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-. A REVIEW OF SOME ASPECTS OF ROBUST INFERENCE
FOR TIESERIES ''

:'; n~. Douglas Martin* _'"

Department of Statistics
University of Washington

Seattle, Washington 98195

ABSTRACT

-This paper briefly surveys some aspects of robust inference

for time series, and gives an indication of the current state of

knowledge in other problem areas. Basic notions of robustness are

stated, and technical difficulties associated with the time series

case are mentioned. Some models for time series with outliers are

given. Least-squares procedures lack robustness for such models

and robust alternatives are described. Issues of adaptivity versus

robustness are briefly mentioned. Robustness problems involving

dependency are discussed. Algorithms for robust data smoother-

cleaners are briefly described, along with an application to radar

glint noise. -

Appeared in Statistical Signal Processing (E. Wegrnan and James G. Smith, eds.), Marcel-
Dekker (1984), pp 19-39.
This research was supported by the Office of Naval Research under Contract N00014-82-K

0062.

. . .. . .. . . . . . .



A REVIEW OF SOME ASPECTS OF ROBUST INFERENCE
FOR TIME SERIES

R. Douglas Martin*

Department of Statistics
University of Washington

Seattle, Washington 98195

1. INTRODUCTION

The body of theoretical work on time series utilizes primarily one of two

mathematically convenient fictions, namely either (i) a second-order descrip-

tion, or (ii) a Gaussian assumption, in which a case second-order description is a

complete description. The second-order formulation is at the base of many

important concepts and structures in time series, including Wold's decomposi-

"" tion, the spectral representation, and prediction theory. In all of these one has

the convenience of utilizing Hilbert space methods (for details see the appropri-

ate sections of the recent book by Grenander, 1981). On the other hand the

Gaussian assumption allows one to utilize the parametric method of maximum

likelihood for time series models, early work in this area being due to Whittle

(1953, 1962). The nonparametric method for time series consists of estimating

the spectrum, a second-order description in the frequency domain, by a variety

of methods based on the periodograrn.

Unfortunately, many time series encountered in practice are quite decid-

edly non-Gaussian, as many practitioners know, and, correspondingly, second-

order descriptions are far from adequate. Series often contain anomalies of
.~.......... ............ ]
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numerous kinds, including local bum[ps or bursts, shifts in level, nonstationari-

ties of various kinds, and isolated outliers. Least-squares and other Gaussian

maximum-likelihood procedures are quite non-robust toward such phenomena.

Here we shall be primarily concerned with methods which are geared to deal

well with a not-too-large fraction of local bumps or bursts and isolated outliers.

It cannot be stressed too strongly that: (i) second-order descriptions are

woefully inadequate for representing such phenomena, and (ii) a Gaussian mar-

ginal distribution for a series hardly insures that potent versions of such

phenomena do not exist. For a striking and graphic portrayal of these two facts

see the example displayed in Figures 4 through 11 of Martin and Thomson

(1982). The essence of the example in these figures is that a time series often

has a moderate to large amount of low frequency energy, with corresponding

sample paths having broad peaks and valleys, so that outliers and bumps can be

modest to small on the scale of the process (e.g., as measured by the range of

the data), while being quite large on a local scale and clearly visible to the eye.

This last observation leads us to give the following loose definition of an

outlier in a time series. An outlier Yt is a data value which lies well outside of

the central mass (say 95% of the mass) of conditional density f (y, i yt-1) where

the conditioning variables yt-1 consist of all the past observations

Yt-t = (yi. t-t). This density is often called the observation prediction

density. Since we seldom get our hands on such a conditional density, it is con-

venient and natural to cast the definition somewhat differently. Let gg- denote

a "good" predictor of the Yt given the past Yt- 1 . In particular - should have

the kind of resistance/robustness properties discussed in the next section. so

that this predictor is not unduly affected by outliers in Yt- 1 (such a predictor

appears in Section 8.) Then yt is an outlier if the prediction residual

re= !t -t-v has magnitude large compared with a good scale measure s r for all

... _., -... _.._'..- '~..-. .......-...-.-... "_ .- -...- --.-.....-....-.... .. ,.----... ...... ,....--,-.. .



-3-

of the residuals rt, t = .. n. For example one might well take s7 to be the

suitably scaled interquartile distance of the rt. These definitions can be gen-

eralized in a more or less obvious way to cover the case of a "patch" or "bump"

of outliers, Yt,. ytk.

The above comments should make the following point clear. One cannot

hope to have a good method for dealing with outliers in time series by using only

an instantaneous nonlinear transformation of the data, i.e., treatment of the

form gt = g(yt). True, some time series will contain outliers which are large on

the scale of the process, and in such cases such a procedure may prevent the

worst consequences. Note, however, that gi will in general still be an outlier in

the sense given above, for this value is specified without regard to the neighbor-

ing values Yti-1, yt+i, etc. of the series. More sophisticated procedures are called

for and these will be discussed in Sections 5, 7 and B. Sections 2 and 3 review

robustness concepts for independent observations and for time series, respec-

tively. Some time series outlier models are mentioned in Section 4. Some

robust alternatives to least-squares and Gaussian maximum-likelihood pro-

cedures are introduced in Section 5. Section 6 comments on fully adaptive esti-

mates. Section 7 deals with some aspects of robustness toward dependency,

both with and without outliers simultaneously present. Finally Section 8 briefly

describes robust data smoother-cleaner algorithms, and gives an application to

radar glint noise.

' _... " " "" " " "" - " " - " ' " ' ". '.. . . . . ..-. ". --. .- -
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2. ROBUSTNESS CONCEPTS FOR INDEPENDENT OBSERVATIONS

The following comprise four robustness concepts in moderately wide use

today: (1) Resistance; (2) Efficiency Robustness; (3) Min-Max Robustness; (4)

Qualitative Robustness. These concepts have been applied mainly to situations

involving only independent observations until quite recently.

Resistance, a term due to J. W. Tukey (1976), is in fact a term distinct from

robustness. It is the data-oriented version of the probability based word robust.

As such it is the basic primitive form of robustness which captures the essential

goals of robust estimation, namely large changes in a smallish fraction of the

data, e.g., gross outliers, should have only a small effect on the estimate. Small

changes in all the data, e.g., rounding (or fine quantization), should have only a

small effect on the estimate. As is well known, least-squares and other Gaussian

maximum-likelihood procedures lack resistance, and hence resistant/robust

procedures have been invented.

Of the three bonafide robustness terms, the notion of efficiency robustness

(Tukey, 1960; Mosteller and Tukey, 1977) is the oldest and least mathematical

concept, and hence the one most accessible to applied statisticians. Let Vs(F)

denote a variance standard of reference at data distribution F, and for the

moment assume we are in one of those special situations where unbiased esti-

mates exist. V$(F) might be the Cramer-Rao bound for either asymptotic or

finite-sample cases. It would preferably be the Pitman bound in the latter case,

when dealing with problems such as location and scale where the Pitman bound

can by some means be evaluated (Pregibon and Tukey, 1981). Alternatively,

V(F) may be simply the variance of the best known estimate at distribution F.

With VT(F) the variance of estimate T at distribution F, the efficiency of T at F

is

EFF(T,F) = Vs(F)Vr(F)()

S., , ,.. , . . . .. .. _. . . .... .. . . .
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An efficiency-robust estimate T is one whose efficiency is high at the nominal -

distribution F 0 (often Gaussian). and also high at strategically chosen alterna-

tive distributions F1 .Fp , FK (usually heavy-tailed outlier-generating distri-

butions). Often efficiencies, REFF(T,TLs;F), relative to least-squares or other

Gaussian maximum-likelihood estimates, are used with the variance VLS or VGMLJ

replacing VS in (1). For problems where bias is unavoidable, and this is the case

for almost all truly realistic robustness problem formulations, one will use

mean-squared errors in place of variances in (1), and also compare biases as

well.

Huber (1964) introduced min-max robust estimates in his by-now classic

paper on robust estimates of location. Here the asymptotic variance V(TF) of

estimator T at distribution F is the loss and the statistician wishes to minimize,

over a family3 of estimates, the maximum of V(TF) over a family ' of distri-

butions. Huber showed that such min-max estimates exist in the class of loca-

tion M-estimates = T obtained by solving

Mi, p (2) .

with p symmetric and convex, the yj independent and identically distributed

(i.i.d.), and yj - F(. -,u). Here " is a robust scale estimate and c is a tuning con-

stant adjusted to obtain high efficiency robustness. Equivalently/ 2 is a solution

of

__---,0 (3)

with psi function 1 = p'. We henceforth choose " = 1 and absorb c into the

definition of 0 for notational convenience. Huber's (1964) famous min-max solu-

tion is based on an c-contaminated family with standard Gaussian central

"'" ." ". -"'"'" ." ," -". ''" "'- '- '- -'" "-" .' -" '- -'" "'- -- ',°:" '-"- " 'i." ,',.'> i ,> . ."".-.i">'>'> .:',--, .-'+ ,-'i..-':-: '..
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distribution, and the saddle-point pair (T 0 ,F0 ) has To = j obtained from (3) with

= IP0 given by

t Itl <K
°(t) = Ksgn(t) it 9 K  (4)

with K = K(t) determined by the contamination fraction e. Other families yield

other saddle-point *-functions (see for example Huber, 1981).

Qualitative robustness was introduced by Hampel (1968, 1971). and this is a

fundamental continuity property which is the probabilistic counterpart of

Tukey's data-oriented term resistance. Let Y1.  Yn be i.i.d. with values in Rk

and common distribution F. and let Tn = Tn(YI. Yn) define a sequence of

estimates with values in R P for sample sizes n = 1,2,,. This sequence

induces the sequence of maps

T. :F - LT,(F) (5)

where LT(F) is the law of T, at F. Then Tn is said to be qualitatively robust at

F (or in a neighborhood of F, or everywhere) if the sequence of maps (5) is

equicontinuous at F (or in a neighberhood of F, or everywhere), using the

Prohorov distance on the metric spaces where F and LTn(F) are elements. The

Prohorov metric incorporates the possibility of both gross outliers and rounding

errors in e-neighborhoods in a natural manner, and thus is extremely attractive

for use in a robustness definition.

When JTn is obtained from a functional T = T(F) defined on a subset i of

the family of all distributions by evaluation of T at the empirical distribution

function (e.d.f.) Fn, T, = T(F), one set of sufficient conditions for Tnd to be

robust at F is: (i) Tn = T(Fn) is a continuous function on R n for each

n = 1,2. , and (ii) T is continuous at F. For Huber's class of location M-
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estimations (3) T is defined implicitly by

f *(y- T(F))dF(y)= 0. (6)

In essence robustness is achieved by choosing 7P to be bounded and monotone. 0

(In addition, uniqueness of the solution To(F) at F is needed--see Huber, 1981.)

Of the above concepts I regard resistance and qualitative robustness as fun-

damental, with efficiency robustness a close companion. Qualitative robustness

is a principle which should be regarded on a par with other principles of statis-

tics such as sufficiency, unbiasedness, etc. Whenever possible a statistic should

be selected to have the property of qualitative robustness, all other things being

relatively equal. Thus from now on the term robust, without other qualifiers, will

be taken to mean qualitatively robust.

Since some rather ridiculous estimates (such as T c, with c a constant) 0

are robust, one needs to combine the principle with some other measure, and

efficiency robustness is a natural candidate (see Beran 1977a, 1977b, for notable

efforts to obtain full efficiency and robustness simultaneously).

Min-max robustness is more or less frosting on the cake: it is nice to have,

but one shouldn't lose any sleep over not obtaining it. Also one should not, as

has been done in some of the recent engineering literature, take Min-max

robustness as the guiding concept, at least not without some circumspection.

The main justification for concentrating on min-max robustness would be that

one already has a basic continuity property in hand, but that the modulus of
I

continuity is so bad that something like a good min-max solution would be

appealing. Note, however, that one must demonstrate that the modulus of con-

tinuity is indeed bad, and this is a somewhat subjective matter.

There are two important concepts affiliated with the core ideas of robust-

ness which are also due to Hampel. The first is the breakdown point (Hampel,

". ".....................--................n....mmam..... . . ..........
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1968, 1971), a global (asymptotic) measure which is essentially the largest frac-

tion of contamination which an estimator can stand without breaking down com-

pletely by virtue of being taken to the boundary of the parameter space. The

second concept, the influence curve (Hampel, 1974), is an asymptotic

infinitesimal (or local) measure which gives the effect of a vanishingly small frac-

tion of contamination of specific value on an estimate as the sample size tends

to infinity.

Influence curve considerations lead one to use psi-functions (e.g., * in Eq.

(5)) that are continuous. In the sequel we take boundedness and continuity of

*@ to be the essential features needed for robustness. Non-monotone *' can be

used by computing one-step Newton solutions to equations like (5), starting with

a near-solution obtained with a monotone 1P.

Both the above concepts have finite-sample versions. Tukey's sensitivity

curves or stylized sensitivity curves (see Andrews et al., 1972), and Mallows'

empirical influence curves (Mallows, 1976) are finite sample versions of the

influence curve. Hodges (1967) introduced the precursor of the breakdown

point, and recently Donoho (1982) has stressed the relative importance of

finite-sample breakdown points.

Bounded-influence regression is an approach to regression which was

stimulated by the notion that an estimator's influence curve should be bounded.

This problem are has seen vigorous attention by a small group of researchers

(Hampel, 1975, 1978; Mallows, 1976; Krasker and Welsch, 1982; Maronna, Bustos

and Yohai, 1979). This topic deserves a brief introduction, both for its own sake,

and also because the approach may be adapted for robust estimation of certain

times series models. Consider the regression model

yj r,7#iej. n (7)

• • . ....
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where the ej are i.d. with common symmetric distribution F, and

= (#..). M-estimates fIM for regression are solutions of the estimating

equation

E (,- ru = 0 (8)

obtained by minimizing the regression analogue of (2). It is assumed that 4 is

bounded, continuous and monotonic. 0

First suppose that the r, are known exactly (i.e., are observed without

error) and the specification (7) with regard to the x,7 is correct. Then the only

source of distributional difficulty is the e which may contain outliers due to F, 0

being heavy-tailed. In this formulation f is robust according to Hampel's

asymptotic definition. There may, however, still be some finite sample problems

caused by so-called X-leverage points (see Huber, 1981, Chapter 7; Belsley, Kuh S

and Welsch, 1980).

On the other hand, suppose the x, are occasionally observed with large

errors (say keypunch errors for example), and/or the specification (7) is .

incorrect in any one of a variety of ways (e.g., a mixture model for P with

P(P=po) = 1-' and P(P=[1) = y with y small). Then M-estimates PM are not at

all robust. In order to obtain regression estimates which are robust against

such possibilities, it is desirable to use a bounded-influence (BI) regression esti-

mate which is the solution of an equation of the form

k(xt,y _ -X3) = 0 (9)

where (,) is a bounded and continuous function on RP x R'. This will guard

against outliers/model uncertainty in both the independent variables, or car-

riers , and the residuals ti. It would be quite dangerous to rely on the M-

-S - -.
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estimate Pm if one were not quite sure about the purity of the Xj.

The reasons for pointing out the above features of ordinary regression M-

estimates and BI regression alternatives are twofold. First of all there are cer-

tain problems in communications theory (and practice) where exact knowledge

of the ; is virtually assured. This is the case, for example, where ziP

represents a signal of known structure, such as a constant signal (i.e., a location

problem) or a sinusoidal signal with unkown amplitude (where p = 1), or with

unknown amplitude and phase (where p = 2). We discuss such problems in Sec-

tion 7. On the other hand, when one is fitting autoregressive (AR) or

autoregressive-moving-average (ARMA) models, and one has an additive outliers

(AO) model, as discussed in Section 4, the carriers are quite definitely contam-

inated and observed with error. For this situation autoregression M-estimates

are hopelessly bad, and some form of bounded-influence regression is called for.

Among the topics which deserve mention, but are otherwise beyond the

scope of this paper, I would mention: (i) quantitative robustness (see Huber,

1981, Chapter 1); (ii) a decision theoretic framework for robustness (Millar,

1981); (iii) asymptotically shrinking -/ neighborhood formulations (Bickel,

1982); (iv) finite-sample min-max results for testing and confidence intervals

(Huber, 1981, Chapter 10); (v) Hampel's extremal problem (Huber, 1981,

Chapter 11).

-... • .
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3. ROBUSTNESS CONCEPTS FOR TIME SERIES

Although the fundamental continuity idea behind robustness has a simple

and immediate appeal, both the definition and the proofs of sufficient conditions

are highly technical (even the need for the equicontinuity part of the definition

requires a little explanation). This is unfortunate because it makes all levels of

detail quite inaccessible to the practitioner or engineer. Resistance is a much

more palatable concept in this regard, but even this concept may require care-

ful verification for complex estimates. Things get even more complicated when

one tries to provide an adequate definition of qualitative robustness for time

series problems.

On the other hand, it is quite important to have a solid theory as a corner-

stone from which to build. If the theory is complex, as is now the case, then the

theoretician has a responsibility to communicate the central concepts and

results as clearly and simply as possible to potential users of proposed robust

procedures.

Parameter Estimation

In recognition of the need for a suitable version of qualitative robustness for

time series parameter estimates, the following researchers have made contribu-

tions to the problem: Papantoni-Kazakos and Gray (1979), Cox (1981), Bustos

(1981) and Boente, Framan and Yohai (1982).

An issue arising in the time series case is that of specifying the metric, and

hence the topology, for the space of sample paths. There are a variety of ways

to do this, as is reflected in the above references, and what is required is a rea-

sonable balance so that the topology is neither too weak (in which case no esti-

mates are robust) nor too strong (in which case all estimates are robust).

. ,.. o
• . o• o -
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Papantoni-Kazakos and Gray (1979) work with the so-called j" (rho-bar)

metric. Their definition has a defect in the arbitrariness of the per-letter metric

P0 used to arrive at a final ;7 metric. In order to deal with arbitrarily heavy-

tailed processes, for example, it is necessary to choose Po bounded. Cox's

(1961) definition circumvents this difficulty, but only applies to estimates whose

functional versions (analogous to T(F) in (6)) depend on only a finite-

dimensional marginal distribution for the process.

The Boente, Fraiman and Yohai (1982) work, initiated by Yohai, seems to be

the most attractive. A major feature of their definition is that the metric d"

they use for sample paths of length n is extremely natural and transparent:

d = inf{: #i:Iy-y i >  (10) 
Y in

where # i: - y - - 7 J is the number of coordinates in the two observed sam-

ple paths y = (y, y ) and y' = (y', Y'n) which differ by at least y.

Thus d' is the smallest -/ such that the fraction of coordinates whose difference

exceeds -y is no greater than y. This is a data-based distance which allows for

both rounding up to an amount y, and a fraction y of gross errors in a Y neigh-

borhood. Of course the final definition of robustness involves some additional

structure, and also letting n -* .
1

Consider an estimate Tn obtained by solving the estimating equation of

rather general form

Vi.... . ) = 0 (ii)

where Y'I. Y'n is the observed segment of a time series. The essential

requirement needed to insure robustness is that the psi-functions 7k be bounded

and continuous. Specific examples are given in S'ction 5.

,7 7 7



-13-

Filtering and Smoothing Problems

In filtering and smoothing problems we have as many estimates, call them

zt, t = 1. n, as there are observed .data values y . y,. Thus a filter or

a smoother is a mapping Sn from Rn to R n. It is not clear exactly what consti-

tutes an appropriate definition of qualitative robustness for problems of this

type. We surely want some form of continuity for the sequence of maps

S, : A. -* Is,(u) where u is the measure for the stationary process yt and/zs.(IL)

is the measure for f 1 . . Consistency is not a possibility in filtering and

smoothing problems, and evidently equicontinuity may not be as crucial here.

However, this remains to be determined.

At the very least, we would require a resistance version of robustness for

the 1j, t = 1. n. This amounts to requiring that the map Sn defines a

bounded and continuous functional of p, the measure for y 1. yn. Bounded-

ness insures that no single yt can spoil the ij, and continuity insures that small

rounding errors cannot have a large effect. Thus we would require that

C_
Sn = Sn(yn) be a weakly continuous function on the space 4 n of measures M

for y' = (yi. n y,). (Compare this with Huber, 1981, Chapter 1.) Linear filters

and smoothers lack resistance--appropriate bounded and continuous nonlinear-

ity is required to achieve robust/resistant filters and smoothers. The

smoother-cleaners of Section 8 have this property.

- - *. . . . . . . . . . .
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4. TIME SERIES MODELS FOR OUTLIERS

In some previous work I have concentrated on the robust estimation of AR

-and ARMA model parameters, and robust spectral density estimation, utilizing

the following two distinct outlier generating models for observed time series Yt

(see Martin, 1981. and Martin and Thomson, 1982, and the references therein).

The Innovations Outliers (10) Model

:rt = IL + hiti-, (12) ,
L=0

where the zt are i.i.d. with common distribution F which is symmetric and possi-

bly heavy-tailed, h 2 < = and /L is the location parameter for xt. Then let

Yt =xt (12')

be perfect observations of the xj process.

The Additive Outliers (AO) Model

xt= + IL t.t-L (13)
1=0

with ej i.i.d. Gaussian, ht? < o and

Yt = £t +vt (14)

where P(vt=0) = 1-,- with y small. The AR and ARMA models are special cases

of the general linear processes (12) and (13).
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For the AR case the 10 model corresponds roughly to a finite parameter

linear regression model with heavy-tailed error distribution. However, some

quirks of the model exist, and will be mentioned in the next section. The vt in

the AO model represent outliers, either in patches or in isolation, and in the AR

case we have the analogue of a linear regression model with Gaussian residuals,

but with errors in the variables (EV).

The AO model is a special case of a more general kind of zt perturbation

model

Yt = (1 -zt)x + Zt Wt (15)

with zi a binary series with P(zt=1) = y (see Yohai and Bustos, 1982). We shall

also refer to this as an AO model, even though the term replacement model

might equally well be used.

ARCH Autoregressions

Recently we have also been studying the properties of the following type of

ARCH autoregressions and associated parameter estimation problems (Nemec

and Martin, 1983). Let

Y, = 7 + plyt- + + (pyt-- + Eg (16)

with re an ARCH process as defined by Engle (1981):

e._ - (Oh )(17)

where V- is the past history of the e. The intercept y accounts for a non-zero

mean for yr. The ej are uncorrelated, but not independent. The functions h

which we have concentrated on are of the same form which Engle (1981)

'- .... :''- .......... " ".....---.-'..'-.-....... " '"'""" "" "'""" " ""'"' " " ""
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emphasizes in the regression context:

( a + axE. + + • (16)

The parameters ai must satisfy certain minimal constraints to insure wide-sense

stationarity, and more severe constraints to insure existence of higher order

moments (see Engle, 1981). The usual Gaussian autoregression is a special case

of (18) obtained by a, = - ' = ap =0, anda 0 
= a2.

The marginal density for et is more or less heavy-tailed, depending on the

values of the aj. This statement may be inferred by checking that certain

higher order moments do not exist, depending on the values of the aj. and by

empirical checks based on the (easily) simulated ARCH type ej. None-the-less,

an open problem concerning the tj process itself is that of determining an ana-

lytic form for the stationary distribution of the et, even in the simplest case

where

= a0 + 2

ARCH autoregressions are potentially much more useful than 10 autoregres-

sions mainly because their sample paths seem more realistic representations of

many time series sample paths arising in practice.

Regression urith Non-Gaussian AR Residuals

In Section 7 we discuss robust point estimation of in the following model:

Y, = XTO+ u (19)

with the very special assumptions that the z( are known exactly, and

Uo 
-

+

.. . ,..
. =- - . ' u p + t(1 ' ];)
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where et is a possibly heavy-tailed outlier producing mechanism. The eg could

be i.i.d., or an ARCH process. This setup includes the special case of estimating

location with non-Gaussian AR errors. Except for the location case where some

work has been done (Portnoy, 1977; Wegman and Carroll, 1977), this problem has

not been studied at all in the previous literature.

0.
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5. LEASF-SQUARES AND ROBUST ESTIMATES OF AUTOREGRESSIONS

Let's focus solely on the autoregression versions of 10 and AO models, and

the AR ARCH models described in the previous section. Discussion of moving

average models is omitted here for the sake of brevity. A perfectly observed

Gaussian autoregression is regarded as the nominal model, with 10, AO and AR

ARCH models particular types of non-Gaussian deviations from this nominal

model.

Consider the pth-order autoregression version of the regression M-estimate

(8) for aA= 0 version of (12) and (13):

ztlp(yzt - )= o (20)

where zT= (Yt-i. Yt-p). This includes the least-squares estimate 9LS as a

special case. Now O0LS has a rather notable property at finite variance 10

models: its asymptotic covariance matrix depends only upon V, and not upon

the distribution of the et (Whittle, 1962; Martin, 1982a). This was cited as a

robustness property by Whittle.

However, several points are in order. First of all, unlike 0M. LS lacks

efficiency robustness at 10 models (Martin, 1982). Secondly L. is disastrously

non-robust toward AR ARCH models (Nemec and Martin, 1983). We conjecture

that m is robust toward AR ARCH models, but this remains to be established.

More importantly, neither PLS or PM are robust toward AO models of either the

specific type (14) or the general type (15); both type of estimates suffer from

severe biases as well as inflated variances (Denby and Martin, 1979).

Since AO models are included in arbitrarily small Prohorov neighborhoods

of a Gaussian autoregression (see, for example, Cox, 1981) both LS and im lack

qualitative robustness! Following the comments made in conjunction with (11),

. . .. . ... . .' ,' . . ... . . .' '' ."- . - , ,. ,. . -. . . .. . . . . . . . .. . . .
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we require estimating equations whose summands are bounded and continuous

functions of the data, and this is not the case with the M-estimate defined by

(20). The point is that AO models give rise to errors in the zt which can have

quite potent effects.

Three classes of robust estimates have been proposed for this setup: (i)

Bounded-Influence Autoregression (BIFAR); (ii) RA-Estimates; (iii) Robust Data

Cleaning followed by Least-Squares. The first class utilizes bounded-influence

regression type estimates, or generalized M-estimates (GM-estimates) applied

to autoregressions. The two main variants are the Hampel-Krasker-Welsch ver-

sion and the Mallows version (see Martin, 1981, and the references therein).

The second class of estimates, due to Yohai and Bustos (1982), are obtained

as follows. First, one computes robust covariances k = yk (p) of lag-k residuals:

k= 1 rt,rt~k) (21)

where rt = rt(p) = Yt -(PiYt- + ' + pYt-,) are the residuals. Then the .

are substituted for the conventional covariance estimates %, obtained when

*(rt,rt+k) = rt rt+k, in the usual least-squares equations expressed in terms of

9k (see Yohai and Bustos. 1982, for details).

Robustness is achieved by choosing 1P to be a bounded and continuous func- S

tion on R2 . One choice for is 7p(u,v) = 1(u)*(v) for some bounded, continuous

function on R 1. The essential idea is that the estimates yield zero values for

robust lag-k correlation estimates of the residuals, for k = 1. p incor-

porated in a manner which results in high efficiency. Hence the name RA-

estimates stands for (robust) residual-autocorrelation-based estimates.

The third class of estimates is obtained by iterative application of a robust S

smoother-cleaner to remove outliers, followed by application of the usual least-

S.
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squares estimate (Kleiner, Martin and Thomson, 1979; Martin, Samarov and Van-

daele, 1982; Martin and Thomson, 1982). The smoother-cleaner has the property

that at a gross-outlier position lin the sense described in Section 1). the outlier

is replaced by an interpolate based on all the other cleaned data. An algorithm

for smoother-cleaners is given in Section 8. Robustness is obtained for this

method by virtue of the smoother-cleaner being a bounded and continuous func-

tion of the data.

All three of the above classes of estimates may be modified to cover the

case of nominally Gaussian ARMA models with varying degrees of elegance, and

success yet to be fully determined.

A careful comparative study of the three approaches is not yet available.

Yohai and Bustos (1982) should have good comparative results on classes (1) and

(2) for AR(i) and MA(i) models in the very near future. Both BIFAR and RA esti-

mates are consistent and highly efficient at the nominal Gaussian AR model

(Fisher consistency), while being robust for well chosen psi-functions. They are

typically asymptotically normal as well, and have small biases at AO models (one

might well call this latter feature bias robustness). I believe that the RA-

estimates will be generally preferred to BIFAR estimates for at least two good

reasons aside from their efficiency and bias robustness. Assuming the latter are

on at least a roughly even par with BIFAR estimates, the RA-estimates are (i)

quite natural for time series models, and can be applied in principle to models

of considerable complexity, and (ii) they can be designed with just one efficiency

tuning constant whose values are relatively easy to determine (compare this

with the difficulty involved in choosing tuning constants for BIFAR estimates

implied by Peters, Samarov and Welsch's (1982) discussion in the general

regression context).

S.... . . . ........
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The method of robust data-cleaning, folhowed by least squares in an itera-

tive manner, is a quite natural and attractive one. Note, however that it

requires the use of a BIFAR or RA-estimate to provide a reasonably good starting

point for iteration, as the overall procedure is highly nonlinear. It is even some

kind of approximation to a non-Gaussian ..LE. if an appropriate filter-smoother

is used (Martin, 1981), and it fits in nicely with a robust prewhitening approach

to spectral density estimation (Kleiner, Martin and Thomson, 1979; Martin and

Thomson, 1982). The method has a drawback whose importance is somewhat

debatable, namely the method is not Fisher consistent. This is certainly quite

objectionable from a theoretical point of view, and there unfortunately seems to

be no easy way to get around the problem other than through some form of

adaption. This we intend to pursue in the near future. On the other hand cer-

tain calculations show that the asymptotic bias at the nominal Gaussian model

will be so small as to have little practical consequence (Martin and Thomson,

1982, Section 6).

. .I
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . . . . .
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6. FULL ADAPTION VERSUS ROBUSTNESS

During the course of the workshop for which this talk was prepared, the fol-

lowing extemporaneous remarks were made.

Some attention was given by several speakers to density estimation and

score function approximation, where the (efficient) score function is

* = -f '/f, f being a density for presumably i.i.d. data. Such attention is

presumably motivated by a desire to use blatantly adaptive methods. This

prompted recollection of Stone's (1975) Monte Carlo results presented at the

end of his asymptotic treatment of adaptive, asymptotically efficient, location

estimates A. These estimates are obtained by solving

__ = 0 (22)

where '' is an estimate of 4' and " is a robust scale estimate. Stone used

= [2r df(r) where fn, f'n are kernel density estimates

using a Gaussian density type kernel, and d,(r) truncates [-j'"n(r)/~(r)] to

zero outside a symmetric interval [-a,,an] with a, - as n - .

A question frequently raised about such fully adaptive estimates is, "How

large must n be in order for the asymptotics to set in?" Somewhat surprisingly,

n needn't be so large, as Stone's Monte Carlo for sample size n = 40 showed. His

results give EFF(j2,f) _ 0.89 for f ranging over the Gaussian, Laplace, Contam-

inated Normal (contamination fraction = 0.1, contamination variance = 9) and

Cauchy distributions.

While Stone's Monte Carlo results are quite encouraging, his results need to

be contrasted with the fact that: (i) comparable results are achieved with a

robust location M-estimate of the type (3) using a good 9, an appropriate value

for c, and a good redescending psi-function *--for example Tukey's bisquare

S(
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psi-function (see Mosteller and Tukey, 1977); and (ii) such an M-estimate is com-

putationally much simpler than the fully adaptive estimate (22).

It is doubtful that there are many applications where going the additional

10% or so, from around 90% to full efficiency, is worth the computational effort

and complexity of the fully adaptive estimate. A counter argument is that if

staying as close as possible to full efficiency is really cheap, then why not? Of

course we should really check to determine at what (small) sample size full

adaption becomes untenable.

............................... ...
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7. ROBUSTNS AND DEPENDENCY

In this section we wish to make two main points. The first is that relatively

small amounts of serial correlation can seriously affect the level (or false alarm)

of a test, or equivalently the error rate of a confidence interval. This is true

even in the completely Gaussian case, where it is a surprisingly unadvertised

fact that tests and confidence intervals are very non-robust toward dependency.

Here we use the word robust very loosely and intuitively--the definitions of quali-

tative robustness for time series given in Section 3 may need to be modified for

this kind of problem.

The second point is made in connection with the very special model

assumptions made in equations (19)-(19'). Namely, ordinary location M-

estimates are not adequate for estimation of location with non-Gaussian autore-

gressive errors, unless the dependency is quite weak. They can be quite

inefficient compared with proper M-estimates, i.e., true M.L.E. type estimates for

the actual model. Similar comments apply to problems of linear regression with

non-Gaussian autoregressive errors.

The Student's t Confidence Interval with Dependency

Consider the usual Student's t 95% confidence interval which has error rate

of 5%: CI = (--t.o.n-I S/V-n, T+ t.0 2 5.n-I S//n), where - is the sample

mean of YY2. ... y,. and S 2 is the usual sample variance estimate. Suppose

that in fact the Yt are given by the special case of (19)-(19') where vTp = ji, a

location parameter, and that ui in (19') is a zero mean Gaussian AR(1) process

with transition parameter (p. If in fact rp = 0, then Cl has the stated error rate of

0.05. However when jP'0 and the sample size is large, the results are as follows:

....-...... . -.........- .......-... .. ... .......-...
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o Error Rate

i 0.25 0.13
0.5 0.27
0.7 0.42
0.9 0.66

The results are dramatic. For p= 0.25 the error rate has more than dou-

bled. and things get rapidly worse with increasing (p. The problem is that as

S2 -* VARy, = VAR 1W = = . (0) (23)

where VAR. denotes the asymptotic variance, and S,(f) is the spectral density

for the error process ul. It should be noted that the right hand equalities hold

quite generally; we needn't restrict ourselves to AR or even ARMA processes

(Grenander, 1981). What we need to do to studentize Ywith dependency present

is an estimate of S.(0), the spectral density of the error process at the origin.

The same is true with regard to setting the threshold for tests.

Heidelberger and Welch (1980) have studied nonparametric methods for

doing this. The author and a student have checked the behavior of autoregres-

sive type estimates of S,(O) with Akaike's (1977) order selection rule IC, in a

casual way via Monte Carlo. This also seems to work with the proviso that

jackknifing must be done to remove the 0(n -1 ) bias in the autoregressive

coefficient estimates if the sample size is not large enough relative to the

amount of correlation (this remains to be determined with care, but for an AR(1)

process, p = 0.8 and n = 50 definitely requires such bias removal).

:..-:..-:..-:.-...-:..-..... .. ...... :....... -.... .. ..-........... ............... .. .. .... +......-...+.....-......... ........ .
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Robust Estimation of Location

P. Huber's (1964) M-estimates aoai of location, obtained by solving (3). were

introduced in the context of independent and identically distributed observa-

tions yj. The new subscript notation "OM" stands for ordinary location M-

estimate, for reasons which will become obvious shortly. The behavior of AM

when the yt are both dependent and non-Gaussian has received relatively little

attention. However. some relatively recent work includes that of Portnoy (1977)

and Wegman and Carroll (1977). The main conclusions of Portnoy's work are: (i)

if the Yt have only weak correlation structure then i OA, has high absolute

efficiency for heavy-tailed distributions associated with moving-average type

errors. (ii) weak dependency and heavy-tailedness seems to motivate the use of

redescending psi-function.

Unfortunately, ordinary location M-estimates cannot compete with proper

location M-estimates with non-Gaussian ARMA model errors when the correlation

structure is moderate to strong. By proper M-estimate we mean true

maximum-likelihood type estimates appropriate for the model. These are

obtained as follows.

Let Yt by given by the location model special case of (19)

t= + ILI (24)

where the u, are now an ARMA (p,q) generalization of (19') process

14 + lut-I + ' + 10pug-P t + +i I + + Oqit-q (24')

Heavy-tailed F's give rise to outliers in the ti. and hence in the ut and yt. This

model may be written in the equivalent form

Yt + + iyt..I + + IppYt. = + + Et ' it... + + 'q Et -q (3)

• - .. . . .. .-. -... . % . . . ., . ... . .- .- . .-... .. . -...,. . . -.... .. . .° .. . . . . •-• - .
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where the expression for the intercept y is

-Y 14' + E) (26)

Let a = (,y.9 ) denote the true parameter vector for (24)-(24') or (25)-(26).

and let a' denote an arbitrary value in the region where the process yi is sta-

tionary and invertible. For a given ,a' one can generate residuals rt (a') from the

recursion, using appropriate initial conditions, in the usual way (see for exam-

pie, Box and Jenkins, 1976). An M-estimate a of a is a solution of the minimiza-

tion problem

For p(t)-- log f (t), this yields a conditional maximum likelihood estimate

(conditioned on y ,.... y. and the initial conditions for the Et), which is asymp-

totically efficient. Consistency and asymptotic normality of "one-step" M-

estimates are established in Lee and Martin (1983).

Now given the M-estimates a = , the relation (26) leads to the proper

location M-estimate

= -- i---- (

In the special case where p(t) - log f (t) this yields the conditional M.L.E. of 1.

The above estimate is the one which is really the appropriate M-estimate of js

for the model (24)-(24').

Detailed comparisons of the asymptotic and finite sample behaviors of PoA"

and j2M are given for AR(1) and MA(1) models by Lee and Martin (1983). It is

shown that the efficiency of 2 oM can be quite small relative to that of T.

*....** .. .. . . .
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Robust Estimation of Signal Parameters

The regression model (19) contains as special cases some of the classical

models of communication theory, where one is estimating signal parameters.

For example, estimation of signal amplitude deals with the case 0

4' = P cos 27rf ot, while estimation of signal amplitude and phase is based on the

case where 4 l' = cos 2rf ot + 62 sin 2irf ot. For these models it turns out that

the ordinary least-squares estimates are asymptotically efficient when the Ef in

(19') are Gaussian, and even under much more general assumptions for Gaussian

U (Grenander and Rosenblatt, 1957; Grenander, 1981).

However, when the t are non-Gaussian and heavy-tailed, the situation is

much the same as in the location problem just discussed. An alternative to least

squares is required, but ordinary M-estimates lack efficiency robustness. One

requires a proper M-estimate geared to the model (19)-(19'), and such estimates

are unfortunately a bit more complicated than in the simple case of estimating

location. One possibility for computing proper M-estimates for regression

models with non-Gaussian AR errors is via a straightforward robustification of

Durbin's (1960) two-stage least-squares procedure. Details may be found in Mar-

tin (1982b).

I
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& ROBUST DATA SMOOTHER CLEANERS

As was mentioned in Section 5. so-called smoother-cleaners form a building

block for robust parameter estimation. They also form a basis for robust spec-

tral estimation via a robust prewhitening approach. Since details are provided

in the references cited in Section 5. only the briefest of descriptions and an

example are provided here.

Consider the AG model (14). with xt and AR(p) process having a state-

variable representation Xj = 0XtI + Uj. with xt = (Xi), being the first component

of the p-vector Xt. and similarly et = (Ut) 1 . In the first pass the data yj is pro-

cessed in forward time with the filter-cieaner algorithm

Xt - +mtstbf--1s j (29)

where

((30)

is a robust one-step-ahead predictor, as was mentioned in Section 1; here * is

bounded and continuous, and the "gain" mt and the time-varying scale st are

computed from auxiliary recursions. In essence (29)-(30) is a robustified Kal-

man filter with data-dependent gain and scale sequences.

The smoother-cleaner output is then obtained by the reverse-time pass

+ Aj +A(XQ, 1 $Xj) ,t =n-1,n -2. 1 (31)

with initial condition H, = X. Here the i come from (29), and the At are com-

puted from quantities appearing in the auxiliary recursions for (29). This algo-

rithm is a robustified form of the optimal linear smoothing algorithm due to

Meditch (1969).

° " ~~~~~~~~~~~~~~......... o............ ... .•.- . . . ,....°-•.. . ... o.... -. •..."
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As an example of the efficacy obtainable through use of the smoother-

cleaner (29)-(30), consider the glint noise sample path in Figure 1. This highly

spikey non-Gaussian data is obtained from radar measurements of position of an

aircraft target. The composite, reverberation-like nature of the radar return is

the cause of the glint spikes, which result in an unnecessarily high observation-

noise variance at the input of a target tracking loop. These spikes can be nicely

eliminated, and the observation noise level thereby tremendously reduced, by

use of a smoother-cleaner, as shown in Fgure 2, where a 3rd-order autoregres-

sive approximation for the data was used. For details concerning the application

of smoother-cleaners to glint noise data, see Section VII of Martin and Thomson
(1982).

o ._
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