s
1_74‘

TL 85-3 JANUARY 1985

AD-A149 752

A COMPUTER-BASED GAMING SYSTEM FOR
ASSESSING RECOGNITION PERFORMANCE (RECOG)

DTIC

ELECTEN e
SJANsmss =
XY B _— S

ON STATEMENT A

od for public relecse
Distribution Unlimited £

TRAINING LABORATORY

NAVY PEASONNEL RESEARCH AND DEVELOPMENT CENTER }
8AN DIEGO. CALIFORNIA 92142 e

“"'""\.% OTC FILE COPRY

95 0/ 23 068



T e b gn o b e v v e,

A COMPUTER-BASED GAMING SYSTEM FOR
ASSESSING RECOGNITION PERFORMANCE
(RECOG)

Glenn A. Little
Donald H. Maflly
Corbin L. Miller
David A. Setter
University of California, San Diego

Pat-Anthony Federico
Navy Personnel Research and Development Center

Reviewed and approved by
James S. McMichael

Released by
James S. McMichael
Director, Training Laboratory

Training Laboratory
Navy Personnel Research and Development Center
San Diego, California 92152




UNCLASSIFIED

AN S O W OXIY
REPORT DOCUMENTATION PAGE
B el ol o Ay
et
T SRS oA O WO
e ST o wmSRabed VT Approved for public release;
distribution unlimited.
TR R GROANGATION REFORT SARSINT: TS SR WS AR
NPRDC TL 85-3
m——jw—m
Navy Personnel Research and © e
Development Center
= AGORIES K. B oné D Coto o A e T ol B o
i San Diego, California 92152
e ARt OF FUNDG "FPONBORING ORGC ANTATION B OIS, | MG SETRARDY GOBTIRCATON WA
Chief of Naval Material e st
Office of Naval Technology
eSO = S o 7% Come TSRO T RO N
. AR = ]
Washington DC 20360 63720N RF63-522 |801-013 | 03.04
ERLTTTY rd
A Computer-Based Gaming System for Asses.-ng Recognition Performance (RECOG,
' T RS, 0Tk
I G. A. Little, D. H. Maffly, C. L. Mi 'er, D. M, Setter, & P-A. Federicn
T30 TYPE OF REPORT T30 Tt COVERED 16 DATS OF REPORT /Yowr. Mavon, Do/ 18 PAD COUNT

Technical Report

mow Sep B3 roSep B4

January 1985

99

["T8 SUPPLEMENTAAY WOTATION
I ™17 COBAT COOES 'mmnmll—vumnﬁl .
D Gnou 38 GAOU Computer-Based Testing Assessing Recognition Skills
Computer-Based Game Testing Software Tools
‘m-m'wvu“h—*;

- “This report documents a computer-based gaming system for assessing recog-
nition performance (RECOG). This was done so that others who may want to use
it for either research, development, or operational implementation will have an
easier time comprehending the modularity of the programming structure as well
as how specific procedures can be adapted to suit a user’s unique situation. The
game management system is programmed in a modular manper to: instruct the
student on how to play the game, retrieve and display individual images, keep
track of how well individuals play and provide them feedback, and link these
components by supervising routines inorder to execute the game. This modularity _ ,. .
in programming, together with the game management system'’s independence of

20 OB TRy | UN /AVARABLITY OF ﬁmc‘

UNCLASSFED UMUMITID O samt asan

UNCLASSIFIED

O onc vmms

Ll 1N A

1s
Pat-Anthony Federico

ssnn

DD FORM 1473, 84 JAN

63 AR EOMON MAY B VBEO UNTL DXWALETID
ALL OT™ER JDMONS AN OBROLITY




s v s R .

UNCLASSIFIED

Abstract continued

~

any graphic database (e.g., aircraft or ship silhouettes, hunhn anatomy, topogra-
phy, electronic circuits), contributes to its generalizability. “The game, then, pro-
vides a set of software tools which can be used by others who want to assess
recognition performance.

The software for the complete gaming system is currently on three floppy
disks which control the play of the game, contain the graphic-images database,
and maintain records of individuals' recognition performances. The game itself is
run with two dual-demsity disks on the Terak microcomputer employing two
drives., It is implemented on the UCSD P-System and written in UCSD PASCAL.
The disk placed in drive 0, i.e., the 8510 or volume 4, holds the actual game code;
the disk placed in drive 1, i.e., the 8515 or volume 5, contains the independant

< graphic-images database. As soon as the system is booted, control is immediately
. passed to the game. Consequently, naive users need not deal with the nuances of

the UCSD P-System. Recogmtnon-performance data are saved for a number of
individual players on the 8510 disk drive. A third disk containing game manage-
ment facilities can be used by test administrators or researchers to format the
recognition data to facilitate statistical analyses. Also, this third disk can be used
to design a new game with a completely different set of g:~ >hic images to act as
stimuli for recognition testing. ~

DD FORM 1473 Continued

UNCLASSIFIED




FOREWORD

This programming effort was performed under exploratory development
work unit RF63-522-801-013-03.04 (Testing Strategies for Operational
Computer-Based Training) spczsored by the Chief of Naval Material (Office of
Naval Technology). The objective of this work unit is to develop and evaluate
microcomputer-based graphic simulations of operationally oriented tasxs to deter-
mine if they result in better assessment of student performance than more cus-
tomary measurement methods.

This program documentation is primarily intended for the Department of
Defense training and testing research and development community.

Accession For

NTIS GRA;I

DTIC T43 .
Unanncincel .'-_;
JustiZiontion o —

By oo - e ——————
Distributisn/
—-_A.vallnbillt.'f Code.s“—_‘
Tavail snd/or

Dist Special

Al |

L.;'A_L"

A B N |
N
L,' FPS PPNy

.

v e
e e Te e e
e e

PAVYY o PP )

roe
REARS NS
a Nt e

S b



SUMMARY

Background and Problem

The general goal of this exploratory development is to create and evduate
microcomputer-based graphic simulations of operationally oriented tasks to ascer-
tain if they result in improved sssessment of student performance when compared
to more customary measurement methods. As a test bed, graphic models have
been programmed to assess how well F-14 Pilots and Radar Intercept Officers
(RIOs) recognize front-line Soviet and non-Soviet fighters and bombers.

A computer game based upon a sequential recognition paradigm has been
designed and developed. It randomly selects and presents on the display of a
microcomputer with millisecond speed either the front, side, or top views of four
Russian bombers and ten of their advanced fighters. Also, the game management
system can choose and flash corresponding silhouettes of NATO aircraft which
act as distractors for their Soviet counterparts because of the high degree of simi-
larity between them which could easily corfuse U.S. sir crews.

This game, which is called FLASH IVAN (aircraft images are "flashed” on
the computer displsy, and the F-14 community refers to the Russians generically
as "Ivan”), assesses student performance by measuring the number of correct
recognitions out of a total of forty-two silhouettes (half Soviet and the other half
non-Soviet), the time it takes a student (latency) to make a recognition judgment
for each target or distractor aircraft, and the degree of confidence the student has
in each of his/her recognition decisions. At the end of the game feedback is given
to the student concerning his percentage of correct recognitions, average response
latency, average degree of confidence in the recognition judgments, and how his
performance compares to other students who have played the game.

A file is maintained and available to the instructors which provides, in addi-
tion to these parameters for each student, recognition performance across aircraft
for all students who played the game. This provides diagnostic assessments to
instructors who cap use this information to focus student attention on learning
the salient distinctive features of certain aircraft in order to improve their recog-
nition performance.

The software for the complete gaming system is currently on three floppy
disks which control the play of the game, contain the graphic-images database,
and maintain records of individuals’' recognition performances. The game itself is
run with two dual-density disks on the Terak microcomputer employing two
drives. It is implemented on the UCSD P-System and written in UCSD PASCAL.
The disk placed in drive O, i.e., the 8510 or volume 4, holds the actual game code;
the disk placed in drive 1, i.e., the 8515 or volume 5, contains the independent
graphic-images database. As soon as the system is booted, control is immediately
passed to the game. Consequently, naive users need not deal with the nuances of
the UCSD P-System. Recognition-performance data are saved for a number of
individual players on the 8510 disk drive. A third diskette containing game
management facilities can be used by test administrators or researchers to for-
mat the recognition data to facilitate statistical analyses. Also, this third diskette

'@




SOSS

can be used to design a new game with a completely different set of graphic
images to act as stimuli for recognition testing.

Objective

The objective of this report is to document the program underlying the
computer-based gaming system. This was done 8o that others who may want to
use this set of software tools for either research, development, or operational
implementation will have an easier time comprehending the modularity of the
programming structure as well as how specific procedures can be adapted to suit
a user's unique situation.

Utility Functions

This section of the documentation describes how to create new recognition
games which would employ as subject-matter databases graphic images other
than aircraft silhouettes currently used by Flash Ivan. It also explains how to
extract statistical data for sample of subjects from records of recognition perfor-
mances.

Programmer's Notes

This portion of the documentation serves as a technical reference for pro-
grammers who may want to make slight modifications to the game code itself
which is independent of the database. It deals with several files and describes pro-
cedures which would be involved in performing these changes.

Program Maintenance

The final segment of the documentation explains how to maintain the pro-
gram, the organization and the handling of the three disks that are used, and
what to do to the disks before and after collecting recognition-performance data.
A listing of the program is presented in Appendix A.




et » s .
. .:. :‘/’.-‘.

CONTENTS

e Page
’ INTRODUCTION ........................... 9990088800008 800803000 Seatsacse 4600800000083 0000000000 0000000 l
. Background and Problem ....eeiieiniininneinnccisecssestsegeeenee 1
:‘\ Objective 2€2000000005000000000 300000008 eshesasssnesess 0000000000000 R0088800000000 4060000000 3

UTEITY FUNCTIONS G0 00000000000 QCBRRERRNRRRERTLBINITNRNNRNRPRIRROOOOVIPIPRERRDRRNARNEtOOOOOORGRRES 4 ‘?::
e The "ADM" th eescectcecsssssssnnes ssssssscssssane cossensn csssanstsssetssssesessssnssecscecescscsess & “,::'
- . Cre‘ting ‘ Gme SOV PUTCNVPTIPIPERB VPR QONURES000000000 i1 sessste . 900530000 5 2
e Crutin‘ Gme Im‘gu C0000000000000048000000080000000 *9 Sess ey A IIII A AT IR Y ) 6

Creating the Image Directory . v seessecanes ceeesene w7

More Utiuti“ BEDSCOIBINNNPINLITIPNOOPUNIIVTNRRNISRECRDELD S0000080000000RSSSLINRRB000000800000000000 0000000 10
-'t: COhVertlng the DirQCtory 00204560000000000000000000000s0000 0000y veeseevesesseessnsssIvIOIITY 10
" QlliCknlt CBIENNENENNENTENNE0ERRNENGR0S $0000400300000000040800000000000000C808000000000000008 11
= M‘kin Hmor“ File oevROROY AL TR S]] 2000000008800 0000 oot sbeasnsce 40680080082 00000000000 11
U‘ing the st‘thtical Facilitia 8080000000 00000030000C2LR0BSERITRTRLIVENENOTONQROPOIPS (A2 2l 111711 . 11 _c 7.

PROGRAMMERS NOTES ..ctccirrerrineecinecnccsene cersssenrensnctantessnases versessessases 15
IntrodUCtion ............... AsesnocesRSt 008000800000 0040¢000000000R0RRRRRRREY LA A AR AT T YT I Y] 15
OVerview ...ccccvcicieniientsineresenccessasses teessresensanens teassesses cesnsnesesessasanssessessaneenee 15

The Files .ccccernenrannene veosens crreseserrresesssaneenane cersesssesresnsaeisessensantnsanen seeenneee 15
An Important Global Variable ..... ctessrectessetsnssnsanssstnassnssnsanssansessaessacees 18 -
Making Changes ..... ceessesteereersarsenessanes cresernsenssasssssnsasanes sesrtessesesessanasees 16 -
Relinking «.cccevieniiiseeiinecctncssaernnnscsens terssssenssseansassecane cevecenssssreneesssssrnrnssane 16
Transportability ....cccccccceiiiniiiiecennes ceerectesessnsnsstenssetasarsnsresatansacaetsersansnts 16
Secret Codes ........ccvrvriiirniiniinencennnaniesenanes tressesseessacssressane vesessnnesane ceenns 17
The File G/.IVAN resssstnisaresseressnenasanes crennensss corerones onessnsens rseesereseseesenes R & f
Constants in G/.IVAN ......ccececeennecenies ceerssansesesassasensensnssnnsasnasaresseresses 18
The Program Run ....cccveiiieiinccnncnscnens crsessaressnesnsssnns cracensssnes cesessnssrssssceses 18
The Procedura in G/ IVAN V000084883003 000000000R00000820000000R2000080 000UV IO RIRRISTSTY 19
Player Orientation Procedures .........cceceeccneccene ceecencees 20 -
Other Procedures in G/.IVAN ....cccceeerermenveceenee. ceerseserssesensrnrenarsasansss 23
The File G&meUn3 ........................ U00500000800800000000000000230000000000RRRRRERRRRS (22217 25
Constants .....cciccvenrcincinniieisscasecttssssnnes eersenssnsssarassnssansesaraesasnns cseensnne 256
Procedures in GameUn3 .....ccccourenvnnrccens eosreseensasees coeseesenes sesnesssesessnnasans 25
The File Iteﬁiler3 lllllllllllllll 460088088000 000000000008S P008000000000000000000000800000000000 (XX 1) 30
Important Constants .......ccccecirecnnncnicacnees ceeteetesresssnsrnansasessssesssansennsnes 30
Important Global Variables ......ccccciceereriecceecreccencrnesencsccasascses cossesnsnses 30
PrOCedura in ltemFilera XTI PRI EYRYYY Y senasesead G000 003002000 00000000004600000000 00000070 32

PROGRAM MAINTENANCE .......... eoreesessnen ceceeseressnsssnsnssessssrascosasssssasssses O -

The Di’ks ....................................................... sesssssseccrncscscenacssses sssescsesssreee 34 :‘:.

N Organization ....ccccceviecnncrnsreccsonnees cresesresrrenes creessecsssnses vesevsscssone ceessesessresrnnes 34 Bt
i\: Di’k H‘ndling sesssncssvasne 5000000000 0c00000 00000000 seescessasecssccnce sensssessacseses sscevevsessnnee 35 -
;e The Game Code Disk--Before ................... teessrstcessrrennnnssesassesenssesnssscssse SO
o The Game Code Disk--After ........cccvvivccesneccrteeecersnesarcsssesssasssssossosessss 35 T

> - v vy vy e = . ows

[
;
8
b
-

N The Images Disk--Before and After ........cccevvenunens sesecsssseressernruressssnasas . 36 -
: REFERENCES .........ooomsemmmsmmsemmmmmmssmsssssesssse eeseeessssssssensaneeee RO P
) APPENDIX A: Program Listing ....ccccceuveeueeeee teresseressennene certeennennsanese cessennns A-0 s

.....................................................

% '- s ~ '- - \1~ ‘~ \ s - \ \'~‘~h’-‘~ 'y 'y ~~s~~ "1-‘\—. \‘\’,\* -n~. -. « & \‘w. 'a\-.‘s-‘ *0.“ s o ‘~’~ “c" 1’-&* :



INTRODUCTION

Background and Problem:

Many student assessment procedures wlich are currently used in Navy train-
ing are not adequately accurate or consistent. This sometimes results in over-
training which increases costs needlessly, or undertraining which culminates in
unqualified graduates being sent to the fleets.

Typical procedures for assessing performance do not adeguately measure
with sufficient fidelity, validity, and reliability real-world operationally oriented
job-sample tasks. Consequently, student evaluation at its best is somewhat
suspect, and decisions based upon this kind of assessment may be erroneous.

Better testing techniques are needed for assessing Navy trainees against per
formance standards employing tasks functionally similar to those encountered in
operational contexts. One attempt to fulfill this requirement involves the use of
microcomputer technology which is rapidly appearing in a number of Navy train-
ing and testing environments.

There is, however. no suitable knowledge base which can be tapped by the
Navy (or others) for developing, evaluating, selecting, and using computer-based
testing strategies incorporating graphic representations of job-sample tasks.

Many of these customary methods for measuring performance ejther on the
job or in the classroom involv~ ‘nstruments which are primarily paper-and-pencil
iz nature, e.g., check lis' -, rating scales, critical incidences; and multiple-choice,
completion, true-false, and matching formats.

A number of deficiencies exist with these traditional testing techniques, e.g.:
(a) biased items are generated by different individusls, (b) item writing pro-
cedures are usually obscure, (¢) there is a lack of objective standards for produc-
ing tests, (d) item content is not typically sampled in a systematic manner, and
(e) there is usually a poor relationship between what is taught and test content.

What is required is a theoretically and empirically grounded technology of
producing procedures for testing which will correct these faults. Very few data
are presently available regarding the psychometric properties of testing strategies
using microcomputer-based graphically represented simulations, models, or meta-
phors. Technical information is needed concerning the accuracy, consistency, sen-
sitivity, and fidelity of these computer-based assessment schemes compared to
more traditional testing techniques.

The objective of this exploratory development is to develop and evaluate
microcomputer-based graphic representations of operationally oriented tasks to
determine if they result in better assessment of student performance than more
customery measurement methods. As a test-bed, microcomputer-based graphic
models have been programmed to assess how well F-14 Pilots and Radar Inter-
cept Officers (RIOs) recognize front-line Soviet and non-Soviet fighters and
bombers.

St
Lot
PRV Y ST Y

y)




Empirical and psychometric studies will be conducted to ascertain if this
computer-based game provides better estimation of student recoganition perfor-
mance compared to more customary measurement methods, i.e., multiple-cholce
or completion formats. These distinct assessment strategies will be evaluated in
terms of their relative reliability, validity, and fidelity. ‘

Objective

The objective of this technical report is to document the programming effort B
expended to develop and evaluate this generalizable and transferable computer- C
based gaming system for assessing recognition performance. This was done so

that others who may want to use this set of software tools for either research, g ‘
development, or operational implementation will have an easier time =
comprehending the modularity of the programming structure as well as how -

specific procedures can be adapted to suit a user's unique situstion.

Inorder to create a context to facilitate further the understanding of the
documentation of this computer-based game, the on-line instructions, presented e
to student pilots and RIOs whose performance will be assessed, are as follows: et

"For research purposes, a computer game called "FLASH IVAN" has been *
designed and developed to assess how well Navy Pilots and RIOs recognize
front-line Soviet and non-Soviet fighters and bombers. This randomly selects and
presents on the Terak screen with millisecond speed either the front, side, or top
views of four Russian bombers and ten of their advanced firhters. Also, the game
management system can choose and flash corresponding “i!'ouette: of NATO air-
craft which act as distractors for the Soviet aircraft because of the high degree of
similarity between them which could easily confuse U.S. aircrews.

"This game assesses student performance by measuring:

(1) your "hit rate” or percd ‘tage of correct recognitions out of a total of eighty-
four silhouettes (half Scvirt and the other half non-Soviet),

(2) the time it takes you or ’latency” to make a recognition judgment for each
target or distractor aircraft, aud

. B N ]

C ettt
et

B L S A
N T A

e e

l. ’ '0 *
T .‘ .- " . 8!
. AR

(3) your degree of confidence in each recognition decision.

"At the end of each trial, you will be given feedback in terms of: the correct- -
ness of your response; a running tally of the number of correct recognitions, your
hit rate, average response latency, and average degree of confidence in recognition

judgments up to this point. At the end of the game, you will be given how your

performance compares to other students who have played.

"Next, six examples will be presented to familiarize you with how the game S
is played. Notice that a silhouette will flash on the screen. If you do not pay g
attention and concentrate on the center of the screen you will likely miss seeing o
it! Your task is to identify as quickly as you can the flashed aircraft. After the s
image disappears, you will see the prompt: "AIRCRAFT NAME:". Use the key
board to type in after this prompt what you think the aircraft is, i.e., its NATO ot
name or corresponding alphanumeric designation, e.g., SABER or F-86. Misspel-
lings count. as wrong responses.

.............................................
.............................................

O et e e et A e S St et et e e e e e R et et e e e e e e e e e AT e e el e el
LY 0 Yo e I I N v Y L N e R I AL P, YT PRIPS FA P



PAGE
s
MISSING
IN
ORIGINAL
DOCUMENT

H

THIS



..................

as the ADMINISTRATION Disk.

Instructors, cn the one hand, may want to create a new game with a com-
pletely different database than the original game, FLASH IVAN, which uses
aircraft-silhouettes. There are two basic steps in undertaking this task:

1) the creation of the computer images, and

2) the corresponding database which associates labels with each image.

The user-friendly programs SEMIPAINT and MAKEDIR on the ADM disk were
designed to aid an instructor in performing this task.

Researchers or evaluators, on the other hand, may wish to extract statistical

data from the game. The program MAKESTATS has been designed for this pur-
pose.

For the programmer who is enhancing the game to suit an instructor’s needs,
the ADM disk provides many basic utilities, e.g., PRINT programs and disk for-
mating programs, as aids. The act»al game rode, written in UCSD Pascal, also
resides on the ADM disk. A progiammer may want to change the code in mak-
ing basic game changes. Of cou : - a basic familiarity with the UCSD P-system
and UCSD Pascal (Bowles, 19/7, Grogono, 1980; SoftTech, 1978) is prerequisite
to successful completion of such a task.

The following sections give the details of the utility functions on the ADM
disk. We have decided to approach the matter from the point of view of the user.
Rather than describe each utility function separately, we have opted to group
descriptions of the utilities together in the context of the two most important
outcomes of their usage; hence, the two section headings:

1) Creating a Game

2) Using the Statistics Package

We recommend that you walk through the running program while simultaneously
reading these sections.

2. Creating a Game

Two of the variable components that are the basis for a new game are :

1) the images, graphic representations, or pictures

2) the information associated with each image

This game-specific information is always contained on a disk which is separate
from the game-code disk, and is to be placed in the top-disk drive duricg run
time. Theoretically then, a new game can be played simply by putting a new disk

NG
Lot e,
FONF W W

-

Lo Lo

'
'y s B

A e s b



-
-

)

=

in the upper disk drive and rebooting. This new disk would contain a new set of
graphics (called FOTOFILES) and new corresponding information (called an
IMAGE DIRECTORY).

2.1. Creating Game Images

The task of creating graphics or images is certainly the bulk of the work
load in creating a new game; it involves the meticulous recreation of drawings or
their like into computer images. There are typically two ways of undertaking
this task : by use of a digitizer or by hand using some sort of graphics editor.

Certainly the fastest and most convenient of these two methods is by use of
a digitizer, a type of camera which has the capability to project any image that it
can "see” onto the computer screen. However, we have yet to discover a digitiz-
ing system that is compatible with the TERAK microcomputer.

We resorted to the slower of method of converting each image by hand (see
SEMIPAINT instructions for more details); however, any graphics editor that can
work on the TERAIK and create 320 x 240 pixel images should work fine. It is
also important that the name of the file holding the image end in the suffix
" FOTO". Any file ending in " FOTO" is called by convention a fotofile and
generally corresponds to a 320 x 240 packed array of boolean. Each member in
the array is stored in memory as a bit and corresponds to one pixel (or dot on the
screen). We also recommend the use of a grid-system in couverting techrical
drawings to computer image so as to maintain accuracy. By placing a piece of
see-through graph paper over the drawing and a cooresponding grid on the com-
puter display, one can accurately translate the original figure to the screen.

In order to maximize the number of images that can be used in a game, we
have given the game creator the option of dividing each 320 x 240 pixel fotofile
into thirds. These thirds are referred to as the TOPTHIRD, MIDTHIRD, and
BOTTHIRD and consist of 320 x 80 pixels. Thus, either 1, 2, or 3 images can be
stored on one FOTOFILE; when an image is flashed to the screen it will
sutomatically be centered. Several restrictions pertaining to gaming images to be
wary of are:

1) a maximum of 89 images are allowed in the game

2) a maximum of 50 FOTOFILES are allowed on the upper disk

These restrictions have been imposed due to the limited storage cepabilities of
the TERAK microcomputers.



P Mty . s ek ¥ T —r—y
P . et et .. L L L R S

[_ ..............
When &ll of the FOTOFILES for use in the game have been created, it is
necessary to store them on one disk which must be FORMATed and ZEROed
beforehand (see instructions for UCSD P-sysiem). The disk must also bold, in
y addition to the game FOTOFILES, the following standard files that the proto-
- type game needs to access: '
EX1.FOTO
EX2.FOTO
EX3.FOTO
EX4.FOTO
EXS.FOTO
FLAGS.FOTO
EAGLE1.FOTO
EAGLE2.FOTO
IN1FOTO
IN2FOTO
INSTRUCT.TEXT - game instructions
NONE.FOTO
Ycu must copy these files onto your disk. Two other files that you need not
worry about, which will appear on your disk later are:
NEWNAMES ~ the Image Directory
b HISCORE.DATA -- keeps record of top ten players
2.2. Creating the Image Directory
Once all of the game images have been put on the special disk, it becomes
necessary to create an Image Directory. The Image Directory is a list of 100
records that provide the main program with information concerning each visual
stimulus in the game. Records 90-100 have been specifically reserved for system .
images. Records 1-80 are for your use, giving the mzin program information con- S
cerning game images. Each record contains: P
8) two identification names associated with each image ~ ]
b) the name of the fotofile which holds the image 3
c) where on the fotofile the image is stored s
0o
e
The program MAKEDIR has been especially designed in alding the game =
creator in making an Image Directory. Before sxecuting MAKEDIR, be sure the S0
disk with the game fetofiles is in the upper disk drive. This action is necessary Ry
because the Image Directory also stores device-dependent information concerning ;::'.;?
where each FOTOFILE is on the disk, thus enabling the use of better and faster g
' routines in projecting an image to the screen. In addition to this, the Image ——
v Directory .s stored on the images disk. ;"_;;'.;}
% A
7 1
s :‘:::;
\‘; o ':.."‘-\::\::.."..-.‘ - '\' e e o e T et e L e e e e e el SR pre s .’,‘...-.:‘]

....................
............................
-----

'''''''




e i A T e P T S R L B

Upon executing MAKEDIR, the user will see the following menu:

MAKEGAME OPTIONS:

1) EDIT DIRECTORY
, 2) CONVERT DIRECTORY
2 3) QUICKLIST
b 4) MAKE HISCORES FILE
5) QUIT

Typing "1” will enable the user to begin creating an Image Directory for the first
‘ time or to edit a pre-existing Image Directory. The next prompt a user will
. encounter is:

Edit OLD file or make NEW file? [O/N] —>

Type "N” (meaning "NEW™) to get the next prompt:

EDITING OPTIONS:
1) INDEX CHOICE
2) AUTO-INDEX

The INDEX CHOICE option allows the user to edit any one record in the index
range 1 to 100. This option becomes especially useful to a user who is making
sma'l changes to an OLD Image Directory. The AUTO_INDEX option, on the
othe- hand, will automatically loop through a predefined sequence of records after
the user is done editing a particular record. This option is especially applicable
to the user who is creating a NEW directory. After typing "2” specifying the
AUTO-INDEX option, the next prompt to appear will be:

Enter lower index bound, space, upper index bound

These bounds indicate the range of records you wish to edit. Needless to say, the
lower index bound should be less than the upper index bound, and both bounds
should be within the 1-100 range. More likely than not, you will not need to edit
records 90-100; they have been preset and pertain to "system” images. Be wary
that once you begin editing records in a certain range, you must complete the
sequence if you wish the information to be recorded on the upper disk. Eighty-
nine records are a lot of records to edit In one sitting. If you have s limited
smount of time you may only want to edit records in sequences of 10. This
method will also allow you the freedom to go back and repair minor mistakes yon - L
may have made with the INDEX CHOICE option (as opposed to having to go L
through all 89 records before coming back to repair mistakes). Once you have e
entered your index bounds, you will be presented with a menu which cooresponds

to one record in the Image Directory. The menu will appear as such: ﬁ
’ INDEX NUMBER n : L""".
N Name 1: nonel23 L

. Name 2: nonel23




Fotofilename: FLAGS.FOTO
Fuliscreen|T /F) TRUE
TopThird [T /F) FALSE
MidThird [T/F)} FALSE .
BotThird [T/F) FALSE - o

Use the arrow keys on the right side of the keyboard to move among the choices. -.j
You will notice a small arrow on the left border of the menu specifying which .

item you are currently pointing to. Type "S” to select the item you wish to s
make changes to., For example, suppose the indicator arrow is pointing at "Name .-
1:". Typing "S” will provoke a new prompt occurring at the bottom of the

screen:

Name 1 is currently "nonel23” o
! Enter the new Name 1: —> -

After entering the new Name 1 followed by <RET>, you will notice the new
prompt on the right hand side of the screen:

»

Change more values! [Y/N]

This same prompt will occur after any change that you make. A "Y" response
will bring you back to the same indexed record. A "N” response will automati-

: cally project the uext sequential record to the screen (provided you sre in the

' AUTO-INDE'{ mode). So when typing "N" be sure that you have entered in all
of the correcv Information, because if you have make any mistakes and typed
"N" golng on to the next record, you won't be able to go back and correct the
mistakes until you are done with the sequence of records. Suppose you were to
type "Y", going back to the same record to edit. You select "Name 2:"; If there

| is no second name associated with your image, it is best to eater an empty string -
by simply hitting <RET> when prompted for "Name 2:"; otherwise, if s game
player were to respond Incorrectly to this game image, the name "nonel23”
would appear under "the correct name is:" heading.

: In selecting "Fotofile pame: ", you will notice that it has been preset with S

- the name FLAGS.FOTO. Thic acts as s default file which will be flashed tv the '

‘ screen if you happened to have forgotten to type in a fotofile name. When you B
enter the fotofile name, be sure to include the ".FOTO" suffix. All fotoflles are '
assumed to be in the top drive so the preflx "¢+5:" is unnecessary.

_'..'c R4
« 2 85 2 @ =

The remaining four flelds of the record indicate where the Image s stored on
the fotoflle. For instance, If "Fullscreen” were set to "TRUE", then image Is con-
tained on a complete fotofile; and conversely, it would be set "FALSE” If it was
aot contained on a complete fotofile. Note that more the one of these flelds
could not possibly be set "true” at the same time; in other words, an image could
not possibly occupy a full fotofile and a third of a fotofile simultaneously. 8o as
soon as as one of theoe items is selected, it Is automsatically set to "TRUE” while T
the remaining items are set to "FALSE". :




111111111

Whenever you are done editing after either completing a AUTO INDEX
sequence or responding "N” to the prompt "Another?” in INDEX-CHOICE, the
screen will clear and the computer will inform you that it is "converting” the
directory, before taking you back to the main menu. During "converting” if any
of the fotofiles that you listed under "Fotofile name:” are not on the images disk,

you will get a message notifying you of this. This function is described in more
detail below.

32.3. More Utllities

After Editing an Image Directory, or whenever running the utilities program
MAKEDIR, the user will always be presented with the main prompt:

MAKEGAME OPTIONS:
1) EDIT DIRECTORY
2) CONVERT DIRECTORY
3) QUICKLIST
4) MAKE HISCORES FILE
5) QUIT

We bave already discussed option #1 concerning Editing a directory. The fol-
lowing paragraphs discuss the remv.. ing options.

2.3.1. Converting the Directory

Typing "2" from the main prompt line will run code that "converts” an
Image Directory. Converting a directory is processed on the top disk which
translates folofile names into numbers which describe where a fotofile is on disk.
This number (referred to as the BLOCK number) is stored in a "hidden” field in
each record of the Image Directory; its main function is to speed up the time it
takes to access an image from disk and flash it to the screen during game time.

When it has finished, image directories ("NEWNAMES") will be written to both
the upper and lower disks.

Whenever any disk operetions (ADDing a file, DELETING a file, KRUNCH-
Ing the disk, etc.) are performed on the images disk, the P-system filer usually
rearranges the placement of files on a disk; thus Converting the disk is essential
in these instances so as to assign new BLOCK pumbers to Fotoflies. If ever you
come across a bizarre collage of images flashed to the screen during game time, it
has probably resulted from your forgetting to "Convert” the Image Directory.

Note that it Is unnecessary to select the CONVERT option if you are editing
an Image Directory since tne EDITING option automatically converts the disk
for you. Also, If ever you entered a fotofile neme that is not on the images disk,




the Conversion function will send a message to the screen indicating this.

2.3.2. Quicklist

Typing "3” from the main menu will automate the QUICKLIST function.
This is a convenient way to quickly look over every record in the Image Direc-
tory. As each record Is scrolled down the screen, you will notice the addition of
the aforementioned "hidden” field labelled BLOCK included in each record list-
ing. The entire list of 100 records in the Image Directory will be sent to the
screen, and then to a file "QUICKLIST.TEXT” on the disk in the bottom disk
drive. This list can then be sent to the line printer for further scrutiny using the
PRINT program.

2.3.3. Making the Hiscores File

"Make Hiscores File” will create a new HISCORE.DATA file which will
prompt you for the top ten players (we have used fictional people) and their
respective scores. When entering in the new list, it is not necessary to list players
and scores in any special order. The program will automatically list them from
top to bottom in descending order according to score. The current version of the
game maps scores in the 0 - 1000 range, so it is best to enter scores in this range.

3. Using the Statistical Facilities

MAKESTATS is a program which takes the data from the computer
recognition game and formats it into a text file so that it can be viewed or sent

to a printer. In order for it to operate correctly it must have two important files
on the same disk (i.e. the "ADM" disk):

NEWNAMES
GAMES.DATA

NEWNAMES, the image directory, is needed so as to associate image names with
statistics. GAMES.DATA, a record file, holds the game stats and consists of the
record type "gamestats”:

P T R SR S
TR T R R



R A B

const numberpictures = 89;

type GAMESTATS = record
name : nametype;
Ss : sstype;
date : nametype;
latency : array[l..numberpictures] of integer;
confidence : array(l..numberpictures| of scale;
correct : array(l..numberpictures] of boolean;
end;

type nametype == string|15};

sstype = string(11};

The constant NUMBERPICTURES is set to the number of total possible images
which can be shown in the game, not the actual number used in each game. Mak-
estats is set up so that any number of graphic stimuli can be used (up to the
maximum) in a game. Only those actual photos used in each game are tallied for
averages over several games. Records of type GAMESTATS keep statistics for
each game and when it is through, and are saved in a disk file, GAMES.DATA.
Recorded for each game are:

name: The player's name, up to 15 letters;

ss: The player’s Social Security number, any string u," to 11
characters is allowed so that errors can b avoided when
non-numeric data is entered;

date: And likewise, a 15-character length string for the date
the game is played is kept;
latency: The player's response latency is kept for every image he

responds to, if an image is not used in the game then the
latency will be O;

confidence: And similarly, the player’s confidence rating which he
has keyed in for every image;

correct: Whether the player actually got the image recognition
correct or not.

After a game is completed, a variable CURRENTGAME of type GAMESTATS is
appended onto GAMES.DATA.

When Makestats is executed, GAMES.DATA is opened and each game that
has been saved is read one at a time. They are then neatly formetted and put
into two textfiless on diski LATENCY.TEXT and CONFIDENCE.TEXT.
Latency.text will include vertical and horizontal averages of the response laten-
cies. That is, each player's average response latency over one game, and the
average response latency for each photo over all the games recorded.
Confidence.text includes the same thing for the confidence ratings and averages,

........
................................
.............

g e
“ .-'-'t..‘a e
Ve 'l'l't‘v‘l‘l
S Statatetet

B
I

..‘-_“ ,/ .J ... -
o FRE NN

-

--------



e

but the correctness ratings are also included; a "+" is put before the confidence
rating if the player got the recognition correct, otherwise a "-" if he got it wrong.

i Also, in the formatted output are included the percentage of graphic stimuli the

; player correctly recognized in each game and the percentage of games which got
- any certain photo right. N
n As makestats is executed, the old data in GAMES.DATA is erased, and a N
' ‘. new GAMES.DATA is initialized with O game entries. In order for the game to —-

save statistics properly, GAMES.DATA MUST be the LAST file on the disk's
directory. Otherwise, the file will get too large, there will be an I/O error, and
the game will not be saved. If the error message appears:

i/o error: no room on volume

= Then you must: . |
1) Delete GAMES.DATA from the disk, -
2) K)runch the disk in the Filer,

3) eXecute DRIVER.

= DRIVER is an executable file which initializes an empty GAMES.DATA file on - .4
< the disk in the upper disk drive. e
i The text files LATENCY.TEXT snd CONFIDENCE.TEXT bave cross- -

references to index planes and players. This is a sample LATENCY.TEXT pr.n-
tout: -
i
.~ ~
"
3
3 o
' i
% 1 :

RO
P
.

.....................
................................
.........................................
- IR W R I TR A S I e A A S A A ST P LN




Li"\e -7 3 — .
1 ] [} 4 0 [] T [ . 10 1 B
AA =, b «e 1983 i 00 «» o %N S L . ]
| AB [ ] f 1) [ %8 U4 N s e & s wm um
» " [0 [ 1 [ » ) [ ] = ”
A [ ) - [ 1988 m 1 e e o W M M
[AB . 9084 L ™ 8u ‘“‘L#“_—L%
NAME 1) DATR Averge Latacy
A Dos. J D 00-00-043  19-5-130¢ 108
Jos k 300 $8 1988 (13 ] 2000
Average Latmacy
1. (%) —% —
L 8 ) FARMER -4
L § ) FITTER e
'y PLAOON 1.
& FiREED -
[ 3 soT [
1. DR e
[ 8 RADGER 199
o (Sde) FRESCO -
10 (Iids) FARMER a2
1L (Mde) FIITER 84
12 (Bde) FLAOON -
1A (Side) FEHEED [ ]
14 (Sde) SPoT ol
16 (Rde) BRINDER 22
16 (Bide) BADER o804
112 ) FREBCO @4
n t) PARMER .4
18 (Promt) FITTER o
90, (Prant) FLAQON [
gL t) reeen 7]
" 1] FEPOT "2
2, (Froot) BLINDER "2
" 1) BADCER 182

The players are indexed by capital letters AA,AB,AC,....BA,BB...ZZ and later are cross
referenced with their name and Social Security number, the date of the game, and their
average response latency (or average confidence and percentage correct as in
CONFIDENCE.TEXT). The images are indexed with numbers 1,2,3... acroes in rows of
12 so that it is feasible to put all the data on one page. At the end the planes are cross-
referenced to the viewing angle (top, front, or side), the plane name, and the average
response latency scored on that plane for ALL the games using that graphic image. The
same pertains to the average confidence and percentage correct for ALL the games using
that picture, for CONFIDENCE.TEXT.




L gB an mb d 4 TP T TewS TR s Ut T EEmm— .

L an at on 4

PROGRAMMER'S NOTES --Modifying the Game Code

4. Introduction

This section of the documentation is designed to serve as a technical refer-
ence for programmers who may wish to make slight modifications to the game
code itself which is independent of the database. We have divided it into four
main sections:

1. Overview —-an introduction and reference guide to making changes

2. The File G/.IVAN —~technical descriptions of procedures
3. The File GAMEUN3 —~technical descriptions of procedures
4. The File ITEMFILER3 --technical descriptiors of procedures

§. Overview

The computer-based recognition game in its present form, Flash Jvan, is
currently implemented on the UCSD p-system, version I1.0. It is run on a Terak
8510 dual-density machine, with an auxiliary 8515 dual-density drive. The game
requires two disks, the bottom (#4:) drive gets the disk with the actual program
(named System.startup-- a program that automatically runs when the disk is
inserted), while the top (#5:) drive gets the disk with the database, described in
the section on ItemFiler$.

This particular implementation of the game consists of aircraft silhouettes,
but it could be used for any set of graphic images that could be drawn into the
databuse (see the Utilities documentation), and used in a recognition-game for-
mut. Because of this, we may refer to "planes”, "airplanes”, ”"pictures”,
"images”, "visual stimuli”, "graphics”, or "database objects”. All of these refer
to the same thing.

5.1. The Files
The Flash Ivan game code consists of the following files:

G/.IVAN --  Pascal host program
GAMEUNS3 --  Pascal library flle
ITEMFILER3 -- Pascal library file
ERROR --  Assembler code for sounds
CLICK?2 --  Assembler code for sounds
TIMEPI . --  Assembler code for sounds

The code was split into seperate files to make manageable segments, without
much effort being made toward extreme modular cohesiveness. The host file,
G/.IVAN, contains the main driving routine, and several assorted procedures and
functions. The file GAMEUNS3 contains more assorted procedures and functions,
as well as a few constant declarations for good measure. The most cohesive file,
ITEMFILER3, contains procedures dealing with the database, some constant
declarations, and the HI-SCORES procedure. There are also some separate
assembly language routines that need to be linked: ERROR, TIMEPI, and

15



7l

'-.l', " '.. '.- ».l

WY 0w

Al SRt

¢
’
)
s
.
-

CLICKZ2; these all produce the different sound effects.

5.2. An Important Global Variable

The variable Info_List, declared in the file JltemFiler$, is an array with one
element for each item in the database.* Each element in the array contains infor-
mation on what the airplane's different names are, and how to get it from the
disk and show it on the screen. This is, in some sense, the "master variable” of
the game. It allows most of the game procedures to think of the planes only in
terms of indices into the array, and allow a couple of interfaces (the procedure
CheckAnswer, the functions in the file Jtemf'-+S) to actually deal with the other
information.

5.3. Making Changes

For programmers who plan on making any changes to these files, we recom-
mend using the ensuing FLASH IVAN technical descriptions as a reference.
Before relinking any freshly compiled files (listed above), please be sure the com-
pilation dates as listed from the Filer are consistent. If the dates are not the same
on any two files, linking errors will result. To change the date on any file, you
must first change the date for the disk (Date option in the Filer) and then recom-
pile or reassemble the file.

5.4. Relinking

When linking, remember that "G/.IVAN” should be typed in as response to
the prompt "Host?". For the sequence of prompts "Lib file?”, the other files
listed above (as well as "+” for the System.library) should be included. For the
prompt "Output file?”, be sure to add the ".CODE” suffix so that it will be exe-
cutable. On the official game disks, we often moved our executable game file into
the file System.startup; thus upon booting, control is immediately passed to the

game. In this way, naive game players need not deal with the particularities of
the P-System.

65.5. Transportablity

Flash Ivan is designed to run on any computer with at least 128K RAM that
supports the UCSD P-system. However, if Flash Ivan is to be run on any
msachine other than the Terak, slight modifications must be made to the game
code. As a rule of thumb, it is safe to assume that any code having to do with
device-dependent graphics or sound manipulations will have to rewritten. To
make the game code as transportable as possible we have attempted to localize
most of the machine dependent code in the file ITEMFILER3. Modifications
must be made here. ITEMFILER3 serves as a home for the majority of the
graphics code.

¢ We consider the database to contain all the informsation about the pictures, plus the
pictures themselves. The top disk (#5:) contains the database.




5.8. Secret Codes

After having made any changes to some of the Pascal files, we suggest that
you record the latest date of change in the string constants at the top of each
file, DateMain, DateGameUnS, or DateltemFilerS. These three dates can be
displayed from the linked and running version of the game by typing in a secret
code word at the start of any game (see the function Practice. in the file
G/.IVAN. With so many different flles and so many different disks, as well as
several programmers, we found that this facility helped us organize ourselves as
well as see what version of the game we were actually playing.

In addition to seeing what version of the game you have, there are other
functions you can invoke from the start of the game. Upon seeing the prompt
"HIT RETURN TO BEGIN GAME" just above the Eagle's head, you can
access the "version” function as well as a few other helpful ones. The code char-
acters and their corresponding functions are listed below:

<esc> -- to bypass instructions and examples
"v” --  to list versions of Pascal host and objects
"m” --  to see memory available. We were pushing the

upper limits of RAM when this documentation was
written, so this function came in handy. Be
wary if you plan to make any major additions.

*d” --  to display any pictures from the image directory
The image directory is an array of 100 records containing
graphical information on each game image. Entering
numbers between 1-100 is advised here. If any images
are centered incorrectly or the wrong picture is displayed,
it is likely that the image directory needs to be
"converted”, or bad information was put in the image
directory by a game maker. Consult the "Flash Ivan
Utilities” Documentation.

"h” --  to view the HISCORES file

These characters can entered in either upper or lower case. One version of the
game requires you to hit the password "boatmsan” from the main prompt in order
to access any of these functions. This prompt must be lower case. Since the
Terak is initialized to an "all-cap” status, you need to know how to get to an
"upper/lower case” status, The <DC2> key at the lower right of the keyboard
provides the funciion of toggling between these two keyboard states. See the pro-
cedure Practice in the file G/.JVAN for more details.

8. The File G/.IVAN

G/ .tvan is a file that contains the main body of the game program. It makes
calls to other procedures defined in library files so as to provide a cohesive unit
among all of the game files. ’




6.1. Constants in G/.IVAN

There are three constants defined in this file. It is arguable whether or not
the constant declarations should be here instead of in one of the units with the
other constants, but they are only used here, so there is some justification.

name: This is set to the filename where the statistics will be col-
lected.

PRACSTART: This is set to the beginning index of the practice pictures. In
our implementation, the actual game pictures go from 1 to 84.
Practice pictures then start at 86. 85 is a "delimiting” entry.
(See the section on ItemFiler$ for an explanation of the data
base, indexing, etc.)

numberpictures : This tells the statistics functions how many different test
items there are. Statistics will be printed for items one
through numberpictures. (See the MakeStats subsection of
Utslities for more on the statistics functions.)

DateMain: This is for programming convenience. Il is a string constant
set to the date and time the file G/.Jvan is modified. The :
"v option at the beginning of the game will print out this G
constint, as well as similar ones in GameUn$, and Itemfilers. Ej

6.2. The Program Run

The "main” procedure of the program is fairly small (about ten lines), and is
run through only once per game. Calls are made to procedures to initialize the
statistics variables and database list (Info_Lsst), and show the opening animation.
Then the variable TotalPictures is set to forty-two. This is a number particular
to this game, and means that only forty-two of the total of eighty-four pictures
will be included in any one game. For a game to include the entire set of pic-
tures, a call to the function LsstLength with the parameter Info_List to set
TotalPsctures could be made instead.

Next, the procedure ChoosePlanes is called, with PicSequence as its parame-
ter. PicSequence is an array of integers, declared in GameUn3. The integers it
will contain correspond to database indices, one for each picture contained there.
The ChoosePiane procedure is another that is specific to the database, and par- o
ticular game demands of FlashIvan. It will pick seven Soviet top views, the Py
seven corresponding NATO distractor top views; seven Soviet sides, the
corresponding NATO side view distractors; and seven Soviet front views and
thuir distractors for a total of forty-two aircraft images. This is out of a possible
eighty-four silhouettes. They will not be randomly ordered, but each set of seven Sy
will be randomly chosen from fourteen possible images. -

................................................
.........




In order to present the pictures in a random order, the procedure Shuffie is
next called, with reference parameter PicSequence, and value parameter Total-
Pictures to tell how many to shuffle. PicSequence will return with the same set
of picture indices, but in a new, shuffled order.

The procedure PrivacyAct shows two fotoflles which contain the necessary
text explaining to the research subjects, who are about to play the game, that
they are asked to not only identify themselves but also give their social security
numbers to facilitate statistical analyses involved in evaluating this computer-
based testing strategy. Further, the subjects are informed that playing the game
is completely voluntary on their part. This procedure will also present a textfile,
one screenful at a time, containing instructions for the game, and any other prel-
iminary comments that the game player should be familiar with. Someone imvle-
menting their own game could write their own version of the instructions. Tae
file should be on the top disk (#5:), and be called INSTRUCT.TEXT.

Hello will prompt for and read the player's social security number, name,
and date. It will then re-display the information and ask for confirmation. The
player is allowed to re-enter information until he is satisfied with it.

The Practice procedure first shows three examples, animating or mimicking
a game so the player can see how to play, and in what order, including the com-
puter typing in, instead of the subject, the names of aircraft displayed character
by character. Then, it calls the same procedures for showing three additional
example silhouettes to elicit actual p.- ~tice responses from the players, i.e., typ-
ing in themselves aircraft names, and lor reporting feedback to them as the
actual game would for three -aure exaniple trials. This allows the subject to
become more comfortable with 'ow the game is played before she/he really
attempts it. The six example trials consist of the same set of pictures every time.
(See Utilities for an explanation of how to put in practice pictures.) This pro-
cedure does nct save the results when done.

InitStats initializes the statistics variables. For a more detailed description,
see below.

The procedure Game? is the major gsme-playing loop which presents the
player with the full set of images (whatever the variable TotalPictures, which
resides in the file GameUn3, says) and keep track of all the game information.

The procedure AfterGame will write the information for the game just
played to the disk under the subject's name. It will then show the player’s final
score, and call HiScores to show the current top-ten players.

8.3. The procedures in G/.IVAN

Due to the space limitations of the Terak 8510 computers, we had to make
as many procedures as possible "Segment” procedures. That is, they will only be
loaded into memory when needed, and then moved back out leaving room for
others.

Lad
EREH



8.3.1. Player Orientation Procedures

These are the procedures that are used in the beginning of the game to
acquaint the user with the rules, and allow him/her to get familiar with the flow
of the game by watching and playing some practice examples.

Procedure PaintBlock(VAR Source, Srcwid, Srcz, Srcy, snteger; VAR Dest;
Dstwid, Dstz, Dsty, Cntz, Cnty, Mode, Gray: snteger);

This externally assembled file is located in the System.Lsbrary, and can thus
be accessed upon linking to the System.Lsbrary. PaintBlock simply copies bit
maps from "Source” (a boolean array) to "Dest” (another boolean array. "Catx"
and "Cnty” are the width and height of the block of the boolean array to be
copied. The "Mode” parameter gives the following boolean operations: 0 =
store, 1 = or, 2 = and, 3 = xor, 4 = complement. The "Gray” mode seems
to work best set to -1.

Procedures Click2, Timepi, Error;

These procedures are external MACRO-11 assembly procedures used for
various game sound effects. For assembly code alterations, refer to the UCSD
Pascal User's Manual (SofTech), or your favorite MACRO-11 (PDP-11 Assembly
Language) handbook. Essentially, all the sound effects are produced by switching
bit 7 of the VCR (Video Control Register) at various .requencies. The include
file SNO_EFF.TEXT is inserted at the beginnin.. of each of the three assembly
procedures and contains two simple MACRO algor*thms for switching the VCR.

If one is interested in creating or adapting some new sounds, methodical
experimentation with with these macros is suggested.

IMPORTANT: When linking assembled procedures to Pascal nost pro-
grams, make certain that all file dates (including the include files) are the same.
If they are not dated similarly, the Linker reports a diagnostic such as

"Click2.code not found”
In addition, all assembled procedures must NOT be linked to the System.Library
before linking to the Pascal host; the respective code file will also be reported
"Not Found” by the Linker.

Procedure Animate;

This Pascal procedure’s two main purposes are to initialize the boolean array
used for graphics, and to perform the opening animation sequence at the begin-
ning of each program run.

Antmate first initializes the two global boolean arrays Minifoto and
Crosshairs to contain their bit-map icons for the duration of the game. Minifoto
contains the labels "AIRCRAFT:" and "% CONFIDL JCE” as well as the
Confidence ruler "TAB .... 0"; CROSSHAIRS contains the gun sight icon that is
always flashed to the screen a split second before an actual game recogmition




...............

image (see procedure Display). Both arrays, Minifoto and Croashairs, are initial-
ized by a disk read from a FOTOFILE indexed "91” in Info_list to the Screen
buffer, followed by two calls to Pasntblock copying both bit-map arrays from
Screen.

After these initializations, the Eagle animation code follows. The animation
is the simple "flip-book™ approach centered upon the Eagle's head; it is accom-
plished by a series of calls to PaintBlock with an interspersed call to the sound
effects procedure TimePi. Notice that each call to PaintBlock is followed by a
call to UnitWrite(S, Screen, 68) so that the screen is updated for each animation
"frame”.

Procedure Instruct;

Instruct is the first nested procedure in Practice. Its primary function is to
read the contents of the file Instruct. Tezt (the game instructions) from the upper
disk drive. You may notice that whenever game-specific information is read into
the game (such as reading in the main game array Info_List, the game instruc- e
tions, or the FotoFiles) they are always read in from the upper disk (#5:). We o
implemented this standard in our game to make it flexible to new games, Instruct
reads ir »ne string at a time from the text file, and then ou.puts each line to the
screen one at time. This type of implementation prevented us from having to
read in the whole textfile, thus saving valuable memory space needed for game
code. After 21 lines have been projected to the CRT, no wmore lines pre read
from the file until the game player hits the <RET> key.

[ 4
as

>

PP i e e e -
. e PR AR

LR O P L TACTALI
oS O LY.

Y LR U

Procedure Play$;

Play$ simulates three game examples exactly as they would appear in the
game. The variable ListIndez is set to 95, 98, and 97 in a loop. These numbers
correspond to i“¢ practice game images' indices in the main game array
Info_Lsist. Records 90-100 in Info_List have been reserved for such purposes as
storing information pertaining to these practice game images and other system
images such as those used in the opening Eagle animation. The calls to Display
and SingleTrial flash the image to screen, prompt the player for a response, col-
lect statistics, and display the resuits. These 2 calls are the very calls used in the o
actual game as well. The additional variable FakeLsst is used in this procedure
to hide the fact that list indices > 90 are being displayed. Single_Trsal only
expects to be called with numbers less than 90, the total amount that can be
used in & game. Throughout the Practice module, FakeLsst is set between 1 and

I I DR

6, so that statistics can tabulated for six examples. These "fake” statistics stored .
in the scoresfile are overwritten during the first 6 loops through Single Trsal dur-
ing the actual game (see Procedure Game2). e

21




[

hv -

”
4

Procedure Answer(VAR Al: string; X, Con/f: integer);

This procedure is used in looping through the 3 automated examples in
Practice; it attempts to simulate SingleTrial by displaying prompts, collecting
statistics, and displaying results. In addition to this, Answer also simulates a
player, by supplying the responses (A1) as well. X is the number of characters in
the string Al; between each character being output to the CRT, Clickg is called
to simulate the sound of the keyboard. Con/f is the confidence integer to be
recorded in the statistics.

Procedure Practice; (main block)

This is the main procedure for providing game players practice with game
examples; it makes calls to the aforementioned procedures which are nested in
Practice: Instruct, Play8, and, Answer. Notice that this procedure can be
immediately exited with the entry of a password from the standard input, when
the prompt to "hit <ret>" comes up. This drops the program into s loop where
a response of <esc> to the new prompt initiates the game, bypassing instruc-
tions and examples. We implemented this "secret” option, so as not to needlessly
walk players who know the game sufficiently well through the instructions and
examples. There are also four other options at this polnt. The user could type
the character "H" (upper or lower case) to see the Hi-Scores board, "V™ to see the
versions of the threec game files (the constants defined in each flle-- DateMain,
DateGameUnS, DateltemFiler8), "M" to see memory avallable (via calls to the
provided function MemAuvasl), or "D" to display any plctures from the database.
For this option, the user will be prompted for the index number of the picture to
display. (Note: this option is not currently implemented.) This is all put into a
loop, so whenever the prompt 1o "hit <ret>" comes up, the user can continually
hit the character options instead. The loop drops through when either the return
key or the escape key is hit.

Notice that FakeList has been initlalized here before going through the 6
game examples, FakeList is used as a dummy index so as to keep statistics dur-
ing the practice run. These statistics will be overwritten and forgotten during
the real game run. After this initialization, the sutomated examples are then
created with 3 calis to Display and Answer. Notice that Indices 92, 93, and 04
are used here. These integers correspond to the gaine example information stored
in Info_Lsst. Play8, the participatory examples, is then called; it uses Info_Ls¢
indices 05, 96, and 97.

Procedure PrivacyAct;

For the instructions, this simply opens the file " ¢5:instruct.text” and reads
one line at a time, then writes that line to the screen. Every 21 lines, the "write
a line” loop stops, writes "hit <KRETURN>", and walits for the return key to be
hit with a "readIn()” statement.

RN el ICRNENY

. . . -
- . " S et -
.. et N
- K AR
DU WD 4 P T N

PR Sy




The text of the privacy act has been typed in to two fotofiles. To show
these, it does a UnitRead of the fotoflle from the disk, and a UnitWrite to the
screen.

Procedure Hello(VAR player: nametype;, VAR date: nemetype; VAR SS: estype);

The procedure Hello prompts the player for his name and the date, both of
which are of type NameType, a string of 156 characters in length; and also for his
Soclal Security Number, of sstype, a string 11 characters long. All three are
stored at the head of the game statistics file GameStats, right before the arrays
which store response latency, correctness, and confidence. The PrivacyAct func-
tion is also called in Hello and the prompts to start playing the game are printed
out,

6.5.3. Other Procedures in G/.IVAN

Procedure Aftergame,

This procedure saves the GameStats file on the end of the Games.datas file on
disk when the game is over. It slso prints out the player's final score and calls
OulputStats; and also calls HighScore.

haman

Procedure OutputStats; ""1

This procedure priuts out for the user his/her percentage correct recogni- ]

: tions, average recognition confidence, and average response latency. -
; Procedure Initslats; M?
, This procedure just initializes all of the arrsys and variables used within the "1
statistics portion of the program, invariably to 0.

Procedure AfterPicture;

This procedure puts the player's respouse latency, confidence, and correct-
ness in the proper spot in the GAMESTATS statistics file, and keops track of
various variables, such as how many planes have been shown, which are used to g
output statistics to the player, -

CRCER T | -
o T I o
ISICLTMY SRR P P SN

Procedure GelConfidence(VAR con/: inleger);

23

This procedure displays the confidence-rating continuum or scale and

prompt via the calls to PaintBlock, and a couple of "write” statements. It then ~e

. reads the player's response as a character. If the character Is not either s TAB, e
; o
:. .,_




S TRy s

or a digit, then the user will be asked to try again. Once a valid character is
entered, It is converted to an integer value, percentage of confidence in the recog-
pition judgment. For TAB, the confidence is returned as 0%. A tero keyed in
| corresponds to 100%. All other digits are 100 times their value. This is reflected
g in the recognition-response confidence-rating continuum.

Procedure SingleTrial(ListIndez: integer, sfprac: boolean);

The Single Trial procedure times the player’s response, checks the answer for
correctness, and calls the appropriate statistics routines to keep track of the
player's scoring. It is called from Game? just after a picture has been shown.
The parameter ListIndez is the index into InfoLsst for the picture just shown. It
needs this to be able to look-up information in InfoLsst about that particular ple-
ture. The other parameter, ifprac, tells the function whether or not to look at
the practice set of pictures (starting at InfoListfPRACSTART)), instead of the

"real” set of pictures. This is needed because the practice procedures at the ';-_j-.;";
beginning of the geme also need to call SingleTrial, but with s completely o
different set of pictures. NS
The delay loop: r‘:

for i ;== 1 to SetSpeed do DELAY/(250); o

determines how long the picture will remain on the screen. SetSpeed is a con-
stant, defined in GameUn$. It allows coarse control over the delay amount (the
DELAY() procedure delays for approximately one one-hundredth of it's parame- {:
ter: thus a change in SetSpeed of one results in s delay change of about 2.5

seconds). When the delay loop is throu-h, the pagefoutput) command will clear
the picture, Then s prompt Is shown, and the player's response is read into the _
string guess. Ticks will then contain the number of "machine ticks”s that s
occurred between the disappearance of the picture, and the typing of the second
key by the game player. This approach was chosen to in an attempt to not
penalize poor typists, yet still get some measure of the player’s response time.

The calls to AfterPscture and OutputStats take care of updating the statis-
tics, and showing the piayer his current performance information. After this is

printed out, the player is given a chance to see the picture again, and look at it
for as long as he wants.

The section of code at the end, currently commented out, will allow only
only s ten second pause after the end of the current trial. If the player does not
type the <return> key before ten seconds are up, the game will write s message

- . et
. - [} %
L . R \
T CTale el e e e,

fond ok ol R

et

A
A.A;l L"'

to the screen telling the player to pay attention, then the game will continue. As . L

it is now, the game is set-up to remsin in & wait-state If the return key is not hit. D
.;I::;i:

—_— st

*(ticks/80) times 1000 squals the time in milliseconds. Tl

......................



Procedure Game2,

This procedure is called Game2 for traditional ressons (once upon a time
there was a Gamel... ). As mentioned earlier, this is the major game-playing
loop in the program. It loops from 1 to TotalPsctures, a variable set in the main
program body. In our implementation, we set it to 42, so we always get a game
of 42 trials. The loop counter is used to index into PicSequence, a previously
loaded array of integers which are in turn passed one at a time to SingleTyial and
used as indices into Infolist. These integers are unique, range from 1 to the
highest possible game picture, and have been chosen and shuflled in man.

7. The File GameUn3

The file GumeUn$ serves as a home to many of the assorted functions
needed for the program. It is not a cohesive module in the software engineering
sense. Only ItemFilerS approaches that.

7.1. Constants
The same comments about the constants in G/.Jvan hold here, also.

DateGameUnS§ : This is a string telling when the file was last updated.
See the constant DateMasn in the section G/.lvan.

Mazint : This represents the largest posstive integer that the
Terak can hold. This is why there is a limit to the
reported latency of Mazrint milliseconds, or about
thirty-two seconds.

SetSpeed : This is used to roughly effect the amount of time each
picture is shown. A larger number will show the pic-
ture for a longer amount of time. It is used in Single-
Trial.

ChooseGame, All_In_One, FlashGame :

These are ail booleans which are sipposed to allow

different game setups. At this time, none of this is
implemented.

7.2. Procedures in GameUn3

Procedure Randomsze(VAR seed. integer);

This is an external function, found in the supplied System.Library, which
fills the integer seed with a number derived from the system clock.




Function Random(VAR seed: snteger, Low, High: integer): integer,

This random function returns an integer between (and including) the two
bounds Low and High, and changes sced as well. This function is derived from
information given in the book "Fortran 77 - Principles of Programming” by Jer-
rold L. Wagener, in chapter 8. Random has a period of 1024 (meaning the
sequence of numbers generated will not repeat until 1024 calls have been made),
and is designed for a machine with 16 bit integers.

The procedure was ‘ested for approximating random selections by choosing 7
items from a possible 14. The results were tabulated, and the selection was done
repeatedly. This test was done 10,000 times. The results follow:

l item number ” how many times egm I

1 4748
2 5463
3 5422
4 5092
5 4712
6 5220
7 4962
8 4297
9 5758
10 4773
11 4703
12 4928
13 4841
14 4990

These findings indicated that the pseudorandom number generztor did
indeed approximate random selections. The expectation of each item
pumber for 10,000 trials is 5,000 which was approached by how many times
each item number was chosen by the generator.

Procedure Shuffle(VAR IndezArray: IndezList; Num_of_Pics: snteger);

The input reference parameter IndezArray is a set of indices into InfoLsst,
previously chosen, but not necessarily in 8 mixed order. Shuffle will randomly
choose 200 pairs of indices into IndezArray, and then exchange their contents.

After Shuffle is called, sequential accesses into IndexArray will yield a random
sequence of the original set of numbers.

Procedure MakeSequence(VAR IndezArray: IndezList; Num_of_Pics: integer);

This procedure is not currently used in our set up, but is more general than
the procedure we use to make a game sequence (ChooscPlanes). After a call to
MakeSequence(), the parameter passed in as JndezArray will contain a random

26

- T
R . .
HP I .
H .
e

R

. -
ad

W ) AN ‘.l'..'l::'.’l'- s .
. -.‘.- } .“-"': '.‘ 'u- ‘!l 'ul ‘. ' .-"..'- e
PR R AL o L3

! ,-'.".. “
PP S RPN

Y@
.'I-l'

XX




sequence of integers from 1 to whatever was passed into the second parameter
(Num_of_Pics), each integer appearing once. This is useful for games where one
game consists of each and every picture showing up once and only once. MakeSe-
quence calls Shuffle to actually do the mixing.

Y

Procedure ChoosePlanes(VAR IndezArray: IndezList; Num_of_Pics: integer);

This is a more complicated procedure for composing a set of silhouettes or
pictures for an instance of a game. For Flash-Ivan, we had a total of 14 Soviet
aircraft, each with a top, a side, and a front view. For esch of the total 42 (14
times 3) Soviet pictures, we also had a corresponding NATO pleture. We chose
this picture to look as similar to the Soviet one as possible, to act as a "distrac-
tor”.

We wanted this game to show 42 silhouettes in an uppredictable order.
These 42 images should include equal numbers of fronts, sides, and tops, and
equal numbers of Soviet and Non-Soviet alreraft. Further, for each Soviet

silhouette shown, its matching distractor should also be shown sometime during
the game.

ChoosePlanes relies on a special ordering of Info_List (corresponding to the
ordering in the database). There should be 14 Soviet planes of one view (items 1
through 14), then the 14 distractors for those pictures in the same order (15
through 20), then 14 Sov’-t planes of another view, etc. This makes the relation
between any picture and its distractor very simple. Just add 14.

ChoosePlanes hus three sections. Each section chooses the fourteen pictures
for one view. The sections are the same, except that different bounds are passed
to random .o reflect the new set of plctures to choose from, and each section fills
a different piece of the array parameter IndezArray. Each section itself is a
seven-iteration "for” loop. Each iteration chooses two pictures: a Soviet and a
distractor. The Soviet picture is chosen by the random procedure in the specified
bounds, then the distractor is found by adding fourteen. These two numbers are
stored in IndezArray at consecutive locations.

One possible problem is that the random function could happen to return a
number that it has already chosen. To take care of this, we declare » set of
integers, AlreadyChosen, which is checked each time a new number is generated.
If the new number is not in the set, then it is put into the set and the procedure
goes on as described above, If the new pumber is in the set, then a loop Is
staried. This loop generates a new number in the same bounds, and checks
again. It continues until it finds a number not yet chosen. Although this method
bas the possibility (very slim) of continuslly choosing numbers already cheosen
forever, it was found that the time it actually took was never noticesble.

"2,

ot
.n./‘f..

r SR



R AOR A SRR
e A% Bm M 2P T Sl

Procedure UpperCase(VAR Namel: string);

This procedure checks each character of Namel and, If it is a lower-case
alphabetic character ('a’ through 'z’) it converts it to its upper-case representa-
tion by subtracting decimal 32 from its ordinal value. This procedure works
assuming an ASCII churacter set. ’

i

Function Compare(VAR first, second: string): boolean;

This function converts the two input strings to upper-case, thea compares
them, returning true if they are the same, false otherwise. The caller of this
function should note that the strings are passed by reference, so they will be per-
manently capitalized.

Procedure NewLines(count: integer);

This simple procedure iterates a loop count times, calling a wrsteln each time
to print out a new blank line.

Procedure ModWast(seed: integer);

This function is used to give a pseudo-random short delay. The input
integer seed, presumably something fror~ & random genmerator, is put into the
range 0 to 200 with a call to mod, (this is ihe reason for the function’s pame),
and then a do-nothing for loop is er2.uted as many times as the result to give the
short delay. One use of this is when we need to get two random numbers at the
same time. The first call to random will read the system clock, and since the call
takes a constant amount of time, the next call to random will always return a
number with the same relation to the first. If we call ModWait(seed) in between,
then the first number will bave some sort of randomizing eflect on the choosing of
the second one.

Function ListLength(List: ILsst): integer;

This function finds the length of a partislly or fully filled variable of type
ILsst. 1t simply steps through the list until it finds an entry where the name field
has either "nonel23", NONE123", or None123”. This is our pre-defined stopper
value, and is put into the database.

Procedure BuildString(VAR FinalString. string; NewChar: char);

This procedure is used to bulld up a string one character at a time. It is
used in TsmeRead, where we have to convert a stream of incoming variables of
type char to ope string. It Is called once for each mew character. The string
being bullt Is passed into FinalString, and the new character to be appended to
the end is passed into NewChar. This procedure allows the backspace key to be

.......
...........
...........

[t %)

. . ol
8- W g e s ey g by gy




! DARAEN

-’

’l‘l’.'

-
:

RN

. 8. LN DAL

S
N

0wl PN,

ey

s,

—
.

used as normal. It will delete one character off the end, and will write out the
backspace to the screen.

Function TsmeRead(VAR result: string): integer; v

This is used to simulate & Pascal readin, to be used where some indication of
the player's response time is needed. TsmeRead reads input as a stream of char-
acters, passing them one at a time to BusldString with psrameter result. This
means that at the end of execution of TimeRead, the reference parameter result
will contain the entire string.

When TsmeRead is first called, the internal clock is read with a call to the
library function Time. At EOLN (end of line), or after two characters have been
typed, the time is again read. The difference LowStop - LowStart is the number
of clock-ticks it took to type two characters, or to type the Return key. The
high-order bits of the clock, HighStart and HighStop are ignored here.

It was found that once in a while the clock would start high, count to Maz-
Int, and start at negative MazInt before being read again. This is checked for
and taken care of by the last sf-else statement.

Procedure RemoveBlanks(VAR stringl: string);

If the string parameter string! has any trailing bla:." nr return characters,
they will be removed by this function. White~ spar: not a' the end of stringl
will not be removed.

Procedure Strip(VAR stringl: string);
This removes all non alpha-numeric characters from stringl.

Function CheckAnswer(VAR answer: string; Possibles: NewRec): boolean;

A NewRec, declared in the file ItemFiler$, is a record of one database ele-
ment, or one element in the /nfoList. Among other things, it contains an array
field called NewRec.names. Each element of this array is a possible correct
answer for the particular item associated with NewRec. CheckAnswer capitalizes
both the string-to-be-checked answer, and the possible names found in Possibles.
All non-alphanumeric characters are also removed. If answer matches any one of
the names found in Posssbles or a concatenation of the two names in either order,
then CheckAnswer returns true, otherwise false.




8. The File ItemFiler3

Itemfiler$ is another game module (unit in UCSD Pascal) that is linked with
the main game program G/.IVAN. Itemfiler$ contains procedures and varisble
declarations that are vital to running of the game. In a nutshell, the primary role
of Itemfiler® is to interface between the game program and the upper disk drive
which contains games images and information vital to the game. It also has
made variable declarations that are globally accessible to G/.IVAN. These vari-
ables most generally have to do with the uynamics of graphics manipulations in
the game.

IMPORTANT NOTE: This module is highly DEVICE DEPENDENT since the
many graphics procedures and varigbles defined here are designed specifically for
use on the TERAK. If you plan on transferring FLASH IVAN to another
machine, st ss likely that most of the alterations in the FLASH IVAN game code
will most likely occur in this module. Because ITEMFILERS s highly susceptible
to future alteratiors, we have described varsables and procedures sn greater depth
than we have elsewhere.

8.1. Important Constants

MAXINDEX = 100:

MAXINDEX indicates the upper bound ~¢ the array
INFO_LIST described below,

MAXNAMES = 8.

MAXNAMES sets the array in the record defined below to a
range of 3.

8.2. Important Global Variables

INFO_LIST : This is an array of records, each of which has a one to one
correspondence to an image in the game. Although explained
briefly in the GAMEUNS3 module, we go into greater detail here
since this is where it has been originally declared. Each record
is structured as follows:

type NEWREC = packed record

NAMES: packed array[l. MAXNAMES] of strl5;
BLOCK: tnteger;
FULLSCREEN: boolean;
TOPTHIRD: boolean;
MIDTHIRD: boolean;
30

o
A ‘
» LU . .




CROSSHAIRS :

SMALLSC :

BOTTHIRD: boolean;

end;

Note MAXNAMES equals 3; Names(1] and Names/€] hold the
game names (up to 15 characters) of a particular image.
Names[$] holds the fotofile name on which the image is located.
BLOCK is the block number which corresponds to the fotofile
name; after an image directory has been created its fotofile
block location on the upper disk is automatically stored in
BLOCK. By accessing a fotofile be BLOCK number using UNI-
TREAD a game image can be accessed 3 to 4 times faster than
if it were accessed by name using the usual Pascal file I/O. This
makes for 2 faster, more interesting game. The remaining fields
in the record, FullSereen, TopThird, MidThird, and BotThird are
set to TRUE or FALSE depending upon which part of a fotofile
an image is located. These fields enable the game creator the
option of putting up to 3 images on fotoflle, thus saving disk
space. Record indices (in INFO_LIST) 90-100 have been set
aside for gaming system images such as the opening Eagle ani-
meation. Record indices 1-89 are reserved specifically for the
actual game images (of Aircraft in the prototype game).

is of type packed array[0..59,0..59] of boolean. It is a graphics
buffer which holds the targetor icon which is flashed to the
screen just before a game image is flashed to the acreen.

is a packed array|0..28351] of boolean used as a graphics buffer
which is roughly the size of one third the screen. This buffer is
used in the instance of a game image stored on a specific third
of a fotofile which must be flashed to the screen. SMALLSC is
actually larger than a third of a screen of bits (80 X 320)
because it needs to accommodate a UNITREAD call which uses
a BLOCK type format in reading information from disk. Thus
the size of SMALLSC is exactly 7 blocks long (28352 bits). It is
stored in a one dimensional array for the sake of convenience
and clear understanding. When an imsge is read into
SMALLSC, it is read in as a linear string of bytes. In addition
to this complication, the very beginning of a thirdscreen image
won't always begin at the beginning of the buffer SMALLSC,
s‘nce UNITREAD which begins reading from a Block number
cannot always start reading from an exact bit location where an
image's string of bytes begins on disk. In the case of a TopThird
image, there is uo problem in this case, since its Block number
corresponds exactly to its starting bit location. However, in the
instance of MidThird or BotThird images whose starting bit




.
..............

.................

SCREEN :

CLOCK_INT :

HI_LIST :

locations do not exactly corrspond to a BLOCK number on disk,
they are UNITREAD from a block number before their starting
position. Although they easily fit into the oversized SMALLSC
buffer, they do not begin at the beginning of SMALLSC. By
keeping SMALLSC one-dimensional, offsets to the beginning of
an image in SMALLSC are made easy to calculate.

is a packed array|0..239,0..319] of boolean; SCREEN acts as a
graphics buffer with each boolean element mapping to a particu-
lar pixel on the TERAK screen. If a game image is of type
FullScreen, it is read directly into SCREEN. If not, the game
image is first read into SMALLSC and then bitmapped and cen-
tered on SCREEN. Whatever SCREEN contains can be pro-
jected to the screen with the command
UnitWrite(S,SCREEN,68). SCREEN can be removed from the
screen using the command UnitWrite($,SCREEN,7) or
Page(OUTPUT).

is a case variant record which is used in procedure PAUSE.

is an array of ten records containing the names and scores of the
ten top scoring players. This information is read in from the
upperdisk (the images disk) into this array and compared to the
score of the current player at the end of each game. If the
current player's scorte is within this range of scores, a new
HI_LIST is created with his name and score inserted in the
appropriate spot and written back to disk. See procedure
HISCORE.

8.3. Procedures in JtemFilerS

Procedire Delay(N : integer);

Delay is a simple procedure used to create time delays. A FOR loop is sim-
ply executed N times. It is estimated that the number of seconds of delay is
equal to N / 100. So for example Delay(400) will simulate a 4 second delay.

Procedure FromDisk(Var II_list : ILIST, I_name : str15);

FromDisk

reads the image directory (in the case of our game,

"#6:NEWNAMES”) from the upper disk into the array INFO_LIST.

e AN e e T S e e S e e T

LI '.'5'4'-“0'. - .
RIUAAAILNE A AR S M R A A N A A ML I A S R

B L .
et e e e il

O I D R S

P

_" RPN ]
O < e
. .

n RN .

e



PRI A

Procedure Dssplay(N : integer);

Display will display the Nth image in the array INFO_LIST on the TERAK
screen and leaves it there. It is up to calling program to remove it from the
screen; we reasoned that this implementation gives the calling program more free-
dom as to how long the image is to be displayed. Display is very much device
dependent, i.e. it is designed to run specifically on the TERAK. This is also true
for the entire ITEMFILER3 module. If you plan on transferring FLASH IVAN
onto a machine other than the TERAK, Dssplay is the procedure that will more
than likely need revamping. Because of this procedure’s importance, we have
outlined it in greater detail than we have other routines:

-will first clear the screen PAGE(OUTPUT)
-then load the screen buffer SCREEN with on bits FILLCHAR(...)
-then bitmap CROSSHAIRS onto SCREEN PAINTBLOCK(...)
-then turn on SCREEN UNITWRITE(...)
-for a second DELAY/(200)
-then turn off screen UNITWRITE(...)
-then will read the FOTOFILE that the image is

-- on from disk UNITREAD(...)

-IF FULLSCREEN = TRUE reads directly to SCREEN
-ELSE reads to SMALLSC

-- and then offset and bitmapped to SCREEN

-- then the image is projected to the screen

Functior Pause : boolean;

Pause is currently not used in the game and is therefore commented out. Its
function is to wait at most 10 seconds for a user response. If a user responds
within 10 seconds, control is immediatedly returned to the calling program and
Pause returns FALSE. If a user hasn't responded within 10 seconds, Pause
returns TRUE.

Note : uses the case variant record Clock_Int described above

Procedure HiScore;

First, reads in top ten scores from file "#5:HISCORE.DATA” (on upper
disk) and stores them in array Hi_List. Next, Displays HiScore graphic on the
screen (Info_Liet(100]). Next, inserts and sorts current score SCORE with scores
in Hi_List; then outputs Hi_List array to the screen, and finally writes the
modified Hi_List back to disk.



PROGRAM MAINTENANCE

9. The Disks
The Flash Ivan Gaming System consists of three essential disks:

1. " The Game Code Disk —~  goes in bottom disk drive
—~  holds the game code
—~  holds the stats file
2.  The Images Disk —  goes in the upper disk drive
—  holds game spectfic information:
Fotofiles,
the image directory,
instructions,
and the HISCORE.DATA file
3. The Administration Disk -- goes in the bottom disk drive
operating on either of the
other two disks in the top drive
—  used to make a new game
-~ and to access and format game stats

10. Organization

With so many different disks floating around, some on the test site and some
being used to make game enhancements, we have realized the necessity for tight
organization among us. As we have worked on the program, we have adopted
three important conventions to better organize ourselves. Firstly, we have chosen
the following naming system:

"TOMCAT"[n] corresponding to game code disks

"IVAN_UP"[n] corresponding to images disks

"ADM” corresponding to the administration disk
where n represents a number. Secondly, we keep an exacting written record of
each disk: the version of the game on it, where it is, and other vital information.

Thirdly, we have designated master disks holding the most recent game enhance-
ments:

"BIGBIRD” -~  holds most recent game code

"FOTOS1” —~  bolds the most recent image directory, " NEWNAMES"
as well as Fotofiles 1-30
"FOTOS?2" —  holds the remsinder of the Fotofiles, Instructions,

Initial Hiscores file, etc.

We have made these conventions for our own organizational purposes; you may
or may not want to follow them exactly depending on your own tastes.

-
}
>.-




™

11. Disk Handling

In the suggestions that follow, we separately discuss the preparations needed
for each disk in the FLASH IVAN Gaming System before and after it goes to the
gaming site.

11.1. The Game Code Disk -- Before

The game code disk should have a minimal number of files on it before col-
lec *nug performance data. The two most important files are SYSTEM.STARTUP,
containing the game code, and GAMES. DATA, storing game stats. In order to
accommodate new stats written to disk after each game, the game code disk
should be Krunched (see P-System details) with GAMES.DATA as the last file on
the disk. This will allow the statistics file to utilize the remaining disk space the
most efficiently. Lastly, it should be checked for any bad blocks.

11.2. The Game Code Disk -- After

When a game code disk returns from collecting data at a testing site, our
primary interest is to access the statistics file GAMES. DATA and then format it
into something readable. The following sequence of instructions make this tedi-
ous task less burdensome:

Put "ADM" Disk in lower disk drive
Put game code disk in upper disk drive
LUheck game code disk for bad blocks
Get listing of game code disk.
-- How big is GAMES.DATA?
-- Is it still the last file on disk?
S5a. Be sure NEWNAMES is on ADM disk
5b. Clear ADM disk of any unnecessary files
-- most notably old CONFIDENCE.TEXT and
LATENCY.TEXT files
Krunch ADM disk
Execute Makestats (be patient; it take> a while to complete)
Check to see if new CONFIDENCE.TEXT and
LATENCY.TEXT files are on ADM disk
-- then print them out
9. If you wish to save these files,
transfer then to the STATS disks
10. Erase them from the ADM disk
11. Run game code disk with image disk in upper drive
-- selecting the version option at the beginning,
see if the version is up to date

S W

% N o

11.3. The Images Disk -- Before and After

The Images disk should be checked for bad tlocks, frequently. Since data is
constantly read from this disk duricg game time, it absorbs a lot of wear and
tear. If ever you Krunch the disk or make any changes to it whatsoever, it is




o b T B SO T 1 TR R/ N Al Rl A AR A

-‘ ‘
L
.
LAY
o
.
~

extremely important that you "convert” the disk afterwards. The "conversion” i
function can be called from the MAKEDIR program on the "ADM" disk and is

LA "—.V “-’ .‘- "\ \'. "- 0T

described in detall in the Flash Jvan Utslities Documentation.

.‘..‘.

Te e e v,
A

oy

o~ ,".f ;.'

N

ek R

vew - e

/",_‘.‘

e
R AT YU S AP S
.._.f Ly o Lat Y .".-‘.,.t‘_'-.,.*l‘sl'*



o Tl oV o

v

TaT a0 7

+ l,""l .‘ . '," ' "l "v..t ... A
MK SAR OGRS et SO '._‘A.h LAI_A'LA" '.‘ ,‘." ‘s’ S:A_.‘L._.+AJ %Mwm AA_;IAAAA_A

''''''''''
..........

References

Bowles, K. L. (1977). Microcomputer problem esolving weing PASCAL. New
York: Springer-Verlag. )

Grogodo, P. (1980). Programming in PASCAL. Reading MA: Addison-Wesley.

SofTech '(1970). UCSD PASCAL Vesrsion II: A prodect for mini- and micro-
computers. San Diego CA: S8ofTech Microsystems.

Wagener, J. L. (1080). FORTRAN 77: Principles of Programming. New York:
Jobn Wiley & Sons.

-----------
..........

R IR a.')/"f".ﬁ.‘

- - P
!‘_. et

. PN

aca - -

P . . e s
RN P IR

i

P

X @ e

e
s e

Za

T vt
SRS
.“.A‘.A.‘:.J

2.

. ..
. oSG
Te etilatele
CRTASR TN
aa 2ap e 6 1

1 4
W
PRI §

PR AR
SRR
PR I A O |

. o» e
e e . «

¥ .'.. -7
1

PO AR A

.. ... o ...
s

'.:-I
'0 .I
'.',‘1

\\



AR
A Wttt p e

.r-f-c.n\\.r........-.-

-
o

RO ......-..... £ NN A
IR B DX NY S B

®
g
>
3
-
B
<
e
)
o
fue
R
<
.m
o
a
L4
a,
a.
<

-
]
'
Ny
.

B AR

P A T Tt

- e~
.

o Ta® TR T T

AL B Bd
ot e

T TS T T

A-0

T L.
»

T Tl TN T TR TS T AT

ST

MARA R T

AR A AR

e

A a3 Rt

-~ o . T P AT T S S T -4
..-Ez«.«...ﬂ«.,..: v e Y

Lt

Rt Relaidesd S 'of S

L R ALT P LR |

-

-8, 1 8,



S T A A R e N L A L A P P R S M A S o o R MR o AR 5 L RS AT L oty R i o

{$s+)
PROGRAM Flashivan;
uses {$U ITEMFILERS.CODE} ItemFiler$, {$U GAMEUNS.CODE} GameUns;

CONST
DateMain == 'Nov 183, 1084... fix "ANSWER”, and keyword loop’;
NAME = 'GAMES.DATA’;
PRACSTART = 0};
NUMBERPICTURES == 89,
ORD_ESC = 27;

TYPE
nametype = string(15);
sstype = string(11);
scale = 0..100;

gamestats == record

pame . nametype;
€S : sstype;
date : nametype;
latency : packed array[1..numberpictures] of integer;
confidence : packed array(l..numberpictures) of scale;
correct : packed array|l..numberpictures] of boolean;
end;
VAR
TotalShown,gameloop : integer;
average acore,total_lat,
total_conf : real;
scoresfile : file of gainestats;
Minifoto : packed array[0..319,0..26] of boolean;
currentgame : gamestats;

{‘.““‘“‘.““‘l“.t..‘..t.‘...‘0‘..“0O".t“t“‘..‘.......‘..‘.‘..“.

procedure PAINTBLOCK(VAR SOURCE; SRCWID, SRCX, SRCY : INTEGER;
VAR DEST; DSTWID, DSTX,DSTY,CNTX,CNTY MODE,GRAY:INTEGER);
EXTERNAL;

{Assembly-language sound routines...}
procedure CLICK?2; EXTERNAL;

procedure TIMEPI; EXTERNAL;
procedure ERROR; EXTERNAL;

procedure afterpicture(right:boolean;conf:integer;lat,index:integer);
FORWARD;

procedure SingleTrial(ListIndex:integer; ifprac : boolean);
FORWARD;

Lty Al

-
sy
~.

"l'.'.. .. 'n * 'l

ol e




P R e T e I A - D U AL - Toe T

procedure OutputStats; FORWARD,;

{“.. e “‘...‘.““...‘..i““t.......t‘.tl".‘Q..‘...‘.“...“....‘.‘.“.‘.}

SEGMENT PROCEDURE ANIMATE;
VAR XZERO,YZERO : INTEGER;
BEGIN
UNITWRITE(S,SCREEN,7); { DON'T SEND SCREEN TO CRT }
{PAINT IN TO THE MINIFOTOS)
UNITREAD(5,SCREEN SIZEOF(SCREEN),INFO_LIST|91) BLOCK};
PAINTBLOCK(SCREEN,320,0,0 MINIFOTO,320,0,0,320,28,0,-1);

PAINTBLOCK(SCREEN,$20,0,30, CROSSHAIRS, 80,0,0,60,60,0,-1);
{ FLASH IVAN )
{ PAINTBLOCK(SCREEN,$20,0,120,SCREEN, 320,0,130,320,60,0,-1); }

{ TITLE SEQUENCE STARTS HERE }

{ DISPLAY EAGLE )
PAGE(OUTPUT);
UNITREAD(5,SCREEN SIZEOF(SCREEN),INFO_LIST{90}.BLOCK);
UNITWRITE(3,SCREEN 63);

UNITREAD(5,SMALLSC,SIZEOF(SMALLSC),INFO_LIST{91) BLOCK +8);
XZERO:=84; YZERO:=3; { PLACE IN SMALLSC WHERE THIRDSCREEN REALLY STARTS}

{ EAGLE ANIMATION1}
PAINTBLOCK(SMALLSC,320, XZERO,YZERO+15,SCREEN, 320,101,50,100,55,0,-1);
UNITWRITE(3,SCREEN ,83); -
DELAY(S0); { EAGLE ANIMATION2}
PAINTBLOCK(SMALLSC,320, XZERO+100,YZERO + 15 SCREEN, 320,101,50,100,55,0,-1);
UNITWRITE(3,SCREEN 63);
DELAY(50);

{ EAGLE ANIMATION3)

PAINTBLOCK(SMALLSC,320 XZERO+200,YZERO+15, SCREEN, 320,101,50,100,55,0,-1);
UNITWRITE(3,SCREEN, 83);

TIMEPI;

{ EAGLE ANIMATION?}
PAINTBLOCK(SMALLSC, 320, XZERO+100,YZERO +15,SCREEN, 820,101,50,100,55,0,-1);
UNITWRITE(3,SCREEN,63);

DELAY(50); { EAGLE ANIMATION1}
PAINTBLOCK(SMALLSC,320,XZERO,YZERO+15,SCREEN,320,101,50,100,55,0,-1);
UNITWRITE(3,SCREEN ,63);

UNITREAD(5,SMALLSC,SIZEOF(SMALLSC),INFO_LIST(91} BLOCK +12);
XZERO:==128; YZERO:==§;
PAINTBLOCK(SMALLSC,320 XZERO,YZERO+5,SCREEN,320,0,121,320,65,0,-1);
UNITWRITE(3,SCREEN,63);

END;

A-2

-
‘"T?“F“‘_ Db b il 2S00 S s 20 STt 000 JHE 0L SR AN sl i sl ol B PN B hte o Ml AU RPR B SN WE A D IS ] P AT

. . ]
. IR
PR o

o ete w0 tadl
PN Y
PRI o .
R ¢ "

":'-': ‘: '.--‘:": ',‘
n’. ., /. f, t" g" o" .
et

) S

g SR
3 Cetatet e

o
ey
'_’J
. .J

.
L. T
e
.

-

o
.
R R IR N S D TR BN PTG I VPR PR NNY 4 5 i




.............

-
h":: 0808888008605 08000000000000088
. SEGMENT PROCEDURE PRACTICE
0040000000002 000000008000809
- }
- SEGMENT PROCEDURE PRACTICE;
- VAR
~“ N i, Ix, millisecs, FakeList,
Listindex, browse_jndex,
confidence : integer;
correct : boolean;
resp : char;
resp_string : string;
procedure INSTRUCT;,
% Var
o I_String : string;
~ directions : text;
i : integer;
resp : char; :
BEGIN o
page(output); -
reset(directions, '#5:INSTRUCT.TEXT'), o,
while not EOF(directions) do f'.'
begin e
fori:es= ] t0 21 do 3]
begin X
if not EOF(directions) then e
begin ey
readIn(directions, I_String); ‘ﬁ;
writeln(]_String);
end; .T
end; o
writeln('"HIT <RETURN>"); ey
- readin;
= end; o
— close (directions); -
¥ END; { INSTRUCT ) R
o procedure PLAY3; :%
S begin v
. PAGE(OUTPUT); -
GOTOXY(29.8); WRITE('Be Prepared to Answer’); D
:-f G0TOXY(28,9); WRITE('the following 3 examples’); o
- GOTOXY(17,11); WRITE('WATCH THE CENTER OF THE SOREEN FOR AIRCRAFT'); oy
- GOTOXY(20,14), WRITE('Hit <RETURN> When Ready To Begin'); e
v READLN; e
T for ListIndex :w= 95 to 97 do { Loop over practice pictures ) —
begin oo
% FAKELIST = FAKELIST + 1; iy
< (o
A-3 e




.............

Display(Listindex);
SingleTrial(FAKELIST true);
page{output);
end;
end; { PLAYS }

procedure ANSWER( VAR Al : STRING; X, CONF_KEY : INTEGER );

begin
DELAY/(2500);PAGE(OUTPUT); ,
GOTOXY(32,2); e
FILLCHAR(SCREEN SIZEOF(SCREEN),0); S
{ AIRCRAFT } =Y
PAINTBLOCK(MINIFOTO,320,0,0,SCREEN,320,0,22,121,8,0,-1); Y
UNITWRITE(3 SCREEN 83); R
DELAY/(2000); P
FOR | := 1 TO X DO { AUTOMATE RESPONSE TO PROMPT } :;.;;}'
BEGIN
CLICK2;CLICK?2; WRITE(AL1(1)); o
DELAY(70); CLICK2;CLICK?2; DELAY(30); S
DELAY(1500); o
{ CONFIDENCE RULER } b
GOTOXY(%.5); WRITE('LEAST"); oy
GOTOXY(0,6): WRITE('CONFIDENT"); R
GOTOXY(73,5); WRITE('MOST"); )
GOTOXY(70,8); WRITE('CONFIDENT"); )
PAINTBLOCK(MINIFOTO,320,0,8, SCREEN,320,0,75,120,20,0,-1); l"‘i
UNITWRITE(3,SCREEN ,83); o
{ GIVE CONFIDENCE PROMPT} £l
PAINTBLOCK(MINIFOTO,320,125,0,SCREEN,320,0,111,135,6,0,-1); oo
UNITWRITE(3,SCREEN 83); -
GOTOXY(32,11);
DELAY!/(3000);
CLICK2:CLICK?2;
WRITE(CONF_KEY);
DELAY(100);
CLICK2,CLICK?;
DELAY(500);
WRITELN;

(ees00nccees Simlulates SingleTrial ssssssesses)
FAKELIST :ew FAKELIST + 1;

millisecs := 1556; RN

correct := TRUE; e

if (conf_key == 0) then confidence := 100 : ';'_;f;‘

else confidence := conf_key ¢ 10; " ',_71

TotalShown :== TotalShown + 1; o

fisshscore :== flashscore + 1; G

_ gotoxy(0,14); o
| writeln('RECOGNITION CORRECT.’); o

| writeln('"Response Time == ’ millisecs/1000:4:2," seconds’);
afterpicture(correet,confidence, millisecs FAIKELIST);
flashtotal := flashtotal + 1;

[ A'4

_——

. et
AP a e LRI AR B AR e B T B S e e A RIS T BTt S A e X e A LT RR RS laru h S A ATE RIS B Bt B T O R SRR R A i Bt 20



‘0. 1o e
Ve '_.'_. K

’

LI TR

; AR R SRR

OutputStats;
writeln;
write(" < Hit RETURN for next Aireraft >°);

READLN;
PAGE(OUTPUT);
END { ANSWER };

{ Driver for PRACTICE }

gotoXY(26,8);
write('HIT RETURN TO BEGIN GAME");
resp_string = *’;
',
reset{keyboard);
readin(resp_string);

if (resp_string == 'boatman’) then
begin

{ while not <ret>, <space>, or <esc>... (UCSD Pascal returns the same
character for <ret> and <space>) }

while ((resp <> chr(32)) and (resp < > chr(27))) do
begin
case ord(resp) of

(.“ct.tt
100, 68 {'d’, 'D’ ...display a picture} :
begin
page(output);
writeln("What picture do you want to see? (give index number) ’);
readin(browse_jndex);
if ((browse_index > 0) and ( Display(browse_index);
writeln(info_list[browsze_index].Names(1]);
writeln(info_Jist|browse_index]. Names|2]);
end
else
writeln('Invalid index number. ’);
end;
sseses)

104, 72 {’b’, '"H’ ...show the High Scores} :
begin
page(output);
HiScore(”, 0);

end;

109, 77 {'m’, 'M’ ...call memavail() } :
begin
page(output);
write('The memory available in segment procedure Practice is ');

A-5

LT

| T e
AR R A
“e'e’ e’
I Eﬁ_‘l'l‘.' » >

P A
ey .‘.".:r':
ot f '

2 e e

¥

o

R
L
PRI L A

PRI TRORERY

e adad

P S

]«IUQF,;usnz "

P BRGRAAY

. { e
- ‘l

. y e .
e AL
MR

-

|

-

~

R R R R R R e B R N R ATE &l op prupm >o - TN Sl A = Alh St t o
Y CHRERA AN IASCE R A M A R A M Sea Pl e T R AT I ST T} B e T N N T T T T T T Y



writeln(memavail, ’ words.’);

end; :
118, 86 {'v’, 'V’ ._show the current dates of the game files} : Vo
begin
page(output); S
writeln('G/.Ivan version of ’, DateMain); AN
writeln('ItemFilerS version of ', DateltemFiler3); . :::-3
writeln("GameUn3 version of ’, DateGameUn3); U0
end; B B
end; { ...of case... } :i
writeln; -
write('Hit <ret> to goon ’); -
read(resp); .
end { ...while... };
end { ...if not keyword... };
if (resp <> chr{27)) then { not an <esc>, so show all instructions... } -
begin el
INSTRUCT; e
PAGE(OUTPUT); S

GOTOXY(27,7); WRITE('Be Prepared to Observe');
GC"'OXY(25 8); WRITE(’3 Automated Game Examples’);
G J.0XY(25,10); WRITE('Hit <RETURN> to Continue.’);
REAJLN;

confidence := 0;

FAKELIST := 0;

DISPLAY(92); i
ANSWER(INFO_LIST{92).NAMES!2],4,0): S
DISPLAY({93); Sl
ANSWER(INFO_LIST{93].NAMES|2],13,0); S
L.
DISPLAY(84);
ANSWER(INFO_LIST(94).NAMES|2),5,1); o
PLAYS; - R
end; : !
END; { FRONTEND } e

{t.t...tc..ttt.ttlt‘.‘otlit.‘t.‘.‘tt..tc-ttta‘tt.l‘..o..ooo‘..“t.‘tt...

SEGMENT PROCEDURE HELLO composed of the following: .

Shows the player the "privacy act” (text written into a fotofile), gets




Tt Pal Nyl RlaVe "a"aTs"aTa 73 P A A el L e w WL p.t T e R A e T TR e T T
. - - .- - - . e oo e RN e R

the playet’s name (making sure it is 15 characters or less), gets the
Social Security s (and makes sure it is 11 characters or less), and gets

the date. It then shows it's results to the player, allowing changes.
‘.‘.‘..O.‘..‘.‘."...“.‘..........t.‘."l..‘Ol.l'...l....‘..‘...“‘.‘...O}

SEGMENT procedure HELLO(var player:nametype;var date:{date}nametype; e
. var SS:sstype); -
! var str : string;
' resp : char; o
| - socsec : hametype; "

procedure getdate(var date: {date}nametype);
var

str : string;

| begin 1
. str == vl
repeat o
if length(str) > O then writeln('DATE IS TOO LONG °); e

WRITE('DATE ( Day, Month, Year) :°);

readin(str);
i until ((length(str)>0) and (length(str) < 16));
. date == str; >
. end; AR
N
\
I begin {of Hello— main bod -
B PAGE(OUTPUT); AT
UNITREAD(5,SCREEN, SI..EOF(SCREEN),INFO_LIST(98).BLOCK);
UNITWRITE(3,SCREEN, 63);

) GOTOXY(0,30); -
;i WRITELN('Hit <RETURN> for next page.’);
} READ(RESP);
. PAGE(OUTPUT); betes
- UNITREAD(5,SCREEN, SIZEOF(SCREEN),INFO_LIST(99]. BLOCK); -
- UNITWRITE(3,SCREEN, 63); o
N GOTOXY(0,30); e,
3 WRITE('HIT <RETURN> WHEN DONE''); o
’ READ(RESP); o
- repeat ~.
' page{output); ‘
- str == '; R

repeat -
D if length{str) > O then s
E . writeln('The name is too long. It must be 15 characters or less. ’); L
- write'NAME (Last name, first initial, middle initial) :’);
8 readin(str);
- until ({length(str)>0) and (Jength(str) <18));
R - player :== str;
: T
‘v str ce= ', R
i A-7 ;

) N ndladhodat ablar dol duk i




repeat
if length(str) > O then writeln(’Social security number is too long.’);
write("SOCIAL SECURITY # :');
i readin(str);
until ((length(str)>0) and (length(str) <12)); . ’ .
8S == atr; o
GetDate(date);
writeln;{ writeln;}
writeln(’ Is this correct? :');
writaln;
writeln('NAME : ', player);
writeln('S.8. NUMBER :'SS),
writeln('DATE : ' date {.day,’-'.date.month,’-19’ date.year});
writeln;
. write('ls this correct? [y or n}’);
| read (resp); :
: until (resp in ['y’, Y)); v

PAGE(OUTPUT);
GOTOXY(26,7); WRITE('Are You Ready to Play’);
. GOTOXY/(32,8);WRITE('FLASH IVAN 1');
) GOTOXY(24,10);WRITE('lIf So, Then Hit <RETURN>.’);
GOTOXY(17,12); WRITE('WATCH THE CENTER OF THE SCREEN FOR AIRCRAFT');

GOTOXY(33,15); WRITE('Good Luck!!!’);
READLN;
end;

..“..‘G““......‘.‘...‘.‘..‘........"O“.‘.‘...‘..“‘....“lll“.."..l“...

PROCEDURE AFTERGAME is run after svery game and records the piayer's game to
: the disk under the file name "NAME" (Games.data). This is s filo of type
| gamostats.

'.‘“...‘....‘..‘..‘.....“.“.l..‘““....“‘.......‘..“.‘.'.‘...‘....‘..‘.}

procedure aftergame;

var iscore : integer;

begin
' iscore :ms trunc(score); L
i page(output); -

write(' YOUR FINAL 8CORE : 'iscore :6, pta.’);
writeln(’ YOUR FINAL RESULTS:');

OutputStats;

writeln;

write(’ Hit <RETURN> for HI-SCORES’);
readin;

HISCORE(currentgame.name,iscore);
reset(scoresfile, NAME),

T G, oW e n

repest .
get{scoresfile); e

el na A R Tl it W wd Reln/ Ll bnle MU M Win Eoletdds e sboari b Slafid o e de Wiw



- DAL S U
' PRI AR R

S SESE

¢ TR @ w-=
o e 4 Ne -

AR A A A e e ] m
PRI AR R

Pl

~ Ay Coy Loy cay ey

until eof(scoresfile);

scoresfile® :== currentgame;
put(scoresfile);
close (scoresfile Jock);

end;

4

{.0‘...“‘.‘.““....‘O“..
procedure OutputState- outputs statistical data concerning game performance
in PERCENTAGE CORRECT, AVERAGE CONFIDENCE, and
AVERAGE LATENCY;
GES580085380085820088068%0
procedure OutputStats;
begin

(* Output to the User »)

{GOTOXY(32,18);}
writeln('PERCENT CORRECT RECOGNITIONS : .66,
round(average), ' / ’, TotalShown, ' ’, 100saverage / TotalShown:5:1,'%’);

{GOTOXY(32,17);}
writeln(’AVERAGE RECOGNITION CONFIDENCE : .68,
total_conf / TotalShown:6:1,'%’);

{GOTOXY(32,18);}

writeln(’AVERAGE RESPONSE TIME : "85,

round(total_lat / TotalShown)/1000:4:2," seconds’);
END;

{ooooooto.n‘ootootco.oo.ooa

procedure InitStats - initializes GLOBAL variables for statistical purposes
t‘.“.....‘l“‘.“‘...‘.“}
procedure InitStats;
begin

flashscore :== O;

flashtotal ;= 0O;

TotalShown ;= 0;

score ;== 0;

sverage =0,

total_lay = 0;

total_conf :== 0;

for x :== 1 to numberpictures do

currentgame.latency(x] = 0;

end;

{........‘."“.“l‘s“‘l‘ll‘.‘

Procedure AfterPicture
'...l.lll.....‘.‘..ll.‘.l"“‘}

e L N R Rt AL AL ot Aol A A Sr ] ~r—e 5~y AN Tt N Y TSt e N M N e T e et

.............................................



............................ L O R e L R O I S SR L N E‘.;‘f
- ﬁ
procedure afterpicture; { SEE above for parameter list } =
var x : integer; R
r,rscore,rconf,rlat ; real; S
begin b
with currentgame do L
begin oy
latency(index) ;= lat; NS
total_jat ;= total_lat + lat; T
confidence|index] := conf; . A
total_conl ;== total_conf + conf; T

correct|index] :== false;
if right then
begin

correct|index] := true;

average == average + 1,
end;
r .= 1.0;
reconf := conf/10; rlat ;= later;
if right then

score := score + ((rconf*1030)/(1000+rlat)) + 10

o boe
S A
u

-

P

else
score := score - ((rcon{*1030)/(1000+rlat)) - 10; ..
end; S
end; o
N
<

{O‘..'..ll....".......".

procedure GetConfidence...

o e e o DA
. . e e . .
f DR e A
S e ettt
. ol .
TR AR , JER
AR S . .

This procedure will prompt for the user’s own confidence rating, read it - el
as a character, convert it to an integer, and send it back as the VAR e
parameter "conf” [:
..‘...‘....‘..“““"..} ‘\:_:.'
AW
procedure GetConfidence(VAR conf: integer); Ve
var
c_response : char; S
begin )

{ CONFIDENCE RULER )}
GOTOXY(2,5); WRITE{'LEAST"),

GOTOXY(0,8); WRITE{’CONFIDENT’); S
GOTOXY(73,5); WRITE{'MOST"); oo
GOTOXY(70,8); WRITE('CONFI =NT"); .

PAINTBLOCK(MINIFOTO,320,0,6, SCREEN,320,0,75,320,20,0,-1);
UNITYRITE(3,SCREEN,83);

{ GIVE CONFIDENCE )
PAINTBLOCK(MINIFOTO,320,125,0,SCREEN, 320,0,111,135,6,0,-1);

UNITWRITE(3,SCREEN, 63);
GOTOXY(32,11); S,
read(c_response); { read response as s string }
A-10 L—

e

——=»- g TN Y T w~‘-'111—o=-',—.1~’~ P il e it it PR Gl Sl TP ela® e tied IS P 2t Il BlD Bl inliied Bl I St

Sat
B Rt L ot U SR AP T AR A, AP S, B S, WP, 1)




{*** convert the string to an integer... ***}
while not (ord{c_response) in [9,48..57]) do
‘ begin
l GOTOXY(0,12);
WRITELN(’ You must enter s number from the above set...’); .. i
WRITE(’CONFIDENCE : '); <
read(c_response);
writeln; e
. end; o
| - if (c_response in ['0°..8"]) then —
begin
conf :== (ord(c_response) - ord('0'});
if (conf == 0} then conf := 100
else conf := conf » 10;
end -3
e else conf = 0; i
end { ...of procedure GetConfidence... }; £

{..“‘.‘.“.‘i.‘..ittloi.t“l..“tlt“‘t.....‘l‘.‘.'.ll.".“"‘.“““.......} ‘.-

Procedure SingleTrial; {See Parameter list above }
VAR j ticks, millisecs,confidence : integer;
time : real;
correct,got  : beolean;
guess : string;
resp : char; !
begin ~
TotalShown :== TotalShown + 1; -
for j := 1 to SetSpeed do DELAY(250); R
page{output);
{ AIRCRAFT NAME PROMPT }
I GOTOXY(32,2); '
FILLCHAR(SCREEN,SIZEOF(SCREEN),0); =
PAINTBLOCK(MINIFOTO,320,0,0 SCREEN, 320,0,22,121,6,0,-1);
UNITWRITE(3,SCREEN ,63);
ticks ;= TimeRead(guess);
if (guess = ') then guess := X0 { to insure wrong snswer }

-_ IF IFPRAC THEN -
. CORRECT := CHECKANSWER(GUESS,INFO_LIST|PRACSTART+LISTINDEX])
ELSE
begin
: correct :ac CheckAnswer({guess, Info_List[ListIndex]); o
’. .. end; B

GetConfidence(confidence); { read the user’s confidence }
{ Calculate the latency to answer in seconds, and milliseconds... )
time ;== (ticks/60);
y - if (time > (MaxInt/1000)) then time := (MaxInt/1000); :
{ ...s0 we don’t get an cverflow when converting to milliseconds... } g
milliszes := round(time * 1000); e




WRITELN,;
writeln;
IF (correct) THEN
BEGIN
flashscore :== flashscore + 1;
GOTOXY(0,14);
WRITELN('RECOGNITION CORRECT.');
END
ELSE
BEGIN
GOTOXY(0,14);
WRITELN('RECOGNITION INCORRECT.");
IF IFPRAC THEN BEGIN
WRITE('That was s ' Info_List[PRACSTART+ListIndex].Names(3]);
WRITELN(’ ’,Info_List[PRACSTART +ListIndex).Names|1));
END

ELSE BEGIN
WRITE('That was s ',Info_List[ListIndex). Names(%));
WRITELN(’ *,Info_List[ListIndex].Names(1));
END; { [FPRAC}
ERROR; ( sound for bad response }
END;
writelo('"Response Time == ' millisecs/1000:4:2,' seconds');
afterpicture(correct, confidence, millisecs, Listindex);
flashtotal :== flashtotal + 1;
OutputStats;
writeln;
write(" Hit <TAB> 10 see the sircrafl sgain, ’);
writein(’<RETURN > for next Aircraft ’);

read(resp);

if resp <> chr(9) { The TAB key... }
then begin
readin; { Eat up the "return”... }
end
else
begin
: if (FPRAC) then
| begin
! Display(PRACSTART + ListIndex);

writeln(info_listPRACSTART + ListIindex|.Names(3));
writeln(’ ', info_JistPRACSTART + Listlndex).Names(1]);

writeln; M

- write('Hit <RETURND> for next sircraft '); :

i readin; )
end A
else ',"."
begin Ly

Display(ListIndex); -',":',.:

' writeln(info_list|Listindex). Names|2)); :':-.:Z'

i writeln(’ ’, info_list[Listindex]).Names|1)); L

' writeln; e

write('"Hit <RETURN> for next aircralt '); O

DR

. o
' A-12 Ls
e

e A e e e e e e e e e Ca e % e e Lt e Lt e e e Lt N T, 8 3t et e ATl At .ty m P ‘:’ ‘:.
RS S A R A S A o, P A R A0 T S s s A T A A A



B ' S

R J R

readin;
end;

ond; .

{sesesesesces for 10 second max wait .:',:.-
unitresad(3,resp,1,0,1);
got :a= PAUSE; PO
il gotamfalse then begin i
ERROR; nod
PAGE(OUTPUT) o
OOTOXY 83, IO "TIME EXPIRED"); o
QOTOXY(18,13); "Watch the center of the sereen for next aireraft’);
DELAY(7000); .
lﬂd; N
unnuuunu} ’

end { SingleTrial ),

-
00000000000 000000000003000000000000000000080008000000080000000000000000000080 } -:'::
PROCEDURE Game3; v
VAR ListIndex,PicLoop : integer; P
begin
page(o  put);
{’o.r F.cloop :w= 1 Lo TotalPictures do { Loop over the entire set of pletures ) 01
gin o
Listindex :== PicSoquence|PicLoop]; { get the next index from the random e
ordering .
Display(Listindex);
SingleTrial(ListIndex,falss);
page{output); .
ond; o
score ;m (score + 838.78)¢(1000.0/1077.60); ol
ond { Game3 ); N
r
BEGIN { MAIN PROGRAM ) el
gameloop (= 0;
while gamaeloop = 0 do begin -
Init8tate; '
FromDisk(Info_List, '#5:NewNames'); T
ANIMATE;
TotalPletures ;s (8000 ListLength(Info_List) eees) 43,

ChoosePlsnes{PicBequence);
ShufMe(PicBequence, TotalPictures); e
PRACTICE; '
HELLO(eurrentgame.name,currentgame dale,currenigame.88); e

{ corbin's GETNAME ,GETDATE, confirm in & gift rap } s
4,
ERV

A-13 -







T e WY T W W T W T W T W TR T a4 e T e T e T N e Yy YW Y Ay YLV VTN T TN U OV O L T T "~
A Y TaTh Ca e o ae Yoo ta vt e T Tt T T e T T T T T T Tee T TN CERCET I LRI S SR S IR SR TR T

{85+}
UNIT ITEMFILERS;

{ S8R EESE O ICHIEN SR ESE NS EREES S USSR 0EE000200080080000800800000 }

INTERFACE

{ SS0888300385SESPESORRECRTISERENRRFUNIRESNNNES USRS ENESOEISEES0G00S0SS }

.. CONST ;
DateltemFiler3 == '10-9-84... HiScores no longer asks for "call sign®~ G ‘~‘_ 1
MAXINDEX = 100, Tl
MAXNAMES == 8;
FLAGS == 100; { Fotofile index number in INFO_LIST }

TYPE STRI5 = STRING(18}; ~—
AIM_PIC = PACKED ARRAY/[0..59,0..59] OF BOOLEAN; k.
THIRDSCREEN == PACKED ARRAY/0..28351] OF BOOLEAN; { 7 BLOCKS OF BITS }
SCREENMAP = PACKED ARRAY/0..239,0..519] OF BOOLEAN;
CLOCK_INT = RECORD CASE BOOLEAN OF

TRUE : (VAL : INTEGER); i
FALSE : (BOOLS : PACKED ARRAY/0..15) OF BOOLEAN); —
END; s
SCORES_REC = PACKED RECORD L]
GAMENAME : STRING|[15); i

SCORE :INTEGER; .
END; NN

NEWREC = packed record

names : packed array[l. MAXN2" L. 3] of str.5;
block : integer; S
FULLSCREEN :BOOLEAN; ]
TOPTHIRD : BOOLEAN; A
MIDTHIRD : BOOLEAN; 1
BOTTHIRD : BOOLEAN;
END; boacy
=y
ILIST = array|1.MAXINDEX] of NEWREC; o]
VAR infodir : file of NEWREC; oo
HISCOREFILE : FILE OF SCORES_REC; .
SCREEN : SCREENMAF'; -
SMALLSC : THIRDSCREEN; '.!
CROSSHAIRS : AIM_PIC; E;-::.ji
INFO_LIST : ILIST; R
HILIST :PACKED ARRAY|1..10] OF SCORES_REC; O
. I_NAME : STR1S5; ool
procedure FROMDISK(Var I_Jist:ILIST; I_name:stri$);
procedure DISPLAY( N : integer );
procedure DELAY( N : Integer );
{procedure MEMORY( M : integer );} -
o
L
A-15 __




.......................................................

v

3
.

{function PAUSE : boolean;}

procedure HISCORE(name : str15; score : integer);

7
{ 1880888020202 5C 080002000 CCEERSSEOSRIENRSUNER RS NEER0SS 9808880 ‘)

IMPLEMENTATION

{ ‘“““..‘..“‘.0.....‘.“t‘l.“l““t‘“O..l‘t‘....‘..l.......'.......}

k
3
2
h
i
I

Procedure PAINTBLOCK(Var source; srewid, srex,srcy:integer;
var dest; dstwid,dstx,dsty, cntx,cnty,mode, gray:integer);
(* mode : Qamstore, ]==or, 2==and, 3==xor; +4==comp )

External;

{procedure MEMORY;

- begin

& writeln('PLACE #’M,’ °*,'MEMAVAIL="MEMAVAIL,' SIZEOF(infordir)="',
L - SIZEOF(INFODIR) );

a4 readin;
end;}

procedure DELAY;

: var i : integer;

N .

" begin

. fori:=1to N do;
. end;

procedure FROMDISK;
var H : integer;
begin
reset{infodir,]_name);
FOR H := 1 TO MAXINDEX DO BEGIN
I_list[H] := infodir";
if not EOF(infodir) then get{infodir);
end;
close(infodir);
end;

{ SES0ESSSASNSEESEE SR UREES NI ARSIt 0SS0 8sst eSO RE 080800808808 08s

DISPLAY — Displays a game image on the screen according to it's
index number in II_list. qq

}
procedure DISPLAY;
var NEWBLOCK XY : INTEGER;
begin

.......................
.............................
.

.................



.10 R

' %‘ I ‘.‘ .:A.‘ >

et i rrewv W, BB EISETN V
ORI (RN J ALt

Bad4
.
- oA

SV

AR
.

. » & a0
-;MJ.‘J,‘
.
I
.
e

PAGE(OUTPUT);
with INFO_LIST|N] do begin

fillchar{(SCREEN ,siseof{SCREEN),285);

PAINTBLOCK(CROSSHAIRS,80,0,0,SCREEN,320,129,89,60,60,3,-1);

UNITWRITE(3,SCREEN,83);

DELAY/(200);

UNITWRITE(3,SCREEN,7);

IF FULLSCREEN=TRUE THEN BEGIN
UNITREAD(5,SCREEN siseof{( SCREEN),BLOCK);
UNITWRITE(3 acreen,063);

END

ELSE BEGIN
IF (TOPTHIRD==TRUE) THEN BEGIN
NEWBLOCK:==BLOCK;
X :a= 0; Y:em0;
END;
IF (MIDTHIRD=TRUE) THEN BEGIN
NEWBLOCK:=BLOCK+86;
X :m=04; Y :m= 3;
END;
IF (BOTTHIRD=TRUE) THEN BEGIN
NEWBLOCK:=BLOCK+12;
X : =128, Y :ms 6;
END;
UNITREAD(5,SMALLSC SIZEOF(SMALLSC), NEWBLOCK);
PAINTBLOCK(SMALLSC,320X,Y ,SCREEN,320,0,79,320,80,0,-1);
UNITWRITE(3,5creen,63);
END;
end; { with }
end; {( Display }

0809985004000 88000088008886000308850000088880008800000C800080890900008008

function PAUSE : boolean;
Waits 10 seconds for a user response.
returns control to the program when a response is detected
or after 10 seconds

returns s boolean value
SOONOEB000E00 9000002000004 020600080000060800800800000000800080000608000 }

{--on--..-o.--.o--o

function PAUSE;
VAR LO,LO1 : CLOCK_INT;
HI : INTEGER;
BEGIN
PAUSE := FALSE;
TIME(H],LO.VAL);
LO.BOOLS|0} := TRUE;
WHILE UNITBUSY(2) DO
BEGIN
TIME(HILO1.VAL);
LO1.BOOLS|0] := FALSE;
IF ((LO1.VAL-LO.VAL)>600) THEN EXIT(PAUSE);
END;
PAUSE :=~ TRUE,

A-17

- —T ey
PR
S
it
PR

-~ L o
i AT
PSS )

o et e e

s

g Geere
PRl it Rt

LS Bl A S PP
*L .l .‘ .‘ ‘h .l:i.

DR PSS
o4 Aptre e

A



AR

e e N ET W TW TTTE YET T ea¥ 3T a7 T e T e T T VU Ve AT R Ly T e ey T LY LT T T
I R A * A SR > . LR R

END;

......‘O..O.“.l.‘..“)

PROCEDURE HISCORE;

VAR .
INC,H : INTEGER,;
DONE : BOOLEAN;
c_response : char;
str : string;

begin

resst(hiscorefile,'#5:HISCORE.DATA);
for h:== 1 TO 10 DO BEGIN
HILIST[H] :== HISCOREFILE";
IF NOT EOF(HISCOREFILE) THEN GET(HISCOREFILE):
END;
CLOSE(HISCOREFILE);
PAGE(OUTPUT);
DONE := FALSE;
INC := 0;

REPEAT
INC ;== INC+};

IF INC==11 THEN
DONE:=TRUE
ELSE
IF (Hilist|inc).Score < == Score) THEN
DONE:=TRUE;

UNTIL DONE;
IF INC< >11 THEN BEGIN

IF INC< >10 THEN BEGIN
FOR H := 10 DOWNTO (INC+1) DO BEGIN
HILIST[H). GAMENAME :== HILIST|H-1). GAMENAME;
HILIST[H).SCORE :== HILIST[H-1. SCORE;

END;

(..““.‘.“‘......“".“..“..“‘.‘
{This player will be on the list... decide what name to put there.}

page(output);

writeln; writeln; writeln; writeln; writeln;

writeln(’ Congratulations. Your score is one of the ten best so far,’);
writeln(’ and will be put on the list. Would you like to change the’);

..............




write(' name "', name, " to your "call sign” instead? [y orn] ');
read(c_response);

while not (c_response in ['y’, 'Y’, 'n’, 'N']) do
begin
gotoXY(0, 11);
write(’ Please enter a "y” or an *n": ’);
read(c_response);
writeln;
end;

if (c_response in {'n’, 'N’]) then
begin

writeln('Oksy. "', uame, " it is.");
end
else
begin

repeat

repeat
page(output);
writeln;
write(" Please type in the new name (15 characters or lems) : *);
readin(str);
until ((length(str) > 0) and (length(str) < 186));

name ;== str;

writeln;
write(’ Is *’, name, *” correct? [y or n] ');
read(c_response);

unti! (c_response in ['y’, 'Y’]);

end; { of "else” }
.O‘.“.t."t‘tttttl)

HILIST{INC].GAMENAME :=NAME;
HILIST{INC).SCORE := SCORE;
END;

PAGE(OUTPUT);

UNITREAD(5,SCREEN,SIZEOF(SCREEN),INFO_LIST(FLAGS).BLOCK);
UNIT  'TE(3,SCREEN,63);

FOR H :»= 1 TO 10 DO BEGIN
GOTOXY(29,7+H); WRITE(HILIST|H]. GAMENAME),
GOTOXY(47,7+H); WRITE(HILIST[H].SCORE);
END;
REWRITE(HISCURETFILE,'#5:HISCORE . DATA’);
FORH .= : TO 10 DO BEGIN
HISCOREFILE" := HILISTH];
PUT{HISCOREFILE);
END;

A-19

',g A

',," e

PR
i

R P
ST

. e e et

. Loy este te e e
e e e

AN
B A

*

AR
s

v s




’
L
v

e T .
.“tet

WY FTY T e T T EFETY T "W
At S S SRS SRS R L

T e T B VYT ST TVTENR Y
PRSI e

N

"

-V

L U S

~

TJEE

~

LRI

e

Tat q L TR T TN T YT T TN TR N TN YT T

CLOSE(HISCOREFILE,LOCK);
{ HISCORE }

END;

END. { UNIT }

A-20




SO TP LT

. no." L
% SRRV A N R A

.
DRCIEN

‘]-'. ‘.

{$s+}
Unit GameUn3;

INTERFACE
uses {** Menus, *¢} {$U ITEMFILERS.CODE)ItemFiler3;

CONST
DateGameUn3 == *7-17-84, 3:12 PM... by a friend of Lethe‘s Boatman’;
Maxint = 32767; ,
SetSpeed -7 { Speed for games with no speed option ) .
ChooseGame == True; { Allow user to chooss game
All_ln_One == False; { Play the game that shows each and !
every picture once } '
FlashGame { currently not working } L N
= Falge; { Play the game that chooses a picture ’:
from the entire set each time } L
TYPE i
TINY_STRING == string(1); o
CharString == string(1]; { Handy for ¢ . . ete. } H
NameRec == record _'*.'?
Namel : string|15); .
Name?2 : string[15); o
{-coo "a
Name3 : string(15); oo
Name4 : string|15); d
sese e
{ If the number of these fislds lf
is changed, procedure CheckAnswer must also t}
be changed. } b
end; { ...of record NameRec... } hat
(oo-
Picl}"m = array (1. MaxPictures] of NameRec;
2 1)

IndexList == array(l.MaxIndex| of integer;  { This will hold
a random ordering of all possible indices. }

VAR

TotalPictures : integer;  { To bold the total number of pictures }
PicSequence : IndexList; { For the game's order to show pictures)
flashscore  : integer; { Globally keep track of total corre *
flashtotal  :integer;  { Globally keep track of total trial, !

seed : integer; S
response : char; el
game ; char; e
done : boolean; e
x,i ! integer; e
{** menul : MenuRecord; ¢} -
PlaneName : string[16); .

-

.‘{l'

..:'«

A-21 ‘




......................... S
PictureTotal : integer;
PROCEDURE Randomiss(VAR seed: integer); P
FUNCTION Random(VAR seed: integer; Low, High: integer) : integer; i _ )
Procedure Sbuffle(VAR IndexArray: IndexList; Num_of_Pies: integer); o
Procedurs MakeSequence(VAR IndexArray: IndexList; Num_of_Pics: integer); . '...... '
Procedurs ChoossPlanes(VAR IndexArray: IndexList); i
PROCEDURE UpperCase(VAR namel : string); ’:':, :
FUNCTION Compare(var first, second: string): boolean; L :.
PROCEDURE NewLines(count: integer); “
PROCEDURE ModWait{seed : integer); O
Function ListLength(VAR List: IList): integer; L'

Procedurs BuildString(Var FinalString: string; NewChar: Char);
Function TimeRead(Var result: string): integer;
Procedure Removaltlanks(VAR stringl: string);

Procedure 8 ip(VAR rtringl : string);

Function Che xAnswer(var answer: string; Possibles: NewRac): boolean;

..."O...OO‘.....“.O“..'.‘...'.‘)

IMPLEMENTATION

(.."..0.00.‘“.....OO‘.O...‘.‘.O.‘)

PROCEDURE Randomize;
external;

function random;

OONST S
L == 2¢; L .
Cm 217, wel
M == 1024; PR
" "-.
VAR S
fraction : real;
begin
[soe S
realsend == (aba(seed*37.182813)) + 31.415017; -
realsesd ;== realseed / 100; e
realseed (== realseed-trunc(realseed); I
o
A-22 b
e o B et h e S N N N




‘oc}

seed ;== gbe(seed) mod 1000;
seed :== (seed * L + C) mod M;
fraction == seed / M;

AR:.."

random :== trunc({fraction * ((high - low) + 1)) + low);
end;

.......................................

VRS
.
»
e

procedure Shuffle;

{ Shuffle the list by randomly interchanging pairs of entries. }
% VAR
- randl, rand2 : integer;
’ i : integer; .
" index1, index2 : integer; L. -
- temp : integer; :
" begin
: randomize(randl); { start one random sequence }
- ModWait(rand1); { wait & random amount of time (to let the
g clock reach another random state) }
. randomite(rand?2); { start the other random sequence
for i :»m 1 to 200 do { make 2w "andom excharges of elements }
i begin
i index] := random(rand1, - i um_of_} ics);
B index2 :== random(rand?2, 1, Num_of_Pics); { randomly choose a pair of
v elements to interchange... }
e temp := IndexArray|indexl]; R
i IndexArray|index1) ;= IndexArsray|index?];

IndexArray(index?] := temp; { ...and ioterchange them  }

- end { ...of *for” loop... };
- end { ...of procedure Shuffle()... };
' """""""""""""""""""" }
G et )
- Procedure MakeSequence;
, This procedure will fill the array IndexArray with a shuffled
; sequence of index values, for use as a random sequence when each
. ' index should only be used once.
= . }
L VAR
- count], count? : integer;
x begin

{ First, initialize the array to an ordered sequence. )
- for countl := 1 to Num_of_Pics do
"‘ IndexArray|countl} :== countl;



I VP A Nl il S Dol R A Y A N Seed o ot Al 1 e ~
AR A R O NN NSNS N SR oS, SN s o 2l A AR e At s A T e AR T Bt LRI R

Shuffle(IndexArray, Num_of_Pics);
end; { ...of procedure MakeSequence... }

R R P LT RTDEPEEPPPPRPIPPPRPPI )
procedure ChoosePlanes;

{

This procedure will fill IndexArray with 42 index numbers, ¢
corresponding to 7 each Russian fronts, sides, and tops, and their
matching distractors. This *ill only work il they are arranged with
their index values as 14 Russian (same view), 14 distractors, ete.

The corresponding distractor for any Russian picture should have an index
of 14 greater.

IndexList will contain randomly chosen indices, but they will not
be randomly grouped. The list variable should be passed to a shuffling
routine such as Shuffle() after it is filled here.

VAR
randl : integer;
AlreadyCliosen : set of 1. MaxIndex;
NewNumber : integer;
i : integer;
check : integer;

begin
randomire(randl);
AlreadyChosen := |];

for i :== 0 o 8 do { get 7 each Russ. and dist. tops... }
begin
NewNumber := random(randl, 1, 14); { choose a Russian... }

check := 0;
while ((NewNumber in AlreadyChosen) and (check <= 14)) do
begin
' s
] NewNumber := ((NewNumber + 1) MOD 14) + 1;
' check :== check + 1;
ses}
NewNumber := random(randl, 1, 14);
write(".");
end; { ...find an unused number... }
if (check > 14) then -
begin
writeln;
write('ERROR: trouble in procedure ChoosePlanes, cannot find new pumber.’)
writeln;
| end;

AlreadyChosen := AlreadyChosen + [NewNumber];

A-24

'
bt LU NP




¢ . & & 9 R T L T S Sl I I PO S i S I - - L e m e
B - CT e Ta T et LT i e et it h L ate e ace ma = m e e e e a . e - = -

IndexArray{(2 ¢ i) + 1] ;== NewNumber;
IndexArray|(2 * i) + 2] :== NewNumt - + 14; { add corresponding distractor }

end;

{ Get next view set... }
randomise(rand1);
AlreadyChosen = ||;

for i :== 7 o0 13 do { get 7 Russ. and dist. sides }
begin
NewNumber :== random(randl, 29, 42); { choose & Russian... }

f check :== O; ____
| while ((NewNumber in AlreadyChosen) and (check < == 14)) do :
begin
{C.. %

NewNumber ;== (NewNumber + 1) MOD 14;
if (NewNumber == 0) then NawNumber := 14;

) ooo}
' NewNumber := random(randl, 1, 14);
write(.’);
NewNumber :== NewNumber + 28; { put in range of 29 to 42...) N
end; { ..find an unused number... } o
if (check > 14) then
writeln; E
p write('ERROR: trovble in procedure Choosetlanes, cannot find L :w numbe -’) .
' writeln; L
' Bnd; L:..
i AlreadyChosen :== \lreadyChosen + [NewNumberl; r_
- IndexArray((2 * i) + 1) ;= NewNumber; *
: IndexArray((2 * i) + 2] := NewNumber + 14; { add corresponding distractor }
! end; s
{ get next view set... } :
. randomize(rand1); B
. AlreadyChosen := [; e
o fori:=s 14 to 20 do .
D begin
.ot NewNumber :== random(randl, 57, 70); { chovse a Russian... } .
' check ;= 0,
' while ((NewNumber in AlreadyChosen) and (check < == 14)) do e
] b.'in “':.
q {ooo S
- NewNumber ;= ((NewNumber + 1) MOD 14 + 1); L
) oo.} e
NewNumber :== random(randl, 1, 14); ::::‘
‘ A-26 --
::\.::;..".":;;..':.) ‘l‘ ;i.:.l.:.l .Jr::.‘:r‘.lc ;.A -_p\ 'A. _.'\ s_."_‘__"‘ .1 .\ .‘LL:_‘,._A ;_:'V'.\.:'-\':';‘:‘\ ......




write(’.");
NewNumber := NewNumber + 56; { put in range of 87 t0 70...}
end; { ...find an unused number... }

if (check > 14) then

begin
writeln;
write('"ERROR: trouble in procedure ChoosePlanes, cannot find new number.’)
writeln;

end;

AlreadyChosen :~= AlreadyChosen + [NewNumber); .

IndexArray|(2 * i) + 1] := NewNumber;
IndexArray|(2 * i) + 2| :== NewNumber + 14; { sdd corresponding distructor }
end;

ead; { ...of procedure ChoosePlanes... }

PROCEDURE UpperCase;

VAR
i . integer;
holder : integer;
begin
for i ;= 1 to length(namel) do
begin
bolder :m= ord(namell|i));
if namel(i] in ['a’..’z') then
namel|i] := chr(holder - 32);
end;
end { UpperCase };

FUNCTION Compare;

begin
UpperCase(first);
UpperCase(second);
if (first = second) then Compare :== true
else Compare == false;

end;
PROCEDURE NewlLines;
VAR

i : integer;
begin

for i := 1 to count do writely;




ond { New Lines }; -
PROCEDURE ModWhait, u..’
delay : inweger; - 3.:';.
i : inveger; =)
. begin ‘ ] |
seed ;o= abe(seed); o
dslay :=s (seed mod 200); AR
for i ;= 1 to delay do s
delay == delay;
ond { of ModWait }; i
(nnnuunn-uuuunu) ':"
L
Function ListLength; 0 _
This function finds and returns the length of the array parametaer :
List, which is of type PicList. .
) E
VAR
count : integer;
begin
{writeln('Entering ListLength, list(1).name1 is ’,List[1] Names(1]);}
count :em 1.
while ((count <= MAXINDEX) and (List|count].Names{1] <> 'none128’) and
(List|count].Names[1] <> 'NONEI123’) and e
(List{count].Names[1] <> 'None123’)) ’i
do Lt
begin ‘ o
{writeln('<'.count,’>", List[count].Names|1]);} K]
ecount = count + 1; e
end; o
{writeln('ListLength is ’, count, '.');}
ListLength ;== count - 1; e
{writeln("Leaving ListLength'); .
rudln,} .:_f."\.:
end { ...of function ListLength... }; RO
e ) B
RO
....................................... } > A -
Procedure BuildString; e
{ o

A-27




This procedure will allow a string to be buiit character by character.
A <backspace> will have the offect that it should... one charscter will

be deleted off the end of the string.
Each call to procedure BuildString will append one character (*NewThar”)

to the string "FinalString”.

}

var
strien : integer;
StringEnd : CharString;

Vi

begin
StringEnd == ' ’;
strien ;== length(FinalString); { get current end of string }
StringEnd(1] :e» NewCbar;
if (ord(NewChar) < > 8) then { not & backspace }
begin
if length(FinalString) < 20 then
FinalString :== concat(FinalString, StringEnd)
end
else { the character entered is a backspace... }
if (strlen > 0) { ...and there is at least one
character to get rid of... }

then

begin
delete(FinalString, strlen, 1);
write(’ ’,chr(8));

end
else write(’ ');
end { ...of procedure BuildString...};
....................................... }
....................................... )

Function TimeRead;

This function acts like a "readin”, except that it ilso returns an
integer which is the count of terak clock-ticks it . ok the user to
enter the first two characters. It uses the procedure BuildString.

}
VAR
letter : Char;
KeysEntered ; integer;
ElapsedTime : integer;
HighStart, LowStart  : integer; { high and low order starting
clock values }
HighStop, LowStop : integer;
begin
result ;== ",
KeysEntered := 0;
HighStart :== 0; LowStart :== 0;
HighStop = 0; LowStop == 0;
A-28
;": ,\ ..‘.:':‘ -.{\. " . : ,;,'.;',- )\. : ..- . ',‘-'::.'\. '..’\ o ".\‘- v e .‘.n ‘.'s" ERERAR '...\:. '...\.. '.'\. ~ .’..,



L W e e i T A T S e T P P T R T . R e L D A R A W_ & =" & wmu’ o
RTINS T LTe Tl = v T .

RS,

Time(HighStart, LowStart);

- while not EOLN do

- begin

. reset(keyboard);

I. read(letter); n
- KeysEntered := KeysEntered + 1; 0
N BuildString({result, letter); ‘

N
. . if ((KeysEntered == 2) or (EOLN and (KeysEntered < 2)))
) then Time(HighStop, LowStop);
end; { of While loop for reading in characters }
if KeysEntered > 0 then
for x:= 1 to length(result) do if x < == length(result) then
if result{x) == ' ' vhen delete(result,x,1);

- .';.‘:..- l‘_."‘-“;.';‘ )

. if result =" then result :== DOOXX"; ==
o if (LowStart > 0) and (LowStop <= 0)) then {if the clock counted to Max, the M
. started negative...
o ElapsedTime :== ((Maxint - LowStart) + (MaxInt + LowStop)) else

ElapsedTime :== LowStop - LowStart;
TimeRead :== FlapsedTime;
end { ...of function TimeRead... };

RE N AN

Procedure RemoveBlanks;

. Telr e v ¥ 0
'm"' ot
[ N . .

This procedure will remove all trailing <space> and <return> characters
from the end of stringl.

}

S 2 A’ «
N LA

VAR o
i : integer; pi=
[
begin '.-',-.:
whiie ((ord(stringl{length(string1)))) in (32, 13)) T
do { if last character is 8 <space> or a <ret>.. }
=.-a' delete(stringi, length{stringl), 1); { ...then remove it } -
— end { ...of procedure RemoveBlanks... }; -
- . { --------------------------------------- } o
:‘: Procedure Strip; :':‘:.
e VAR v
AR i : integer; Y
- begin
s for i ;== length(stringl) downto 1 do
o begin .
E if NOT (stringl[i] in ['a’..’2", "A’..’Z’, '0..’9"]) then ¥
= delete(stringl, i, 1); I
e end; B
”., s
K. '..:
[ ;.
. A-20

" e,

Ay




s
[ ’

< PENY T T e
PR ]

N
PR

LI

e e

P O R OEE L EEE R } B

Function CheckAnswer; hEA

(. ERRN
This function will compare the string *answer® with all possible correct RSN
answers found in NameRec and return "irue” if 8 match is found, otherwise Ot

it will return "false”. The differences between capital and small letters A
make no difference, for both *answer” and "Poesibles” gre converted to all
capitals. Also, any non-alphanumeric characters in either name (such as
*.", or "/", or space, will be stripped out before the comparison.

begin
with Possibles do
begin
UpperCase(Names(1));
UpperCase(Names(2]);
UpperCase(answer);

Strip(Names(1));
Strip(Names(2});
Strip(answer);

if (‘answer == Names(1)) or (answer == Names|2]) or Y.
tanswer == concat(Names|1}, Names|2])) or ) ]
(answer = concat(Names|2|, Names|1}]))) :

then

CheckAnswer :== true

else . :
CheckAnswer :== false; '

il (answer = ') then CheckAnswer := False;

end { ...of "with Fossibles”... }; ST
end { ..of function CheckAnswer... }; i

{
END ( of GameUnl }.

.........




';. AP S 1 - - a0 e ata T e aT e & - Y - o ‘.)
- -
o "
&
: ;...“‘.‘.‘ll‘.l....."‘...ll‘....‘.‘l.l‘ti‘t‘.t.“tl.......".‘.l.‘.'...ll.l.; E
: ; FLASH IVAN INTRODUCTION ; N
;‘.‘.“"..‘O‘l.‘..“.‘.“0.‘.‘..0‘.“"““.0.0".t‘....‘.“0‘.Q.“'....‘0.0.; s
. ; NPRDC DECEMBER 9, 1983 DAVID M.SETTER ;
. ;‘l...‘.‘““‘...““““..“‘O.‘.t“t".t““t.‘.‘.’.““““““.‘l..‘t..".;
- PPROC SOUND
Y
- ; MACROS AND SYMBOLICS: %
INCLUDE  SYMBOLICS.TEXT £
R INCLUDE  MACROS.TEXT -
INCLUDE  SND_EFF.TEXT e
\' N -
= ; SAVE REGISTERS: R
~ PUSH RS B
é PUSH R¢
- PUSH R3 P
o PUSH R2 o
PUSH RI1 ~ g
- PUSH RO o
~— A
L ; TAKE CONTROL OF KB AND LP_EDB: 3
0 BIC  #100,0#177560 L
2 BIC  #100,04177564 e
: b
; ;‘t.““.‘.tt‘t.ltt‘-- t“‘.t‘..l.‘tt‘t.‘t‘..‘O‘.‘O',..O..‘....‘.“.....‘.‘..; -J
' ; MAIN: :
2 ;.‘.“.“‘l.l [ 3 0.‘..“'..‘......".t“..O‘tl“‘.".‘.‘.‘...‘.‘.‘..“.“"“‘;
MAIN:
o CLR R1
.- 92¢: -
- MOV %008,RS
B MOV  %20R0
ADD  #2RI ™
. 18: )
- PITCH RO,RO,#12,#8 e
- SOB RS,18 Wl
b
T
~ CMP  RI1,%0
v BLE 928
A ’
5
hc' R .. N
'C:Z- K
ié ;‘..“00“.‘.0".‘.‘.‘....O..‘.....tt.‘.‘..O.‘0‘.“"..“.“.‘.0..‘....“..“; g
= ; END OF MAIN. ; R
0 ;..“‘..‘.‘.‘t.t““...“.“‘.O“t‘tt‘t.“.“‘.‘.t“‘“..‘0‘..“““.“..‘..‘; .




BIS  #100,04177560
BIS  #100,0¢177564

POP RO
POP Rl h
POP R2
POP RS
POP R4
POP RS

RTS PC

PG PGP A PrOR oy » I_.. " *

RO S S N N SO S SRS -




:-. ;.“Ot‘t.t‘....“0.‘..‘.l‘t.t‘t““..‘..t.“.0l““...l..‘O.....“.l....‘.‘.“; ~:."\ .
2 : FLASH IVAN INTRODUCTION : o
Al ;.l..‘.l‘.tl".l.llll‘..‘t.“‘...“.lt.ttlt.‘.t...‘.l‘.‘..‘.0....0...0.““.‘.; :_ *
I « NPRDC DECEMBER 9, 1063 DAVID M.SETTER ;
. ;‘O‘.".‘.“lt.‘.00‘0‘...‘..O‘...Ot.‘t“.‘...‘..‘...".“‘..O..t“.‘....i...n.; N i“,.-.
PROC TIMEPI o
N
b : MACROS AND SYMBOLICS: e
s INCLUDE MACROS.TEXT S
- INCLUDE SYMBOLICS.TEXT —
JINCLUDE SND_EFF.TEXT b
: SAVE REGISTERS:
PUSH R- :
- PUSH R4
a PUSH RS .
' PUSH R2 e
PUSH Ri
PUSH RO

; TAKE CONTP~- = KB AND LP_EDB: -
BIC/ 177560 \
BIC G 3177564

Pl Ry

;‘......‘...OQ SSNBESESIBESICE RS ENB RSN DESSRRESSEE SN, ‘....“.O......‘."‘;

. ;s MAIN: ;

.‘-. ;.“.‘..t...tt"&‘tt‘.t.“‘.0‘.““‘.“..‘.‘.0.- Cb4““‘.“.‘.“tl.t..l....l‘; P
L MOV %20R0 R
= MAIN: ‘E-j;:
< PITCH #2,RO,#20,%2 h
:. SOB ROMAIN h
N MOV  #20R1

558:

- PITCH #%2,%1,#10,#2
"y SOB RI,558 o
- T
= :
(S ENEISNNRENEIUINSEIRISERSISINENCERTEILNNETSRRIESERNISNEERNEIS00008400008;
"~ . END OF MAIN. ; e
_r.'-: ;..‘tt‘l.tt‘.t.“.ttt‘tt‘t‘t.t..‘...t.'t.t.t.t...“.l""t‘.....“.‘.‘.“‘.l‘; '—..

BIS  #100,G#177560 o




BIS  #100,04177564

POP RO
POP Rl
POP R2
POP RS
POP R4
POP RS

RTS PC

END
)
RESEE
' |
huttae

=
A N R
B YTV SR

AN e e,

o 2" e

R
:‘-.‘:
A-34 b



{#S+)

Program makestats;

CONST MAXINDEX = 100;
MAXNAMES = 3;
I_name == 'Newnsmes’;
numberpictures == 89, (¢ total ¢ of pictures svallable,

The number of planes sctually

used in a game is unimportant. ¢)

name = '$%5:GAMES.DATA’; (* Disk file of playesd game stats ¢)
across - 12; (* Formatting; # rows printed o)
maxgsmes == 100; (* perpage. ¢)
TYPE STR15 == string|18);
sstype == string(11);
NEWREC = packed record
oames : packed array(l. MAXNAMES] of stri8;
block : integer;
FULLSCREEN : BOOLEAN,;
TOPTHIRD : BOOLEAN;
BOTTHIRD : BOOLEAN;
end;
ILIST = array[t. MAXINDEX] of NEWREC;
nametype == otring(15);
scale == 0..100;
gamestats == pecord
Dame : nametype; (* The player's oaroe, and )
. ! satype;
date : nametype; (* the date of the game. ¢)
Istency : packed array(1..numberpicturcs] of integer; (¢ Statist
confidence : packed array(l..numberpiciures] of scale; (* for eve
correct : packed array(l..numberpicturee] of boolean; (¢ plane f

end; (* gamestats ¢)
VAR infodir : file of NEWREC;
INFO_LIST : ILIST;
total_Jst total_correct,total_conf:array|l..numberpictures) of resl;
lat_total,conf_total,correct_total : array(l..maxgames) of real;

(* each game. ¢)

no_planes : array|)..numberpictures| of integer;
no_ games : array|l..maxgames] of integer;
scoresfile : file of gamestats;
xx,x,y letter letierstep : integer;

outfile : text;

eurrent : gamestatls;

RO_ACross : integer;

procedure header(var outfile : text);

begin
writeln(outfile, PLAYER','PLANES"34);
writeln(outfile,’ §’,'w—e':38);
for y :== 1 to numberpictures do

no_plsnesly] = 0;
fory :e= 1 to maxgames do
no_games|y| w0,

end; (¢ of Procedure Header ¢)

procadure planenames({var outfile : text);

A-35
-..Q...t .(. ........... .'.:'."' '{ ‘.. " . .( . ... "- . ". '.J " '''''' .n (. { .......... . - - . .. - :\ '-\ ''''''''
DRI S R e Ry A IRV IO R I I 2T I AL M I AT N SR

s

- Y % e e
. el ten T
P s T S T, WL, T

.....
...........



begin
writs(outfile x,".’);
if x < 10 then write(outfile,’ *);
if x < 29 then write{outfile,’ (Top) ')
slse if (x > 28) and (x < 57) then write{outfile," (Side) ')
g slse write(outBle,’ (Front) *);
s (*PLANE NAMES GO HERE+)
. write(outfle,INFO_LIST|[x).names(1):15,’ *:20);
end;

PR 'V SR

procedure showconfidence(var outfile : text);
procedure showratings (var outfile : text);
procedure sbowpeople  (var outBle : text);
begin
- write(outtile,” NAME 88 ¥ DATE ’:40);
I writelo(vutfile,’Average Confidence’:32,'Percent Correct':17);
reset(scoresfile,name);
letterstep ;== 65,
letter (== 84;
xx == 0;
while not (eof{scoresfile)) do
begin
current :w=scoresfile”;
goYscoresfile);
lotter ;o letter + 1;
if letter > 90 then
begin

l o DA

' letter ee 885;

R lettorstep ;== letterstep + 1; s
end; (® of if #) S
XX i xx + 1; e
write(outBile,chr{letterstep),chr{letter),”:',’ ' ,current. NAME:18, ]
eurrent.88:13, current.date:12);

if not (no_planes|xx) == 0) then
write(outfle,(conf_total[xx]/no_planes|xx]):12:1)

olse write(outfile,’- "12);

if not (no_planes|xx] == 0) then

e

writeln(out8le,round(100¢correct_total[xx}/no_planes|xx)):17,'%’)
slss writeln(outfile,’- "18); -
ond;(* of while *) )
closs(scoresflle); '
writeln(outfile); .
end; (¢ of Procedure SBhowpeople *)
begin (¢ Procedure Showratings *) - j
DO_ACIOSE (o= |; ' o i
repeat | S
write(outfile,’ ":4); P
for x ;= po_scross 1o no_across + across - 1 do RO
if x < == pumberpictures then N
write(outfile,x:8,' '); :::-Z',_':
writalo(outfils); AR
writa(outfile,’ ':4), Lr,_‘
for x :me NO_ACross 10 no_across + across - 1 do o
if (x <= numberpictures) and (x < 10) then e
A-36 S

. t - . . - - . - . .. - - . . - » . . . . ’ - . . - . . S T A R S L L I TR UL G P S 4
B A T A A P e R O U A A S A R R AL A P PR SRS Py



write(outfile,-":5," °)
else if x <== numberpictures then
write(outfile,'-:5," *);
writeln(outfile);
reset(scoresfile, name);
letterstep :== 85;
letter == 64;
xx = 0;
while not (eof(scoresfile)) do
begin
current :ssscoresfile”;
get(scoresfile);
letter == letter + 1;
Xx ;== xx + 1;
if letter > 90 then
begin
letter == 85;
letterstep = letterstep + 1;
end; (*of if »)
write(outfile,chr(letterstep),chr(letter),’ ’);
for y := no_across to x - 1 do
if y <= numberpictures then
if not (current.latencyly] = 0) then
begin
no_planes|xx] := no_planes{xx] + 1;
no_games[y| := no_games|y} + 1;
total_confly] := total_confly] + current.confidence|y);
conf_totalxx] := conf_totalixx] + current.confidencely};
if current.correct|y] then
begin
total_correct[y] := total_correct[y] + 1;
correct_total|xx] := correct_total{xx] + 1;
write(outfile,'+:3)
end {* of if *)
else write(outfile,’’:3);
write(outfile,round(current.confidence|y)):3);
end (* of if 3)
else write(outfile,” - );
writeln(outfile);
end; (* of while *)
close(scoresfile);
writeln(outfile);
for x :=1 to 80 do write(outfile,’’);
writeln(outfile);
DO_ACross ;== DO_ACross + across;
until no_scross >»= numberpictures;
writeln(outfile);
showpeople(outfile);
end; (* of Procedure Showratings *)
procedure showplanes{var outfile : text);
begin
for x :=1 to 80 do write(outfile,’’);
writeln(outfile);
writeln(outfile, PLANES:"," ":41,’Average Confidence’,’% Correct?’:14);




for x :== 1 to numberpictures do

begin
planenames{outfile);
if no_games(x] > 0 then write(outfile,total_conf{x)/no_games|x]:11:1)
else write{outfile,-’ :11);
if no_games|x] > 0 then

write(outfile,round(100%total_correct(x) /no_games|x]):19,’%’)

else write(outfile, * :20);
writeln(outfile);

end; (* of for s)

for x ;=1 to 80 do write(outfile,”’);

writeln{outfile);

end; (* of Procedure Showplanes )

begin (¢ Procedure Showconfidence *)

for x:»= 1 to numberpictures do
begin

total_correct(x] :== 0;

total_confx] := 0;
end;
for x:= | to maxgames do
begin

conf_total|x] := 0,

correct_total(x] := 0;
end;
writeln(outfile);
writeln(outfile, RESPONSE CORRECTNESS and’:48);
writeln(outfile, ' CONFIDENCE RATINGS’:45);
writeln(outfile,” + = correct ':45);
writeln(outfile,’ - = wrong  '45);
for x :=1 to 80 do write(outfile,’-’);
writeln(outfile);
uez ‘er(outfile);
showratings(outfile);
suowplanes(nutfile);
close(scoresfile);

end; (* of Procedure Showconfidence #)

procedure showlatency(var outfile : text); : R
procedure showratings(var outfile : text); -
begin
DO_Across (== |; ) :-.i...:,;
repeat e
write(outfile,’ ':4); ) R
for x :== no_across to no_scross + across - 1 do el

if x <== numberpictures then . L__.
write(outfile,x:5," *); ey
writeln(outfile); N2y 3
write{outfile,’ ":4); R
for x :== no_across tc no_across + across - 1 do TR

if (x <= numberpictures) and (x < 10) then ; Y
write(outfile,’-":5," ’) N
else if x <==numberpictures then RIS
write(outfile,'=":5," *); -

...................
.. . .

e’



' B
I writeln(outfile);
£ reset(scoresfile,name);
1 letterstep :== 65;
b lotter :== 04;

. xx :== 0;

while not :eof(scoresfile)) do

) begin

o enr:.nt :swgcoresfile”;
; geYscorestile);

: Jetter :sm letter + 1;

XX .= X + 1;
- if letter > 90 then
b begic
i letter ;== 65;
z Jettarstep == letterstep + 1;
tud; (s of if o)
’ write(outfile,chr(lettersiep),chr{letter), °);
fie y ;wm no_across to x - 1 do
§i v < == numberpictures then
if not (current.latencyly| = 0) then
begin
no_planes(xx] ;== no_planes|vx] + 1;
po_games(y] := no_gamesly| + 1;
t'.-ul_llt‘y] rom t0tal_Jatly] + current.latencyly];
1y _totalld == at_total[xx] + current.latency(yl;
w»:te(ouihile, current.latency(y]:5,” ’);
nd(vofifs)
e s¢ write(outtile,’ - °);
« ritelu(outfile);
cud; (* of while ¢)
slowe(scoresfile);
writein{ontfils):
for x ;== t 80 do write{outfile,-');
writaln outhie);
W2 MECD8 (== NO_BCFOSS + BCTOCS;
until no_ssross > == pumberpictures,
writein(outfiie);
and; {* of Procedure Showratings ¢)
procedure showplanes(var outfile : text);
begin
for x ="' ¢ 80 Go writdlautllle, '}
wn  n(outhle):
writeln(outfile, PLANES:"." 41, 'Average Lasency');
for x ;= 1 w wvuraberpictura do
begin
planrnar:as{outfile),

slse write(outflle,’-":9);
writaln(outfile),
end; (¢ of for ¢)
for x ;=] to 80 do write(ouifile,”-');
. writeln(outfile};
end; (* of Procedure Showplanes ¢)
procedure showpsople(var outfile : text),

if Dot (no_gsmes|x] = 0) then write{outfile,round(zotal_Jat|x/no_gamoee{x|):



B i e e e e Tt

begin
write(outfile,” NAME SS ¢ DATE ':40);
writeln(outfile,’Average Latency’:22);
reset(scoresfile, name);
letterstep := 85;
letter := 64;
x =0, :
while not (eof(scoresfile)) do o
begin o
current :mescoresfile”; .-
getscoresfile); "
Jetter :== letter + 1;
if letter > 90 then '
begin
letter ;= 65; el
letterstep :== letterstep + 1; T
end; (¢ of [*) e
xx ;== xx + 1; -
write(outfile,chr(letterstep),chr{letter),”’,’ ’,current. NAME:15,
current.S$8:12,current.date:12);
if not (no_planesixx] = 0) then S
writeln(outfile,round(lat_total{xx]/no_planesxx]):12," ') b
else writeln(outfile,’- ':14); v
end;(* of while ¢) e
close(scoresfile);
writzln(outfile);
er” "sof Procedure Showpe., le »)

thannd
begin (* Procedui: L.owlateny #) —
for x :~= 1 to maxga. ses do lat_total[x] :== 0; -
writeln(outfile); .
writeln(outfile,’l.# TENCIES (in milliseconds)’:50); :
for x :=1 to 80 do write(outfile,’-’);
writeln(outBle); p
header(outfile); b
showratings(outfile);
showpeople(outfile);
writeln(outfile);
showplanes(outfile);
wet(scoresfile,name);
close (scoresfile,purge); (* ,purge *) -
end 1+ of Frocedure Showlatency *) ;

«rotedure FROMDISK;
var H : integer;
hegin
resot{infodir,]_nsme),
FOR I (a1 TO MAXINDEX DO BEGIN
Info_List{H, {** 1I_Lst[H] ®¢} -em jafodir’;
f ot EOF(infod.r) then geyinfudir),

en;

close(infodir); .
end; e
2
v
>
A-40 L

"'..:'.‘0'. o* e ."' .-'.'a‘ N AR ' """ C e e DN .. ...... At e ‘.' R

. . . . ARG e PR e
FOMEAY S0, PRSI .‘.Pm CRRIiA 1 ‘:".‘\ ’.L' QAAAA.A PDAANORINON L‘_'..!.L'.._.. AN AV _A__AA“—L._LI—A[_ALA_ALAAA_L—



Rt AN AL S LA e O S ST AR S R L I R UL L N I A AR YA T SR S N P Bt Tl T A L SO PO Ve P R S T

e e M L L LT T T T T e L T T A A A R s e A T I S R T S P
-

NAPSLARN . ol IR

begin (* MAIN +)

R for x ;= 1 to numbsrrictures do

"a begin

i total_correct|x] := 0;

o total_conf(x] :==0; .

total_latfx] = 0;

= end; (* of for o)

3 FROMDISK;

- rewrite(outfle, CONFIDENCE.TEXT’);

N - showconfidence{outfile);

gt close(outfBle lock); ort

' rewrite{outfle, LATENCY.TEXT"); e

showlatency(outfile); T

o close(outfile,Jock);

- rewrite(scoresfille,name); g
close(scoreafile lock);

end. (* MAIN )

1

-«
B

> av e o .....‘
RPN A
AR G et Tt e

P THLIN LAY P
g PRSI e

TT e
AN
s

s

-
P T

FL
N .,

Y

A-4]

ol o
\ e, (Y - . A4
i.’ s’s POICY "‘- _a’ s. 0 {‘. N _\ A&’ ."_'. S _\cl- .’ A L". A L\A. ,;.d'.\'ﬂx‘f‘"ﬁ L’.\L\" Lu 'A' SRR LAAn‘_ALL A,_AJ}A.




Program Driver;
CONST numberpictures == 85; (* total # of pictures available.
The number of planes actually
used in & game is unimportant. ¢)
name = '$#5:GAMES.DATA’; (* Disk file of played game stats
TYPE nametype == string(15];
sstype = string{11};
scale = 0.,100;

gamestats == record
name :nametype;
SS : sstype; (* The player's name, and *)
date : nametype; (* the date of the game. *)

latency : packed array(1..numberpictures) of integer; (* Statist
confidence : packed array[l..numberpictures] of scale; (* for eve
correct : packed array(1..sumberpictures] of boolean; (* plane {
end; (* gamestats %) (* each game. *)
VAR current : file of gamestats;

begin (* MAIN »)
rewrite(current,name);
close(current,lock);
end. (* MAIN »)

.
...... -,

e, 7, O S NN T T R I I MR 4 . .'\.".-‘._ '..-'..-'.‘- et ey ~

a DI S IR '-_"--'.-. PR PR Lot RO ' . B o0 a0t LN
P e e N A e e PO SRS S SN S SO AP SIS PSP ST Yot SIS S SSOSOIEI A R BIPIN A AP



R RS IR 4

o b2y s

ThawTYTTTEEEET T RN T W T YRY YL, YO
- R LA N “. \‘A \- v“h.‘. ~ N N

{$s+}
PROGRAM MAKEDIR?;

USES MENUS;

CONST INAME = '#5:NEWNAMES’;
MAXINDEX == 100;
MAXNAMES == 3;
menulX == 4;
menulY == B;
sl == 'Name 1';

82 = 'Name 2';

83 = TFotofile name:’;

#4 = 'Fullscreen [T/F)’;

85 = 'Top Third [T/F)’;
o8 = 'Mid Third (T/F)’;
87 = 'Bot Third [T/F}’;

MAXDIR = 77;
VIDLENG = 7,
TIDLENG = 15;
FBLKSIZE = 512;
DIRBLK = 2;
NAME_LEN = 23;

(sMAX NUMBER OF ENTRIES IN A DIRECTORY?)
(*NUMBER OF CHARS IN A VOLUME ID#)
(*NUMBER OF CHARS IN TITLE ID¢)
(*STANDARD DISK BLOCK LENGTH¢)
(sDISK ADDR OF DIRECTORY?*)
{Length of CONCAT(VIDLENG,"", TIDLENG))

TYPE
DATEREC == PACKED RECORD
MONTH: 0..12; (*0 IMPLIES DATE NOT MEANINGFUL

R T T S L e e A A A e A N I A L

. DAY: 0..31; (sDAY OF MONTH*)

X YEAR: 0..100 (#100 IS TEMP DISK FLAG®)

- END (sDATEREC) ; }

- (*VYOLUME TABLES*)
l VID = STRING[VIDLENG]|; h

: =
- (*DISK DIRECTORIES*) <
: DIRRANGE = 0.MAXDIR; S
- TID = STRING(TIDLENG}; g
- FILEKIND == (UNTYPEDFILE XDSKFILE ,CODEFILE, TEXTFILE, —
2 INFOFILE, DATAFILE, GRAFFILE FOTOFILE SECUREDIR); o
., LA
T DIRENTRY = PACKED RECORD .
< DFIRSTBLK: INTEGER; (¢FIRST PHYSICAL DISK ADDR¢) o
T, DLASTBLK: INTEGER; (*POINTS AT BLOCK FOLLOWING®) <
L. OASE DFKIND: FILEKIND OF ~—
' SECUREDIR, =
; UNTYPEDFILE: (*ONLY IN DIR|0)...VOLUME INFOs) S
(FILLERI : 0..2048; {for downward compatibility,13 bits) e
: DVID: VID, (sNAME OF DISK VOLUMEs) ey
- DEOVBLK: INTEGER;  (sLASTBLK OF VOLUME*) e
) DNUMFILES: DIRRANGE;  (¢NUM FILES IN DIRe) —
R DLOADTIME: INTEGER;  (*TIME OF LAST AOCESS¢) i
: DLASTBOOT: DATEREC), (sMOST RECENT DATE SCTTING) o
o

. A-43 =
T
To O
RN N N N e T N e e N N N N AN G N



XDSKFILE,CODEFILE, TEXTFILE,INFOFILE, i
: DATAFILE GRAFFILE FOTOFILE: g
: (FILLER? : 0..1024; {for downward compatibility } o
| STATUS : BOOLEAN; {for FILER wildeards) .
DTID: TID; (TITLE OF FILEv) S

DLASTBYTE: 1. FBLKSIZE; (*NUM BYTES IN LAST BLOCK>) 2%
DACCESS: DATEREC)  (sLAST MODIFICATION DATE*) —
. END (sDIRENTRY) ; 2

Directory = ARRAY[DIRRANGE] OF DIRENTRY; e

= STR15 == STRING(15);

g INFO_REC = PACKED RECORD

NAMES: PACKED ARRAY/|1. MAXNAMES] OF STR1§;

-] BLOCK : INTEGER; :

K FULLSCREEN : BOOLEAN; N

TOPTHIRD : BOOLEAN;

MIDTHIRD :BOOLEAN; N :

BOTTHIRD : BOOLEAN; =
END, ..j'-‘

[LIST = ARRAY|1.MAXINDEX] OF INFO_REC; o

CREARN ll SLIR PP

VAR iNFODIR : FILE OF INFO_REC; e
- INFO_LIST : ILIST; LB
- CH : CHAR; i

: L] : integer; ‘-
' noloop,loopit,done : boolean; [ ]
: choice : integer; AR

. fin,ans response : char;

MENU1 : MENURECORD; { from library program MENUS }

dir : Directory;

LISTFILE : TEXT;  { used in QUICKLIST to output dir to textfile }

: (ut“unuuouuunonucnnuu.nunuuu“unun“nuutu“ut) :-_:
g procedure FROMDISK(VAR L_LIST : ILIST); i

: var H : integer; .
) begin
= reset(infodir, |_NAME);

- H:m=;

- while not EOF (infodir) do begin .
- I Jist{H] :== infodir”; -
" H:=H+1; R
¥ get(infodir); o
.l end; "
_ close(infodir); o
;‘: end; :.:..
-'~ . ;
D procedure TOODISK(VAR II_LIST : ILIST); !
o var Z : integer; e
. begin
32? 2

3 A-44

. . -l

. oo
‘.

. ‘- * -. ’ ~.' . s‘ @ ! l.' . \' -.' P .' a.' . Ca® e " ." . LI ) ..' 0" -“ o" '. ..' l. .' .. ‘.' C' I. llllllllll v °, § o, .. -. b. 1. B -, A 'f’ "
T At e e Nt e e S A A S N Al A AR A A Ca P e A e A e OO ERCACSYS




rewritejinfodir |_NAME);
for Z :== 1 to MAXINDEX do
begin
infodir® == I1_list|Z);
puy(infodir);
end;
cloee(infodir Jock);
end;

(.‘0.!‘.‘....‘.‘...“Qt.‘t.‘.‘.‘ “......‘t......‘.t“.‘..OO“.“.‘.....‘.‘)

PROCEDURE CLEARSPACE( D : INTEGER);
VARE : INTEGER,;
BEGIN
FORE := 1 TO D DO
WRITE(CHR(32));
FORE :~=1TO D DO
WRITE(CHR(8));

H

procedure ClearLine;

begin
write(’ !
for i ;== 1 to 87 do write(chr(8));

end;

procedure Boolwrite(A:boolean);

begin
if A=TRUE then write('TRUE’)
else write('FALSE'};
end;

procedure Boolread(VAR A:boolean);
var ch : char;

begin
read(ch);
if ((ch="T"’) or (ch=="t’})) then A:=TRUE
else A:=FALSE,;
ond;

procedure ShowValue(p:integer);
: begin

with Info_llist{J] do begin
if p==1 then begin
CleasLine;
gotoxy(menulX + 26, menulY + P + 1);
. ClearSpace(18);
write(names|1});
end;

l'~r'l '-f'l'.,'-;,ﬁ;,‘l'f\;,‘-:,\;\. ‘.'(‘.' \}‘o;.'o'l'-:,\.;\f\:;\.‘ :'.::‘- ST A AR .'-"'-':\ o '.",'.';‘. *e '\ o \.'.;‘.‘: ‘;’:'\".'."';"':{' PO




B AT\ S Jur ucSur gt gu g st 4 Sl Sl bu ot — AN AL Rl B A A AN RS L O AR ER A ORI CSU IR AR )

o
k.. \
if p==2 then begin :
ClearLine; D
gotoxy(menulX + 26, menulY + P + 1); R
ClearSpact(15); L
write(names(2|); - o
end; v
if p==3 then begin N
ClearLine; Y
gotoxy(menulX + 26, menulY + P + 1); o
ClearSpace(15); 'Y
write(names(3]); ey
end; oo
if p==4 then begin R
ClearLine; :.::‘_-
gotoxy(menulX + 26, menulY + P + 1); s
ClearSpace(5); b
boolwrite(fullacreen); e
end;
if p==5 then begin
ClearLine;
gotoxy(menulX + 26, menulY + p + 1); 2l
ClearSpace(5); b,
boolwrite(topthird); el
end;
if p=6 then begin e
ClearLine; L
gotoxy(menulX + 26, menulY + P + 1); A
ClearSpace(3); [ ]
boolwrite(midthird); e
end;
if p==7 then begin
ClearLine; St
goloxy(menulX + 26, menulY + P + 1); N
ClearSpace(5); L.
boolwrite(botthird); o
end ./-":’-I'
end {with} s
‘nd; :".":..
P
)
procedure MakeMenu; e
var title,convert:string; e

begin .
{ str(J convert); }
{ title :== concat{'INDEX ’convert); } . BEI
MenuNew(menul, menulX, menulY, 20, 7,'INDEX NUMBER'); . L
Menulnsert({menul, s}, menul.len+1); '
Menulnsert{menul, s2, menul.len+1);
Meoulnsert{menul, 83, menul.len+1); e
Mepulnsert{menul, o4, menul.len+1); e

Menulnsert(menul, s5, menul.len+1); HE
Moenulnsert(msnul, 8, menul.len+1); © b
Menulosert{menul, o7, menul.len+1); el
ond; el
e
PAYa
e
A-46 [ -
.’.-.. e e e e A e e g g e e s - S ~, = o 0 e e '. e ". et o W ".. . ',‘ . ., ._', e . ". ‘.'."".,.';
'4'" 'a\f'f‘f'af /(I'IIIIII-’.I.-‘ D S N N R A A O N ST SR R SIS RS A SR




procedure DoMenu( TheMenu : MenuRecord; VAR choice : integer);

var last : char; F-.
begin ; RN
- ‘way(o, 2); -\ R
writeln("Use the arrow keys to move among the chaicee, ’); oy
writeln(’type *S" to select which item to change. ’); e
re MenuDisplay(TheMenu);
last ;== MenuUserSel(TheMenu);
choice :== The’ {enu.curltem;
end;

e .
procedure NewOne; Sl
var iter : integer;

response,bool : char; Tl
done : boolean; R <
procedure NameCase(VAR name:strl5; ststring; c:integer);
begin
gotoxy(0,menulY + 14);
ClearLine;
write(st,’ is currently °),
wriuln("',name,’” 9); RN
ClearLine;
write('Enter the new 'st,’: —> '); SRR
reset{input); 0
readin(name); et
(*UpperCase(name);*) { from SceneUnl } .
WRITELN;
CLEARLINE;
ShowValue(c);
gotoxy(0,menulY + 14);
ClearlLine;
gotoxy(0,menulY + 15); NN
ClearLine; ae -
end; 0
procedure BoolCase(c:integer); AN
var i : integer; t:f
v begin N
: with Info_Jist|J} do begin
¢ fullscreen :e== false;
topthird :== false; TR
widibird :e= false; e
botthird :== false; /,
if ¢ == 4 then fullscreen :== true IATRN
, slse if ¢ == B then topthird :=s true o
olse if ¢ == 6 then midthird :== true g-._
olse if ¢ == 7 then botthird := true; e
for i :w= 4 to 7 do ShowValue(i); ’-..‘::.';-..




gotoxy(0,menulY + 14); et
writeln("For boolean £elds, selecticn automatically sets’); -:3 :
write(’ selected field TRUE, other fields FALSE. Hit <RET>."); o
readin; -
gotoxy(0,menulY + 14); ?.; g
ClearLine; , t
gotoxy(0,menulY <+ 15); RN
ClearLine; Q
end; { with } ot
end; o
[
begin { NewOne } TR
MakeMeny; o
PAGE(OUTPUT); S
gotoxy(20,8);  { Writes index number to screen } T
ClearSpace(3); v
write(J); o
for iter := 1 to 7 do ShowValue(iter); e
done := false; -
while (not done) do Co
begin r“
MenuReset{menul); hich
DoMenu(menul, choice); ~:_'211
gotoxy(20,8); { Writes index number to screen } o]
ClearSy \ee(3);
write(J): o

i’ <hoicems?

vhen NameCase(Info_list[J].names|1],s1,choice}
ek ¢ if choiceas?

then NameCase(Info_Jist|J].names(2),82,choice)
else if choice==3

then NameCase(Info_list|J].names(3},83,choice)
else BoolCase(choice);
gotoxy(menulX + 36, menulY + 8);
write(’ Change more va'ies? [Y/N] ’); Rl
read(keyboard,response); e

if (response in ['N’, 'n’]) then done:astrue else done:=sfalse;
end {while} e
end; v "{
procedurs procA; B
var loopit : boolesn; ' y j
fin : char; : B
begin K
repeat '.;"..:
repest Lot
loopit :== {alse; '~f:.1:f
gotoxy(1,32); o
\vrm(’Edit Index Number: —> ’); o
od(J); { J GLOBAL TO MAKEDIR } "
if (1<1) OR (J>MAXINDEX) then begin e
A-48 .
-
"'-"\" R A TN tel s ’,',' e . ';'f.'f;':','-‘,'f'.' ' .

. - -.sw.s-.vssss 0o, e
NN NN *.1(.! I NACINENEIEN NN NI A L PSR -f- '\‘."c. PPV R .'.1*1“ R R A P IR A AR I



. Bobl Tt e e APELAL R ST ] N PR Y

T e TR

TN
.,

s

T v,y e
. 3
-

L

lo'opitzI-t.ruc;
gotaxy(1.22);

..............................

writeln{"Value out of rasge. Type <RET > to continue’);

readln;
end;
gotexy(0,22);
CLEARLINE;
uatil not loopit;
NewOne;
menudisplay(menul);
M(l'”);
write('Edit Another? [Y/N] —=> ');
read(fin);
gotoxy(0,22);
CLEARLINE;
until (8o in ['N’, 'n']);
end; { procA }

procedure procB;
var lower bigher:integer;
again : boolean;

begin ye
repeat
again == false; o
gotoxy(0,0); o8
OlearLine; 5
write('Enter lower in” x bound spacs, upper index bound: => '); ]
read(lower,higher); KOs
if (lower<1) or (lower: MAXINDEX) or (bigher < 1) or (higher >MAXINDEX) o
then again:astrue Vs
olse -
if (lower>higher) then sgsin:=true;
until not again; a8
for J:== lower to bigher do  { J is global to MAKEDIR ) A
begin o
NewOne; e
menudieplay(menul);
end; .
end; ( procB) *
(9000080000000000000000000000000¢06000006060040000000000000000 1000080000040) "
PROCEDURE CHANGER; {a
VAR | : integer; e
[ a8
FUNCTION fndnum(VAR aliss : string) : INTEQER; -
VAR n : integer;
found,done : boolesn;
BEGIN
done := FALSE;
found ;= FALSE; ’
nies |, -
REPEAT
A-49 —
B RO ety A T R R N RN R A AN AN

. .
.;‘;'-
L1y

A

5

RS T S XN sl sl Thy DA R
L



e findoum
- done :m

END

END;

END;

begin

Info_Jist{J
Info_Jist|J
Info_list
Info_)ist
1nfo_Jist
Info_Jist
Info_Jist

Gt Gt Gt Gy g

J

90
9l

Info_list
ond;
Info_list
Info_list

lafo_list
Info_list
. Info_list

Info_ls.
Info_list
Info_list

Info_list
Info_liet
Info_lisy
Info_list
Info_list

Info_list
Info_liat
Info_ilst

(3 . -

92
92
92

._.v\

93
0
3

04
04
o4
04
-

06
08
05

.namesid
.names|3

oames|l
names|3
.names|d
Jullscreen == false;
Aopthird == true;

names
names|l
names|d

........

IF dirjo).dtide=aliss THEN BEGIN
we dir{n).dfirstblk;

TRUE;

found := TRUE;

olse n ;== n4l;
UNTL ((n==sMAXDIR +1) or dons);
IF found=FALSE
THEN WRITELN('Can not find ',sliss,’ on disk in upper drive (#5) *);

BEGIN { CHANGER }
PAGE(OUTPUT);
WRITELN('CONVERTING ... ’);
UNITREAD(S, an:,stzsor(du),nmm.x),
FOR e 1 TO MAXINDEX

INFO_LIST1].block :e= ﬂndnum(INFO_LlST[l] names{3));
TOODISK(INFO_LIST);
WRITELN('DIRECTORY OONVERTED. *);

PROCEDURE INITDIR;
for J :== 1 to MAXINDEX do begin

.names|l] :== 'none123';
.nsmes|2) ;== 'none}23’;
names(3] ;== FLAGS.FOTO":
.block :am {;

Jfullscreen :== TRUE;
topthird :w= FALSE;
.midthird :em FALSE;

.botthird .e= FALSE;

;o= 'EAGLELFOTO';
== 'EAGLE2FOTO";

) =
3| ;== 'ADM1’;
3| :== 'EXA.FOTO";

1) -

3] ;= 'EX4.FOTO’;

= XFV12";
== 'EX1.FOTO";

1) o=

= "X30";
e 'EX5.FOTO";

{ initialising system records }

3] :m= 'SPACE SHUTTLE';

_____
''''''

. .
LN

........
.........

s
e
LN I

e
> %,

n.

[ S 4 f;v-f-v-r'v

PP A AN
L R T I,
) .

Ao

.
% % S %
« Ve

.
S % S
et

PRI NN



e ™ 4 -

Info_list[96).names{1) :== 'FIGHTING FALCON’;
Info_list[96]) names(2] := 'F16’;
Info_Jist{06].names[8] == 'EX11 "~
Info_list[06).fullscreen :== false;
Info_list[96).midthird :== true;

Info_list{97).names{l] := ";
Info_list[07) names|2] := 'SPACE SHUTTLE",
Info_list[97].names[3] := 'EX2.FOTO’;

Info_list(98).names(3] :== 'IN1.FOTO’;
Info_list[99] namea[8] :== 'IN2.FOTO’;
END;

PROCEDURE EDITDIR;
var ans : char;
Begin
Menulnit;
MenuVars™ .SelChars := MenuVars” .SelChars + ['S’, 's’];
MenuVars" EscChars := MenuVars” EscChars + ['S’, ’s’);
PAGE(OUTPUTY);
REPEAT
gotoxy(0,0);
write('Edit OLD "NEWNAMES” Directory, or make NEW *NEWNAMES?” Directory! [O/N
read(keyboard ans);
UNTL (ans in [%0’, 'O’, 'n’, 'N]);
if (ans in {'0’, ’0’]) then
FROMDISK (Info_list)
else INITDIR;
PAGE(OUTPUT);
REPEAT
WRITELN{’EDITING OPTIONS: *);
WRITELN(" 1 :INDEX CiiCICE ');
WRITELN(’ 2 : AUTO-INDEX ’);
WRITELN;
WRITE('Type <1> or <2> —=>);
ans);
UNTL (sns in {'1’, '2']);
PAGE(OUTPUT), e
IF ans = 2’ then procB $ T
ELSE procA;
CHANGER;
End; { MakeDir )

proesdure LISTER;
VAR i : ipteger;
s0s,ch : char;

procedure Fileboolwrite(A:boolean);

begin
if A=TRUE then writeln{LISTFILE," TRUE’)
else writeln(LISTFILE,'FALSE’);
ond;

A-51

Vel
o . X . X AR
ham e s aea e T mea -4 8 L tacacasacaie acaiaedSenvY,



..............

BEGIN
PAGE(OUTPUT);
WRITELN(’QUICKLIST’); WRITELN;
FROMDISK(INFO_LIST);
FOR i ;=1 1o MAXINDEX do begin
With INFO_LIST]i] do begin
Wrizeln('Index #: ’,);
Writeln('NAMES|(1]: °, names|1]);
Writeln('NAMES|2]: °, names|2]);
Writeln('NAMES([3]: °, names(3]); L
Writeln('BLOCK: ’,block);
Write(s4,’ : ’); boolwrite(fullscreen); writeln;
Write(sS,” : ’); boolwrite(topthird); writeln;
Write(s8, : '); boolwrite(midthird); writeln;
Write(s?,’ : '); boolwrite(botthird); writeln;
Readln;
End; { with }
End; {for}
Page(output);
writeln('Do you want a listing sent to QUICKLIST.TEXT on the bottom disk?’);
read(keyboard ans);
if (ans in ['y’,"Y’]} then begin
REWRITE(LISTFILE,"QUICKLIST.TEXT’); { QUICKLIST.TEXT is output file }
FOR i :== 1 to MAXINDEX do begin 2
With INFO_LIST{i] do begin e
Writeln(LISTFILE, Index #: ’,i);
Writeln(LISTFILE,'NAMES|1]: ', names|1]);
Writeln(LISTFILE,'NAMES|2]: ’, names(2]);
Writeln(LISTFILE,'NAMES|3]: ’, names[3});
Writeln(LISTFILE,"BLOCK: ’ block);
Write(LISTFILEs4,’ : °); Fileboolwrite(fullscreen);
Write(LISTFILE 55, : *); Fileboolwrite(topthird);
Write(LISTFILE 58, : '); Fileboolwrite(midthird);
Write(LISTFILE 87, : ’'); Fileboolwrite(botthird);
Writeln(LISTFILE);
End; { with }

-
-1

CFRR I SRR AT

T

A - CYTe Y et e
. . ,.'. .l. .

. LI R I

a0, e et e
- DL L

End; { for}
CLOSE(LISTFILE,LOCK); AR
end; {if } - 2
END; —
PROCEDURE BUGS; :
TYPE SCORES_REC = RECORD o

GAMENAME : STRING(15);
SCORE : INTEGER;
END; o "
VAR HILIST : ARRAY/1..10] OF SCORES_REC;

HISCOREFILE : FILE OF SCORES_REC; T
1JH : INTEGER; S
CH : CHAR; e
TEMPNAME : STRING[15]:
TEMPSCORE : INTEGER; ol
BEGIN -
PAGE(OUTPUT): )
A-52 -




......

‘s

Lol

.............................................

WRITELN('THIS PROGRAM CREATES A FILE CALLED HISCORE.DATA');
WRITELN(" WHICH IS PUT ON THE FOTOFILE DISK IN THE UPPER DRIVE’);
WRITELN;
WRITELN(' ENTER THE TOP TEN SCORES WITH CORRESPONDING NAMES.'});
WRITELN; :
FOR H:=1 TO 10 DO BEGIN

WRITELN('NUMBER ’ H);

WRITELN('ENTER NAME - > °'); READLN(HILIST{H|.GAMENAME),

WRITELN('ENTER SCORE -> *’); READLN(HILIST[H] SCORE);

WRITELN;
END;
FOR J := 9 DOWNTO 1 DO BEGIN

FOR1:=1 TO J DC BEGIN

IF HILIST[I}.SCORE < HILIST(I+1).SCORE THEN
BEGIN

TEMPNAME := HILIST(I] GAMENAME;
TEMPSCORE := HILIST|I]. SCORE;
HILIST(I]. GAMENAME := HILIST|l1+1] GAMENAME;
HILIST(I).SCORE := HILIST|1+1).SCORE;
HILIST|[I+1).GAMENAME := TEMPNAME;
HILIST{I+1].3CORE := TEMPSCORE;
END;
END;
END;
REWRITE{(HISCOREFILE, #5:HISCORE.DATA’);
FOR H:= 1 TO 10 DO BEGIN
HISCOREFILE® := HILIST[HJ;
PUT(HISCOREFILE);
END;
CLOSE(HISCOREFILE LOCK),
END;

(ssesssascosensssnsnsnssess MAIN -ncu-uunnuuuuon”nuuocu)

BEGIN
NOLOOP :== FALSE;
REPEAT
PAGE(OUTPUT);
meELN(’ounuuouounuuun MAKEGAME PROGRAM sessssesasasssessseens
REPEAT
WRITELN;
WRITELN('NOTE: Be sure disk with game FOTOFILES is in upper disk drive. )
WRITELN;
WRITELN('MAKEGAME OPTIONS: ’);

WRITELN(’ 1 : EDIT DIRECTORY ');
WRITELN( 2 : CONVERT DIRECTORY °)
WRITELN(’ 3 : QUICKLIST )

WRITELN(' 4 : MAKE HISCORES FILE ');
WRITELN(' 5 : QUIT);

WRITELN;

WRITE('Type <1> <2> <3> <4> of <b> > ),
READ(keyboard,ch);

UNTLL (ch'in ['1",'2"3''4’,'6"));

.........

-9




.............................
........................................

T IF ch="2" THEN BEGIN
e PAGE(OUTPUT);

o FROMDISK(INFO_LIST);
CHANGER,;

| END

E ELSE IF CH="1"' THEN EDITDIR

“ ELSE IF CH="3" THEN LISTER

- ELSE IF CH='4' THEN BUGS

,; ELSE IF CH="5' THEN NOLOOP := TRUE;
- UNTIL NOLOOP;
i END.

A-54

.
--------



