

AD A149716

TECHNICAL REPORT ARLCB-TR-84036

SECOND VARIATIONS FOR THE STRESS WAVE PROBLEM USING THE EULER-LAGRANGE AND ADJOINT FORMULATIONS

C. N. SHEN

PROPERTY OF TECHNICAL LIBRARY ROCK ISLAND ARSENAL ROCK ISLAND, IL 61229

OCTOBER 1984

US ARMY ARMAMENT RESEARCH AND DEVELOPMENT CENTER LARGE CALIBER WEAPON SYSTEMS LABORATORY BENET WEAPONS LABORATORY WATERVLIET N.Y. 12189

APPROVED FOR PUBLIC RELEASE; DISTRIBUTION UNLIMITED

DISCLAIMER

The findings in this report are not to be construed as an official Department of the Army position unless so designated by other authorized documents.

The use of trade name(s) and/or manufacture(s) does not constitute an official indorsement or approval.

DISPOSITION

Destroy this report when it is no longer needed. Do not return it to the originator.

REPORT DOCUMENTATION	PAGE	READ INSTRUCTIONS BEFORE COMPLETING FORM	
. REPORT NUMBER	2. GOVT ACCESSION NO.	3. RECIPIENT'S CATALOG NUMBER	
ARLCB-TR-84036			
. TITLE (and Subtitie)		5. TYPE OF REPORT & PERIOD COVERED	
SECOND VARIATIONS FOR THE STRESS W		P ¹ 1	
USING THE EULER-LAGRANGE AND ADJOI	NT FORMULATIONS	Final	
		6. PERFORMING ORG. REPORT NUMBER	
7. AUTHOR(s)		8. CONTRACT OR GRANT NUMBER(*)	
C. N. Shen			
PERFORMING ORGANIZATION NAME AND ADDRES	S	10. PROGRAM ELEMENT, PROJECT, TASK AREA & WORK UNIT NUMBERS	
US Army Armament Research & Develo	nment Center		
Benet Weapons Laboratory, SMCAR-LC		AMCMS No. 6111.02.H600.011	
Watervliet, NY 12189		PRON No. 1A325B541A1A	
1. CONTROLLING OFFICE NAME AND ADDRESS	<u></u>	12. REPORT DATE	
US Army Armament Research & Develo	pment Center	October 1984	
Large Caliber Weapon Systems Labor		13. NUMBER OF PAGES	
Dover, NJ 07801		• 23	
4. MONITORING AGENCY NAME & ADDRESS(II differe	nt from Controlling Office)	15. SECURITY CLASS. (of this report)	
		UNCLASSIFIED	
		154. DECLASSIFICATION/DOWNGRADING	
	ribution unlimited		
17. DISTRIBUTION STATEMENT (of the abstract enform			
18. SUPPLEMENTARY NOTES	d in Block 20, if different fr		
	d in Block 20, if different fr		
18. SUPPLEMENTARY NOTES Submitted to Journal of Sound and	d in Block 20, if different fro Vibration.	om Report)	
 SUPPLEMENTARY NOTES Submitted to Journal of Sound and KEY WORDS (Continue on reverse side if necessary) 	d in Block 20, if different fro Vibration.	om Report)	
 18. SUPPLEMENTARY NOTES Submitted to Journal of Sound and 19. KEY WORDS (Continue on reverse side if necessary Second Variations 	d in Block 20, if different fro Vibration.	om Report)	
18. SUPPLEMENTARY NOTES Submitted to Journal of Sound and 19. KEY WORDS (Continue on reverse side if necessary Second Variations Adjoint Systems	d in Block 20, if different fro Vibration.	om Report)	
18. SUPPLEMENTARY NOTES Submitted to Journal of Sound and 19. KEY WORDS (Continue on reverse elde if necessary Second Variations Adjoint Systems Hyperbolic P.D.E.	d in Block 20, if different fro Vibration.	om Report)	
18. SUPPLEMENTARY NOTES Submitted to Journal of Sound and 19. KEY WORDS (Continue on reverse elde if necessary Second Variations Adjoint Systems Hyperbolic P.D.E. Finite Element Bilinear Expression	d in Block 20, if different fro Vibration. and identify by block number	om Report)	
18. SUPPLEMENTARY NOTES Submitted to Journal of Sound and 19. KEY WORDS (Continue on reverse side if necessary Second Variations Adjoint Systems Hyperbolic P.D.E.	d in Block 20, if different fro Vibration. and identify by block number	om Report)	
18. SUPPLEMENTARY NOTES Submitted to Journal of Sound and 19. KEY WORDS (Continue on reverse elde if necessary Second Variations Adjoint Systems Hyperbolic P.D.E. Finite Element Bilinear Expression	d in Block 20, if different fro Vibration. and identify by block number d in a manner so eralized boundary spatial partial of the original Algorithms for	our Report)	

20. ABSTRACT (CONT'D)

as those of the original system. The second necessary condition for an extremum is satisfied by showing that the second variation of the functional is positive semi-definite.

TABLE OF CONTENTS

Page

INTRODUCTION	1
THE FUNCTIONAL BILINEAR FORM	1
THE FIRST VARIATION AND THE EULER-LAGRANGE EQUATIONS	2
THE SECOND VARIATIONS	4
THE ADJOINT SYSTEM	5
SENSITIVITY RELATIONSHIP	6
THE WEAK EXTREMUM	9
PERIOD OF THE WAVE EQUATION	10
THE STRONG EXTREMUM	11
CONCLUSIONS	14
REFERENCES	16

LIST OF ILLUSTRATIONS

1.	Image Reflection of the Adjoint System.	17
2.	Spatial-Temporal Response of a Prismatic Bar with Sudden Release of Load at One End.	18
3.	Spatial and Time Derivatives for Figure 2.	19
4.	Integral of Products of Spatial and Time Derivatives Using Quarter Period Increment for Finite Element Method.	20
5(a).	Integral of Products of Spatial and Time Derivatives Using Half Period Increment for Finite Element Method (with k=0).	21
5(b).	Integral of Products of Spatial and Time Derivatives Using Half Period Increment for Finite Element Method (with k=1).	22

1

INTRODUCTION

Dynamical stress behaviors and shock transients in mechanics are important subjects to be studied. The use of the finite element method based on developed algorithms from the variational principle can give direct numerical solutions for partial derivatives of the functions to these problems.

Many researchers have found it difficult to apply the finite element method to hyperbolic type partial differential equations (PDE). Galerkin method and the like have been used instead. Previously, the author has attempted to solve these hyperbolic type PDE's by employing variational principles. The present report shows that under certain conditions, the stationary values are strong extremals, not saddle points. This is equivalent to requiring that the second variations of the functional be positive semidefinite with discontinuities in the partials.

THE FUNCTIONAL BILINEAR FORM

A functional in bilinear form (refs 1,2) is assumed for the derivation of the Euler-Lagrange equations of the original system and its symmetrical adjoint system so that the first variations of the functional can be used for numerical computation by the finite element method (ref 3). Let us consider the functional

³A. R. Mitchell and R. Wait, <u>The Finite Element Method in Partial Differential</u> Equations, John Wiley, 1977, p. 143.

¹C. N. Shen, "Method of Solution for Variational Principle Using Bicubic Hermite Polynomial," Transactions of the 27th Conference of Army Mathematicians, ARO Report 82-1, p. 247.

²C. N. Shen, "Variational Principle for Gun Dynamics With Adjoint Variable Formulation," Proceedings of the Third US Army Symposium on Gun Dynamics, Volume II, 1982, pp. IV108-120.

$$J = \int_{t_0}^{t_b} \int_{x_0}^{t_b} F[t, x, y, y_x, y_t, y_{xx}, y_{tt}, y, y_x, y_t, y_{xx}, y_{tt}] dxdt$$
(1)

where y(x,t) is the original variable, y(x,t) is the adjoint variable, and the subscripts x and t indicate the partial derivatives.

The variations of the variables are in terms of a small parameter μ

as

$$y(x,t,\mu) = y(x,t) + \delta y(x,t)$$
, $\delta y(x,t) = \mu \eta(x,t)$ (2a)

$$y_X(x,t,\mu) = y_X(x,t) + \delta y_X(x,t)$$
, $\delta y_X(x,t) = \mu \eta_X(x,t)$

and

$$y_t(x,t,\mu) = y_t(x,t) + \delta y_t(x,t)$$
, $\delta y_t(x,t) = \mu \eta_t(x,t)$ (2c)

Similar expressions can be obtained for higher derivatives of y.

The functions $y(x,t,\mu)$ and y(x,t) are close or neighboring in the sense of closeness (ref 4) of order one if the following holds for some $\varepsilon > 0$

$$|\mu\eta(\mathbf{x},t)| < \varepsilon$$
, $|\mu\eta_{\mathbf{x}}(\mathbf{x},t)| < \varepsilon$, and $|\mu\eta_{\mathbf{t}}(\mathbf{x},t)| < \varepsilon$ (3a)

It is noted from above that the partial derivatives of the variations are small for a weak extremum.

On the other hand, for a strong extremum we require only

$$|\mu\eta(\mathbf{x},t)| < \varepsilon$$
 (3b)

(2b)

The adjoint variable $y(x,t,\mu)$ and its partials can be obtained by adding a bar on top of the original variable y and its partials as given by Eq. (2).

THE FIRST VARIATION AND THE EULER-LAGRANGE EQUATIONS

The functional $J(\mu)$ in Eq. (1) can be expanded in a Taylor series (ref 5) of μ as

$$J(\mu) = J(\mu=0) + \delta J + \delta^2 J$$
(4a)

⁴L. E. Elsgolc, <u>Calculus of Variations</u>, Addison-Wesley, 1962, p. 15.
⁵H. Rund, <u>The Hamilton Jacob Theory of the Calculus of Variations</u>, Robert E. Krieger, 1973, pp. 5-8.

where

and

$$\delta J = \mu \left(\frac{\delta J}{\partial u}\right)_{\mu=0} \tag{4b}$$

$$\delta^2 J = \frac{\mu^2}{2} \left(\frac{\partial^2 J}{\partial u^2} \right)_{\mu=0}$$
 (4c)

Equation (1) involves two independent variables x and t, two dependent variables y and y, and each variable has two second order derivatives with respect to x and t. The first variation can be deduced from Gelfand and Formin (ref 6) and separated into two parts as

 $\delta J = \delta J(\delta y) + \delta J(\delta y)$ (5a)

where

$$\delta J(\delta y) = \int_{t_0}^{t_b} \int_{x_0}^{x_b} (Fy - \frac{\partial}{\partial t} Fy_x - \frac{\partial}{\partial x} Fy_x + \frac{\partial^2}{\partial t^2} Fy_{tt} + 2 \frac{\partial^2}{\partial t \partial x} Fy_{tt} + \frac{\partial^2}{\partial x^2} Fy_{xx}) \delta y(x,t) dx dt$$
(5b)

and

$$\delta J(\delta \bar{y}) = \int_{t_0}^{t_b} \int_{x_0}^{x_b} (F\bar{y} - \frac{\partial}{\partial t} F\bar{y}_t - \frac{\partial}{\partial x} F\bar{y}_x + \frac{\partial^2}{\partial t^2} F\bar{y}_{tt} + 2 \frac{\partial^2}{\partial t \partial x} F\bar{y}_{tx} + \frac{\partial^2}{\partial x^2} F\bar{y}_{tx} + \frac{\partial^2$$

For the wave equation let us consider the following F in Eq. (1)

$$F = \frac{1}{2} \frac{1}{y} (y_{tt} - a^2 y_{xx}) + \frac{1}{yQ} + \frac{1}{2} y (y_{tt} - a^2 y_{xx}) + \frac{1}{yQ}$$
(6)

By evaluating the terms in Eq. (5b) for the above F_{ν} we have

$$\delta J(\delta y) = \int_{t_0}^{t_b} \int_{x_0}^{x_b} \phi \, \delta y \, dx dt$$
 (7a)

⁶I. M. Gelfand and S. V. Formin, <u>Calculus of Variations</u>, Prentice-Hall, 1963, pp. 22, 34, 42, and 161.

where

$$\overline{\phi} = \overline{y}_{tt} - a^2 \overline{y}_{xx} + \overline{Q}$$
(7b)

Similarly by Eq. (5c) one obtains

$$\delta J(\delta y) = \int_{t_0}^{t_b} \int_{x_0}^{x_b} \phi \, \delta y \, dx dt \qquad (7c)$$

where

$$\phi = y_{tt} - a^2 y_{xx} + Q \tag{7d}$$

The first variations of δy and δy are arbitrary within certain limitations to be discussed later. Then the fundamental lemma (ref 7) of calculus of variation gives

$$\bar{\phi} = \bar{y}_{tt} - a^2 \bar{y}_{xx} + \bar{Q} = 0$$
 (8a)

and

$$\phi = y_{tt} - a^2 y_{xx} + Q = 0$$

which are the adjoint and the original systems of the wave equation. Note that the above two equations are similar and interchangeable by adding or dropping the bar on top of y.

THE SECOND VARIATIONS

In order that the functional J in Eq. (1) be an extremum (ref 8), the second variation $\delta^2 J$ must be either positive semi-definite for a minimum, (or negative semi-definite for a maximum), i.e.,

$$\delta^2 \mathbf{J} \ge 0 \quad (\text{or } \delta^2 \mathbf{J} \le 0) \tag{9}$$

The above is the second necessary condition for a minimum (or a maximum).

⁷R. Weinstock, <u>Calculus of Variations</u>, McGraw-Hill, 1952, p. 16.
⁸Hans Sagan, <u>Introduction to the Calculus of Variations</u>, McGraw-Hill, 1969, p. 38.

From Eqs. (4b), (7a), and (7c), one obtains

$$\frac{\delta J}{\partial \mu} = \int_{t_0}^{t_b} \int_{x_0}^{x_b} (\phi \ \delta \eta + \phi \ \delta \eta) dx dt$$
(10)

where

and

$$\phi = Q + \mu n_{tt} - a^2 \mu n_{xx}$$
(11a)

$$\phi = Q + \mu \eta_{tt} - a^2 \mu \eta_{XX}$$
(11b)

$$\frac{\partial^2 J}{\partial \mu^2} = \int_{t_0}^{t_b} \int_{x_0}^{x_b} \left\{ \left[\frac{\partial x}{\partial y} \frac{\partial y}{\partial \mu} + \frac{\partial x}{\partial y_t} \frac{\partial y_t}{\partial \mu} + \frac{\partial x}{\partial y_x} \frac{\partial y_x}{\partial \mu} \right] d\eta$$

$$= \int_{t_0}^{t_b} \int_{x_0}^{x_b} \{(n_{tt} - a^2 n_{xx})n + (n_{tt} - a^2 n_{xx})n\} dx dt$$
(13)

Integrated by parts we have

$$\delta^{2} J = \frac{\mu^{2}}{2} \left(\frac{\partial^{2} J}{\partial \mu^{2}} \right) = \int_{t_{0}}^{t_{b}} \int_{x_{0}}^{x_{b}} \mu^{2} [-n_{t}(x,t)n_{t}(x,t) + a^{2}n_{x}(x,t)n_{x}(x,t)] dx dt + B.C. + I.C.$$
(14)

It can be proved that for physical problems such as a fixed or a free end on either side, the boundary conditions are zero. The initial conditions are zero as illustrated in the next section.

THE ADJOINT SYSTEM

The adjoint system may be taken as the image reflection in the time domain of the original system, as shown in Figure 1.

$$y(x,t) = y(x,t_b+t_o-t)$$
 (15a)

$$y_x(x,t) = y_x(x,t_b+t_o-t)$$
 (15b)

$$y_t(x,t) = -y_t(x,t_b+t_o-t)$$
 (15c)

In addition, Eq. (15) yields the known initial conditions as

$$y(x,t_b) = y(x,t_o)$$
 (16a)

$$y_t(x,t_b) = -y_t(x,t_o)$$
 (16b)

Since the adjoint system is a reflected mirror in time, the far end initial conditions for the adjoint system are known.

We may now derive the variations of Eqs. (15) and (16), which give

$$\delta y(x,t) = \delta y(x,t_b+t_o-t)$$
(17a)

$$\delta y_{X}(x,t) = \delta y_{X}(x,t_{b}+t_{0}-t)$$
(17b)

$$\delta y_t(x,t) = -\delta y_t(x,t_b+t_o-t)$$
(17c)

$$\delta y(x,t_b) = \delta y(x,t_o) = 0 \quad \text{for all } x \tag{18a}$$

and

$$\delta \tilde{y}_{x}(x,t_{b}) = -\delta y_{t}(x,t_{o}) = 0 \quad \text{for all } x \tag{18b}$$

By substituting Eq. (15) into Eq. (14) and using Eq. (2), we have

$$\delta^{2}J = \int_{t_{0}}^{t_{b}} \int_{x_{0}}^{x_{b}} P(x,t) dx dt$$
(19a)

where

$$P(x,t) = \delta y_t(x,t) \delta y_t(x,t_b+t_o-t) + a^2 \delta y_x(x,t) \delta y_x(x,t_b+t_o-t)$$

= $\mu^2 [n_t(x,t)n_t(x,t_b+t_o-t) + a^2 n_x(x,t)n_x(x,t_b+t_o-t)]$ (19b)

SENSITIVITY RELATIONSHIP

In order to show that the second variation of the functional J is positive semi-definite, one needs to obtain the variations of the function and its partials together with those of the adjoint function and its partials as indicated in Eq. (19). We can get these variations through the study of the sensitivity coefficients (ref 9) and their relationship to the parameters

⁹Rajko Tomovic, Sensitivity Analysis of Dynamic Systems, McGraw-Hill, 1963.

given in Eq. (2). Let the forcing function in Eq. (7d) be

$$Q(\mathbf{x},\mathbf{t}) = qf(\mathbf{x},\mathbf{t}) \tag{20}$$

It is assumed that the forcing function parameter q is subject to a small constant perturbation δq as

$$q = q_0 + \delta q \tag{21}$$

Then the variation of the function y is

$$\delta y(x,t) = \frac{\partial y(x,t)}{\partial q} \quad \delta q = v(x,t) \, \delta q \quad (22a)$$

where

$$v(\mathbf{x},\mathbf{t}) = \frac{\partial \mathbf{y}}{\partial \mathbf{q}}$$
(22b)

The quantity v is the sensitivity coefficient for the variation $\delta y(x,t)$ due to a small constant perturbation δq .

The original PDE in Eq. (7d) can be written as

$$\phi = Ly + Q$$

= y_{tt} - a²y_{xx} + qf(x,t) = 0 (23)

Due to the perturbation of q, the change of φ obeys the following relation-ship:

$$\frac{\partial \phi}{\partial y_{tt}} \frac{\partial y_{tt}}{\partial q} + \frac{\partial \phi}{\partial y_{xx}} \frac{\partial y_{xx}}{\partial q} + f(x,t) = 0$$
(24)

It is also noted from Eq. (23) that

$$\frac{\partial \phi}{\partial y_{tt}} = 1 \text{ and } \frac{\partial \phi}{\partial y_{xx}} = -a^2$$
 (25)

Using the definition in Eq. (22b), the partials can be interchanged as

$$\frac{\partial \mathbf{y}_{tt}}{\partial \mathbf{q}} = \frac{\partial^2}{\partial t^2} \left(\frac{\partial \mathbf{y}}{\partial \mathbf{q}} \right) = v_{tt} \text{ and } \frac{\partial \mathbf{y}_{xx}}{\partial \mathbf{q}} = \frac{\partial^2}{\partial x^2} \left(\frac{\partial \mathbf{y}}{\partial \mathbf{q}} \right) = v_{tt}$$
(26)

Substituting Eqs. (25) and (26) into Eq. (24), we have

$$v_{tt} - a^2 v_{xx} + f(x,t) = 0$$
 (27)

If we compare the definitions of variation in Eq. (2a) with the definition of sensitivity relationship in Eq. (22a), we have

$$\delta y(\mathbf{x},t) = \mu \eta(\mathbf{x},t) = (\delta q) \nu(\mathbf{x},t)$$
(28)

which gives

$$\eta(\mathbf{x},t) = \nu(\mathbf{x},t) \tag{29a}$$

and

$$\delta \mathbf{q} = \mathbf{\mu} \tag{29b}$$

Thus Eq. (27) becomes

$$n_{tt} - a^2 n_{xx} + f(x,t) = 0$$
 (30)

which gives the PDE of the variations of the original system.

If we compare Eq. (30) with Eq. (23), we see that the variation $n(x,t) = \mu^{-1}\delta y(x,t)$ in Eq. (30) takes the place of the function y in Eq. (23) with q = 1. Therefore, the PDE for the variations is unchanged except by a scale factor. Thus the solution of the variation $\delta y(x,t)$ has the same form as that of the original function y.

Similarly for the adjoint system, one can obtain

$$\delta y(x,t) = \mu \eta(x,t) = (\delta q) \nu(x,t)$$
(31)

$$n(x,t) = v(x,t)$$
 (32a)

$$\delta q = \mu \tag{32b}$$

$$\bar{n}_{tt} - a^2 \bar{n}_{xx} + \bar{f}(x,t) = 0$$
 (33)

which is the PDE of the variations of the adjoint system.

THE WEAK EXTREMUM

Let us assume that the variations are separable in space x and time t, i.e.,

$$\eta(x,t) = f(x)g(t) \quad \eta(x,t_b+t_o-t) = f(x)g(t_b+t_o-t)$$
(34a)

$$n_{t}(x,t) = f(x)g_{t}(t) \quad n_{t}(x,t_{b}+t_{o}-t) = f(x)g_{t}(t_{b}+t_{o}-t)$$
(34b)

$$n_{x}(x,t) = f_{x}(x)g(t) \quad n_{x}(x,t_{b}+t_{0}-t) = f_{x}(x)g(t_{b}+t_{0}-t) \quad (34c)$$

Substituting Eq. (34) into Eq. (19b) gives

$$P(x,t) = f^{2}(x)g_{t}(t)g_{t}(t_{b}+t_{0}-t) + a^{2}f_{x}^{2}(x)g(t)g(t_{b}+t_{0}-t)$$
(35)

with the initial conditions from Eqs. (18a) and (18b)

$$n(t_b) = n(t_o) = 0 \implies g(t_o) = 0$$
 (36a)

$$n_t(t_b) = -n_t(t_o) = 0 \implies g_t(t_o) = 0$$
 (36b)

Let us construct the function g(t) with $t_0 = 0$, and $\omega > 0$, as

$$g(t) = 1 - \cos \omega t$$
, $g(t_0) = 0$ (37a)

and

$$g_t(t) = \omega \sin \omega t , g_t(t_0) = 0$$
 (37b)

which satisfy Eq. (23). Then we have

$$g_t(t) \ge 0$$
 if $0 \le \omega t \le \omega t_b \le \pi$ (38a)

$$g_{t}(t_{b}-t) \geq 0 \quad \text{if} \quad 0 \leq \omega(t_{b}-t) \leq \omega t_{b} \leq \pi$$
(38b)

$$g(t) \ge 0$$
 if $0 \le \omega t \le \omega t_b \le 2\pi$ (39a)

and

$$g(t_b-t) \ge 0$$
 if $0 \le \omega(t_b-t) \le \omega t_b \le 2\pi$ (39b)

Under these conditions the second variation is positive semi-definite, i.e.,

$$P(x,t) \ge 0$$
, if $\omega(t_b - t_0) < \pi$ (40a)

or
$$t_b - t_o < \pi/\omega$$
 (40b)

The above $g_t(t)$ is continuous and requires close neighborhood of the function y_t . This is a weak extremum. However, actual solutions of the wave equation show there are jumps in the functions y_t and y_x . This can only be

proved by a strong extremum later in the report. Let us assume in Eq. (34a) that

$$f(x) = (x_b - x)^2 (x - x_0)^2 \ge 0 \text{ for } x_0 \le x \le x_b$$
(41)

which satisfies all possible boundary conditions for the variations of the wave equation. It is also noted that for the chosen g(t) in Eq. (37), the variation $\delta y(x,t)$ in Eq. (7a) and its partials obtained from Eqs. (2a) and (34a) are always arbitrarily positive for $t_b < \pi/\omega$. This also satisfies the fundamental lemma of the calculus of variations which gives the Euler-Lagrange Eq. (8a). A similar approach follows that $\delta y(x,t) \ge 0$ in Eq. (7c) for the derivation of Eq. (8b).

PERIOD OF THE WAVE EQUATION

It is not true that, "For a vibrating string there is no time interval short enough to guarantee that y(x,t) actually minimizes the action functional," (ref 6). This conjecture was based on the series solutions of the wave equation, as a system of infinitely many coupled oscillators, with infinitely many natural frequencies, (i.e., $\omega \neq \infty$). However, if the problem is approached from a different angle, the solution of the wave equation with no forcing terms is given as the sum of two wave fronts (ref 10):

 $y(x,t) = \lambda(x-at) + \rho(x+at) , \text{ for } Q = 0$ $y(x,0) = \lambda(x) + \rho(x) = \phi(x)$ $\frac{\partial y}{\partial t}\Big|_{x=0} = -a\lambda_{x}(x) + a\rho_{x}(x) = \theta(x)$

⁶I. M. Gelfand and S. V. Formin, <u>Calculus of Variations</u>, Prentice-Hall, 1963, pp. 22, 34, 42, and 161.

10C. R. Wylie, Advanced Engineering Mathematics, McGraw-Hill, 1951, pp. 211-212. Then

$$y(x,t) = \frac{1}{2} [\phi(x-at) + \phi(x+at)] + \frac{1}{2a} \int_{x-at}^{x+at} \theta(s) ds$$
 (42)

Let us take an example of a prismatic bar (ref 11) with the left end fixed and the right free. If the free bar is initially stretched by a constant force and suddenly released, the stress wave is travelling from right to left at a period T = $4\ell/a$, where $\ell = x_b - x_0$ is the length of the bar. From Figure 2 one can write in terms of unit step functions u for the partial derivatives y_x and y_t , for the wave fronts at some intermediate location ξ and time ζ .

$$y_{x}(x,t=\zeta) = [u(x-0) - u(x-\zeta)]$$
 (43a)

$$y_t(x,t=\xi) = -a\{u(t-\zeta) - u[t - (\frac{1}{2} - \zeta)]\}$$
 (43b)

where the period T = 4l/a (43c)

$$\xi/\ell = |(T/4) - \zeta|/(T/4)$$
 (43d)

The corresponding values of ξ and ζ are

at
$$\xi = l$$
, $l/2$, 0, $l/2$, and l (44)

Then $\zeta = 0$, T/8, T/4, 3T/8, and T/2 respectively.

It is noted that the "physical frequency" of the system is

$$\omega_{\rm p} = 2\pi/T = (\pi a)/(2\ell)$$

This frequency is a constant never approaching infinite for finite parameters a and l.

THE STRONG EXTREMUM

For the variations of Eq. (43), shown in Figures 2 and 3, we let

$$\delta y_{X}(x,\zeta) = y_{X}(x,\zeta,\mu) - y_{X}(x,\zeta)$$

= $\mu[u(x-0) - u(x-\zeta)]$ (45)

¹¹L. S. Jacobsen and R. S. Ayre, <u>Engineering Vibrations</u>, McGraw-Hill, 1958, p. 473 (Figures 10-18).

for $0 < \xi < l$,

 $\delta y_{\mathbf{X}}(\mathbf{x},\zeta) = 0$ at the right end $\delta y(\mathbf{x},\zeta) = 0$ at the left end

Thus Eq. (45) satisfies the required boundary conditions. Similarly,

$$\delta y_{t}(x,\zeta) = -a\mu \{ u(t-\zeta) - u[t-T/2) \}$$
(46)

for $\zeta > 0$,

$$\delta y_t(x,\zeta) = 0$$
 and $\delta y(x,\zeta) = 0$ initially

It is noted that both δy_x and δy_t are constant within the intervals. Thus Eq. (46) satisfies the required initial conditions. Equations (45) and (46) fulfill the "general conditions" for the variation and are subject to discontinuity of the partial derivatives, where the step functions occur. This leads to a strong extremum.

We use the increment in time for computation by the finite element method as

$$t_b - t_o = \sigma = nT/4 \tag{47}$$

where n = 1 or 2.

Under this condition if t varies from t_0 to $(t_0+\sigma)$, then $\sigma - t$ varies from $(t_0+\sigma)$ to t_0 . We further divide the increment into four equal intervals, each interval having T/16 in time.

Since δy_x and δy_t are constants or zeroes, the second variation as given by Eq. (19) can be changed into finite summation instead of integration over the time domain as,

$$(\delta^{2}J)_{k} = (\Delta t/2) \int_{x_{0}}^{x_{b}} P_{k}(x,t) dx + (\Delta t) \sum_{i=1}^{N-1} \int_{x_{0}}^{x_{b}} P_{k+i}(x,t) dx$$
$$+ (\Delta t/2) \int_{x_{0}}^{x_{b}} P_{k+N}(x,t) dt$$
(48)

where k is the index of advance and N is the number of intervals. For the interval of T/16 and with the aid of Eq. (47), the quantity N becomes N = 4 if n = 1 and N = 8 if n = 2.

From Eq. (19b) we have

$$P_{k+i}(x,t) = \delta y_t[x,(t_0+kT/16+iT/16)] \delta y_t[x,(t_0+kT/16+\sigma-iT/16)] + a^2 \delta y_x[x,(t_0+kT/16+iT/16)] \delta y_x[x,(t_0+kT/16+\sigma-iT/16)]$$
for i = 0,1,2,3,...N
$$k = 0,1,2,3,...$$
(49)

If we integrate the above products in the spatial domain for n = 1, we obtain the the following as shown in Figures 4(a) and 4(b).

$$\int_{x_0}^{x_b} P_k(x,t) dx = 0 \quad \text{for all } k \tag{50a}$$

$$\int_{x_0}^{x_b} P_{k+4}(x,t) dx = 0 \text{ for all } k$$
(50b)

$$\int_{x_0}^{x_b} P_{k+1}(x,t) dx = a^2 \mu^2 \, \ell/2 > 0 \quad \text{for all } k \tag{50c}$$

$$\int_{x_0}^{x_b} P_{k+3}(x,t) dx = a^2 \mu^2 \, \ell/2 > 0 \quad \text{for all } k \tag{50d}$$

and

$$\int_{x_0}^{x_b} P_{k+2}(x,t) dx = a^2 \mu^2 \ell > 0 \text{ for all } k$$
 (50e)

Substituting Eq. (49) into Eq. (48) gives

$$(\delta J^2)_{n=1} = (\Delta T) [0 + a^2 \ell/2 + a^2 \ell/2] \mu^2(\Delta t) > 0$$
(51)

For n = 1, i.e., the increment σ being (T/4) the quarter period, the second variation is positive semi-definite. Thus, the variational method is valid and the functional yields a minimum.

The integration of Eq. (49) in the spatial domain for n = 2 (i.e., $\sigma = T/2$) gives the following for all k as shown in Figures 5(a) and 5(b).

$$\int_{x_0}^{x_b} P_k(x,t) dx = -a^2 \mu^2 \ell$$
 (52a)

$$\int_{x_0}^{x_b} P_{k+1}(x,t) dx = -a^2 \mu^2 \ell/2$$
 (52b)

$$\int_{x_0}^{x_b} P_{k+2}(x,t) dx = 0$$
 (52c)

$$\int_{x_0}^{x_b} P_{k+3}(x,t) dx = a^2 \ell \mu^2 / 2$$
 (52d)

and

$$\int_{x_0}^{x_b} P_{k+4}(x,t) dx = a^2 \ell \mu^2 / 2 \quad \text{for all } k$$
 (52e)

Substituting Eq. (52) into Eq. (47) gives

$$(\delta^2 J)_{n=2} = 0 \quad \text{for all } k \tag{53}$$

For n = 2, i.e., the increment σ being (T/2) the half period, the second variation is zero. Thus the variational method is on the margin to yield a minimum for the functional. It can be proved that for $\sigma > T/2$ the second variation becomes negative. Thus the variational method is valid only if the increment σ used for the finite element method is

$$\sigma \leq T/2 \tag{54}$$

where T is the period corresponding to the "physical frequency" of the system.

CONCLUSIONS

The functional in bilinear form is established and the Euler-Lagrange equations are derived to obtain the wave equation and its symmetrical adjoint equation. The second variation of the functional is given in terms of the

14

variations of the partials in space and time, both in the original variable and the adjoint variable. The adjoint system is defined as the image reflection in the time domain of the original system. The physical frequency of the system is determined (not series expansion frequency). There is an upper bound for the increment in time that can be used for computation purposes. The strong extremum was illustrated by an example of the wave equation where the first partials of the variables and their variations were subject to discontinuities.

REFERENCES

- C. N. Shen, "Method of Solution for Variational Principle Using Bicubic Hermite Polynomial," Transactions of the 27th Conference of Army Mathematicians, ARO Report 82-1, p. 247.
- C. N. Shen, "Variational Principle for Gun Dynamics With Adjoint Variable Formulation," Proceedings of the Third US Army Symposium on Gun Dynamics, Volume II, 1982, pp. IV108-120.
- 3. A. R. Mitchell and R. Wait, <u>The Finite Element Method in Partial</u> Differential Equations, John Wiley, 1977, p. 143.
- 4. L. E. Elsgolc, Calculus of Variations, Addison-Wesley, 1962, p. 15.
- H. Rund, <u>The Hamilton Jacob Theory of the Calculus of Variations</u>, Robert
 E. Krieger, 1973, pp. 5-8.
- I. M. Gelfand and S. V. Formin, <u>Calculus of Variations</u>, Prentice-Hall, 1963, pp. 22, 34, 42, and 161.
- 7. R. Weinstock, Calculus of Variations, McGraw-Hill, 1952, p. 16.
- Hans Sagan, <u>Introduction to the Calculus of Variations</u>, McGraw-Hill, 1969, p. 38.
- Rajko Tomovic, <u>Sensitivity Analysis of Dynamic Systems</u>, McGraw-Hill, 1963.
- C. R. Wylie, <u>Advanced Engineering Mathematics</u>, McGraw-Hill, 1951, pp. 211-212.
- L. S. Jacobsen and R. S. Ayre, <u>Engineering Vibrations</u>, McGraw-Hill, 1958, p. 473 (Figures 10-18).

16

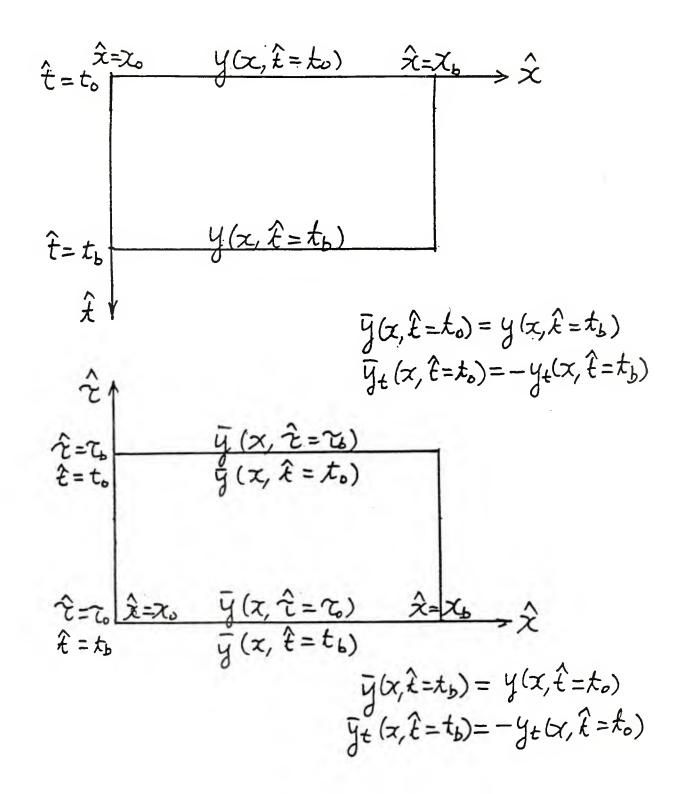


Figure 1. Image Reflection of the Adjoint System.

17

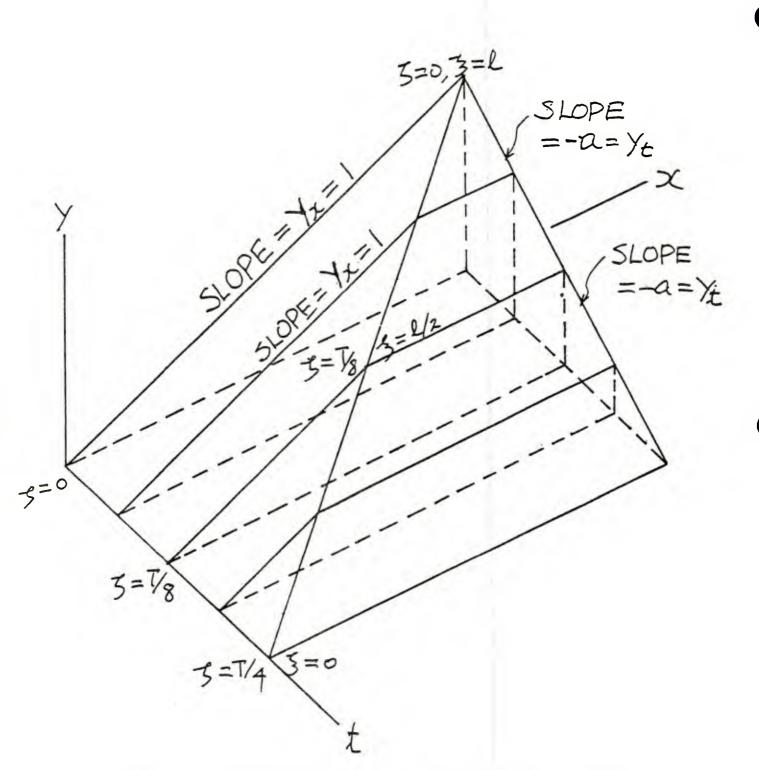
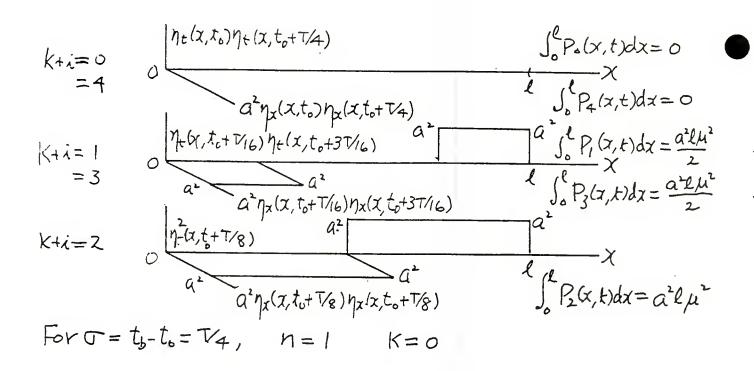


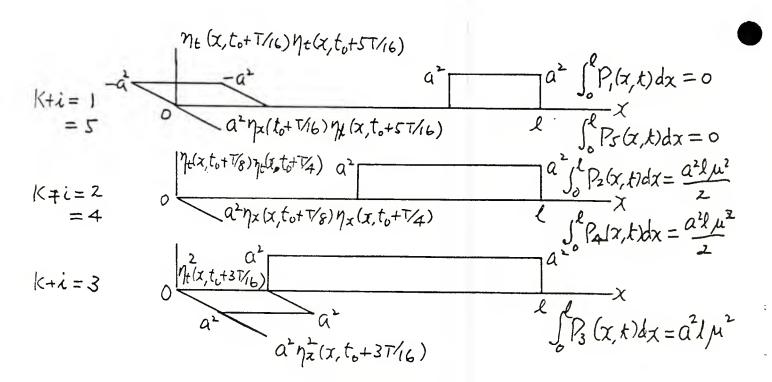
Figure 2. Spatial-Temporal Response of a Prismatic Bar With Sudden Release of Load at One End.

:

:

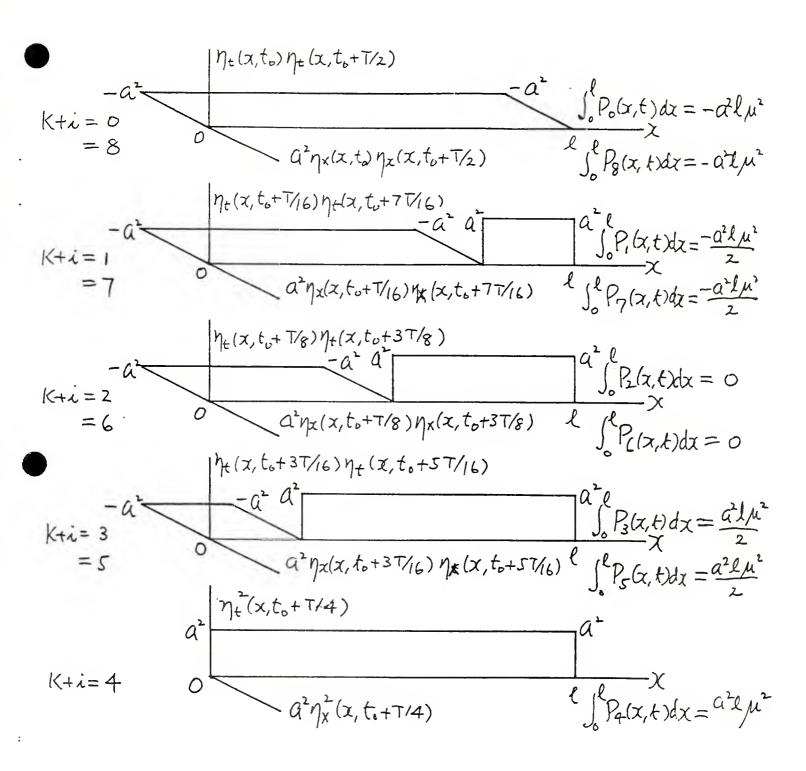
δγε $\dot{K}+i=0$ 5 =l ·X 3=0 MEYX AL δУғ 3=32/4 K+i = 1 X ス Ο 3=7/6 MJYX M -an -qu δΫţ 3= l/2 长+2=2 -X 5=T/g h MSYX -qn -an 521 3=4 K+i=3-2 5=37/16 Mayx -qp ۵% 0 K+i=4-X 5Yx 3= T/4 -qu 874 = 4 K+i= 5 -h X 5= 5T/6 an -am 2XF Th 3=4/2 K+i = 6 -X 3Xx 5 = 3T/8 an δYt th 5=3/4 K+i=7 -X 5Yx 5=77/16 qu -qui K+x=8 X SYx 3=T/2 3=344 an 2YE K+1= -X L 5Yx 5=97/16 Figure 3. Spatial and Time Derivatives for Figure 2. 19





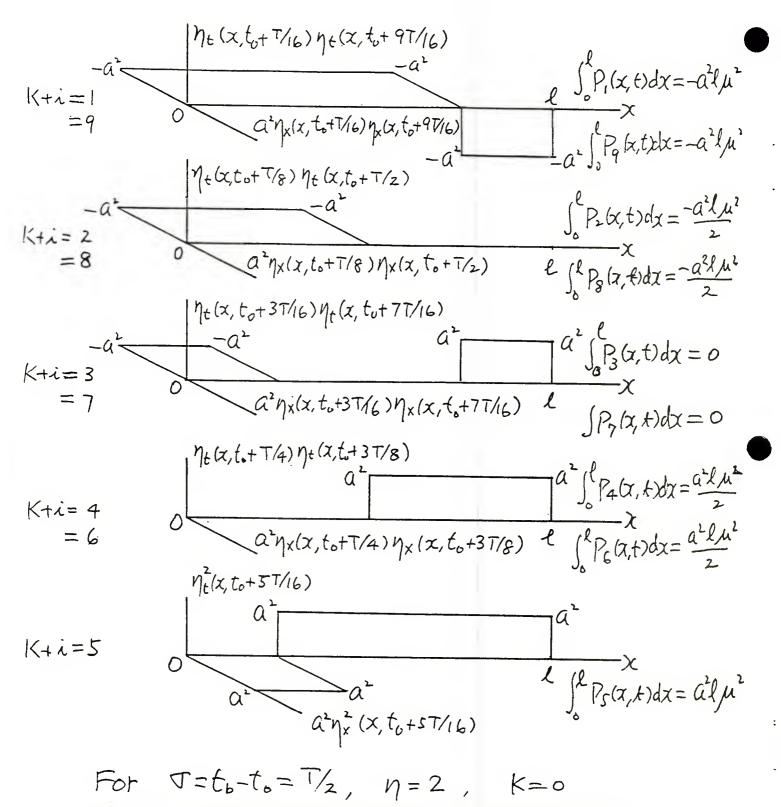
For $T = t_b - t_b = T/4$, n = 1 K=1

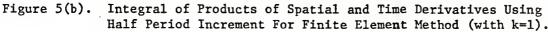
Figure 4. Integral of Products of Spatial and Time Derivatives Using Quarter Period Increment for Finite Element Method.



For
$$T = t_b - t_o = T/2$$
, $n = 2$, $K = 0$

Figure 5(a). Integral of Products of Spatial and Time Derivatives Using Half Period Increment For Finite Element Method (with k=0).





TECHNICAL REPORT INTERNAL DISTRIBUTION LIST

	NO. OF COPIES
CHIEF, DEVELOPMENT ENGINEERING BRANCH ATTN: SMCAR-LCB-D -DA -DP -DR -DS (SYSTEMS) -DS (ICAS GROUP) -DC	1 1 1 1 1 1
CHIEF, ENGINEERING SUPPORT BRANCH ATTN: SMCAR-LCB-S -SE	1 1
CHIEF, RESEARCH BRANCH ATTN: SMCAR-LCB-R -R (ELLEN FOGARTY) -RA -RM -RP -RT	2 1 1 2 1 1
TECHNICAL LIBRARY ATTN: SMCAR-LCB-TL	5
TECHNICAL PUBLICATIONS & EDITING UNIT ATTN: SMCAR-LCB-TL	2
DIRECTOR, OPERATIONS DIRECTORATE	1
DIRECTOR, PROCUREMENT DIRECTORATE	1
DIRECTOR, PRODUCT ASSURANCE DIRECTORATE	1

NOTE: PLEASE NOTIFY DIRECTOR, BENET WEAPONS LABORATORY, ATTN: SMCAR-LCB-TL, OF ANY ADDRESS CHANGES.

2

1

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST

	NO. OF COPIES		NO. OF COPIES
ASST SEC OF THE ARMY RESEARCH & DEVELOPMENT ATTN: DEP FOR SCI & TECH THE PENTAGON WASHINGTON, D.C. 20315	1	COMMANDER US ARMY AMCCOM ATTN: SMCAR-ESP-L ROCK ISLAND, IL 61299	1
COMMANDER DEFENSE TECHNICAL INFO CENTER ATTN: DTIC-DDA CAMERON STATION	12	COMMANDER ROCK ISLAND ARSENAL ATTN: SMCRI-ENM (MAT SCI DIV) ROCK ISLAND, IL 61299	1
ALEXANDRIA, VA 22314 COMMANDER US ARMY MAT DEV & READ COMD		DIRECTOR US ARMY INDUSTRIAL BASE ENG ACTV ATTN: DRXIB-M ROCK ISLAND, IL 61299	1
ATTN: DRCDE-SG 5001 EISENHOWER AVE ALEXANDRIA, VA 22333	1	COMMANDER US ARMY TANK-AUTMV R&D COMD ATTN: TECH LIB - DRSTA-TSL	1
COMMANDER ARMAMENT RES & DEV CTR US ARMY AMCCOM ATTN: SMCAR-LC SMCAR-LCE SMCAR-LCM (BLDG 321)	1 1 1	WARREN, MI 48090 COMMANDER US ARMY TANK-AUTMV COMD ATTN: DRSTA-RC WARREN, MI 48090	1
SMCAR-LCS SMCAR-LCU SMCAR-LCW SMCAR-SCM-O (PLASTICS TECH EVAL CTR,	1 1 1	COMMANDER US MILITARY ACADEMY ATTN: CHMN, MECH ENGR DEPT WEST POINT, NY 10996	1
BLDG. 351N) SMCAR-TSS (STINFO) DOVER, NJ 07801	2	REDSTONE SCIENTIFIC INFO CTR ATTN: DOCUMENTS SECT, BLDG. 448	2
DIRECTOR BALLISTICS RESEARCH LABORATORY ATTN: AMXBR-TSB-S (STINFO) ABERDEEN PROVING GROUND, MD 21005 MATERIEL SYSTEMS ANALYSIS ACTV ATTN: DRXSY-MP ABERDEEN PROVING GROUND, MD 21005	1	REDSTONE ARSENAL, AL 35898 COMMANDER US ARMY FGN SCIENCE & TECH CTR ATTN: DRXST-SD 220 7TH STREET, N.E. CHARLOTTESVILLE, VA 22901	1

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL, WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES. :

TECHNICAL REPORT EXTERNAL DISTRIBUTION LIST (CONT'D)

	NO. OF COPIES		NO. OF COPIES
COMMANDER US ARMY MATERIALS & MECHANICS RESEARCH CENTER ATTN: TECH LIB - DRXMR-PL WATERTOWN, MA 01272	2	DIRECTOR US NAVAL RESEARCH LAB ATTN: DIR, MECH DIV CODE 26-27, (DOC LIB) WASHINGTON, D.C. 20375	1 1
COMMANDER US ARMY RESEARCH OFFICE ATTN: CHIEF, IPO P.O. BOX 12211 RESEARCH TRIANGLE PARK, NC 27709	1	COMMANDER AIR FORCE ARMAMENT LABORATORY ATTN: AFATL/DLJ AFATL/DLJG EGLIN AFB, FL 32542	1 1
COMMANDER US ARMY HARRY DIAMOND LAB ATTN: TECH LIB 2800 POWDER MILL ROAD ADELPHIA, MD 20783	1	METALS & CERAMICS INFO CTR BATTELLE COLUMBUS LAB 505 KING AVENUE COLUMBUS, OH 43201	1
COMMANDER NAVAL SURFACE WEAPONS CTR ATTN: TECHNICAL LIBRARY CODE X212 DAHLGREN, VA 22448	1		

NOTE: PLEASE NOTIFY COMMANDER, ARMAMENT RESEARCH AND DEVELOPMENT CENTER, US ARMY AMCCOM, ATTN: BENET WEAPONS LABORATORY, SMCAR-LCB-TL, WATERVLIET, NY 12189, OF ANY ADDRESS CHANGES.

:

1,