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1. INTRODUCTION. ’
Let < < < be the order statistics of s
cos e or s
X(1) < X(2) X(q) ve order statistics of a -
random sample from a continuous distribution G{x) with location and scale -
]
parameters a and B ; thus G(x) = F(w) where F(w) 1is a completely 3

specified distribution, x = a + Bw , and X(1) = a + Bw(i), i=1,...,n.

Let m, = E{w(i)} where E denotes expectation. Suppose, to fix ideas,
#:; that G(x) is the exponential distribution G(x) = 1 - exp{-x/3), so that s
o is zero, and suppose B 1is unknown. A well-known technique exists to

transform the x(i) to a set z(i) , which will be distributed as a set of

uniform order statistics.

The transformation, first introduced by Sukhatme (1937) depends

3 on normalized spacings Y o defined as follows:

yi = {x(i) - x(i—l)}/(mi - mi_l), i =1,...40 (1)

where x(o) = m0 Z 0. For an exponential set x , from G(x), the values

‘A will be a random sample from the same distribution. A further trans-

formation J gives values z(i), as follows:
S n i = :
2(4) ZJ=1 yj/zj=l yJ ,i=1,...,n. (2) »

It is well known that the values z(i), i=1l,...,n-1 , are distributed : k
as thg order statistics of a sample of size n - 1 from the uniform
distribution, with limits O and 1 , written U(0,1). A test of the
null hypothesis that the x;, are from G(x) can then be made by testing

that the z(i) are (ordered) uniform random variables. Seshadri, Csorgo
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and Stephens (1969) defined the K transformation to be the combination

of the Sukhatme transformation, say N , and the J transformation above,

to produce Z(i) from the original x-set; symbolically, Z =Kx = JNx ,

R where 2z , x are the vectors of the z(i) and x(i) . These authors
TIE found that the Anderson~-Darling statistic A2 , applied to the Z(i)’

1 provided a powerful test for exponentiality of the original sample x .

h:z O'Reilly and Stephens (1982) gave characterization properties in support of
4

transformation K , as well as further power studies.

o An important property of normalized spacings is that, in the
limit, for any regular parent population for x , and for "sufficiently
separate" indices k and ¢ , Yy and y, converge to independent

exponentials, as k, &, n+® , and k/n »+ P, and ¢/n -+ P > with both P;

and pJ in (0,1) and different; see Pyke (1965, p. 407) for more rigour

and details. Thus it is attractive to devise tests for various distributions,

based on their normalized spacings and on the values z(i). A good

feature of the tests is that, although it is necessary to know the values

ny

tests may be easily applied to both left- and right-censored data. On the

s it is not necessary to estimate unknown parameters: furthermore, the

other hand, it is not easy to find distribution theory for test statistics;
in particular, despite the above result, it is not correct to regard the ;
2(y) o8 ordered iid uniforms, even asymptotically. In this article we ;:j

.

discuss asymptotic theory for the mean, the median, and the Anderson-Darling -

g

statistic, in particular for tests for the normal,logistic, and extreme-value
(or Weibull) distributions, and follow up the ncrmal tests with a power

study. .
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r Censored data. Normalized spacings can be used for the more general
k; problems where the data is singly- or doubly-censored. For doubly- .
4

& censored samples, or for samples with no endpoints, the normalized ;_j
b AR
:5 spacings are defined as follows. Suppose there are r + 2 ordered gy

*i observutions available, namely x(k)’x(k+l)""’¥(k+r+1); then define i~:¥
t :
\ vy = {x(k+i) - x(k+i-1)}/(mk+i - mk+i-1)’ i=1,...,r41 . (3)

For singly-censored samples, and with a known endpoint, an extra spacing
can arise. If the distribution has a known lower endpoint A , and if

the x-sample is right-censored bnly, the first spacing is
y, T {x(l) - A}/{m1 - A}, and Yie1® i=1,...,r+l, will now be given by

the right-hand side of (3). Similarly, if the distribution of x has a

known upper end-point B , and if the sample is left-censored only, Y

will be given by (3), for i =1,...,r+l, and the added last spacing is

y = {B - x(k+r+1)}/{B - m(k+r+1)}' For either r +2 or r + 1 values

r+2
of Y5 o the J-transformation can be applied to give r +1 or r B
values z(i); for the rest of this article we shall assume there are

r +1 values of Yy - Then transformation J gives r values z(i):

P el T
2,y = Ly /Ly, ,1i=1,...,r . (L) g
(i) y=1 i §=1 i

If the original x were exponentials, the y are exponential, and the

z(i) are again ordered uniforms. For other parent populations, the z(i)

are not ordered uniforms, but statistics used for tests of uniformity can

'
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still be used. We investigate tests based on the Anderson-Darling statistic

F] A2 , calculated from - d

- r
:“5 A2 =-ra-(1/r) (L

. (2i-1)[1og 23y * log{l - Z(r+1-i

)}]) (5)
1

: where log x refers to natural logarithm; also two tests based on the median

m

and the mean of the Z(i)" These test statistics are M and T given by

1

= % - ’ dd
M=r [z({r+l}/2) 4] r o
= rLi [z - (x+2)/{2(r+1)}] r even
({r+2}/2)
r
T= z

r’(z - %) where z = Lz, /r.
j=1 (3)

These statistics are investigated because they are closely related to
statistic S , introduced by Mann, Scheuer and Fertig (1973) and statistic
ﬁi S* | introduced by Tiku and Singh (1981), for tests for the extreme-value
and Weibull distributions. When the x set is from an extreme-value

distribution the statistic S 1is the same as 1 - z(t), where t = (r+1)/2

when r is odd and t = (r+2)/2 when r 1is even; hence M = r%(O.S - 8)

for r odd and M = r%[r/{Z(r+l)} - S] for r even. Statistic S* is 2z .

These statistics were found, by the authors above, to give powerful tests

N
® for the extreme-value distribution (or for the 2-parameter Weibull
:}f distribution by taking logarithms of the data) against certain types of o
- alternative. fﬁ}
. ‘ R
® In order to calculate the statistics, values of m, {(or, more
.. 1
jiﬁ precisely, values of the difference ki = mi - mi-l) are needed. For the =]
»
3
iy
R S N AR
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normal distribution extensive tables can be found in Harter (1961), and .
m are reproduced in Biometrika Tables for Statisticians, Vol. 2; &zlso computer o
i'j:: routines exist to calculate the H very accurately. For the extreme- A
r.‘:~: 78
:;:_- value distribution tables of ki are given for 3 = n =25 by Mann, T
[ IR -9
. Scheuer and Fertig (1973). For the logistic distribution o
' k; = n/{(i-1)(n-i+1)}, i = 2,...,n . A
In this article we give general asymptotic theory for the above
m test statistics, and apply the theory to tests for the normal, logistic T
v and extreme-value distributions. Significance points are given for the )
9 .
L normal and logistic tests, and the power of the normal tests is investigated B
r : '
P in detail. Percentage points and power results for tests for the extreme- - 4
i_» value distribution are recorded elsewhere (Lockhart, O'Reilly and Stephens, -
o 198L). ]
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2. ASYMPTOTIC THEORY OF THE TESTS.

ﬂ The statistics A2 , M and T are functionals of the quantile

process Qn(t) of the z, , where

o s
ll Qn(t) =r (z(v)—t), 0st=1,
(here v 1is the greatest integer in (r+l)t, and Z(O) = 0 and z(r+l) =1
; by definition), and of the empirical process

—Fvor v

Rn(t) = x}’[(r‘l z; I(zi <t)-t] 0=st=<1.

Here I{(B) is the indicator function; I(B) =1 if event B occurs,

and I(B) = 0 otherwise. Specifically, it may be shown that

u

M Qn(%) + 0p(l) ;

3
1]

1
f Qn(t) at + op(l) ; and
0

1l
22 = f Ri(s)ds/{s(l-s)}.
0

:

i
-
5
.

i

@

Suppose distribution F has density f with derivative .

Define

elx) = = (1 + (1=x)F(FH(x))/£2(F L)) .--'f:?,

A
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s
Il(s) ( (1 + uc(u))/(1-u)du ,
0

IQ(S) = f c(u)Il(u)du .
t
and I3(s,t) = ( c{x)dx .
s

Set p.(t,s) =p.(s,t) =s +2 I (s) +I (s)I(s,t) 0<s=t=1. (&)
0 0 2 3

1

Finally if 0 <p<qg=s1 and 0=s,t =1 set t* =p + t(gq-p)

and s* = p + s(q-p) and let

p(s,t) (q-p)-l {oo(t*,s*) - spy(t*,q) - (1-s)

- to,{s*,q) - (1-t)py(s*,p) + stp,(q,q) (7
- (l-s)(l-t)oo(P,p) + (s+t-2st)oo(p,q)}.

To simplify notation we shall sometimes omit the arguments of, for
exarple, Qn(t), and of p(s,t). The asymptotic theory of the test statistics
is based on the following conjecture:

Under HO and some regularity conditions, as n =+ o , k/n + p and (k+r+l)/n + g,

(1) Q, converges weakly in D[0,1] to a Gaussian process Q with mean
zero and covariance p , : ® 1

(ii) R~ converges weakly to R =-Q , and RO
» 1 n

o . RIS

(iii) A2 converges in distribution to J R°(s)/{s(1-s)}ds . 1
O -

. . T . . e
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If the conjecture is correct then A2 is distributed asymptotically

as I Aiwi where Al = Ae > ... are the eigenvalues of

AM(x) = f f(t)p*(s,t)dt (8)

2]

1.
with p*(s,t) = p(s,t)/{(s(1-s)t(1-t)}?, and w; are independent

1
0 2 0 2
variates. Moreover, T - N(O,OT) and M - N(O,OM) .
Where

11

2 _f 2

ap = 3 p(s,t)asat and o = p(%s,k) . (9)
00

The argument leading to the conjecture is as follows. First the
weak convergence of Qn implies that of Rn by a standard Skorohod
construction argument, Similarly weak convergence of Qn follows
immediately from weak convergence (under a =0, 8 = 1) of

-1 Lo
nn(t) = n*{n z YJ -t} to a Gaussian process n with mean zero and
J=1

covariance P, . The process Q is then Q(t) = (q-p)-a[n{p+t(q—p)} - tn(q)
- (1-t)n(p)].

To deal with n_ , set v, = - log{l - F(x,.,)} and
n i (i)

d. = (n-i+l)(vi-v._

1 i l)' Then the vi are ordered standard exponential

varieties and the di are independent standard exponential variates. We

have E(vi) =y (n—‘j+l)-l = - log(l - —i—ﬁ + O(n-2) for i/n bounded

_ el
i~ Zj=l n+l

away from 1. Set H(y) = F-l(l-e-y) and expand the relation

St T AT PR e e e e ST T el et e e et
“~ R A I TP I T PR S R
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(1) T *(i-1)
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= as ies a t+,
= H(vi) - H(Vi-l) as a Taylor scrlf about u g to ge

RS R R )
X(1) T Xi41) C di{(n-1+l) Y (ui_l) + (n-i+1)" " #H (ui_l)(vi_l ui_l)}
+ 0 (n"2).
P
Take expectations to get
Blx, .\ = %, 1y} = (n-i+D)7h oty )+ 0(n”"
(i) {i-1) - B B} ’
then
y; = {1+ vy )= u ) H" (g )/E'(u D)+ Op(n_‘)
Thus
=L {nt'] _k
ﬂn(t) =n iil di{l + (Vi—l - ui~l) H (ui—l)/H (ui-l)} -nt} + Op(n )

= 0A(e) + 0 ()

Under mild conditions n* has E{n;(t)} + 0 and Cov{n;(t),n;(s)} - oo(s,t).

A martingale central limit theorem can be applied to prove (under somewhat

more stringent conditions) that n: converges weakly to n

This falls short of a rigorous proof because the remainder terms are not

small uniformly in t . Moreover weak convergence of Rn does not
automatically imply conjecture (iii). Nevertheless Monte Carlo results
indicate clearly that the conjecture is true for the normal, logistic and
extreme value distributions.

Furthermore, in the case p > 0 , g <1 the arguments for (i) and

(ii) can be made rigorous for these distributions.

:.|
i
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i' 3. COVARIANCE FUNCTIONS FOR SPECIFIC DISTRIBUTIOINS.

{‘ 3.1 In the case where F(x) = 1 - e™*, the standard exponential

; distribution, the values 2Z(jy,...,z(.y are distributed exactlv as the order

e

Ei statistics of sample of size r from a uniform distribution on (0,1). The
asymptotic distribution of n, is then that of Brownian motion and Q, R

C are Brownian bridges. See Seshadri, Csorgo and Stephens (1969) for details.

%,. 3.2 When F is uniform we have m, - m. = (n+l)-l , a constant.

" 1 i-1

. = - - 1 o ese 2 ar

: Then 24 (x(k+i) x(k))/(x(k+r+l) x(k)) so that =, (r) e
again distributed exactly as the order statistics in a sample of r uniform

y

@ variates on (0,1). Again Q and R are Brownian bridges.

o

3

- 3.3 When F = ¢ , the standard normal distribution with density ¢ ,

b

> we find

e(x) = (1-x)07(x)/8(¢™ (%))

I.(s) = [s + s(¢7H(s0)% + 07M(s)(67M(s)) 12
I,(s) = =[(s%+s)/4 + (s%-5)(87(s))%/s + (25-1)07 (s)0(07 (s)) /1 ‘
9
+ (s2-5)07H(s)) 1 + (25110715 )) S0 M5 )) 0 1

+ o7 (s))262 (07 (s) ) /u /2

13(s,t) = J(t) - J(s) for O<s =<t <1

where

J(t) = [0 e ))2(-t) - o t)e(e7(e)) - t]/2
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These are used in (6) and (7) to give p(s,t). E
3.4 For F(x) = expi{- exp(-x)}, the extreme value distribution, we rind o
’ A
)
-1 -1 -1 1
c(x) = (log x) ~ - x ~ - (x log x) B
i
- - &

)
Il(s) = El(— log s) ‘
Iz(s) = - Ei(- log s)/2 + (log s - log(- log s)) El(— log s) - s J
L
+ [ Y_l log(y)e 7 dy ]

-~ log s

.ﬁw—vtﬁﬁ n
- g
-

I,(s,0) = K(s) - K(t) O0<s<sct<l

‘ 1
.

where LI

K(s) = El(- log s) + log(~ log(s)) + log s

-y
L

4
and
- -]
_l -X )
El(y) ( X e “dx . 1
4 .
O
¢ These expressions are used in (6) and (7) to give p(s,t}). The ’ 1
extreme value distribution is sometimes written in the form Seea
F*(x) = 1 - exp{- exp(x)}, =® < x <o , F#(x) 1is the distribution of =~ x', 1'-1-_'3
)

where x' has the distribution F(+) at the beginning of this subsection.
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F*(x), the covariance p*(s,t)

by the relation p*(s,t) = p(l-s,1-t).

3.5

p(s,t)

......

For the logistic distribution,

elx) = (x-1)/x

]
]

Il(s) s - log(l-s)

n
wn

S
Ty(s) = s - %5 + [ wa-wiogli-ulay
0

]

13(s,t) t-s + logs - logt ,

L T LA S N I S P PN P R .t ~
LR S S . .. . . s %t a" e e ‘.
BN e - B * e
S T ST LAY A S AT S LA PGl VPl WAL

0<s =t

is again calculated from (6) and (7).

<1 :

F(x) = (1 +e”

is found from p(s,t)

X)“l

LY w T e YT T e o o~

for F(x),

, We have
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4, DISTRIBUTIONS AND PERCENTAGE POINTS.

. e 2 . . .
Statistic A . Using the covariance functions calculated above we have
found the eigenvalues Xi of p* by discretization of the integral involved
in (5). That is, we found the eigenvalues Y ,...,} of the matrix system

1’ k

k
Ar{i-%)/k} = [ T £{(j-%)/x}p{(i-}s)/k,(j-%)/k}]/k .
J=1

In these calculations k = 100 is adequate (in the sense that further

" increases of k do not significantly change the critical points). Having

0

found the Ai we evaluated the critical points of Zlo Aiwi by Imhof's

method (see Durbin and Knott, 1972). The resulting critical points are in
Table 1, for the normal and logistic distributions, for various 0 = p < q = 1.
(Recall that p=%k/n and- q=(k+r +1)/n, as k, r, n > o) ,

In the case of symmetric distributions such as these; censoring at p, q

leads to the same points as censoring at 1l-q, l-p so that the tables

are quite compact.

An interesting fact is that the asymptotic points change fairly
slowly with the censoring pattern. It seems possible that more detailed
study would suggest a useful approximate correction factor connecting the
P, @ censored case to the uncensored case; in any case interpolation in
the tables works well.

For finite samples, Monte Carlo points have been found for
the normal test, and for uncensored samples of sizes n = 20 and for
n = 40, These are given in Table 2, For Ae , the points for finite
n converge fairly quickly to the asymptotic points; we observed that use of
the exact values for the m, (rather than, say, Blom's apprdximation

i
m, ™ 0-1{(1-3/8)(n+l/h)}) makes the convergence faster.
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Statistics T and M, Statistics T and M are asymptotically normally

distributed with mean O , and variance given by (9). For the uncensored case,

these have been worked out analytically. For the normal distribution,

0% = (1 - 3!/ﬂ)/8 = 0.056084 and oi = 3/16 = 0.1875 . For the logistic

Y

distribution the values are 0% = (nz - 9)/12 = 0.07247 and

oﬁ =1~ w2/12 + (0.5 - log 2)2 = (0.21484, These statistics also converge

quickly to their asymptotic distributions, as one would expect.
Thus, to make a test for normality based on the median, we calculate

M*x = {r/0.1875}i 0.5) if r 1is odd, and refer M* to a standard

(z(ire11/2 =

normal distribution; if r is even, the bracket including =z 1is replaced by

[z({r+1}/2) ~ (x+2)/{2(xr+1)}]. For the test based on the mean,
T* = {r/0.0561}i(; - 0.5) 1is refered to the standard normal distribution.
Note that if the z, were ordered uniforms, the variance o%

would be 1/12 = 0.0833, and c§ would be 0.25 . The true variances are

much smaller especially in the normal case.

Some calculations have also been made when the test is for the
normal or the logistic distribution, but the sample tested is actually uniform.
For the logistic test, statistics T and M are again asymptotically normal with
mean O , and the variances are o% = 3/70 = 0.04286 and ci = 0.3. The algebra
involved in the calculations is extensive and will be published elsewhere.

Straightforward calculations then show that the asymptotic power of T , for a

5% test against a uniform alternative, is 0.011, that is statistic T is both

RS S AR

Rt I Y
> ta’s'aa'a




"
- 4
_16-
inconsistent and biased. For M the asymptotic power is 0.097, very low,
-

and showing that M is not consistent. Similar results hold for T and
M in the test for normality against the uniform alternative; the
asymptotic power of M is 0.11, so that M 1is not consistent, and that of
is 0.031, so that T 1is biased and inconsistent. The Monte Carlo studies

in Section 6 below verify these results.
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5. EXAMPLE.

Example. Table 3, part (a), give 15 values of X , a measure of endurance

of industrial specimens, taken from Section 6.2 of Biometrika Tables for

Statisticians, Vol. 2. Graphical plots are given there and suggest that

the logarithms might be normally distributed. Also given in Table 3 are

the values x(i), the logarithms of X(i), values of my the normalized

» spacings yi , and the values z(i) , together with the values of the test

ol . P
K" statistics. Reference to Table 1 shows that A2 is not nearly significant,

so that lognormality of the original values is acceptable. The values of

M* and T* (Section 4 above) are -0.958 and -0.594 and these teo

are not significant,

In part (b) the calculations are shown for a censored sample
consisting of the first 11 of the ordered X set; again normality can be
accepted. If the original X are used without taking logarithms, values
of A2 are 7.424 for the whole set, and 3.262 for the censored set.
Reference to Table 1, with p =0 and q = 11/15, shows both of these

to be significant at the 1% level. These results agree with results of

other tests described in Biometrika Tables for Statisticians.

o
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6. POWER COMPARISONS.

{. In this section, we examine the power of the tests for .

normality. Table 4 gives the results of Monte Carlo power studies, for tests
with uncensored samples. The tests are for sample sizes n = 20 and n = 40,
and the test level is 5%. The test statistics compared are AZ, M and T ,
against the well-known Anderson-Darling statistic A2 (Case 3) and the
Shapiro-Wilk (1965) statistic W . In A2 (Case 3), the Anderson-Darling

- 1

statistic is calculated using values z25y < G{x(i)}, with estimators x and

2 . . . 2 .. .
s for the normal distribution parameters u and o . Critical points are

given by Stephens (1974).

The power studies show A2 , Az (Case 3) and W to have much the
same power overall. A2 detects skew alternatives better,and W and A2 (Case 3)
are better against symmetric alternatives. M and T are poor in power against
symmetric alternmatives; the results for the uniform and logistic alternatives,
for example, verify the asymptotic results of Section 3, that T
and M can be not consistent or even biased. M was originally

introduced in connection with tests for the 2-parameter Weibull distribution

against a special class of alternatives, and was suggested as a one-tailed

test. Here we have a wide range of alternatives and M and T have both f_&
been used as two-tailed tests. Further examination of M , T and A2 in B
connection with tests for the Weibull distribution is in Lockhart, O'Reilly .ti

and Stephens (19845; again Az has good power.
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Table 2 4

. 2 .
Percentage points for A for complete samples of size n  frcm a normal

: )
v distribution. K
K -
b- ‘4'
' 1

-«

' Upper tail significance leve: ]

0.25 0.10 0.05 0.025 .01

o]
t

20 1.016 1.521 1.946 2.345 2.952

[ 2%
oo
[V}
ro

40 0.980 1.487 1.887 2,313

b 0.955 1.422 1.798 2.191 2.728 C A
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k Table 3
. Values X of endurance measurements and calculations for Az, T* and M*,
' . Part (a)
; Values X ;, 0.20 0.33 0.45 0.49 0.78
0.92 0.95 0.97 1.04 1.71
2.22 2.275 3.65 7.00 8.80
Values Xy ~1.609 -1.109 -0.799 -0.7.3 ~J.2Lg3
~0.084 -0.051 -0.030 0.039 0.536
0.798 0.322 1.295 1.946 2.175
m, ~0.335 -1.213 -0.948 -0.7.5 ~0.516
~0.335 -0.165 0.000 0.335
¥y 1.026 1.033 0.366 2.33k 0.915
0.189 0.126 0.Lk22 2.925 1.5L7
0.123 2.031 2,169 0.469
2(1) 0.066 0.132 0..56 0.306 0.364
0.376 0.355 0.412 0.538 0.092
0.790 0.3 2.972
A% = 0.375 ]
Median 27y = 0.385 M* = (13/0.1875)4(0.385 - 0.5) = -0.958
Mean 2z = O0.461 T* = (13/0.0561)5(0.461 - 0.5) = -0.594
Part (b) 2y = 0.095 0.1 0.225 0.kl 0.526
0.5Lk4 0.555 0.595 0.866
A% = 0.6067
Median 2(5) = 0.526 M* = (9/0.1875)5(0.526 - 0.5) = 0.104
Yean Z = 0.449 T* = (9/0.0561)1(0.449 - 0.5) = =0.646
SRS ABARRSASE AR e i T e e S L T T
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Table 4
Power comparisons: Tests of normality. Test Level = 5%. The table gives the
percentage of 5000 Monte Carlo samples declared significant by the appropriate i
statistics. uh
n =20
Alternative A’ (Case 3) Sn{:‘inl.:o A’ M T j
X 1 4.t 98 99 ag 96 98 .
K 2 d.f. 78 83 37 o 83 *
XZ 3 d.f. 59 63 69 P 68
olf xz 4 d.f. 50 54 58 . 58 )
-)(2 10 d.f. 24 24 26 B 29 :
{ Exponential 79 83 87 e 82
[ Log Normal 93 94 96 a2 95 '
:0 Uniform 20 22 14 e 4
! Logistic 11 10 9 6 10
Laplace 30 25 20 10 20
€ 90 88 84 59 67
€y 53 51 7 o 40
t3 34 34 ) §) 25
t, 26 26 21 7 21
n = 40
)(2 1 d.f£. 100 100 100 100 100
x> 2 d.f. 98 100 100 35 99
X 3 d.f. 97 98 97 a8 96
4 d.f. 82 89 a2 = 90
X 10 d.f. 39 a4 50 32 53 ]
Exponential 99 99 100 S 99
Log Normal 100 100 100 39 100
Uniform 46 62 43 o 4 4
Logistic 14 12 12 L 13 ‘~
Laplace 50 42 36 10 21 ]
) 100 99 98 e 76 o
" tz 79 75 71 50 49 ‘
a5 t, 51 50 “ - . 3
:::;_ g, 35 36 32 12 26
o =
1
. 4
o -1
N R R R B T T e T ."j
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