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ABSTRACT

Proper location M-estimates for a model with non-Gaussian

autoregressive-moving average type errors are genuine maximum

likelihood type estimates, whereas ordinary location M-estimates

are those introduced by P. Huber for independent and identically

distributed errors. The relative behavior of ordinary location M-

estimates and proper location M-estimates is studied for situations

with dependent errors of purely autoregressive and purely moving

average type. It is shown through asymptotic calculations and

finite-sample size Monte Carlo studies that although ordinary loca-

tion M-estimates are adequate for weak dependency structure,

they can be quite inefficient compared with proper M-estimates of

location when the non-Gaussian errors have a moderate to strong

dependency structure. - V..."
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Ordinary and Proper Location M-Estimates for ARMA
Models

Chin-Hui Lee

R. Douglas Martin a

Department of Statistics --'"

University of Washington
Seattle, Washington

1. INTRODUCTION

By now, P. Huber's (1964) M-estimates of location are well known. These

estimates were introduced in the context of obtaining robust estimates of loca-

tion us for independent and identically distributed observations Y 1,Y2, ... Y,.

For reasons which become clear in the next section we refer to Huber's esti-

mates as ordinary location M-estimates, and label them i. An ordinary loca-

tion M-estimate is obtained by solving

=0 (1.1)
c~ oy

with a good algorithm, where 9. is a consistent robust estimate of the scale sy of

the Y, c is a tuning constant and 1P is a robustifying psi-function. With 10 = p',

this estimating equation characterizes a stationary point of the minimization

problem

min

,:.;.- I (C ' l .Y

Bounded and continuous psi-functions result in qualitative robustness for

ordinary location M-estimates at certain distributions, including the normal dis-

tribution. This is true not only when the Yt are independent and identically dis-

tributed (Hampel, 1971), but also when the Y are dependent (Papantoni-

• . .
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Kazakos and Gray, 1979; Cox, 1981; Boente, Fraiman and Yohai, 1982).

The asymptotic and finite-sample size efficiency robustness of ordinary

location M-estimates have been extensively studied under the independent and

identically distributed observations setup. The issue of efficiency robustness

where the distribution for the data is both dependent and possibly has a heavy-

tailed non-Gaussian has received relatively little attention. Notable exceptions

include the theoretical work of Portnoy (1977), and the Monte Carlo study of

Wegman and Carrol (1977).

The essence of Portnoy's results are that for moving-average type non-

Gaussian errors with weak correlation structure, ordinary location M-estimates

do well in terms of efficiency relative to the asymptotic Cramer-Rao lower

bound. In addition, through use of a small correlation expansion. Portnoy was

able to obtain approximate asymptotic min-max results which involved a redes-

ceanding psi-function.

Portnoy's work left unanswered the question of how ordinary location M-

estimates would fare with moderate to large correlation structures and a

heavy-tailed distribution. This paper partially answers the question through

efficiency comparisons at perfectly-observed non-Gaussian first-order autore-

gressive and moving-average models. Efficiencies are obtained by some exact

asymptotic variance calculations, and by Monte Carlo. The results show that

ordinary location M-estimates can be seriously lacking of efficiency robustness

in such situations. On the other hand, as expected, proper M-estimates have

high efficiency robustness.

The next section briefly introduces proper M-estimates, while Section 3

gives the asymptotic variance expressions for both ordinary and proper M-

estimates. These expressions reveal almost immediately some substantially

negative aspects of ordinary location M-estimates in dependent process

i-_-? ; -.._'. ,. , : ._:_.L.-?:. - :-':- -- ..-.-.xj-..*-.. .-*-. .-.. '...".-....-.-.-'.-,-...................-.......-.,,,.-..
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situations. Section 4 gives exact asymptotic comparisions for first-order moving

average models, while Section 5 gives finite-sample Monte Carlo results for both

first-order moving average and first-order autoregressive models.

-- o.
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2. PROPER M-ESFJMATES OF LOCATION

Suppose that A~ is a location parameter and that the observations are

Yj =u+ Vt. t =1, 2. n (2.1)

where Vt is an ARMA(p~q) model

Vt9*fl +90=t-p t+GI:t-I+* +Oqgt.q (2.2)

with the eg being independent and having a common symmetric distribution

G(t) = GO(e/s.). s. being a scale parameter for the innovations. The ef are

often called the innovations process. This yields the equivalent ARMA(p.q)

model

Y+rp1Yt-+. +rpYt.., = Y+Et+81rj-j+. +Gqtq (2.3)

where the intercept is

* ~Let '('',6)represent arbitrary parameter values in the region of sta-

*tionarity and invertiblity for the ARMA process, and let q=-~y represent the

true parameter values. Denote by ?j (a') the residuals computed from an

observed sample .... ,Y,, by one of the usual variants with regard to initial

conditions (see for example, Box and Jenkins, 1976). An M-estimate of a is a

solution of the minimization problem

ri Ca') (2I
min, 11- 1  (25

t=1 C I e

where p is a robustifying loss function. The constant c is a tuning constant and

9, is a robust estimate of the innovations scale s,.

Now given an M-estimate a of a = the relation (2.4) leads to the

proper M-estimate of location

= (2.6)
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Consistency and asymptotic normality of _ and j2 have been established by Lee

and Martin (1982a).

In the special case where p(t) = - logg,(t), with g. the density for G., _ and

* are conditional maximum-likelihood estimates of a and /A where the condi-

tioning involves fixing not only Y1, Y., but also estimates F1, ''q of

V,',Eq. These conditional maximum-likelihood estimates are of course

asymptotically efficient under regularity conditions.

K.

S%
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3. ASYMPTOTIC CONSIDERATIONS

First consider an ordinary location M-estimate j computed from observa-

tions Y1.  Y, in (2.1) which have a common marginal distribution F (y) -

F0 ((y-ju)/s.). Under regularity conditions (see for example Portnoy, 1977) pO

is consistent and asymptotically normal. with asymptotic variance given by

C(0)+2> C(l)

where

C () = s 'EF,* (Yl)* (YI1 ), I = 0, 1,2. • (3.2)

Here for I = 0, Fw is the standardized marginal distribution F0 of the Yt, while

for I a I F01 is the bivariate distribution for (Y,Y+) obtained when /u=0 and

s=l. The tuning constant c appearing in (1.1) is now (and henceforth)

absorbed in the definition of €. In the special case of independent Yt,. F0 = Go

and VOM reduces to

EF 1V(Y 1)
VOk SY2 E 0 *(Y 1 ) = SY2V1., (i 0,.) (3.3)

where V.oc=Vor(i,.Fo), defined by the right-hand equality above, is P. Huber's

(1964) well-known expression for the asymptotic variance of ordinary location

M-estimates.

Now for the case of a proper location M-estimate it can be shown (Lee

and Martin, 1982a), that the asymptotic variance expression is

(1+r.0 )2 C :vOC(IPo. 0) .(3.4)

The quantity s,(l+E6) 2/(1+Ep) 2 differs by only a constant factor from the

value at zero frequency of the spectrum of the process Yj. When is the

. . . . . . . . ... . . . . . .

" . .°..
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identity function so that i- = j2L Y, and s, is the standard deviation, (3.4)

yields the well-known result that the asymptotic variance of the sample mean is

given by the spectrum of the process evaluated at zero frequency (Grenander,

1954, 1951).

The simplicity of the expression for V relative to that of VOW is quite attrac-

tive. particularly with regard to the relative ease of studentizing the estimate

for the purpose of constructing confidence intervals. Estimation of V from the

data for this purpose may be quite manageable, whereas estimation of Vol

seems rather impractical when many C(1) are non-zero. In this regard the

situation is particularly bad when an autoregression component is present, since

then the C (1) only vanish asymptotically.

Furthermore, the effect of the tuning constant c on the asymptotic

efficiney of j shows up only in the Vm. factor of the expression for V. Since Vm.

is not affected by the dependency structure for Yj, as specified by the parame-

ters A and 8j, efficiencies can be controlled through c without regard to the

values of these parameters. This is not the case with regard to VCx, as can be

seen in the following equivalent form of (3. 1):

Vow = 11+22lP1.1+L syV-oc(/cFo) (3.5)

where Pi.+ is the correlation coefficient for the random variables 1P(Y 1 ) and

4,(Yl,) when (Y 1,Y 1+1)_Fo1 . Here the effects of c appear not only in Vlc, but

also in the correlation coefficients P1.+L., and the latter depend on the ARMA

model parameters rpi and 6. This makes the adjustment of c to obtain desired

Gaussian process efficiencies quite onerous, if not impractical.

In lieu of a better scheme, one would probably choose c for rOM such that a

desired efficiency is obtained for independent and identically distributed Gaus-

sian data. It should be noted that such a value of c yields the same efficiency

**...
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for at any Gaussian ARMA process (see first paragraph of Section 4 in this

regard).

In order to gain some insight into why j might be significantly more

efficient than 0uf at highly correlated non-Gaussian ARMA situations, consider

the case where Yj is a first-order autoregression with parameter ;. In this case

V may be expressed in the following form, which facilitates comparison with

(3.5):

I 1+ (P 1-(P2'"

* It is easy to check that the factors in square brackets in (3.5) and (3.6) are

identical when I is the identity function. We conjecture that these factors do

not differ by too much for either Gaussian or non-Gaussian processes Yt when 1

is one of the popular psi-functions. Assuming that this is the case, the behavior

of VOM relative to V will be determined by the relative values of V10o(Vc,Fo),

V'oc (10CGO ), sY and s /(1- 2).

Suppose that the same value of tuning constant c is used for both the ordi-

nary and proper location M-estimates (in view of our previous comments, this is

not an unlikely scenario). Then we can expect that in many non-Gaussian situa-

tions VlOc (*ic ,F.) will be larger than VoC (ipc,Go) when O. This is because Y is a

weighted sum of the et, and the convolutions which produce F, from non-

Gaussian C, will often result in an F, having heavier tails than GO. At the same

time s and s,/(1-o 2 ) will be identical in finite-variance non-Gaussian situa-

tions, and then we may expect that VOA( is larger than V.

Of course for stable GO we will have FO = CO, and then the two VLo's will be

identical. However, in such a case s2 and s,2/(1-r 2) will no longer be identical

(except in The Gaussian case). For example, when C. is a symmetric stable dis-

tribution with index 7, Fo is also a symmetric stable distribution, and it is easy

0i

-..-..,.. :-: :.-i:-:. " ""-.•''--'- ---- --.-- - -. . , .- . ..- . . . . -' - , -
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to check that (see Feller, 1966)

S2R _ sy = -, (3.7)
se2/(1-,p2)  - 1- 9 1,,)2/ 7 (37

The Cauchy distribution is obtained when 77=1. and in this case we have R=3 and

19 when r= 0.5 and 0.9, respectively. If we assume that the expressions (3.5)

and (3.6) hold for infinite-variance situations, and that the square-bracketed fac-

tors in (3.5) and (3.6) are not too different, then V0 may be much larger than

V.

In the concluding comments section of the paper, a more direct heuristic

argument is also offered in explanation of the relative inefficiency of/t.

% ° . '- " , °' .. ,,". .o°"% '°0" .- - o- . •. . . - . o - . , . . .• . , - •. . .
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4. EXACT ASYMPTOTIC RELATIVE EFFICIENCY RESULTS

The asymptotic absolute efficiencies of a proper M-estimate at various dis-

tributions are the same as those of an ordinary location M-estimate based on

matching Ve, with independent observations. This follows from the fact that the

asymptotic lower bound on variance is given by (3.4) with V. replaced by the

reciprocal of the Fisher information i(go) = f(g'o/go) 2go for the standardized

innovations density g, (Martin, 1982).

Since the literature abounds with asymptotic efficiency computations for

ordinary location M-estimates based on various V, and independent Yt, our main

interest is in comparing /2 o with A for the model (2.1) - (2.2). Thus we wish to

compute the asymptotic relative efficiencies

V0 o ,o =)(4.1)
AREFF =AREFF( .a),C0 V) = (*C a)

for various * ,C and a.

This task is made difficult mainly because of the relatively complex struc-

ture of V01. For example, to compute (3.1) in the case of first-order autoregres-

sions, both the stationary distribution F., and the bivariate distributions FOL,

I = 1,2, are required. Unfortunately, we can seldom specify F. and F0l,

I = 1.. in closed form when G, is non-Gaussian (symmetric stable C, is the

main exception). Thus we study the case of a first-order autoregression solely

via Monte Carlo in the next section.

On the other hand for moving-average processes of order q, the summation

in (3. 1) contains only a finite number of non-zero terms, and for small q we can

sometimes find closed form expressions for the C(l), 1 = 0,1, q, and F0

We treat here the MA(1) case with parameter 0, where (i) el has a contam-

mated normal distribution,

*°°. - .. -.- •. °. °. . ..• .. . . . . . . . . . ..• ...... .... . % '.-. ° -. • ° -. - ° .. . ° = - -. . . . . .. .
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CN a2)= (I-6)N(0, 1) + 6N(0,o2) (4.2)

and (ii) 4# has either the normal distribution shape

= vp#((tr27(4.3)

or the shape of the derivative of the normal density,

D (t) =t • -za(4.4)

For either of the combinations (4.2) - (4.3) or (4.2) - (4.4), a closed form expres-

sion for VOM (and also for V) is obtained in a straightforward but tedious

manner. These rather ugly expressions are developed in the Appendix.

It should be kc pt in mind that 4'. and *ND are used here only because: (i)

they facilitate an exact calculation, and (ii) at the same time yield comparable

efficiency robustness to that obtainable with Huber's (1964) favorite psi-function

*'H(t) = max(-1,rnin(1,t )), and Tukey's bisquare psi-function (see Mosteller and

Tukey, 1977), respectively. Point (ii) was verified through Monte Carlo results

not reported here.

Except for the second set of results in this section, the tuning constants

com and c for the ordinary and proper M-estimates are adjusted so that for both

1PND and -0#, i0M and A have matched asymptotic efficiencies of .90 for indepen-

dent Gaussian observations (6=0).

Figure 1 shows AREFIs based on OND for various 8 values, where

Et ~ CN(6,o2 ) with 6 = 0.1, 15a_10. Although the AREFF's can be quite low for

negative 8, they are quite high for a wide range of positive 8.

In Figure 2 we display AREFF's based on *IVD for the same values of 7,Q" and

6, except that cam has been adjusted to obtain matching asymptotic efficiencies

of .90 for each value of 0 and Gaussian ei. The values of tuning constants

coM = coM(0) needed to achieve various efficiencies are given in Table 1 for 4,

and in Table 2 for €',AD. While marked improvement in the relative performance
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of 0 is achieved at 0 = -. 5 and -.9 at small values of a, the improvement at

large values of a is negligible. Thus even "proper" adjustment of c using typi-

cally unavailable prior information on 0 will not salvage Pam for MA(1) models

with negative 0.

Figures la and 2a give corresponding AREFF's based on %*. Although *vD

has the edge over *# at some 0 values, the results are not overall too different

ai from those in Figures 1 and 2.

TABLE 1

Tuning constants CONi cOM( )

which yield various efficiencies for ',

e\EFF 0.95 0.90 0.85 0.80

-0.9 4.450 3.651 3.222 2.927

-0.7 2.343 1.870 1.611 1.431

-0.5 1.669 1.287 1.074 0.923

-0.3 1.299 0.959 0.765 0.625

-0.1 1.049 0.731 0.546 0.409

0.0 0.952 0.642 0.460 0.324

0.1 0.876 0.571 0.390 0.255

0.3 0.781 0.480 0.298 0.161

0.5 0.747 0.443 0.257 0.115

0.7 0.741 0.433 0.243 0.097

0.9 0.741 0.431 0.239 0.092
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TABLE 2

Tuning constants com =com(e)

which yield various efficiencies for 1"ND

e\EFF 0.95 0.90 0.85 0.80

-0.9 7.839 6.478 5.752 5.258

-0.7 4.287 3.517 3.104 2.821

-0.5 3.195 2.600 2.281 2.061

-0.3 2.622 2.118 1.846 1.659

-0.1 2.249 1.802 1.561 1.397

0.0 2.110 1.685 1.456 1.300

0.1 2.002 1.594 1.374 1.225

0.3 1.874 1.485 1.276 1.134

0.5 1.832 1.448 1.242 1.101

0.7 1.827 1.443 1.235 1.094

0.9 1.829 1.443 1.235 1.094

............................................................ .

. . .. .
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5. MONTE CARLO RELATIVE EFFICIENCIES

In order to check both the finite-sample size relative efficiencies (REFPs)

of I1'OM and A for both MA(1) models as used for Figure 1, and AR(i) models, some

Monte Carlo computations were carried out using 500 replications at sample size

100. Tuning constants com were adjusted for asymptotic efficiencies of 0.9 at

independent Gaussian Yt, as described in the previous section.

The ordinary location M-estimates were computed using the median as a

starting point, followed by 4 iterations of iterated-weighted least-squares using

j, followed by one iteration using #"VD. The proper M-estimates were computed

using 10 iterations of a nonlinear optimization algorithm for solving (2.5), which

is described in Lee and Martin (1982b), followed by computing A from (2.6).

The results for the MA(i) case using OND are shown in Figure 3. The REFF's

are in quite good agreement with the asymptotic REFF's of Figure 1. except for

o= 1 (the Gaussian case).

Results for the AR(i) case using %'ND are given in Figure 4. Here REFF's can

be quite low for positive rp as well as negative, the former case being the more

commonly encountered one in practice. Furthermore, rp=±0.5 can already

result in REFF's as low as 70% for large a, and for larger 9I the relative loss in

efficiency associated with Am may become quite intolerable. Also, the REFF's

are roughly symmetric in rp, which contrasts sharply with the MA(1) results of

Figure 3.

Figures 3a and 4a give corresponding results using V. Again, *'ND tends to

dominate , somewhat, but the differences are not overwhelming.

As a check on the "absolute" efficiencies of j at MA(1) and AR(1) models,

we provide Figures 5 and 6 for '*ND, and Figures 5a and 5b for *. By "absolute"

efficiencies (EFF's) we mean the asymptotic Cramer-Rao lower bound divided by

the Monte Carlo variance. Except for the case e = -0.9 which requires large

N. '...
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sample sizes to achieve high absolute efficiencies, j2 is very efficient for almost

all other cases at a sample size of 100. With regard to the case 0 = -. 9, one

should keep in mind that 0=-1 is a distinguished point of superefliciency (see

for example, Chapter 4.4 of Grenander, 1981).

. .2

.*~* ** ~. .o
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6. CONCLUDING COMMENTS

The following simple heuristic argument indicates why 4 should generally be

more precise than 4, particularly in the case of autoregressions with

moderate to large correlation. Suppose one is using Aw with robust scale esti-

mate 9, and that the series contains just one huge isolated outlier in the Eg at

time to say, after which the sample path will decay roughly like the homogenous

solution to (2.2). The first part of this decay will produce residuals

rt=Yt- . ta-t,, which exceed s. in magnitude and will thus be down-weighted.

Unfortunately, it is only the initial residual rto that deserves downweighting, and

this results in loss of information. Because the residuals in (2.5) are based on

the regression with intercept form (2.3), only the residual at time t, will be

heavily downweighted, and information in the immediately succeeding observa-

tions will be utilized.

This argument can also be cast in terms of the scatter plot of Y, versus

Yi-1, say for an AR(1) process, in the spirit of Cox's (1966) comments with

regard to the null distribution of the serial correlation coefficient. The pair

(Yt,-.,Yi,) will be far removed from the regression line with slope jo and inter-

cept -y, but the pairs (Yj-1,Yj), t=to+l, , constitute good leverage points

(i.e., points which will lie close to the regression line and are large in magnitude)

for estimating 9' and rp -- the latter with ultra precision when Et has a heavy-

tailed distribution (Martin, 1982). The ordinary location M-estimate would down-

weight such points.

The asymptotic and finite-sample efficiencies of 4  relative to Fu, along

with awkwardness and impracticality of assessing the variability of Am. suggest

that it should be used only when one is certain that the correlation structure of

the errors is quite weak. For situations where the non-Gaussian ARMA model

(2.1)-(2.2) is a good approximation to reality, the proper M-estimate 4 is
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preferred.

When (2. 1)-(2.2) does not provide a good model for non-Gaussian time series

with outliers, e.g., when Yj is corrupted with additive outliers, then the proper

M-estimate A will no longer be advisable since it is not robust toward such devia-

tions from a nominal Gaussian ARMA model (see Martin and Yohai, 1984). More

generally, 2 is not robust over a full neighborhood of the nominal Gaussian

model. An alternative proposal for estimating ji is mentioned in Section VIII of

Martin (1981). A detailed study of this alternative, among others, is called for.

i"

-io

-
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Appendix

ASYMPTOTIC VARIANCE EXPRESSIONS

As was mentioned in Section 4. one can obtain closed form expressions for

Va1 in (3.1) as well as V in (3.4) for the special case where et - CN(6,0 2 ) and

either @i=jP# or ?PI=IPND (see equations (4.2)-(4.4)). The keys to this are the fol-

lowing relationships:

_(ax+ ) e 7dx = 0 (A. 1)

- z2

L@(ax)(x 1e d +-!-Tta- a" (A.2)=277 4 27 i +a2+ #2

A. 1 was given by Gupta, S.S. and Pillai, K.C.S. (1965), and a proof of A2 may be

found in Jong (1977, Lemma 16).

l

The Cumulative Normal Psi-Functaon

Since Et C = CN(6,a2 ) = (1-6)N(O.1) + 6N(0,a2 ), the MA(i) process jVtj

0 has the four-component normal mixture distribution F = NM(0,6.a 2 )

= (j-6) 2N(0,(l+02)) + 6(l-6)N(0,a 2 +02) + 6(l-6)N(0,1+92a2 ) +

62N(O,(1+0 2)o2 ). Let 1, (e) denote @I, scaled for the error process e:-

where c is the tuning constant. This we use in computing V. Similarly, in com-

puting Vo we use

CojjS~ 2' (A..4)

]

. - ' - -..-- . . -". .- -i2

I0 ,l 1 1



which is ~*scaled for the Yj process, with tuning constant com.

First we get the expression for V with k =cs, and C =CN(6,a2), A.2 and A.3:

E k2{(1-6)tarf1 + 3 tan- ~ (A. 5)

Also

E*rW= (i-6)v~Tk2(+k1+ 6V -1(~2 (A. 6)

Thus

V -(1+0)
2 EG *(e )/Ej,"c(e)

= ~ 6 ~(A.7)

As for VcDy, we need to evaluate C(O) and C(1) using ',.With k1, comsv

and F =NM(6,6.o2), A.2 and A.4 give

EF1p'M(y1) -6)%q(+2q + 6(1-6)/1i+0G2+kV)

+ 6(1- 6)V7yl(2+ a-+k2)

2,/r/,i+2),.2+k] . (A. 8)

C~) ICGM() = kvJ(1-6)2tan-1[(1+02)A2/1+2kj

+ 6(1-6)tan-j (1+2+a2) . :-2l- +2(1+ 2 +9)A;2

+ 6(1-6)tan 11(1+,9 2,y2) .k;
2/V 1+2(1+,72a2)7;2

+ 62tan-1[(j+ 2 )a 2:; 2 /<V1j+2( 1+ 62) a2k; 2  (A.9)

Now for C(I). first note that

1L~OM(t)1COM~t~) =27Tk~ 2fs(k -Ej + Ok -)tj i)(k;~tio~g*Imym1+ V V VVE++k'j
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-20

2 2(.T 41 9.T~ (A. 10)

Since the et are i.i.d. with distribution. CN(6,o2 ), we can condition on et and

apply (A. 1) to get

E~bkjT,-t+ 8kjTI'j_1 ) I t

(1)4fAle/Vr119;2J + 64-fkvE/v11 ak2) (A. 11)

Similarly

E [ 0(kT- I ct + +  ok It) t ]

= (106).(ek;et/VY7"12J (A. 12)

Taking expectation with respect to et in (-11) and (A-12). and using A. 1 with

P=0, gives

- '(0) = (A. 13)

2
EGOk 1,I+O: )0 (A. 14)

For the expectation of the first term on the right-hand side of (A.10), we

again use the results in (A. 11) and (A. 12)

. E[ ,( - , + 09k, ( - y.., + Ok,71e )3

=(1.-6)2EC~lk- I /V 1+ 02 W ;,e7e/ 1
2

*+6(l16)EGck',v_1 2 2

+"/ |
+ 6(l-6)EcG4jklt/V 92,j2,+02f'72- lTu-t +.

=(i-6)2A I + 6(l-6)[A2 +A 3 ] + 6 2 A 4  (A. 15)
. . . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . .. . . . . .
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U The expectations A I-A 4 in (A. 15) can be obtained by applying (A2) with con-

stants appropriately adjusted:

A(--k7) -tan-li~k1 [ql. + 02 k )( 1+k -2)+(1+k7; 2)+ 02(1 02:2k)12A 4=1 27T 1+ 1

+T -~-tan-ij~a2k;,P[k2( 1+ 602A:; 2)( 1+k - 2 )+ C2(1+k.; 2 )+ 0202( 1+ 02k-2)]11

+. (1-6) Al+6A1(.16
4 27r 2ir(A16

A 2 = + (1-6) tan-'T kyf,2 I 1+ 02k; 2)( 1+0U2 : 2 )+(l+or2A;)+ t2(1+ 02k -2)11
4 2n TLVj

+ -LtanI{Bo2k,;-1 2k( 1+ 02k- 2)(1+02k;2)+cr2( 1+k.;2)+ 022(1+ 12) 1
+~ (1-6) A 2 1 +-6A 2 2  (A. 17)4 27T2T

* A '+(1-6) tan-f 11k 1l.(1+a262 ...2)i' 1+k.;2)i-( +k 2 )1. 02( 1+0 2
02k 2)1 2

+~ (1-6) A3i+ 6 A3 2  (A. 18)
4 27T 27T

and finally,

A4 - + tan-'0 -[k l(1+o 2 6k. )( 1+a~k -2)+( 1+o2k.;2)+6 2( 1 +a2 02k -2)i4 27Tif Y
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+ a tan-1O ,2k;Ik2 1+aO 2 k -2 )(1+ Ak; 2)+U2( 1+o2k;2)+Ut02(1+0+O262ke)1 1

1 + 42 _ (A. 19)= 4- 2nA 4 1 +-A 4 2

4 27T 2r

Now applying (A. 15) - (A. 19), we have

C(1) = EF[-hOk(Y,),cOM(Yt+I) = [(1-6)3A 1 + 6(1-6) 2(A 2+A 21 +A 31 )

+ 62(1-6)(A 2 +A3 2+A41) + 63A42]  (A.20)

Therefore, (A.8), (A.9) and (A.20) can be combined to get the closed form for

VOM:

= C(O)+2C(1) (A.21)

Normal Derivative Psi-Function

Let 1 , denote 'PND scaled for Et, with tuning constant c:

= cs,.*N(E/cs,) = E exp[-EA/2c 2 s/ ] (A.22)

* Similarly, let iko denote ONPD scaled for Yt, with tuning constant coaj:

.,(y) = y exp[-y/2c&js ] (A.23)

*( First we obtain the expression for V, with k = cs, and C = CN(6,e2 ). Direct

evaluation gives

3 3

EC (p) = (1-6)ka/(2+k 2) 2 + 6oA3/(1-(2+k 2)2  (A.24)

and

0 0.EC (1-6)- 3+ 6 3(A. 25)

(1+k 2 ) (c+k)

--. *
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Now V =EG*2i()/E, ', (C) may be computed from A.24 and A.25.

Next we evaluate EF4 '(Y1). C(O) and C(1), with F =NM(O6r5,a
2) and

=y comsy, in order to compute VOM. First, we have

EF*#COM(yI) -(1-6)
2 kq/( 1+9 2 +k2) 2 + 6(1-6)k./(a2+ 2+k2)2

+ 6(1-6)ky~/(1+G2a24-k:)2

+ 62kqfr(a2+62o2+kq)2  (A.26)

As for C (0):

C(o) =EF1p2OM(y1) =(1-6)2(1+ea)k/'12(1+e
2 )+kq] 2

+ 6(l-6)(a2+02)kq/-2( 2+0 2)+k2] 2

+ 6(1-6)(1+0 2 )2 (1 2 02)+2] 2

+ 62(1+9 2 )aok/,42o2 (1+8 2)+k:]2  
.(A.27) -

As for C(l), consider first the expectation conditioned on Ej

*EFJ[EL +Ott-,.]exp[-(t +OE,_.. 1)2/2A::] Et

-IEj * 2( (A. 28)

where

KIe)(= )qe exp[-8 2 2 (1+k 2)]

(1+4~)
2
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*6+ E_ eiT[-,92E/2( 2 +Ak:)]

and

(16)ky32(0 
)K 2 (Et) 3 (1 exp[-Et/26+ky)

(02+q) 2

,A + et ~exp[-C2 (0 2 a 2 +k:)]

(02a2+k:)2

Therefore,

*C(l) EGK(t)2c)

-k kl( 1-6)1/18I2 (0 2 +k 2)+( 1+k 2)+( 1+kq)(2+/e)] 2

+ (1-6) 26111 2(0 2 a+k )+(+k )+(2 +,)(0 2+k ) 2

+) 2)(24(0 )

+ (16)6/[0202a+ky a2+, cr+ 3

+ (161A:+lk

+ 63a2/482a2(22+k)+ a2a2+k)+(2+k 2)22kA::))

(A. 29)
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21 Now (A.26). (A.27) and (A.29) can be combined to obtain the closed form for VOM.

6A
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