AD-A149 694

THE FOUR FORMS OF OMEGACU)> NAYAL POSTGRADUATE SCHOOL
MONTEREY CA B J MACLENNAN DEC 84 NPS52-84-026

UNCLASSIFIED F/G 9/2 NL

R
: o < ©
4 - N
Y.

- S EEF

2 S EFEERPI

: 2l

1.8
I

I
I

_——

-
. o

SN,
L.

1.4

2 0

e
——
—
———

Pk
PP

Ny

lo'
 ——
S ———
——
——

L
‘ol

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

I
I

AD-A149 694

OTI6_biLE Cuky

NPS52-84-026

NAVAL POSTGRADUATE SCHOOL

Monterey, Galifornia

THE FOUR FORMS OF @

BRUCE J. MAC LENNAN

DECEMBER 1984

Approved for public release; distribution unlimited

Prepared for: Chief of Naval Research
Arlington, VA 22217

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Commodore R. H. Shumaker D. A. Schrady
Superintendent Provost

The work reported herein was supported.by Contract N0OO14-85-24057
from the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

UCE J. MAC LENNAN
Associate Professor and Acting Chairman
of Computer Science

Reviewed by: Released by:

Ct J. MACL
Acting Chairman
Department of Computer Science Policy Science

..............

C oy

e
Lo e e
el e el -

l S

T

Wk

..... B e e e i i et i ol S e i S TR 2

UNCLASSIFIED

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

REPORT DOCUMENTATION PAGE BT Ot Rt Do
T REPORY y'UMBER [2 GovT acctssion wol & RECIPIENT'S CATALOG NUMBER |
NPS52-84-026 JQL“_A 149 6§%
o

4. TITLE (and Subititle) S. TYPE OF REPORT & PEMOD COVERRED

THE FOUR FORMS OF g B

m
8. PERFORMNG ORE. REPORT NUMBER

7. AGTHOR(®) T ESRTRAZY ON SRARY nuusENeG] 0%
f =
BRUCE J. MAC LENNAN NOOO14-§5-24057
9. PERFORMING ORGANIZATION NAME AND ADDRESS . PROGRAM ELEMENT, PROJECT

AREA & WORK UNIT NUNMBERS
Naval Postgraduate School
Monterey, CA 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE 1

i December 1984
Office of Naval Research
Arlington, VA 22217 15. NUMBER OF PAGES

T4, MONITORING AGENCY NAME & ADDRESS(i! different fram Centrelling Office) 18. SECURITY CLASS. (of thie repont)

! rWc&'a‘su"‘v’uciﬂ'on7oononﬁn¢' . | _ 1
3 scnfouLt

16. DISTRIBUTION STATEMENTY (of this Repert)

17. DISTRIBUTION STATEMENY (of the sbetract enteved in Dleck 20, I different frem Repert)

19. SUPPLEMENTARY NOTES

19. KEY WORDS (Centimue on reverse side If necessary and identify by block number)

Object-oriented programming, production rules, production systems, concrete
syntax, two-dimensional language, pseudo-natural language, knowledge
representation, natural language interface, logic programming, simulation
Tanguages, knowledge base, office automation, rule-based systems

Laa 4
e

ASR AN

IRy
-~ \ RS
i T:, - 20. ABSTRACT (Cantinue an revesrse side it necessary and iduntify by bioek sumber) “‘e describe four alternative
= syntactic forms for the object-oriented, rule-based language Q. These
ti notations are all different concrete representations of the same abstract

language. The first notation uses a predicate logic style. The second has a
stylized natural language format. The third extends the second by providing
anaphoric reference. The fourth form drops the linear syntax of the first T
three in favor of a two-dimensional format based on the idea of a form.c\ -

\

DD , on'3s 1473 cormom oF 1 nov a8 15 omsoLETE UNCLASSIFIED
$/N 0102- L& 0l4- 6601 SECUMTY CLASRPICATION OF 116 PAGE (Wien Dise Eneeresy

...

.......

v -

' . ' “ CRL)
. « ! '.' .‘.c._‘-. ‘-.\.‘

PTG
P.-' at

Accession F;r

Unnnnoiuneed

THE FOUR FORMS OF 0
Justi:"ium.iorv

Alternate Syntactic Forms for an Object- Oriented Language -

.......

NTIS CRART ‘
DTIC T4R

_——————

d

o

Bruce J. MacLennan _Distrire ian,

Computer Science Department

Dist | o= g
Naval Postgraduate School 1 ‘

Monterey, CA 93943 ‘A:[!

1. Introduction

In this report! we describe four alternative syntactic forms for the object-oriented language 12, described in
our View of Object-Oriented Programming (Naval Postgraduate School Computer Science Dept. Tech.
Rept. NPS52-83-001, Feb. 1983). Additional information on a prototype implementation of {I can be
found in Heins M. McArthur’s Design and Implementation of an Object- Oriented, Production- Rule Inter-
preter (Naval Postgraduate School Master's Thesis, Dec. 1984).

It must be emphasized that these notations are all different concrete representations for the same
abstract language. Thus, for example, rules could be entered in one form and displayed in another. This
permits different users (or the same user at different points in time} to look at s program in different
ways.

The first syntactic form, {3, uses a predicate logic style. It is also the simplest to parse. The second
and third styles {0}; and ;) have a stylised natural language format. As a result they are less compact,

but more readable to computer-naive users. The fourth form, f1,, drops the linear syntax of the other

three, and adopts a two-dimensional format based on the idea of a form. It is the least compact, but most
amenable to use by computer-naive users.

We describe each of these forms in the body of this report, and illustrate the forms with a simple

example. A formal grammar for each format appears in the Appendices.

1. Work reported herein was supported in part by the Office of Naval Research under contract number NO0OO14-85-24087.

b OAva T g -

I PVALICClily Codes J

' Soullindfor 7T
i
i

T ———————

—

B B RARSMM RO o MMME

M S A

The cause part of a rule describes a situation in terms of one or more conditions, which represent the
presence or absence of relationships between objects: -:'_{
]
condition ;, conditiony, . . ., condition, L4
All of these conditions must be satisfied before a rule can be applied. q
'.::'.3

A condition for testing for the presence of a tuple in a relationship has the form: "]
.

primary (pattern,, pattern,, . . ., pattern,) s

The primary is an expression (usually just an identifier) that evaluates to a relation. The following list of -:::
*]

patterns defines a tuple pattern. Each pattern in the list can be either an free (i.e., undefined) variable, or -
an expression containing no free (i.e., only bound) variables. An expression is evaluated during the '_::;,;:;
*.\-,:_'1

-2- T

-9

e o

AN

e e T e N N A e e e

3. First Form

The first form, {1, is based on a predicate-logic style notation. It will look familiar to readers acquainted
with logic programming languages and production rule systems. The basic construct is the rule, which

has the form
cause = effect

The cause describes a possible situation in a space of objects connected by relations. If that situation
holds, then the rule may be applied, which means that the actions described by its effect part will be per-
formed. Rules are executed sndivissbly, which means that it is guaranteed that the situation still holds

when the actions are performed.

There is normally no order implied between rules; they can be tested in any order. However, rules can

be connected by the word else when a particular order must be imposed:

cause; =» effect,

else causey = effecty

else cause, = effect,

In this case, the second and succeeding rules are tried only when the preceding rules have failed.

matching process, and matches a value equal to the result of its evaluation. A free variable will match
any value, but becomes bound to that value during the matching process. The special free variable ‘—'

can be used to match anything without binding a variable name.
A condition for testing for the absence of a tuple from a relationship has the form:
- primary (pattern,, patterny, . . ., pattern,)

This condition succeeds only if there is not a tuple of the specified form in the relation that is the value of

the primary.
Finally, as a convenience we permit cancel conditions:
*primary (pattern,, pattern,, . . ., pattern,)

This tests for the presence of a tuple of the specified form, just as the first kind of condition, but it has a
side effect of deleting that tuple if the rule is applied. Although, this could be programmed explicitly, the

situation is common enough that it is important to reflect it in the notation.

T v v

The effect part of a rule is composed of a sequence of transactions:

transaction,, transaction,, . . ., transaction,

These transactions can be performed in any order or in parallel. The transactions are of four kinds: asser-

tions, denials, calls and sequential blocks.
An assertion is a transaction of the form:
primary (ezpression,, ezpression,, . . ., ezpression,) *]

Its effect is to add to the relation that is the value of the primary the tuple <V, V,, ..., V., >, where
L each V; is the value of ezpression;. Typically these expressions contain variables that were bound in the

;;-" cause part of the rule.
A denial has the form of an assertion preceded by a negation sign:
) —~primary (czpression,, ezpreasiony, . . ., exzpression,) - 9

Its effect is to delete the specified tuple from the specified relation. If this relation does not contain this

. - v . Yy T ‘_'-»‘}_‘f.ﬁ_'ww_.“. 'ﬁiﬁ?'.-“. TLTE LT L T ‘,"}
; =]
: T
) 2]
tuple, then an error condition holds.
A call is a transaction of the form:

r -
i -
" primary { ezpression,, ezpression,y, . . ., ezpression, })
2 o]
- 4
- Its purpose is a form of synchronous communication performed by sending a message through one relation, .
. 1
l and waiting for a reply to be returned through another relation. For example, the call T
P{E,F} :
-

has the effect of performing the assertion
P(a,E, F)

Here a is a newly generated relation that will be used for receiving the reply. This assertion presumably

i requests some actions to be performed by other rules (which are watching P). When the actions are com-
¢ <
. :
_ pleted, an acknowledgment or reply will be placed in the s relation, which permits the calling rule to i
- complete. Note that rules containing calls in their effect parts are not considered indivisible. .
F
‘ The last kind of transaction is a sequential block, which has the form:
:' { statement,; statementy; - - - ; statement, }
i The effect of this construct is to execute the component statements in order. A statement is simply a
- <
rule, simple or compound, with the additional characteristic that its cause part (and the =») can be omit- Y
ted. This reflects the fact that in a sequential block the performance of actions may be conditioned solely .-_*
~)
° on the performance of the preceding statements. 1
; A user normally interacts with an {} system by typing statements. Thus the form of an f1 terminal y
session is: ;
» statement ;; . :
- .<
statement 4, 1
! statement,, ; - 4
N Many of the statements typed interactively are isolated effects containing a single call. For example, to :::-:t:
'e :::.. L)
» -4 '

.
2
e
talaa maa

T e AT T T e

e e e N e e e T e L N SN

. - Ly - -t e . “
A PR N R P W N S A A A LA AR A IR

define ‘Contents’ to be a new private relation, a user would enter:
Define{ Private, ‘‘Contents”’, NewRel{} };

Finally, we need a means for manipulating groups of rules as a unit; this is the rule denotatson and has the

- form:
‘ << compound —rule ;. compound —rule,. * - -+ compound —rule, . >

Notice that each compound rule is terminated by a period. (A compound rule is simply a rule that may

contain elses.)]
pr
o |
There follows an {1, session to declare an abstract type manager for stacks. The first group of com-
mands defines the relations that characterize stacks. Next comes a rule denotation containing the rules
. for managing stacks. Finally, a group of definitions make certain of the relations public, but with res-

tricted capabilities.

J
1
R
-‘: - :.A‘
- =
> A
3
5)
- o)
’ ,
L -5- 9

A‘l . * - . - .
W PP A A P

il
INCNENEN

)
I~.
[
.
3
»
-
.
:
R
.
bo
).

P

STACKS IN Q,

Define {Private, “Contents’’, NewRel{}};
Define {Private, ‘‘Push”, NewRel{}};
Define {Private, “Pop”, NewRel(}};
Define {Private, ‘“Destroy”, NewRel{}};

Define {Private, ‘“‘NewStack”, NewRel{}};

Define {Private, “Rules”,

<«<*Push(4,X,S), *Contents(Y,S) => Receives(A4 ,5), Contents(cons(X ,Y |, §).
*Pop(A ,S), *Contents(X ,S) = Receives(4 (first|X |), Contents(rest[X |,5).
*NewStack(4), *Avail(S) = Receives(4 ,5), Contents(nil,§).
*Destroy(A ,S), *Contents(X ,S) => Receives(4 ,X). >> };

Activate {Rules};

Define {Public, “Push’, AddOnly{Push}};

Define {Public, ‘“‘Pop”, AddOnly{Pop}};

Define {Public, “‘Destroy’’, AddOnly{Destroy}};
Define {Public, ‘‘NewStack”, AddOnly{NewStack}}.

3. Second Form

The second form of {1 attempts to achieve a more natural notation by permitting relations to be named

by templates. For example, we can denote the Contents relation by the template:
— is contents of —

Then, instead of using the notation ‘Contents(X ,S)’, we can write ‘X is contents of §°. Using the more
mnemonic ‘list’ and ‘stack’ in place of ‘X’ and ‘S’ yields ‘list is contents of stack’. Finally, fI; promotes

readability by allowing the use of *“noise words’’:
a list is the contents of the stack

Here, ‘a’ and ‘the’ are noise words inserted to improve the continuity of the clause.

- LIRIRAY

., L

‘

A
PN T

. PP
. Fs

. N
LI N

e e T T
P T
o bl

Relations that are intended to be called as procedures should have ‘does’ as the first word in their tem-
~ plate. For example, the template for the Push relation is:
ﬂ — does push — on —
;:.: Inquiries and assertions to this relation are made in the usual way, by filling in the blanks:
’.) the agent does push the thing on the stack

b However, the relation can be called synchronously by omitting the first argument and the word ‘does’

(thus converting the declarative into an imperative):
push the thing on the stack
This is analogous to the {1, notation
Push {thing, stack}
which is equivalent to
Push (agent, thing, stack)
Templates that do not begin with ‘does’ cannot be called as procedures.

An inquiry or assertion is negated by placing the word ‘not’ after the first word in the template, for

example,

the list is not the contents of the stack

The same rule applies to ‘does’ templates:

the agent does not push the thing on the stack

The structure of rules in {1, is the same as in {2,, except that all rules are preceded by ‘When’ and the
word ‘then’ replaces the arrow ‘=s’. The {1, cancellation symbol, ‘*’, is replaced by the word ‘given’ in .

f1,. In other respects the syntax of f1; closely follows that of f1;.

7.

I R PP '.”'-'Z‘."_‘-’:‘-"}v':q -

STACKS IN 0,

Define private name *

— is contents of —'’ to be make new relation;
Define private name ‘‘— does push — on —” to be make new relation;
Define private name ‘“‘— does pop —’’ to be make new relation;

Define private name “‘— does request a new stack” to be make new relation;

Define private name “— does destroy ~” to be make new relation;

Define private name ““Stack Rules” to be

h the rules

When given an agent does push a thing on a stack

and given a list is the contents of the stack

then the agent does receive the stack
and the appending of the thing and the list

is the contents of the stack.

When given an 2gent does pop a stack
and given a list is the contents of the stack
then the agent does receive the first element of the list

and the rest of the list is the contents of the stack.

When given an agent does request a new stack <]

and given a thing is available

Y

then the agent does receive the thing

and nil is the contents of the thing. R

NIV S O S

When given an agent does destroy a stack
and a list is the contents of the stack : i

then the agent does receive the list.

end rules;
-8- BRI
1

P P T PR L.
. S - R A IR

< : e A T e e T T
o tiantions PP S AT PN PRGN ST

TR YW T W m T T

Activate the Stack Rules;

Define public name “— does push — on -

to be an add only version of *“— does push — on —"’;
Define public name “— does pop —”’

to be an add only version of *“‘— does pop —";
Define public name “‘— does request a new stack’

to be an add only version of *“— does request a new stack’’;
Define public name ‘‘— does destroy —”’

to be an add only version of “— does destroy —*'.

4. Third Form

The 0, syntax makes an additional step in the direction of a more natural notation: the provision of ano-
phoric reference. To explain this we need some grammatical terminology. First, phrases which denote a

value or object, such as

a list
a brother of Joe
the owner of the file
something which is moving

that which receives the result

are called noun phrases. Second, phrases that describe a state, condition or relation, and normally stand

after a form of the verb to be, such as

hot
less than 100

between 20 and 50

are called adjective phrases. Finally, phrases that describe a state, condition, relation or action, and either

do not contain a form of to be, such as

-9-

LRI T S PRI W Wk Py Sy T G | PUIRCIIN TWPA IPNT h Wa ST WG W 3 Y

T I o

moves
does pop the stack
does not push the object on the stack

connects the terminal to the processor
or contain a form of to be followed by a noun or adjective phrase, such as

is a list
is less than 100
is not the brother of Joe

is something which is moving

are called verd phrases.

A few simple examples will illustrate the idea of anaphoric reference. Suppose that we have the fol-

lowing inquiries in the cause part of a rule:
T is a terminal and T is available
Anaphoric reference permits this to be written
a terminal is available

The sndefinite determiner ‘a’ before the noun ‘terminal’ implies an inquiry of the form ‘T is a terminal’.

Furthermore, the use of the phrase ‘a terminal’ in the clause ‘a terminal is available’ implies that it is the
S

same terminal T that is available. In essence use of the phrase ‘a terminal’ implies the existence of an ':
object or value X having the property ‘X is a terminal’. Y
1

More specifically, the indefinite determiners ‘a’ and ‘an’ before a noun N are equivalent to X and . 4
generate an inquiry _'-Z:j
"

XisN 1

Thus, the clause ‘an N VP’, where VP is a verb phrase, reduces to the two clauses ‘X is N and X VP "."‘-::
The same rule applies even if the noun is followed by arguments. For example, the inquiries -
4

Y

X is a brother of John and X is moving]

-10-)

- . e e T e e e e e e T e T e e e e e e e e e e e e R e e e e e e e
- . g D T N e N N N P N A
AT AP AT P A A A WAL AL L T W, P PP VAL VI DDA, VR WA VR PRy S Y WP W DAL PRSP -k S UL PR

xS
B

can be written
a brother of John is moving
Note that anaphoric reference requires {15 to distinguish between nouns, adjectives and verbs.
We turn to a more complicated example. Suppose we have the inquiries:
T is a terminal and T is available and T is not broken
Anaphoric reference permits this to be written:
a terminal is available and the terminal is not broken

The use of the definite determiner ‘the’ in the phrase ‘the terminal’ guarantees that the terminal in ques-

tion is the same one referred to earlier in the rule.
Definite determiners are also permitted in the effect parts of rules. For example, the rule
When T is a terminal and given T is available then T is allocated.
can be written
When given a terminal is available then the terminal is allocated
The phrase ‘the terminal’ in the effect part refers to the same terminal mentioned in the cause part.
Finally, {1; provides a limited ability for subordination. For example, the inquiries
X connects the terminal to the processor and X is not busy
can be written
something which connects the terminal to the processor is not busy

In general, if VP is a verb phrase, then the clause ‘something which VP’ is equivalent to X and generates

an inquiry of the form ‘X VP’. In other words, the clause

something which VP VP’

reduces to the two clauses

X VPand X VP’

-11-

.....
.« 0 - s P e tatetatatate .
0Lt et et et .

: L > ° ’ X Bt ~'.- -'-'-.'.I . " w
. et et e Y et «* . “ D RS e St et '.'. . - - . P IRI -’ e - .
e el et el b dcbiandadoiiiibititedbeimtniniteinciediireinei ettt adambabiiaddbidatdd

o LAt A) T r——

Similarly, the phrase ‘that which VP’ refers back to something X in a previous inquiry of the form ‘X
VP'. Indeed, the phrase ‘a/an NP’ can be considered an abbreviated form of ‘something which is NP’,

and ‘the NP’ can be considered an abbreviated form of ‘that which is NP’
Another permitted form of subordination is illustrated by the following example. The inquiries
a channel is connected to a device and the device is not busy
can be written
a channel is connected to a device which is not busy

In general the phrase ‘NP which VP’ is equivalent to NP, but generates the additional inquiry ‘NP VP'.
The use of anaphoric reference and subordination eliminates almost entirely the need for variable names in

rules.
The stack example is almost identical in {1, and fQg:
STACKS IN 1,

Define private noun “contents of —’ to be make new relation;

Define private verb ‘‘does push — on —" to be make new relation;
Define private verb ‘‘does pop —”’ to be make new relation;

Define private verb ‘‘does request new stack” to be make new relation;

Define private verb ‘‘does destroy —”' to be make new relation;

... remainder as in {1, ...

8. Fourth Form

The two-dimensional {1 syntax, {1, is based on the idea of forms. These can be thought of, and are
displayed like, paper forms with fields that can be filled in with values. In particular, a relation is con-
sidered to be a blank form (i.e., a template), and each tuple in a relation is considered to be a filled out

nstance of that form.

Users can explicitly create or delete form instances, that is, add or delete tuples to or from relations,

by selecting a form name (relation name) from a menu and filling in the fields of the form. This is a very

-12-

L Auen S aes Jaren 4

L
—d FP

i

o

natural mode of operation for offices and similar environments. To demonstrate this, we use a form-

oriented terminology to describe the syntax of ,.

A rule is represented by a rule window labeled with the rule’s name:

rule name

b If the rule is part of a compound rule, then the right half of the rule’s title chains to the alternative rule:

rule name, | else: rule name,

rule name,; | else: rule name,

rule name, ::::
Each rule window is divided into two frames, an upper situation frame (the cause) and a lower action .
frame (the effect): f:::‘
name
situation
action -
i
The situation frame is occupied by sero or more condition pancs, which represent the presence or absence =
of form instances (tuples in relations). A condition pane has the format: -
a

Y ‘e -

e, AT
TS o ettt .
R R

LIV T . YL PN B S)

relation name

field~ name ;: ficld—pattern,

b field— name 5: field— pattern, oo

LA s 4
A A

Jield— name,, : field— pattern,

¢ e
fada "t a e L

This kind of condition pane tests for the presence of the specified form instance (tuple).

The field-patterne can be either constants or variables. If they are constants then the pane will only
match a form instance in which that field is filled in with that value. If the field-pattern is a variable,
then the variable can be either unbound or bound. If it is unbound, then it will match any field-value,

and will become bound to that field-value. If it is bound, then it matches only the value to which it is .

. oo
. .
At n'aaliaa s

bound. Field-patterns can be left blank, which has the effect of filling them in with new, unique, unbound

variables. Thus, blank field-patterns are considered ‘‘don’t cares’ since they match anything.

The absence of a form instance is indicated by appending the modifier ‘(absent)’ to the form (rela-

tion) name: —
relation name (absent) ..:_'j_:
Jfield— name y: field—pattern, ':_».':f
field— name 3: field—pattern, . .
field—name,, : field—pattern,

Similarly, to test for the presence of a form instance, and delete the form instance when found, we append

the modifier ‘(delete)’:

-14-

......
......

T T e i TN I — ————— P oy e o - e

relation name (delete)

feld—name : field—pattern,

field—name ;: ficld—pattern,

field—name, : field—pattern,

Finally, there is a special condition pane, called a constraint pane, which can appear in the situation

frame:

Constraint

Boolean ezpression

4 _ There can be any number of constraint pane in the situation frame; they must all evaluate to true for the
.
*' rule to apply.

The action frame is filled with a number of transaction panes. A transaction pane can have four for-

mats: creation, deletion, procedure, or sequential process, A creation pane has the form:

relation name

field—name ;: field— value,

field— name 3: field—value,

field—name, : field— value,

S

This calls for the creation of the specified form instance. The ficld-values are expressions used to compute

e

the values for the fields.

0

dh s

P
'

o .
v . .
kot ard et

P

a'a’ad

1
. - . . - . . . - - . - ~ . - . - - i N N
. et .‘.'.'_..‘ B ":-" T e e e A e e CE Y ST AT A S I o .-' b ..' S . ° O -\"-" o AT
SO SO e e “\.‘_‘.\\-._\ ST e e T T NN ‘\\\\'.- et T TN T T

aa o RS 2PN SRS AR APRE PR M WL AP L) Attt At At et et adhetat st L-‘ Sa et oV e tar. s - PR . - LI IR S IR L

W

A deletion pane calls for the deletion of the specified form instance:

relation name (delete)

field— name : field—value,

field— name 3: field— value 4

field— name,, : field— value,

The third kind of action pane is a procedure or call pane:

relation name (procedure)

field—name,: field— value

field—name,: field— value ,

field—name, : field—value,

This calls for a synchronous call of the specified relation. That is, the form instance is created, which
requests some action to be performed. The rules containing the procedure call is not considered complete

until the completion of the requested action is acknowledged via an ‘Acknowledgement’ form.

The last kind of transaction pane is a sequential process pane:

Sequence

1: statement
2: statement,
n statement,

The statements are executed in the order listed. They may be either the names of rule windows, or 1

rules in one of the linear forms ((3,, £1,, or 1,).

Finally, we need a means for manipulating groups of rules as a unit; this is the rule-group window:

-16-

e T TV T~
2SR A I

LTy

RNl e e SN Sre St R Sl st ia adnc e dueg et e Seett 2l SRRl e v

Rules: group name

rule —name,

ﬁ rule —name,

rule — name,

For example, a request to activate a rule group will activate all the rules named in that group.

A specification of the stack example in {1, follows.

-
-
e
L)
Y
“ e
K
LIRS

-17- -

R

O,

e I AP T e e S ICRVL - -:._’-]
. v et et . . . PRI - AR
MR AN PO A AT AT PP PR SR S A A ot R S S I LA SR RS

STACKS IN Q,

€ e LNV

Rules: Stack Rules

j] Push Rule
Pop Rule
New Stack Rule
l Destroy Stack Rule
Push Rule
: Push Request (delete) | Stack Contents (delete)
From: A Stack: S
Item: X List: Y
» Stack: §
Acknowledgement Stack Contents
To: A Stack: S

. Y&

Concerning: S

List: appending of X and Y

| Pop Rule

Pop Request (delete)

— —

Stack Contents (delete)

From: A Stack: §
Stack: S List: X 4
Acknowledgement Stack Contents :::\
-3
To: A Stack: S)
Concerning: first of X | List: rest of X ; _1
. S
T3
3
"
-18- -
i
R

e N e

LY

New Stack Rule

New Stack Request (delete)

Available Object (delete)

From: A ID: §
Acknowledgement Stack Contents
To: A S Stack: S

Concerning: S

1

List: nil

Destroy Stack Rule

Destroy Stack Request (delete)

Stack Contents (delete)

From: A Stack: §
Stack: S List: X
Acknowledgement

To: A

Concerning: X

Dialog

27: Activate Stack Rules;

L.

£

4
becdentdy

'y’a

1

. . L. . BN PR TR

. - R

. v 4
L Lo A

s e PR RPN

et PN
S L
ol Al A b biiod el

;: 28: Define public Push Request to be create-only Push Request;
:".: 29: Define public Pop Request to be create-only Pop Request;
]
- 30: Define public Destroy Stack Request to be create-only Destroy Stack Request;
N ; 31: Define public New Stack Request to be create-only New Stack Request;
32:
L
. -
3 -19-
B R N e K . T e T T
ke et e (‘JL‘J-—‘A. f._l 2 e et I‘J ll._l‘_\L ;-..'!.3.‘. Y La e Sa e ot Sac e ac oo e

——y

| R

-~

L AR e o Eadira Pafiar . IR A e - DA S T TSN

APPENDIX A: ABSTRACT SYNTAX OF (1

Session = statement — list

statement - list = <statement-list; statement ; statement — listf >

. nil
statement —listf = statement — list

<else; rule ; statement >}

statement = {<rule; causef ; effect? >

compound —rule = <cpd; rule; statement? >

nil
statement = statorent

rule = <rule; cause; effectf >

cause = <cause; condition; causef >

{nil }
causef =
cause

<present; inquiry >
condition = 1§ <absent; inguiry >
<cancel; snquiry >

inguiry = <inquiry; primary ; tupl — pattern >

<tupl; pattern ; tup! — patternf >
tupl ~ pattern = <arbtupl; pattern ; pattern >

nil
tupl ~ patternf = tupl — pattern

{ free- uariablc}
pattern =

erpression
) nil
free-variable = <var; string >

nil
effect? = effect

effect = <effect; transaction ; effect? >

<assert; predication >
<deny; predication >
eall

seq — block

transaction

PP e
PEREE e

predication = <predication; primary; argumentsf >
nil

argumentsf = { argumcnu}

arguments = <arguments; ezpression; argumentsf >

call = <call; primary; argumentsf >

seq - block = <seq - block; statement - list >

<bsnop ; expression ; expression >

l

expression = <unop ; expression >

primary

or
and
eq
ne
1t
gt
binop = qle ¢
ge
sum
dif
prd
quo
mod

\ /

not
unop = neg

(<con; value > W
<gelfref; var >

<var, string >

) <apply; var ; arguments > |

primary =) <eval; espression ; ezpression >
list
call
<rule den; statement - list >
listsng
hist = X S :
<CcOnSs; expression ; ezpression >

o nil
hsting = <list;ezpression ; listing >

-21-

L aat s Jud e r———

. . A
~ AP

2

PP

'!
N

APPENDIX B: SYNTAX OF Q1,

Session = statement - list .

statement —list = statement ;

rule else statement
statement = 'cause =>| effect

compound —rule = rule else statement |
rule = cause = cffect
cause = if] condition |
*
condition = lﬁ! inquiry
inqusry = primary (tupl — pattern)

pattern - - -
tupl — pattern = pattern : pattern
free-variable
pattern = ;
erpression

free-varigble = {variable}

effect = |transaction , - - - |

assertion

denial
transaction =

call

seq —block
assertion = predication
denial = - predication
predication = primary (arguments)
call = primary { arguments }
arguments = |ezpression , - - |

seq —block = { statement —list }

czpression = |ezpression \/ | conjunction

conjunction = [conjunction A\ ||| relation

4 T T ey g 3 ————— ~—% w7 < — - e e e = =

relation = [aimplez relator | simplez
relator = {=| #| <| >| €] 2}
simplez = [simplez {+| —}| term

term = |term {* |/ | %} Jactor

-

+
Jactor = | _| primary

primary = primitive |: primary |

(\

constant
(@] variable

primitive | arguments |

primitive = J (ezpression)

L- ezpression , - ¢

2 l {ezpreuion : czprcuion}]
call

rule — denotation

—

o

digit*

.
., {char}

nil

constant

rule —denotation = << { compound —rule .} >

.28.

I S T P I s T e e T T A . . =L - o . . .
P e T et s e e D R A T JEE T S T AR AL Y e T TR S T e P A T e ageTe e T e e
AP MU T AP A PR A TR e} T S I L IR L P -'&‘-. RIMERICIE

DRIENITY I SN . St PRI S At et e . R T LA TR TN
e AT ara Ly e LAY PR NPV IS Rl SIS Y G S el N VLT L SR YRS T Ty Uy T P D S R WA DR A)

L2 e o

T TR T T e g T TTY T R et st Jend s o -

APPENDIX C: SYNTAX OF 11,

Session = statement —list . j

statement —lsst = statement ; - - -

rule else statement
statement = | guse then| effect

Lend

PN oE ST R

compound —rule = rule | else statement | <
rule = cause then effect .‘
cause = When condition and - - -
condition = |[given] inquiry : ;
: . word |not| s
tnquiry = |noise —word] primary — pattern { does [not]’ wor d} word [tupl — pattern | .
:

) free-variable
prsmary — pattern = primary

) anything
free-varsable = variable

pattern {word* pattern}’
tupl —pattern = arbitrary pattern

varsable
pattern = ezpression

noise ~word = {a | an | the}
effect = [transaction and - - - |
predication RN
transaction = 3 call)
seq —block "]
o) _ word [not| . L
predication = [noise —word | primary does [not| word word |argumenta | o 1
call = [noise —word] word* |arguments | 1
arguments = ezpression {word* ezpression)}’ X

seq —block = begin statement —list end

ezpression = |ezpression oOr| conjunction

conjunction = [conjunction & | |not| relation

S
PR A

t
v N P
. . ' e A
S alalaco e A aa sl At

m—wﬂ—wﬁﬁaﬁiﬁ‘w—.ﬁﬁ-—r‘ﬁv—-ﬁ—-

relation = [simplex relator | simplez
relator = {=| #| <| >]| <} 2}
simplex = [simplez {+ | —}| term

term = |term {* |/ | %}] factor

Jactor = | | primary
J
primary = primitive |: primary]
()
constant

{own| variable
word * of arguments
primitive = | (expression)

‘ ezpression [
ezpression append czpression]

call

krulc — denotation

/
digst*
char
constant =)Yf °7
nil
rule —denotation = rules { compound —rule .}’ end rules

-25-

T W W VW W —p— - — h v et
A .. - Rl . o ” - - — p— D ot e e o \

—'v—'ﬁvv.

APPENDIX D: SYNTAX OF Q4

Session = statement -list .

statement — l[vst = statement ; - - - -
rule else statement .

stotement = {[cauae then| cffcct} :

compound —rule = rule | else statement | »

rule = cause then effect

cause = When condition and - - -

condition = [given] inquiry

inquiry - noun - phrase verb - phrase

determ noun arguments |which verb —phrase |

that .
noun - phrase = something which verb — phrase

ezpression

verd [not| arguments

verb —phrase = | does |not) verb arguments
. noun — phrase -..j
is [not| adj - phrase o
adj - phrase = adjective arguments ::;:
——
prep — phrase ’ "_ '
arguments = arbitrary variable o
prep - phrase = |preposition | noun — phrase
effect = {transaction and - |
declaration
transaction = {4 call
seq - block
declaration = noun —phrase verb —phrase
call = verd arguments

seq - block = begin statement - list end

expression = |ezpression Or| conjunction

\

'-\.F -

e e e e e e R e
conjunction = |conjunction 8| [not] relation
relation = [ssmplez relator | simplex
relator = {=| #| <|>| €| 2}
simplez = |aimplez {+ | - }] term
term = |term {* |/ | %}| factor
+ -
Jactor = | | primary
primary = primitive |: primary |
(
constant
|own] variable
primitive [arguments |
primitive = | (ezpression) '
) 4
expression .
expression append ezpression] 1
call
rule —denotation
/
digit * -
char . ~/,‘
constant = S PP o "
mil j'.i-:
rule ~denotation [the) rules { compound —rule .} end rules -
a
determ = < an
the
noun = word?
verb = word* N
adjective = word*
preposition = word®
\
-27-
FROMOASAN St .L.)'J_L'.‘L» PRIy l“{ (A.XL!A‘.LA__LL"""‘A‘M‘A-&_&A&A&' OO,

v "
o
o]
APPENDIX E: SYNTAX OF 0, 1
Sesston =
{ Dialog » j
uatemcnt - list
.]
statement - lsat = o
1: ;- statement, -
2: {1, - statement,
: RN
n : (13— statement,
compound —rule =
name,l else: name,
cause
effect)
or]
name 3
cause 1
effect -
- 4
cause = condition” 1
condition = ,.,W
name | (modifier) | 1
name,: pattern
: -
name, : pottern, o
(If the field names are first and rest, then the pattern matches the first and rest of an arbitrary tuple.)
o delete -
modifier = absent .
variable]
pattern = {1,— ezpression
effect = transaction ’ ‘
) nonsequential ;.'
transaction = sequential ::
nonsequential = :
name | (kind) | :
name : {l;— ezpression :
nome,, : .ﬂ,-— expression,
) delete
kind = 1 orocedure
-28-
T T g e e e N NN L NN e

- sequential =

Sequence

statement — liat

rule —denotation =

Rules: name

name

name,

e

‘ .
LI IRy

LR
S

]
PPN W ST | ot

APPENDIX F: INCOMPATIBILITIES WITH MCARTHUR PROTOTYPE

There are a number of minor syntactic incompatibilities between the dialect of 1, implemented by the
McArthur prototype and that described in this report.

1.
2.

To simplify parsing, the keyword if is required on all rules with a nonnull cause.

The lexical representation of ‘=’ is *->’, and strings are surrounded by the ASCII double quote sym-
bol.

Additional degenerate forms of rules, such as ‘if cause =»’, are permitted.

A user can enter multiple sessions, each terminated by a period. The period calls for the execution of
all statements in that session. The semicolon statement termination does not cause execution.
Rather, the statements are saved until the next period.

The McArthur prototype does not distinguish between statements and compound rules. The result is
that it is possible to activate rules with an empty cause part.

Arbitrary expressions are permitted as transactions.

The object-oriented language {1} is sugmented with an applicative sublanguage. To support this,
statements include function declarations of the form:

function variable | formals | : compound — ezpression

where
variable , - - -
formals = variable : variable
and
compound — czpresssion = cond —ezpression else - -
cond — ezpreasion = |[if ezpression =») czpression

Mutually recursive functions are declared by means of & ‘‘forward’’ declaration:

fanction f | - - - | mil;
fanctiomg | - |2 - f -,
function f | -~ - | - g -5

This ensures that / is bound before it's used in g, and that g is bound before it’s used in f .

-80-

RN Y

ale g e a0

N L T el D
S A Y
. . . . P G S A L P R P P R S i R P = R
e P AT et et Y, . LAY . et et e ta . e) .
LN PRI SRR WG R I S AP R A I A A A A R Y R P A AL I I A I SRR AL T TR, AT, e VI, LS

N e aea ane el am ey

INITIAL DISTRIBUTION LIST S

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314

Dudley Knox Library

Code 0142

Naval Postgraduate School
Monterey, CA 93943

Office of Research Administration
Code 012A

Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52M1

Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Associate Professor Bruce J. Maclennan
Department of Computer Science

Naval Postgraduate School

Monterey, CA 93943

Dr. Robert Grafton

Code 433

Office of Naval Research
800 N. Quincy

Arlington, VA 22217-5000

Dr. David W. Mizell
Office of Naval Research
1030 East Green Street
Pasadena, CA 91106

Professor Jack M. Wozencraft, 62Wz
Department of Elec & Computer Engr.
Naval Postgraduate School

Monterey, CA 93943

Professof Rudolf Bayer
Institut fur Informatik
Technische Universitat
Postfach 202420

D-8000 Munchen 2

West Germany

.......................
...............
.................

PRI W
RPN P

40

12

..............
et e et e e e e e T e e e
LI VA L Sl W) W

LY

:f- Mr. Dennis Hall

L 2 Ivy Drive

- Orinda, CA 94563

»

. Mr. A. Dain Samples

o Computer Science Division -EECS

o University of California at Berkley
~ Berkley, CA 94720

;_ Professor S. Ceri

- Laboratorio Di Calcolatori

.- Departimento di Elettronica

- Politecnico di Milano

e 20133 - Milano

- Italy

»

e e e N e I N i

Dr. Robert M. Balzer

USC Information Sciences Inst.
4676 Admiralty Way

Suite 10001

Marina del Rey, CA 9029

Mr. Ronald E. Joy
Honeywell, Inc.

Computer Sciences Center
10701 Lyndale Avenue South
Bloomington, MI 55402

Mr. Ron Laborde
INMOS
Whitefriars
Lewins Mead
Bristol

Great Britain

Mr. Lynwood Sutton

Code 424, Building 600
Naval Ocean Systems Center
San Diego, CA 92152

Mr. David Lefkovitz
310 Cynwyd Road
Bala Cynwyd, PA 19004

Mr. Jeffrey Dean

Advanced Information and Decision Systems
201 San Antonio Circle, Suite 286
Mountain View, CA 94040

Mr. Jack Fried

Mail Station DO1/31T

Grumman, Aerospace Corporation
Bethpage, NY 11714

......
............
.....

S
.....
s

vy

Lo

1
oA

. ' R
. T T .
. Sty e b s
o I

2—-85

