
InTL 85-3 JANUARY 1085

ITI E*E 0

AL COPTRBSDGMNG SYSTEM FO

ASSESSINGRECONITING PEBRFTORMACYRCG
NAVYPERSNNE RESARC ANDDEVEOPMNT CNTE

BAN 1100CALIORNI "16

c2 D6TI

A COMPUTER-BASED GAMING SYSTEM FOR
ASSESSING RECOGNITION PERFORMANCE

(RECOG)

Glenn A. Little
Donald H. Maffly
Corbin L. Miller
David A. Setter

University of California, San Diego

Pat-Anthony Federico
Navy Personnel Research and Development Center

Reviewed and approved by
James S. McMichael

Released by
James S. McMichael

Director, Training Laboratory

p.'

Training Laboratory
Navy Personnel Research and Development Center

San Diego, California 92152

UNCLASSI FIED

REPIORT DOCUMENTATION PAGE

ab Approved for public release;
distribution unlimited.

NPRDC TL 85-3

Navy Personnoeml Research and
Development CenterI

San Diego, California 92152

Chief of Naval Material I
Office of Naval Technology _____________________

W a h ng o DCne 2036 03 .04~~
Washngto DC 036063720N RF63-522 I801-013 034

"I TI TfL& I twi CwAN04em

A Computer-Based Gaming System for Asses-. 'g Recognition Performance (REC0G;
12 PltSb"4 hIJVWOM

G. A. Little, D. H. Maffly, C. L. Mi ler, D. M. Setter, & P-A. Federic")

Technical Report 3.No -s a ToSe...2L I' January 1985 99

17 WWIA cootsI I, SkLACy TMO Comm at owm A o oW aw AwM ~ i

PSLO' SkLEG*0J Computer-Based Testing Assessing Recognition Skills -I IComputer-Based Game Testing Softwiare Tools

1S *AhCZ XPP .. w o Awex &w awe *a%

-This report documents a computer-based gaming sytem for uassesing recog-
nition performance (RECOG). This was done so that others who may want~ to use
it fbr either research, development, or operational implementation will have an
easier time comprehending the modularity of the programming structure as well
as how specific procedures can be adapted to suit a user's unique situation. The
game management system is programmed in a modular manner to: instruct the
student on how to play the game, retrieve and display individual images, keep
track of how well individuals play and provide them feedback, and link these
components by supervising routines inorder to execute the game. This modularity,
in programming, together with the game management sytem's independence of

IDLOCLSSOODumimm U AMA on [mUNCLASSIFIED
Z MAIi OF5 A.0"NL9VIM

Pat-Anthny FedericoCoe5
OD FORM 1473,8I4 JAN a 'A"CM " e "#m60"

AU arm&mm" &M somm UNI A5LE

ma".... -ýTVKvs o

UNCLASSIFIED

Abstract continued

any graphic database (e.g., aircraft or ship silhouettes, hurian anatomy, topogra-
phy, electronic circuits), contributes to Its general!zability. -The game, then, pro-
vides a set of software tools which can be used by others who want to assess
recognition performance.

The software for the complete gaming system is currently on three floppy
disks which control the play of the game, contain the graphic-Images database,
and maintain records of individuals' recognition performances. The game Itself is
run with two dual-density disks on the Terak microcomputer employing two
drives.) It is implemented on the UCSD P-System and written In UCSD PASCAL.
The disk placed in drive 0, i.e., the 8510 or volume 4, holds the actual game code;
the disk placed in drive 1, i.e., the 8515 or volume 5, contains the independent

"graphic-images database. As soon as the system is booted, control is immediately
passed to the game. Consequently, naive users need not deal with the nuances of
the UCSD P-System. Recognition-performance data are saved for a number of
indiviwdual play-e-rs-n the 8510 d)is-kriv•. A third disk containing game manage-
ment facilities can be used by test administrators or researchers to format the
recognition data to facilitate statistical analyses. Also, this third disk can be used
to design a new game with a completely different set of g. .,hic images to act as
stimuli for recognition testing. iN

I\

DD FORM 1473 Continued

UNCLASSIFIED

FOREWORD
This programming effort was performed under exploratory development

work unit. RF63-522-801-013-03.04 (Testing Strategies for Operational
Computer-Based Training) spc.zored by the Chief of Naval Material (Office of
Naval Technology). The objective of this work unit is to develop and evaluate
microoomputer-based graphic simulations of operationally oriented tasks to deter-
mine if they result in better assessment of student performance than more cus-
tomary measurement methods.

This program documentation is primarily intended for the Department of
Defense training and testing research and development community.

Accession For

DTIC TA3

unau.~wuce'! r

DistribUti 3/

Avai•llbilitY Codes

-- Avail and/or

LotA special

S. o

. 'e'-'" . ', .'. . '- •. . •.'..'.' , -""% '- ' . " """"" .'""m..,',...,w '.'.' ._/ ', F.'.. .'. "'* -P, ,".? ".,'•.". ".. *~

SUMMARY

Background and Problem
The general goal of this exploratory development is to create and evaluate

microcomputer-based graphic simulations of operationally oriented tasks to ascer-
tain if they result in improved assesment of student performance when compared
to more customary measurement methods. As a test bed, graphic models have
been programmed to assess how well F-14 Pilots and Radar Intercept Officers
(RIOs) recognize front-line Soviet and non-Soviet fighters and bombers.

A computer game based upon a sequential recognition paradigm has been
designed and developed. It randomly selects and presents on the display of a
microcomputer with millisecond speed either the front, side, or top views of four .
Russian bombers and ten of their advanced fighters. Also, the game management
system can choose and flash corresponding silhouettes of NATO aircraft which
act as distractors for their Soviet counterparts because of the high degree of simi-
larity between them which could easily confuse U.S. air crews.

This game, which is called FLASH IVAN (aircraft images are "flashed" on Lo
the computer display, and the F-14 community refers to the Russians generically
as "Ivan"), assesses student performance by measuring the number of correct
recognitions out of a total of forty-two silhouettes (half Soviet and the other half
non-Soviet), the time it takes a student (latency) to make a recognition judgment
for each target or distractor aircraft, and the degree of confidence the student has
in each of his/her recognition decisions. At the end of the game feedback is given
to the student concerning his percentage of correct recognitions, average response
latency, average degree of confidence in the recognition judgments, and how his
performance compares to other students who have played the game.

A file is maintained and available to the instructors which provides, in addi-
tion to these parameters for each student, recognition performance across aircraft
for all students who played the game. This provides diagnostic assessments to
instructors who can use this information to focus student attention on learning
the salient distinctive features of certain aircraft in order to improve their recog-
nition performance. -

The software for the complete gaming system is currently on three floppy
disks which control the play of the game, contain the graphic-images database,
and maintain records of individuals' recognition performances. The game Itself is
run with two dual-density disks on the Terak microcomputer employing two
drives. It is implemented on the UCSD P-System and written in UCSD PASCAL. 0
The disk placed in drive 0, i.e., the 8510 or volume 4, holds the actual game code;
the disk placed in drive 1, i.e., the 8515 or volume 5, contains the independent
graphic-images database. As soon as the system is booted, control is immediately
passed to the game. Consequently, naive users need not deal with the nuances of
the UCSD P-System. Recognition-performance data are saved for a number of
individual players on the 8510 disk drive. A third diskette containing game
management facilities can be used by test administrators or researchers to for- . ..

mat the recognition data to facilitate statistical analyses. Also, this third diskette

-vii -

* • -.- o ' %° . %° . . 9 , • ** ,. .- o'.- * -" " "4 .. . ,- , - . ~ . , • - •.

can be used to design a new game with a completely different set of graphic
images to act as stimuli for recognition testing.

Objective
The objective of this report is to document the program underlying the ,%

computer-based gaming system. This was done so that others who may want to
use this set of software tools for either research, development, or operational
implementation will have an easier time comprehending the modularity of the
programming structure as well as how specific procedures can be adapted to suit
a user's unique situation.

Utility Functions
This section of the documentation describes how to create new recognition

games which would employ as subject-matter databases graphic images other
than aircraft silhouettes currently used by Flash Ivan. It also explains how to
extract statistical data for sample of subjects from records of recognition perfor-
mances.

Programmer's Notes
This portion of the documentation serves as a technical reference for pro-

grammers who may want to make slight modifications to the game code itself
which is independent of the database. It deals with several files and describes pro-
cedures which would be involved in performing these changes.

Program Maintenance
The final segment of the documentation explains how to maintain the pro-

gram, the organization and the handling of the three disks that are used, and
what to do to the disks before and after collecting recognition-performance data.
A listing of the program is presented in Appendix A.

• .

vii. -

. *. * .*.

S

CONTENTS

Page
INTRODUCTION 1

Background and Problem ... 1
Objective **..... o........ 3

""UTILITY FUNCTIONS ... 4
*1The "ADM " Disk ... 4
Creating a Gamn. 5
Creating Gam e Im ages .. 6
Creating the Image Directory 7
M ore Utilities ... 10

Converting the Directory .. 10
Quicklist ... 11
M aking Hiscores File .. 11

Using the Statistical Facilities ... 11

PROGRAM M ERS NOTES ... 15
Introduction 18
Overview .. 16

The Files ... 1.
An Important Global Variable 16
M aking Changes .. 16
Relinking .. 16
Transportability 18
Secret Codes ... 17

The File G/.IVAN ... 17
Constants in G/.IVAN .. 18
The Program Run .. 18
The Procedures in G/.IVA.N ... 19

Player Orientation Procedures ... 20
Other Procedures in G/.IVAN .. 23

The File GameUn3 .. 25
Constants .. 3 2
Procedures in GameUn3 .. 25

The File ItemFiler3 *..*......... 30
Important Constants ... 30
Important Global Variables .. 30
Procedures in ItemFiler3 32

PROGRAM M AINTENANCE .. 34
The Disks .. 34.
Organization 34
..Disk Handling .. 35

The Gam e Code DiskgBefore .. 35,:.=The Game Code Disk--After ... 38 '
• The Images Disk--Before and After .. 35 T~•

- %REFERENCES 37...

APPENDIX A: Program Listing ... A-0 '

ioxo-

INTRODUCTION

Background and Problem:
Many student assessment procedures wLich are currently used in Navy train-

Ing are not adequately accurate or consistent. This sometimes results in over-
training which increases costs needlessly, or undertralning which culminates in
unqualified graduates being sent to the fleets.

Typical procedures for assessing performance do not adequately measure
with sufficient fidelity, validity, and reliability real-world operationally oriented
job-sample tasks. Consequently, student evaluation at Its best is somewhat
suspect, and decisions based upon this kind of assessment may be erroneous.

Better testing techniques are needed for asmeming Navy trainees against per-
formance standards employing tasks functionally similar to those encountered in
operational contexts. One attempt to fulfill this requirement involves the use of
microcomputer technology which is rapidly appearing in a number of Navy train-
ing and testing environments.

There is, however, no suitable knowledge base which can be tapped by the
Navy (or others) for developing, evaluating, selecting, and using computer-based
testing strategies incorporating graphic representations of job-sample tasks.

Many of these customary methods for measuring performance either on the
job or in the classroom involvw. "nstruments which are primarily paper-and-pencil
iL nature, e.g., check lis -, rating scales, critical incidences; and multiple-choice,
completion, true-false, anu matching formats.

A number of deficiencies exist with these traditional testing techniques, e.g.:
(a) biased items are generated by different individuals, (b) item writing pro-
cedures are usually obscure, (c) there is a lack of objective standards for produc-
ing tests, (d) item content is not typically sampled in a systematic manner, and
(e) there is usually a poor relationship between what is taught and test content.

WVhat is required is a theoretically and empirically grounded technology of
producing procedures for testing which will correct these faults. Very few data
are presently available regarding the psychometric properties of testing strategies
using microcomputer-based graphically represented simulations, models, or meta-
phors. Technical information is needed concerning the accuracy, consistency, sen-
sitivity, and fidelity of these computer-based assessment schemes compared to
more traditional testing techniques.

The objective of this exploratory development is to develop and evaluate
- microcomputer-based graphic representations of operationally oriented tasks to

determine if they result in better assessment of student performance than more
customary measurement methods. As a test-bed, microcomputer-based graphic
models have been programmed to assess how well F-14 Pilots and Radar Inter-
cept Officers (R1Os) recognize front-line Soviet and non-Soviet fighters and
bombers.

.. ..** ** • A A

Empirical and psychometric studies will be conducted to ascertain If this
computer-based game provides better estimation of student recognition perfor-
mance compared to more customary measurement methods, i.e., multiple-choice
or completion formats. These distinct assessment strategies will be evaluated in
terms of their relative reliability, validity, and fidelity.

Objective

The objective of this technical report is to document the programming effort
expended to develop and evaluate this generalizable and transferable computer-
based gaming system for assessing recognition performance. This was done so
that others who may want to use this set of software tools for either research,
development, or operational implementation will have an easier time
comprehending the modularity of the programming structure as well as how
specific procedures can be adapted to suit a user's unique situation.

Inorder to create a context to facilitate further the understanding of the
documentation of this computer-based game, the on-line instructions, presented
to student pilots and RlOs whose performance will be assessed, are as follows:

"For research purposes, a computer game called "FLASH IVAN" has been
designed and developed to assess how well Navy Pilots and RIOs recognize
front-line Soviet and non-Soviet fighters and bombers. This randomly selects and
presents on the Terak screen with millisecond speed either the front, side, or top
views of four Russian bombers and ten of their advanced fifhters. Also, the game
management system can choose and flash corresponding i!'touette: of NATO air-
craft which act as distractors for the Soviet aircraft becaum of the high degree of
similarity between them which could easily confuse U.S. aircrews.

"This game assesses student performance by measuring:

(1) your "hit rate" or perci 'tage of correct recognitions out of a total of eighty-
four silhouettes (half Scvirt and the other half non-Soviet),

(2) the time it takes you or 'latency" to make a recognition judgment for each
target or distractor aircraft, aud

(3) your degree of confidence in each recognition decision.

"At the end of each trial, you will be given feedback in terms of: the correct-
ness of your response; a running tally of the number of correct recognitions, your
hit rate, average response latency, and average degree of confidence in recognition
judgments up to this point. At the end of the game, you will be given how your
performance compares to other students who have played.

"Next, six examples will be presented to familiarize you with how the game
is played. Notice that a silhouette will flash on the screen. If you do not pay
attention and concentrate on the center of the screen you will likely miss seeing
it! Your task is to identify as quickly as you can the flashed aircraft. After the
image disappears, you will see the prompt: "AIRCRAFT NAME:". Use the key
board to type in after this prompt what you think the aircraft is, i.e., its NATO
name or corresponding alphanumeric designation, e.g., SABER or F-86. Misspel-
lings count, as wrong responses.

3

.,.. . -..

THIS

PAGE
IS

MISSING

IN

ORIGINAL

DOCUMENT
'-

S%

as the ADMINISTRATION Disk.
Instructors, on the one hand, may want to create a new game with a com-

pletely different database than the original game, FLASH IVAN, which uses
aircraft-silhouettes. There are two basic steps in undertaking this task:

1) the creation of the computer images, and

1 2) the corresponding database which associates labels with each image.

The user-friendly programs SEMIPAINT and MAKEDIR on the ADM disk were
designed to aid an instructor in performing this task.

Researchers or evaluators, on the other hand, may wish to extract statistical
data from the game. The program MAKESTATS has been designed for this pur-
pose.

For the programmer who is enhancing the game to suit an instructor's needs,
the ADM disk provides many basic utilities, e.g., PRINT programs and disk for-
mating programs, as aids. The actal game rode, written in UCSD Pascal, also
resides on the ADM disk. A programmer may want to change the code in mak-
ing basic game changes. Of cou - a basic familiarity with the UCSD P-system
and UCSD Pascal (Bowles, 19i7, Grogono, 1980; SoftTech, 1978) is prerequisite
to successful completion of such a task.

The following sections give the details of the utility functions on the ADM
disk. We have decided to approach the matter from the point of view of the user.
Rather than describe each utility function separately, we have opted to group
descriptions of the utilities together in the context of the two most important
outcomes of their usage; hence, the two section headings:

1) Creating a Game

2) Using the Statistics Package

We recommend that you walk through the running program while simultaneously
reading these sections.

2. Creating a Game

Two of the variable components that are the basis for a new game are:

1) the images, graphic representations, or pictures

2) the information associated with each image

This game-specific information is always contained on a disk which is separate
from the game-code disk, and is to be placed in the top-dsk drive during run
time. Theoretically then, a new game can be played simply by putting a new disk

5

in the upper disk drive and rebooting. This new disk would contain a new set of
graphics (called FOTOFILES) and new corresponding Information (called an
IMAGE DIRECTORY).

2.1. Creating Game Images

The task of creating graphics or images is certainly the bulk of the work
load in creating a new game; it involves the meticulous recreation of drawings or
their like into computer images. There are typically two ways of undertaking
this task by use of a digitizer or by hand using some sort of graphics editor.

Certainly the fastest and most convenient of these two methods is by use of
a digitizer, a type of camera which has the capability to project any image that it
can "see" onto the computer screen. However, we have yet to discover a digitiz-
ing system that is compatible with the TERAK microcomputer.

We resorted to the slower of method of converting each image by hand (see
SEMIPAINT instructions for more details); however, any graphics editor that can
work on the TERAK and create 320 x 240 pixel images should work fine. It is
also important that the name of the file holding the image end in the suffix
".FOTO". Any file ending in ".FOTO" is called by convention a fotofike and
generally corresponds to a 320 x 240 packed array of boolean. Each member in
the array is stored in memory as a bit and corresponds to one pixel (or dot on the
screen). We also recommend the use of a grid-system in converting technical
drawings to computer image so as to maintain accuracy. By placing a piece of
see-through graph paper over the drawing and a cooresponding grid on the com-
puter display, one can accurately translate the original figure to the screen.

In order to maximize the number of images that can be used in a game, we
have given the game creator the option of dividing each 320 x 240 pixel fotofile
into thirds. These thirds are referred to as the TOPTHIRD, MIDTHIRD, and
BOTTHIRD and consist of 320 x 80 pixels. Thus, either 1, 2, or 3 images can be
stored on one FOTOFILE; when an image is flashed to the screen It will
automatically be centered. Several restrictions pertaining to gaming images to be
wary of are:

1) a maximum of 89 images are allowed in the game

2) a maximum of 50 FOTOFILES are allowed on the upper disk

These restrictions have been imposed due to the limited storage capabilities of
the TERAII microcomputers.

L 6

. 1 .

7 7 -7 - 7

When all of the FOTOFILES for use in the game have been created, It is
necessary to store them on one disk which must be FORMATed and ZEROed
beforehand (see instructions for UCSD P-system). The disk must also hold, In
addition to the game FOTOFILES, the following standard files that the proto-.
type game needs to access:

EX1.FOTO
EX2.FOTO
EX3.FOTO
EX4.FOTO
EX5.FOTO
FLAGS.FOTO
EAGLEI.FOTO
EAGLE2.FOTO
INi.FOTO
IN2.FOTO
INSTRUCT.TEXT - game instructions
NONE.FOTO

You must copy these files onto your disk. Two other files that you need not
worry about, which will appear on your disk later are:

NEWNAMES - the Image Directory
H1SCORE.DATA - keeps record of top ten players

2.2. Creating the Image Directory

Once all of the game images have been put on the special disk, It becomes
necessary to create an Image Directory. The Image Directory is a list of 100
records that provide the main program with information concerning each visual
stimulus in the game. Records 90-100 have been specifically reserved for system
"images. Records 1-89 are for your use, giving the main program information con-
cerning game images. Each record contains:

a) two identification names associated with each image
b) the name of the fotofile which holds the image
c) where on the fotofile the Image is stored

The program MAKEDIR has been especially designe,4 In siding the game
creator In making an Image Directory. Before executing MAKMIR, be sure the
disk with the game Ictofiles is in the upper disk drive. This action is necessary
because the Image Directory also stores device-dependent information concerning
where each FOTOFILE is on the disk, thus enabling the use of better and faster
routines in projecting an image to the screen. In addition to this, the Image
Directory .s stored on the images disk.

7 * ... 4.

Upon executing MAKEDIR, the user will see the following menu:

MAKEGAME OPTIONS:
1) EDIT DIRECTORY
2) CONVERT DIRECTORY
3) QUICKLIST
4) MAKE IISCORES FILE
5) QUIT

Typing "1" will enable the user to begin creating an Image Directory for the first
time or to edit a pre-existing Image Directory. The next prompt a user will
encounter is:

Edit OLD file or make NEW file? [O/NI ->

Type "N" (meaning "NEW") to get the next prompt:

EDITING OPTIONS:
1) INDEX CHOICE
2) AUTO-INDEX L

The INDEX CHOICE option allows the user to edit any one record in the index
range I to 100. This option becomes especially useful to a user who Is making
sma'l changes to an OLD Image Directory. The AUTO.JNDEX option, on the
othe- hand, will automatically loop through a predefined sequence of records after
the user is done editing a particular record. This option is especially applicable
to the user who is creating a NEW directory. After typing "2" specifying the
AUTO-INDEX option, the next prompt to appear will be:

Enter lower index bound, space, upper index bound

These bounds indicate the range of records you wish to edit. Needless to say, the
lower index bound should be less than the upper Index bound, and both bounds
"should be within the 1-100 range. More likely than not, you will not need to edit
records 90-100; they have been preset and pertain to "system" Images. Be wary
that once you begin editing records in a certain range, you must complete the
sequence If you wish the information to be recorded on the upper disk. Eighty-
nine records are a lot of records to edit In one sitting. If you have a limited
amount of time you may only want to edit records in sequences of 10. This
method will also allow you the freedom to go back and repair minor mistakes you
may have made with the INDEX CHOICE option (as opposed to having to go
through all 89 records before coming back to repair mistakes). Once you have
entered your index bounds, you will be presented with a menu which cooresponds
to one record in the Image Directory. The menu will appear as such:

INDEX NUMBER n
Name 1: nonel23
Name 2: none123

.....•: ,-..,,,• ,. .. , ., ,'.' . .. ,.. .% - o .,..... .. , , • .. , ,e• ., . ,, .. ,, • , ,.. ,,.

Fotofilename: FLAGS.FOTO
Fullscreen[T/F] TRUE
TopThird IT/F] FALSE
MidThlrd [T/F] FALSE
BotThlrd IT/F] FALSE

Use the arrow keys on the right side of the keyboard to move among the choices.
You will notice a small arrow on the left border of the menu specifying which
Item you are currently pointing to. Type "S" to select the item you wish to
"make changes to. For example, suppose the Indicator arrow Is pointing at "Name
L:". Typing "S" will provoke a new prompt occurring at the bottom of the
screen:

Name 1 Is currently "nonel23"
Enter the new Name I: ->

After entering the new Name I followed by <RET>, you will notice the new
prompt on the right hand side of the screen:

Change more values? [Y/N]

This same prompt will occur after any change that you make. A "Y" response
will bring you back to the same indexed record. A "N" response will automati-
cally project the ,icxt sequential record to the screen (provided you are In the
AUTO-IND ', modei. So when typing "N" be sure that you have entered in all
of the coirecL Information, because if you have make any mistakes and typed
"N" going on to the next record, you won't be able to go back and correct the
mistakes until you are done with the sequence of records. Suppose you were to
type "Y", going back to the same record to edit. You select "Name 2:"; if there
Is no second name associated with your Image, It Is best to enter an empty string
by simply hitting <RET> when prompted for "Name 2:"; otherwise, If a game
player were to respond Incorrectly to this game Image, the name "none123"
would appear under "the correct name is:" heading.

In selecting "Fotofile Dame: ", you will notice that It ha. been preset with
the name FLAGS.FOTO. This acts as a default file which will be fleshed to the
screen If you happened to have forgotten to type In a fotofile name. When you
enter the fotoflle name, be sure to include the ".FOTO" suMx. All fotofiles are
assumed to be In the top drive so the prefix "#5:" is unnecessary.

The remaining four fields of the record Indicate where the image is stored on
the fotofile. For instance, if "Fullscreen" were set to "TRUE", then Image Is con-
tained on a complete fotofile; and conversely, it would be set "FALSE" if It was
uot contained on a complete fotoflle. Note that more the one of these fields
could not possibly be set "true" at the same time; in other word., an Image could
not possibly occupy a full fotofile and a third of a fotofile simultaneously. So as
soon as u one of thene Items Is selected, It Is automatically set to "TRUE" while
the remaining Items are set to "FALSE".

0

Whenever you are done editing after either completing a AUTO INDEX
sequence or responding "N'" to the prompt "Another?" in INDEX-CHOICE, the
screen will clear and the computer will inform you that It is "converting" the
directory, before taking you back to the main menu. During "converting" If any
of the fotofilee that you listed under "Fotofile name:" are not on the Images disk,
you will get a message notifying you of this. This function is described In more
detail below.

2.3. More Utilities

After Editing an Image Directory, or whenever running the utilities program
MAKEDIR, the user will always be presented with the main prompt:

MAKEGAME OPTIONS:
1) EDIT DIRECTORY
2) CONVERT DIRECTORY
3) QUICKLIST
4) MAKCE HISCORES FILE
5) QUIT

We have already discussed option #1 concerning Editing a directory. The fol-
lowing paragraphs discuss the remt'.. ing options.

2.3.1. Converting the Directory

Typing "2" from the main prompt line will run code that "converts" an
Image Directory. Converting a directory Is processd on the top disk which F
translates fotofilc names Into numbers which describe where a folofile is on disk.
This number (referred to as the BLOCK number) Is stored In a "hidden" field in
each record of the Image Directory; Its main function is to speed up the time It
takes to access an image from disk and fluab it to the screen during game time.
When It has finished, Image directories ("NEWNAMES") will be written to both
the upper and lower disks.

Whenever any disk operr.tlons (ADDIng a file, DELETING a file, ICRUNCH-
Ing the disk, etc.) are performed on the Images disk, the P-sytem Biler usually
rearranges the placement of Oileo on a disk; thus Converting the disk Is essential
In these Instances so as to assign new BLOCK numbers to Fotofiles. If ever you
come across a bizarre collage of images flashed to the screen during game time, it
bas probably resulted from your forgetting to "Convert" the Image Directory.

Note that It is unnecessary to select the CONVERT option If you are editing
an Image Directory since the EDITING option automatically converts the disk
for you. Also, If ever you entered a fotofite na-me that Is not on the images disk,

10 .

the Conversion function will send a m-ssage to the screen indicating this.

2.3.2. Quicklist
Typing "3" from the main menu will automate the QUICKLIST function.

This is a convenient way to quickly look over every record In the Image Direc- -'

tory. As each record Is scrolled down the screen, you will notice the addition of
the aforementioned "hidden" field labelled BLOCK Included In each record list-
ing. The entire list of 100 records in the Image Directory will be sent to the
screen, and then to a file "QUICKLIST.TEXT" on the disk In the bottom disk
drive. This list can then be sent to the line printer for further scrutiny using the
PRINT program.

2.3.3. Making the Hiscores File
"Make Hiscores File" will create a new IHSCORE.DATA file which will

prompt you for the top ten players (we have used fictional people) and their
respective scores. When entering in the new list, it is not necessary to list players
and scores in any special order. The program will automatically list them from
top to bottom in descending order according to score. The current version of the
game maps scores in the 0 - 1000 range, so it is best to enter scores in this range.

3. Using the Statistical Facilities
MAKESTATS is a program which takes the data from the computer

recognition game and formats it into a text file so that It can be viewed or sent
to a printer. In order for it to operate correctly it must have two important files
on the same disk (i.e. the "ADM" disk):

NE WNAMES
GAMES. DA TA

NEWNAMES, the image directory, is needed so as to associate image names with
statistics. GAMES.DATA, a record file, holds the game stats and consists of the
record type "gamestats":

N.

const numberpictures 89;
type GAMESTATS =- record

name nametype;
SS satype;
date nametype;
latency array[1..numberpictures] of integer;
confidence : array[1..numberplctures] of scale;
correct : array[I..numberpictures] of boolean;

end; P -

type nametype - string15 .j;
sstype = string[ll];

The constant NUMB3ERPICTURES Is set to the number of total posible Images
which can be shown in the game, not the actual number used in each game. Mak-
estats is set up so that any number of graphic stimuli can be used (up to the
maximum) in a game. Only those actual photos used in each game are tallied for
averages over several games. Records of type GAMESTATS keep statistics for
each game and when it is through, and are saved in a disk file, GAMES.DATA.
Recorded for each game are: k

name: The player's name, up to 15 letters;
2s: The player's Social Security number, any string u,-, to 11

characters is allowed so that errors can b avoided when
non-numeric data is entered;

date: And likewise, a 15-character length string for the date
the game is played is kept;

latency: The player's response latency is kept for every Image he
responds to, if an image is not used in the game then the 122
latency will be 0;

confidence: And similarly, the player's confidence rating which he
has keyed in for every image;

correct: Whether the plbyer actually got the image recognition
correct or not.

After a game is completed, a variable CURRENTGAME of type GAMESTATS is
appended onto GAMES.DATA.

When Makestats is executed, GAMES.DATA is opened and each game that
has been saved is read one at a time. They are then neatly formatted and put
into two textfiles on disk: LATENCY.TEXT and CONFIDENCE.TEXT.
Latency.text will include vertical and horizontal averages of the response laten-
cies. That is, each player's average response latency over one game, and the
average response latency for each photo over all the games recorded.
Confidence.text includes the same thing for the confidence ratings and averages,

12

S.�..*.*..• . . - •.'.. °o.. -. -.. -. o. . o. ., . . ."o

but the correctness ratings are also included; a "+" is put before the confidence
rating If the player got the recognition correct, otherwise a "-" if he got it wrong.
Also, In the formatted output are included the percentage of graphic stimuli the
player correctly recognized in each game and the percentage of games which got
any certain photo right.

As makestats Is executed, the old data In GAMES.DATA is erased, and a
new GAMES.DATA is Initialized with 0 game entries. In order for the game to
save statistics properly, GAMES.DATA MUST be the LAST file on the disk's
directory. Otherwise, the file will get too large, there will be an I/O error, and
the game will not be saved. If the error message appears:

i/o error: no room on volume

Then you must:
1) Delete GAMES.DATA from the disk,
2) K)runch the disk in the Filer,
3) eXecute DRIVER.

DRIVER is an executable file which initializes an empty GAMES.DATA file on
the disk in the upper disk drive.

The text files LATENCY.TEXT and CONFIDENCE.TEXT have croq-
references to index planes and players. This is a sample LATENCY.TEXT pr~n-
tout:

.9.

13

40. 11 If --

m•.• / t P LAN= "

1 1 a 4 a T ?t 8 10 to It

AA Ot $a4 on tOM Sol a M a m as m am
AD ME. ,4 s m 4" ISM INS M " ... _.n-_

is as to IT 1 38 is U a a a1 96

8804 04 IM MW M5 .s 4 SA 1;436 484
AD 0 2184 M&8 -f 34 3 84 a O4 36 M N

MAWR of twos AMWi M M
A J D US-0448 1-..4 IaM

AB53M101 51, ..

I.Tupm~) P• U8

P. rOdP) AFAM 01

4. r6

4T. ULA) 1 am T

IUC 411

sa (n6) PFMMM -2
W. O) FAM41R .M

IL. OW) 11L.AONJU
I& C") PUHIMEa
at Coo) 7154'a Oil
I& C") 11Ui M s
1&. 01) SAMM

aop-) n •A .44•21. Et) MUM~ 6a

The players are indexed by capital letters AA,AB,AC,...,BA,BB...ZZ and later are cross
referenced with their name and Social Security number, the date of the game, and their
average response latency (or average confidence and percentage correct as in
CONFIDENCE.TEXT). The images are indexed with numbers 1,2,3... across in rows of
12 so that it is feasible to put all the data on one page. At the end the planes are cross-
referenced to the viewing angle (top, front, or side), the plane name, and the average
response latency scored on that plane for ALL the games using that graphic image. The
same pertains to the average confidence and percentage correct for ALL the games using
that picture, for CONFIDENCE.TEXT.

14

PROGRAMMER'S NOTES --Modifying the Game Code

4. Introduction p
This section of the documentation is designed to serve as a technical'refer-

ence for programmers who may wish to make slight modifications to the game
code itself which is independent of the database. We have divided It Into four
main sections:
1. Overview -an introduction and reference guide to making changes

2. The File G/.IVAN -technical descriptions of procedures
3. The File GAMEUN3 -technical descriptions of procedures
4. The File ITEMIFLER3 -technical descriptions of procedures

5. Overview
The computer-based recognition game in its present form, Flsh lvan, is

currently implemented on the UCSD p-system, version 11.0. It is run on a Terak
8510 dual-density machine, with an auxiliary 8515 dual-density drive. The game
requires two disks, the bottom (#4:) drive gets the disk with the actual program
(named System.startfup-- a program that automatically runs when the disk is
inserted), while the top (#5:) drive gets the disk with the database, described in
the section on JlemFdIerS.

This particular implementation of the game consists of aircraft silhouettes,
but it could be used for any set of graphic images that could be drawn into the
database (see the Utilities documentation), and used in a recognition-game for-
mat. Because of this, we may refer to "planes", "airplanes", "pictures",
"images", "visual stimuli", "graphics", or "database objects". All of these refer
to the same thing.

5.1. The Files
The Flash Ivan game code consists of the following files:

G/.rVAN -- Pascal host program
GAMEUN3 -- Pascal library file
ITEMFILER3 -- Pascal library file
ERROR -- Assembler code for sounds
CLICK2 - Assembler code for sounds
TIMEPI -- Assembler code for sounds

The code was split into seperate files to make manageable segments, without
much effort being made toward extreme modular cohesiveness. The host file,
G/.IVAN, contains the main driving routine, and several smorted procedures and
functions. The file GAMEUN3 contains more assorted procedures and functions,
as well as a few constant declarations for good measure. The most cohesive file,
ITEMFILER3, contains procedures dealing with the database, some constant
declarations, and the HI-SCORES procedure. There are also some separate
assembly language routines that need to be linked: ERROR, TEMEPI, and

15".---

"." *..""..*. -" " % " " - """" "%." "" ' -" .- • % '."' """'-'-'"". .'' . .%'. . - - - '

CLICK2; these all produce the different sound effects.

5.2. An Important Global Variable
The variable Info-List, declared in the file ItemFilerS, Is an array with one

element for each item in the database.* Each element In the array contains Infor-
matiom on what the airplane's different names are, and how to get It from the
disk and show it on the screen. This is, In some sense, the "master variable" of
the game. It allows most of the game procedures to think of the planes only in
terms of Indices into the array, and allow a couple of interfaces (the procedure
CheckA4newer, the functions In the file Itemf"'S) to actually deal with the other
information.

3.3. Making Changes
For programmers who plan on making any changes to these files, we recom-

mend using the ensuing FLASH IVAN technical descriptions as a reference.
Before relinking any freshly compiled files (listed above), please be sure the com-
pilation dates as listed from the Filer are consistent. If the dates are not the same
"on any two files, linking errors will result. To change the date on any file, you
must first change the date for the disk (Date option in the Filer) and then recom-
pile or reassemble the file.

5.4. Relinking
"When linking, remember that "G/.IVAN" should be typed in as response to

the prompt "Host?". For the sequence of prompts "Lib file?", the other files L
listed above (as well as "*" for the System.library) should be Included. For the
prompt "Output file?", be sure to add the ".CODE" suffix so that it will be exe-
cutable. On the official game disks, we often moved our executable game file into
the file System.startup; thus upon booting, control is immediately passed to the
game. In this way, naive game players need not deal with the particularities of
the P-System.

5.6. Transportablity

Flash Ivan is designed to run on any computer with at least 128K RAM that
supports the UCSD P-system. However, if Flash Ivan is to be run on anyr machine other than the Terak, slight modifications must be made to the game
code. As a rule of thumb, it is safe to assume that any code having to do with
device-dependent graphics or sound manipulations will have to rewritten. To
make the game code as transportable as possible we have attempted to localize
most of the machine dependent code in the file ITEMFILER3. Modifications - '"
must be made here. ITEMFILER3 serves as a home for the majority of the
graphics code.

* We consider the databue to contain all the information about the pictures, plus the
pictures themselves. The top disk (#5:) contains the database.

1"

Si. .q

5.6. Secret Codes
After having made any changes to some of the Pascal files, we suggest that

you record the latest date of change In the string constants at the top of each 19
file, DateMain, DateGameUnS, or DateltemFilerS. These three dates can be 0
displayed from the linked and running version of the game by typing in a secret
code word at the start of any game (see the function Practice. In the file
G/.IVAN. With so many different files and so many different disks, as well as
several programmers, we found that this facility helped us organise ourselves as
well as see what version of the game we were actually playing.

In addition to seeing what version of the game you have, there are other
functions you can invoke from the start of the game. Upon seeing the prompt
"HI-T RETURN TO BEGIN GAME" just above the Eagle's head, you can
access the "version" function as well as a few other helpful ones. The code char- "-----

acters and their corresponding functions are listed below:

<esc> -- to bypass instructions and examples
"v-- to list versions of Pascal host and objects
"m-- to see memory available. We were pushing the

upper limits of RAM when this documentation was
written, so this function came in handy. Be
wary if you plan to make any major additions.

"d" to display any pictures from the image directory
The image directory is an array of 100 records containing
graphical information on each game image. Entering
numbers between 1-100 is advised here. If any images
are centered incorrectly or the wrong picture Is displayed,
it is likely that the image directory needs to be
"converted", or bad information was put in the image
directory by a game maker. Consult the "Flash Ivan
Utilities" Documentation. r

""W to view the HISCORES file

These characters can entered in either upper or lower case. One version of the
game requires you to hit the password "boatman" from the main prompt in order
to access any of these functions. This prompt must be lower cae. Since the
Terak Is initialized to an "all-cap" status, you need to know how to get to an
"upper/lower case" status. The <DC2> key at the lower right of the keyboard
provides the function of toggling between these two keyboard states. See the pro-
cedure Practice in the file G/.IVAN for more details.

6. The File G/.IVAN ".-

G/.Ivan is a file that contains the main body of the game program. It makes
calls to other procedures defined in library files so as to provide a cohesive unit
among all of the game files.

17 A

•. . , ,,..,.. • .•- ..-.. .. -... -.. ,.........-............................ . .. ,...... •.... .-.-

8.1. Constants In G/.IVAN
There are three constants defined in this file. It Is arguable whether or not

the constant declarations should be here instead of in one of the units with the
other constants, but they are only used here, so there is some justification.

name: This is set to the filename where the statistics will be col-
lected.

PRACSTAR7. This is set to the beginning Index of the practice pictures. In
our implementation, the actual game pictures go from I to 84.
Practice pictures then start at 88. 85 is a "delimiting" entry.
(See the section on ItemAFilerS for an explanation of the data
base, indexing, etc.)

numberpictures : This tells the statistics functions how many different test
items there are. Statistics will be printed for items one
through numberpicture.s. (See the MakeStats subsection of
Utilities for more on the statistics functions.)

DateMain: This is for programming convenience. It is a string constant
set to the date and time the file G/.Ivan is modified. The
"'V)ption at the beginning of the game will print out this
const int, as well ss similar ones in GameUns, and Itemfilers.

6.2. The Program Run

The "main" procedure of the program is fairly small (about ten lines), and is
run through only once per game. Calls are made to procedures to initialize the
statistics variables and database list (Jnfo_List), and show the opening animation.
Then the variable TotalPictures is set to forty-two. This is a number particular
to this game, and means that only forty-two of the total of eighty-four pictures
will be included in any one game. For a game to include the entire set of pic-
tures, a call to the function ListLength with the parameter Info_List to set
TotalPicturee could be made instead.

Next, the procedure ChoosePlanes Is called, with PicSequence as its parame-
ter. PieSequence is an array of integers, declared In GameUn3. The integers it
will contain correspond todatabase indices, one for each picture contained there.
The ChoosePiane procedure is another that Is specific to the database, and par-
ticular game demands of FlashIvan. It will pick seven Soviet top views, the
seven corresponding NATO distractor top views; seven Soviet sides, the
corresponding NATO side view distractors; and seven Soviet front views and
their distractors for a total of forty-two aircraft images. This is out of a possible
eighty-four silhouettes. They will not be randomly ordered, but each set of seven
will be randomly chosen from fourteen possible images.

18

In order to present the pictures In a random order, the procedure Shuffle Is
next called, with reference parameter PicSequence, and value parameter Total-
Pictures to tell how many to shuffle. PicSequence will return with the same set
of picture indices, but in a new, shuffled order.

The procedure PrivacyAct shows two fotofiles which contain the necessary
text evplalnlng to the research subjects, who are about to play the game, that
they are asked to not only identify themselves but also give their social security
numbers to facilitate statistical analyses involved In evaluating thin computer- -
based testing strategy. Further, the subjects are informed that plaing the game
is completely voluntary on their part. This procedure will also present a textfile,
one screenful at a time, containing Instructions for the game, and any other prel-
iminary comments that the game player should be familiar with. Someone Inmle-
menting their own game could write their own version of the instructions. Tne
file should be on the top disk (#5:), and be called INSTRUCT.TEXT.

Hello will prompt for and read the player's social security number, name,
and date. It will then re-display the information and ask for confirmation. The
player is allowed to re-enter information until he is satisfied with it.

The Practice procedure first shows three examples, animating or mimicking
a game so the player can see how to play, and in what order, including the com-
puter typing in, instead of the subject, the names of aircraft displayed character
by character. Then, it calls the same procedures for showing three additional
example silhouettes to elicit actual -!t"ice responses from the players, i.e., typ-
ing in themselves aircraft nam,-, and *or reporting feedback to them as the
actual game would for three "3,),'e exatiple trials. This allows the subject to

become more comfortable with 1-ow the game is played before she/he really
attempts it. The six example trials consist of the same set of pictures every time. -

(See Utilities for an explanation of how to put in practice pictures.) This pro-
cedure does nct save the results when done.

InitStat initializes the statistics variables. For a more detailed description,

see below.

The procedure Game 2 is the major game-playing loop which presents the
player with the full set of images (whatever the variable TotalPicturee, which
resides in the file GameUn3, says) and keep track of all the game information.

The procedure AfterGame will write the information for the game just
played to the disk under the subject's name. It will then show the player's final
score, and call HiScores to show the current top-ten players.

6.3. The procedures in G/.WrAN

Due to the space limitations of the Terak 8510 computers, we had to make
as many procedures as possible "Segment" procedures. That is, they will only be
loaded into memory when needed, and then moved back out leaving room for
others.

*"1 ".

:..... -. , _ .,..oo - oo-..................-......-.......-..-..-..-....-... - -. - * -. • .

I-.

6.3.1. Player Orientation Procedures
These are the procedures that are used in the beginning of the game to

acquaint the user with the rules, and allow him/her to get familiar with the flow
of the game by watching and playing some practice examples.

Procedure PaintBlock(VAR Source, Srcwid, Srcz, Srky, integer; VAR Deet;
Detwid, Dstx, Doty, Cntz, Cnty, Mode, Gray: integer);

This externally assembled file is located in the System.Library, and can thus
be accessed upon linking to the System.Library. PaintBlock simply copies bit
maps from "Source" (a boolean array) to "Dest" (another boolean array. "Cntx"
and "Cnty" are the width and height of the block of the boolean array to be
copied. The "Mode" parameter gives the following boolean operations: 0
store, I =- or, 2 =- and, 3 - xor, 4 = complement. The "Gray" mode seems S
to work best set to -1.

Procedures Click2, Timepi, Error;,
These procedures are external MACRO-11 assembly procedures used for

various game sound effects. For assembly code alterations, refer to the UCSD
Pascal User's Manual (SofTech), or your favorite MACRO-11 (PDP-11 Assembly
Language) handbook. Essentially, all the sound effects are produced by switching
bit 7 of the VCR (Video Control Register) at various .Yequencies. The include
file SNDEFF. TEXT is inserted at the beginnin. of each of the three assembly
procedures and contains two simple MACRO algorthms for switching the VCR.

If one is interested in creating or adapting some new sounds, methodical
experimentation with with these macros is suggested.

IMPORTANT: When linking assembled procedures to Pascal host pro-
grams, make certain that all file dates (including the include files) are the same.
If they are not dated similarly, the Linker reports a diagnostic such as

"Click2.code not found"
In addition, all assembled procedures must NOT be linked to the System.Library
before linking to the Pascal host; the respective code file will also be reported
"Not Found" by the Linker.

Procedure Animate;
This Pascal procedure's two main purposes are to initialize the boolean array

used for graphics, and to perform the opening animation sequence at the begin-
ning of each program run.

Animate first initializes the two global boolean arrays Minifoto and
Croashairs to contain their bit-map icons for the duration of the game. Wini/oto
contains the labels "AIRCRAFT:" and "% CONF[DV 4CE" as well es the
Confidence ruler "TAB 0"; CROSSHAIRS contains the gun sight icon that is
always flashed to the screen a split second before an actual game recognition

20

.~~~~•

Image (see procedure Display). Both arrays, Minifoto and Croeahairs, are initial-
Ized by a disk read from a FOTOFILE Indexed "91" in InfoJist to the Screen
buffer, followed by two calls to Painstblock copying both bit-map arrays from
Screen.

After these Initializations, the Eagle animation code follows. The animation
is the simple "flip-book" approach centered upon the Eagle's head; It is accom-
plished by a series of calls to PaintBlock with an Interspersed call to the sound
effects procedure TimePi. Notice that each call to PaintBlock is followed by a
call to UnitWrite(S, Screen, 69) so that the screen is updated for each animation
"frame".

Procedure Inmtruct;
Instruct is the first nested procedure in Practice. Ith primary function Is to

read the contents of the file Instruct. Text (the game Instructions) from the upper
disk drle. You may notice that whenever game-specific information is read into
the game (such as reading in the main game array InfoJist, the game instruc-
tions, or the FotoFiles) they are always read in from the upper disk (#5:). We
implemented this standard in our game to make it flexible to new games. Instruct
reads ir 'ne string at a time from the text file, and then ou-.puts each line to the
screen one at time. This type of implementation prevented us from having to
read In the whole textfile, thus saving valuable memory space needed for game
code. After 21 lines have been projected to the CRT, no more lineb are read
from the file until the game player hits the <RET> key.

Procedure PlayS,;

Play$ simulates three game examples exactly as they would appear in the
game. The variable ListIndex is set to 95, 96, and 97 in a loop. These numbers
correspond to t'-c practice game images' indices in the main game array
Info.List. Records 90-100 in InfoList have been reserved for such purposes as
storing information pertaining to these practice game images and other system
images such as those used in the opening Eagle animation. The calls to Display
and Single Trial flash the image to screen, prompt the player for a response, col-
lect statistics, and display the results. These 2 calls are the very calls used in the
actual game as well. The additional variable FakeList is used in this procedure
to hide the fact that list indices > 90 are being displayed. SinfleTrial only
expects to be called with numbers less than 90, the total amount that can be
used in a game. Throughout the Practice module, FakeList is set between I and
6, so that statistics can tabulated for six examples. These "fake" statistics stored
in the scoresfile are overwritten during the first 6 loops through Single Trial dur-
ing the actual game (see Procedure Game2).

21

. -F-

Procedure Anawer(VAR Al: string; X, Conf: integer);

This procedure is used in looping through the 3 automated examples In
Practice; it attempts to simulate Single Trial by displaying prompts, collecting
statistics, and displaying results. In addition to this, Answer also simulates a
player, by supplying the responses (Al) as well. X Is the number of characters in
the string Al; between each character being output to the CRT, Clicke Is called
to simulate the sound of the keyboard. Con/ Is the confidence integer to be
recorded in the statistics.

Procedure Practice; (main block)

This is the main procedure for providing game players practice with game
examples; it makes calls to the aforementioned procedures which are nested in
Practice: Instruct, PlayS, and, Answer. Notice that this procedure can be
immediately exited with the entry of a password from the standard input, when
the prompt to "hit <ret>" comes up. This drops the program Into a loop where
a response of <esc> to the new prompt initiates the game, bypaming instruc-
tions and examples. We implemented this "secret" option, so as not to needlessly
walk players who know the game sufficiently well through the instructions and
examples. There are also four other options at this point. The user could type
the character "H" (upper or lower case) to see the Hi-Scores board, "V" to see the
versions of the three game files (the constants defined In each file-- DateMain,
DateGameUnS, DatcltemFiler9), "M" to see memory available (via calls to the
provided function MemAvail), or "D" to display any pictures from the database.
For this option, the user will be prompted for the Index number of the picture to
display. (Note: this option Is not currently implemented.) This is all put Into a
loop, so whenever the prompt to "hlit <ret>" comes up, the user can continually
hit the character options instead. The loop drops through when either the return
key or the escape key Is hit.

Notice that FakeList has been Initialized here before going through the 6
game examples. FakeList is used as a dummy Index so as to keep statistics dur-
ing the practice run. These statistics will be overwritten and forgotten during
the real game run. After this Initialization, the automated examples are then
created with 3 calls to Display and Answer. Notice that indices 92, 93, and 94
are used here. These integers correspond to the game example Information stored
In Info_Lset. PlayS, the participatory examples, Is then called; it use In/oL.ist
Indices 95, 90, and 97.

Procedure PrivacyAct;

For the instructions, this simply opens the file "#S:Instruct.text" and reads
one line at a time, then writes that line to the Acreen. Every 21 lines, the "write
a line" loop stops, writem "hit <RETURN>", and waits for the return key to be
hit with a "readlno" statement.

22

°. 4 . . . 1. .

The text of the privacy act has been typed in to two fotofiles. To show
these, It does a UnItRead of the fotofile from the disk, and a UnitWrite to the
screen.

Procedure Hello(VAR player: nametype; VAR date: nhmereps; VAR SS.: etel p);
The procedure Helo prompts the player for his name and the date, both of

which are of type Name Type, a string of 16 characters In length; and also for his
Social Security Number, of "tlype, a string 11 charateos long. All three aen
stored at the head of the game statistics file GameStat., right before the arrays
which store response latency, correctess, and confidence. The PrivriAct func-
tion Is also called In Hello and the prompts to start playing the game are printed
out.

6.8.2. Other Procedures in G/WIVAN

Procedure Affergame;
This procedure saves the GameState file on the end of the OGmae. data file on

disk when the game is over. It also prints out the player's final score and calls
OutputStats; and also calls HighScore.

Procedure Outputtats;

This procedure prints out for the user his/her percentage correct recogni-
tions, avorage recognition confidence, and average response latency,

Procedure Inittiai;.2."
This procedure Just Initializes all of the arrays and variables used within the .

statistics portion of the program, Invariably to 0.

Procedure AfterPicture;
This procedure puts the player's response latency, confidence, and correct.

ne In the proper spot in the GAMESTATS statistics file, and keeps track of
various variables, such as how many planes have been shown, which are used to
output statistics to the player.

Procedure GetConfidence(VAR conj: integer);
This procedure displays the confidence-rating continuum or scale and

prompt via the calls to PalntBlock, and a couple of "write" statements. It then
reads the player's response as a character. If the character Is not either a TAB,

2.

or a digit, then the user will be sakcd to try again. Once a valid character is
entered, It is converted to an Integer value, percentage of confidence in the recog-
nition judgment. For TAB, the confidence is returned as 0%. A zero keyed In
corresponds to 100%. All other digits are 100 times their value. This Is reflected
in the recognition-response confidence-rating continuum.

Procedure Single Trial(Lietlnde: integer; ifprac: boolean),

The Single Trial procedure times the player's response, checks the answer for
correctness, and calls the appropriate statistics routines to keep track of the
player's scoring. It is called from Gamet just after a picture has been shown.
The parameter ,istlndez Is the index into InfoList for the picture just shown. It
needs this to be able to look-up information In InfeLiet about that particular pic-
ture. The other parameter, ifprac, tells the function whether or not to look at k
the practice set of pictures (starting at InfoLIstIPRACSTARTD), instead of the

"real" set of pictures. This is needed because the practice procedures at the
beginning of the game also need to call SingkeTrial, but with a completely
different set of pictures.
The delay loop: L...

for i I- 1 to SetSpeed do DELAY(250);

determines how long the picture will remain on the screen. SetSpeed Is a con-
stant, defined In GameUnS. It allows coarse control over the delay amount (the
DELAY() procedure delays for approximately one one-hundredth of It's parame-
ter: thus a change In SetSpeed of one results In a delay change of about 2.5
seconds). When the delay loop is throu h, the page(output) command will clear
the picture. Then a prompt Is shown, and the player's response Is read into the
string guess. Ticks will then contain the number of "machine ticks"* that
occurred between the disappearance of the picture, and the typing of the second
key by the game player. This approach was chcsen to in an attempt to not
penalize poor typists, yet still get some measure of the player's response time.

The calls to AfterPicture and OutputStat, take care of updating the statis-
ties, and showing the player his current performance information. After this is
printed out, the player is given a chance to see the picture again, and look at It 7
for as long as he wants.

The section of code at the end, currently commented out, will allow only
only a ten second pause after the end of the current trial. If the player does not
type the <return> key before ten seconds are up, the game will write a memage
to the screen telling the player to pay attention, then the game will continue. As r
It Is now, the game is set-up to remain in a walt-state if the return key Is not hit.

*(ticks/80) times 1000 equals the time in millineonds. .

24

Procedure Game2'
This procedure is called Game2 for traditional reasons (once upon a time

there was a Gamel...). As mentioned earlier, this is the major game-playing
loop in the program. It loops from 1 to TotalPicture8, a variable set in the main
program body. In our implementation, we set it to 42, so we always get a game
of 42 trials. The loop counter is used to index into PicSequence, a previously
loaded array of integers which are in turn passed one at a time to SingleTrial and
used as indices into InfoList. These integers are unique, range from 1 to the
highest possible game picture, and have been chosen and shuffled in main.

7. The File GameUn3
The file GameUnS serves as a home to many of the assorted functions

needed for the program. It is not a cohesive module in the software engineering
sense. Only ItemFilerS approaches that.

7.1. Constants
The same comments about the constants in G/.Ivan hold here, also.

DateGameUnS: This is a string telling when the file was last updated.
See the constant DateMain in the section Gf.Ivan.

MazInt This represents the largest positive integer that the
Terak can hold. This is why there is a limit to the
reported latency of MazInt milliseconds, or about
thirty-two seconds.

SetSpeed This is used to roughly effect the amount of time each
picture is shown. A larger number will show the pic-
ture for a longer amount of time. It is used in Single-
TriaL. .

ChooseGame, Al!jIn_One, FlashGame:
These are all booleans which are sipposed to allow
different game setups. At this time, none of this is
implemented.

7.2. Procedures In GameUn3

Procedure Randomize(VAR seed: integer),
This is an external function, found in the supplied Syjstem.Library, which

fills the integer seed with a number derived from the system clock.

25

7•.".• "#) .o • ". .."" . - °• • ° . ..- . °

t .. °

Function Random(VAR seed: integer; Low, High: integer): integer;
This random function returns an integer between (and including) the two

bounds Low and High, and changes aced as well. This function is derived from
information given in the book "Fortran 77 - Principles of Programming" by Jer- .

rold L. Wagener, in chapter 8. Random has a period of 1024 (meaning the
sequence of numbers generated will not repeat until 1024 calls have been made),
and is designed for a machine with 16 bit integers.

The procedure was tested for approximating random selections by choosing 7
items from a possible 14. The results were tabulated, and the selection was done
repeatedly. This test was done 10,000 times. The results follow:

Item number how many times ehn
1 4748
2 5463
3 5422
4 50W2
5 4712
8 5220
7 4962
8 4297
9 5758

10 4773
11 4793
12 4928
13 4841
14 go"'-4990

These findings indicated that the pseudorandom number generator did
indeed approximate random selections. The expectation of each item
number for 10,000 trials is 5,000 which was approached by how many times
each item number was chosen by the generator.

I
Procedure Shuffle(VAR IndezArray: IndezList; Num_oJJPice: integer);

The input reference parameter IndexArray is a set of indices into InfoList,
previously chosen, but not necessarily In a mixed order. Shuffle will randomly
choose 200 pairs of indices into IndexArray, and then exchange their contents.
After Shuffle is called, sequential accesses Into IndexArray will yield a random
sequence of the original set of numbers.

Procedure MakeSequence(VAR IndezArray: IndexList; Numraof.Pice: integer);

This procedure is not currently used in our set up, but Is more general than -

the procedure we use to make a game sequence (ChooeePlanee). After a call to
MakeSequenceO, the parameter passed in as IndexArray will contain a random

28

S . °. . ..-. . o... -~ * • • " . . " -. .' -'.v - O / . °O ~ * o ' *.- "o-- o ° ° o- " " - - --- ', =• . .' ,% i- =% '.' * ' .* "=**** .* *.•o.%m %•' %j%.' 1*= .- %j -•°• • .%•' %-% % .* %.% %•":•• -•• ."• % %• • % "•:-

sequence of Integers from 1 to whatever was passed Into the second parameter
(Num_..Pofic8), each integer appearing once. This Is useful for games where one
game consists of each and every picture showing up once and only once. MakeSe-
quence calls Shuffle to actually do the mixing.

Procedure ChoosePlane.(VAR IndezArray: IndezList; Nuvm_oPicd: integer),

This is a more complicated procedure for composing a set of silhouettes or
pictures for an instance of a game. For Flash-Ivan, we had a total of 14 Soviet
aircraft, each with a top, a side, and a front view. For each of the total 42 (14
times 3) Soviet pictures, we also had a corresponding NATO picture. We chose
this picture to look as similar to the Soviet one as possible, to act as a "distrac-
tor".

We wanted this game to show 42 silhouettes In an unpredictable order.
These 42 images should Include equal numbers of fronts, sides, and tops, and
equal numbers of Soviet and Non-Soviet aircraft. Further, for each Soviet
silhouette shown, its matching distractor should also be shown sometime during
the game.

ChoosePlanes relies on a special ordering of Info-Lisat (corresponding to the
ordering In the database). There should be 14 Soviet planes of one view (items 1
through 14), then the 14 distractors for those pictures in the same order (15
through 20), then 14 SO 1-'t. planes of another view, etc. This makes the relation
between any picture mnd Its Jistractor very simple. Just add 14.

ChooecPlanee h.s three sections. Each section chooses the fourteen pictures
for one view. The setions are the same, except that different bounds are passed
to random o reflect the new set of pictures to choose from, and each section fills
a different piece of the array parameter Inde•TArray. Each section itself Is a -'
seven-iteration "for" loop. Each iteration chooses two pictures: a Soviet and a
distractor. The Soviet picture is chosen by the random procedure in the specified
bounds, then the distractor is found by adding fourteen. These two numbers are
stored In IndezArray at consecutive locations.

One possible problem Is that the random function could happen to return a
number that it has already chosen. To take care of this, we declare a set of
integers, AlreadyChoacn, which is checked each time a new number Is generated.
If the new number is not in the set, then it Is put into the set and the procedure
goes on as described above. If the new number Is In the set, then a loop Is
started. This loop generates a new number in the same bounds, and checks
again. It continues until It finds a number not yet chosen. Although this method "'"
has the possibility (very slim) of continually choosing numbers already chosen
forever, It was found that the time It actually took was never noticeable.

27

Procedure UpperCase(VAR Namel: atring);,
This procedure checks each character of Namel and, If it is a lower-cme

alphabetic character ('a' through 'z') it converts it to Its upper-came representa-
tion by subtracting decimal 32 from its ordinal value. This procedure works
assuming an ASCII character set.

Function Compare(VAR first, second: string): boolean;
This function converts the two input strings to upper-came, thei compares

them, returning true If they are the same, fake otherwise. The caller of this
function should note that the strings are passed by reference, so they will be per-
manently capitalized.

Procedure NewLinea(count: integer);,
This simple procedure iterates a loop count times, calling a u'riteln each time

to print out a new blank line.
I-..

Procedure ModWait(aeed: integer);,
This function is used to give a pseudo-random short delay. The Input

Integer seed, presumably something fror- a random generator, is put into the
range 0 to 200 with a call to mod, (this is Lhe reason for the function's name),
and then a do-nothing for loop is e:'-.:uted as many times as the result to give the
short delay. One use of this is when we need to get two random numbers at the
same time. The first call to random will read the system clock, and since the call
takes a constant amount of time, the next call to random will always return a
number with the same relation to the first. If we call ModWait(aeed) in between,
then the first number will have some sort of randomizing effect on the choosing of
the second one.

Function ListLength(List: ILiet): integer;
This function finds the length of a partially or fully filled variable of type

ILiet. It simply steps through the list until it finds an entry where the name field
has either "none123", NONE123", or None123". This is our pre-defined stopper
value, and is put Into the database.

Procedure BuildString(VAR finalString: string; NewChar: char);
This procedure Is used to build up a string one character at a time. It is

used In TimeRead, where we have to convert a stream of incoming variables of
type char to one string. It is called once for each new character. The string
being built is passed into FinalString, and the new character to be appended to
the end Is passed into NewChar. This procedure allows the backspace key to be

28

~~ *. * *4.~ * ~-. .

used as normal. It will delete one character off the end, and will write out the
backspace to the screen.

Function TimeRead(VAR result: string): integer,
This is used to simulate a Pascal readin, to be used where some Indication of

the player's response time is needed. TimeRead reads input as a stream of char-
acters, pinasing them one at a time to BuildString with parameter result This
means that at the end of execution of TimeRead, the reference parameter re t
will contain the entire string.

When TimeRead is first called, the Internal clock Is read with a call to the
library function Time. At EOLN (end of line), or after two characters have been
typed, the time Is again read. The difference LowStop - LeWStsrt Is the number
of clock-ticks it took to type two characters, or to type the Return key. The
high-order bits of the clock, HighStart and HighStop are ignored here.

It was found that once in a while the clock would start high, count to Max-
Jnt, and start at negative Mazint before being read again. This is checked for
and taken care of by the last if-else statement.

Procedure R emoveBlanks(VAR stringi: 8tring),
If the string parameter stringl has any trailing bla:.." or return characters,

they will be removed by this function. White- spar; not a, the end of stringiUi
will not be removed.

.'-

Procedure Strip(VAR stringi: string);

This removes all non alpha-numeric characters from stringl.

Function CheckAnhwer(VAR answer: string; Poasibles: NewRec): boolean;

A NewRec, declared in the file ItemFilerS, is a record of one database ele-
ment, or one element in the InfoList. Among other things, It contains an arrmy
field called NewRec.names. Each element of this array is a possible correct
answer for the particular item associated with NewRec. CheckAnswer capitalizes
both the string-to-be-checked answer, and the possible names found in Possible..
All non-alphanumeric characters are also removed. If answer matches any one of
the names found in Possibles or a concatenation of the two names in either order,
then CheckAnswer returns true, otherwise false.

29.I.-.

2g

r o

8. The File ItemFUer3

ItemfilerS is another game module (unit in UCSD Pascal) that Is linked with
the main game program G/.IVAN. ltemfilerS contains procedures and variable
declarations that are vital to running of the game. In a nutshell, the primary role
of JtemfilerS is to Interface between the game program and the upper disk drive
which contains games images and information vital to the game. It also has
made variable declarations that are globally accessible to G0.1VAN. These vari-
ables most generally have to do with the uiynamics of graphics manipulations in 5
the game.

IMPORTANT NOTE: This module is highly DEVICE DEPENDENT since the
many graphics procedure, and variables defined here are designed epecificealy for
use on the TERAK. If you plan on transferring FLASH IVAN to another -
machine, it is likely that most of the alterations in the FLASH IVAN game code
will most likely occur in this module. Because ITEMFILERS is highly susceptible
to future alteratior.s, we have described variables and procedures in greater depth
than we have elsewhere. ;

8.1. Important Constants

MAXINDEX = 100:
MAXINDEX indicates the upper bound '.* the array

INFOLIST described below.

MAXNAMES = 5:
MAXNAMES sets the array in the record defined below to a

range of 3. P

8.2. Important Global Variables
S

INFOLIST : This is an array of records, each of which has a one to one
correspondence to an image in the game. Although explained
briefly in the GAMEUN3 module, we go into greater detail here
since this is where it has been originally declared. Each record
is structured as follows:

type NEWREC - packed record

NAMES: packed array[1..MAXNAMvESI of strlS;
BLOCK: integer;
FULLSCREEN: boolean; .
TOPTHIRD: boolean;
MIDTHIRD: boolean;

30
. .* . . .-.

.o.-.°.

- , . : ,-... . -:. :...--•. -? ... -.. .- -.. " - .. -:..:. .:. ,: ..: ..: -..-.- •.-•. .' - :. ,•. .:. .- :.. •.- : -:. ..- -. :. .. ,.- : :.: :.

BOTTHIRD: boolean;

end;

Note MAXNAMES equals 3; Name(1] and Name, si/ hold the
game names (up to 15 characters) of a particular image.
Namc(s[J holds the fotofile name on which the image Is located.
BLOCK is the block number which corresponds to the fotofile
name; after an Image directory has been created Its fotofile
block location on the upper disk Is automatically stored In
BLOCK. By accessing a fotofile be BLOCK number using UNI-
TREAD a game image can be accessed 3 to 4 times faster than
if it were accessed by name using the usual Pascal file I/O. This
makes for a faster, more interesting game. The remaining fields
in the record, FuUScrcen, TopThird, MidThird, and BotThird are
set to TRUE or FALSE depending upon which part of a fotofile
an image is located. These fields enable the game creator the
option of putting up to 3 images on fotofile, thus saving disk
space. Record indices (in INFO...LIST) 90-100 have been set
aside for gaming system images such as the opening Eagle ani-
mstion. Record indices 1-89 are reserved specifically for the
"actual game images (of Aircraft in the prototype game).

CROSSHAIRS is of type packed array[0..S9,0..59] of boolean. It is a graphics
buffer which holds the targetor icon which Is flashed to the
screen just before a game image is flashed to the screen.

SMALLSC: is a packed array10..28351I of boolean used as a graphics buffer
which is roughly the size of one third the screen. This buffer Is
used in the instance of a game image stored on a specific third
of a fotofile which must be flashed to the screen. SMALLSC Is
actually larger than a third of a screen of bits (80 X 320)
because it needs to accommodate a UNITREAD call which uses
a BLOCK type format in reading information from disk. Thus
the size of SMALLSC is exactly 7 blocks long (28352 bits). It is
stored in a one dimensional array for the sake of convenience
and clear understanding. When an image is read Into
SMALLSC, it is read in as a linear string of bytes. In addition
to this complication, the very beginning of a thirdscreen image
won't always begin at the beginning of the buffer SMALLSC,
s'nce UNITREAD which begins reading from a Block number
cannot always start reading from an exact bit location where an
image's string of bytes begins on disk. In the case of a TopThird
image, there is uo problem in this case, since Its Block number
corresponds exactly to its starting bit location. However, in the
instance of MidThird or BotThird images whose starting bit

31

.. . ." "/* * *.* .. "..*%" .dsd "- * "*i"•".G'•. ' ." .'o .• o e•' .. i

locations do not exactly corrspond to a BLOCK number on disk,
they are UNITREAD from a block number before their starting
position. Although they easily fit into the oversized SMALLSC
buffer, they do not begin at the beginning of SMALLSC. By
keeping SMALLSC one-dimensional, offsets to the beginning of
an image in SMALLSC are made easy to calculate.

SCREEN: is a packed array[O..239,0..3191 of boolean; SCREEN acts as a
graphics buffer with each boolean element mappling to a particu-
lar pixel on the TERAK screen. If a game Image is of type
FuUScreen, it Is read directly into SCREEN. If not, the game
image is first read into SMALLSC and then bitmapped and cen-
tered on SCREEN. Whatever SCREEN eontains can be pro-
jected to the screen with the command
Unit Write(9,SCREEN,63). SCREEN can be removed from the
screen using the command Unit Write(S, SCREEN, 7) or
Page(OUTPUT).

CLOCK INT: is a case variant record which Is used In procedure PAUSE.

HILLIST: is an array of ten records containing the names and scores of the
ten top scoring players. This Information is read in from the
upperdisk (the images disk) Into this array and compared to the
score of the current player at the end of each game. If the
current player's score Is within this range of scores, a new
HILIST is created with his name and score inserted in the
appropriate spot and written back to disk. See procedure
HISCORE.

8.3. Procedures In ItemFilerS

Procedure Delay(N : integer);
DelaV Is a simple procedure used to create time delays. A FOR loop Is sim-

ply executed N times. It Is estimated that the number of seconds of delay is
equal to N / 100. So for example Delay(400) will simulate a 4 second delay.

Procedure FromDiek(Var IIliut ILIST; Iname str15);
FromDiwk reads the Image directory (In the case of our game,

"#5:NEWNAMES") from the upper disk Into the array INFO_LIST.

32 L

... CC,..,-

Procedure Display(N: integer);
Display will display the Nth image in the array INFOLIST on the TERAK

screen and leaves it there. It is up to calling program to remove it from the
screen; we reasoned that this implementation gives the calling program more. free-
dom as to how long the image is to be displayed. Display is very much device
dependent, i.e. it is designed to run specifically on the TERAK. This is also true
for the entire ITEMFILER3 module. If you plan on transferring FLASH IVAN
onto a machine other than the TERAK, Display is the procedure that will more
than likely need revamping. Because of this procedure's Importance, we have
outlined it in greater detail than we have other routines:

-will first clear the screen PAGE(OUTPUT)
-then load the screen buffer SCREEN with on bits FILLCHAR(...)
-then bitmap CROSSHAIRS onto SCREEN PAINTBLOCK(...)
-then turn on SCREEN UNITWRITE(...)
-for a second DELAY(200)
-then turn off screen UNITWRITE(...)
-then will read the FOTOFILE that the image is
-- on from disk UNITREAD(...)
-IF FULLSCREEN = TRUE reads directly to SCREEN
-ELSE reads to SMALLSC
-- and then offset and bitmapped to SCREEN
-- then the image is projected to the screen

Function Pause boolean;

Pause is currently not used in the game and is therefore commented out. Its
function is to wait at most 10 seconds for a user response. If a user responds
within 10 seconds, control is immediatedly returned to the calling program and
Pause returns FALSE. If a user hasn't responded within 10 seconds, Pause
returns TRUE.

Note: uses the case variant record ClockJnt described above

Procedure HiScore;
First, reads in top ten scores from file "#5:I-SCORE.DATA" (on upper

disk) and stores them in array HiLiat. Next, Displays HiScore graphic on the
screen (Info-Liet/100J. Next, inserts and sorts current score SCORE with scores
in HiList; then outputs HiList array to the screen, and finally writes the
modified HiList back to disk.

33

................. ~J..... ..-....- z.... .-..

PROGRAM MAINTENANCE

g. The Disks
The Flash Ivan Gaming System consists of three essential disks:

1. ' The Game Code Disk - goes In bottom disk drive
- holds the game code
- holds the stats file .

2. The Images Disk - goes in the upper disk drive
- holds game specific Information:

Fotofiles,
the image directory,
Instructions,
and the HISCORE.DATA file

3. The Administration Disk -- goes in the bottom disk drive
operating on either of the
other two disks in the top drive

- used to make a new game
-- and to access and format game stats

10. Organization
With so many different disks floating around, some on the test site and some

being used to make game enhancements, we have realized the necessity for tight
organization among us. As we have worked on the program, we have adopted
three important conventions to better organize ourselves. Firstly, we have chosen
the following naming system:

"TOMCAT" [n] corresponding to game code disks
"rVANUP" [n] corresponding to images disks
"ADM" corresponding to the administration disk

where n represents a number. Secondly, we keep an exacting written record of
each disk: the version of the game on it, where it is, and other vital information.
Thirdly, we have designated master disks holding the most recent game enhance-
ments:

"BIGBIRD" - holds most recent game code
"FOTOSi" - holds the most recent image directory, "NEWNAMES"

as well as Fotofiles 1-30
"FOTOS2" holds the remainder of the Fotofiles, Instructions,

Initial Hiscores file, etc.

We have made these conventions for our own organizational purposes; you may
or may not want to follow them exactly depending on your own tastes.

34

11. Disk Handling
In the suggestions that follow, we separately discuss the preparations needed

for each disk in the FLASH IVAN Gaming System before and after It goes to the
gaming site.

11.1. The Game Code Disk - Before
The game code disk should have a minima] number of files on It before col-

lec "g performance data. The two most Important files are SYSTE S.$TARTUP,
containing the game code, and CAMES.DATA, storing game stats. In order to
accommodate new stats written to disk after each game, the game code disk
should be Krunched (see P-System details) with GAMES.DATA as the last file on
the disk. This will allow the statistics file to utilize the remaining disk space the
most efficiently. Lastly, It should be checked for any bad blocks.

11.2. The Game Code Disk - After
When a game code disk returns from collecting data at a testing site, our

primary interest is to access the statistics file GAMES.DATA and then format it
into something readable. The following sequence of instructions make this tedi-
ous task less burdensome:

1. Put "ADM" Disk in lower disk drive
2. Out game code disk in upper disk drive
3. UJ'eck game code disk for bad blocks
4% G(t list'ng of game code disk.

-- How big is GAMES.DA TA?
-- Is it still the last file on disk?

5a. Be sure NEWNAMES is on ADM disk
5b. Clear ADM disk of any unnecessary files

-- most notably old CONFIDENCE. TEXT and
LA TENCY TEXT files

6. Krunch ADM disk
7. Execute Makestats (be patient; it tak.s a while to complete)
8. Check to see if new CONFIDENCE. TEXT and

LA TENCY. TEXT files are on ADM disk
- then print them out

9. If you wish to save these files,
transfer then to the STATS disks

10. Erase them from the ADM disk
11. Run game code disk with Image disk in upper drive

-- selecting the version option at the beginning,
see if the version is up to date

11.3. The Images Disk - Before and After
The Images disk should be checked for bad blocks, frequently. Since data is

constantly read from this disk during game time, it absorbs a lot of wear and
tear. If ever you Krunch the disk or make any changes to it whatsoever, It is

e...-

35_

6-- - - M'~'-.--r.~~-. r

:• ~~extremely important that you "convert" the disk afterwards. The oconversion" •:
:ii. ~function can be called from the MAKEDIR program on the "ADM"• disk and is:i

described in detail in the Flagh Ivan Utilitie. Documentation.

II

l'a

aw

I.

I.r,

II
p°

-~ *** i'd ..

a . -3d

a..'.- ').- ----.- -. '4- , . ." "-.", , , ', .6." , ,*. "* '.''#'.'4. ',?..z :.':..'.z • 4
6'" " ' ' •" I*I*I I.

References

Bowles, K. L. (1977). Microcomputer problem solvng wsing PASCAL. Now
York: Springer-Verlag.

Orogodo, P. (1960). Programming in PASCAL. Reading MA. Addion-Wesley.

SofTech (1978). UCSD PASCAL Version 11: A product for mini- and micro-

computers. San Diego CA: SofTech Mioroymtems.

Wagoner, J. L. (1980). FORTRAN 77.- Principloo of Proramming. Now York:
John Wiley & Bono.

I.

• j• , , , v U, -
J e t • e t e g • , 0 • o J • • t g , , e J • e a , e , , e m , , s * e • U ,° •

II I f i ll i • I Jj j t I / l ll l l / A I i j l l i - I -- I-- l •• -- • l i l e !] t I a~l l__ I I l * I f / tj * l i I e e l• / l ff iI~ a l . , * .1

Appendix A: Program Listing

4..

. 4. .C:

4.r

-..

"A-0

.. , 4. -6 .t -..

{$S+)

PROGRAM Flashivazn;

uses ($U ITEMVU..ER3.CODE) ItemFiler3, (SU GAMEUN3.CODE) GaineUns;

CONST
DateMain -'Noy 13, 1984... fix 'ANSWER", and keywoMd loop';
NAME - 'GAMtES.DATA';
PRAOSTART - 01;
NUMBERPICTURES -80;

ORD...ES - 27;

TYPE
Dnuietyp - stning[151;
0st~yp - stningl11J;
scale - 0..100;

gamestats record
name nametype;

SS setype;
date nametype;
latency packed array [L..nu mberpictures] of integer;
confidence packed array[I..numberpictures] of scale;
correct packed arraytl..num berpictures] of boolean;

end;

VRTot~aiSbown,gameloop integer;

average,Acore,totaljat,
totaL-conf real;

scoresfile file of gainestats;
Minifoto packed arraylO..319,O..26] of boolean;
currentjame gamestata;

procedure PAIh4TBLOCK(VAR SOURCE; SRCWIlD, SRCX, SRCY: INTEGER;
VAR DEST; DSTWID, DSTX,DS'1Y,CNflC,CNTY~MODE,GRAY:INTEGER);

EXTERNAL;

(A..enbly-language sound routines...)
procedure CLICK2; EXTERNAL;

procedure TVIME!'; EXTERNAL;

procedure ERROR; EXTERNAL;

procedure afterpicture(right:boolean ;conf:int~eger;lat,index:integeir);
FORWARD;

procedure SingleTrial(Listindex:integer; ifprac boolean);
FORWARD;

A-1

procedure OutputSt~ats; FORWAJRD;

SEGM[ENT PROCEDURE ANIMATE;
VAR XZEROYZERO: INTEGER;
BEGIN S'

UNITWRITE(S,SCREEN,7); { DON'T SEND SCREEN TO CRT)
(PAINT IN TO THE MINIFOTOS)

UNITREAD(5,SCREEN,SIZEOF(SCREEN)JNFOJJST[91J .BLOCK);
PAN4TBLOCK(SCREEN,320,O,OMINIFOTO,S20,O,O,320,28,O,-1);

PAINTBLOCK(SCREEN,320,O,30,CROSSHAIRs,6O,O,O,oO,6O,,O-1);
(FLASH IVAN)

{PAXNTBLOCK(SCREEN,320,0,120,SCREEN,320,O,130,320,60,O,.1);)
4TITLE SEQUENCE STARTS HERE

4DISPLAY EAGLE)}
PAGE(OUTPUT);
UNITREAD(5,SCREEN,S[ZEOF(SCREEN),INFOJ..IST{9OI .BLOCK);
JN'ITWRITE(3,SCREEN,03);

UNITREAD(5,SMALLSC,SIZEOF(SMiALLSC),INFOJ..IST1OIJ BLOCK+S);
XZERO:"-64; YZERO:-3; 4PLACE IN SMALLSC WHERE THIRDSOREEN REALLY STARTS)

(EAGLE ANIMATION 1)
PAINTBLOCKý(SMALLSC,320,XZERO,YZERO+l5,SCREEN,320,1O1 ,50,100,55,O,-1);
UNITWRITE(3,SCREEN,63);
DELAY(5O); 4EAGLE AN~IATION2)
PAINTBLOCK(SMIALLSC,320,XZERO+ 100,YZERO+ 15,SCREEN,320,O101,50,100,55,O,-1);
UNITWRITE(3,SCREEN,63);
DELAY(50);

(EAGLE ANIMATION3)
PAINTBLOCK(SMALLSC,320,XZERO+ 200,YZERO+ 15,SCREEN,320,1O1 ,50,100,55,O,.1);
UNITWRITE(3,SCREEN,631;

TIMEPI;
4(EAGLE ANIMATION2)

PAINTBLOCK(SMALLSC,320,XZERO+ iOO,YZERO+ 15,SCREEN,320,i0i,50,100,S6,O,-i);
UNITWRITE(3,SCREEN,63);
DELAY(60); (EAGLE ANIMATIONI)
PAINTBLOCK(SMALLSC,320,XZERO,YZERO+15,SCREEN,320,101,50,loO,55,o,.1),
UNIT WRITE(3,SCREEN,6)

UNITREAD(5,SMALLSC,SIZEOF(SMALLSC),INFO-.LIST[i).BSLOC(+ 12);
XZERO:-12S; YZERO:m8;
PAINTBLOCK(SMALLSC,320,XZERO,YZERO-45,SCREEN,32,0,,121 ,320,66,O,.1);
UNITWRITE(3,SCREEN,83);

END;

A-2

SEGMIENT PROCEDURE PRACTICEfg..

S-SEGMENT PROCEDURE PRACTICE;

i, fx, milliecs, FakeList,

Listlindex, brownejidex,
confidence integer;

correct boolean;
rap char;
reesp-tring string;

procedure INSTRUCT;

Var
lString : string;

- directions - text;
i :integer;
rap char;

BEGIN
page(output);
"reset(directions, '#5:iNSTRUCT.TEXT');
while not EOF(directions) do
begin

for i :- I to 21 do
"begin

if not EOF(directions) then
"begin

readln(directions, LString);
writeln(IString);,

end;
end;
writeln('HlT <RETURN>');
readin;

end;
close (directions);

END; I INSTRUCT)

procedure PLAY3;
begin

. PAGE{OUTPUT);
GOTOXY(29,8); WRITE(Be Prepared to Answer');
GOTOXY(28,O); WRITE('the following 3 examples'); .
"GOTOXY(17,11); WRITE('WATCH THE CENTER OF THE SCREEN FOR AIRCRAFT');
GOTOXY(20,14); WRITE('Hit <RETURN> When Ready To Begin');S~~~RFADLN;''..
for Listindex :- 95 to 97 do (Loop over practice pictures
begin

FAIKLIST :- FAKELIST + 1;

A-3

S... .. '" .. ' •" •'- .T 7 ' , - 'r,-n " * '"'-rf"-"i- , ".-...- 'r' -" T" """

Display(Listindex);
SingleTrial(FAKELIST,true);
page(output.);

end;
and; (PLAYS)

procedure ANSWER(VAR Al STRING;),CONFJCEY: IN7ZTEO~)
begin

DELAY(2500);PAMEOUTPUT);
GOTOXY(32,2);
FILLCHAR4SCREEN,SIZEOF(SCREEN),0);

(AIRCRAFT)
PAINJTBLOCK(MINIFOTO,320,0,0,SCREEN,320,0,22,121 ,6,O,.1);
UNITWRfl'E(,SOREEN,63);
DELAY(2000);
FOR I :- I TO X DO 4AUTOMATE RESPONSE TO PROMPT)
BEGIN

CLICK2;CLICK2; WRITE(A1 IIJ);
DELAY(70); CLICK2;CLICK2; DELAY(30);

END;
DELAY(1500);

{CONFIDENCE RULER)
GOTOXY(2. 3); WRITE{'LEAST');
GOTOXY(0,0); NWRITE('CONFIDENT');
OOTOXY(73,6); WRITE('MOST');
GOTOXY(70,6); WRITE('CONFIDEN'T');
PAINTBLOCK(MINIFOTO,320,O,8,SCREEN,32O,0,75,:320,2o,0,.1);
UNIT WRITE(3,SCREEN ,53);

4 WE CONFIDENCE PROMPT)
PAIN4TBLOCK(MINIFOTO,320. 125 ,0,SCREEN,320,0,111 .135,6,0,-I);

UNTRIME3,SCREEN ,63);
GOT OXY(32,1 1);
DELAY(3000);
CLICK2;CLICIC2;
WRJTE(CONF...EY);
DELAYf 100);
CLICK2;CLICI(2;
DELAY(500);
WRITE 1N-,

(e~eCS....Simlulatas SingIeTrial '**"*

FAKELIST.:m FAXELIST + 1;
millilsece :- 1550; .
if (conL,.key m 0) then confidence :- 100

else confidence :- conf-key * 10;

TotaiSbown :- TotalShown + 1;
Lhsehscore :- flashecore + 1;
gotoxy(0,14);
wrlteln('RECOONITJON CORRECT.');
wrlwln('Response Time m ',millisece/1000:4 :2,* second*');
aftwrpicture(correct,confldence,mailisecs,FAIKELIST);
flashtwtak - fiashlotal + 1;

A-4

OutputStats;
writeln;
write(' < Hit RETURN for next Aircraft >'),

READLN;
PAGE(OUTPUT);

END (ANSWER);

S{ Driver for PRACTICE

BEGIN (PRACTICE)
gotoXY(26,5);
write('HIT RETURN TO BEGIN GAME');

espjstring :-Ireap :=- x;-
renet(keyboard);
readln(resp..string);

if (resp-string -'boatman') then 2S~~begin-.-

. while not <ret>, <space>, or <esc>... (UCSD Pascal returns the same
character for <ret> and <space>) -

while ((resp < > chr(32)) and (reap < > chrq27))) do
begin

cue ord(resp) of

100, 68 ('d', 'D' ...display a picture)
begin

page(output);
writeln(rWhat picture do you want to see? (give index number) ');
readln(browsejndex);
if ((browse.index > 0) and (Display(browsejndex);

writeln(infoJist[browsejndex] .Namesill);
writeln(info_.istibrowseeindex] .Namnes[2]);

end
else

writeln('Invalid index number. '); .
"end;

... *.see...) .. •

104, 72 ('h', 'H' ..-show the High Scores)
begin

page(output);
HiScore(", 0);

end;

109, 77 I'm', YM' ...call memavail() :
begin I"

"page(output); 771
write('The memory available in segment procedure Practice is ');

A-5

4%-..o.
'".4 " ' • • '• '•--,' , ", '-' ;--' -- -•-• --- ;¢.r.••-• •.-,-.-. .•...-.,..,•, • • _••,•••.•, ,•• • •, • -

writeln(memavail, 'words.');
end;

I18, 86 ('v', T' ...show the current dates of the game fMies)
begin

page(output);
writeln('G/.Ivan version or ', DateMain);
writeln('ItermFilerS version of', DateltemFiler$);
writeln('GazneUn$ version of ',DateGsmeUnS);

end; I

end; { ...of case...)

writeln;
write(IHit <ret> to go on
read(resp); -

end { ...while... };

end { ...if not keyword...);

if (reap <> chr(27)) then { not an <esc>, so show all instructions... .
begin

INSTRUCT;
PAGE(OUTPUT);
GOTOX(27,7); \RITE('Be Prepared to Observe');
GC"OXY(25 8); WRITE('3 Automated Game Examples');
G.).OXY(25,10); WRITE('Hit <RETURN> to Continue.');
REA"'LN;

confidence := 0;
FAKELIST:= 0;

DISPLAY(92);
ANSWER(INFO.LISTI92] .NAME~S[2],4,));

DLSPLAY(93);.
ANSWER(INFOLIST[93JI.NAMES 121,13,O);

DISPLAY(g4);
ANSWER(INFO..LIST[941 .NAMES[2),5,1);

PLAYS;

end;

END; (FRONT END}

SEGMENT PROCEDURE HELLO composed of the following: ..

Shows the player the "privacy act" (text written into a fotofile), gets

A-6

r-t -.. L '-

-. .°-.- *

the player's name (making sure it is 15 characters or les), gets the
Social Security # (and makes sure it is 11 characters or low), and gets
the date. It then shows it's results to the player, allowing changes.

SEGMENT procedure HELLO(var player:nametypevar date:(da•t)nametypi;
var SS:ntype);

var str :string;
rap: char;
socsec : nametype;

procedure getdate(var date- (date)nametype);
var

"t : string;

begin
str :EW

repeat
if length(str) > 0 then writeln('DATE IS TOO LONG ');
WRITE('ATE (Day, Month, Year)
readln(str);

until ((length(str) >0) and (length(str) < 16));
date :- str;

end;

begin (of Hello- main bod)
PAGE(OUTPUT);
UNITREAD(5,SCREEN,SlZEOF(SCREEN),INFOJLISTIS)}.BLOCK);
UNITWRITE(3,SCREEN,63);
GOTOXY(0,30);
WRITELN('Hit <RETURN> for tiext page.');
READ(RESP);
PAGE(OUTPUT);
UNITREAD(5,SCREEN,SIZEOF(SCREEN),INFO..LISTLQI -BLOCK);
UNITWRITE.(3,SCREEN,63);
GOTOXY(0,30);
WRITE('HIT <RETURN> WHEN DONE.');
IREAD(RESP);
repeat

page(output);
str : "
repeat

if length(str) > 0 then
writeln('The name is too long. It must be 15 eharacters or Ilo.. '),

write('NAME (Last name, first initial, middle initial) :');
readln(str);

until ((length(str)>0) and (length(str)<16));

player :- str;

str :"

A-7

.r•-•q• • •-•@ • *I-**'-*-**. + • s-- ., .• - -- :. ~ .* 5• * *5 .* .. . '-T .rm *. . 5. *- - . -4-r. -,-,* -

0- ed.- - v- r- e

repeat
if legnt~h(str) > 0 then writeln('SociaJ seturity number is too long.');
writ.('SOCTAL SECURITY # I';
readin(str);

until ((length(str) > 0) and (length(str) < 12));
8$:- sir;
GetDate(date);
writeln;(writeln;)
writela(' Is this correct? :)
writela;
wrltoln('NAE " 'Player);
writeln('S.. NMWER :'S)
writoln('DATE : 'dat. (.day,'- ',date.month,'.1O',date.yvar));
writeln;
wulte(Is "hscomret? L~orali');
read (resp);

until (reap in ('y', 'Y'j);

PAGE(OUTPUT);
OOTOXY(26,7); WRITE('Are You Ready to Play');
CIOTOXY(S2,S);WVRITE('FLASH IVAN W!);
OOTOXY(24,iO);,WRITE('If So, Then Hit <RETURN>.');
OOTOXY(17,12); WRITE('WATCH THE CENTER OF THE SCREEN FOR AIRCRAFT%)

GOTOXCY(83,15); WRITE('Good Luck!!!');
JlEADLN;

end;

PROCEDURE AFTERGANIE is run after ever Same and records the player's gaun to
the disk under the file naurse 'NAME" (Ciamesadata). This is a file of type

procedure aftergeme;
var iscore : integer;
begin

Wsore :- trunc(score);
page(output);
gotoxy(0,6);
writ~e(, YOUR FINAL SCORE: ',iacore :6,' pt-1
gtwrl~l(' OU INL EULS:)
writeln;,YU IA EUTI

j Outputstate;
writein;
wrlte(' Hit <RETURN> for HI-SCORES');
readin;
HISCORE(currentgame .name,iscore);
reset(scoresfile,NAME);

repeat

A-8 t

$:t:1'r,'~.'~*,~ -*---**.r
t~.',*'I q...' * - I'm.- *1 -* Ca~ . I -.-I

until eof9scoresflle);

scoresftle" :- currenlganme;
put(scoresfile);
close (scoreafile,lock);

end;

procedure OutputStats- outputs statistical data concerning game perfomlance
in PERCENTAGE CORRECT, AVERAGE CONFIDENCE, and
AVERAGE LATENCY;

0* cc se ee....aSe...ee*Oa })

procedure OutpuStwa; ('Output to the User .)
Sbegin

(GOTOXY(32,16); "
writeln(TERCENT CORRECT RECOGNITIONS: ':66,
round(aversge), '/ ', TotaiSbown, '', 100*average / TotalShown:5:l,'%');

(GOTOXY(32,17);)
writln('AVERAGE RECOGNITION CONFIDENCE: ':66,
totWWconf / TotalShown:6:l,'%');

{GOTOXY(32,18);)
writeln('AVERAGE RESPONSE TIME ':05,
round(totalJat / TotalShown)/1000l4:2.' seconds');

END;

procedure InitStats - initializes GLOBAL variables for statistical purposes

procedure InitStats;
begin

fla&hscore :- 0;
flnhhtotal :- 0;
TotalShown :- 0;
score :- 0;
average :on 0;
total-jat :- 0;
totaL-conf :- o;
for x :- I to numberpictures do

currentgame.latencylx] :- 0;
rk end;

Procedure AfterPicture -
.e.e.me.. e....,. ... *..,. ,} .::A-

procedure aft~erpicture; {SEE above for parameter list)
var x :integer;

r,rscore,rconf,rlat : real;
begin

with currentgame do
begin

Iatency[indexj :- lat; .'
wtotaat :- totaUat + lat;
confidencelindexJ :- conf;
totaLcont :- totaLcoof + conf;
correctlindexj := fals;
if right then
begin
correcti index] :=true;
average :- average + 1;

end;
r =-1.0;
rconf :== couf/1O; rlat :=lat'r;
if right then

score :- score + ((rconf~l030)/(1000+rlat)) + 10..-
else
score :=score - ((rconf'1030)/(1000+rlat)) - 10;

end;
end;

procedure GetConfidence...

This procedure will prompt for the user's own confidence rating, read it
as a character, convert it to an integer, and send it back as the VAR
parameter "coat"

procedure GetConfidence(VAR conf: integer);
viz.

cjresponse char;
begin

{CONFIDENCE RULER)
GOTOXY(2,6); WRITE("LEAST');
GOTOXY(0,8); WRITE('OONFIDENT');
GOTOXY(73,5); WRITE('MOST');
GOTOXY(70,O); WRITE('CON~r ' NT');
PAINTBLOCK(MINIFOTO ,320,0,6,SCREEN,320,0,76,320,20,0,-1);
UNITWRITE(3,SCREEN,63)-

(GIVE CONFIDENCE)
PAINTBLOCK(MINIFOTO,320,1 25,0,SCREEN,320,0,11 1,136,8,0,-i);
UNITWRITE(3,SCREEN,63);
GOTOXY(32,11);
read(c..response); (read response as a string)

A-10

---------- -----------------------------.-

{*.convert the mtrinr to an integer... *"

while not (ord(c..reponse) in [0,48-.571) do
begin

GOTOXY(0,12);
WVRITELN(' You must enter a number from the ab~ove set...');
WRITE('CONPIDENCE:T
read(c..response);
writeln;

end;

if (c..responst in ['0.2.9'J) then

coat :- (ord(c..reponse) - ord(VO));
if (conf - 0) then conf :- 100

else conf :- cant * 10,
end
else coat :- 0;

S end (... of procedure GetConfidence...)

Procedure SingleTrial; (See Parameter list abovt
VAR j,tieks,miillisecs,confidence :integer;

time :real;
correct,got bcolean;

guess string;
j resp :char;

begin
TotalShown :=TotalShown + 1;
for j :- 1 to SetSpeed do DELAY(250);-
page(output);

(AJRCRAFT NAME PROMPT)
COTOXY(32,2);
FILLCHAR(SCREEN ,SIZEOF(SCREEN),O);
PAINTBLOCK(MINIFOTO,320,0,0,SCREEN,320,O,22,121 .6,0,-i);
UNITW'RITE(3,SCREEN,63);
ticks :- TimeRead(guess);
it (guess =)then guess: IM)COO ; {to insure wrong answer)

IF IWPRAC T1HEN -

CORRECT :- CI{ECKANSWER(GUESS,INFO-LIST[PRACSTART+LISTINDEM)
ELSE
begin

correct :- ChcckAnswer(guess, Wnoj~ist[Listlndexj);
end;

Get.Oonfideoct(confidence); { read the user's confidence
{Calculate the latency Wo answer in seconds, andl milliseconds...)

time :- (ticks/6O);
p . if (time > (Maxlnt/1000)) then time :- (NMaxlnt/1000);

(. ..mso we don't get an overflow when converting to milliseconds...
millisecs -round(tirne *1000);

A-11

WRITELN;
wtitdln;
IF (correct) THEN

BEGIN
fisashcore :- fisslascore + 1;
GOTOXY(O,14);
WRITELN('RECOGNITION CORRECT.');

END
ELSE '

BEGIN
GOTOXY(O,14);
WRITELN('RECOGNITION INCORRECT.');
IF FPRAC THEN BEGIN

WRITE('That was a ',Info_.List!PRACSTART+Llstlndol .Namesflf;
WRITELN(' ',Info_.List[PRACSTART+Liotl~adj.NamsiniJ);

END
ELSE BEGIN

WRITE('That was a ',nfo_.List[ListlndexJ.Namesf2]);
WRITELN(' ',Inifo-ListlListlndexl.NamesIII);

END; { IFPRAC)
ERROR; (msound for bad response)

writ~eln('Response Time - ',millistes/1000:4:2,' seconds');
aftorpicture(conrect, confidence, millisecs, ListIndex);
fiasbtotal :- flashtotal + 1;
OutputStat.;
writeln;
writ~e(' Hit <TAB> to see the aircraft sgain, ');
writeln('< RETURN> for next Aircraft I);

read(resp);

if resp < > chr(9) {The TAB key-.
then begin

readin; {Eat up the "return'...)
end
else
begin

if (IYPRAC) then
begin

Display(PRACSTART + List~ndex);
writeln(infoJlist(PRACSTART + Listlndexi NamesIS));
wrlteln(' ', info.JistiPRACSTART + ListlndexJ.Namu1lJ);
wuiteln;
write('Hit <RETUTRN> for next aircraft ');

end
eIse
begin

Display(ListIndex);
writeln(infoJistlLisetlndexj .NamesI2J)-,
writeln(' ', info.JistjListlndexj .Names 1j)):1
writein;
write('Hfit <RETURN> for next aircraft')

A-12

readla;
end;

end;

(.....e;ee. for 10 4econd Mu waidt

got - PAWSE;
if got-fals. then begin

URROR;
PAOC(OUTPUT);
GOTOXY(SSI10); WRITE 'TM. EXPIRED');
OOTOXY(1I,12); WRIT(Wateb the centyr of the moreen for newt uireraft');
DILAY(70O0);

end;

end (BingleTrial)

begin
page(* put),
for F .@tip I to TotaiPieturee do {Loop over the entire eet of pictures
begin

* Lietindex:- Pi.Sequen~e(PicLoopl; (get &he next index from the random
ordering)i Dimplay(Listlndex);

SingleTriod(Listl dex ,fidso);
pais(output);

end;
scr -("Ore + 131,71)0(10O.O/1677.50);

end (Om@2)

BEGINl MAIN PROORAI)
SMSIoMp 0,

while gameloop - 0 do begin

FromDisk~lnfoJ.Aet, '#5.NewNamneo);
ANVAATE;
ToWaPleturee -(*S ListLength(Infojiet) *')42;

ShuMe(Pileoquence. TotalPictures);
PRACTICE;
HELl ,O(cutrrntgame.name ,currentgame dais currentS~gsm.US);

{corbin's GZTNAMEOGETDATE, confirm in a gift rep)

P. A- 13

-67i

AfeGame.;

Readin;
end;

END.

A-14

{$S+)
UNIT ITEMFILER3;

INTERFACE

{ *........ososooa.o..88s...e..........a.soosssoseeesosootsseseseeeeeeseeeeeoe)

CONST
DateltemFiler3 - '10-"-4... HiScores no longer asks for 'call uig*- G
MAXINDEX - 100;
MAXNAEWS - 8;
FLAGS - 100; (Fotofile index number in INFOULIST)

TYPE STRIS - STRING115];
AIM-PIC - PACKED ARRAY[0..so,o..59] OF BOOLEAN;
THIRDSCREEN = PACKED ARRAYIO..28351) OF BOOLEAN; (7 BLOCKS OF BITSM
SCREENMAP - PACKED ARRAY[O..239,0..319) OF BOOLEAN;
CLOCKJNT - RECORD CASE BOOLEAN OF

TRUE: (VAL: INTEGER);
FALSE: (BOOLS: PACKED ARRAY 0..15] OF BOOLEAN);

END;
SCORESJIEC - PACKED RECORD

GAMENAME : STRING[151;
SCORE : INTEGER;

END;
NEWREC - packed record

names : packed array[..AXNP'.f 3] of str.5;
block: integer;
FULLSCREEN :BOOLEAN;
TOPTHD : BOOLEAN;
MIDTHIRD : BOOLEAN;
BOTTHIRD: BOOLEAN,

END;

ILIST - arrayjII.AAXINDEX] of NEWREC;

VAR infodir: file of NEWRLEC;
HISCOREFILE : FILE OF SCORESREC;
SCREEN: SCREENMAP;
SMALLSC : THIRDSCREEN;
CROSSHAILS: AIh'LPIC;
INFO-LIST: ILIST;
HILST : PACKED ARRAY[I..10] OF SCORES-REC;
L.NAME : STRIS;

procedure FROMDISK(Var IIJist:ILIST; _jisme:strl$);

procedure DISPLAY(N : integer);

procedure DELAY(N : Integer);

(procedure MEMORY(M integer);}

A-15

* * *.*i..,!

(function PAUSE: boolean;)

procedure HISCORE(name strl5; score integer);

IMPLEMENTATION

Procedure PAINTBLOCK(Var source; srcwid, srcxwscy:integer;
var dest; dotwid~dst~x,dsty, cntx,crity,mode,gn~yanteger);

(emode :0-store, I-or, 2.-and, 3-xor; +4-compe

External;

(procedure MEMORY;
begin

writeln('PLACE #',M,' ','?*M1AVAEL-=',MýEMAVAIL,' SIZEOF(infordir)u.",
SIZEOF(INFODJR));

readin;
end;)I

procedure DELAY;
vat i :integer;
begin

for i :- 1 to N do;
end;

procedure FRONMISI(;
var H integer;
begin

reseq.infodir,I...name);
FOR H:- 1 TO MAXINDEX DO BEGIN

I~jist[HI :- intodir*;
if not EOF(infodir) then getqinfodir);

end;
ciose(infodir);

end;

DISPLAY - Displays a game image on the screen according to it's
index number in JUist. qq

procedure DISPLAY;
var NEWBLOCKXY INTEGER;
begin

A-10

[~~ ~ %••OOI*OO*****O•OO*OiOSOeSOmOOOOOO000 ,.%.

% PAOE(OUTPUT);
with INFO-LASTINI do begin

filicha(SCREEN~siseot(SCREEN),2&5);
PAINTBLOCK(CROSSHAIRS,SO0,0,SCREEN,320,129,0O,O0,60,5,-1);
UNITWRITE(,SOREEN,63);
DELAY(200);
UNIT WRITE(8,SC7REEN .7);
IF FULLSCREEN-TlUJE THEN BEGIN

UNITREAD(5,SCREEN~uiseof(SCREEN),BLOCK);
UNrrWRrTE(3,Wrme,03);

ELEBEGIN
* ~F (TOPTHUWD-TRUE) THEN BEGIN I

NEWBLOCK:ýBLOCK;
X:- 0;Y:iiO;

END;
IF (MIDTHIRD-TRUE) THEN BEGIN

NEWBLOCI(:-'BLOCK+O;
X :- 64; Y :- 3;

END;
IF (BOTTHIRD-TRUE) THEN BEGIN

NEWBLOCK:=-BLOCK+12;
X:- 128; Y:- ;

UNITREAD(S,SMALLSC.SIZEOF(SM.ALLSC),NEWBLOCK);
PAINTBLOCK(SMALLSC,320XY,SCREEN,320,0,79,820,6O,O,.l);
UNITWRITE(3,screen .63);

end; (withED
end; (Display)

function PAUSE: boolean;
Waits 10 seconds fro a user response.
returns control to the program when a response is detected
or after 10 seconds
returns a boolean val~ue

function PAUSE;F VAR LOLOl CLOCKJNT;
HI: INTEGER;

BEGIN
% ~PAUSE :- FALSE; x

LO.BOOLS1OI :- TRUE;
WHILE UNITBUSY(2) DO

TVA5l(H1,LO1.VAL);
d" L01.BOOLS[OJ :- FALSE;

IF ((LOI.VAL-LO.VAL)>600) THEN EXIT(PAUSE);
END;

PAUSE :- TRUE;

A-17

END;

PROCEDURE HISCORE;
VAR-

INO, H :INTEGER;

DONE :BOOLEAN;
c-ospons• char;
str string;

begin
remt(hiscmtfie,'5:HISOORE.DATA');
for b-- I TO 10 DO BEGIN

HILIST[H] :- HISCOREFILE-;
IF NOT EOF(HISCOREFILE) THEN GET(HISCOREFILE);

END;
CLOSE(HISCOREFILE);
PAGE(OUTPUT);
DONE :- FALSE;
INC :- 0;

REPEAT
INC :-- INC+1; E
IF INC-11 THEN

DONE:-TRUE

ELSE
IF (Hilist[inc].Score <,- Score) THEN

DONE:-TRUE; [2

UNTIL DONE;

IF INC< >II THEN BEGIN

IF INC< >o 1THEN BEGIN
FOR H :- 10 DOWNTO (INC+1) DO BEGIN

HILMIST[H.GAMENAME :- HrILISTIH.-I.GAMENAME;
HILIST[H] .SCORE :- HILISTIH.I].SCORE;

END;
END;

(This player will be on the list.., decide what name to put there.)

page(output);
writeln; writeln; writeln; writeIn; writeln;
writIeln(' Congratulations. Your score is one of the ten best so far,');
writeln(' and will be put on the list. Would you like to change the');

A-18

write(' name 'name," to your 'call sign" instead? Iy or in]')
read(cjresponse);

while Dot (c-jeponse in ['y', 'Y', Wn, 'N')) doL
begin

gotox'z(O, 11);
write(' Please enter a my' or an Wn: ');."-
read(cjresponse);
writein;

end;

if (c..response in [W,' 'N'J) then
begin

writeln('Oay. ", nme, 'it is.');
end
else
begin

repeat

repeat
page(output);
writein;
write(' Please type in the new name (15 characters or less)
readln~str);

until ((length(str) > 0) and (length(str) <16));

name :- str;

writceln;
write(' Is "', name, '"correct? ly or nj')
,ead(c..reaponse);

until (c-response in ['y', 'Y');

end; {of "else")

HIJLISTI[NCI .GAMENAME :-NAME;
HILISTfINCI.SCORE :- SCORE;

END;

PAGE(OUTPUT);
UNITREAD(5,SCREEN,SIZEOF(SCREEN),INFO-LISTIFLAGS] .BLOCK);
UNIT ITE(3,SCREEN,63),

FOR H:, I TO 10DO BEGIN
GOTOXY(29,7+H); WRITE(H]LISTIH1.GAM1ENAM*E);
GOTOXY(47,7+H); WRITE(HILIST[H] SCORE);

END;
REWRITE(HIISCuREFILE,'#5:HISCOR-E.DATA');
FOR H.- TO 10 DO BEGIN

HISCOREC-FILE- :- IMUIST11H];
PUT(MfSCORI&FSIE);

A-19g

CLOSE(H[SCOREFD.LE,LOCK);
END; { HISCORE)

END. (UNIT)

A-20 L

Unit GameUn$;

INTERFACE
uses (. Menus, ($U ITEMFLER3CODE)I#AmFilsr$;

CONST
DWaGameUnS - '7-17-84, 3:12 PM... by a friend of Lathe's Boatman';
Maxlnt 3- 2787;
SetSpeed -7; {Speed for games with no speed optim)
ChooeGame - True; (Allow user to choose Same)
Alln..n_One - False; { Play the game that shows each and

every picture once)
FlashGame (currently not working)

- False; (Play the game that chooses a picture
from the entire set each time)

TYPE
TINY(_STRING - string[l];

CharString - string[l]; (Handy for c, etc.)
NameRec - record

Namel string[15];
Name2 string151];

NameS : string 6IJ;
Name4: strigl[151;

If the number of these fields
is changed, procedure CheckAnswer must also
be changed.)

end; { .. of record NameRec...)

PicList - arrayll..MaxPictures] of NameRec;

IndexList - array II. Maxlndex] of integer; (This will bold
a random ordering of all possible indices.)

VAR

TotalPictures : integer; { To hold the total number of picture.)
PieSequence : indexList; (For the Same's order to show pictures)
fias•hcore : integer; (Globally keep track of totl corm

Sfieshtol : integer; (Globally keep track of total t' 4 -,

seed : integer;
response char;
game char;
done boolean;
x,i integer;
4" menul MenuRecord; c*)
PlaneName stringjl5j;

A-21

d d A - I A. 8 8 4. I-L

.. •7F .. *- -. . * . *- .-o- _. o ° '.•

PictureTotal integer;

PROCEDURE Randomise(VAR seed: integer);

FUNCTION Random(VAR seed: integer; Low, High: integer) : integer;

Procedure Sbume(VAR IndexArray: IndexList; Num..of.Pics: integer);

Procedure MlV oSequence(VAR IndexArmy: IndexList; Num-ofjic: integer);

Procedure CbomsPlans(VAR IndeArray: Ind#xList);

PROCEDURE UpperCaN(VAR nmol : string);

FUNCTION Oompsre(ver first, second: string): boolean; V-

PROCEDURE NewLines(count: integer);

PROCEDURE ModWait(seed : integer);

Function ListLength(VAR List: [List): integer;
Procedure BulldString(Vsr FinalString: string; NewChar: Chrs);
Function TimeRaed(Var resalt: string): integer;
Procedure RmovawlInks(VAR stringl: string);

Procedure S ;p(VAR ,tringi : string);

Function Che. xAnswer(var answer: string; Poeeible: NewRec): boolean;

IMPLEMENTATION

PROCEDURE Randomise;
external;

function random;

OONSTL -- 2; :"

C - •17;
M- 1024;

VAR
fraction : real;

begin

realseed :-a (abs(seed*27.182813)) + 31.415017;
real•ed :- realsoed / 100;
realseed :- realsed-trunc(reaisled);

A-22

- . * *' . . .a. -. ,, -. . . o o ,d, . - . . tE

•,'" • v.'. -,' • tr% , • " " . * • _, , • • - - # -e e , _ _ i"

I

seed :-& *b(seed) mod 1000;
seed :- (seed s L + C) mod M;
fraction:- seed / M;

random : trunc((fraction , ((high - low) + 1)) + low);
end;

b.i

- - --{...................................-
.

procedure Shuffle;
{ Shuffle the list by randomly interchanging pairs of entries.

VAR
randl, rand2 integer;
i :integer;
indexi, index2 : integer;
temp : integer;

begin
randomise(randl); { start one random sequence r

ModWaitqrandi); { wait a random anmount of time (to let the
clock reach another random state) -

randomize(rand2); { start th- other random sequence
for i :- I to 200 do (make zt,. -andom exchanges of elements -
begin

indexi :- random(randl, tim_ofj icn);
index2 :- random(rand2, 1, Numrof.Pics); { randomly choose a pair of

elements to interchange... -
temp :- IndexArray[indexI;.

IndexArraylindexl] :- IndexArray[index2];
IndexArraylindex2] :f temp; { ...and interchange them -

end (...of 'for" loop... ;
end (...of procedure Shuffleo)...);

{.o°.)}

Procedure MakeSequence;
{ "

This procedure will fill the array IndexArray with a shuffled
sequence of index values, for use us a random sequence when each
index should only be used once.

VAR
countl, count2 : integer;

begin
{ First, initialize the array to an ordered sequence.)

for count! :- 1 to NumofPies do f
L IndexArray[countl := countl;

A-23 "o% o-

Shuflte([ndex.Aray, Num~of_.Pics);
end; { ...of procedure MakeSequence... }

procedure ChoosePlanes;

This procedure will fill IndexArray with 42 index numbers, c
corresponding to 7 each Russian fronts, sides, and tops, and their
matching ditramctors. Thio vill only work if they are arranged with
their index values as 14 Russian (same view), 14 distractors, etc.
The corresponding distractor for any Russian picture should have an index
of 14 greater.

IndexList will contain randomly chosen indices, but they will not
be randomly grouped. The list variable should be passed to a shufling
routine such as Shuffle() after it is filled here.

VAR
randl integer;
AlreadyChosen set of l..Maxlndex; &,....
NewNumber integer;
i :integer;
check integer;

begin
randomite(randl);
AlreadyChosen := ri;
for i :- 0 to 6 do (get 7 each Russ. and dist. tops..."
begin

NewNumber := randow(randl, 1, 14); (choose a Russian...

check :- 0;
while ((NewNumber in AlreadyChosen) and (check <-m 14)) do
begin

NewNumber :- ((NewNumber + 1) MOD 14) + 1;
check :- check + 1;

NewNumber :- randow(randl, 1, 14);w rite('.'-;)""""-."'

end; (...find an unused number...)

if (check > 14) then
begin

writeln;
write('ERROR: trouble in procedure ChoosePlanes, cannot find new number.')
writein;

end;

AJreadyChosen :m AlreadyChosen + INewNumber];

A-24

5-.r
-,% ,,*j

IdexArrayi(2 * i) + 11:- NewNumber;

IndevArrayl(2 * i) + 2] - NewNumb + 14; { add correspoeding distractor)

end;

Goet next view set...)
mandomise(rand1);
AlreadyChouen :- j1;

for i :- 7 to 13 do {get 7 Rum. and dist. side)
begin

NewNumber :- random(razdl, 29, 42); { chose a Rumian...

check :- 0;
while ((NewNumber in AlreadyChosen) and (check <- 14)) do
begin

(a..

NewNumber :- (NewNumber + 1) MOD 14;
if (NewNumber - 0) then NewNumber : 14;

NewNumber :- random(randl, 1, 14);
write(,.,);
NewNumber :- NewNumber + 28; { put in range of 29 to 42...)

end; { ...fAnd an unused number... }
if (check > 14) then
begin

writeln,
write(ERROR: trou ble in procedure ChoosePlanes, cannot find i. :w numbf ".')
writeIn;

end;

AlreadyChosen :-UAlreadyChosen + INewNumber];

lzdexArrayl(2 * i) + 1]:- NewNumber;
IndexArrayl(2 * i) + 2] := NewNumber -- 14; { add corresponding distractor)

end;

(get next view set...)
randomize(randl);
AlreadyChosen :- [J;

for i :- 14 to 20 do

NewNumber :- random(randl, 57, 70); (choose a Russian...

"check :- 0;
while ((NewNumber in AlreadyChosen) and (check <- 14)) do
begin

NewNumber :- ((NewNumber + 1) MOD 14 + 1);

NewNumber :- random(randl, 1, 14);

A-25

- ' ' " ; ' - ' , ' " . .. "- . "."" " . .' '" " ' " . ,'
-*~~~~ -A- ~~~~.. -

write(Y.);
NewNumber :- NewNumber + 58; (put In rang of 57 to 70...)

end; { ...find an unused number...)

if (check > 14) then
begin

writeln;
write('ERROR: trouble in procedure ChoosePlanes, cannot And new number.) ,.'.-
writeln;

end;

AlreadyChoen :,- AlreedyChosen + (NewNumber];

IndexArray[(2 - i) + 1):- NewNumber;
IndexArmy[(2 i)+2] :- NwNumber + 14; add com•pandingd• } c

end;

ed; { ...of procedure ChoosePlanes... }
-----------------------------------)

PROCEDURE UpperCase;

VAR
i :integer;
holder integer;

begin
for i :- 1 to length(namel) du
begin

holder :- ord(namel~i));
if namelij in I'a'..'z'] then

namelIi] :- chr(holder - 32);
end;

end { UpperCsc);

FUNCTION Compare;

begin
UpperCase(flrst);
UpperCaw(second);
if (first - second) then Compare :- true

else Compare :- false; .1
end; '--

PROCEDURE NewLines;

VAR
i :integer;

begin
for i : 1 to count do writelr,;

A-26 -

.1K..~.:*..:....::. .:.>... ~. §.

end (New Lines);

PROOCEURE ModWait;

VAR
delay : intes,;
i integer;

begin
seed :- ab(seed);
delay :- (nsd rood 200);
for i :- I to delay do
delay :- delay;

end {of ModWat

4 seaeeses mce.. mecee" ."-.

Function ListLength;

This function finds and returns the length of the array parametrer
List, which is of type PicList.

VAR
count integer;

begin
(writeln('ntering ListLength, listll].namel is ',List[l1 .NamolsI));)
count :- 1;

while ((count <- MAXINDEX) and (Listlcountl.Names[l) < > 'nooo123') and
(ListlcountlNamesill < > 'NONE123') and
(ListicountJ.Nanmes[l] < > 'None123'))

begin
(writeln('< ',count,'>', Listicounti.Names[1J);)
count :- count + 1;

end;

(writeln(,iUstLength is ', count, '.');.

ListLength :- count - 1;
{writeln('Leaving ListLength'); ,. -

rsadLb;)
end (...of function ListLength... };
....................................... }

................................
Procedure BuildString;

A-27

This procedure will allow a string to be built character by character.
A <backspace> will have the efect that it should... one character will
be deleted off the end of the string. . -

Each call to procedure BuildString will append one character ('NewChmer')
to the string 'FinalString".

Vat
strien integer;
StringEnd CharString;

begin
StringEnd
strien :- length(FinalString); { get current end of string)
StelagEnd~li :- NswChar;
Ut (ord(New(har) < > 8) then { not a backspace) .

begin-_.

if length(FinalString) < 20 then
FinalString :- concat•FinalString, StringEnd)
end

else { the character entered is a backspace...)
If (attlen > 0) (...and there is at least one

character to get rid of...)
then
begin

delete(FinalString, strlen, 1);
write(' ',chr(8));

end
else write(' ');

end (...of procedure BuildString...);(....................

- - - - - - - - - - - - - - - -- - - - - - - - - - - - - - - -({..................................)}E

Function TimeRead;

This function acts like a "readln", except that it %lso returns an
integer which is the count of terak clock-ticks it ick the user to
enter the first two characters. It uses the procedure BuildString.

)

VAR
letter Char;
KeysEntered integer;
ElapsedTime integer;
HiShStart, LowStart integer; (high and low order starting

clock values)
HighStop, LowStop integer;

begin
result :- ";
KeysEntered :- 0;
HighStart :- 0; LowStart :- 0;
HighStop :-0 ; LowStop :- 0;

A-28

Time(HfighStart, LowStart);
while not EOLN do
begin

reset(keyboard);
read(letter);

KeysEntered :- KeysEntered + 1;
BuildString(result, letter);

if ((KeymEntered - 2) or (EOLN and (KeysEntered < 2)))
U ~then Tiine(HIEhStop, LowStop);

end; { of While loop for reading in characters}
if KeysEntered > 0 then

for x:- 1 to length(result) do if x < - length(result) then
if result~x) - ' hen delete(result~x,1);

if result - then result :- "A)=DO';I if ((LowStart > 0) and (LowStop <=- 0)) then {if the clock counted to Max, the
started negative...

ElapsedTime :-((Maxdnt. - LowStart) + (Maxint + LowStop)) else
ElapsedTime :-LowStop - LowStart;

TimeRead :- ElapsedTirne;
end (... of function TimeRead ... }

------------------------------------)

Procedure RemoveBlanks;

This procedure will remove all trailing <space > and <ret'irn > characters
from the end of stringl.

VAR
integer;

begin
whiie ((ord(stringijlength(stringl)))) in 132, 13))
do {if last. character is a <space> or a <ret>...
deletec(stringi, length~striug1), 1); {... then remove it)

end (... or procedure RemoveBlanks ...)
------------ ------------ ------------

'N Procedure Strip;

VAR
i integer;

begin
for i :- length(stringig) dowato 1 do
begin

if NOT (stringli]i in j''.z,'A.'..'Z', 'O.'')then
delete(stringl, i, 1); -

end;

A-20_

.~~~ ~ ~ . .I...

end { ...of procedure Strip...);

Function CheckAnswer;
{ , '.

This function will compare the string 'answere with all posible correct
answers found in NameRec and return %irue' if a match is found, otherwise
it will return 'false'. The differences between capital and mall letters
make no difference, for both 'answer' and 'Possible' are coovemted to all
capitals. Also, any non-alphanumeric characters in either name (such as
"-', or 'I', or space, will be stripped out before the comparison.

begin
with Poesibles do
begin

UpperCase(Names[IJ);
UpperCase(Names[2]);
UpperCase(answer);

Strip(Names[iI);
Strip(Names[2j);
Strip(answer);

if k'answer - Namesil)) or (answer - NamesJ2J) or
lanswer - concat(Names[iJ, Names[2])) or
janswer - concat(Names[21, Namnes[!])))

then
CheckAnswer :- true

else
CheckAnswer := false;

if (answer - ") then CbeckAnswer :- False;

end (...of 'with Foesibles"'... };
end (...of function CheckAnswer...);
-------------------------------------)

END (of GameUn }.I

A-30 .

FLASH IVAN INTRODUCTION

NPRDC DECEMBER 9, 1983 DAVID M.SETTER;

.PROC SOUND '..•

MACROS AND SYMBOLICS:
INCLUDE SYMBOLICS.TEXT
.INCLUDE MACROS.TEXT k.
.INCLUDE SND.F.TEXT

SAVE REGISTERS:
PUSH R5
PUSH R4
PUSH R3
PUSH R2
PUSH Ri
PUSH RO

; TAKE CONTROL OF KB AND LPEDB:
BIC #100,0#177560
BIC #100,@#177564 V.,

b..............-.-..... *e*.e.....................**. *e********

;MAIN:;

MAIN:

CLR Ri
92$:

MOV #006,R5
MOV #20,R0
ADD #2,R'
SUB Ri,RO

PITCH RO,Ro,#12,#'
SOB R5,1$

CMP RI,#O
BLE 92$

END OF MAIN.

A-31

r -r r r r r- -S r r r .° -° - 17 -, , . . ro • . .• • .• . . • •. • -, ., .

BIS #100,0#17760"
W.S #100,0#1776584

POP RO
POP Ri
POP R2
POP R3
POP R4
POP R5

RTS PC

• 1

A-32

"5..-

* FLASH IVAN INTRODUCTION

; NPRDC DECBELER 9, 1083 DAVID M.SETTER;

.PROC TIMEPI

MACROS AND SYMBOLICS:
INCLUDE MACROS.TEXT
INCLUDE SYMBOLICS.TEXT
.INCLUDE SNDTF.TEX-

SAVE REGISTERS:
PUSH R!,
PUSH R4
PUSH R3
PUSH R2
PUSH RI
PUSH RO

; TAKE CON "' KB AND LP.,EDB:
BIC, 177560
BIC 4177564

;MAIN:; 'S*.*******************.**.. a... **.*...*ea* * e- *...*OOdtqt•-..

MOV #20R0.MAIN: I:

PITCH #2,RO,#20,#2
SOB RO,MAIN

MOV #20,RI

PITCH #2,#1,#10,#2
SOB R1,555

I-

;END OFMAIN.

BIS #I00,0# 177560

A-33

e t de

.* *.. S. *,S. .*. . .S ,*b . . *.* ..*oS. S S S S S. *. o . ., , ..b-b 5 . b .. S ,,_ - .S . bo

BIS #100,@#177564

POP RO
POP RI
POP R2
POP R3
POP R4
POP R5._'-_

RTS PC

..........o.o .oo ..o . o.. o..

END

A.-3

'-. °

'434i

* .~ *. -. C. -. .%/ .*'..J
-~. . I X~~ ?.X !P. A ~ A %£2 .~%--$Q;&J~.§AY KxQ* - .*

Program makestats;
CONST MAXINDEX - 100;

MAXNAMES- 3;
I~name - 'Newnatnes';
numberpictures - 89; (*tota # of pictures available.

The number of piano actually
used in a game Is nilmportant. 0)

name -'#5:GAAES.DATA'; (s Disk Ale of played Same stwt'
scrams 12; (0Formatting; # rows printed 0)
waxgames -100; (s per page. 4)

TYPE STR15 = string[15J;
setyps - string(11);
NEWREC - packed record

names: packed arrny(1..MAXC4AME8J of etch;
block: integer;
FULLSCREEN: BOOLEAN;
TOPTHIRD BOOLEAN;
BOTTHIRD BOOLEAN;

end;
ELIST - array[1.MAXINDEX1 of NEWREdC;

nametype - string(15j;
scale 0-O.100;
gamests*.s - record

came nametype; (eThe player's name, and *
us "type;

date nametype; (ethe date of the game. *
latency packed arrayji..numberpicturcs] of integer; (a Statist
confidence packed array 11 -nuniberpictur~sa of scale; (s for eve07
correct packed array[(1.numberpicturses of boolean; (4 plane f

end; (6 gamestats)(each game.).1.
VAR infodir file of NEWREC; V/

INFO...LIST , LIST;
tot@,ljat,total..correc tiotal..con f: array I I. .n u mborpic twes) of real;
lat..total,conf-jtotal,correct..total array [L. maxsgawsj of real;
DO-,Planes :array(1..numberpictures] of integer-
no~games arrayll..maxgamesj of integer;
scorsefile file of gamestate;
xx~xy,letter,letterstep :integer;
outfile text;
current galnestats;
no_"arow integer;

procedure hesderqvar 6utfile :text);
* begin

writeln(outfile, 'LAYER','PLANES'.34),
writeln(outfile,' #','-':38);
for y :- 1 to numberpictur.. do

no..plansesyj : 0;
for y :- 1 to mnaxgames do

no-.gamesly : 0,
* ~end; (-I of Procedure Header a

procedure planernames(var outfile text);

A-3b

begn

it x < 29 then write(outhile,' (o)'
if x < 10 then writo(outfile,' (To)
also if (x > 28) and (x < 57) then write(outflle,* (Side) '
elas write(nutOIle,' (Front)')

* ($PLAVE NAMES 00 HERE*)

end;

*procedure sbowconfidence(var outfit.: tat);
*procedure sbowratlmgs (var outfie:text)

procedure sbowpeople (var outfi.: text);
begin

wrte~ontIle,' NAME 88 # DATE ':40);

wrntelo(o~utfile,'Average Confidence':22,'Percent Correct':17); -

roeet(scaraffihe name);
lettoretep :- 65;
letter -- 84;
xx :- 0;
while not (eoonscoreafile)) do

begin
current :-corefie';
get(.cormfils);
letter :- letter + 1;
if letter > 90 then
begin

letter -or 65;
lett4Ilop :- letterstep + 1;

end; (s of ife
xx :no xx + 1;
wrlte(outfile,chrqletteretep),chrqletter),':',' ',currenL NAME: 15,
furrent.SS:,13,cuneont.date:12);
if not (no_.planeejvcJ - 0) then

WrR4(OUtfil$,(COanfjot&llxxl /no-.planeslxxl): 12:1)
else wrige(outflle,'. ':12);
if not (no..plazieslxx] - 0) then

wrlteln(outftle ,round(100*correct.t-otal [xx] /no..planeslxx)):17,'%')
ala. wrltelo(outftle,' ':18);

end,,(* of while e
cloee(scaresfile);

writelft(outfile);
end; (0 of Procedure Sho'wpoople a
begin (s Procedure Showraings*
noactee-1
repeot

wrlte(outfile,' ':4);
for x :- uoaeroe to noaaroea + scrau* 1 do -

If x <- numberplctures tben
writo(outfilesx:6,')

writeln(outfile);
wrlto(outfils,' '4;
for x :" no,,aross to no..acroue + wroea - 1 do
it (x < n' umberpic tures) and (x < 10) then

A-30

writ~e(out~file.'..':5,' '
else if x < - nurnberpictures then

writ~e(out~file,'-':S.')---

writeln(outhile);
resetqscoresfile,name);
letterstep :- 85;
letter :- 84;
xx :- 0;
while not (eof(ecoresflle)) do
begin

curr~ent :mincoresfile';
get~scoresmie);
letter :- letter + 1;
xx :- xx + 1;
if letter > 90 then
begin

letter :- 65;
letterstep :- letterstep + I-,

end; (* of if a
write(outfile,chr(Iettersttep),cbr lett~er),'')
for y :- no...acrvss to x - 1 do-

if y <- nuinberpictures then
if not (current.latencyly] -0) then
begin

no-.planeslxx] :- no-.planeslxx] + 1;

no...araesly] no-.ganiee[y) + 1;
totai.cponfly] :=total-confly] +i cuffent.confidencely];
confý_Wtal Ix] :=conf~total lxxj' + current.confidence [y; ...
if current.correctlyl then
begin *-

totalc.orrect~y] total-correctjy) + 1;-
correct..tatalixxl : correct..totalfxx] +i 1;
wnite(outfile ,'+':3) ___

end Is of if a
else write(outflle,'-':3);
write(outfile,round(current.confidencelyj):3);

end (* of if)
else write(oiitfile,'

writeln(outfile);
end; (0 of while a
close(scoresfile);
wit~eln(outfile);

* for x :-Ito 80 do write(outfile,'-');

noars := no~acroes + across;
* ~until no..across >s- numberpictures;

writelo(outflle);
showpoople(outfile);

end; (0 of Procedure Sbowratingap
procedure showplanes(var outfile :text);
begin

for x :-1to 80 do write(out~file,'.');
writeln(outfile);
writeln(outfile, 'PLANES:',' ':41 ,'Average Confidence','% Correct?':14);

A-37

~ N: 16

for x :-I to numberpicturve do
begin

planenamne(outfile);
if no..gamoe[xJ > 0 then write(outfile,toot~a-conflxJ/no-gamesfrj:i:i~) L
else write(out~file,'-' :11);
if no..gamesix) > 0 then

write(outfile,round(10OetotaI..conrectlxJ/no...ammlxj):1O,'%')
else write(outffie,. ':20);
writaln(outhile);

end; (0 of for a
for x :-I to 80 do write(outfile,'.');
writelo(outfile);

end; (of Procedure Showplanae)

begin (Procedure Sbo'wconfidenc.e)
for x--n 1 too numberpictures do
begin

tootaI.correctlxJ :- 0;
tot&Lconfix] :- 0;

end;
for x:- I to waxgames do
beginL

conL-t~otallx] : 0;
correct..totWal :] 0;

end;
writoeln(outfile)-
writeln(outfile,'RESPONSE CORRECTNESS and':48);
wnwite(outfile,'CONFIDENCE RATINGS' 4);
writ~elni(outfile,' + =correct '.45);
writ~ein(outfile,' - wrong ':45);
for x :-Ito 80 do writ~e(outfile,'-');
writ~elo(outfile);

showratiugs(outflle);
si~owplames(outfile);
close(scoresfile),

end; (* of Procedure Showconfidence s

procedure showlatcncy(var outfile :text);
procedure showratings(var outfile :text); .

begin
no-scrom:-;

repea"d
for x :- nooacroes to noj..crose + across 1 do
if x < - numberpictures then

writel(outfile); S,
writel(outfile,':);

for x :- no~scrous to no~acwss +~ across - 1 do
if (X' <= n Umberpictures) and (x < 10) then

write(outfile,!-':6,' '
else if x <- nuwberpict~ureis then

writ e(outfile,'-':5,')

A-38

Swritelo(outfile);
rest.(acorwfie'name);
letterstep :-65;
letter :-64;
xx :-0;
while not -tf~ecomedle)) do

cur. .n :-mcoresfle;
V. get~georesfie);

~ . letter :- let~ter + 1;

Xx- + 1;
if letr > 0 ten

letter ;- 65;
lettowetep :m lttestep + 1;

wrlte(outftie,cbr(letwrstep),Chr~lef ter)"'')
f'nj :m naoacross to x - 1 do

Ui y <ur- numberpicturee then
J1 not (current.latencylyl - 0) then
begin

DO..pifne"e(Xc :- so-planesl-xJ + I;
uvojamesly] :- no.Sameslyl + 1;
tt-alJatfjy] t.,taljatly) + current.lastencyly];

;&)rLY:.l~twto~jxxj + current.Iatenicy[y];
*.cate,(oudfik,current.lateincyiy):5,'')

nd(s of if I

se sowrite(outfile,' 1
y it~elu(ou'.ftle);

e,.d; (-b of while .

for z;-I to 60 do write(outftle,/.');

~&iWM :- n.&cro + acoes;

until nov.racru > - numberpicturca;

on-do (o of Procedure Showratinp')
ppxedure showpla~nes~var outfile text);

for x 4,' o 30 do writ 0aut4Me'.'),

writ~l~uhDiiou~,rL'LANE:'. :4L 'Average Lwacwny);

for z :- i o bevpicturis do

if Dot. (an-saawsiax) - 0) then wrif ulefun(tI)txifO.Ma III):
else writ~eoutfiie,1.':9);
writ..n(outflha);

ond; (soft tor.
for jr :-11to $0 do wrlte(outBie,'-');
writeln(outflle);

tand; of Procedure Showplmne. *
procedure 1howpeople(var outfile: text);

A-30

begin
write(outfile,' NAME SS # DATE':40);
writeln(outfile,'Averap Latency':22);
reset(scoresfile ,name);
letterstep :-65;

letter :-64;
x :
while not (eof(scoresfi~le)) do

begin
currnt :-scoreaflle;
get(scorafile);
letter :- letter + 1;
if letter > 90 then
begin

letter :- 65;
letterstep :- letterstep + 1;

end; (*of I.
MC :- xx + 1
write(outfile ,cbr(letterstep),chr(letter),':',' ',current.NAME:15,
current.SS:12,current.date:12);
if not (no..planeslxx] - 0) then

writeln(out~file ,round(lat (oWxxj/no..planesfxxJ):12,' '
else writelo(outfile,'- ':14);

end;(* of while)
close(scoreafile);

writ~eln(out~file);
ei" '*of Procedure Showp-ý,,,le

begin (* Proceduo ý....owlztenq ~~
for x :- I too maxga ,es do lat..totallxl 0;

writeln(outfile,'1. t TENCIES (in mnilliseconds)': 50);
for x :-I to 80 do write(oiafile,'-');
writein(outfile);Po

header(outfile); .

sbowrstings(outfile)-;
showpoople(outfile);
writelo(outfile);

showplanes(outille);
i..tscarssflle'name);

close (ur~orwfle,purge); ' Purge 0)

etni (. of Froeedurp! Showlatency s)

".rocedurie FlRSMDSK;
var*F intevevi,

reset(infodir,l..name),
rQR 11 .-e 1 70L MAXINDEX DO BEGIN

IntoJListIH, (oo IL-LsLjI-ij 00) -w iarodir,;
it not, EOF(inrodar-) thena peinfudir),

ckse(infodir);
end;7

A-40

* ~ % ~ii~' a&~ 2 ~ a~~, %

begin (*MAIN*)
for x :mI to numberpicturee do
begin

totzL(.orrectlx) : 0;
totsl-conf lxi 0;

end; (s of for)
FROMDIK;
rewrit.(out~ftie,'CONFIDENCE.TEXT')-
inbowonhidence(oat8ile);
clon(outfile,Iock);
rewrit(ouMtBIe~LATENCY.TEXT');
sbowlatency(outhile);
close(outffle,Iock);

u sit~cor~est,name);
close(goreeftleock);

end. (*MAIN e

A-41

-~~~~~~ ~W -X-. . . *~~___

Program Driver;
CONST numberpictures 865; ('total # of pictures available.

The number of planes actually
used in a game is unimportant.')

name -- '#:GAMES.DATA'; ('Disk Bit of played game state
TYPE nametype - string[15);

atype - stringl[I];
scale - O0.100;
gamestati - record

name :nametype;
SS :etype; ('The player's name, and)
date nametype; (the date of the game. ')
latency packed arry[1..numberpict~ures) of integer; (' Statist
confidence packed array l..numberpicturs) of scale; (* for eve
corect packed arrayll..numberpictures) of boolea; (0 plae f

end; (* gamestats') ('each game. ') .
VAR current file of gamestats;

begin ('MAIN')
rewrite(current,name);
close(current,lock);

end. (. MAIN.)

A-42

.~.*f* .. * ~. % *

.
qSP.. ~ ~ ~.*:x-L i::- - .

{SS+)

PROGRAM MAKEDIR2;

USES M[ENUS;

CONST LNAME -'#5:NEWNAMES';

MAXINDM - 100;
MAXN~AN - 3;
menuix - 4;
menulY -6;
al - 'Name 1I;
s2 - 'Name 2';% 1

a3 - 'Fotofile name.,;
s4 - 'Fullafteil IT/F]';
s6 - 'rapThird IT/F]';

I .s6- 'Mid Third (T/P]';
s7 - 'Dot Third IT/Fl';

MAXDIR - 77; ('MAX NUMBER OF ENTRIES IN A DIRECTORY')
VIDLENG =-7; (*NUMBER OF CHARS IN A VOLUME ID')
TIDLENG - 15; (*NUMBER OF CHARS IN TITE IDs) F
FBLKSIZE - 512; (*STANDARD DISK BLOCK LENGTH*)
DIRBLK - 2; (sDISK ADDR OF DIRECTORYs)
NAMELEN - 23; (Length of CONCAT(VIDLENG,':',TIDLENGfl

TYPE
DATEREC - PACKED RECORDI MONTH- 0..12; ('0 IMLIES DATE NOT MEANINGFUL

DAY: 0..31; (*DAY OF MONTH')
YEAR: O.4100 (*100 IS TEMP DISK FLAG')

END ('DATEREC');

(*VOLUME TABLES*)
I VIP STRING[VIDLENG];

('IDISK DIRECTORIES')
DIRRANGE -0..MAXDIR;
TIP - STRING[ITILENOJ;

FIHEKIND - (UNTYPEDFILEXUSKFILE,CODEFILE,TEXI'FILE,
INFOFILE,DATAFEL~E,GRAFFILE,FOTOFILE,SECUREI)I);

DIRENTRY - PACKED RECORD
* ,DFIRSTBLK: INTEGER; ('FIRST PHYSICAL DISK ADDRs)

- DLASTBLK: INTEGER; ('POINTS AT BLOCK FOLLOWING*) -

L ~CASE DFKIND: FIEKIND OF
SECUltEDIR,
UNTYPEDFILE: ('ONLY IN DIROJj...VOLUME I[NFOs)

(FULERI : 0..2048; (for downward tompatibility,13 bit.)
DVID: VU); (*NAME OF DISK VOLUME.)

A DEOVBLK: INTEGER; (*LASTBLK OF VOLUME')
DNUMWU.ES: DUWRANGE; (6NUM FILES IN DIR') -

DLOADTIME INTEGER; ('TIME OF LAST AOC7ESS')
DLASTBOOT: DATERIPC); ($MOST RtECENT DATE SL~?TINGs)

L ~A-43 -

XDSKFILE,CODEFELE,TEXTFELE,INFOFI.E,
DATAFILE,GRAFFILEOTOFILE:

(FILLER2 :0.1024; ((or downward compatibility) -

STATUS : BOOLEAN; (for FILER wildcards)
DTID: TID; (*TITLE OF FILE*)
DLASTBYTE: I..FBLKSIZE; (*NUM BYTES IN LAST BLOCK*)
DACCESS: DATEREC) (*LAST MODIFICATION DATE*)

END (*DIRENTRYs);

Directory -ARRAY[DIRRANGE] OF DIRENTRY;

STRiS STRING[1SI;
ThJFO-REC - PACKED RECORD

NAMES: PACKED ARRAY(1.MAXWAMES] OF STRI;
BLOCK: INTEGER;
FULLSCREEN : BOOLEAN;
TOPTHIRD : BOOLEAN;
MIDTHIRD : BOOLEAN;
BOTTHIR : BOOLEAN;

END;
L IELIST - ARRAY[I..MAXJNDEXI OF INFO..REC;

VAR !NFODIR :FILE OF [NFO_.REC;
INFO..XIST :ILIST;
CH : CHAR;
1,3 : integer;
noloop,Ioopit,,done : boe
choice : integer;
Bin,ans,response :char;
MENU1 MENUIRECORD; 4from library program MIENUS)
dir : Directory;
LISTFILE : TEXT; (used in QUICKLIST to output dir to teixtfille

procedure FROMDISK(VAR UJJIST :ILIST);
var H: integer;
bogin

reset(infodir,I..NAME);

while not EOF(lnrodir) do begin
Ijist[HJ :- infodir';
H:- H +1;
get(infodir);

end;
Cloeeinfodir);

end;

procedure TOODISK(VAR 11-IST: ILIST);
var Z :integer;
begin

A-44

rewrite(infodirLNAMNE);
for Z :- I to MAXINDEX do
begin :l~sII

put~infodir);
end;
closeeinfodir,lock);

end;

PROCEDURE CLEARSPACE(D INTEGER);
VAR E: INTEGER;
BEGIN
FOR E:- I TO DDO

WRITE(CHR32));
FOR E:'- I TO DDO

WRITE(CHR(8));
END;

procedure ClearLine; -

begin
write('
for i :- I to 87 do write(cbr(8));

end;

procedure Boolwrite(Akboolean);
begin

if A-TRUE then writ~e('TRUE')
else write('FALSE');

end;

procedure Boolread(VAR Akboolean);
var ch :char;
begin

read(ch);
if ((ch-'T') or (ch-'t,)) then A:-TRUE

else A:-FALSE;
* and;

procedure ShowValue(p:Integer);
* begin

with lmfo.jsL!j1 do begin
if pmi then begin

ClearLine;*
gotoxy(menulX + 26, meauly + P +);

end;

A-46 low

if p-2 then begin
ClearLine;
gotoxy(menulX +s 26, menulY + P +1);
CleatSpact(15);
write(names[2j);
end;

if p.93 then begin
Clearinwe;
gotoxy(menulX+ 26, menulY + P +1);
Cleuspace(15);
write(names[31);

end;
if P-4 then begin

GlearLine;
gotawymienuiX + 26, menulY + P +1);

boolwrite(fullacreen);
end;
if p-5n then begin

ClearLine;
gotoxy(menulX + 28, menulY +~ p + 1);
ClexrSpxce(5);
boolwrit~e(topthird);

end;
it p-nG then begin

ClearLine;,
gotoxy(naenulX + 28, menulY + P + 1);
ClearSpace(S);
boolwit~e(mid third);

end;
if p- 7 then begin

ClearLine;
gotoxy(menulX + 28, inenulY + P + 1);
ClearSpace(S);
boolwrit~e(bottbird);

end
end (with)

end;

procedure MskeMenu;
vat title,eonvertatring;
begin

(str(J,comvert);)
{title :- concat4'INDEX %,convert);)

MsnuNew(mnenul, inenuiX, menulY, 20, 7,'INDEX NUNER');
Menuln~ertqaenul, $I, menul-leu+l);
Menulnmert(naenul, s2, menul.Ien+l);
Meaulamert(uaenui, s3, menul.Ien+l);
Menubnurt~menul, 94, meraul.Jen+1);
Menuhnmert(menul, s5, manul.Iea~sl);
Mosuln..rt(menul, so, menul Ien+ I);
Mosuba..rt(menul, .0, meaul.lea+ I);

end;

A-46

<...e * *~.'*~ *

procedure DoMenu(TheMenu MenuRecord; VAR choice integer);
var lost.: char;
begin

gotoxy(O, 2);
wniteln(Uae the arrow keys to move among the choice.,')
writeln('type 'S' to select which item to change.')
MeauDisplay(TheMenu);
last :- MenuUserSel(The~nu);
choice :-The? fenuxurIt~em;

end;

procedure NewOne;
var iter: integer;

response,bool char;
done :boolean;

procedure NameCaae(VAR name~strl5; statring; c:integer);
begin

gotoxy(O,menulY + 14);
ClearLine;
write(st,' is currently')
writeln("',name,"'')
ClearLine;
write('ntoer the new ',st,'.: ->)

reseet~input);
readlo(name);

(*UpperCase(name);*) {from SceneUni)
WRITELN;
CLEARLINE~;

ShowVxJue(c);
gotoxy(O,anenulY + 14);
ClearLine;
gotoxcy(O,menu1y + 15);
ClearLine;L

end;

procedure BoolCaae(c:integer); ''.

var 1 : integer;
'V begin

with lnfojist[jI do begin
fullacreen :M false;
topthird -false;
widihird :-false;
botthird :-false;
if c - 4 then fullscrson -true /

WoosV c - 5 then topthird -- true L.
else if c - S then m hIdthrd :trus

slse if c - 7 thon botthlrd :-true;
for 1 : 4 to 7 do ShowValuef i),

A-47

gotoxY(O,menutY + 14);
writeln('For boolean fields, selection automatically sets');
write(' selected field TRUE, other fields FALSE. Hfit <RET>.');
readin;
gotoxy(OmenulY + 14);
ClearLine;k.
gotoxy(O,menulY + 15);
ClearLine;

end; I with)
end;

begin (NewOne)
MakeMenu;
PAGE(OUTPUT);
gotoxy(20,6); {Writes index number to screen)
ClearSpsce(3);
write(J);
for iter :- 1 to 7 do SbowValtie(iter);
done :- false;
while (not done) do

begin
MenuReset.(menul);
DoMenu(menu 1, choice);
gotoxy(20,S); {Writes index number to screen)
ClearSp Ace(3);
write(i).
i ,hoice-!

vben NameCase(InfojistjJ] nameajli) ii,choice)I

eha,: if choice-2
then NameCase(lnfojiutfi] .names[2J,s2,choice)

else if thoice-3
then NameCase(InfojistljJ].names[3J,s3,choice)

else BoolCaae(choice);
gotoxy(menulX + 38, menulY + 8);
write(, Change more val ics? jY/N] ')
read(keyboard,response);
if (response in t'N', 'n']) then dont:-true else done:-false;

end {while)

end;

procedure procA,
var loopit - boolean;

ain: char;
begin V

repeat
repeat

loopit :- false;
gotoxy(1 ,22);
write('Edlt Index Number: -)

resd(J); J GLOBAL TO MAKED~t
if (J < 1) OR (J >MAXINDM) then begin

A-48

loopta(-tr2);

wrtelo('Valu* out of rar~ge. Type <RE1>t otne)3 teadizi;
end;
gotcxy(O,92);
CLEARLINE;

until not loopit;
NewOue;V ~mnnudispiay(nienul);
gotoxy(1,22);
wrlte('Edt Another? (Y/NJ -)

read(fin);
gotway(O,22);
OLEARLDNE;

until (An in 174', 'nil);
end; (procA)

procedure proefil;
__ var lower,bigberimateger;

again :boolean;
begin

repast
again false;
sotoxy(O,O);
ClearLine;
write('Enter lower in,$ x bound space, upper index bound: ->1;

read(lower,bigher);
if (lower< 1) or (lower~ MAXINEX) or (higher< 1) or (higher >MAXMEX~)

theu &gain:mtrue

if (lower>higher) then againm-true;
until not again;
for J:- lower to higher do (J is global to MAKEDm)

begin
NswOne;
menudlsplay(tnenui);

end;
end; (proeB)

(..........................f.....5S5*5505C00005IOC 6s**ssess)

PROCEDURE CHANGER;
VAR i : integer;

FUNCTION Anadinu(VAR alims: string): INTEGER;
VAR a: integer;

found,done : booleam;
BEGIN

done :-FALSE;
found :- ALSE;
a -1

REPEAT

A-4

IF dir(nJ-cdtld-alias THEN BEGIN
findoum :- dir(oJ.dfirstblk;
done :- TRUE;
found :-TRUE;

END

UNTIL ((a-MAXDUIR+) or done);
IF found-FALSE

V.THEN WRITELN('Can not Bud 'ais'on disk in upper drive (+5)')
END;

BEGIN {CHANGER)
PAGE(OUTPUT);
WRITEN('CONVERTING .

UNITREAD(5,diVSIZEOF~dir4DMBLK);
FOR 1:- I TO MAXMEX 1DO

INFO-.LISTIII.block :- findnum(lNFOJIlSTJq.uamw(3J);
TOODISK(INFO-.LIST);
WRITELN('DIRECTORY CONVERTED.')

r END;

PROCEDURE INITDIR;
begin

for J:- I to MAXUNDEX do begin
InfoJist .1nms 2 :- 'nooelVa;
Infojist names 3 -= TLAGS.FOTO':
InfoJist .block :am 0;

InolsIJ)fuliscreen :- TRUE;
Infojist iJ topthlrd :-FALSE;
InfojieLI .midthird :-FALSE;
lnfojlst J.botthird :- FALSE;

sod;
Info-ust[0 .names[3J:- EAGLElFOTO'; {initiablsing system records)
Izafojlsi. 901] names(3]S) 'AOLE2.FOTO';

;1 ~~~~Info-uot92.me(J-
* Ifo.jist 92nams2g :a-'ADM1';

Inoli92 .namesl3j :-'ESOTO';

Iof*e(03 .oames 2J -'SPACE SHUTTLE';
blaojistf 931.namesiSJ :- 'X4.FOTO';

WnoJist, 94 names I :- "; ;

lafojlist 04 namosill :am 'EXl.FO ?O';
* Iabfo.J- 04 ,fulluereen :- false;

WdoJWet941 Aoptbird :-true;

Intojiist 5S names -"
Wnojist 05) &me$ 2 :

lno~t951 -namee 3 :- MC.FOTO';

Info~isti, 1

1%*./%d%*....,.,...,.%~~- e*%** -.*1 * . ./*

info~jist[9e].namesjl) :-'IGHTING, FALCON';
InfoistIOOJ.names(2J : 'FIB6;
JInfoJistroej.n~mAjness:- lx~
Info-jist[96].fullscreezi: false;
Info~jistloB) .midthird :-true;

Infqjixt[fC7].names[2) : 'SPACE SHUTTlLE';
kxfo.Jist[97j.name.IS1 VMEX.FOTO';

Iafo~list[WI8naznesI3I 'INI.FOTO';
InfoJistIBO).namels] :- '1N2.FOTO';

END;

PROCEDURE EDITDIR;
var ans :char;-
Begin

Menulnit;
MenuVais .SelChams: MenuVars^ .SelChars +)8', a';
MeauVan' .E~cCharsm MenuVars .EacChans + ['S', 'W';
PAGE(OUTPUT);
REPEAT

got,=y(O,O);
write('Edit OLD 'NEWNAI4ES" Directory, or make NEW 'NEWNAMES' Directory? (0/N
read(keyboard,ans);

LNTI~JL (ans in I'o, '0', 'W, 'N']);
if (san in I'o, '0']) then

FROMDISK(Info-4nt)
else INITDIR;
PAGE(OUTPUT);
REPEAT

WRITELN('EDITING OPTIONS: ');
WRITELN(' I1. INDEX Cu MI ICE')
WRITELN(' 2: AUTO-INDEX')
WRITELN;
WRITE('Type <(1> or <(2> ->)

READ(ans);
UNTIL (an* in 1"'.' '2']);
PAGE(OUTPUT);
IFanm -'2' then procB

ELSE procA;
CHANGER;

* ~End; 4 MakeDir)

procedure LISTER;
VAR i :integer;

AMA.b : char;

procedure Filabooiwrite(A:boolean);
begin
if A=TRUE then writoln(LISTFIEJ'RUE')

else writeln(LISTFU..E,'FALSE');
end;

A-51

.. *

BEGIN
PAGE(OUTPUT);
WRTLMN('QUICKLIST'); WRJTEN;
FROMDISK(INFO..LIST);

FOR i :-1I to MAXINDEX do begin
With INFO-LIST~ij do begin

Writeln('Index # ,)

Writeln('NAMEM ~21:', names[21);

Writeln('BLOCK: ',block);
Write(st'.4') boolwrite(fulscren); writeln;
Write(&5,':);boolwrite(tepthird); writein;
Write(98,':);boolwrite(midthird); 'writein;
Writs(27,) booawrit.botthird); writeln;-
Readin;

End; (with}
End; I(for
Page(output);
writeln('Do you want a listing sent to QUICKLIST.TEXT on the bottom disk?');
read(keyboard,ans);
if (&as in j'y','Y']) then begin

REWRITE(LISTFJLE,'QUICKLIST.TEXT'); I QUICKLIST.TEXT is output file)
FOR i :- I to MXNýDEX do begin

With INFO..LIST[ij do begin
Writedn(LISTFILE,'Index #: ',i);
Writeln(LISTFIl1E,'NAMvESII]: ,naxnes[1j);
Wrieln(LISTFILE,'NAMES[2]: 'naxnes[2]);
Writeln(LISTFILE,'NAMES13]: ', narea[3]);
Writ~eln(LISTFILE,'BLOCK; ',block);
Write(LISTFILE,s4,':);Fileboolwrit~e(fullacreen);
Write(LISTFILEOs,':);Fileboolwrite(topthir);
Writ~e(L.ISTFILE,s8,':);Fileboolwrite(inidthird);
Write(LISTFILE,s7,':) Fileboolwrite(botthird);
Writeln(LISTFILE);

End; (with)
End; (for)
CLOSE(LISTFILE,LOCK);

end; (if)
END;

PROCEDURE BUGS;
TYPE SCORE&R.EC - RECORD

GAi{ENAIME STRING1151;
SCORE : INTEGER;

END;
VAR HILIST : ARRAYII..1OJ OF SCORESJtEC;

HISCOREFILE : FILE OF SCORESJREC;
1,J,H : INTEGER;
CHi: CHAR;
TEMPNAMVE: STRINGI151;
TEMPSCORE : INTEGER;

BEGIN
PAGE(OUTP UT);

A-52

WRrIELN('THIS PROGRAMA CREATES A FILE CALLED HISOOREDATA');
WRITELN(' WHICH IS PUT ON THE FOTOFILE D)ISK IN THE UPPER DRIVE);
WRITELN;
WRITELN(' ENTER THE TOP TEN SCORES WITH CORRESPONDING NAMU,.');
WRITELN;
FOR H:.ml TO 10 DO BEGIN

WRITELN('NtJMBER'A~);
WRITELN('¶ENTER NAME ->);READLN(HILIST[Hj.GAMENAME);
WRITELN('ENTER SCORE ->);READLN(HILIST"H SCORE);
WRITEN;

END;
FOR J :- 9 DOWNTO 1 DO BEGIN

FOR I:- ITO J DOBEGIN
IF HILIST[I].SCORE < HUAIST[I+iJ.SCORE THEN

BEGIN
TEMPNAM~E :- HILISTJII.GAMENAME;
TEMPSCORE :- HILISTIIJ.SCORE;
HILIST[I] GAMENAME :- HILISTjI+ 1] GAMENAME;
HILIST[I].-SCORE :- HILSTII-t- 11 SCORE;
HILIST[I+1].GAMlENAME :- TEMPNAME;
HILISTJI+ 1].CORE :-TEMPSCORE;

END;
END;

END;
REWRITE(HISCOREFILE,'#5:H1SCORE.DATA');
FOR H:- I TO 10ODO BEGIN

HISCOREFILE^ :- fULISTIHI;
PUT(tISCOREFILE);,

END;
CLOSE(HISCOREFELE,LOCK)-,

END,

BEGIN
NOLOOP :-FALSE;
REPEAT

PAGE(OUTPUT);

REPEAT
WRITELN;
WRITELN(QNOTE: Be sure disk with game FOTOFILES is in uapper disk drive.'
WRITELN;
WRITELN('MAKEGAMET OPTIONS: ');
WRITELN(' 1: EDIT DIRECTORY ');
WRITELN(' 2: CONVERT DIRECTORY ');
WRITELN(' 3:- QUICKLIST ');
WRITELN(' 4 : MAKE HISCORES FILE ');
WRITELN(' 5: QUIT');
WRITELN;
WRITE('Typt <1> <2> <3> <4> or <5> -> ');
READ(keyboeard,ch);

UNTIL (cb in

A-53 L

IF ch-'2' THEN BEGIN
PAGE(OUTPUT);
FRtOMDKSK(INFO..LIST);

* CHANGER;3 END
ELSE IF CHin'! THEN EDITDIR

ELSE IF CH-'3' THEN LISTER
ELSE IF' CHind'THEN BUGS

ELSE IF CH-'6'THEN NOLOOP :- TRUE;
UNTIL NOLOOP;

I END.

A-54

