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kt‘ ABSTRACT

Proper location M-estimates for a model with non-Gaussian

S autoregressive-moving average type errors are genuine maximum
likelihood type estimates, whereas ordinary location M-estimates
are those introduced by P. Huber for independent and identically

. distributed errors. The relative behavior of ordinary location M-

estimates and proper location M-estimates is studied for situations

with dependent errors of purely autoregressive and purely moving

average type. It is shown through asymptotic calculations and f"t;

finite-sample size Monte Carlo studies that although ordinary loca- ‘ 7]
tion M-estimates are adequate for weak dependency structure,

they can be quite inefficient compared with proper M-estimates of
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Ordinary and Proper Location M-Estimates for ARHA :
Models Ly A
f Chin-Hui Lee L
R. Douglas Martin

Department of Statistics
University of Washington
Seattle, Washington

1. INTRODUCTION

By now, P. Huber's (1964) M-estimates of location are well known. These
estimates were introduced in the context of obtaining robust estimates of loca-
tion u for independent and identically distributed observations Y4,Y, . .., Y,.
For reasons which become clear in the next section we refer to Huber's esti-
mates as ordinary location M-estimates, and label them figy. An ordinary loca-
tion M-estimate is obtained by solving

Y~ fau

—| =0 {1.1)
C '$y

> ¥

i=1

with a good algorithm, where §, is a consistent robust estimate of the scale s, of
the ¥, ¢ is a tuning constant and ¥ is a robustifying psi-function. With ¥ = p’,

this estimating equation characterizes a stationary point of the minimization

problem

min,, ip
c- s,,

Bounded and continuous psi-functions result in qualitative robustness for

ordinary location M-estimates at certain distributions, including the normal dis-

3

tribution. This is true not only when the Y; are independent and identically dis- j
tributed (Hampel, 1971), but also when the Y; are dependent (Papantoni- ;
<
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Kazakos and Gray, 1979; Cox, 1981; Boente, Fraiman and Yohai, 1982).

The asymptotic and finite-sample size efficiency robustness of ordinary
location M-estimates have been extensively studied under the independent and
h ‘ identically distributed observations setup. The issue of efficiency robustness
| where the distribution for the data is both dependent and possibly has a heavy-
tailed non-Gaussian has received relatively little attention. Notable exceptions
include the theoretical work of Portnoy (19.77). and the Monte Carlo study of

Wegman and Carrol (1977).

The essence of Portnoy's results are that for moving-average type non-
Gaussian errors with weak correlation structure, ordinary location M-estimates
do well in terms of efficiency relative to the asymptotic Cramer-Rao lower

bound. In addition, through use of a small correlation expansion, Portnoy was

able to obtain approximate asymptotic min-max resuits which involved a redes-

cending psi-function.

Portnoy's work left unanswered the question of how ordinary location M-
estimates would fare with moderate to large correlation structures and a

heavy-tailed distribution. This paper partially answers the question through

efficiency comparisons at perfectly-observed non-Gaussian first-order autore- "j::
gressive and moving-average models. Efficiencies are obtained by some exact
asymptotic variance calculations, and by Monte Carlo. The results show that - 9
ordinary location M-estimates can be seriously lacking of efliciency robustness
in such situations. On the other hand, as expected, proper M-estimates have

high efliciency robustness.

The next section briefly introduces proper M-estimates, while Section 3

.'-'.-_" B
PPN S N B s

gives the asymptotic variance expressions for both ordinary and proper M-
estimates. These expressions reveal almost immediately some substantially

negative aspects of ordinary location M-estimates in dependent process
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situations. Section 4 gives exact asymptotic comparisions for first-order moving
average models, while Section 5 gives finite-sample Monte Carlo resuits for both

first-order moving average and first-order autoregressive models.
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2. PROPER M-ESTIMATES OF LOCATION

Suppose that u is a location parameter and that the observations are

Yi=utVp, t =12 ..., n (2.1)

where V; is an ARMA(p.q) model
Vitor1Vog+ - - +¢p Vg_p =g+ 80184+ +6q5t—q (2.2)

m with the £; being independent and having a common symmetric distribution
G(e) = Go(e/s,), s, being a scale parameter for the innovations. The ¢; are

often called the innovations process. This yields the equivalent ARMA(p.q)

% : model

YitoYoq+ - +¢pY¢_p = y+es+ 018+ - +6qsl-—q (23)

where the intercept is

7= u(1+Zg;) . (2.4)

Let a'=(7'.¢'.8') represent arbitrary parameter values in the region of sta-
tionarity and invertiblity for the ARMA process, and let a=(7,y,8) represent the
true parameter values. Denote by 7y(a’) the residuals computed from an
observed sample Y, - -.,Y, by one of the usual variants with regard to initial
conditions (see for example, Box and Jenkins, 1976). An M-estimate of a is a

solution of the minimization problem

n

ming ), p
t=1

1G9

= (2.5)
c ‘S,

where p is a robustifying loss function. The constant ¢ is a tuning constant and R

§, is a robust estimate of the innovations scale s,. o
Now given an M-estimate & of a = (y.¢,6), the relation (2.4) leads to the )
proper M-estimate of location ) '3
p=—2— (2.6)
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F] Consistency and asymptotic normality of @ and Z have been established by Lee
. and Martin (1982a).
. In the special case where p(t) = - logg,{¢), with g, the density for G,, & and
. ' 4 are conditional maximum-likelihood estimates of a and u, where the condi-
tioning involves fixing not only Yy,--- Y,, but also estimates &, ‘- ., of

£y, ' .&q. These conditional maximum-likelihood estimates are of course
r‘i asymptotically eflicient under regularity conditions.
3
]
, R
L -
. g
: ‘ 1
=
4
: 1
. . Y

»

e e e e S e e e e T e N T T S e e




TN T T T T T ™ g p—— e T T N T v
R . ] K N . N o . PRI A
L

e

w

1

, .
a2 a4 o

3. ASYMPTOTIC CONSIDERATIONS

First consider an ordinary location M-estimate oy computed from observa-

R
AL a -

tions Y3, ..., Y, in (2.1) which have a common marginal distribution F(y) =
Fo((y-u)/sy). Under regularity conditions (see for example Portnoy, 1977) fox

is consistent and asymptotically normal, with asymptotic variance given by

c(o)+23 (1)
Vaw = —ﬁﬁy— (3.1)
where
CQ) = s Erg¥e (Y )¥e(Yim), 12012 | (3.2)

Here for L = 0, F, is the standardized marginal distribution Fg of the Y;, while
for L 2 1 Fg is the bivariate distribution for (¥1.Y;4;) obtained when x=0 and
sy=1. The tuning constant c appearing in (1.1) is now (and henceforth)
absorbed in the definition of %,. In the special case of independent Y;, Fg = Gy

and Vgy reduces to

o Er4E(Y1)

Vou = sy ER 9Ty = 5y Viae (Ye . Fs) (3.3)

where Vi =V, (¥.F, ), defined by the right-hand equality above, is P. Huber's

(1964) well-known expression for the asymptotic variance of ordinary location

M-estimates.

Now for the case of a proper location M-estimate 4, it can be shown (Lee

and Martin, 1982a), that the asymptotic variance expression is

_ (1+26:)? , =

- (1+2¢i)2 Se Vloc('wcvco) . (3-4)

1

The quantity sZ2(1+Z8;)%/(1+Z¢;)? differs by only a constant factor from the 1
value at zero frequency of the spectrum of the process Y,. When ¥ is the :1:;:
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identity function so that fgy = s = Y, and s, is the standard deviation, (3.4)

et

yields the well-known result that the asymptotic variance of the sample mean is

‘A,- s
bk ditns

: :;f. given by the spectrum of the process evaluated at zero frequency (Grenander,
i 1954, 1981).

The simplicity of the expression for V relative to that of Vyy is quite attrac-

tive, particularly with regard to the relative ease of studentizing the estimate i

for the purpose of constructing confidence intervals. Estimation of ¥V from the
data for this purpose may be quite manageable, whereas estimation of Voy

seemns rather impractical when many C(l) are non-zero. In this regard the

P UGS S

situation is particularly bad when an autoregression component is present, since

then the C(l) only vanish asymptoticaily. ]

Furthermore, the effect of the tuning constant ¢ on the asymptotic
efficiency of i shows up only in the V. factor of the expression for V. Since V), -
is not affected by the dependency structure for Y;, as specified by the parame-
ters ¢; and 8;, efficiencies can be controlled through ¢ without regard to the
values of these parameters. This is not the case with regard to Vgy, as can be ,,1'

seen in the following equivalent form of (3.1):

Vou = sya' Vioc (¥e Fo) (3.5)

1*‘2‘291.1“
=1

where py14; is the correlation coefficient for the random variables ¥.(Y,) and
Ye(Y14) when (Y1,Y 14 )~Fq. Here the effects of ¢ appear not only in V., but

also in the correlation coeflicients pq (4. and the latter depend on the ARMA

model parameters ¢; and 8;. This makes the adjustment of ¢ to obtain desired

Gaussian process efficiencies quite onerous, if not impractical.

In lieu of a better scheme, one would probably choose ¢ for gy such that a

ot
s a'ala"alle 4 o

desired efliciency is obtained for independent and identically distributed Gaus-

sian data. It should be noted that such a value of ¢ yields the same efficiency

................
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for z at any Gaussian ARMA process (see first paragraph of Section 4 in this
regard).

In order to gain some insight into why & might be significantly more
efficient than fgy at highly correlated non-Gaussian ARMA situations, consider
the case where Y, is a first-order autoregression with parameter . In this case
V may be expressed in the following form, which facilitates comparison with

(3.5):

sé
—5 Ve (¥c.Go) . (3.8)

1-2-¢_
1-?

V =
1+¢p

It is easy to check that the factors in square brackets in (3.5) and (3.6) are
identical when ¥ is the identity function. We conjecture that these factors do
not differ by too much for either Gaussian or non-Gaussian processes Y; when ¢
is one of the popular psi-functions. Assuming that this is the case, the behavior
of Vpu relative to V will be determined by the relative values of V. {(¥..F,).
Vioc (¥c.Co ), sy and sZ/(1-¢%).

Suppose that the same value of tuning constant ¢ is used for both the ordi-
nary and proper location M-estimates (in view of our previous comments, this is
not an unlikely scenario). Then we can expect that in many non-Gaussian situa-
tions Vi (¥c .Fo ) will be larger than Vi (%..C,) when ¢=0. This is because Y; is a
weighted sum of the g, and the convolutions which produce F, from non-
Gaussian G, will often result in an F, having heavier tails than G,. At the same
time sf and s,z/(l—rpz) will be identical in finite-variance non-Gaussian situa-
tions, and then we may expect that Voy is larger than V.

Of course for stable G, we will have F, = C,, and then the two V,,.'s will be
identical. However, in such a case s and s2,/(1-¢?) will no longer be identical
(except in The Gaussian case). For example, when G, is a symmetric stable dis-

tribution with index 7, F, is also a symmetric stable distribution, and it is easy




M |
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to check that (see Feller, 1966)

Re— ¥ __-__1=¥ (3.7) =
T sE/(1-9R) (-l ’ T

The Cauchy distribution is obtained when n=1, and in this case we have R=3 and

19 when ¢= 0.5 and 0.9, respectively. If we assume that the expressions (3.5)
and (3.6) hold for infinite-variance situations, and that the square-bracketed fac-
tors in (3.5) and (3.6) are not too different, then Vyy may be much larger than

V.

In the concluding comments section of the paper, a more direct heuristic

argument is also offered in explanation of the relative inefliciency of fiqy.

A L
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4. EXACT ASYMPTOTIC RELATIVE EFFICIENCY RESULTS

The asymptotic absolute efficiencies of a proper M-estimate at various dis-
tributions are the same as those of an ordinary location M-estimate based on

matching ¥., with independent observations. This follows from the fact that the

yre

asymptotic lower bound on variance is given by (3.4) with Vj,. replaced by the

,‘.‘

reciprocal of the Fisher information i(g,) = f (9'0./90 )’go for the standardized
innovations density g, (Martin, 1982).

Since the literature abounds with asymptotic efficiency computations for

ordinary location M-estimates based on various ¥, and independent Y;, our main

interest is in comparing fiay with Z for the model (2.1) - (2.2). Thus we wish to

compute the asymptotic relative efficiencies

FIMMEE s SEn aun a4
. v

VOH (Wc vGo .g)

Ve Cod) (41)

AREFF = AREFF (¥.Co @) =

for various ¥..C, and a.

This task is made difficult mainly because of the relatively complex struc-

ture of Voy. For example, to compute (3.1) in the case of first-order autoregres-

sions, both the stationary distribution F,, and the bivariate distributions Fg,

=12 . are required. Unfortunately, we can seldom specify F, and Fgq,
[ =1,2 ..., inclosed form when G, is non-Gaussian (symmetric stable G, is the g
main exception). Thus we study the case of a first-order autoregression solely

via Monte Carlo in the next section.

On the other hand for moving-average processes of order g, the summation
in (3.1) contains only a finite number of non-zero terms, and for small g we can

sometimes find closed form expressions for the C(1), 1 = 0,1, .. ., g, and Eiow,,.

We treat here the M4 (1) case with parameter 4, where (i) ¢; has a contam-

inated normal distribution,

ARG S e .'.‘.~‘.' e T e R T L T e e e e e e e T
e e A P R T T L R S O T A S A B S L

PG S G W I W S R S R S I S SR W S TR N
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CN(7,0?) = (1-6)N(0,1) + 6N (0,0?) (4.2)
and (ii) ¥ has either the normal distribution shape
Velt) = Ve (8(t)~%) (4.3)
or the shape of the derivative of the normal density,
Yp(t) =t-et¥2 (4.4)

For either of the combinations (4.2) - (4.3) or (4.2) - {(4.4), a closed form expres-
sion for Vgy (and also for V) is obtained in a straightforward but tedious

manner. These rather ugly expressions are developed in the Appendix.

It should be kept in mind that 9¥¢ and Ynp are used here only because: (i)
they facilitate an exact calculation, and (ii) at the same time yield comparable
efficiency robustness to that obtainable with Huber’s (1964) favorite psi-function
yu(t) = max(-1,min(1,¢)), and Tukey’s bisquare psi-function (see Mosteller and
Tukey, 1977), respectively. Point (ii) was verified through Monte Carlo results

not reported here.

Except for the second set of results in this section, the tuning constants
con and c for the ordinary and proper M-estimates are adjusted so that for both
¥ap and Y, Loy and f have matched asymptotic efficiencies of .90 for indepen-

dent Gaussian observations (§=0).

Figure 1 shows AREFF's based on 4yp for various 6 values, where
g, ~ CN(6,0%) with 6 = 0.1, 150510. Although the AREFF's can be quite low for

negative 8, they are quite high for a wide range of positive 6.

In Figure 2 we display AREFF's based on ¥xp for the same values of y,06® and
¢, except that cqy has been adjusted to obtain matching asymptotic efficiencies
of .90 for each value of 8 and Gaussian ¢;. The values of tuning constants
cow =cou(68) needed to achieve various efliciencies are given in Table 1 for s,

and in Table 2 for yyp. While marked improvement in the relative performance

.......

o
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aa

A e e

N

PP W L |




-12-

of Loy is achieved at § = -.5 and -.9 at small values of o, the improvement at
large values of o is negligible. Thus even “proper’ adjustment of ¢ using typi-
cally unavailable prior information on 8 will not salvage fqy for MA(1) models
with negative 4.

Figures la and 2a give corresponding AREFF's based on 4. Although ¥np
has the edge over ¢4 at some 6 values, the results are not overall too different

from those in Figures 1 and 2.

TABLE 1

Tuning constants coy = cou(6)

which yield various efficiencies for ¥

6\EFF | 0.95 0.90 0.85 0.80

-0.9 4.450 3.651 3.222 2.927
-0.7 2.343 1.870 1.611 1.431 :~
-0.5 1.669 1.287 1.074 0.923 )
-0.3 1.299 0.959 0.765 0.625
-0.1 1.049 0.731 0.546 0.408

0.0 0.952 0.642 0.460 0.324

0.1 0.876 0.571 0.390 0.255

0.3 0.781 0.480 0.298 0.161

0.5 0.747 0.443 0.257 0.115

0.7 0.741 0.433 0.243 0.097

0.9 0.741 0.431 0.239 0.092
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TABLE 2 ‘
Tuning constants cou = cou(8) ]

which yield various efficiencies for Ynp T

6\EFF | 095 090 085 0.80

0.9 | 7.839 6478 5752 5.258
0.7 | 4287 3517 3.104 2821 .
0.5 | 3.195 2600 2281 2.061
0.3 | 2622 2118 1846 1.659 =
0.1 | 2249 1802 1561 1.397 '
0.0 | 2110 1.685 1456 1.300
0.1 | 2002 1594 1374 1.225 2
0.3 | 1.874 1485 1276 1.134 o
0.5 | 1.832 1448 1242 1.101 1

0.7 1.827 1.443 1235 1.094 "«

0.9 | 1.829 1.443 1235 1.094 "
bl
e e e T S T e e e e
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5. MONTE CARLO RELATIVE EFFICIENCIES

In order to check both the finite-sample size relative efficiencies (REFF's)
of gy and 7 for both MA(1) models as used for Figure 1, and AR(1) models, some
Monte Carlo computations were carried out using 500 replications at sample size
100. Tuning constants coy were adjusted for asymptotic efficiencies of 0.9 at

independent Gaussian Y;, as described in the previous section.

The ordinary location M-estimates were computed using the median as a
starting point, followed by 4 iterations of iterated-weighted least-squares using
VY4, followed by one iteration using ¥yp. The proper M-estimates were computed
using 10 iterations of a nonlinear optimization algorithm for solving (2.5), which

is described in Lee and Martin (1982b), followed by computing z from (2.6).

The results for the MA(1) case using ¥np are shown in Figure 3. The REFF's
are in quite good agreement with the asymptotic REFF's of Figure 1, except for

o=1 (the Gaussian case).

Results for the AR(1) case using ¥np are given in Figure 4. Here REFF's can
be quite low for positive ¢ as well as negative, the former case being the more
commonly encountered one in practice. Furthermore, ¢=+0.5 can already
result in REFF's as low as 70% for large o, and for larger || the relative loss in
efficiency associated with fas may become quite intolerable. Also, the REFF's
are roughly symmetric in p, which contrasts sharply with the MA(1) results of

Figure 3.

Figures 3a and 4a give corresponding results using ¥ Again, Yyp tends to

dominate ¥y somewhat, but the differences are not overwhelming.

As a check on the “absolute’” efficiencies of 4 at MA(1) and AR(1) models,
we provide Figures 5 and 6 for Yyp, and Figures 5a and 5b for ¥4. By ‘‘absolute"”
efficiencies (EFF's) we mean the asymptotic Cramer-Rao lower bound divided by

the Monte Carlo variance. Except for the case § = —0.9 which requires large

Ta Te o e N . . - T T . - - . - . - - - - - . - - . - " . X
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sample sizes to achieve high absolute efliciencies, i is very efficient for almost J
all other cases at a sample size of 100. With regard to the case 8 = -.9, one ]
should keep in mind that #=-1 is a distinguished point of superefliciency (see f;'.t:j
for example, Chapter 4.4 of Grenander, 1981). l
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n 6. CONCLUDING COMMENTS

s The following simple heuristic argument indicates why 4 should generally be
i more precise than fgy. particularly in the case of autoregressions with
i 4 moderate to large correlation. Suppose one is using fioy Wwith robust scale esti-
mate §,, and that the series contains just one huge isolated outlier in the ¢, at

time ¢4 say, after which the sample path will decay roughly like the homogenous

solution to (2.2). The first part of this decay will produce residuals
7 =Y, —f, t2t,, which exceed s, in magnitude and will thus be down-weighted.

Unfortunately, it is only the initial residual 7, that deserves downweighting, and

this results in loss of information. Because the residuals in (2.5) are based on
the regression with intercept form (2.3), only the residual at time ¢, will be
heavily downweighted, and information in the immediately succeeding observa-

tions will be utilized.

This argument can also be cast in terms of the scatter plot of Y; versus
Y;-1. say for an AR(1) process, in the spirit of Cox's (1966) comments with
regard to the null distribution of the serial correlation coeflicient. The pair
(Yi,-1.Ye,) will be far removed from the regression line with slope v and inter-
cept 7, but the pairs (Y;.4,Y;), t=to+1, - -, constitute good leverage points
(i.e., points which will lie close to the regression line and are large in magnitude)

for estimating ¥ and ¢ -- the latter with ultra precision when ¢; has a heavy-

tailed distribution (Martin, 1982). The ordinary location M-estimate would down-

weight such points.

The asymptotic and finite-sampie efficiencies of fgy relative to fiy, along
with awkwardness and impracticality of assessing the variability of fey. suggest :.::j.
that it should be used only when one is certain that the correlation structure of . K
the errors is quite weak. For situations where the non-Gaussian ARMA model

(2.1)-(2.2) is a good approximation to reality, the proper M-estimate 4 is
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preferred.

When (2.1)-(2.2) does not provide a good model for non-Gaussian time series
with outliers, e.g., when Y; is corrupted with additive outliers, then the proper
M-estimate z will no longer be advisable since it is not robust toward such devia-
tions from a nominal Gaussian ARMA model (see Martin and Yohai, 1984). More
generally, 4 is not robust over a full neighborhood of the nominal Gaussian
model. An alternative proposal for estimating u is mentioned in Section VIII of

Martin (1981). A detailed study of this alternative, among others, is called for.
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i Appendix
‘ " ASYMPTOTIC VARIANCE EXPRESSIONS

As was mentioned in Section 4, one can obtain closed form expressions for

Vou in (3.1) as well as V in (3.4) for the special case where £, ~ CN(6,0%) and

Th either ¥,=v¥¢ or ¥;=y¥np (see equations (4.2)-(4.4)). The keys to this are the fol-
lowing relationships:
& + 2 =9 7L~ Al
. [Hoa) e T =9 iy (A1)
o 2
[ ¥(az)®(pz)— e Tar = i+itan-17—°'L— . (A.2)
L Van 4 2n 1+02+82
a A.1 was given by Gupta, S.S. and Pillai, K.C.S. (1965), and a proof of A.2 may be

found in Jong (1977, Lemma 16).

The Cumulative Normal Psi-Function

Since & ~ G = CN(6,0%) = (1-6)N(0,1) + 6N(0,0%), the MA(1) process {V,}
i has the four-component normal mixture distribution F = NM(6,5,0%)

= (1-6)2N(0,(1+6%) +  6(1-6)N(0,02+6%) +  S(1-8)N(0,1+6%2) +

62N (0.(1+6%)0%). Let . (e) denote V4, scaled for the error process ¢,:

£ y_ 1
q)(c s,) 2

£
cS,

= cs,Van

Ye(e) =c - s, Yow

(A.3) 1

where c is the tuning constant. This we use in computing V. Similarly, in com-

»
. oL, - .
N T
o e s e .
UGN S NS N

> puting Vo we use

o - o 1

e Veou(¥) = cous, Van |® Ej{{; - EI (A.4)
»
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r
‘ which is ¥ scaled for the ¥; process, with tuning constant coy.

First we get the expression for V with k = cs, and G = CN(6,0%), A.2 and A.3:

200y = k2l g —pypan-1_ (17K -1 (P k? A5
E Egvi(e) k[(l 8)tan 7&@)172*““ 7‘1@%‘“ . (A.5)

Also

Ec¥'.(g) = (1-8)Vk2 /(1+k?) + 6Vk? /(dP+k?) . (A.6)

3

Thus

V = (1+6)2Ecy?(e) /E&V o (¢)

| } (1+6)%k [(1 é)tan ke + & tan ey
= ] 2

L (A.7)
[(1—6)\/k2/(1+k2) + 6Vk2 /(o2 +k?)

As for Voy, we need to evaluate C(0) and C(1) using ¥,,. With ky = consy
and £ = NM(8.,6,0%), A.2 and A.4 give
- Efv¥ep (Y1) = (1-6)2VkZ /(14 6%+k2) + 6(1-6)V/ ki /(1+ 630> +k2)
H + 6(1-8)Vk2/ (8% P+kZ)

+ 03Vik2(1+ 602 +k2] | (A.8)
®
- C(0) = EpyE (Y1) = lc,ﬂu—é)ztan-‘[( 14 6%) - k2 N/ 1+292k;2]
+ 6(1—6)tan"‘[(1+ 6%+0%) - k;a/\/1+2(1+82+02)k;2]
® .
- + 8(1-8)tan"'|(1+6%02) - k2 / N/ 1421+ 620 iy 7]
+ 62tan"[(1+ 82)0%ky 2 /N 142(1+ 6%) 0%k, ]l : (A.9)
D
o Now for C(1), first note that
Veou (Yt Wegy(Year) = 2mkyd [¢(ky-!51+gky-!€t-l)o(ky—’€t#l+ 8ky 'e)
D

..............................................................
----------------------------------------------
........................................




-20-

- & Ok e+ Ok ey ) Bk e+ Ok e ) + | (A.10)

= Since the g, are i.i.d. with distribution. CN(6,0%), we can condition on &; and

# ' apply (A.1) to get

E[®(ky e, + 0k e,_y) e, ]
ip = (1-0)8fk e, V14 0%5F | + 8fk e N1 ERRE ) L (A1)
Similarly

E[®(ky 'ere+0kytey) g, ]

°
‘ = (1-8)8|oky e, N/ 142 | + B8loky e N TH PR | (A1)

Taking expectation with respect to g, in (A.11) and (A.12), and using A.1 with

£=0, gives

Ec®(ky e, +6kyle,_y) = 8(0) = % (A.13)

Ecd(ky 'ep e+ 0k te,) = &(0) = (A.14)

IS

For the expectation of the first term on the right-hand side of (A.10), we

again use the resuits in (A.11) and (A.12)
E[{ky ee+ 0k o0 )P(hy gy + 0Ky ey)) )
= (1-8)2Ec 8ty e, /N 1+ 6752 | 0[Oy e /N Trky | ]

+ 6(1—6)E‘c¢[lcv"t:,/\/1+821cv'2 ]o[ek;‘s, A1k |

+ 6(1—6)Ec<b[kv"s,/\/1+820'2kv"2 ]@[ok;‘e,/\/uk,—z |

+ 8%E¢ <b[1c,,"e, NV 1+ 6%0%k R llb[&kv"c;/\’ 1+0%ky®

= (1-6)%4, + 6(1-6)[A+A43] + 6%4, . (A.15) 1
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The expectations 4,~4, in (A.15) can be obtained by applying (A.2) with con-

stants appropriately adjusted:

-1
= % + -(%“fltan“[ek;‘[kf( 14 6%, 2) (1+k ;) +(1+ky %)+ 631+ ezky-z)] g ]

‘ 1
p 6 - - _ - _ _ —-—
h + 5otan 1|902Icv ‘[kyz(1+92kv A(1+kyB)+02(1+ky %)+ 02021+ Bakvz)] 2}
}
: = -i— i—-—)-l g A 1+ ‘2— A 12 N (A- 16)

-1
Ay = % + %ltan"[ek;i[k;(u 83k 2) (14 0%k 2+ (14 0%k, %)+ 62(1+ e%;a)] 2]

_1
+ %tan"{eozkv*{kf(ﬁ 6%y 2)(1+ 0%y 2)+ 0% (1407 %)+ 60%( 1+ 6% 2)| 2}

% ‘g—‘zl 6 A21 + *z—Azg H (A17)

-1
Ag= %+ %Qtan“{eky"[kf(uozezk;z)(1+Ic;2)+(1+ky'2)+92(1+0202ky"")] 2]

-1
+ z—ir-tan“leozky“[kf(1+0262ky'2)(1+kv'2)+02(1+Icy‘2)+0282(1+0292ky"2)] 2]

-1, (-6 N .
=3t An + oy Aoz (A.18)
and finally, .

-1
=1, i—12“—ﬂ‘52~tan“(@k;‘[lc,,a(1+rr202/c,,'2)(1+azlc,;2)+(1+ozk,;~?)+(92(1+0292k,;2)] 2
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-1
+é%tan“{eozkv"[k;(1+0292ky‘2)(1+ozlcv’2)+oz(1+02ky"2)+0292(1+0262k,,'2)] 2]

=1, (=9 <
=3t o Ant oo de (A.19)
Now applying (A.15) - (A.19), we have
r; C(1) = Er[¥eou (Ye ooy (Year)] = B2(1-6)°A 1, + 6(1-6)%(A 2+A2 +As:)
+ 62(1—6)(A22+A32+A41) + 63A42 . (AZO)
g
’. Therefore, (A.8), (A.9) and (A.20) can be combined to get the closed form for
Vaw:
C(o)+20(1)
Vo = =25 . (A.21)
Eia¢ Cgu(Yl)

Normal Derivative Psi-Function

Let ¥, denote ynp scaled for g;, with tuning constant c:
Ve (e) = cs ynp(e/cse) = ¢ exp[—ee/zczscal . (A.22)

Similarly, let Yeoy denote Yup scaled for Yy, with tuning constant coy:
Veou(¥) = y exp[~y2 2cdysf] . (A.23)

First we obtain the expression for V, with k = cs, and G = CN(8,0%). Direct

evaluation gives

a 3
Ecy3(e) = (1-6)k2/(2+k%)® + 60%k?/(20%+k?)? (A.24)

i _ and

- Eve(e) = (1-6) —K v 6 X (1.25)

‘.‘ (1+k3)2 (oP+k?)?
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Now V = Egy2(e)/E&¥ . (¢) may be computed from A.24 and A.25.

Next we evaluate Epy/(Y;). C(0) and C(1), with F =NM(6,6,0°) and

ky = cousy. in order to compute Vpy. First, we have

wiw

3
Epvep (Y1) = (1-6)2k3/(1+6%+k]) 2 + 6(1-8)k)/(0%+6%+ky)

3
2

+ 6(1-6)k,/(1+6%0°+k})

3
+ 823 /(02+ 2R+ (A.26)

As for C(0):

3
C(0) = Epyd (Y1) = (1-8)2(1+62)kd 2(1+ 6%)+KF]2

3
2

+ 6(1-6)(?+ 6%k /12(0®+62) +k 2]

3
+ 6(1-6)(1+620%)k2 12(1+ 6202) +k 2]%

8
+ 6%(1+ 6%) 0%k, 1202(1+ 6%) +K 2] ? (A.27)
As for C(1), consider first the expectation conditioned on &;:
Elv(y o)) 6] = Erl[€t+1+3€¢ Jezp[—(g141+ 95:)2/2":42”6:)
. EF[[CI +0g,_yJexp[— (g, +8e¢-1)% /2k¢] ]Et]
= K(gy) * Ka(er) (A.28)
where
- 3
Ky(e) = Q—M;“Et - exp[ - 6% /2(1+k2)]

(1+k:,,2)E

iy

, [
- ‘-'.';
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S0k, . expl-82sF,/2(cP+kD)]

3
oP+k})?
and
_ A\ 3
O L e O )
(6%+k7)?
Ok, 2 2 2
3 e exp[—ef/2(0%02+k2)]
(6%0%+k7)?
Therefore,

C(1) = Ec[K (e )K2(es)]

3
= 0k S)(1-6)2 16382 +k2)+(1+k2)+(1+k2)(6%+kD)]?

3
+ (1-6)26 /16X 8202 +k Q)+ (1+k2)+(1+k2) (8202 +k,2) ]2

3
2

+ (1-6)26 /163 8%+ k3) +(oP +k D)+ (P +k F) 62+ k )]

2
2

+ (1-6)62/18%(6%2+k )+ (02 +k2) +(oP+k2)(620P+k )]

3
2

+ (1-6)2502/] 8202( 62+ k2)+ 02 (1+k2) +(1+k2)(62+K)]

3
2

+ (1-6)6%0% /1 6%0%( 622 +k,2) + 2 (1+ k) +(1+k2) (6% %+ k. 2) ]

3
2

+ (1-~8)6202 1 820%( 8%+ k2)+ 0 (Phf) + (P + kD) (63+ kd) ]

3
+ 6%02 /1 6%0%( 6202 +k2)+ 0%(02+k2) + (0B +k,2)(6%02+k2)] 2

...........
.....................
........................

T Y T WY Y W Y Y Y R Ve sy

(A.29)
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Now (A.26), (A.27) and (A.29) can be combined to obtain the closed form for Vgy.
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