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INTRODUCTION 

Dynamical stress behaviors and shock transients in mechanics are impor- 

tant subjects to be studied.  The use of the finite element method based on 

developed algorithms from the variational principle can give direct numerical 

solutions for partial derivatives of the functions to these problems. 

Many researchers have found it difficult to apply the finite element 

method to hyperbolic type partial differential equations (PDE).  Galerkin 

method and the like have been used instead.  Previously, the author has 

attempted to solve these hyperbolic type PDE's by employing variational 

principles.  The present report shows that under certain conditions, the 

stationary values are strong extremals, not saddle points.  This is equivalent 

to requiring that the second variations of the functional be positive semi- 

definite with discontinuities in the partials. 

THE FUNCTIONAL BILINEAR FORM 

A functional in bilinear form (refs 1,2) is assumed for the derivation of 

the Euler-Lagrange equations of the original system and its symmetrical 

adjoint system so that the first variations of the functional can be used for 

numerical computation by the finite element method (ref 3). Let us consider 

the functional 

Ic. N. Shen, "Method of Solution for Variational Principle Using Bicubic 
Hermite Polynomial," Transactions of the 27th Conference of Army 
Mathematicians, ARO Report 82-1, p. 247. 
2c. N. Shen, "Variational Principle for Gun Dynamics With Adjoint Variable 
Formulation," Proceedings of the Third US Army Symposium on Gun Dynamics, 

Volume II, 1982, pp. IV108-120. 
3A. R. Mitchell and R. Wait, The Finite Element Method in Partial Differential 

Equations, John Wiley, 1977, p. 143. 



tb   tb _ _  _  -    - 
j = /    /   F[t,x,y,yx,yt,yxx.ytt.y.yx.yt«yxx.ytti'ixdt (i) 

to ""o 

where y(x,t) is the original variable, y(x,t) is the adjoint variable, and the 

subscripts x and t indicate the partial derivatives. 

The variations of the variables are in terms of a small parameter y 

as 

and 

y(x,t,y) = y(x,t) + 6y(x,t)  ,  6y(x,t) = Mn(x,t)        (2a) 

yx(x,t,y) = yx(x,t) + 5yx(x,t)  ,  'Syx(x,t) = unx(x,t)      (2b) 

yt(x,t,y) = yt(x,t) + 5yt(x,t) , 6yt(x,t) = ynt(x,t)     (2c) 

Similar expressions can be obtained for higher derivatives of y. 

The functions y(x,t,u) and y(x,t) are close or neighboring in the sense 

of closeness (ref 4) of order one if the following holds for some e > 0 

|yn(x,t)| < e ,  |unx(x,t)| < e , and ] urit(x,t) | < e      (3a) 

It is noted from above that the partial derivatives of the variations are 

small for a weak extremum. 

On the other hand, for a strong extremum we require only 

|Mn(x,t)| < e (3b) 

The adjoint variable y(x,t,M) and its partials can be obtained by adding a bar 

on top of the original variable y and its partials as given by Eq. (2). 

THE FIRST VARIATION AND THE EULER-LAGRANGE EQUATIONS 

The functional J(p) in Eq. (1) can be expanded in a Taylor series (ref 5) 

of u as j 

J(y) = J(y=0) + 6j + 62j (4a) 

^L. E. Elsgolc, Calculus of Variations, Addison-Wesley, 1962, p. 15. 
5H. Rund, The Hamilton Jacob Theory of the Calculus of Variations, Robert E. 
Krieger, 1973, pp. 5-8. 



where 
6J 

6J = li(--)p=o (^b) 
and ^" 

Equation (1) Involves two independent variables x and t, two dependent 

variables y and y, and each variable has two second order derivatives with 

respect to x and t.  The first variation can be deduced from Gelfand and 

Formin (ref 6) and separated into two parts as 

6J = 6J(Sy) + SJC-Sy) (5a) 

where 
,tb xb    3     d     92       32 

-o '^o 
«J(«y) = J   /  (Fy - -- Fyx - — FYX + -" ^ytt + 2 --— Fytt 

t„ Xr,      3t      3x      3^^        3t3x 

+ "2 ^yxx)Mx,t)dxdt (5b) 
ox 

and 
tb Xb  -  3  -   3  -   32  -       32  - 

Sj(«y) = /  /  (Fy - -- Fyt - -- Fyx + -— Fytt + 2 -~- Fy^x 
tg XQ      3t      3x      3t 3t3x 

+ "? Fyxx) V(x,t)dxdt (5c) 
ox 

For the wave equation let us consider the following F in Eq. (1) 

1 -     „      -   1  -   ,- 
F = - y(ytt-a^yxx) + yQ + - y(ytt-a^yxx) + yQ        C^) 

By evaluating the terms in Eq. (5b) for the above F, we have 

tb xb - 
6j(6y) = J  /  (}) 6y dxdt (7a) 

^o ^o 

^I. M. Gelfand and S. V. Formin, Calculus of Variations, Prentice-Hall, 1963, 
pp. 22, 34, 42, and 161. 



where 

* = Ytt - aS^xx + Q (7b) 

Similarly by Eq. (5c) one obtains 

r^b ,Xb 
6j(6y) = J   /   (j) 6y dxdt (7c) 

to ^o 
where 

* = ytt - aS'xx + Q (7d) 

The first variations of <5y and 6y are arbitrary within certain limitations to 

be discussed later.  Then the fundamental lemma (ref 7) of calculus of 

variation gives 

<!' = Ytt - a^yxx + Q = 0 (8a) 
I 

and 
•t- = ytt - a^yxx + Q = 0 

which are the adjoint and the original systems of the wave equation.  Note 

that the above two equations are similar and interchangeable by adding or 

dropping the bar on top of y. 

THE SECOND VARIATIONS 

In order that the functional J in Eq. (1) be an extremum (ref 8), 

the second variation <S J must be either positive semi-definite for a minimum, 

(or negative semi-definite for a maximum), i.e., 

62j > 0  (or 62j < Q) (9) 

The above is the second necessary condition for a minimum (or a maximum). 

7R. Weinstock, Calculus of Variations, McGraw-Hill, 1952, p. 16. 
^Hans Sagan, Introduction to the Calculus of Variations, McGraw-Hill, 1969, 
p. 38. 



From Eqs.   (4b),   (7a),   and  (7c),   one obtains 

where 

and 

6J tb    Xb _      _ 
— =  /       /      (<|)  6n+  <()  6n)dxdt (10) 
^V to     XQ 

(f) = Q +  yUtt - a^iiTijjx (11a) 

<j) = Q +  MHtt - a^prixx (Hb) 

a^j   tb Xb   9x 3y   9x ^Vt       3x  ^Yx 

3~2 " ■'to xo  ^^y 3y "^ '3yt ^P ^ "^Yx ^^^ 

3x ^ytt     3x ^ytx   3x  ^Yxx - 
+ + 2 + ]dn 

9ytt   ^^        ^yxx   ^^     ^yxx   ^^^ 

+  (similar term with bars)dTi}dxdt (12) 

tb    Xb _        _ _ 
=  /       /       Untfa^'Txx)'^ +  (ntt-a^nxx)n}'ixdt (13) 

to      XQ 

Integrated by parts we have 

p2  32j    ^tb Xb 

-o '^o 
62j = :_ (I.:!) = J " J " vj2[-n,.(x,t)nt(x,t) + a2nx(x,t)rix(x,t)]dxdt 

3ii     tr. Xr 

+ B.C. + I.e. (14) 

It can be proved that for physical problems such as a fixed or a free end on 

either side, the boundary conditions are zero.  The initial conditions are 

zero as illustrated in the next section. 

THE ADJOINT SYSTEM 

The adjoint system may be taken as the image reflection in the time 

domain of the original system, as shown in Figure 1. 

y(x,t) = y(x,tb+to-t) (15a) 

YxCx.t) = yx(x,tb+to-t) (15b) 

yt(x,t) = -yt(x,tb+to-t) (15c) 



In addition, Eq. (15) yields the known initial conditions as 

y(x,tb) = y(x,to) (16a) 

yt(x,tb) = -yt(x.to) (16b) 

Since the adjoint system is a reflected mirror in time, the far end initial 

conditions for the adjoint system are known. 

We may now derive the variations of Eqs. (15) and (16), which give 

6y(x,t) = 6y(x,tb+to-t) 

6yx(x,t) = '5yx(x,tb+to-t) 

6yt(x,t) = -6yt(x,t|j+to-t) 

6y(x,tb) = <Sy(x,to) = 0 ^°^  all ^ 

fiyxCx.tb) = -'Syt(x,to) = 0 for all x 

By substituting Eq. (15) into Eq. (14) and using Eq. (2), we have 

I 

S^J = J   J   P(x,t)dxdt 

and 

(17a) 

(17b) 

(17c) 

(18a) 

(18b) 

(19a) 
to ^o 

where 

P(x,t) = 'Syt(x,t)6yt(x,tb+to-t) + a26y^(x,t) 6yx(x,tb+to-t) 

= M^[nt(x,t)nt(x,tb+to-t) + a^nx(x,t)nx(x,tb+to-t)] (19b) 

SENSITIVITY RELATIONSHIP 

In order to show that the second variation of the functional J is 

positive semi-definite, one needs to obtain the variations of the function and 

its partials together with those of the adjoint function and its partials as 

indicated in Eq. (19). We can get these variations through the study of the 

sensitivity coefficients (ref 9) and their relationship to the parameters 

9Rajko Tomovic, Sensitivity Analysis of Dynamic Systems, McGraw-Hill, 1963. 



given In Eq. (2). Let the forcing function In Eq. (7d) be 

Q(x,t) = qf(x,t) (20) 

It Is assumed that the forcing function parameter q is subject to a small 

constant perturbation 6q as 

q = qo + -Sq (21) 

Then the variation of the function y is 

9y(x,t) 
6y(x,t) = 5q = v(x,t)6q (22a) 

8q 

where 

3y 
v(x,t) = -- (22b) 

3q 

The quantity v is the sensitivity coefficient for the variation iSy(x,t) due to 

a small constant perturbation 6q. 

The original PDE in Eq. (7d) can be written as 

(j) = Ly + Q 

= ytt - aVxx + qf(x,t) = 0 (23) 

Due to the perturbation of q, the change of (j) obeys the following relation- 

ship: 

3(j, 9ytt   8<t) ^yxx 
 +  + f(x,t) = 0 (24) 

9ytt   ^q      ^yxx   ^q 

It  is also noted  from Eq.   (23)   that 

3<j,                               3<|> 
 = 1    and       = -a^ (25) 
3ytt ^yxx 

Using  the definition in Eq.   (22b),   the partials  can be  interchanged as 

'ytt    3^    3y 9yxx    32    9y 
 = ~r  (~)   =   Vtt    ai^d     = ~~~o  (~~ 
3q 3t       3q 3q 3x       3q 

3ytt        32        3y 9yxx        32        9y 
-r— = T—  (--)  =  ^tt    and    --— = --^ (—)  =  v^t (26) 



Substituting Eqs. (25) and (26) Into Eq. (24), we have 

^tt " a^^xx + f(x,t) = 0 (27) 

If we compare the definitions of variation in Eq. (2a) with the definition of 

sensitivity relationship in Eq. (22a), we have    j 

6y(x,t) = Un(x,t) = (5q)v(x,t) 

which gives 

and 

n(x,t) = v(x,t) 

<5q = M 

Thus Eq. (27) becomes 

(28) 

(29a) 

(29b) 

(30) •^tt - a^'nxx + f(x,t) = 0 

which gives the PDE of the variations of the original system. 

If we compare Eq. (30) with Eq. (23), we see that the variation n(x,t) = 

)J~'-6y(x,t) in Eq. (30) takes the place of the function y in Eq. (23) with q = 

1.  Therefore, the PDE for the variations Is unchanged except by a scale 

factor.  Thus the solution of the variation iSy(x,t) has the same form as that 

of the original function y. | 

Similarly for the adjoint system, one can obtain 

i5y(x,t) = un(x,t) = (6q)v(x,t) (31) 

>tt 

n(x,t) = v(x,t) 

6q = U 

- a^Hxx + f(x,t) = 0 

(32a) 

(32b) 

(33) 

which is the PDE of the variations of the adjoint system. 



THE WEAK EXTREMUM 

Let us assume that the variations are separable in space x and time t, 

i.e., 
n(x,t) = f(x)g(t)  n(x,tb+to-t) = f(x)g(tb+to-t) (34a) 

nt(x,t) = f(x)gt(t)  nt(x,tb+to-t) = f(x)gt(ti,+to-t) (34b) 

nx(x,t) = fx(x)g(t)  nx(x,tb+to-t) = fx(x)g(tb+to-t) (34c) 

Substituting Eq. (34) into Eq. (19b) gives 

P(x,t) = f2(x)gt(t)gt(tb+to-t) + a2fx2(x)g(t)g(tb+to-t) (35) 

with the initial conditions from Eqs. (18a) and (18b) 

n(tb) = n(to) = 0 => g(to) = 0 (36a) 

nt(tb) = -nt(to) = 0 => gt(to) = 0 (36b) 

Let us construct the function g(t) with tg = 0, and w > 0, as 

g(t) = 1 - cos u)t , g(to) = 0 (37a) 
and 

gt(t) = (Ai sin cjt , gt(to) = 0 (37b) 

which satisfy Eq. (23).  Then we have 

gt(t) > 0 if 0 < (jJt < wtb < Tf (38a) 

gt(tb-t) > 0    if 0 < (i)(tb-t) < u)tb < •^ (38b) 

g(t) > 0 if 0 < ojt < wtb < 2TT (39a) 

and 
g(tb-t) > 0 if 0 < Ktb-t) < a)tb < 2iT (39b) 

Under these conditions the second variation is positive semi-definite, i.e., 

P(x,t) > 0  ,  if a)(tb-to) < IT (40a) 

or tb - to < Ti/(i) (40b) 

The above gt(t) is continuous and requires close neighborhood of the 

function yj-.  This is a weak extremum. However, actual solutions of the wave 

equation show there are jumps in the functions y^ and yx* This can only be 



proved by a strong extremuni later in the report.  Let us assume in Eq. (34a) 

that 

f(x) = (xb-x)2(x-Xo)^ > 0    for XQ < X < xb (41) 

which satisfies all possible boundary conditions for the variations of the 

wave equation. It is also noted that for the chosen g(t) in Eq. (37), the 

variation 6y(x,t) in Eq. (7a) and its partials obtained from Eqs. (2a) and 

(34a) are always arbitrarily positive for t^ < '"/'^' This also satisfies the 

fundamental lemma of the calculus of variations which gives the Euler-Lagrange 

Eq. (8a). A similar approach follows that <5y(x,t) > 0 in Eq. (7c) for the 

derivation of Eq. (8b). I 

PERIOD OF THE WAVE EQUATION I 

It is not true that, "For a vibrating string there is no time interval 

short enough to guarantee that y(x,t) actually minimizes the action 

functional," (ref 6). This conjecture was based on the series solutions of 

the wave equation, as a system of infinitely many coupled oscillators, with 

infinitely many natural frequencies, (i.e.,  u ->-«>). However, if the problem 

is approached from a different angle, the solution of the wave equation with 

no forcing terms is given as the sum of two wave fronts (ref 10): 

y(x,t) = X(x-at) + p(x+at)  ,  for Q = 0 

y(x,0) = X(x) + P(x) = Kx) 

it 
= -aXx(x) + aPx(x) = %x) 

x-0 

^I. M. Gelfand and S. V. Formin, Calculus of Variations, Prentice-Hall, 1963, 
pp. 22, 34, 42, and 161. 

l^C. R. Wylie, Advanced Engineering Mathematics, McGraw-Hill, 1951, pp. 211- 
212. 

10 



Then i 1  jc+at 
y(x,t) = - [<t)(x-at) + Kx+at)] + — J    9(s)d8 (42) 

2 2a x-at 

Let us take an example of a prismatic bar (ref 11) with the left end fixed and 

the right free.  If the free bar is initially stretched by a constant force 

and suddenly released, the stress wave is travelling from right to left at a 

period T = 4A/a, where A = x^ - XQ is the length of the bar.  From Figure 2 

one can write in terms of unit step functions u for the partial derivatives yx 

and yj., for the wave fronts at some intermediate location C and time ^. 

yx(x,t=0 = [u(x-O) - u(x-5)] (43a) 
T 

yt(x,t=5) = -a{u(t-C) - u[t - (- - O] > (43b) 

where the period T = 4Va (43c) 

UH  = |(T/4) - ?|/(T/4) (43d) 

The corresponding values of 5 and i; are 

at 5 = Jl, 1/2,     0, i/2,   and H 
(44) 

Then ^ = 0,  T/8,  T/4,  3T/8, and T/2 respectively. 

It is noted that the "physical frequency" of the system is 

(Op = 2TT/T = (Tra)/(2£) 

This frequency is a constant never approaching infinite for finite parameters 

a and ^. 

THE STRONG EXTREMUM 

For the variations of Eq. (43), shown in FigureL; 2 and 3, we let 

^YxCx.c) = yx(x,^,y) - yx(x,0 

= y[u(x-0) - u(x-5)] (45) 

^^L. S. Jacobsen and R. S. Ayre, Engineering Vibrations, McGraw-Hill, 1958, p. 
473 (Figures 10-18). 

11 



for 0 < 5 < )l, 
6yx(x,C) = 0 at the right end 

'Sy(x,?) = 0 at the left end 

Thus Eq. (45) satisfies the required boundary conditions.  Similarly, 

«yt(x,C) = -ay{u(t-?) - u[t-T/2)]} (46) 

for C > 0, 

"SytCx.O = 0 and 6y(x,<;) = 0 initially 

It is noted that both Sy^ and 6y^- are constant within the intervals.  Thus Eq. 

(46) satisfies the required initial conditions.  Equations (45) and (46) 

fulfill the "general conditions" for the variation and are subject to 

discontinuity of the partial derivatives, where the step functions occur. 

This leads to a strong extremum. | 

We use the increment in time for computation by the finite element method 

as 
(47) tb - to =  a = nT/4 

where n = 1 or 2. 

Under this condition if t varies from tg to (tg+o), then o - t varies from 

(tg+o) to to* We further divide the increment into four equal intervals, each 

interval having T/16 in time. 

Since &y^  and 6y^ are constants or zeroes, the second variation as given 

by Eq. (19) can be changed into finite sximmation instead of integration over 

the time domain as, 

Xb N-1  xb 
(62j)^ = (At/2)/  P,^(x,t)dx + (At) I  /  Pk+i(x,t)dx 

1=1 XQ 

,^b 
+ (At/2) /  Pk+N(x,t)dt (48) 

12 



where k is  the index of  advance and N is  the number of  intervals.     For  the 

interval of  T/16 and with the aid of Eq.   (47),   the quantity N becomes N = 4 if 

n = 1 and N = 8  if n = 2. 

From Eq.   (19b)  we have 

P,j+i(x,t)   =   6y^[x,(to+kT/16+iT/16)]6yt[x,(to+kT/16+o-iT/16)] 

+ a26y^[x,(to+kT/16+iT/16)]6yx[x,(to+kT/16+o-iT/16)] 
(49) 

for i = 0,1,2,3,...N 

k=0,l,2,3,... 

If we integrate the above products in the spatial domain for n = 1, we 

obtain the the following as shown in Figures 4(a) and 4(b). 

^b 
/  Pi^(x,t)dx = 0 for all k (50a) 

/  Pk+4(x,t)dx = 0 for all k (50b) 

Xb 
/  Pk+i(x,t)dx = a^M^ 111 >  0 for all k (50c) 
xo 

^b 
/  Pk+3(x,t)dx = a^P^ V2 > 0 for all k (50d) 
xo 

and ^ o o 
/  Pij.+2(x,t)dx = a^M^i > 0 for all k (50e) 
XQ 

Substituting Eq. (49) into Eq. (48) gives 

(6j^)n=l = (AT)[0 + a2V2 + a^!i/2]MH^t)  >  0 (51) 

For n = 1, i.e., the increment a being (T/4) the quarter period, the second 

variation is positive semi-definite. Thus, the variational method is valid 

and the functional yields a minimum. 

13 



The integration of Eq. (49) in the spatial domain for n = 2 (i.e., a = 

T/2) gives the following for all k as shown in Figures 5(a) and 5(b). 

,^b 
/  Pk(x,t)dx = -a^M^a 

/■h 
j      Pi5.+i(x,t)dx == -a^|i^V2 

,^b 
/  Pk+2(x,t)dx = 0 

,^b 
/  Pk+3(x,t)dx = a^HM^/l 

and 

,^b 
/  Pk+4(x,t)dx = a^iM^/l       for all k 

(52a) 

(52b) 

(52c) 

(52d) 

(52e) 

(53) 

Substituting Eq. (52) into Eq. (47) gives 

(62j)^^2 = 0  for all k 

For n = 2, i.e., the increment o being (T/2) the half period, the second 

variation is zero. Thus the variational method is on the margin to yield a 

minimum for the functional.  It can be proved that for a > T/2 the second 

variation becomes negative.  Thus the variational method is valid only if the 

increment o  used for the finite element method is 

a  < T/2 (54) 

where T is the period corresponding to the "physical frequency" of the system. 

CONCLUSIONS 

The functional in bilinear form is established and the Euler-Lagrange 

equations are derived to obtain the wave equation and its symmetrical adjoint 

equation.  The second variation of the functional is given in terms of the 

14 



variations of the partials in space and time, both in the original variable 

and the adjoint variable.  The adjoint system is defined as the image 

reflection in the time domain of the original system. The physical frequency 

of the system is determined (not series expansion frequency).  There is an 

upper bound for the increment in time that can be used for computation 

purposes.  The strong extremum was illustrated by an example of the wave 

equation where the first partials of the variables and their variations were 

subject to discontinuities. 
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