
RD-R149 694 THE FOUR FORMS OF OMEGR(U) NAVAL POSTGRADUATE SCHOOL /

F M MONTEREY CA B J MCLENNN DEC 84 NPS52-84-026

UNCLARSSIFIED FG 9/2 NL

_mhhEEEohhhhmhI
mhhmohEmohhE

1.0 128 5

111111.21.4 Ii 1116

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 6-19s

NPS52-84-026

NAVA L POSTGRADUATE SCHOOL
Monterey, California

THE FOUR FORMS OF s

- BR.UCE J. MAC LENNAN

DECEMBER 1984

Approved for public release; distribution unlimited

Prepared for: Chief of Naval ResearchT
Arlington, VA 22217

NAVAL POSTGRADUATE SCHOOL
Monterey, California

Comodore R. H. Shumaker 0. A. Schrady
Superintendent Provost

The work reported herein was supported.by Contract N00014-85-24057

from the Office of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

Pr ss

': / Er~UCE J. MHAC LETRAN---' -t

Associate Professor and Acting Chairman
of Computer Science

Reviewed by: Released by:

KNEALE T. MARSHALL
Acting Chairman Dean of Information and
Department of Computer Science Policy Science

p

3-

. "." ,

. * * * $ * * * * * * * . * . . * . . * * . - ,o -

UNCLASSIFIED
SECURITY CLASSIFICATION OF THIS PAGE (When. DatEe. ____________________

a"DUISThUCOUSREPORT DOCUMENTATION PAGE swmE~ CONVIL9=W Prw
.REOR UMUER *2 OVT ACCUSIN W& 010CIPIRNTS CATALOG NUNS

INPS52-84-026 4(/' ,l(
4. TITLE (avid SmabfftII) a.t~ Tyo F REORT a 11191110 COVERED

THE FOUR FORMS OF n
41. PER11FoRNO1110 Dow REIPORt HUH11ER

7. AuTNORt(o) 8. CONTRIMT ON BRANT MUMMUEII.3

BRUCE J. MAC LENNAN N0001 4--5- 24057

9. PERFORMING ORGANIZATION NAME AND ADDRESS aS PRGRM VLMNT. POECT. TAMN
AREA a WORK URIT USR

Naval Postgraduate School
Monterey, CA 93943

11. CONTROLLING OFFICE NAME AND ADDRESS 12. RE1PORT DATE

Office of Naval Research Decenmeor 1984S
Arlington, VA 22217 30

141. MONITORING AGENCY NAME A AOORESS(it different from Confronted O01116) Is. SECURITY CLASS. (of Owe ropove

IS&. :Uk~ASUPICATION/OOWNGRAINO
SULE

16. DISTRIBUTION STATEMENT (of Ohio Report)

17. DISTRIBUTION STATEMENI (of tA. obeirect entred to I.* It. ifgtrmo, hea Report

III. SUPPLEMENTARY NOTES

I9. KEY WORDS (CBarwe on revere side Ifne.wetgmpO u1d d1uI lip.0 Week INO)

Object-oriented programming, production rules, production systems, concrete
syntax, two-dimensional language, pseudo-natural language, knowledge
representation, natural language interface, logic programming, simulation
languages, knowledge base, office automation, rule-based systems

20. ASTRACT (CentUwe in reverse.* aid tosoery and MIdlft 6?' 600416~

We describe four alternative
syntactic forms for the object-oriented, rule-based language Q. These
notations are all different concrete representations of the same abstract
language. The first notation uses a predicate logic style. The second has a
stylized natural language format. The third extends the second by providing
anaphoric reference. The fourth form drops the linear syntax of the first
three in favor of a two-dimensional format based on the idea of a form.,

DO FORM 1473 totnow INMovo is oesoSeTs UNCLASSIFIED
S/14 0102- IJ- 014- edit CWMY .AMPICATON OF T" Ph"E (11111 OW 81111011

* ." -.' -

_JAce s1io7 ForNTIS CRA&I

THE FOUR FORMS OF f0

Alternate Syntoeti Form. for an Object, Oriented Language

, .-. Bruce J. MacLennan ..

,'w- -- L] L ' -,rt Codes . "
"- Computer Science Department copy t v -.i o

Naval Postgraduate School

Monterey, CA 93943

1. Introduction

In this report I we describe four alternative syntactic forms for the object-oriented language A, described in

our View of Object-Oriented Programming (Naval Postgraduate School Computer Science Dept. Tech.

Rept. NPS52-O-O01, Feb. 1983). Additional information on a prototype implementation of 01 can be

found in Heinz M. McArthur's Design and Implementation of an Object- Oriented, Production-Rode Inter-

preter (Naval Postgraduate School Master's Thesis, Dec. 1984).

It must be emphasized that these notations are all different concrete representations for the same

- abstract language. Thus, for example, rules could be entered in one form and displayed in another. This

permits different users (or the same user at different points in time) to look at a program in different

ways.

The first syntactic form, fl1, uses a predicate logic style. It is also the simplest to parse. The second

and third styles (112 and 0,) have a stylized natural language format. As a result they are less compact,

but more readable to computer-naive users. The fourth form, flg, drops the linear syntax of the other

three, and adopts a two-dimensional format based on the idea of a form. It is the least compact, but most

amenable to use by computer-naive users.

We describe each of these forms in the body of this report, and illustrate the forms with a simple

example. A formal grammar for each format appears in the Appendices.

1. Work reported herein was supported In pan by the Office of Naval Research under contract number NO0144-24067.

-1- .:

2. irst Form

The first form, fl, is based on a predicate-logic style notation. It will look familiar to readers acquainted

with logic programming languages and production rule systems. The basic construct is the rue, which

has the form

cause -- effet

The cause describes a possible situation in a space of objects connected by relations. If that situation

holds, then the rule may be applied, which means that the actions described by its effect part will be per-

formed. Rules are executed indivsibly, which means that it is guaranteed that the situation still holds

when the actions are performed.

There is normally no order implied between rules; they can be tested in any order. However, rules can

be connected by the word else when a particular order must be imposed:

causeI = e Cecti

else cause 2 effecth

else cause. effect.

"- In this case, the second and succeeding rules are tried only when the preceding rules have failed.

The cause part of a rule describes a situation in terms of one or more conditions, which represent the

presence or absence of relationships between objects:

condition,, condition2, . . ., condition.'

All of these conditions must be satisfied before a rule can be applied.

"* A condition for testing for the presence of a tuple in a relationship has the form:

primary (pattern1 , pattern, . . . , pattern.)

" The primary is an expression (usually just an identifier) that evaluates to a relation. The following list of

patterns defines a tuple pattern. Each pattern in the list can be either an free (i.e., undefined) variable, or

an expression containing no free (i.e., only bound) variables. An expression is evaluated during the

-2.'*" • -...

matching process, and matches a value equal to the result of its evaluation. A free variable will match

any value, but becomes bound to that value during the matching process. The special free variable '-'

(an be used to match anything without binding a variable name.

A condition for testing for the absence of a tuple from a relationship has the form:

- primary (pattern,, pattern: ... , pattern.)

This condition succeeds only if there is not a tuple of the specified form in the relation that is the value of

the primary.

Finally, as a convenience we permit cancel conditions:

*primary (pattern,, pattern2, . . ., pattern.

This tests for the presence of a tuple of the specified form, just as the first kind of condition, but it has a

side effect of deleting that tuple if the rule is applied. Although, this could be programmed explicitly, the

situation is common enough that it is important to reflect it in the notation.

The effect part of a rule is composed of a sequence of transactions:

transaction,, transaction 2 , . , transaction.

These transactions can be performed in any order or in parallel. The transactions are of four kinds: asser-

tions, denials, calls and sequential blocks.

An assertion is a transaction of the form:

7 primary (espresionl, ezpresion2 , . . . , ezpression.,

i22 Its effect is to add to the relation that is the value of the primary the tuple < V, V3, ... , V.>, where

each Vi is the value of ezpreuaio,. Typically these expressions contain variables that were bound in the

cause part of the rule.

. A denial has the form of an assertion preceded by a negation sign:

-primary (ezpression,, ezpression 2 , . .. , ezpressioa.)

Its effect is to delete the specified tuple from the specified relation. If this relation does not contain this

.--

. .

tuple, then an error condition holds.

A call is a transaction of the form:

primary { ezpreasioni, ezpression s , etpression.)

Its purpose is a form of synchronous communication performed by sending a message through one relation,

and waiting for a reply to be returned through another relation. For example, the call

P{E, F

has the effect of performing the assertion

P(a, E, F)

Here a is a newly generated relation that will be used for receiving the reply. This assertion presumably

requests some actions to be performed by other rules (which are watching P). When the actions are com-

pleted, an acknowledgment or reply will be placed in the a relation, which permits the calling rule to

complete. Note that rules containing calls in their effect parts are not considered indivisible.

The last kind of transaction is a sequential block, which has the form:

I statement,; statement2 ; ; tatement, I

The effect of this construct is to execute the component statements in order. A statement is simply a

rule, simple or compound, with the additional characteristic that its cause part (and the -*) can be omit-

ted. This reflects the fact that in a sequential block the performance of actions may be conditioned solely

on the performance of the preceding statements.

A user normally interacts with an fl system by typing statements. Thus the form of an n terminal

session is:

statement 1;

statement 2;

statement,;

Many of the statements typed interactively are isolated effects containing a single call. For example, to

-4-

define 'Contents' to be a new private relation, a user would enter:

Definel Private, "Contents", NewRel{));

Finally, we need a means for manipulating groups of rules as a unit; this is the rule denotation and has the

form:

<< compound - rule 1. compound - rule 2. " compound - rule.. >

Notice that each compound rule is terminated by a period. (A compound rule is simply a rule that may

contain elses.)

There follows an f0, session to declare an abstract type manager for stacks. The rst group of com-

mands defines the relations that characterize stacks. Next comes a rule denotation containing the rules

for managing stacks. Finally, a group of definitions make certain of the relations public, but with res-

tricted capabilities.

ii~

.5-.

STACKS IN fl1

Define {Private, "Contents", NewRel(});

Define {Private, "Push", NewRel{));

Define {Private, "Pop", NewRel{));
Define {Private, "Destroy", NewRel(});

Define {Private, "NewStack", NewRel{));

Define {Private, "Rules",

<<*Push(A ,X,), *Contents(Y,S) = Receives(A ,S), Contents(cons[X, Y, S).

*Pop(A ,S), *Contents(X,S) =v Receives(A ,first[X]), Contents(rest[X],S).

*NewStack(A), *Avail(S) = Receives(A ,S), Contents(nil,S).

*Destroy(A ,S), *Contents(X ,S) = Receives(A ,X). >>

Activate {Rules);

Define (Public, "Push", AddOnly{Push});

Define {Public, "Pop", AddOnly(Pop});

Define (Public, "Destroy", AddOnly{Destroy));

Define {Public, "NewStack", AddOnly{NewStack}).

S. Second Form

The second form of fl attempts to achieve a more natural notation by permitting relations to be named

by templates. For example, we can denote the Contents relation by the template:

- is contents of -

Then, instead of using the notation 'Contents(X ,S)', we can write 'X is contents of S'. Using the more

mnemonic 'list' and 'stack' in place of 'X' and '5' yields 'list is contents of stack'. Finally, (11 promotes

readability by allowing the use of "noise words":

a list is the contents of the stack

Here, 'a' and 'the' are noise words inserted to improve the continuity of the clause.

-8-

- " " "- " " . - " - " % " - % " - % - , "-.".".-"- " - - ., "- " .""" '-"..".. .. " "

Relations that are intended to be called as procedures should have 'does' as the first word in their tem-

plate. For example, the template for the Push relation is:

- does push - on -

Inquiries and assertions to this relation are made in the usual way, by filling in the blanks:

the agent does push the thing on the stack

However, the relation can be called synchronously by omitting the ftist argument and the word 'does'

(thus converting the declarative into an imperative):

push the thing on the stack

This is analogous to the fl, notation

Push {thing, stack)

which is equivalent to

Push (agent, thing, stack)

Templates that do not begin with 'does' cannot be called as procedures.

An inquiry or assertion is negated by placing the word 'not' after the first word in the template, for

example,

the list is not the contents of the stack

The same rule applies to 'does' templates:

the agent does not push the thing on the stack

The structure of rules in (12 is the same as in fl1 , except that all rules are preceded by 'When' and the

word 'then' replaces the arrow '=*'. The flh cancellation symbol, '', is replaced by the word 'given' in

f12. In other respects the syntax of f12 closely follows that of flI.

-7..................................... . .

.-7-.- - - . .- . -

STACKS IN fl 2

Define private name "- is contents of-" to be make new relation;

Define private name "- does push - on -" to be make new relation;

Define private name "- does pop -" to be make new relation;

Define private name "- does request a new stack" to be make new relation;

Define private name "- does destroy -" to be make new relation;

Define private name "Stack Rules" to be

the rules

When given an agent does push a thing on a stack

and given a list is the contents of the stack

then the agent does receive the stack

and the appending of the thing and the list

is the contents of the stack.

When given an £gent does pop a stack

and given a list is the contents of the stack

then the agent does receive the first element of the list

and the rest of the list is the contents of the stack.

When given an agent does request a new stack

and given a thing is available

then the agent does receive the thing

and nil is the contents of the thing.

When given an agent does destroy a stack

and a list is the contents of the stack

then the agent does receive the list.

end rules;

* .. . *o.. . ..

• -i~~~~~...-.-....-.. .i....-.-... -..-..-.......-,....-,..-..-.-............

Activate the Stack Rules;

Define public name "- does push - on

to be an add only version of "- does push - on

Define public name "- does pop-"

to be an add only version of "- does pop -;

Define public name "- does request a new stack"

to be an add only version of "- does request a new stack";

Define public name "- does destroy -"

to be an add only version of "- does destroy -".

4. Third Form

The fls syntax makes an additional step in the direction of a more natural notation: the provision of ana-

phoric reference. To explain this we need some grammatical terminology. First, phrases which denote a

value or object, such as

a list

a brother of Joe

the owner of the file

something which is moving

that which receives the result

are called noun phrases. Second, phrases that describe a state, condition or relation, and normally stand

after a form of the verb to be, such as

hot

less than 1000
between 20 and 50

are called adjective phrases. Finally, phrases that describe a state, condition, relation or action, and either

do not contain a form of to be, such as

! -9-

.

moves

does pop the stack

does not push the object on the stack

connects the terminal to the processor

or contain a form of to be followed by a noun or adjective phrase, such as

is a list

is less than 100

is not the brother of Joe

is something which is moving

are called verb phrases.

A few simple examples will illustrate the idea of anaphoric reference. Suppose that we have the fol-

lowing inquiries in the cause part of a rule:

T is a terminal and T is available

Anaphoric reference permits this to be written

a terminal is available

The indefinite determiner 'a' before the noun 'terminal' implies an inquiry of the form 'T is a terminal'.

Furthermore, the use of the phrase 'a terminal' in the clause 'a terminal is available' implies that it is the

same terminal T that is available. In essence use of the phrase 'a terminal' implies the existence of an

object or value X having the property 'X is a terminal'.

More specifically, the indefinite determiners 'a' and 'an' before a noun N are equivalent to X and -

*' generate an inquiry

X is N

Thus, the clause 'an N VP', where VP is a verb phrase, reduces to the two clauses 'X is N and X VP'.

" -The same rule applies even if the noun is followed by arguments. For example, the inquiries

X is a brother of John and X is moving

-10-

" -27

can be written

a brother of John is moving

Note that anaphoric reference requires fls to distinguish between nouns, adjectives and verbs.

We turn to a more complicated example. Suppose we have the inquiries:

T is a terminal and T is available and T is not broken

Anaphoric reference permits this to be written:

a terminal is available and the terminal is not broken

The use of the definite determiner 'the' in the phrase 'the terminal' guarantees that the terminal in ques-

tion is the same one referred to earlier in the rule.

Definite determiners are also permitted in the effect parts of rules. For example, the rule

When T is a terminal and given T is available then T is allocated.

can be written

When given a terminal is available then the terminal is allocated

The phrase 'the terminal' in the effect part refers to the same terminal mentioned in the cause part.

Finally, f03 provides a limited ability for subordination. For example, the inquiries

X connects the terminal to the processor and X is not busy

can be written

something which connects the terminal to the processor is not busy

In general, if VP is a verb phrase, then the clause 'something which VP' is equivalent to X and generates

an inquiry of the form 'X VP'. In other words, the clause

something which VP VP'

reduces to the two clauses

X VP and X VP'

-11-

...... '.i.-.... "...

Similarly, the phrase 'that which VP' refers back to something X in a previous inquiry of the form 'X

VP'. Indeed, the phrase 'a/an NP' can be considered an abbreviated form of 'something which is NP',

and 'the NP' can be considered an abbreviated form of 'that which is NP'.

Another permitted form of subordination is illustrated by the following example. The inquiries

a channel is connected to a device and the device is not busy

can be written

a channel is connected to a device which is not busy

In general the phrase 'NP which VP' is equivalent to NP, but generates the additional inquiry 'NP VP'.

The use of anaphoric reference and subordination eliminates almost entirely the need for variable names in

rules.

The stack example is almost identical in f12 and fs:

STACKS IN fl.

Define private noun "contents of-" to be make new relation;

Define private verb "does push - on -" to be make new relation;

Define private verb "does pop -" to be make new relation;

Define private verb "does request new stack" to be make new relation;

Define private verb "does destroy -" to be make new relation;

... remainder as in f1 ...

S. Fourth Form

The two-dimensional 0 syntax, 0 4, is based on the idea of foru. These can be thought of, and are

displayed like, paper forms with fields that can be filled in with values. In particular, a relation is con-

sidered to be a blank form (i.e., a template), and each tuple in a relation is considered to be a filled out

instance of that form.

Users can explicitly create or delete form instances, that is, add or delete tuples to or from relations,

by selecting a form name (relation name) from a menu and filling in the fields of the form. This is a very

-12-

* *,.. *° . . . *

O~ .- • *'• °'• "•°° "-• ° o" . .° • .° ° "• " ""*o • - °*"•°•'"" ° , "° " ". *- % " *
-

. °
-

* - . . - . - . . - . -. - V,- . I . _ . . -

natural mode of operation for offices and similar environments. To demonstrate this, we use a form-

oriented terminology to describe the syntax of fd

* A rule is represented by a rule window labeled with the rule's name:

rate name

If the rule is part of a compound rule, then the right half of the rule's title chains to the alternative rule:

rule name else: rule name 2

rule name2 else: rule name5

rule name8

Each rule window is divided into two frames, an upper situation frame (the cause) and a lower action

frame (the effect):

name

situation

action

The situation frame is occupied by sero or more condition panes, which represent the presence or absence

of form instances (tuples in relations). A condition pane has the format:

-13-

relation name

field- name 1: field-pattern I

field- name 2: field- pattern 2

field- namne.: field- pattern.

This kind of condition pane tests for the presence of the specified form instance (tuple).

The field-patterns can be either constants or variables. If they are constants then the pane will only

match a form instance in which that field is filled in with that value. If the field-pattern is a variable,

then the variable can be either unbound or bound. If it is unbound, then it will match any field-value,

and will become bound to that field-value. If it is bound, then it matches only the value to which it is

bound. Field-patterns can be left blank, which has the effect of filling them in with new, unique, unbound

variables. Thus, blank field-patterns are considered "don't cares" since they match anything.

The absence of a form instance is indicated by appending the modifier '(absent)' to the form (rela-

tion) name:

relation name (absent)

field- name 1: field-pattern I

field- name 2: field-pattern 2

field- name.: field- pattern.

Similarly, to test for the presence of a form instance, and delete the form instance when found, we append

the modifier '(delete)':

-14-

• i?..% ..,.,................ .-.". "-- .-............. -.• .- *.-. ,-,-.

relation name (delete)

field- name,~: field- pattern

field- name 1: field- pattern2

field- name.: field- pattern.

Finally, there is a special condition pane, called a constraint pane, which can appear in the situation

frame:

Constraint

Boolean ezpression

There can be any number of constraint pane in the situation frame; they must all evaluate to true for the

rule to apply.

The action frame is filled with a number of transaction panes. A transaction pane can have four for-

mats: creation, deletion, procedure, or sequential process. A creation pane has the form:

relation name

field- name 1: field- value I

field- name 2: field- value 2

field- name.: field- value.

This calls for the creation of the specified form instance. The field-values are expressions used to compute

the values for the fields.

-1--

... ~ - .-

A deletion pane calls for the deletion of the specified form instance:

relation name (delete)

field- name 1: field- value I

field- name 2: field- value "

fidd- name.: fidd- value.

The third kind of action pane is a procedure or call pane:

relation name (procedure)

field-name: field- value

field- name 1: field- value I

field- name 2: field- Value2

field- name. : field- value.

This calls for a synchronous call of the specified relation. That is, the form instance is created, which

requests some action to be performed. The rules containing the procedure call is not considered complete

until the completion of the requested action is acknowledged via an 'Acknowledgement' form.

The last kind of transaction pane is a sequential process pane:

Sequence

1: statement1

2: statement-

n statement.

The statements are executed in the order listed. They may be either the names of rule windows, or f

rules in one of the linear forms (f0,, fI2, or flg).

Finally, we need a means for manipulating groups of rules as a unit; this is the rule-group window:

12..............
......-......-.......•.- -....•.,.,. .,.,-.._,.. . . .,.. . . ,,.. .•.•.,

"f "" .-.,_.",-. :." ._."'' :. ." . .--, .. ' . '.." .. "' ,,'- . .- -*- -.-.%

Rules: group name

rule - name,

ride -nm2

rule -name.

For example, a request to activate a rule group will activate all the rules named in that group.

A specification of the stack example in 114 follows.

-17-

.. .*..**. . .

STACKS IN fl 4

Rules: Stack Rules

Push Rule

Pop Rule

New Stack Rule

Destroy Stack Rule

Push Rule

Push Request (delete) Stack Contents (delete)

From: A Stack: S

Item: X List: Y

Stack: S

Acknowledgement Stack Contents

To: A Stack: S

Concerning: S List: appending of X and Y

Pop Rule

Pop Request (delete) Stack Contents (delete)

From: A Stack: S

Stack: S List: X

Acknowledgement Stack Contents

To: A Stack: S

Concerning: first of X List: rest of X

-Is-|

%..j.§ .:.K:.~j.<*.>J- .. |.!

New Stack Rule

New Stack Request (delete) Available Object (delete)

From: A ID: S

Acknowledgement Stack Contents

To: A Stack: S

Concerning: S List: nil

Destroy Stack Rule

Destroy Stack Request (delete) Stack Contents (delete)

From: A Stack: S

Stack: S List: X

Acknowledgement

To: A

Concerning: X

Dialog

27: Activate Stack Rules;

28: Define public Push Request to be create-only Push Request;

29: Define public Pop Request to be create-only Pop Request;

SO: Define public Destroy Stack Request to be create-only Destroy Stack Request;

31: Define public New Stack Request to be create-only New Stack Request;

32:

p -19-

, - , ._,- , .-, *e_-, *,.h-. , , . . -. -q - .- .-. - . . . -. . .. , - , - . .-. -.. . .

APPENDIX A: ABSTRACT SYNTAX OF f)

Session = statement -list

statement -list = <statement-list; statement ; statement -lst?>

fnil
* astatement -list? s tatement - lsat

<else; rule ; statement >
statement = <rule; cause?; effect?

compound - rule = <cpd; rule; statementf >

statement = (a

rule <rule; cause ; effectf>

cause <cause; condition; causeF >

cause? (

<present; inquiry >1
condition <absent; inquiry>

<cancel; inquiry>

inquiry <inquiry; primary; tupl -pattern>

<tupl; pattern; tupl -patternf>
tupi - pattern <arbtupl; pattern; pattern >

tupl -patternf = tupl -pattern)

pattern = erle)

free-variable = (<var; atring>)

fnil
effect? i~effec

effect = <effect; transaction; effect? >

<assert; predication >
J<deny; predication >

transaction = ll -

* * * * . * ** * * - ** .--~*>:.-:.;:.*: .'- *

..... ,.. • ..;.. ,...-..-. ,- .. - ¥

predication - <predication; primary; arguments? >

argumentf - (arguments)

arguments - <arguments; ezpreson; argument.? >

call = <call; primary; argumentsf >

seq - block = <seq -block; statement -list >

*~bio expression :~ ; expression>expression = < unop ;expression >

primary

or

and

eq

ne

it

gt

binop = le

ge

sum

dif

prd

quo

mod

not
nop= negJ

<con; value >
<selfref; var >

<var; string >

<apply; var; arguments >

primary <eval; expression; expresion >

list

call

<rule den; statement - list >

(listing
list = <cons; expression expression

listing = <iistzprssion listing

-21 -,

APPENDIX B: SYNTAX OF fl,

Sesaion statement - list

statement -- liest statement

rule else statement\
statement

compound - rule = rule else statement

rule cause effect

cause = iJf condition

I11
condition = inquiry

inquiry = primary (tupl -pattern

(pattern,...
tupi -pattern (pattern : pattern)

(free- variable'
pattern expresion

free- variable = riab|)

effect transaction , '

assert ion -

denial
transaction c talIl J
assertion = predication

denial - predication

predication = primary (arguments

call = primary I arguments

arguments = iexpression ,

seq - block s statement -list ,

expression = expression V I conjunction

conjunction = [conjunction A 1-1 relation

-22-
S

.

. • . o % % fb % o ." . " .o o ' o*.% .. .• ° ' " " " - . -. -. % .o '- .- . % . .,. °- ' .- ' " % °' '-. '-. ,- "-"%"

relation Isimplex relator I simplex

relator = :,I <1 >1<I>

simplez = Isimplez (+I -)I term

term = Jterm{ I/ I %1] factor

factor 1 + primary

primary = primitive 1: primary]

constant

[10 variable
primitive I arguments I

primitive (expression(expression :
expression expressionj

call
rule - denotation

digit +

{ 1 charj
constant =

nil

rule -denotation = << { compound -rule . } >

-23-

.. ? /..,..... -......... • .

APPENDIX C: SYNTAX OF fl2

Session statement -list

statement -list =statement;''

rule else statement"
atatement = c~ (ause then] effects

compound - rule = rule I else statement

rule cause then effect

cause When condition and ...

condition = Igiven] inquiry

/word inotwod

inquiry = noise- word] primary -pattern does [not] word word" ftupi -pattern I

aree- variable\
primarya-pattern primary p

anything\
*free-variable : variable)

patterntern {

noise - word = {a an (the}

effect [transaction and ... I

p~redicatin
transaction callo cs~eq-block)

(word Inot'
predication = noie - word] primary \doe. [ot] wor ,ord arguments]

call [noise -word] word+ [argument#]

arguments = ezpresion {word+ ezpreesion".

seq -block = begin statement -list end

ezpression = [ezpression or] conjunction

conjunction = conjunction 8] not relation

-24-

................................. . .-* . . * . . .* *I

relation Iaimplez relator I simplez

relator = {=) 1 <1> ()

simptex = .implez {+ -)I term

term =term I I / f]actor

factor = primary

primary = primitive 1:primary)

constant

lown] variable
word + of arguments

primitive (ezpreeion(expression,
ezpresion append ezpresio

call
rule - denotation

(nil

rule -denotation = rules { compound -rule .) end rules

.25-
".7.

• ,'~~~~~~.. ... " : :"_ ,.." - "....

APPENDIX D: SYNTAX OF fls

Session = statement -list

statement - lit = statement ;

rule else statement\
attement = [icauae theni cffeetJ

compound - rule = rule I else statement

rule cause then effect

cauae = When condition and ...

condition = [givenf inquiry

inquiry noun -phraee verb -phrase

determ noun arguments 1which verb -phrase]

Ihat whc eb prsnoun phrae = somethingjwhichverb-phr.[

ezpreei on

verb (noti arguments '
verb -phrase = does)notj verb argumentsj. :noun -phrase"

is Inot l tadj -phra.e J J
adj --phrase = adjective arguments

fprep - phrase
argument. =karbitrary variable)

prep - phrase = jpreposition I noun -phrase

effect = tronsaction and I .

declaration

tronsaction call

aeq - block)

declaration = noun - phrase verb -phrase

call verb arguments

oeq - block = begin statement -list end

ezpression = Iezpression or] conjunction

-26-

-:.,. '."'-.'.'." .'."............................".." "'C" " "".", , ."."• '" .".". -... -
..•..'._._,"'" '¢ : .,'''.. '~e -,_' ',-..,.. ' .' '." ',-. ' 'e-',,-.. , * -. ' ,.-'..-','.-. ' " '.. " ".''"

7 W.

conjunction = conjunction &1 Inot] relation

relation = [aimplez relator I ,implez

relator = I= <1 >1 <l I>

.implez = (,imple -. f+I -}I term

term = Iterm { / I %)I factor

factor 1 +1 primary

primary = primitive 1: primary]

constant

[ownJ variable
primitive larguments I

primitive (ezpreaion
/'expression,••• .,

epresion append ezpresion)

coil
rule - denotation

digit +-

constant = "

rule -denotation = [thel rules { compound - rule . " end rules

determ = an

the

noun = word+

verb = word +

adjective = word+

preposition = word +

-27-

. *.*.'.%*.' o'.-m".=.' ,-= .".°.% % ".
"

"

APPENDIX E: SYNTAX OF 0l4

Session

Dialog t

statement - list
1.: ls-statement,
2: 1S- statement -

n : p S- statement.

compound- rule

name, else: namne 2

cause
effect

or

cause = condition"

condition

name (modifier)I

name ,: pattern,

name,,: pattern,

(If the field names are first and rest, then the pattern matches the first and rest of an arbitrary tuple.)

modifier delete)

,variable i
pattern ils- ezpresion)-

effect = transaction

Snonsequential

transaction sequential

nonsequential

name (kind))
name I: %- ezpression,

name: fls - ezpression.

(delete
kind = [proeedure)

-28-

~~~~~~~~~~~~~~~~~~~~~~~~..-,..-... .-... . . .. ... ,. '.%%...'-.'..-.-.- ...-.. %..... -. . "°.. .- -- .. .'



sequential

Sequence

rule - denotation

Rules: name
name,

name,

-29-



APPENDIX F: INCOMPATIBILITIES WITH MCARTHUR PROTOTYPE

There are a number of minor syntactic incompatibilities between the dialect of [0, implemented by the
McArthur prototype and that described in this report.

1. To simplify parsing, the keyword if is required on all rules with a nonnull cause.

2. The lexical representation of '*.' is '->', and strings are surrounded by the ASCII double quote sym-
bol.

3. Additional degenerate forms of rules, such as 'if cause =', are permitted.

4. A user can enter multiple sessions, each terminated by a period. The period calls for the execution of
all statements in that session. The semicolon statement termination does not cause execution.
Rather, the statements are saved until the next period.

5. The McArthur prototype does not distinguish between statements and compound rules. The result is
that it is possible to activate rules with an empty cause part.

6. Arbitrary expressions are permitted as transactions.

7. The object-oriented language I) is augmented with an applicative sublanguage. To support this,
statements include function declarations of the form:

function variable f ormals : compound - ezpression

where

(variable ,

formal = ~variable : variable)

and

compound - expression = cond - expression ele
eond - expression = lif expression =.] expression

8. Mutually recursive functions are declared by means of a "forward" declaration:

function I "' nil;
function g . .: ' "...
function f 'g ..

This ensures that I is bound before it's used in g, and that g is bound before it's used in f

-30-

...



own*

INITIAL DISTRIBUTION LIST

Defense Technical Information Center
Cameron Station
Alexandria, VA 22314 2

Dudley Knox Library
Code 0142
Naval Postgraduate School
Monterey, CA 93943 2

Office of Research Administration
Code 012A
Naval Postgraduate School
Monterey, CA 93943 1

Chairman, Code 52MI
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943 40

Associate Professor Bruce J. MacLennan
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943 12

Dr. Robert Grafton
Code 433
Office of Naval Research
800 N. Quincy .9
Arlington, VA, 22217-5000

Dr. David W. Mizell
Office of Naval Research
1030 East Green Street 0
Pasadena, CA 91106

Professor Jack M. Wozencraft, 62Wz
Department of Elec & Computer Engr.
Naval Postgraduate School 0
Monterey, CA 93943

Professof Rudolf Bayer
Instit'ut f 'r Informatik

Technische Universitat 0
Postfach 202420
D-8000 Munchen 2
West Germany 1

. •* . . . "



Dr. Robert M. Balzer
* USC Information Sciences Inst.

4676 Admiralty Way
Suite 10001
Marina del Rey, CA 90291

Mr. Ronald E. Joy
Honeywell, Inc.
Computer Sciences Center
10701 Lyndale Avenue South
Bloomington, MI 55402

Mr. Ron Laborde
INMOS
Whitefriars
Lewins Mead
Bristol
Great Britain

Mr. Lynwood Sutton
Code 424, Building 600
Naval Ocean Systems Center
San Diego, CA 92152

Mr. David Lefkovitz
310 Cynwyd Road
Bala Cynwyd, PA 19004

Mr. Jeffrey Dean
Advanced Information and Decision Systems
201 San Antonio Circle, Suite 286
Mountain View, CA 94040

Mr. Jack Fried
Mail Station DOI/31T
Grumman, Aerospace Corporation
Bethpage, NY 11714

Mr. Dennis Hall
2 Ivy Drive
Orinda, CA 94563

Mr. A. Dain Samples
Computer Science Division -EECS
University of California at Berkley
Berkley, CA 94720

Professor S. Ceri
Laboratorio Di Calcolatori
Departimento di Elettronica
Politecnico di Milano
20133 - Milano

Italy



- .1...

S

S

I 
S

S

I 
- S

FILMED

2-85
I

I

DTIC
I. 

9

....................................................... ....... i:;..............


