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I. INTRODUCTION

At present a great deal of interest is being given to the practical

control of large space structures such as space transportation systems

and large communication satellites [1]. The control task is normally

thought of in terms of maintaining specified shape configurations, orientation

and alignment, vibration suppression and pointing accuracy, to name a

few. Because of the inherent flexibility associated with these systems

they are generally analyzed as distributed parameter systems which creates

difficulties in the design and analysis of controllers for them. Further,

control laws derived using distributed parameter modeling cannot be implemented

efficiently with current sensor and actuator technology. Modal control

techniques have been developed specifically to bypass the problems associated

with distributed parameter theory [2,3]. The concept of modal control

is built upon the notion that certain specified system modes can be controlled

by appropriate design of the associated closed-loop eigenvalues. This

reduces the number of sensors and actuators needed to effect the control

of the structure. However, an undesirable phenomenon referred to as observation

and control spillover can occur if the number of sensors and actuators

used is small. Spillover refers to the phenomenon in which energy intended

to go solely into the controlled modes also leaks into the uncontrolled

modes.



This report discusses the control of flexible systems described by

a generalized one-dimensional wave equation which relates the structure

displacement to the force distribution acting on the structure. Optimal

control involving the minimization of a quadratic performance index representing

control and modal energy content is considered. Typically this control

formulation leads to a state feedback algorithm. Since the state components

are the modes of vibration which are not directly measurable, a means

of state reconstruction must be considered. The approach taken in this

report is a deterministic one for which the Luenberger state observer is

sufficient for state estimation.

II. PROBLEM FORMULATION

The structural system considered in this analysis is expressed in

the following distributed parameter form

a2U(x,t) + A u(x,t) = F(x,t)
at2

where u(x,t) is the displacement at point x and time t, A is a linear

self-adjoint differential operator and F(x,t) is an externally applied

force on the system which can represent the control force or an external

disturbance or both. If, for instance, the control is provided by M point

actuators located at xi, i=l,2,-..,M and there is no other external disturbance,

then

M
F(x,t)= I• c(x-x i)q i(t) (2)

i=l

where 6 is the Dirac delta function and qi(t) is the force applied at xi.

System Modal Equations

The system equations of motion expressed by equation (1) and
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accompanying boundary conditions can be transformed to the modal representation

by use of the expansion theorem [41

u(xt) = Io Wr(X)ur(t) (3)
rul

ur(t) = u(x,t)or(x)dx, r = 1,2,-.. (4)

where u r(t) are modal amplitudes and r (X) are the eigenfunctions of the

operator A appearing in equation (1). The eigenfunctions are determined

from the equation

A~r(X) = Aror (x) ,r , 1,2,-.- (5)

where Xr are the eigenvalues of the operator A. Similarly, the control

force F(x,t) can be represented in modal form as

CO

F(x,t) = 2 cr(x)fr(t) (6)
r=l

f (t) = f F(x't)O r(X)dx (7)

where f (t) are the modal control forces.r

The modal amplitudes are computed from the following equations obtained

by substitution of the results of equations (3) and (6) into equation

(1) while imposing the orthogonality properties of the eigenfunctions

u r(t) + XrU r(t) = f r(t) , r = 1,2,..- (8)

Initial values for u (t) are obtained fromr

ur(O) = J u(x'0)r (x)dx

Ar(O) = a t(x'0)0r(X)dx

3



Modal State Equation

A larger number of elastic modes may be needed in equation (3) for

accurate representation of the displacement of a large flexible structure.

However, the concept of modal control is to restrict active control to

a few critical modes referred to as controlled modes. The remaining modes

which are needed for the accurate representation of the structure displacement

are referred to as residual modes. If we choose L modes for descriptive

purposes but only control N we have

u(x,t) = Uc(xt) + UR(X't) (9)

where

N
"U c(x,t) = r(x)ur(t) (10)

r=l

L
"UR (x,t) t ý Wr( (t) (11)

r=N+l r

The subscripts "C" and "R" refer to controlled and residual respectively.

The control design for motion suppression based on only N modes, when

actually L modes are represented in the physical observations and are

also effected when the control is activated, can lead to stability problems

referred to as spillover. This phenomenon is discussed in some detail

in references [1,3,5].

Equation (8) for the dynamics of the controlled modal amplitudes

can be expressed in state space form as

v(t) = Av(t) + Bf(t) (12)

where

f(t) = [fl(t) f 2 (t) .... fN(t)] (13)

4



v (t) [u [ .l.).UN (t)ý1l(t)'''N (t)] (14)

(15)

I

A - (16

where

10 •. .0

01 • 0
IN . . . ., (NxN) (17)

S0. . .i

A = 0 2 (18)

0 0 • * N

Control Force Description

In this analysis it was assumed that the structure control could be

effected by M point actuators placed at discrete points xi along the

structure. An expression for this force was given in equation (2)

and is repeated here:

MF(x,t) = 6(x-x i)q i(t) (19)

i=l

5



The modal force is computed from equation (7) as

fr(t) = f F(xt)r(X)dX

M J q,(t)4r(t)cS(x-xi)dx

M

= ) r(xi)qi(t) (20)
i=l r

Substitution of fr (t) as given by equation (20) into equation (12) results

in the state equation

=(t) = A v(t) + B q(t) (21)

where

q(t) = [ql(t) q 2 (t) .... qM(t)]T (22)

and

0 ........ 0

B 0 ....... 03)B= (x1 X) """1 (XM)

ýN (xl1)" ""N(XM)

Measurements

For purposes of feedback control it is asssumed that displacements

yj(t) = u(z ,t) , j = 1,2,.-.,P (24)

are measured at P points zj along the structure. The modal representation

for equation (24) is

N

yj(t) = u (t) (z.+ r+jr(t) (25)

k=l rtr(j)

6



where r (t) is the residual spillover. If we define the displacement vector

y(t) -- [Yl(t) Y2(t)...yp(0)]T (26)

then we have

y(t) - C v(t) + R(t) (27)

where

"yi 1Z) .. •N .(zl1 0 ... 0

C ... . . (28)

*l(z) • N(zp) 0..'0

and

R(t) = [r 1 (t) r 2 (t) ... r p(t)]T (29)

III. THE CONTROL PROBLEM

In this study, we address the problem of vibration suppression in

distributed systems governed approximately by the modal equations (21) and

(27). We assume that spillover effects are negligible and set R(t)=0 in (27).

The active control of large space structures serves as our primary motivation.

In these structures, typically large essential masses dictated by mission

requirements are connected by low mass, flexible trusses. Normal operations

aboard these structures naturally introduce vibrations in the supporting

trusses which must be damped effectively. Mathematically, two primary

sources of vibrations can be identified:

(i) Changes in initial conditions in the dynamics (21) (because

of slewing or fine pointing effects, sudden disturbances, etc.);

(ii) Fixed, known disturbances (because of onboard manufacturing

machinery, pumps and motors, etc.).

7



Each of these sources of vibration will be discussed in detail below.

An initial configuration for the structure governed by (1) is determined

once the functions

u(0,x) and au (,x) (30)

are specified, since these determine initial conditions

ur (0), Ir (0), r = 1,2,.-. (31)

for the modal equations (8). Conversely, initial conditions (31) determine

functions (30). Retaining N modes to approximate (1), as in (21), appropriate

system initial conditions are given by specifying a vector

v0 = [vl(0) v 2 (0) v.. V2 N(O)]T (32)

The suppression of vibrations in system (21) due to changes in initial

conditions (32), as described in (i) above, may be stated precisely as

follows:

Given v(O) = v0 , find control q(t) such that v(t)-N0. (33)

Since the solution u(x,t) of (1) is given approximately by u (x,t) of
C

equation (10), if v(t)-+O, uc(x,t)-+O also for each x and vibrations due

to the initial conditions

N
uc (X,0) I ý r(X)Vr(0) (34)

r=l

and

N0(x,0) = r(x)vr+N(0) (35)
r=1

are suppressed.

The problem in (33) above is customarily viewed as a linear regulator

problem in optimal control theory. The criterion for the design of the

control algorithm is taken to be the minimization of a quadratic

8



performance index which is a function of energy associated with the N

controlled modes and the control effort q(t). More precisely, we minimize

over all controls q = q(t)

J(q) = [vTQv + q TRqldt (36)

subject to

4(t) = Av(t) + Bq(t) (37)

y(t) = Cv(t) (38)

where

Q = , (39)

A as in (18), and R is a positive definite weighting matrix. It is well-

known that the function q*(t) minimizing (36) is

q*(t) -R- B TSv(t) (40)

where S is an NxN symmetric, non-negative definite solution of the algebraic

Riccati equation

SA + ATS - SBR-IBTs + Q = 0 (41)

It should be noted that in practice, in order to implement the control

design (40), a state observer v(t) must be constructed satisfying

v(t) = Av(t) + Bq(t) + Go[j(t)-y(t)] (42)

y(t) = Cv(t) (43)

The suboptimal control

Sq*(t) = -R-B sv(t) (44)

is then used to actually control the system (37).

9



We now consider the suppression of vibrations due to fixed, known

periodic disturbances, as described in (ii) above. If M' point disturbances

d (t),...,dM,(t) are located at positions x = x , i = 1,2,...,M' along the

distributed system (1), the total force F(x,t) acting on the controlled

system is

F(x,t) = Fc(x,t) + FD(x,t) (45)

where Fc(x,t) and F D(xt) are the control and disturbance forces respectively.

As in (19), we may write

M MI

F(x,t) = 6 6(x-x.)qi(t) + 6 6(x-xl)di(t) (46)
i=l i=l

The approximate system dynamics (21) then becomes

•(t) = Av(t) + Bq(t) + B'd(t) (47)

where

d(t) = [d 1 (t) d2 (t)'...d 1 (t)]T (48)

and

0 ......... 0

0 ...... 0

B' = ql(x) ... •l(x (49)

To control (47), we make use of a very simple idea. Namely, determine

a control gain matrix

K (50)

10



such that

q(t) = [ql(t) q2 (t) .... q"(t)]T, (51)

with

qi(t)= K id(t) i = 1.--,M (52)

suppresses the effects of vibrations in (47) caused by d(t). Ki is the

ith row of K. (In application, d(t) would have to be fed back with a slight

time delay.) More precisely, the vibration suppression problem of (ii)

above may be stated as follows:

T
Given known disturbances d(t) = [dl(t)'"dM1(t)]0 ,

find K such that when (47) is controlled by q(t) as
(53)

constructed in (51) and (52), the steady state

magnitudes Ivi(t)l are as small as possible.

To minimize the effects of d(t), one should attempt to minimize the

effects of the vector of generalized forces

BKd(t) + B'd(t) = [BK+Bl]d(t) (54)

in (47). To do this, we attempt to minimize the magnitudes of the elements

in the matrix

BK + B' (55)

by minimizing the quadratic function
2NTF(K) X 1 w(BK+B) (BiK+BI) T  (56)

2i=N+l ii ii'

The minimization in (56) is over the elements kij of K and the weights

wi are to be suitably chosen. F(K) may be minimized numerically, or,

the linear equations that result when its gradient is equated to zero

may be solved.

11



As a special case, to reduce computations in the minimization of

F(K), one could seek a vector

K = [klk 2 "'*kMI ] (57)

that minimizes the effects of d(t) through the control q(t) with

qi(t) = Kd(t) i = 1,2,...,M. (58)

In this simpler case, we need only find M' constants kI, k 2 , ... kM1 which

minimize (56), rather than the MM' constants for K given by (50).

IV. A NUMERICAL EXAMPLE

As a simple illustrative example of vibration suppression in distributed

parameter systems, we consider the vibrational control of the cantilevered

beam pictured in Fig. 1. The partial differential equation governing

undamped displacements u(x,t) of points x (along the axis of the beam)

at times t is

2 4u

a N't +EID (x,t) = -F(x,.t) (9

at 2 ax4

with boundary conditions

au a2 u au

u(0,t) = ax (0,t) = ax (L,t) = a (L,t) = 0 (60)ax x2 ax 3

Here m = mass, E = modulus of elasticity, I = cross-sectional area, and

L = length. For simplicity, we will assume that m = E = I = L = 1, a
1

single point accuator is located at x = 1, and (possibly) a single disturbance

2
acts at x =3

Simulations of the suppression of vibrations in the beam due to changes

in initial conditions and known external disturbances (as discussed in

the preceding section) were performed. Programs were coded in FORTRAN

77 and run on a VAX 11-780 computer. Time responses were obtained using

12



the IBM 360 SSP routine DRKGS, a fourth order, variable step size Runge-

Kutta integration technique. Algebraic Riccati equation solutions were

obtained using a collection of Kleinman algorithms. The results of these

simulations will now be discussed.

Transforming (59) and (60) into the state space, retaining two modes

for analysis (N=2), and introducing internal damping via the damping ratio

4, equations (21) for the cantilevered beam become

0 0 1 0 0

0 0 0 1 0
2 1

v(t)W= -2 0 -2ýw! 0 v(t) + ) q(t) (61)

2 1-2 02-22 2 3•

Ignoring spillover effects, we have the approximate equality

u(xt) ~ tl(X)vl(t) + Y2 (x)v 2 (t) (62)

where in general, the mode shapes r(x) for (59) are given explicitly as

a a

4 (x) = A (sin ar-sinh cr )(sin r x-sinh •- x)
r r r r L L

a a
+ (cos acr +coshr) (os -- x-cosh x) (63)

for explicitly computable constants a 2 (see [4]). The A are normalizingr

constants. The associated natural vibrational frequencies w satisfyr

2

W r rX r Lr E (64)

4
(Note that A = 9 in equation (5).)m ax 4

The mode shapes 1 (x) and 2 (x) are represented schematically in Fig.

2. For all simulations, the beam is assumed configured as in Fig. I with,

as previously stated, m = E = I = L = 1. We also set C = .05.

13



We first consider problem (33), the suppression of vibrations due

to changes in initial conditions (Recall, d(t)=O). An effective manner

in which to simulate abrupt changes in a system's initial conditions

is to excite it with an impulse disturbance. For the beam of Fig. 1,

we consider excitation forces of the form

F(x,t) = a 6(x-l)(t). (65)

Such a force corresponds to an impulse of magnitude a applied to the

free end of the beam at t = 0. With respect to the state space coordinates

v, it is easy to check that excitation with (65) is equivalent to specifying

initial conditions

v1 (O) = v2 (0) = 0 , vl(0) = 0t 1(l), v 2 = • 2(M) (66)

The uncontrolled time response of (61) excited by (65) with a = .002 is

given in Fig. 3. Here tip displacements are plotted against elapsed time.

When the optimal control (40) is applied to suppress the vibrations (here

R = [1]) assuming that the entire state v(t) is available to the controller,

the vibrations are quickly arrested as revealed by Fig. 4. Assuming that

only observations of v1 (t) and v 2 (t) are available (C = [1 1 0 0] in (38)),

a state observer v(t) as in (42) and (43) was constructed. Letting

K*= R- B TS, G in (42) was determined so that the eigenvalues ofo

A - G C were positioned at fifty times the real part of that eigenvalue0

of A - BK* with smallest real part (in absolute value). The response of

(61) when excited by (65) and controlled through (44) is given in Fig. 5.

It is assumed that the observer initial conditions are

Vl(O) = v2(O) = v3(O) = v 4(0) = 0

so that incomplete knowledge of v(t) is present at t = 0. Some degradation in

performance is obvious, but v(t) effectively converges to v(t) after t = 1.5.

14



Consider now problem (53) in which an external disturbance d(t) is

present (refer to Fig. 1). Let

d(t) = 8 sin 9t (68)

where I= 3.516 < 9 < 22.034 = w2" Tip displacements when system (61)

is driven by (68) with B = .03 from zero initial conditions (v(O) = 0)

are pictured in Fig. 6.

Beam control is provided by q(t) as in (58) (M = 1). In this example,

K in (57) is simply a scalar which is found by minimizing (56). The minimizing

K is easily found to be

K =-.717. (69)

Fig. 6 displays the tip time response when (61) is controlled through

(58) and (69). Obviously, this simple approach to vibration suppression

is very effective.

Figures 7 and 8 show beam configurations at various instants (time
2

slices). It is interesting to note that when (68) is applied at x = 2
3'

even though this force is directed in an upward direction initially, the

tip is thrust downward. This clearly displays the true flexibility of

the simple model chosen for analysis.

V. EXTENSIONS AND FUTURE WORK

The analyses presented in the preceding sections can be extended naturally

in numerous ways, and the authors intend to pursue this work in the future.

In particular, attention should be given to the following further investigations:

(1) Increase the number of actuators, sensors, and external disturbances

and evaluate the consequent effects upon system performance;

(2) Compute actuator power requirements and perform total control

energy sensitivity analyses with respect to the placement of

the components in (1);

15



(3) Consider more general disturbances d(t), which are not clearly

identified, via spectral analysis;

(4) Consider the effects of spillover on performance;

(5) Couple the ideas of (l)-(4) with FDL finite element analysis

software to study realistic, possibly high dimensional models

of large space structures.

Finally, there has been considerable interest recently (e.g., see

[6]) in combined structural and control analysis. Traditionally, in

aerospace engineering, control system design has been completed only

after the controlled vehicle has been fully designed. Since large space

structures are so costly to deploy and since in practice only limited

control energy is available for maneuvering and vibration suppression,

the idea arises that perhaps a simultaneous consideration of structural

and control design can result in substantial savings in cost, complexity,

and mission effectiveness. With respect to the cantilevered beam, optimal

controls depend directly upon the structural parameters m, E, L, and

I. The variation of these parameters eventually also should be included

in the analyses of (l)-(5) above, and ultimately, again using finite

element methods, the authors hope to extend their study to the difficult

questions of combined structural and control design for realistic large

space structures.
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