest energy K peak and lowest
. . . . . - 4

energy Li peak nearly coincide. The spectra for energies above 10 me\ clearly ‘

show the effect of the changing weight factor.
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Fiz. 7. The spectral function, G (w), for a Na,/Cs contact (solid line), a Na,/Rb

contact {dotted line), and a Na 'K contact (dashed-dotted line) compared to one-
hall of the Na homocontact spectral function (dashed line). Because the form fac-
tor for 2kgp scattering is particularly small in Na, the cffect of the smaller
bandwidth materials on the Na portion of the spectra is dramatic: the magnitude

of the Na portion decreases sharply and the height of the highest energy Na peak

is reduced relative to the rest of the Na spectrum. )
Fig. 8. The spectral function, G (w), for a K/Cs contact (solid line) and a K/Rb
contact (dotted line) compared to one-half of the spectrum for a K homocontact J
- -
(dashed line). As in the case of Na shown in Fig. 7, the weakness of scaltering by L
2kp phonons in K leads to a sharp decrease in the K portion of the spectra as pa ’
decreases. -
—aonsntly
L
Fig. 9. The spectral function, G (w), for a Rb/Cs contact (solid line) compared to _ 4
onc-half of the spectrum from a Rb homocontact (dashed line). The Rb and Cs Z ﬁif-j
portions of the spectrum overlap considerably leading to a complicated structure. __4
L
However, as in the other conbinations of alkalis, the change in weight factor
g causes a decrease in the highest energy Rb peak. A
]
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Fig. 10. The effective 2kz density of states. for g (<) for Li(solid line) compared
to one-hall of the Li homocontact specizum (dashed line) and to the Li s spec-
trura (dotted line), all normalized so that their maximum value is 1. Loppteonis
the fraction of 2k phonons with frequencies between w and w-d « weighted by

— o
-

'sz}.x /“"2/?;,”' The shape Li Cs spectrum. in which 2kp phonons are em-

—
to
“

phsized because small angle scattering is eliminated, is much more like that of

[ey s (<) than is the Li homocontact spectrum.
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