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1. INTRODUCTION.

Let x(1) < x(2)  .. X(n) be the order statistics of a

random sample from a continuous distribution G(x) with location and scale

parameters a and B ; thus G(x) = F(w) where F(w) is a completely

specified distribution, x = a + $w , and x(i) = a + i)' i = n .

Let mi = E{w(i)} where E denotes expectation. Suppose, to fix ideas,

that G(x) is the exponential distribution G(x) = 1 - exp(-x/a), so that

a is zero, and suppose a is unknown. A well-known technique exists to

transform the x(i) to a set z(i) which will be distributed as a set of

uniform order statistics.

The transformation, first introduced by Sukhatme (1937) depends

on normalized spacings yi , defined as follows:

Yi= {x(i) - x(il)}/(mi - ri-l)' i = W,...,n (i)

where x(0 ) = m0  0 . For an exponential set x , from G(x), the values

Yi will be a random sample from the same distribution. A further trans-

formation J gives values z(i), as follows:

yj/Zj 1 yj ,...,n . (2)

It is well known that the values z(i), i l,...,n-1 , are distributed

as the order statistics of a sample of size n - 1 from the uniform

distribution, with limits 0 and 1 , written U(0,1). A test of the

null hypothesis that the x. are from G(x) can then be made by testing

that the z(i) are (ordered) uniform random variables. Seshadri, Cs~5rgo

- . ° -~ ~ . . . . .. . ... .. . . .. . . . . .'%



and Stephens (1969) defined the K transformation to be the combination

of the Sukhatme transformation, .say N , and the J transformation above,

to produce z(i) from the original x-set; symbolically, z = Kx = JNx

where z , x are the vectors of the z(i) and x(i) These authors

2
found that the Anderson-Darling statistic A , applied to the z(i),

provided a powerful test for exponentiality of the original sample x

O'Reilly and Stephens (1982) gave characterization properties in support of

transformation K , as well as further power studies.

An important property of normalized spacings is that, in the

limit, for any regular parent population for x , and for "sufficiently

separate" indices k and t y k and y, converge to independent

exponentials, as k, Z, n - , and k/n Pi and t/n - p , with both p.

and pj in (0,i) and different; see Pyke (1965, p. 407) for more rigour

and details. Thus it is attractive to devise tests for various distributions,

based on their normalized spacings and on the values z(i). A good

feature of the tests is that, although it is necessary to know the values

mi , it is not necessary to estimate unknown parameters: furthermore, the

tests may be easily applied to both left- and right-censored data. On the

other hand, it is not easy to find distribution theory for test statistics;

in particular, despite the above result, it is not correct to regard the

z(i) as ordered iid uniforms, even asymptotically. In this article we

discuss asymptotic theory for the mean, the median, and the Anderson-Darling

statistic, in particular for tests for the normal,logistic, and extreme-value

(or Weibull) distributions, and follow up the normal tests with a power

study.

. . . -...
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Censored data. Normalized spacings can be used for the more general

problems where the data is singly- or doubly-censored. For doubly-

censored samples, or for samples with no endpoints, the normalized

spacings are defined as follows. Suppose there are r + 2 ordered

observtions available, namely X(k),X(k+l)I .... ,X(k+r+l) then define

Yi = {X(k+i) - X(k+i-l)}/(mk+i - mk+i-)' i = 1,...,r+l (3)

For singly-censored samples, and with a known endpoint, an extra spacing

can arise. If the distribution has a known lower endpoint A , and if

the x-sample is right-censored only, the first spacing is

Yl = {x(1) - A}/{ml - A}, and yi+, i = 1,...,r+l, will now be given by

the right-hand side of (3). Similarly, if the distribution of x has a

known upper end-point B , and if the sample is left-censored only, yi

will be given by (3), for i = l,...,r+l, and the added last spacing is

Yr+2 {B - X(k+}l)/{B - m(k+r+l)}. For either r + 2 or r + 1 values

of y, ' the J-transformation can be applied to give r + 1 or r

values z(i); for the rest of this article we shall assume there are

r + 1 values of yi . Then transformation J gives r values z(i):

i r+1
Z(i ) = li/j~~,i- ,., h

If the original x were exponentials, the y are exponential, and the

z(i) are again ordered uniforms. For other parent populations, the z(i)

are not ordered uniforms, but statistics used for tests of uniformity can
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still be used. We investigate tests based on the Anderson-Darling statistic

2
A2 , calculated from

A2 r

A r -(/r) ( 7 (2i-1)[log z(i) + log(l - zrl )) (5)
i= •(r+l-i)

where log x refers to natural logarithm; also two tests based on the median

and the mean of the zm )  These test statistics are M and T given by

M = r Z({r+1}/2) - , r odd

O r1 [z - (r+2)/{2(r+l)}] r even= Z(f r+2 1/2)

L r
T r (z- ) where z= iz /r.

J -

These statistics are investigated because they are closely related to

statistic S , introduced by Mann, Scheuer and Fertig (1973) and statistic

S*, introduced by Tiku and Singh (1981), for tests for the extreme-value

and Weibull distributions. When the x set is from an extreme-value

distribution the statistic S is the same as 1 -z , where t = (r+l)/2

when r is odd and t = (r+2)/2 when r is even; hence M = r (0.5 - S)

for r odd and M = r [r/{2(r+l)} - S] for r even. Statistic S* is 2i

These statistics were found, by the authors above, to give powerful tests

- for the extreme-value distribution (or for the 2-parameter Weibull

distribution by taking logarithms of the data) against certain types of

alternative.

In order to calculate the statistics, values of m. (or, more
i

precisely, values of the difference ki  i - m are needed. For the

i i-l•
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normal distribution extensive tables can be found in Harter (1961), and

are reproduced in Biometrika Tables for Statisticians, Vol. 2; also computer

routines exist to calculate the m. very accurately. For the extreme-
I

value distribution tables of k. are given for 3 f n f: 25 by Mann,

Scheuer and Fertig (1973). For the logistic distribution

k. = n/{(i-l)(n-i+l)}, i = 2,...,n1

In this article we give general asymptotic theory for the above

test statistics, and apply the theory to tests for the normal, logistic

and extreme-value distributions. Significance points are given for the

normal and logistic tests, and the power of the normal tests is investigated

in detail. Percentage points and power results for tests for the extreme-

value distribution are recorded elsewhere (Lockhart, O'Reilly and Stephens,

1984).

L

* . .
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2. ASYMPTOTIC THEORY OF THE TESTS.

The statistics A2 , M and T are functionals of the quantile

process Q (t) of the z. , where
n

Qn(t) = (Z( )-t), 0 f t 1

(here v is the greatest integer in (r+l)t, and z( ) -0 and z - 1

(0)r Z(r+l)

by definition), and of the empirical process

R n (t) =r [(rl Z iz t) - t] 0 t

Here I(B) is the indicator function; I(B) = 1 if event B occurs,

and I(B) = 0 otherwise. Specifically, it may be shown that

4 Qn( ) + o(1)
n pT

T = J Q n(t) dt + Op(1) ; and

0

A2 = f R2 (s)ds/{s(l-s)}.
0

Suppose distribution F has density f with derivative f

Define

c(x) =- (1 + (I-x)i(F- (x))If2(F- (x)))

and set

S



I (s) (1 + uc(u))/(l-u)du

0

I2(s) =Jc(u)I (u)du

t

and I (,t) ) c WxIx.

Set p 0 (t,s) = P 0 (s,t) = s + 2 1 2(s) + 1 1 (S)13(s ,t) 0 f- s f t <- 1 6

Finally if 0fp < q fl and 0 f-s,t 1 set t* p+ t(q-p)

and s* p +s(q-p) and let

p(s,t) =(q-p)Y
1 ( { 0 (t*,s*) so s 0(t* ,q) - (sp 0 (t*,p)

to t0 (s*,q) - (l-t)p 0 (s*,p) + stp 0 (q,q)()

-(I-s)(1-t)p (p,p) + (s+t-2st)p (p,q)}.

0 0

To simplify notation we shall sometimes omit the arguments of, for

examplel Qn(t), and of p(s,t). The asymptotic theory of the test statistics

is based on the following conjecture:

Under H 0and some regularity conditions, as n -~~,k/n -~ p and (k+r+l)/n q,

(i) Q converges weakly in D[0,11 to a Gaussian process Qwith mean
n

zero and covariance p

(ii) Rn converges weakly to R Q ,and

n1

(iii) A 2converges in distribution to J R (s)/{s(l-s)}ds
0
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If the conjecture is correct then A is distributed asymptotically

as ii where 2 - ... are the eigenvalues of

Xf(x) = f(t)p*(st)dt (8)

with _*(s,t) = p(s,t)/{(s(l-s)t(l-t)} , and w. are independent X2

D 2 D 2
variates. Moreover, T N(0, T ) and M 0. N(0o a

Where

11

Cy 2 p(s,t)dsdt and a 2 p( ,)

0 0

The argument leading to the conjecture is as follows. First the

weak convergence of Qn implies that of Rn by a standard Skorohod

construction argument. Similarly weak convergence of Q followsn 4

immediately from weak convergence (under a = 0, 1 = ) of

[nt]

nn(t) = n {n E Y - t} to a Gaussian process n with mean zero and
J=l

covariance p0 . The process Q is then Q(t) = (q-p)-'[n{p+t(q-p)} -,t(q)

- (l-t)n(p) ].

To deal with r n ,set v. = - log{l - F(x(.)} and

di = (n-i+l)(vi-v i). Then the v. are ordered standard exponential

varieties and the d. are independent standard exponential variates. We

have E(v- ui = -2)
h= (n-j+l) = - log(l - n-l + 0(n- ) for i/n bounded

away from 1. Set H(y) F-1(l-e- Y) and expand the relation
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x(i) - x(il) = 11(v.) - H(vi ) as a Taylor series about u to get
x~~i1 i-i-

x(i) - x(i+l) d ((n-i+l) -  H'(u 1 ) + (n-i+l) -  H"(ui )(v 1 1 - U

2
+ 0 (n-).

p

Take expectations to get

E Wx - x(il ) = (niI)-1 H'(u

then

yi = di{1 + (v Ui-l ) H(u i-l)/H'(u )} -I + 0 (n- ) 0

Thus

[ n t ] H i trIn(t) = n- di {l + (vi I1  ui. l ) H"u~) (ui I)~ -1 + 0 n-I WHfIE'~l+ v U(ui )/H' } nt }+ 0 (n - !

Srn*(t) + 0 (n - )
n p

Under mild conditions TI* has E{fl*(t)} + 0 and Cov~rl*(t),rl*(s)} - (s t)
n n n n

A martingale central limit theorem can be applied to prove (under somewhat

more stringent conditions) that Tn converges weakly to q

This falls short of a rigorous proof because the remainder terms are not

small uniformly in t . Moreover weak convergence of R does not 0n

automatically imply conjecture (iii). Nevertheless Monte Carlo results

indicate clearly that the conjecture is true for the normal logistic and

extreme value distributions. B

Furthermore, in the case p > 0 ,q < 1 the arguments for (i) and

(ii) can be made rigorous for these distributions.

. . - .. • . ..... .. .. . .



3. COVARIANCE FUNCTIONS FOR SPECIFIC DISTRIBUrIONS.

-x
3.1 In the case where F(x) = 1 - e , the standard exponentiail

distribution, the values z(1).,.. Z(r) are distributed exactly as the order

statistics of sample of size r from a uniform distribution on (0,1). The

asymptotic distribution of ri n is then that of Brownian motion and Q, R

are Brownian bridges. See Seshadri, Csirgo and Stephens Ji969) for details.

13.2 When F is uniform we have m m i-i (n+lr , a constant.

Then z(i) = (x(k+i) - X(k))/(x(k+r+l )  X(k ) ) so that (1) - I(r ) -re

again distributed exactly as the order statistics in a sample of r uniform

variates on (0,1). Again Q and R are Brownian bridges.

3.3 When F = , the standard normal distribution with density

we find

c(x) = (i-x)f1 (x)/C(D-1x)

Il(s) = [s + s(-l (s))2 + (s) (-l (s))1/2

I (s) =-[(s 2+s)/h + (s -s)(-l(s))2 Is + (2s-l)¢-l(s)( (s))/4
2

+ (s2 -s)(-l(s)) If + (2s-1)((- (s))3 ((-!(s))/4

1 2 2 1+ (s)) (C-(s))/4]/2

I 3(s,t) = J(t) - J(s) for 0 < s 5 t < 1

where

1 21|
(t))2(1-t) - -(t) ( l(t)) -t1/2

dd"
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These are used in (b) and (7) to give p(s,t).

3.4 For F(x) exp{- exp(-x), the oxtreme value distribuzion, we find

c(x) = (log x) x - (x log

1(s) = El(- log s)

I (s) = - E 2 (- log s)/2 + (log s - log(- log s)) El(- log s) - s

+ y log(y)e- dy

- log s

13(s,t ) =K(s) -K(t) 0 < s t <1

where

K(s) = El- log s) + log(- log(s)) + log s

and

Co

El(Y) = x-leXdx

y

These expressions are used in (6) and (7) to give O(s,t). The

extreme value distribution is sometimes written in the form

F*(x) = 1 - exp{- exp(x)}, - < x < . F*(x) is the distribution of -x',

where x' has the distribution F(') at the beginning of this subsection.

. .-. -... . .
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For F*(x), the covariance p*(s,t) is found from p(s,t) for F(x),

by the relation p*(s,t) = p(l-s,l-t).

3.5 For the logistic distribution, F(x) = (1 + e-X) -  , we have

c(x) (x-l)/x

If(s) - S - log(l-s)

1S
s

12(S) s - s2/s + u-l(l-u)log(l-u)du

0

S3 (s,t) = t-s + log s - log t , 0 < s _ t < 1

p(s,t) is again calculated from (6) and (7).

.. Si.



4. DISTRIBUTIONS AND PERCENTAGE POINTS.

Statistic A2 Using the covariance functions calculated above we have

found the eigenvalues X. of P* by discretization of the integral involved1

in (5). That is, we found the eigenvalues Il .. of the matrix system

k

Xf{i- )/k} = [ E f{(j- )/k}p{(i-!i)/k,(j- )/k}]/k
J=l

In these calculations k = 100 is adequate (in the sense that further

increases of k do not significantly change the critical points). Having

1i00 .. yImos
found the A. we evaluated the critical points of Zl A W by Imhof's

method (see Durbin and Knott, 1972). The resulting critical points are in

Table 1, for the normal and logistic distributions, for various 0 f- p < q - 1.

(Recall that p = k/n and q = (k + r + 1)/n , as k, r, n + 0)

In the case of symmetric distributions such as these, censoring at p, q

leads to the same points as censoring at l-q, 1-p so that the tables

are quite compact.

An interesting fact is that the asymptotic points change fairly

slowly with the censoring pattern. It seems possible that more detailed

study would suggest a useful approximate correction factor connecting the

p, q censored case to the uncensored case; in any case interpolation in

the tables works well.

For finite samples, Monte Carlo points have been found for

the normal test, and for uncensored samples of sizes n = 20 and for

n 4 O. These are given in Table 2. For A , the points for finite

n converge fairly quickly to the asymptotic points; we observed that use of

the exact values for the mi (rather than, say, Blom's approximation

mi 0 $-l(i-3/8)(n+/4))) makes the convergence faster.

. ~ ~ ~ ~ ~ P .. ... .
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Statistics T and M . Statistics T and M are asymptotically normally

distributed with mean 0 , and variance given by (9). For the uncensored case,

these have been worked out analytically. For the normal distribution,

2 2
aT (1 - 3 /w)/8 f 0.056084 and a 3/16 0.1875 For the logistic

2 2

distribution the values are aT = Or 2 9)/12 = 0.07247 and

2 2 2
am = I - Ir /12 + (0.5 - log 2) . 0.21484. These statistics also converge

quickly to their asymptotic distributions, as one would expect.

Thus, to make a test for normality based on the median, we calculate

M* - {r/0.1875} (Z({r+l}/ 2 - 0.5) if r is odd, and refer M* to a standard

normal distribution; if r is even, the bracket including z is replaced by

[Z({r+l}12) - (r+2)/{2(r+l))]. For the test based on the mean,

T* {r/0.0561} (z - 0.5) is refered to the standard normal distribution.

Note that if the z. were ordered uniforms, the variance 2

2
would be 1/12 - 0.0833, and aM  would be 0.25 . The true variances are

much smaller especially in the normal case.

Some calculations have also been made when the test is for the

normal or the logistic distribution, but the sample tested is actually uniform.

For the logistic test, statistics T and M are again asymptotically normal with

2 2mean 0 , and the variances are a a 3/70 - 0.04286 and a . 0.3. The algebra
T

involved in the calculations is extensive and will be published elsewhere.

Straightforward calculations then show that the asymptotic power of T , for a

5% test against a uniform alternative, is 0.011, that is statistic T is both

-'- °°° • • -. • ° ° • , -................ ............ - ..................... ,, ......... ".....................................-". . "'......-'... -..-.- "mh
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inconsistent and biased. For M the asymptotic power is 0.097, very low,

and showing that M is not consistent. Similar results hold for T and

SM in the test for normality against the uniform alternative; the

, asymptotic power of M is 0.11, so that M is not consistent, and that of T

is 0.031, so that T is biased and inconsistent. The Monte Carlo studies

in Section 6 below verify these results.

.1~

° " i4

..............................................................o
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5. EXAMPLE.

Example. Table 3, part (a), give 15 values of X , a measure of endurance

of industrial specimens, taken from Section 6.2 of Biometrika Tables for

Statisticians, Vol. 2. Graphical plots are given there and suggest that

the logarithms might be normally distributed. Also given in Table 3 are

the values x(i), the logarithms of X(i), values of m, , the normalized

spacings yi , and the values z W I together with the values of the test

statistics. Reference to Table I shows that A2 is not nearly significant,

so that lognormality of the original values is acceptable. The values of

M* and T* (Section 4 above) are -0.958 and -0.594 and these too

are not significant.

In part (b) the calculations are shown for a censored sample

consisting of the first 11 of the ordered X set; again normality can be

accepted. If the original X are used without taking logarithms, values

2of A are 7.424 for the whole set, and 3.262 for the censored set.

Reference to Table 1, with p = 0 and q = 11/15 , shows both of these

to be significant at the 1% level. These results agree with results of

other tests described in Biometrika Tables for Statisticians.

i -
°

. . •... . . . . .
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6. POWER COMPARISONS.

In this section, we examine the power of the tests for

normality. Table 4 gives the results of Monte Carlo power studies, for tests

with uncensored samples. The tests are for sample sizes n = 20 and n = 40,

2
and the test level is 5%. The test statistics compared are A , M and T

2

against the well-known Anderson-Darling statistic A (Case 3) and the

Shapiro-Wilk (1965) statistic W . In A2  (Case 3), the Anderson-Darling

statistic is calculated using values z (i) = G{x (i)}, with estimators x and

2 2
s for the normal distribution parameters w and o . Critical points are

given by Stephens (1974).

02 2
The power studies show A , A (Case 3) and W to have much the

same power overall. A 2 detects skew alternatives better, and W and A2 (Case 3)

are better against symmetric alternatives. M and T are poor in power against

symmetric alternatives; the results for the uniform and logistic alternatives,

for example, verify the asymptotic results of Section 3, that T

and M can be not consistent or even biased. M was originally

introduced in connection with tests for the 2-parameter Weibull distribution

against a special class of alternatives, and was suggested as a one-tailed

test. Here we have a wide range of alternatives and M and T have both

been used as two-tailed tests. Further examination of M , T and A2  in

connection with tests for the Weibull distribution is in Lockhart, O'Reilly

and Stephens (1984); again 2 has good power.

...-. . . . .. . . . . . . . . . . . .
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Table 2

2
*Percentage points for A for complete sa-mples of~ size n frcm a m.,rmal

* distribution.

Upper tail significance leve-

2
A

0 .215 0.10 0.05 0.025 .01

201.016 1.521 1. 9 46 2.345 2.952

40 0.980 1.487 1.887 2.313 2.832

000.955 1.422 1.798 2.191 2.728
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Table 3

Values X of endurance measurements and calculations for A T* and M*.

Part (a) 0

Values XW() 0.20 0.33 0.45 0.49 0.78

0.92 0.95 0.97 1.04 1.71

2.22 2.275 3.65 7.00 8.80

Values x(i): -1.609 -1.109 -0.799 -0.7- -0.21

-0.084 -0.051 -0.030 0.039 0.536

0.798 0.322 1.295 1.946 2..75

m. -0.335 -1.248 -0.948 -U.715 -o.;36,
1

-0.335 -0.165 0.000 0.335 ...

Yi 1.026 1.033 0.366 2.334 0.915
0.189 0.126 0.422 2.925 1.447

0.123 2.031 2.169 0.469

Z(i) 0.066 0.132 0.156 0.306 0.364

0.376 0.335 0.412 0.598 0.692

0.700 0.531 0. 7

A = 0.375 =

Median z(7) = 0.385 M* , (13/0.1875)1(O.385 - 0.5) = -0.958

Mean z = 0.461 T* - (13/0.0561)1(0.461 - 0.5) = -0.594
I

Part (b)z. - 0.095 0.191 0.225 o.441 0.526

0.544 0.555 0.595 o.866

A2 = 0.6067 0

Median z = = 0.526 M* , (9/0.1875)1(0.526 - 0.5) , 0.104z(5)

Mean z = 0.449 T* - (9/0.0561)(0.449 - 0.5) f -0.646

.. .. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . -
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Table 4

Power comparisons: Tests of normality. Test Level = 5%. The table gives the

percentage of 5000 Monte Carlo samples declared significant by the appropriate

statistics.

n = 20

9 Shapi ro ,\T

Alternative A (Case 3) Wilk

2
X I d.f. 98 99 t9 96 98

2 2 d.f. 78 83 87 83

2X 3d.f. 59 63 69 68
2

X 4 d.f. 50 54 58 • 58

X 10 d.f. 24 24 26 29

Exponential 79 83 87 82

Log Normal 93 94 96 97 95

Uniform 20 22 14 4

Logistic 11 10 9 6 10

Laplace 30 25 20 10 20

t1  90 88 34 51 67

C53 51 0 7 24 40=2

t 3  34 34 18 3 25

t4  26 26 21 7 21

n = 40

2
X 1 d.f. 100 100 00 100 100
2

X 2 d.f. 98 i00 100 O, 99
2

X 3 d.f. 97 98 97 96
2X 4 d.f. 82 89 92 90
2 -5

X 10 d.f. 39 44 50 53

Exponential 99 99 100 99

Log Normal 100 100 100 -9 100

Uniform 46 62 43 4

Logistic 14 12 12 0 13

Laplace 50 42 36 10 21

t 100 99 98 u 76

t2  79 75 71 30 49

t3  51 50 45 L 31

t 35 36 32 12 26

4-.
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