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In the second one all thermoelastic coupling was considered.

Frequency-temperature characteristics were simulated for different crystal
orientations taking into account the rate of temperature change and the phase

difference between the internal temperature (effective temperature) and the
external temperature (temperature given by a probe in an experiment).
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I - LOW TEMPERATURE QUARTZ CRYSTAL OSCILLATOR

GENERAL PRESENTATION

* One of the main results regarding 1/f noise obtained during this program was

the 1/Q4 dependance law. A new series of noise measurements was performed on

different kinds of resonators to confirm this law and principally to study the

influence of power level on the noise behavior. Comparative measurements were

achieved at low, medium and high powers. A new result is the possibilitv for

quartz resonators to experience chaotic behavior.

Freuuency stability at low temperature was measured at both short and edium

terms using the dual crystal passive system. Comparisons are made with corres-

ponding stabilities of the same crystal measured at room temperature in the

same system.

Realization of an oscillator at low temperature, including crystal and elec-

tronics, is discussed, and preliminary results are given.

1/f NOISE LEVEL VERSUS POWER LEVEL

1) Noise at low power .

The measurement system remains the same and details can be found in previous

reports (AFOSR orants 80-0105 and 81-0191).

2.5 MHz, 5 MHz and 10 vHz crystals were 7easured.

* These measurements were performed at the National Bureau of Standards
Freouencv and Time Division by J.J. Gagneoaln.

.... .. . . . . . . . . . . . . . . . .



1) 5 MHz resonators. Six 4T-cut

crystals (5th overtone) were stu- 0o ,0

died. Two were commercial BVA re-

sonators and four were standard ,

commercial hiqh quality resona- 1.0•

tors. A typical spectrum (pair of c

BVA crystals) is shown in Fiq. 1. -

The noise is essentially 1/f fre- -I2 0o

auencv noise. The 1/f3 noise is 2
U A

due to the filterinq effect of "

the resonator ; this occurs at 10

its half bandwidth. For three

pairs of resonators the frequency '.

noise 1/2 (f), measured 1 Hz from 100

the carrier were equal to 2.5 x F ourier Frequency (H,)
Fiq. 1

10-and The solid curve shows the apparent frequen-

3x1(V'3  Hz. The raw data were cy noise spectrum of 2.5 MHz, 5 MHz and 10

MHz resonators. At Fourier frequencies abo-
divied by 12 under the assump- ve the half bandwidth, the spectrum mist be

tion that the noise of each reso- corrected for the filterinq effect of the
resonators yieldinq the dashed lines.

nator was identical. Obviously by

doing all possible pairs one can obtain a more accurate value for each reso-

nator independent of this assumption. All these resonators had unloaded

6 60-factors in the ranqe 2.5x10 < Oo < 2.7x10

2) 10 MHz resonators. Two kinds were measured AT-cut and BT-cut crystals.

Roth were third overtone resnnators, but with very different Q-factors, tvni-

callv 3x10 5 fnr AT-rut and 1.7xi0 6 for BT-cut. RT-cut crystals have much

hlnher Q-factors because this crystalloqraphic orientation has lower internal

losses for the thickness-shear mode.1 Noise spectra are shown in Fiq. 1. A

larae difference in the noise levels can be nbserved between the AT and FT

cuts. At 1 Hz from the carrier these levels are of the order of 7x10 -, v3 z - -

For the RIT resnnators to 3.2x10- 1'Hz for the AT resonators. These results

show a stronq dependence between the 1,f noise level and 0-factor.

3, 2.5 MHz resonators. Two pairs of fifth overtone, AT-Cut resonators were.

6tested with unloaded Q-factors close to 4xlo . AlthoukTh these_ pairs had

almost the same Q-factors, the noise levels differed by almost one crder cF

mannitude. The presence of 1if 2 noise in the spectra of S yf' indicatps that

the sensitivity to temperature fluctuations are very ia.rne for this tpe f

resonator.

-- , .*
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All the resonators were measured at powers of the order of 10 ;W. j

The I/f noise power 1 Hz from the

carrier, evaluated for each indivi- to ±0MHZ A-out

dual crystal, was plotted as a func-
o

tion of the unloaded 0-factors in .

Fla. 2. A linear reqression amono
2

these experimental points qives 4.
U0

to
5y(1 Hz) 2 0*Yo L4 oMz.-:

£ \ Zio.z A-u

These results are also summarized in - .,, 87 ,C,_

Table on t 10 1., ut

The data show a clear dependence of 2. _"__._ _ z

1/f noise on the resonator's unloaded to 1 7
1o xo i h

0-factors, followinq a 1 ,0 law. The 60 A10O G-p
only exception is with the 2.5 MHz Fiq. 2

t/f noise level, measured at 1 Hz from(2) crystals, which show excessive the carrier as a function of the unloaded

noise most lkely due to thermal Q-factor for the different resonators
tested. The measurement system noise is

transient effects, indicated by ----

If these crystals are used in an oscillator, the I f spectrum will olve a

flicker floor in time domain, whose corresvondinq values are qiven in Table

I, and which corr e spondsto the best stabilitv achievable in that case with an

oscillator, at least at room temperature.

resonator .,z 14 " C z 10C z 4 0+ Z O4'

2rvstal cut A, T A T A24 "

3 e 2 .- .- 2 4'•'~ .1
2  

.12 "~ i 2.-. l* -

_,c er 'loot .. 
"

2. " S2Z"waa, re 1e , OU1 V y -;, 'f~110 
.

a . r

. ..... --r •..'-... ..-. h. n..r .. .. .-.. ..... .

" -. _," " -..,- _" -,:" ", .'' '. ' - _ -" _ _ " .. .., ,-.-. . : . " ." . ., ., . . , . . . . . . . , ,, . " ., , , ,.. , . . . - . : _ . ., _ '.



2) Noise at medium power

When the drive level of the crystal is 4

r-A increased it exhibits nonlinear ef- L.

fects due mainly to the higher order

elastic constants. This is the well

known amplitude frequency effect where

distortions appear in the amplitude-1 5 0
Frqunc (Hz5) 1

and phase resonance curves and even Feuny(Z

hysteresis can he developed as shown

in Fig. 3.

The non~inear behavior of a resonator
Frequency (Hz)

driven i., transmission can he repre-

sented by the phenomeno logical rela- S

tion

2
I nd [ E(Q) cos Qt] . -90

2
t Q t ,iii ki2) = F cos wt

where i is the current through the Fjri. 3
crysal, theloaed Qfactr, ad F Amplitude and phae resonance CurvenP
crysalQ te laded0-fcto, ad Fof quartz resonators

the amplitude of the driving force. k

is the nonlinear coefficient "related

to the next hinher order elastic constants%. E(-'COs t introduces aI nodLa- -

tion of the resonance anglar fre'quency wo, which rpresents t-e frecy(-,enc\,

noise of the resonator. Iolvlnq this equation with a perturtntion TetVc

nives the phase noise of the output sianal.

Let S,(, he the frenUencv noise spectrum of the crystal. '41hpn cIrivioo it -,t

low pnwer, in the linear range, the correspondini abae nectrim is r-li ,Prl

2

S

0 S 0~2+ (A n

At rlium love Is. wrien the resnnator is driven near t!,e '.:'r F rtcqutnc\ ,

phas;e sncect rum becomes

22 2 2

** bab



A
Thus the ratio between 'the phase

noise at medium and low oowers is

SO(hiqh power) (Q 2 + w2 Q2 )2 .0-

SO(low power) 0 Q,+ 2O/Q2

This ratio qoes to unity fo r Q >> w /Q 20 ~0
and is equal to W /16Q' for Q <<

0U

W,/4Q. Therefore the induced phase

noise for t'he lower Fourier frequency U

components can be greatly increased

by the crystal nonlinearities. Sucha

noise was experimentally observed on c -W

a 5 W-z (5th overtone AT-cut) resona-

tor driven at 2.5 mW. as shown on U

Fla. 4.
10 0 1 0

Fourier- frequency (Hz)

Fig. 4
3) Noise at hiqh power Frequency noise spectrum of a 5 MHz

driven at low and medium power

At still hiqher nower (of the order

of a few watts) the quartz resonatorStbe-

was found to exhibit larrie instabili- I (mA)

ties as shown in Fla. 5.

Such phenomena are known in nonlinear unistabtle

s'vstems as chaotic behavior. Chaos
20

has been observed in ma~ny different
2

systems , for examale phase locked
3 4 5

loops and Josephson junctions

which can be considered as low

G-factor resonators. The main diffe-

rence between these systems and
cjuartz crysta.l resonators stem from ____

50 100

the 'iiqh P)-fqctcrr and thermal Fourier frequency

effects, which strongly modifv the
Fia. 5

behavior o' the crystal at hich tbe nd ns~ttsofa54z

nowe r. resonptor driven at hjC~h power
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Thermal effects will he predominant mainly if the crystal is operated at i

temperature below its turnover temperature. In this case the temperature

coefficient is negative (of the order - 4 HzPC). The temperature rise (iue to

the dissipated power induces a negative frequency shift, whicr can he larqe m
enouqh to pull the crystal frequency to the frequency where toe down-jump

phenomenon occurs (Fig. 3). Thus the amplitude becomes much smaller decrea-

sinq the dissipated power. Temperature therefore decreases causin tre

frequency to increase until it reaches

the second jump and so on. This gives

a cycling with larqe amplitude and

phase perturbations, as shown in Fiq.
lOOms

6. This phenomenon occurs when the

amplitude-frequency effect and the Fiq. 6

temperature coefficient have opposite Amplitude perturbation due to thermai
effects at hiqh power

siqns.

Above the turn-over temperature the siqn of the temperature coefficient be-

comes positive. In this case the temperature rises, inr'uclnc a positive

frequency chanqe, which corresponds to an additional amplitude-frequency

effect. This is equivalent to increasinq the nonlinearities of the crvstoi.

Fiq. ') illustrates the amplitude resonance curve of a 5 MHz SAT-cut, fifh.

overtone) crystal excited with a 7 V rms drivino siqnal. As toe drive

frequency increases the crystal goes from stable state to chaotic states . "

throuqh sudden transitions.

This is quite different from the behavior of lcw-F) resonant sstems. For t:'e

latter the route to chaos qoes through a set of cascadino subharmcnic hirtir-

cations. The rate at which the number nf ,ijbharmnnics increases with Iri% ir~

power leads quicklv to a spectrum composed nf so many spectral iires that it

appears as a contn(ious noise spectrum.

For hioh Q resonators, like quartz resonators. suthharlrrnic r:e,- ni-

nhsFrPd beruse oil these sijhharmonic trequencies arP Coujt. h"  ro.tor

rnn,1width and therfo)re Fi Itere. t)nlv when thloir niuoher i: larce onouch.

such as when there ar- components in the resonator hbv'w'rth. ?otlO ea-""

v1 r 3rpearo. This exnIa ns the sudden transition t-o rhans w ith1ot Qm r,,-

ti n of cascr irq hifircat ins.

I

: -: - - .....•. ..-.- -. . '. " '..- " ....,- -- . '',-"- .- ." - " - . - .".. . ... - ." - . - -,- ..-.. . ...- '..-:



The sideband frequency noise of the transmitted signal was measured under the

same conditions as at low and medium powers. A f2 spectrum is observed for

the power spectral density of the frequency fluctuations of the signal. This

corresponds to a white phase spectrum and therefore to white noise for the

frequency fluctuations of the crystal. This is in agreement with other

observations of chaos 2 5 , but does not lead to 1/f noise. This is shown in

Fiq. 7.

The level of this noise is 10- 1 8 (power spectral density) and is to be compa-

red with the level of Fig. 1. The noise is increased by several orders of

magnitude.

These results confirm the 1/04 law of the 1/f noise level, and this is shown

quite clearly by comparinq crystals at the same frequency but with very

different Q-factors such as AT and BT crystals. 1/f noise can be altered and

magnified by the nonlinear response of the crystal as has been shown at

medium power. At high power, large noise is generated, but this noise is not

related with the previous one, and the exhibited spectrum is purely white.

_1

6-II0

_10Io

-bk

o100
Fourier freque.cy

Fig. 7

Frequency fluctuations of a tPz resonator driven at 7 VRMS
illustratino the chaotic state of the crystal

. .o
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LOW TEMPERATURE DUAL CRYSTAL PASSIVE SYSTEM

The dual crystal passive system which is used allows operation of a crvstal

at low temperature while keeping the electronics at room temperature. This

system was described in the previous report, and only the schematic diaqram

is presently recalled.

I

pio yDirectiona

Phase modulator Drcoalscillator Bule cou , r

electronic tuning crystaLock-in v tsd an ii_ :

Dewar

Schematic diatram of dual crstal passive sstem r,..

acts as a discriminator.

The overall response was tested in real conditions. Quite different nera ,,

was observed from room to low temperature, as shown in Fior. (a an o t.

T he spj rios responses observed at low temnerature ar0 'ip to SPi'.

rismatchinq between the 50 nc characteristic iroe(nce if the a\1 'd,

and the eional impedance of the crystal which can become as mnw i!, i

ohms, when at low temperature.

-8-

Thephae .op.h...lo.s..e.ct ... s ...atr...th ..as...re .... ;
a.. . . .s.a. . . . . . . . ..tor. . . . . .".

..-.-. . . . . .. .

The overal respons...s.testd....rea.cond.t.o.. zedffIf t e~



The spurious responses

could be avoided in prin-

ciple by usina a small-

size wildeband RF trans-

former,but no such trans-

former was able to be

operated in liquid helium
F8 Freq~ecy with sufficient efficien-

cy. This is due to the S
, ferrite core which looses

0 its maonetic properties

at cryogenic

temperatures.

The problem was solved by

introducing a serial re-

sistor in the crystal p-

circuit, even if it is

not the most satisfactory

solution. The response is

given in Fiq. 9c.9b Froque,,cy

4'---

C.9'

\e q

. * ... * * .. . . . o



,he dynamic thermal behavior of the crystal was studie at low temne7ature.

The frequency-lemperature characteristic is represented nv tne well known

relation

'T-T .b'T -T ' + a dT "dtL 'f ,3 T- q ) -'

where ac, b, and a are the static and dynamic temperature coerrfcler."..

The dynamic coefficient was

evaluated by modulatinq the

temperature of the oven in-

side the helium bath at .1

Hz and recordinq the corres- Te, a rat

pondinq frequency chanqe. As

shown on Fig. 10 the phase

difference between the two

senals is small. This ndi- e LA 1 C,

cates also a small dynamic rcI" rc

effect. Therefore the exact

value of a cannot be exactly

measured, but its upper li- O

mit was evaluated yield2nq

Fig. JO femperature . _ ." v ,'

a 6x10- 1 0 s/K

At the same time the static

coefficient a was measured.
0

Near 1.5 K its value was

a = 2x10-9K02.!0 9 . Z

The resonator under test was (X

a 5 Hz, 5th overtone AT-cut

crystal., its static F-T cha-

racteristic is qclen in
Fiq. 11.

f-7

2 ,5

.1 -.-.. . - . . . .



Short term freauenc\ stability was measured by simultaneous comparison with

different hich stability crystal osciliators. This "trianqulation" mothod qns

an equivalent resolution which is of the order of 2x' n - i4 o'.er W

Medium term frecuency drift, i.e. over one day, was obtained )v comnarsco

with a Cs clock. It was not possible to test the frenuency drift over more

than one day, because low temperature in the dewar cannot be nm~ntained rr

laroer periods of time without refillinq.

Stabilities of the crystal are qiven in table I1 and can be compared to the

correspondinq stapilities of the same crystal when operated at room tempera-

ture.

T 1,5 K T = 300 K

a (10 s) 8 x 10- "3 (BW:IKHz) 3 x 10- 12  drift

; (100 s) 3 x 10- 1 3  3 x 10- r1 2  emoved

drift 1 10- 11 /dav 20I0-10 day

Table II
Comparative stabilities of the 5 1.Hz, 5th overtone

AT-cut crystal under test

At room temperature the 2xl10 day drift w-s observed after one week of

oscillation. This value is not characteristic of a verY h~ih 3tabililv cr\s-

tal. But improvement by more than one order of macnitude ,s obtained at law

temperature. And in this case frequency was recnrdipi >s -oon as the crystal

has been cooled down, witho-,it 3nv DreaQeinq.

A short term improvement is also about one order . sco ,, .c. tne l.i-

tation is st, ll due to residual temnersture f.-ct.' t iiors act l-, outsi,'e C'

the electronics.

....• _ . .



CRYOGENIC OSCILLATOR

Components

Different components were selected as a function of their bena ior at low

temperature.

a) Resistors

Metal film resistors were used. The low temperature 'ehnv;o derends nn 1,s

history. After a first coolinq (into liquid nitroqen, a irift of 1x10l-' hour

oas observed with a 30 kQ resistor. Temperature cyclinq is recessarv to ste-

bilize the resistor.
LD

b) Diode

A qermanium diode was stu-

died at 1.2 OK. The ten- I

sion VD which is 0.7 V

at 300 0 K takes the value

of 10 V at low temperature

as shown on Fiq. 12. -

-20 -L A

Character -'t 7(-  C, ".2-

p

. ... °.. . . . .. . .. . . .•• . . °•.-. . . . -. o . .*•°..*. -o•o.*I. . . -. .. -. . . -= . . -•. . . . -. '



c.) Transistors 

s
N-channel, dual crate,
MOSFET, transistors are

the most aDPropriatp onfes 
ifor operatinq at low W;

temperature. 
!

As observ.ed on Flo. 12a,

by C, they are improved
at low temperature.

'A

35

U I -
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Oscillator

A Colpitts-type-oscillator was chosen with a dual gat~e MOSFET transistor

[71. The second gate is used to control the excitation level (Fia. 13). This

oscillator was operated at 1.2 OK.

C.4 100nF 32

FiM 13Osclltio lve rrstalo h cntrlld s~rqC32

5- -A - F



F ig. 14 shows the dependence of the output frequencv on the gate n 0 2 tension

level. In order to improve the frequency stability, it is necessary to reduce

the oscill1ation level as mujch as possible.

GATE 2
VOLTAGE --- --- ----------

(V)

3.......................----.~---

-- ------ ---

IF/F (ppm)

Fig. 14

These results are preliminary. The oscillator is now in operation and fre-

quency stability measurements will be in prornress in the near future.



GENERAL CONCLUSIONS

Two aspects were examined during the three steps of this grant

- the noise behavior of quartz crystal oscillators

- the feasibility and performance of a low temperature quartz frequency

standard.

a) Two different noise phenomena are observed in the fluctuations of the

resonance frequency of a quartz resonator.

- 1/f2 random walk noise which is quite well understood and can be attri-

buted to temperature fluctuations.

- 1/f flicker noise, which is the main object of the stud-. A clear cor-

relation of 1/f noise with the unloaded Q-factor, i.e. the internal acoustic

loss, was found. The I/Q4 dependence law was explained theoretically by the

assumption of fluctuations in the thermal phonon relaxation time constant.

This important result can be a quideline for the complete understandinq of

1/f noise I The main point which remains to be demonstrated is a 1/f noise

spictrum in the fluctuations of the phonon time constant : this presupposes

the calculation of this time constant which has not yet been done.

On the other hand, the influence of impurities was also studied. It was shown

that fluctuations of their relaxation time constants can -,so lead to 1''

dependance law. It remains to be shown experimentally that impurity relaxa-

tion contributes to the general 1/f noise hehavior of the crystal. This would

be possible by measurement of 1/f noise at 50 K for instance at the maximum

of %a' ion relaxation.

Finally the noise behavior was examined at high powers, when the cr\stal :)e-

comes strongly nonlinear and experiences chaotic behavior. A ve:ry la]rct: nra'-it,.

increase was observed. This noise has a white spectr.mm and ,pparert I ,fe<

not lead to 1.,'f.

b) The measurements of frequency stability of a quartz rr, stai resnatu .

and/or oscillator at low temperature were mainly perfirmed rv t,sinr. t ,er-

cept of a dual crystal passive svslem, i.p. a passive qu:artz re.,ocnatir ir, -

quid helium and a phase locked oscillator at room teq-orit ire. ;hiF Fu!l)uec:

- Ch-

. .'



- accurate temperature control in the helium bath

- low noise electronics

- minimization of cable effects

- study of the properties of Quartz at low temperature.

The results obtained with a mediun quality quartz crystal exhibited improve-

ment of both short ,10-100s) and medium (1 day) term stabilities by one order

of maqnitude, and this without any preaqinq.

Stabilities in the range of a few parts in 10- . at short term and 10-12 per

day seem to be feasible with hiah quality crystals. Riaht now this supposes

principally a better stability of the electronics at room temperature.

The realization of a complete oscillator in liquid helium was undertaken. The

advantage is simplicity and the avoid -ce of external effects at roof empe-

rature. The oscillator is made and stability measurements are in pronress,

but results were not yet available for inclusion in this report.

As a brief summary, the following points are considered as the main results

of the program :

- 1/f noise in quartz crystals is related to acoustic attenuation

- it follows a 1 'Q law

- assumption is made of fluctuations of thermal phonon relaxation time

constants

- impurities can contrihute to 1 'f behavior

- operating a quartz resonator at low temperature improves both short and

medium term stabilities by at least a factor 10.

I

. . j
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I- FAST WARM-UP SAW OSC!LLATORS

GENERAL PRESENTATION

When a quartz crystal plate is subject to a charnge of t'he ambient temperatu-

re, it underaoes a time-dependent inhomoqeneous temperature distribution

which causes Derturbation of the Freouency. This is called dynamical thermal

beha ior. In bulk reso ntors. cuts are found which are not sensitive to

varyinq temperature.

The purpose of the present study is to determine the dynamical behavior in

SAW oscillators. in thin quartz plates, thermal diffusion is oe-med predomi-

nant in one direction. This leads to a one dimensional model which was pre-

sented in a previous report (June 19B2). it appears however that in a finite

plate, diffusion alono another direction could modify the tempt ature repre-

sentation and the spatial repartition of stresses. The time-dependent inhomo-

geneous two-dimensional temperature distribution in the quartz is obtained

from the uncoupled heat conduction equation subject to the appropriate boun-

dary conditions. Since the heat conduction is sufficiently slow compared to

the speed of elastic waves, the mechanical inertia terms can be neglected in

the stress equation of motion, reducinq them to the quasi-static stress eQua-

tions of equilibrium. The time-dependent, thermally-induced deformation state

is obtained from the static linear thermoelasticitv.

A perturbation analysis of the equilibrium equations for small vibrations

nunerposed on the static thermal hias has been performed.

The resultino chanqes in wave velocity show that Ivramic therma' behav-cr oF

SAW devices s rove-fr cv to ter-ts

- the first resulting direct iv from the '.rer-al o raients within the crysta'

is prooortional to the temperature certurbation. it can be described by 3

coefficient a and it points out the erect. of r temperature oerturbatian

4hich is time-dependent or ti-e-Indeoendent.

- the second one, rlated linearly to the time rate uf chanqe of measurecd

temperature, introduc-s the Ivnamic thermal coeFficient n.

- 1i _-
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THERMOELASTIC THEORETICAL MODELS

1) Two-dimensional temperature distribution

A diagram of the crystal plate is shown in Fig. 1 alon with the associateo

coordinate system.

x 2  The x, coordinate axis is nor-,a13

to the major surfaces of the pla-

i te. The iencth of the plate in

01 +L the 0x3 direction is large compa-

red with the cross sectional ci-

mensions 2h x 21
- H

Fig. I We discuss two special cases of

Cross section of the plate heating which could represent

experimental thermal perturba-

tions.

Case I Lateral heat tne

The rirst case was mentioned

in the previcus -eport. Pres-

criben surface temperatures

'1 ' and 2,t a-e at thP

ond fairt- \ iv 2 -

- 4.. ,. 2'. A linear neat

transfer ithi tnhe amnient -r-

F q. 2 dium at zeru temperature ,c-

rrlemat ic' di;icram of the plat at finq on 1rl ;a the of . r d(r a,!, -,
aIth lat, r-il stjrf:3ces. Heat transfer occujrs

-e x, zCID [ h Faje-,at the V× 2 t h faces. .... m'jr-! ' .-

,v te to II r co.t

2

2 ,,x 2 c * t -2 c. x

--. * . . . . . . . .

"" P = '  × = - - ': : h ."

F . -" -- - "v . - . . - . .' - " - • - . . ' - " - - -- : .' : . -' .' : '. " - - - , -- . - , '- .- ., : .-- - -: . - -. : : :,- - -: .: :



_X 2
2 _± He q x2 -h -,Z < ,. x c

9(X1, 02, 0} 0 at t :0 !d

2=
k :2./Xl is the ratio of the thermal conductivities in tle x2 and xj direc-

tions. < is the thermal diffusion constant in the x2  iLect-on and H is the

linear heat transfer coefficient.

The analytical solution of the diffusion equation '1a) along with the initial

condition (Id) and boundary conditions (lb-1, is deduced From the analytical

solution obtained with j and 2 considered as time-independent, by Duhamel's

theorem [i. The result is

co s n 2 1

9(xl,x2,t) 2 Hh C n Y 2

2 2~ 2
n COS an h (an+H h .. h

sinh kan(xlt) sinh kan(,-x

t + 2(t) ,''2

sinh kan 21 sinh kan 2t

- i+1 1t(t) sin- (x1+3 + t sin- (Z-x _
L 2W 2 1 t X+)+~-

izI 2JZ Ks 21 22Y

with
B 2

a + (in,"Z2 (3)
n

and an are solutions of the transcendental equation

anh tan anh = Hh !4)

Relation (2) exhibits two terms. The first one is proportional to the applied

temperatures 1.Vt) and 2 (t). The second one is linearly related to the t.me

rate ' ' ( and "2 (t-, c t temperature oertur t b cn.

Express!on (2) 'as been caiculatpd for quartz plates 2 mm thick and 2 cm

lona, a liner transfer such that Hh 50 with equal apolied tcmoeratures

Th t - 2 =((K')

_ , .. _ -".' .



Figure 3 shows the actual change of the part proportional to 4(t) for fixed

values of x2 = 0. and 0.9 mm as a function of x×.

Fig. 3

a) x2 = 0 -m

0.5 b) x2 = 0.9 mm

a Hh = 50

Y-cut

X
x

-10 0 10 (MM)

Fig. 3

Note that the temperature decreases very rapidly near to the plate ends, so

that temperature variation is negligible in the interior of the plate.

Furthermore, the part pruoortional to 1(t) in (2) is very small. Consequently

SAW frequency chanqes are negligible cf. section II).

A slight modification of this problem consists of maintaining faces at

<2 = th at (:Dt) and - 2 (t), with thermal dissipation occuring on Lateral

faces. Temperature transmitted inside the plate is, to a qood approximation,

represented by the one dimensional model of an infinite extend plate with

faces at Ijt) and z2 (t).

Case IT Lower face heatinq

S -t seem -cre r .' erest i,:;

* to $3tUcV tne casp or
f. 4 ,x crine: t icoeraturn , t:r

the fre rp - .

Fin. 4i Oc'r~t1F, tp mce rat, me ['. a

F .

the 'nwpr surface. Heat transfer o)ccurs ",near tar sfer n t e
the three other F aces 1-,;i I-,R r f; (e



The temperature e(xl,x 2 ,t) obeys to the equations

2 2 1 a 0 -h < x2 < h+ -- 0 -hx< 5a)

2 2 23x 2  k 5x t -i< xI <

I

± X1  + He 0 x: - i -h < x2 < h '5b)

X2 + He 0 x2 : + h -1 < x1 < 5c)
6x2

e = O(t) x2 = -h - < X < i (5d)

Solving the equations (5) leads to the temperature distribution

e(x,x 2,t) 2H Cos k anX1  _ 1 u i2 2 -2 "
n i cos k anz (C~n+H x Hi 2h"

u. .(6)

sin 1 (x2 +h) / (1 - sin 2u .'(2u ( -6

for -1 X x +1

-h < x2 4 +h

with

2 2  2 2
k a+ ,/h(7

n

an and uI are solutions of the transcendental equations

a tan a I Hi (8)

-u cotan u + 2hH = 0

From relation (62, tenoerature 8(x2,t) can be written as the sum of two

terms, proportional respectively to t(t) and arid such that

--

.. 23

. .." " .- . . .- . . .. " " -- -. - "- - - .. -.- - . " - . .. .. . - -. .- - ". '. . .. . .



Charts have been prepared giving numerical values of the temperature e. Figu-

res 5a and 5b show 9 and 0-as a function of xI for some x2 values. The li-

near transfer coefficient H has the same value as in the previous case.

aI

bI

I.=1cm

h 1 mmv

a1 x2 =- 0.5 mm
-10 0 10 1I

u b~ -x2 =0. mmr

rij. Da c; x2 =+ 0.5 mm

H. =500-

y rut

0~

0.05

bI



and 04 as a function of x2 are shown in Figures 6. Quantities and 89

are practically constant in the main ranoe -x f < X1 < Xf., xKf being approxima-

tely 8 rmin in the case of a plate 2 cm long.

Moreover, 0~ is linear along the plate thickness and 01 can be advantageously

represented by a polynomial of the variable x2 with degree 3.

=1cm

h 1 fm

Fi4. bab)x Bm
b) xi =7 mm

-I I Y cut
10

(mci

a

Fig. 6b

. .



2) Two-dimensional thermal stresses in plates

Thermal stresses arise in a heated body because of the non-uniform tempera-

ture distribution and the crystalline anisotropy (at least for free platesl.

A twn-dimensinnal thermoelastic problem is considered for temperature distri-

butions of the form e(x1 ,x2 ,t). For long plates, the resulting problem is

plane-strain L21

ul = uj(xj,x 2 ) u2  : u2 (xl,x 2 ) u3  0 (10)

Two-dimensional formulations

A system of approximate plate equations for the determination of thermal

stresses in thin piezoelectric plates is performed by the thin plate approxi-

mation due to Mindlin L31. Referred to the Oxlx2x3 coordinate system, displa-

cements ui are developed with respect to x2 powers

3 (n)ul. = ,. x2 u, "

n-O
3 L
3 ~ n (n) (1u2 = L x2 u2n=O

u3= 0

The n-th order plate strains take the following form

S! n )  1 ,u(n) (n) + (n(n) Uk+1 )  + 6 2k u,(n+l)

and the linear thermoelastic constitutive equations are written

T : C S v G(xl,x 2 ,t) 13,
ij ijkl kI ij

The thermoelastic constants vij are related to the ccef"ic:enrts of !irnear

expansion a kt and the elastic constants C by the usual relation

kIj 1 Cjjk Ik"

-ijkl 2k-

(7)6



The static form of Mindlin's equations may be written

T ( n )
- n T F(n) = 0 n 0, ( 2 15)

iJ,i 2j j

where i takes the value 1 and skips 2 and

(~n) 
+hT~n  = f x2 T ij dx2 '16'

zj -h

F ( n )  n I+h1

= 2j _1

The depende-nce alonq x3 has been disregarded.

With (12) and (13) the m-th order stress resultants take the form

T2(m) C k 2 (n) v (m) (1VIj n:Ol mn SkI i3

n-0

H = 2h m+ n l / (m+n+l) m+n even (19)

= 0 m+n odd

e(m) denotes the quantities

(m) +h20
e f x 2 e(xl,x 2 ,t) dx 2  20

-h

The boundary conditions on the main surfaces

T22(4-h) 0 T12 (+h) 0 (21

and on the end faces

T ( ) 0 (22)
ij

are that of a free stress plate.

",.,I LZ _L,_J.,'--.'..-L.- ,.'z2.,, .. ". "._L"*, " .. t.-.'.........,. ................. "...."........ '".""".""'".".."".".""..""....."."......"".."'



Calculation of the displacements

a) Basic equations

The equilibrium equations (15) may be expressed in termsc of strains nv

means of the strain-stress relation (18). The strains in turn can be written
(n)

in terms of displacements u (12).

Doubly-rotated cuts have elastic constants which introduce couplinq between

extension and flexure. Then, first calculations are mae in the case of

sinqly-rotated cuts, and elastic constants which couple extension and flexure

are taken to vanish in the constitutive equations. So, from i15) we rry write

the extensional plate equations in the form

T(° ) = 0 (23)11,1

-(1 _T(o) =0 (24)
12,1 22

T ( 2 )  
- 2T ( 1 )  0 (25)

11,1 12

In these equations, the boundary conditions (21) have been taken into account

so that with (17)

F~n) 0 (26)

In the same manner, the flexural plate equations are

T 0 27)
12,1

2o)8)
119l 12 0

-(2) -0(1) 29
12,1 22

The following notation

, uj u, 1 330u

has been used.

- 28 -

[,. * . . 2 ..

• .* • . . • o ". . - o - . , % "- . • . . - . , .% -. . ", -, , ', ,, -, -, - " .' -. ,° , , , , , - ., - " • • . . • . . .." ,.% °.



If relation r19 and the constitutive eouat ions (12' are introduced in
(23-25) and '(2729'  disracements u, ° )  

2  3.,-i , , U2 and u I on one hand

are Qovernea by the followinq qroup of equations

0

(0 h 2  (2), +() Y,3  
, (31riu I -- u 1+ '1 12,U 2  u- 2u ' h 'I

o2 2 266 ,2h (3) h2  (1) h' '3) ) h (2"U66 + -u 2 1 +--u C12\u, 
, -u, 9 (32.

232 3)- - 2

0)0(2 (2) )
+o)u + h u+22 2 2 2h 2

bC l( l, 4. T- u 1 ) 1 +C 2 "(-- u2 , 4. +% -u 2  .1-- ~ v

C 2 (2) h2  (1) 'h2 3 ,

66 3 ~ 1 +3 2,1 5 2,1

and on the other hand, the flexural displacements by

C (u (1) h2  h4  (3) h 24 " (3-- -h --3  I +u +('-_-h _:20 (35)
6 1 '1 12 - 2,1 2 .12

C ( h_ hh 1 ( 2) h

2 3 U2 1 5 1 3 21 2 ,1 -

C6 t 
2 (o 4 2( 2 )  011- u )  6

h2  (1) h2 (3 2 2h 2  (2) (1)
l 2 (3  u + 12 2 2, _ e 54

3 , 5 3 22T U  2h

The matrix notati on for Clk has been used.

................. "1.-

3 5 3 11

: -.: ,. . . -~~~~h ( 1).. . .. - h.. . .4,: . . : -: -: .: - - : -: - ..(-3-)-, , . .. . -: -. . -- , 2.h.2:. . - , .( 2 ) : . , . .- . . , ,"- ..j. -: , : , - . : . , - -. -
• "~~~~ [C (- .- -, l. 'o.-J''m,- u. + -I +1, C

La 12 3inu 2 3 ' 2
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t) Free stress plate

The second order differential equations yield terms am) as known expres-

sions in xj. Due to the representation of the temperature as a sum of trigo-

nometric functions (6), the solution of Eqs. (31)-(36) under conditions "22,

for traction free boundaries is rather complicated.

Some simplifications can be carried out by using free stress conditions.

In order to allow for free strain S (0) and 5(2) we take "3 " 4 1
22 22 L L

T22 ) = 0 and T(2)= 0 (37)

Reported in (24) this condition leads to

1) = M [38)
12

M is a constant which vanishes if the condition (22), T'2)(.) 0, is taken
12

into account.

From (37) and (23), (25)' we obtain P

(o)~ ~ ~ 0 2_________) * e(o h2 /5 - e 2 /3 (39)
u' li 8/45 h3

F
(2) ,. e (2 ) 2

U , I = v *"CI h//3
1 1  8/45 h 5

. 1 (o°  3h 2 /5 - e 2
41

2' 22 8/15 h3

3) , 0) 23 ., . e(2  - e h2/3
u zv) 5*I*0

2 2 22 8/15 h5

. . .. . I°
t..................................... ~~ .. . . . . . . .. . . . . . ... . . . . . . .



where
• - C ; Q* C2  -0 2 ." (4Z3Cl 11C: 1 12/ 22 C 22 : C22 I- u2Cl43

-v v C 44 =Vl I - 2 C 12 /C22 ' 2 V 2 _ v 12 CII

i
Flexural eauations are treated in 3 s-milar manrer. Then, -,n order to allow

(1)
for free thickness strains Si2 ), we assume

22

This leads to the flexural plate equations

(1) = '1-6

T'22

T ( ° " 0'2 "

12

T (2) -49o
12

and then

(1) *
/?) e V2  1501
u

U 2  - 4'" h 3 C

22

u)! -3 u ) 3 3 P, -

01 --- z~

' 5 2 h 3  C7I

2,1 - - U

When inteqration , 1ll rewect to xI is performed in the above (x[-Xressions,

intenratinn ccnstart: ar - introduced in u, and u2 re[,resertio Lr1. ar'

trans-)Ir. a t .r e n 'at ailong the x, axis. We can set tt1 to er3 without

loss of qPnera iv. 'frover, inteuration constants arpear r-c On, and.

u vanish a a confePuence nf conditions (21) T) _' , 0 and T'= N 0.

• I. - c . . . ... " L ' , ' "



As previously menrtoned, displacements, strains and displacement gradients

are obtained in a sum of trigonometric functions which is not suitable for

numerical calculations.

An attempt to simplify the above expressions consists of writing the tempera-

ture distribution in a more convenient form for purposes cf sensitivity cal-

culations. This form is a polynomial obtained by polynomnial reqression in two

dimensions '(xi and x2).

r Polynomial representation of temperature distribution

Charts For temperature indicate that the temperature in the main part of the

plate is almost constant along the xj direction ; the region near the end

faces can be replaced by a polynomial in x1. Consequently, without any loss

of generality we May/ introduce the somewhat simplified temperature represen-

tat ion given by a po itomia), the coefficients of which are given by a polyno-

rnial regression. For the particular case of interest of figures (5) (6,e

and 91, are written in the respective forms

-0.008 4 l 0 ( 2 h 4

,-0.01 < xi -0.008

9 -x,-h)(-0.Ci071 -1.
9 1x -120x2, 10~

0.-0.10 3 +30. x + 1.023 10~ 3.5iU
2

F 'X 5.33 + 231t0 xj + 573.3 1,0 _x2 + MY..S10x'521

'he wholec ranrie of xl val[tes is rapidly obtainedl. o- rder moments of ire

:-~;1 1i yv pe r f orme d. Accnirdingly, we substitute ',rom elat ions ' 54 - 7 into

'qs '39 - 142) and 50 - 53). Specific calculatirns ha',fe tiefn mrade for quaqrt:

)iatF-q 2. rmm thick and 2. rm long and comparec, to the ipe.ral ralcu~at innF

Derformed 4iit"OUt approximations.

.~~~~ ~ ~ .. .-



SENSITIVITY OF SAW TO TEMPERATURE GRADIENTS
0

!. Calculations of sensitivities

When a quartz resonator Iw h ' .... "

natural frenuenL a cire't thermal effect ty u ans e tatn rnC ';t.-

rial temperature cofficients like li ,nd an indrer' tt

fect induced hv nor,:oearities jf the quartz nrvnt

Both effects can be considered as a bipas applied on he WSt)e sLDte

which modifies the second order elastic constants Cii,,-  A ,.y,

natural state coordinate system 6' the nonlinear r : atcr1

written

0 Uitt- ikjm j. 7 'k

where p0 is the scecilic mass and u i the dimsplace-rer, ' ,

quency vibrations.

The boundary condttions correspondinq to a stress -ree aureate are

Alkjm UJ.m : 0 for x2 = 0

A are the iudiied elastic constants, which can be written in Ile form

ik m C ik'm ikim

where the H kIM tensor is considered as a small term with respect to the se-

cond order elastic constant C It can be related to the te'-oeriture am

the thereal stresses and strains in the fo!lowinr wav

H + ~ .,- C r nI :D '.. -Dm 'Uikm-jcoom .cfkinKJ >v kmocuv -ik'in ' m ?

where t S and J ".r .spertil.elv the t. ermcc\ namcc ten.... Le -

rO'a c .n: r ~ ;c .:k:-O ace, ent .sra orts] cn," ced a t,---ceratjro'.

In the case SAW ,:scc Ilatns, the -c'.irr cOUn n f the = &_,' wit-

nll- hlriH fr~nn~ct~f wave, deenprds ar t- Itn-t) npne ,rat ,no. 'hen 'ertjrhat

ter-s; L i 'Are a fur ct nt, on th,' -. 3 v9c'I,  x2 an! c-an hoe wrc'ton 'O-

4inq the re -t ron

*. ... .......... ....:. ._ ....... . . ... .- ,. -_.,..-.. . '..



> usinc i perturcat ion metrod 5 D relat ive requercv sniuts are caicu-

atea

0 0'p P 0 Cq .p c
.0 U A uj trn n.

n p~q q -c i- a-1,1
p q '0

WoA 00 po C C

2 p p di P
00 

*pyq Pp -q

0 oa'S/ KsAst n r and s re caracerisic uantities of surface scoustic wa-

yes propaoatinq in a nonperturbed medium

t

0 0 o O(S) 0 WaV

S

40

Sioce the temperature distribution is prooortional pot\to and [oartl\

to the tim.-e derivative *t (see Eq. '6 of previous section Fare3- 0e h

pertrhaton trTS ,, ave 1-4o parts

Hikijm plk:m wt + hiKirnj Kt 6<,

cltiefrecuency shifts u)wo are calculoatec:~ , 1,,t , : Ccr rih_-u-

t ions

n r77- - 1 t

* T -~mer a SA,~ asrli atcr is sutriit tpd a o~ r a~O as jr

uc~~~0t. lan sf -em rte ste P rs n C nrtie2il

~tI~rei.. -r nir ~ ire r tJe



Some comments about coefficients appearing in Eq. 67 may be given

- coefficients 2., b0, c0 describe the thermal behavior of the quartz

when it experiences a homogeneous temperature variation qiven by T.

- a-coefficient determines the frequency chanqe resultinr from a local

temperature perturbation . which could be time-dependent or time-indepen-

dent. This local temperature perturbation induces tn the plate an inhomoge-

neous temperature repartition followed by stresses ano strains. This leads to

new properties of the deformed crystal reflected by Hlkjm terms (in the place
of C ikjm).

- a-coefficient is related to the time rate of change of the perturbation

and its effect vanishes when aforementioned rates become neqligilp.

Frequency shifts for singly rotated cuts

Coefficients a and a defined in relation (66) have been evaluated in the fol-

lowing cases (see Fig. 4)

- Time varying temperature D(t) is applied on the lower surface of the plate

- Some linear heat transfer H occurs on the other sides of the plate.

Results obta-ined by the two dimensional model are shown in Table 1. The nor-

malized transfer coefficient YH is equai to 500.

cut Y, X ,AT. X ST, X

a D , ppm/K ) 0.09 0.06 0.067

D (#isi) -0.11 -0.10 -0.09

a ppm/K ) 0.096 0.065 0.07

*a (is/K) -0.13 -0.13 -0.11

Table 1

Theoreticni values of a and a ror singiy rotated cuts



Coefficients a. and aD result from numerical calculation of dynamic thermal

sensitivity in which temperature distribution is given as the ceneral solu-

tLion of the thermal diffusion equation (see Eq. 6).

Coefficients a and a are calculated in the same way but the temperature
p p

distribution is replaced by the polynomial expansion obtained by polynomial

reqression in two dimensions as indicated in the former section (see Eqs.

54-57).

Comparison between aD and ap coefficients on one hand and ao and ap coeffi-

cients on the other hand shows that for each cut obtained values are in good

agreement and it seems reasonable to use a simplified repr~sentation for the

2-dimensional temperature.

It appears that a-coefficients are weak and their influence on the static

behavior is not important.

From an experimental point of view, measured values of dynamic coefficients

of SAW devices do not validate the adequacy of the two-dimensional model.

Nevertheless, we present a simulation of frequency temperature curves.

I
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2) Simulation of the dynamic thermal behavior

From Table 1, frequency-temperature characteristics were calculated for

Y-cut, ST-cut, AT-cut for some time rates of change of temperature.

a) Y-cut, X propagation •

Af 6 96 2 66(T) 24.3 10-6(T-T ) + 18.7 10-9(T-T ) + 0.091 10-  e(t) - 0.11 10-6 :(t)
f0 0

T : 25 °C AT = .1 °C and (t) z AT sin Qt
0

$(t) = AT.Q cos Qt

where Q is related to the time varying rate v of the temperature by

v =Q . AT
dt

AT .1 C

a) v = 130 K/mn

f (b) v = 260 K/mn

c) v = 390 K/mn
//f.5 a"

/ b
cC Velocity values are

0T(oc) large and experimen-

tally not realis-

tic. That means that

the Y-cut is very

insensitive to tem-

-1.5 perature gradients

compared to its sta-

tic thermal beha-
• -2.5 vJior.

Fig. 7 Theoretical dynamic thermal behavior of Y-cut.
Dashed line is the static frequency temperature

characteristic.
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b) AT-cut, X-propagation

Static frequency-temperature characteristic of the AT,X-cut presents a

turnover point at 65.2 °C. Temperature gradients introduce a drift of the

turnover point due to the a-coefficient. For the AT-cut, a-coefficient is

equal to 0.06 10-6 /OK which would correspond to a new turnover point at

65.9 0 C.

Dynamical thermal behavior of the AT-cut is computer-simulated around this

new turnover point for several temperature variation velocities

f .3 3 (TT - 41 10-9 (T-To)2 + 0.06 106 (t) - 0.10 106 4(t)
f0

with 'C(t) = AT sin Qt

20--'i (10- 9 )

250

AT = 1 'C

9 59 6.9 a) v = 13 K,,'mn' .

b) v = 26 K!mn"

c) v = 39 K/mn
I

-20 "

Fig. 8 Theoretical dynamic thermal behavior of AT,X cut
Dotted line is the static frequency temperature

characteristic around the new turnover point (65.9 °C)
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c) ST-cut, X-propaqation

The turnover point of the static freq~uency temperature characteristIc of

the ST-cut is at 25 CC. As for the AT-cut, the (t) term leads to a ne-w turn-

over point at a temperature of 25.8 00.

Computer simulation is mide around this peculiar temperature value For seve-

ral temperature variation velocities and curves are plotted in Fig. 9.

Thermal behavior of the ST-cut, X propagation is described by the following

relation taking into account both static and dynamric effects

Af 9 2 12 36
- 39.6 10~ (T-T)0 + 58.3 10 (T-T 0) .6 ~ 't 0 g6$

with D(t) LAT sin Ot

00

T= 2 0 C

a AT =1 0C

b) v 3,6 K/mn

-10 c) v =5,4 K /mn

-20

Fig. 9 Theoretical dynamic thermal behavior of ST,X cut

around the new turnover point (25.8 DC)
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Frequency shifts for a doubly rotated cut - FST-cut

In the case of singly-rotated cuts, terms in constitutive equations which

couple extension and flexure are vanishing. In doubly-rotated cut calcula-

tions, these terms are to be included in equations. Although the previous

two-dimensional stress calculations are not adequate for doubly-rotated cuts,

we still assume that the assumptions used in our calculations hold for the

FST-cut (( = 6 020., 0 = -41 030, and F = 26°) and corresponding results of

sensitivities are presented in Table 2.

Calculations by Calculations by
FST-cut analytical expressions polynomial representation

(D) (p)

a (ppm/K) 0.17 0.15

a ( s/K) 0.06 0.09

Table 2

Theoretical values of a and a for FST-cut

I
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To illustrate dynamic thermal behavior of the FST-cut, computer simulation

was performed around the new turnover point co = 29.2 OC. Results are shown

in Fig. 10.

-f -0 -9 (TT )2 + 10 10'12 (T-T )3 +~ 0.17 10-6 -(t) + 0.06 10-6 D(t)

with cD(t) =AT sin Qt

To =25 00

AT = 1 oC

b) v =10 K /'mn

-10c) v =15 K/mn

Fig.10 Theoretical simulation of dynamic thermal behavior
of the FST-cut. Dotted line is the static frequency-temperature

characteristic around the new turnover point (29.2 Of'\

In conclusion, the FST-cut exhibits sensitivity to t'ime-varving temperatures

of the same order of magnitude as for singly rotated cuts, despite the

fact that the moudel neciects terms couplinq extensior and fle\ure.



GENERAL CONCLUSION

The stress state caused in quartz crystal by thermal perturbation has been

analyzed for its effects on the temperature stability of SAW devices. A two-

dimensionnai model was developed in order to obtain first ; temperature dis-

tributions which are presented as temperature charts, and second ; stresses

induced by thermal effects.

S

Corresponding dynamic sensitivity was obtained by a perturbation method and

characterized by two coefficients, the first one a, directly related to ther-

mal strain state, the second one a reflecting the response to time rate chan-

ges of the temperature.

Computer simulations of dynamic thermal behavior are made for singly rotated

cuts (Y, AT, ST-cuts, X propagation) and the FSI-cut and For several values

of temperature time rates. We note the small dynamic thermal sensitivity of

these cuts where a is smaller than a measured for SC-cut bulk wave resona-

tors. We also have discussed the expected impact of dynamic coefficients on

the frequency-temperature characteristics.

It should be noted that theoretical a and a coefficients are derived in the

restrictive case of a free plate. Accordingly, mechanical stresses induced by

the external mounting have been ignored in this treatment. The description

must be extended to incorporate effects such as forces due to the differen- I
tial expansion between mounting and plate. The specification of prescribed

boundary conditions in any experimental situation is a peculiar problem and,

in many cases, its solution may require a three dimensional model.

At this point, only few experimental results on dynamical temperature effect

in SAW devices are reported in the literature. To confirm the validity of the

theoretical model, experimental values for several cuts must be obtained.

Consequently, it is necessary to consider dynamic thermal experimental impli-

cations for SAW oscillators built in the same technoloqy.

Systematic experiments must be performed to move forward on this problem.
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As a brief summary, the following points form the main results of this -•

program :

- dynamic thermal behavior of SAW devices is due to direct influence of tem-

perature gradients and to stresses induced by thermoelastic properties in-

side the free plate. 0

- theoretical dynamic temperature coefficients of SAW devices are smaller

than those measured in SC-cut bulk wave resonators (1 to 5 10- 7 s/K).

- mechanical stresses due to the mounting have to be included to model com-

pletely the thermal behavior of SAW oscillators.

- systematic measurements are necessary to confirm theoretical results obtai-

ned during this program.
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