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FOREWARD

This report is the Ph.D. dissertation of Ms. Sirpa Hgkkinen. It is

the latest contribution to modelling the ice and ocean in the Marginal

>2 Ice Zone. There are three major findings.

A new model for the constitutive equations is deduced from Reiner-

Revlin theory. These equations are qualitatively more realistic than

previously used constitutive relations.

The ice-ocean model is integrated in an x-y-t system with varying

wind stress fields. A new mechanical mechanism for formation of ice

banding is proposed. The physics of ice-edge upwelling is described in

U detail. It is shown that variations in ice concentration and/or ice edge

configuration can generate oceanic eddies through differential Ekman pump-

ing. It is hypothesized that oceanic eddies are formed by air-ice-sea

interaction and not as hydrodynamic instability of ocean currents.

The ice-ocean model is very simple, but it is important to recognize

that the horizontal scales in the marginal ice zone are very small. The

r grid spacing for ice-ocean models must be on the order of 0.5 - 1 km. for

proper understanding of the ice dynamics. Ice models with grid spacings

of 100 km. and larger cannot simulate any of the physics of the marginal

ice zone.

The next task is to incorporate the thermodynamic model of Lars

Petter R~ed into this model and improve the vertical resolution of the

ocean. In addition, we expect very interesting results will be found

when we include actual land boundaries and a more comprehensive atmos-

pheric boundary layer.

James J. O'Brien
Meteorology & Oceanography
The Florida State University
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ABSTRACT

This study is aimed at the modelling of mesoscale processes such as

up/downwelling and ice edge eddies in the marginal ice zones. A 2-dimensional

coupled ice-ocean model is used for the study. The ice model is coupled to

the reduced gravity ocean model (f-plane) through interfacial stresses. The

constitutive equations of the sea ice are formulated on the basis of the

Reiner-Rivlin theory. The internal ice stresses are important only at high

ice concentrations (90-100%), otherwise the ice motion is essentially free

drift, where the air-ice stress is balanced by the ice-water stress.

The model was tested by studying the upwelling dynamics. Winds parallel

to the ice edge with the ice on the right produce upwelling because the

air-ice momentum flux is much greater than air-ocean momentum flux, and thus

the Ekman transport is bigger under the ice than in the open water.

The upwelling simulation was extended to include temporally varying

forcing, which was chosen to vary sinusoidally with 4 day period. This

forcing resembles successive cyclone passings. In the model with thin oceanic

upper layer, ice bands were formed. The up/downwelling signals do not

disappear in wind reversals because of nonlinear advection. This leads to

convergences and divergences in oceanic and ice velocities which manifest

* themselves as ice banding. At least one wind reversal is needed to produce one

ice band.

A constant wind field exerted on a varying ice cover will generate

vorticity leading to enhanced up/downwelling regions, i.e., wind forced
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vortices. Steepening and strengthening of the vortices are provided by the

' 'nonlinear terms. As in the case of ice band formation, the wind reversals

will separate the vortices from the ice edge, so that the upwelling

enhancements are pushed to the open ocean and the downwelling enhancements

underneath the ice.
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" . Introduction

The topic of this doctoral research is the dynamics of the

marginal ice zone (MIZ). The study is aimed at the modelling of

mesoscale processes such as upwelling and ice edge eddies. The

modelling of the coupled ice-ocean system requires the construction

of a constitutive law for sea ice.

The marginal ice zone can be defined to be that area connected

to the edge of the pack ice where the existence of the ice edge has

influence on the dynamics of the ice and the ocean (about 100-200

km inwards and outwards from the actual ice edge). In the northern p

hemispnere the MIZ regions are found in the Bering, Greenland and

Barents Seas. The MIZs are areas of highly energetic interactions

between the atmosphere, the ice and the ocean. They are p

characterized hy mesoscale processes such as upwelling, oceanic

fronts and eddies. The strong vertical and horizontal temperature

gradients also lead to vigorous heat exchange between atmosphere

and ocean. Moreover, there are considerable fluctuations in the

position of the ice edge on time scales of a few days to years.

There is an increasing amount of observational evidence from

the MIZ, and new experiments are planned currently. The MIZ has

long been known by fishermen to be a biologically act ve area.

It provides a congregation area for marine mammals and birds in

• . . . . . . . i . . .
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subpolar regions (Alexander, 1980). Interest in coastal upwelling

which supports high primary production led various scientists to

investigate upwelling and other related processes at the ice edge

in the 1970's. Oil drilling and transportation in the polar seas

has also increased the research efforts in the Arctic regions. The

climatologists are interested in the MIZ because of the influence

of the sea ice on the global climate. There are strong empirical

correlations between interannual atmospheric variability and ice

edge fluctuations. The MIZ provides a good opportunity for

meteorologists to measure boundary layer modifications; for

example, how the stability conditions and varying surface roughness

affect the bulk aerodynamic coefficients (The Polar Group, 1980). -

In addition, the MIZ processes are important in defining the

boundary conditions in large-scale ice models.

Upwelling at the ice edge is a well-documented phenomenon

(Buckley et al., 1979; Alexander and Niebauer, 1981; Johannessen et

al., 1983). The upwelling is described to be wind-generated and

dynamically similar to coastal upwelling. The wind driven ice edge

jet and its oceanic counterpart are observed during uowelling

(Johannessen et al., 1983).

The ice edge is found to meander during calm periods 'Johan-

nessen et al., 1983; Nikolayev, 1973) and to shed eddies to the

open water with scale of the Rcssby radius of deformation. Also

satellite imagery (Buckley et al., 1979, Vinje, 1977) has shown

* -. =. .
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that the ice edge can move tens of kilometers in a few days. There

will be more discussion about observations in the MIZ in section 2.

The observational data from the MIZ's will considerably

increase during the coming years when the Marginal Ice Zone

Experiment (MIZEX) is carried out. Already during the 1970's when

the Arctic Ice Dynamics Joint Experiment (AIDJEX) was taking place

the U.S. National Academy of Sciences recommended a focusing of

attention on the Arctic MIZ. The Joint Scientific Committee of the

World Climate Research Program put forward in 1981 a recommendation

for a comprehensive study of the MIZ physical processes.

MIZEX is a series of experiments, the first of which has

already taken place in the Bering Sea MIZ mid-winter 1982-83. The

summer experiment 1983 in the East Greenland MIZ was a pilot study

for a larger experiment in the summer 1984 in this same area.

Furthermore, there are plans for experiments in the Bering Sea in

the winter 1984-85 and for a major East Greenland experiment in

1987.

Theoretical studies of the MIZ are very few. These have

mostly concentrated on studying upwelling circulation. The

possibility of the ice edge upwelling was first presented by

Gammelsrod et al. (1975) using a one-dimensional, homogeneous model

for the ocean. The ice cover was allowed to move vertically in the

model. The discontinuity in wind stress (infinite stress curl)

causes divergence in the oceanic velocities and hence upwelling at

---- --- --- -----~--------------~--.---, - .- ,- ~.......................
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the ice edge. At the steady state the ocean under the ice cover

and outside the wind belt is quiescent. The upwelling occurs at

the ice edge, and to satisfy the mass balance there is downwelling

at the outer edge of the wind belt, and inside the belt there are

off-ice and on-ice currents in the top and bottom frictional layers

respectively.

With vertical stratification and a rigid lid in place of the

ice cover, the analytical work by Clarke (1978) and the numerical

model by Niebauer (1981) establish the scale of upwelling to be the

Rossby radius of deformation and also the existence of the oceanic

ice edge jet. The dynamical cause is again the infinite stress

curl at the ice edge. Clarke (1978) also included the case of -

shelf ice edge upwelling (ice is thicker than the depth of the

pycnocline) in which case the dynamics is governed by long

wind-forced trapped waves travelling with the ice on the right -

(northern hemisphere).

In the above models the ice cover plays a passive dynamical

role. However, the ice edge has been observed to move several

times the Rossby radius of deformation in a few days, so its effect

on upwelling dynamics can be significant. The internal ice stress

is shown to have strong influence on the upper ocean dynamics when

there are no other stresses present, Roed and O'Brien, 1981, 1983.

Their model consists of coupled dynamical equations for the ice ice

and for the ocean in one dimension, the ocean model is a reduced

o. .
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gravity model. In the geostrophic adjustment process a strong ice

edge jet will develop. The discontinuity at the ice edge in the

surface stress generated by the moving ice causes an infinite

divergence and upwelling, further under the ice there is down-

welling because the decreasing ice velocity produces convergence of

the water underneath. In the adjustment process the ice edge will

move up to 20 km or more depending on the parameterization of the

internal ice stress from its original position.

The effect of the moving ice can change the upwelling found in

the rigid-lid cases into downwelling (Roed and O'Brien, 1983). Also

the bulk aerodynamic coefficients or actually their relative magni-

I tude are of significant importance in determining whether the ocean

response to winds is upwelling or downwelling (Roed, 1983).

In this paper, the model of Roed and O'Brien is extended to two

I dimensions to study baroclinic motion as a response to local

forcing, i.e., upwelling, and how different variations in the ice

field, like a meandering ice edge and varying ice concentration

(with a straight ice edge), lead to eddy-motion in the ocean. The

study of barotropic instability processes in the MIZ is also

included. All these processes may produce meandering of the ice

* edge and mesoscale oceanic eddies. There have been no modelling

efforts addressing these subjects. The formulation of the numerical

model is given in Section 3.1.
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For a dynamical model of the ice the internal ice stresses

need to be specified, which is the other main topic of this

study. In the literature three different rheologies have been

associated to the ice medium: viscous (Doronin, 1970; Campbell,

1965), elastic-plastic (or rigid plastic) (AIDJEX-modellers,

Pritchard, 1975, 1980; Coon, 1974, 1981; Coon, et al., 1974; Colony

and Pritchard, 1975); Pritchard and Reimer, 1978) and viscous-

plastic (Hibler, 1977). Although plastic constitutive laws are

widely used in large-scale ice modelling, they have not been

established experimentally. In Section 3.2 a constitutive law for

the ice is proposed. It is based on Reiner-Rivlin theory of

generalized viscous fluids, in which the viscosity coefficients -

depend on the strain-rate invariants and some other relevant

external parameters, like ice concentration and thickness.

The hydrographic sections for summertime and early fall

indicate that pycnocline changes are comparable to the upper layer

thickness. This makes the dynamics strongly nonlinear. The

scaling of the dynamical equations and major balances are discussed

in Section 3.3.

A review on upwelling dynamics and stability analysis are

given in Sections 4.1 and 4.2 with the inclusion of the nonlinear

(thin upper layer) case. In section 4.3 a new theory for ice band

formation is given. When a constant wind field is changed to a

temporally varying field, there will be generation of ice bands.
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I The time-varying winds simulate cyclone passings. It is shown in

Section 4.3 that nonlinear dynamics is essential for the formation

of ice bands.

Section 5 deals with the effect the different kinds of

disturbances in the ice field induce on the ocean when forced by

local winds. The ice cover variation along the ice edge will lead

to differential Ekman pumping and produce eddy like features that

travel with the speed of the ice. These up-(down-)welling

enhancements are not unstable and they do not separate themselves

from the ice disturbance that supports their existence. The

cyclonic eddies can be shed to the open ocean in wind reversal due

ato nonlinear advection.

IF
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2. Observations in the MIZ
.4.

The MIZ of the northern hemisphere lies in the East Greenland

Sea which is of great importance for general circulation as an area

for the Arctic Bottom Water formation. In the Greenland Sea the

Atlantic waters and Polar waters are recirculating. The Atlantic

water enters to the Greenland-Iceland basin as an extension of the

Norwegian Atlantic Current which separates to a part that continues

to the north along the western side of Spitsbergen and to a part

that flows to the Barents Sea (Swift and Aagaard, 1981). The mass

transports are of order 7 Sv (Coachman and Aagaard, 1974). The

Barents Sea branch joins the recirculation gyre north of Spits-

bergen, where the flow follows the ice edge towards the south.

Smaller amounts of the Atlantic water enters through the Denmark

strait (the northward branch of the Irminger Current). The cold and

less saline Polar waters flow southward along the western side of

the basin forming the East Greenland Current.

The Atlantic water suffers a tremendous heat loss during

wintertime off the coast of Spitsbergen. The maximum heat flux is

nearly twice the maximum of the Gulf Stream (which occurs

north-east of Cape Hatteras) (Gorshkov, 1983). This water flows

south adjacent to the East Greenland Current forming the Polar

front. The Polar front and the coldest water, -1.40C at 1000 m,

8
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are found off the East Greenland shelf break (Swift and Aagaard,

" 1981), where also the wintertime marginal ice zone is located.

Upwelling in the MIZ has been confirmed by observations

(Buckley et al. (1979) north of Spitsbergen, Alexander and Niebauer

(1981) in the Bering Sea and Johannessen et al. (1983), north of

Spitsbergen. The hydrographic sections show frontal structure, one

front at the ice edge and another one further out (10-60 km) from

the ice edge. The fronts are more pronounced in the melting period

(Alexander and Niebauer, 1981). This structure can be explained by

upwelling generated by wind, although Alexander and Niebauer could

explain only 1/10 to 1/2 of the area of upwelled water by wind-

I driven Ekman transport for some of their hydrographic sections. In

S.the presence of strong easterly winds (15 m/s), the pycnocline is

lifted 5 to 7 meters (Johannessen et al., 1983). The data of

* rBuckley et al. (1979) shows upwelling even with very weak winds.

The width of the upwelled area is observed to be 2-3 times the

-- Rossby radius of deformation. This fact can be related to the -,

ability of the ice edge to move tens of kilometers in a few days.

This is confirmed by satellite imagery (Vinje, 1977).

An oceanic ice edge jet (speed of order 10 to 20 cm/s) is

observed and attributed to be wind driven similar to the jet in the

ice with a speed of about 30 cm/s at 5 km from the edge, Johannes-

sen et al., 1983. They calculated the drift factors (percentage

: _- -.. .-................ .... *.......-..-.-.....................-.....-................. %....... . ,..
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of the wind velocity) for the ice in the interior and at 50 km from

the edge to be 0.9% and 1.2% respectively, while at the edge the

value of 1.9% was established. Nikolayev (1973) found a surface

jet at the ice edge (in the Chuckhi Sea) which traveled with the

open water on the right independently of the wind direction. The

existence of these strong oceanic and ice jets implies strong

horizontal and vertical shears which in turn can cause barotropic

and baroclinic instabilities.

Johannessen et al. (1983) has reported that the ice edge and

the ice-edge front meanders with a scale of 20-40 km. The

meandering happened during calm periods. On the other hand, with

winds parallel to the ice edge, the ice edge appeared to be

straight. Nikolayev (1973) observed meandering of the ice-edge

front current in the Chuckhi Sea in aerial surveys, but with larger

wavelength (about 100 km). Oceanic mesoscale eddies are often seen

at the MIZ in satellite imagery (Vinje, 1977; Wadhams, 1981). The

eddies obviously are closely connected to the existence of the ice

edge, and they usually have been attached to the edge. Moreover,

they are often marked by grease ice, which is used to identify

eddies in satellite pictures. The dimensions of these eddies are

10-20 km which is of the order of the Rossby radius of deformation.

Hydro-graphic data confirms the existence of eddies of the same

scale and that these features are confined to the mixed layer. The

observed eddies have been cyclonic (Johannessen et al., 1983).

- * -.1.
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Due to lack of good observational data there is no information on

the growth-rates and lifetimes of these eddies. There is some

evidence that the smaller eddies live at least 8 to 10 days (the

time buoys have been able to track them) (Johannessen et al.,

1983).

While eddies of scales 10-20 km are the most abundant, there

has been observations of a 60-90 km eddy in the Greenland Sea lying

over the Molloy Deep (790 4O'N, 3*E) (Wadhams, 1983) and 100-200 km

eddies have been seen in satellite pictures from the Bering Sea.

The former eddy, which is frequently seen in satellite pictures,

can not be explained as resulting from an instability process

[ because it is very stagnant and shows no downstream propagation.

There is a persistent phenomenon of regularly spaced bands of

ice floes especially in the Bering Sea MIZ with scales of order

*m 1-10 km. These bands appear when winds are off-ice, with their p

long axes oriented nearly normal to the wind direction. The bands

* .have not been seen when winds are blowing towards the ice (Bauer

and Martin, 1980; Muench and Charnell, 1977). Speeds of 20-30 cm/s

are considered typical translation speeds for the ice bands, Muench

et al. (1983). They believe that bands result from interaction -

with internal gravity waves. Other explanations have also been P

offered (Wadhams, 1983; McPhee, 1982).

m



3. The Coupled Ice-Ocean Model

3.1 The Model Formulation

For the study of the wind forced motion in the coupled

ice-ocean system a 2-dimensional numerical model was constructed.

The model is in a Cartesian coordinate system rotating with a

uniform angular velocity f/2. The Coriolis parameter f was chosen

to be that of the latitude 80 (f z 1.4.10-4).

The sea ice model consisting of the two momentum equations

and the equation for the continuity of the ice concentration is

coupled to a reduced gravity ocean model through interfacial stess. ' -

The external forcing is applied through stresses at the air/ice and

air/ocean interfaces. The air/ice stress is proportional to the

ice concentration (-compactness) and the air/ocean stress to the

fraction of the area free of ice.

If there is a spatially varying ice thickness, one more

equation is needed to solve the dynamical system. A convenient

solution is to select the continuity equation both for the total

mass and for the ice concentration. Then the ice thickness is

available through a simple division. Compared to the large scale

sea ice models (Hibler (1979), Hibler and Tucker (1979), Hibler and

Walsh (1982)), there are no redistribution terms in the continuity

12
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I equations, i.e. the equation of state is dD/dt =0, and the

thickness, 0, is conserved along the particle path. The so called

sea surface tilt termis are not included in this ice model.

The transport form was chosen for the oceanic model to make the

continuity equation linear, i.e. Uxhu and V=vh, where u and v are

the x-and y-velocity components respectively and h is the upper

layer thickness. The governing equations of the problem are the

following:

for the ice

QiAD (ul,t~uiui,x4.viui,y) = iADfvi + A(rai,x + Twi,x) + Fi,x

PiAD (vi,t4uivix~vivl,y) -PiADfui + A(Trai,y T wi,y) + (3.1.1

(3.1.2)

At + (Aui)x + Av~ 0 (0 < A < 1) (3.1.3)

Mt4 (mui)x + (mvl)y =0, m o iAD (3.1.4)

and for the ocean

Ut4(U2/h)x4(UV/h)y fV + (I-)Tw x ATix AHV2Ij

(3.1.5)

Vt4(UV/h)x4(V2/h)y =-fU - h + (1A Ta, ~iy)IP + 5;

ht 4 Ux + Vy 0 (3.1.7)
yS
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:1 where i x + , F, = a - + - are the forces due
where Fi X - Oy , d x-

to the internal ice stress, a is the stress tensor for ice,

Zai is the stress exerted by air on ice with components rai,x, Tai,y,

Twi is the water-ice stress with components rwi,x, rwi,y,

Taw is the air-water stress with components Taw,x, Taw,y,

A is the ice compactness (varies between 0 and 1),

D is the ice thickness,

Pi, P and Pa are the ice, water and air densities (Pi = 910 kgm-3 ),

g is the reduced gravity,

and AH is the horizontal eddy viscosity coefficient.

There is a weak Laplacian diffusion term in both of the

continuity equations for sea ice. They are needed to damp out the

possible nonlinear instabilities. As it can be seen from (3.1.3) and

(3.1.4), A () can vary from 1 (PiD ) to 0, which would correspond to

surfacing of the pycnocline in an ocean model.

The lateral stresses are parameterized using quadratic forms:

air/ice stress Iai = PaCai W - lii (a - ai )-aCai I A 11,

air/water stress Taw PaCawi.±i

ice/water stress Tiw = piCiwIUi -Uw I(ui -_1w)

where 4, Ii ard Lw are the wind, ice and water velocity vectors

respectively. The drag coefficient at the air/ice interface (Cai)

L
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depends on ice concentration, how rough the ice is, etc., but in

general Cai is 2 to 3 times the drag coefficient over the open water

(Caw). In very unstable conditions Caw can be larger than Cai

(Macklin (1983); Walter et al. (1984)). In this study Cai and Caw

are taken to be 3.6 x 10- 3 and 1.2 x 10- 3 respectively.

There is a great variety of studies on the interfacial

ice/water stress showing that the coupling is strong (Prase et al.

(1983), McPhee (1982)). The stress depends on how smooth or rough

the bottoms of the ice floes are, the and multiyear ice which is

heavily ridged is bound to lead to a different parametrization than

smooth one year ice. In the following computations Ciw is fixed to

IL be 10-10 - 3 or 15.10 - 3 which are in accordance with the measurements

of Pease et al. (1983) but are larger than the value of 5.5 • 10- 3

used by Hibler (1979). If the ice-water drag coefficient is large,

i F then the variation in ice thickness does not greatly affect the ice

velocities. For small drag the Coriolis force becomes more

important allowing the thickness of the ice to have a larger effect

on the ice velocity.

In the Arctic the baroclinic radius of deformation is very

small compared to the values at the midlatitudes. The at profile in

figure (1) using vertical normal mode separation yields 4.24 km (for

depth of 500 m) to 5.43 km (for depth of 2000 m) for the deformation

radius of the first baroclinic mode. Because the ocean is simulated

with a two-layer model, where the lower layer is infinitely deep and

S .
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Figure 1. The temperature, salinity and density struct'ure
in the Greenland Sea in early Fall 1979. From
Johannessen et al. (1980).
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at rest (the reduced gravity model), the g* = g(P2 -P1)/P2 and the

upper layer thickness h are chosen so that it approximates the

deformation radius in the above limits. In the following the values

g * = .0172 ms-2 and h = 25 m are used which correspond to Rd = 4.68

km (f = 1.4.10-Is-1). These numbers correspond well to the summer-

time and early fall conditions in the Greenland Sea. In wintertime

the upper layer thickness is 150-200 meters, which together with a

density difference of 2.0 at-units gives Rd - 10 km (figure 2).

The Numerical Model

The model consists of a channel 100 km long (x-direction) and

70 km wide (y-direction) (the size was chosen according to the

K[ maximum computer storage). One half of the channel is initially

covered by ice, the other half is open water. This geometry will

resemble the MIZ in the northern Greenland Sea, where the ice edge

is found more or less in the north-south direction over the deep .

Greenland basin.

The dynamical equations are discretized on a staggered grid,
SI

which is shown in figure (3). The grid size was taken to be I km.

Considering the resolution of the dynamics this value might be

slightly too large, since there are 4-5 grid points per Rd.

Boundary Conditions

In their one-dimensional model Roed and O'Rrien (1983) were

able to solve for the ice edge position exactly using the method of

° .
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o + 0 + 0 0 Q

j+l,k-1

x x x x
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Figure 3. The staggered grid for the numerical model.

A and h are computed at o - points,
ui and u are computed at + -points and
vi and v are comouted at x - points.
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characteristics. This was possible because they had no viscous

terms in the momentum equations. In two-dimensions the method of

characteristics would be extremely tedious, and because of the

viscous, terms very difficult. The incapability of solving for the

exact ice edge position can be justified. If 8-10 grid points are

needed to resolve the dynamics properly, then knowing the ice edge

position better than one grid point cannot have any effect on the

dynamics. In this model the ice edge is allowed to diffuse freely;

the error that arises is not serious if the grid size is small

(which is the case in this model). Also, the dynamics will depend

more on the gradients in the ice concentration (or mass) than on the

magnitude of the concentration.

When ice is moving to grid points where there was no ice

before, the boundary condition for ice velocities at the ice edge is

based on the continuity of stresses. This means that the ice -

stresses are equal to the water stresses, and because the viscosity

of the water is negligible compared to the viscosity of ice, the

stresses for the ice are approximated by axx(= Ui,x) = axy = (Ui,x)

= 0 and ayy (2 vi,y) = 0 = Cyx (- Ui,y) on the boundaries parallel

to the y axis and to the-x axis respectively.

On the north and south ends of the channel cyclic boundary

conditions are applied. On the boundaries to the east and west open

boundary conditions are used according to the formulations by

Camerlengo and O'Brien (1980).



3.2 Constitutive Law for the Ice
a 0

3.2.1 Review of Earlier Stress Laws

A major physical assumption invoked in sea-ice modelling is to

regard the pack ice field as a continuum. In the MIZ where the

dynamical scale is the Rossby radius of deformation (about 5-10 km),

this hypothesis can be well justified because the ice floe size is

small. The diameter of the floes varies from 0.5 m up to 25 m in

the first 10 km and from 25 to 50 m in the next 10-15 km and from 25

km inwards the maximum floe size is several hundred meters

r (Johannessen et al., 1983). The internal ice stress arises from the

bumping and shearing between the individual ice floes comprising the

ice medium. Although it has been recognized for some time that ice

Iis a non-Newtonian fluid, a viscous law was used in the earliest

large scale ice modelling attempts by Campbell (1965) and Doronin

(1970). Glen has proposed a viscous law (1958, 1970) that has been

used in large-scale ice models by Hibler and Tucker (1979). 0

The AIDJEX modellers adopted a view to treat ice as an elastic

plastic medium. Plastic rheology has been preferred for the pack

ice because observations show that the ice field can support varying

strain rate states under fairly uniform forcing. in plasticity

theory a condition for plastic yielding is introduced through the

so called yield curve which is a function of stress invariants (or

21
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principal stresses). Interior to the yield curve the stress is

assumed to be elastic (or viscous (Hibler, 1977)), and points along

the curve represent plastic yielding under constant stress. The

yield curve can take a shape of a teardrop (AIDJEX modellers) or an

ellipse (Hibler, 1977) which is confined to the negative principal

stresses quandrant because of the inability of the ice to support

tension.

Introducing an associated flow rule the plastic potential is

assumed to be the same the yield curve and the strain rate, ;ij,

can be computed from eij - X 30 /aaij where ; is the yield curve

0(a1 , az, p*) = 0, and p* is the plastic strength, a, and a2 are the

principal stresses, aij is a component of the stress tensor. The

flow rule implies that the plastic flow is orthogonal to the yield

curve. The plastic hardening may be taken into account by

increasing the plastic strength. -

Hibler (1977) used an elliptic yield curve to show that locally

plastic law can stochastically give a viscous behavior of the ice in

time scales of one day. In his stress law the effective shear and

bulk viscosities will decrease for converging ice fields (although

he has a lower bound for the viscosities). This means that with

increasing convergence the stress stays the same (plasticity

assumption). Contrary to this, one would expect the viscosities to

increase with stronger convergence, e.g. preventing ridges to become

infinitely high. These drawbacks of the plastic stress laws were

SZ -Z
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first pointed by out by Smith (1983). Hibler has a pressure term to

smooth out excessive ridging, but it is difficult to interpret the

physical meaning of this equilibrium pressure in large scale

behavior of sea ice.

There are several arguments against plastic formulation and

especially against the flow rule, which is introduced merely for

mathematical convenience (Hunter, 1976). The extra assumption that

the yield curve and the plastic potential (which was originally used

in the flow rule) are the same is not necessarily true. There is no

experimental evidence for any of the assumed yield conditions.

There is also a controversy about the magnitude of the plastic

strength. The large-scale ice models need a strength of IO Nm-1 to

be able to produce motion similar to observed (Pritchard, 1981;

Hibler and Walsh, 1982) while the hest theoretical value is an order

of magnitude less (Rothrock, 1975, 1979).

3.2.2 The formulation of the constitutive law

There are two alternative approaches in postulating the

constitutive law: 1) to assume that the stress depends only on the

strain or the strain rate at that point and at that time, or 2) to

assume that stress depends on the whole time history of the strain

at a point (Astarita and Marrucci, 1974). Obviously the last

approach would lead to a very complicated formulation. For
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modelling purposes the most favorable description is the first one,

which will be used in this study.

The general physical properties which are included in order to

develop a constitutive law are

a) ice cannot support tension -- opening occurs with nearly no

stress (no isotropic stress for diverging ice).

b) no equilibrium pressure -- ice does not have a tendency to

expand by itself, i.e. no motion implies no stress.

c) the "memory effects" will come through the mass

distribution or the so called compactness; with high

compactness ice will resist more compression and shearing

than for low compactness. It is approximated that with 85% ....

ice coverage in the MIZ the floe interaction is already

negligible. Also thick ice can resist more to deformation

than thin ice. -

d) the higher the compression (convergence) is, the more the

ice will resist it. Observations indicate ridges are never

higher than about 15 m. This implies that viscosity must

become nearly infinite to stop ridging in converging ice

fields: effective viscosity increases with compression.

e) high shear rates should give low effective viscosity to

explain openings in coastal shear zones.

f) mathematical requirements: frame-indifference and

dimensional invariance. The former states that the

E'- "-• .- ". "- , . " •. . -.- . ". " "- ." Z .I "'Z -. "" 'J'-. -'-"- - ,. . '. -. ' , ' '- .. " . -.'.'-' . -
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constitutive law must be invariant under a change of

coordinate system (also for anisotropic materials). This

is also called 'principle of material objectivity' (a

change of observer must leave the behavior of the material

unaffected) implying isotropy in space. fimensional

invariance requires that there must be a minimum number of

dimensional parameters including at least one with

dimensions of stress, one with time and one with length.

g) the constitutive law must lead to positive dissipation.

A rigorous way to proceed in finding the constitutive law for

the ice is the generalized Newtonian fluid theory although this

prescribes 'viscosity' functions to be determined empirically.

Reiner (1945) and Rivlin (1948, 1955) showed that if the stress is

assumed to be a function of strain rate at that point and at that

time then the stress can be expressed as a = 0oI, + + ;

where ;o, and o are functions of the three strain rate

invariants only. In two dimensions the third term is drooped, be-

cause the second and the third invariants coincide (Appendix).

The above form is the only one that will satisfy the requirement of

material objectivity. Furthermore the quantities o, ;,, (and o2)

are material functions. By assigning these, the particular

Reiner-Rivlin fluid is identified.

In the light of the above considerations, the constitutive law
I

".. . . '. .. .. . .. ., .a " -""-""""""'" " """" ' . . .. . "" .' . " "" " .. ' -"
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of the ice can be written as

ij= o(tri, deti, Sp)6ij + (01(tr , det ,, Sp)Cij,Sp ij (3.2.1) :i

(with i 1,2 and j = 1,2) where Sp can be other scalar state

variables like ice thickness, compactness, etc. The stress may be

divided into isotropic and deviatoric parts:

ij -(o *1tr;/2)6ij + 01 3'ij = + o1 3 (3.2.2)

where po may be called the 'pressure' and the 'shear viscosity'.

Oo and 01 can now be assigned so that they include the following

properties:

- oo is zero when there is no motion

- (00, only compressive isotropic stress will be allowed because - -

ice has no resistance to tension and hence 0o should be zero for

diverging ice (ii + £22>0). We allow shearing (o * 0) for

high compactness even though the ice is diverging.

0 , *, depend on ice compactness (and ice thickness in large

scales), high compactness should give high viscosity: In the MIZ

85% ice coverage (corresponds to A = .85) should give zero

effective viscosity. The floes are then sufficiently separated so

that they do not interact. If the ice coverage is 1000 (the

compactness reaches its maximum A = 1) and if the ice cannot ridge -

I
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(ice is confined to horizontal planes) the viscosity should go to

infinity to prevent any further compression.

- For high shear rates the shear viscosity should be low. It has -

been observed that highest shears occur near shores where openings

of the ice field also occur. As noted by Rothrock (1979) that in

order for the viscous models to simulate the ice motion, the

viscosity should vary from about 5-10 9 kg s-1 near shore to over

1011 kg s-1 far from shore. In Reiner-Rivlin theory this feature

can naturally be taken into account.

- Generally shearing stresses are expected to be smaller than iso-

tropic stresses because ice field resists compression more than

[ r shearing. S

We hypothesize that the following formulae are a reasonable

constitutive law and takes into account the assumptions listed

*I above: ".

shear viscosity, oI = piAD0lexp(-<(l-A))exp(-Yel9B21) and

isotropic stress, *o " PiADi.oexp(-"(1-A)), e1 0.

This law introduces four parameters to be fixed either from 0

observations or from model experiments. The A-dependent part was

chosen to have the same form as Hibler (1977) with < = 15, giving a

rapid decrease of the stress with decreasing ice concentration. The S

coefficient uo was chosen to be 1 Nm/kg giving ice strength of order

103 qm-2. The shear coefficient, 41, was fixed to be 104 m2/s, which

corresponds to order of 107 kg/s in the units preferred by large

S
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scale ice modellers. This value is nearly three orders of

magnitude smaller than values extrapolated from observed ice motion

(Rothrock (1979)) or used by ice modellers like e.g. Hibler (1979).

The viscosities given in literature apply to large scale ice

dynamics, scales of 200 to 500 km, but studying smaller scales one

is able to resolve better the motion and the nonlinear advection

A that also contributes to the large scale viscosity. This means

that there is a definite scale effect in the ice shear viscosity

and it should rather be called the "eddy" viscosity of the ice.

The justification for the chosen value of Pi can be based on

the theory of turbulence (2-dim). The dissipation rate, e, can be

derived from the momentum equations and it is

D

where D is deformation rate. Based on this equation we derive an

equation for viscosity, i, using dimensional analysis and assuming

that u depends only on e and wavenumber, k:

= C c1/3k'4/ 3  (C is constant).

The (turbulent) dissipation rate of the system is the same whether

studying its behavior in large or small scales (scales designated

by LZ and Ls respectively), which leads to the following scale

relation (appropriate wavenumber is inverse of length scale):

s - ux(Ls/LZ)4
/

3
.

When Ls = I km, LX = 200 km, ut = (1-10)10!Okg/s (e.g. from

*. .... . . . . . . .
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i L Rothrock, 1979), the small scale viscosity is Ls i (1-1O)10 7kg/s,

which is the value range used in this study.

The factor e-YOl021 is added to account for the decrease of

viscosity for high shear rates. The multiplication by the trace of

strain rate tensor is needed because under compression it is harder

to have shearing in the system. This is especially important near

- land boundaries. The coefficient Y was chosen to be 3.108 s2 . For

typical values of e1 and e2, (1-2)10-5 s-1 this factor is still 0.9

(for diverging ice). This comes into play only for very large

shear and compression/tension rates.

The testing of the above constitutive law was done by studying

the response of the ice to on-ice winds when the ice is bounded by --

a wall. The results for the two cases w = 0 and 0 = 1.0 Nm/kg

are shown in figure (4) after three days of an on-ice wind of m/s. . -

The initial ice concentrations are shown as dashed lines, the ice

edge being at x='.0.5 km and the solid boundary at x = 0. As seen

from figure 4c the thickness of the ice can grow up to 34 meters if

there is no resistance to compression during a wind event. When

the isotropic stress is added, the maximum height that ice can pile

up against the shore is 13 meters in three days (figure 4d). The

distance from the boundary where the thickness changes take place

are very different in these two cases. This is reflected also in

the velocity profiles for the ice (figure 5). For the case 4 = 0

the width of this boundary layer, , is determined by the viscosity

• .S ~
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(Ekman-type side-wall boundary layer) S

2ul/f o  - 10 km.

In the other case, u # 0, ice behaves like an ordinary barotropic

fluid pushed towards the coast because of the existence of the

isotropic stress. The ice thickness at the coast has its maximum

when the pressure gradient, which is proportional to the ice

thickness gradient, is balanced by the wind stress. At this steady

state the thickness gradient is established across the whole ice

extent.

Comparing the velocity profiles for uo = 0 and 40 = 1 Nm/kg

cases (figure 5), one sees that in the latter case (figure 5b), the

velocities are overall smaller than in the uo = 0 case (figure 5a).

This, is of course, due to the isotropic stress resisting the ice

motion. Only near the ice edge where ice concentration is small

(the internal ice stress is small) the ice velocities increase near

to their free drift values. The ice edge velocity in figure (Sa)

is smaller than in figure (5b), because in the former the ice edge

is steeper leading to larger viscosity (and smoothing). The

v-velocity components of the ice are induced by the oceanic Ekman

transport due to the strong interfacial stress. The cryospheric

Ekman transport is negligible because the Coriolis iurm is small

compared to other terms in the momentum balance for the ice.

% . -S
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The above simulation is not very realistic if one considers

the Arctic ice pack in the wintertime, when the ice floes are

frozen to each other forming an "ice plate", especially near

coasts. One way of extending this constitutive law is to add

elastic properties into it, like for example in the Maxwell fluid,

where the stress also depends on how it changes with time (Astarita

and Marrucci, 1974).

The main interest of application of the constitutive law is in

the MIZ ice dynamics. There has been some controversy over the

importance of the internal ice stresses on the ocean dynamics. The

proposed constitutive law suggests that for the typical MIZ ice

compactness values, from 0 to 85 (90)%, the pressure and the shear .

viscosity are negligible. Thus the internal ice stress does not

contribute much to the ice dynamics (of course the ice is still

more viscous than the ocean). This conclusion may be reached from

another point of view; the frictional effects are important only

near boundaries and far in the open ocean the ice motion is free

drift. This is also supported by findings of Thorndike and Colony

(1982), who explain most of the ice motion (86% of the variance) as

a balance between the stresses exerted by the atmosphere and ocean

and the Coriolis force (free drift).

..
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3.3 Scaling of the Dynamical Equations of the Ocean

In the following the forced motion is studied, which means that

constant wind field is applied over the ice and the ocean. The aim

of this section is to show what dynamical regimes the chosen para-

meters represent and what are the major balances in the vorticity

equation. It is assumed that the ice edge is parallel to the x-axis

and ice is covering the positive y-axis side, the "northern" side.
ID

For a constant wind field the variation in the ice cover can

introduce mesoscale effects. An across ice-edge change in surface

stress leads to up/down-welling, but also a variation along the ice- -

edge direction can lead to up/downwelling enhancements.

The moving ice cover will manifest itself as a time dependent

forcing for the ocean in the case where the ice cover varies in the 0

ice-edge direction. For this r ason the scaling is done in a

coordinate system that moves with the speed of the ice, which is

assumed constant (not quite true near the ice edge). The advantage

is that the Ekman velocities will be time-independent. J

In the coordinate system moving with speel c, the governing

equations for the ocean are

Ut + U Ux v Uy fo + -X(xy)/Dh - g*hx  (3.3.1)

vt + U Nx  v Vy fo (U c) PY x,y)!;n -g~h (3.3.2)
3
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ht + (hu)X + (hv)y = 0, (3.3.3) 3

where T(x,y) includes both the surface and the interfacial stresses.

The velocity components are scaled by U, time by T, x and y by L,

which is also the scale of variation in ice concentration. Two

Rossby numbers are assigned x c/foL, and e = U/foL, the

stratification parameter is s = g*H/foL., parameter of the local

acceleration is w = 1/foT. The forcing is scaled by To/PH, where H

is the scale for the upper layer depth. With these conventions the
S

x-momentum equation becomes

2 2
Wcu t + C (uux + VUy) - Ev + (To/PfOHL)Tx/h - (g*n/fZIZ)h. (3.3.4)

where n is the scale for interface change). To get a proper balance

between the Coriolis term, the forcing and the pressure gradient,

the following choice is made:

i2
To/PfoHL = e which leads to U = r0/PfoH and

2 2

g h/feL = e which gives n = oL/g*H = He/s.

The scaled y-momentum equation is

W£vt + £2 (UVX + VVy) = - u - C + ETy/h - g*n'/foL 2 )hy (3.3.5)

2 2
If Z>>e which means that for proper balance g n'/foL = e, then

n'= cLfo/g* = HT/s. As a consequence of this and the earlier

p
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conclusion h can be divided into three parts:

h = H(I + (-/s)F+ (e/s)n), where nis the interface change that

supports the velocity c.
I

The velocities can be expressed now as a sum of geostrophic,

Ekman and ageostrophic parts:

u 2 ug + uE + ua  - ny + uE + 0(E) (3.3.6)

V = Vg + vE + va =n x + vE + 0(c). (3.3.7)

When the velocities and h are substituted into the continuity

equation, it becomes

Wnt + (s + + en) E + uEny + eVEny + i(v E + nx) y = 0.

(3.3.8)

where j E (uE, yE). Choosing c is to be negative, we have ny = 1

and n 2 y, and then

Wnt + inx + (s + zy + 'n).• + Y E 7 +VE 0. (3.3.9)

This equation states that the vortex tube stretching is balanced by

steady translation of the wave pattern (2nd term), Ekman pumping

(3rd term), translation due to Ekman velocities (4th term) and a

forcing term due to the moving coordinate system (the last term).

If the ageostrophic effects are taken into account (in eqs. 3.3.6

and 3.3.7) the vorticity equation is in full:
I

. . ,, .° o. . . ° , o. .. • ,. , r , , . ° . 4 (o _ .. . . ._ . . , . • - - -•
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wnt + inx + (s + Zy + en)[ . 2 2. _j(n,7% + k _EJ

2 2- 2.
((v2 n + * U ) + U 2 C /Zc (J(n,lvnl

+~ U .wIr 2 2

UE .vn1 2) - (nx(n,vE)- nyJ(n,uE) + NxYE  YuE) + ZvE - ,wrjt

-E(J(n,ny) + *~l ~~E
E  ny J(n,uE) - E • uE) - 0 (3.3.10) 0

To second order the essential terms are the advection of the relative

and wind induced vorticity, the 5th and 6th terms. S

The typical ice concentration variation near the ice edge is

order of 10-30 km, which defines the scale of motion, L _104m.

In the case of a thick upper layer, h - 100 m (g*=0.0198 ms- 1 ), .

the stratification parameter s is of 0(1) (fo -1.4 10" s'1). The

Ekman velocities of the ocean are very slow compared to ice

I velocities, which corresponds to C>>e. The vorticity equation for 5

this system reduces to:

- 2-
W(nt - inyt - (s + cy)v nt) +n x + (s+ Ey)Z E+ :vE = 0,

where w is the largest of O(es). This equation reduces further ifl

we take into account that for typical values of c -.3 ms- 1, L - 104 m

and U -0.05 ms "1 , the Rossby numbers are e- 0.2 and l e 0.03. Thus

. . ... "." .
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(nt s 7 2 nt) + s V • = 0 (3.3.11)

This equation represents linear dynamics and it gives a linear change

in the depth of the pycnocline due to the Ekman pumping.

For the thin upper layer case (h - 25 m, g*=0.0172 ms-2) and for

length scales of order of 104 m, the stratification parameter is s ~

0.25. Because the winds act on a much shallower water body, the

velocities in the ocean are expected to be of the same magnitude as

in the ice, so that e ~ £ ~ s - 0.25 <<1. For this parameter range

the vorticity equation (3.3.10) reduces to

wnt + Enx + (s + y) • -E + - (nq,) + ZvE = 0, (3.3.12)

where w is the largest of O(s,?,e). If there is no Ekman pumping

(3rd term) the solution reduces to steady translation of the

interface. The 4th term gives the advection of the wave pattern due -

to the Ekman velocity. It is the main nonlinear interaction.

Compared to the linear eq. (3.3.11) this term gives highly asymmetric.

behaviour of the nonlinear system when the forcing (Ekman transport)

is time-dependent.

For the longer time scales the evolution of the vorticity

equation is governed mainly by dispersion. For 7>>e the next order

-2equation is of 0(Tc,e,se) and for T-, it is of 0(se,TE, ),

which both represent time scales 5 to 10 days. If the forcing has

. . - ..

. . . - , , - .... . ... . . . . . ... ., .. . • . .. . .
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time scales smaller than this, then motion is essentially governed by 0

equations (3.3.11) and (3.3.12).

If the scale of variation of the ice cover in the x-direction

| (along ice edge) is smaller than the scale in y-direction, the 0

dynamics of the ocean hardly resolves it. On the other hand, if the

x-scale is very large, the equations are also x-independent. This

leads to the conclusion that forced motion can exist only in a

limited band of wavelengths. The smallest x-scales are 2-3 times the

Rossby radius of deformation, but more typically 4-5 times Rd, which

is the scale of variation in ice concentration in the across ice edge

direction.

.
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4. Up/downwelling at the Ice Edge

4.1 Linear and Nonlinear Dynamics

Upwelling at the ice edge has been extensively studied by Roed

and O'Brien (1981),(1983). This section is mainly a review of the

simple balances in the dynamical equations that lead to up/down-

welling. To describe the physics, only cases of the strongest up/down-

welling signal are considered in the following. The largest response

occurs when the ice edge does not move, which happens for slightly

off-ice winds, about 30' from ice edge (Smedstad and Roed, 1984). The

small off-ice component of wind is needed to cancel the ice drift due

to the oceanic Ekman velocity.

In the following we study the simplified one-dimensional
I

equations (no y-derivatives). (In the ielocity components, index i

refers to ice, oceanic quantities have no indeces)

ui,t = fovi + axi/PiD - /piD (4.1.1)

(D-constant ice thickness)

vi,t = - foui + T i/piD - T /PiD (4.1.2)

At = - (Aui)x (4.1.3)
aw iw

Ut = fov - g*hx (I - A) Tx pw H  ATx /Pw H  (4.1.4)

40
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vt ou (1 A) aw iw
Vt -fu + (I - A)Ty /wH + ATy IPwH (4.1.5) S

ht - Hux (H = the undisturbed thickness of the upper layer)
(4.1.6)

As discussed earlier in section 4.2 the internal ice stresses are neg-

ligible for the typical MIZ ice concentrations (( 85 %), which means

that the ice motion is essentially described by free drift. The

steady state solution for the ice is given approximately from (4.1.1) S

and (4.1.2) as
2 2

PaCaiW = Cwi(vi - V)- PwCwiv i, (4.1.7)

where W-wind speed. With chosen parameters

vi - PaCai/pwCwi W - 2% of the wind speed,

ui ~ 0 because of the chosen wind direction, 300 off the

ice edge.

The 2% drift factor is twice the experimental values of

0.8-1.2%, even though this number is computed with very large Cwi

10-10 - 3 and Cai = 3.6.10-3. Changing Cai to be 310-3 still gives a S

drift factor of 1.9%. In the following calculations Ciw = .01 or

.015 has been used, but the results do not change much by varying Ciw

from 5.5.10- 3 to 15.10- 3.

The oceanic velocities are from eqs. (4.1.4) and (4.1.5):

= - 1 - aw iwv = g*hx/f - (I - A)x /pwH - AT w /PwH, (4.1.8)
iw w

u ( A)T W/PwH + Ay /wH, (4.1.9)

which lead to a linear increase (or decrease) in time of the
S

T-T .--L -
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pycnocline depth. The effect of the chosen parameters, Cai 2-3

Caw and large Ciw, is that the wind parallel to ice edge, ice on the

right, produces upwelling. This happens because the momentum flux

from the air to ice and from ice to ocean is much larger than flux

from air to ocean, which gives bigger Ekman transport underneath the

ice than in the open ocean. The width of the upwelling zone is

determined by the gradient (scale of variation) in the ice

concentration (assuming that the ice edge does not move much). If

the ice edge is sharp, like a step-function, the scale is the

baroclinic radius of deformation. If the ice edge moves considerably

during the wind event, the upwelling zone is very weak and the width

is determined by the distance that the ice travelled.

In figures (6) and (7) the pycnocline height anomalies, ice

concentrations and oceanic velocities are shown for thick and thin

upper layer cases after five days of upwelling favorable wind W = 10

m/s inclined 300 off the y-axis. The former resembles the wintertime

and the latter the summertime conditions in the Greenland Sea where

the baroclinic radii are 10 km (H=100 m) and 4.6 km (H=25 m)

respectively. The one-dimensional model area was 200 km wide (grid

size I kin). The figures show that the open boundaries at x=O and x=

200 km are well behaved. The ice edge located initially at x= 100 km.

The ice thickness is constant, 4 m, unless otherwise stated.

When the upper layer is thin, the pycnocline changes can easily

become comparable to the layer thickness, leading to nonlinear

'
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Figure 6. The x-t plots of the ice concentration (a), the pycnocline
anomaly (b) (contours in meters), u-velocity (the acrossU iice edge component) (c) and v-velocity (alono the ice edqe
component (d). Velocity contours are in cm/s. in this case
the undisturbed upper layer thickness is 100 m. The wind
is 10 m/s and inclined 30 away from the ice edge (ice on
the right).
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Fiaure 7. The x-t plots for case H =25 rn, (a) the ice concentration,
(b) the pycnocline anomaly (in in), (c) and (d) are u- and
v-velocities (in cm/s). The forcing is the same as in
fioure 6.
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dynamics. This is demonstrated by comparing figures (6b) and (7b) 3

showing the pycnocline height anomaly in linear (H=100 m) and in

nonlinear (H=25 m) cases. The nonlinearity causes an asymmetry in

the upwelling signal. For longer wind events the steeper side will 3

shift under the ice compared to the earlier stages of the upwelling,

and the opposite is true for downwelling. This frontal formation is

caused by the advection of the pycnocline perturbation and of the

relative and the wind induced vorticity by the Ekman velocity, the

sixth and seventh terms in equation (3.3.10). This asymmetry is well

seen in the observations of Johannessen et al. (1983) (figure 10).

In the thicker upper layer case the ice edge moves towards

r positive x-direction with the wind inclined 300 from the ice edge, .

because the Ekman velocity is too small to cancel the ice motion (due

to wind) in x-direction. As a general feature the divergence in the

oceanic velocities affect the ice velocities so that they tend to

smooth the gradient of the ice concentration near the edge during the

first couple of days of the upwelling event.

In the thin upper layer case the ice edge converges strongly

(even stronger convergence of the ice edge happens in a nonlinear

* downwelling case). The convergence of the ice edge (figure 7) is

connected to the formation of the very strong upwelling jet due to

the formation of the front. The oceanic jet is forcing the ice to

move faster at the edge than further out in the ice pack. This

.... . ... .
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variation gives a feedback to the oceanic velocities, giving rise to

a local minimum in the Ekman transport (figure 7c) near the edge.

This in turn is reflected in the x-(across the ice edge) velocity

component of the ice (figure 8); thus the ice is forced to converge

near the edge.

Figure (8) shows the ice velocities when the upper layer is thin

at day 3 and 5. In the beginning of the upwelling event the "jet"

like enhancement is not very pronounced. The oceanic velocity

structure is clearly reflected in the ice velocities. The profile atID

day 3 shows enhancement of the along ice edge component of 30% near

ice edge, falling short of the reported values; e.g. 100% from

Johannessen et al. (1983). The situation though changes after a few

days, and at day 5 the jet feature is very pronounced, with a maximum

of twice the speed further in the ice pack.

The essential requirement for the formation of a strong up-

welling pattern and jet is to have a mechanism to keep the ice edge

sharp, i. e. to cancel the smoothing coming from the oceanic diver-

gence effect on ice. Next an initial condition of a step-function

like ice concentration is considered. The thickness of the ice

varies from 6 m far away from the ice edge to 0 meters at the edge,

the ice concentration being 100% for all times. For this case only

the continuity equation (3.1.4) needs to be solved. This geometry

will produce a strong pycnocline response and hence a strong ice edge

jet figure (9) in one day of upwelling favorable wind of 10 ms" .

I iw
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The effect of varying ice thickness is negligible due to the high

interfacial stress coefficient as seen from figures (9a) and (9b). The

strong velocity enhancement comes again from the oceanic upwelling

jet.

4.2 Stability of the up- and downwelling jets

The barotropic instability of the computed up-and downwelling

jets is considered. The stability analysis for the forced system is

very complicated (or nearly impossible) so the problem is simplified

to study only the instability of the geostrophic velocity component

calculated from the interface changes. This approach can be justified

by looking at the gradients of the potential vorticity for the forced

upwelling system and for its geostrophic counterpart, as in figures

(11a) and (11b), which show extreme resemblance with each other. The

stability of the jet is examined at its different stages of

development. For example, we compute the stability of the jet after

it had been forced for 3 days, after which the winds relax. Without

external forcing the deformation of the interface and the

corresponding geostrophic jet will be preserved because frictional

effects are negligible.

To study the stability problem we start from the potential

vorticity equation for the basic state

d (dd +
t- dt (T a 04 +.2.1)

where = Vx, the relative vorticity , U = 0, V = g*h , U and V arp

x/f and V a e - -I
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the mean flow velocity components. To get the vorticity equation of

the perturbed flow we replace U by u'(x,y,t), V by V(x) + v'(x,y,t), h

by h(x) + h'(x,y,t) and & by i(x) + V(x,y,t) (the primed quantities

refer to the perturbed state). It is assumed that e-folding times are

large compared to the perturbation, so that the jet can be treated as

quasi-stationary, i. e. the basic state is time independent. The va-

lidity of this statement can be reconsidered after computations. But,

until we find out the e-folding times, we assume that the jet was

not destroyed by any prior instability.

The vorticity equation is, after linearization (dropping terms

like u'V' etc.)

(f.i (a +~ V 3,+ u f+
,' V7)'+-V+ V h' + hu' 7 = 0 (4.2.2)

When the geostrophic approximation is applied for the perturbation

velocities, the equation becomes: 5

:,,. + Vh - (f HBlg*) + V h' - h 1= 0 (4.2.3)

S ( f t c'y

Inserting the Fourier decomposition h'(x,y,t) = D(x)ei(ky -wt) gives

- (k2 + f2/g*h) 0 - (hB,x/(V - w/k)) D 0, 0( =) 0. (4.2.4)

For small Rossby number ( << f) haB,x = V'' -f2V/g*h. The I

equation (4.2.4) is essentially modified Rayleigh equation which is

known to have unstable eigenfunctions if the gradient of potential

vorticity (of the basic state) aR x, vanishes at some point Lin, I

, ' -I
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1955; Stern, 1961). The plots for time evolution of the potential

vorticity gradient of the upwelling system show that the flow is more

unstable in the beginning of the upwelling and after 4 days of

upwelling. The latter instability can be associated with the frontal

formation. The potential vorticity gradient of a downwelling system

(figure 11c), show increasingly positive and negative regions implying

stronger instability than in the upwelling case. In the limit of

small Rossby number, Stern (1961) showed that for a given velocity

profile there must exist a maximum critical depth (Ha)cr above which

the mean flow is unstable: 0 < f2/g*(H,)cr < max V''(x)/V(x). This

means that, in our particular case, the downwelling jet is always more

unstable than the upwelling one.

The equation (4. 2.4) was solved numerically for the given

geostrophic velocity profiles. The growth rates for all computed

cases are plotted in figure 12. Ouring the first two days of --

upwelling the interface changes are not large. ;oth terms in TB,x

support strongly the sign change so that there is one unstable mode.

The wavelength of the most unstable eigenfunction shifts towards

larger scales as time increases so that at day 3 the flow is nearly

stable. nstable modes are again introduced to the system when the

front forms after day 4. The phase velocities change sign also going

from day 2 to day 5, the propagation direction being that of the

stronger branch of the jet. The frontal instability is still quite

weak with maximum e-folding time of about 7 days compared to the

7I . ,.

. . . . . . . .. . . . . . . .--.
. . . ..
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growth rates of the downwelling jet, which has an e-folding time at

day 5 of 0.4 days. In the latter the most unstable wavelength asymp--

totes to 22 km in the later stages of downwelling. Considering the

assumption of a quasi-stationary jet, the computations for the

downwelling jet at day 3, 4 and 5 are unrealistic (which is the reason

that they are marked with dashed lines). In these cases the e-folding

times are of the same order or less than the time required to develop

the jet.

The above up- and downwelling profiles were computed for a

moderate ice concentration gradient. When the ice edge is a step

function, the ocean response is limited to a narrow region, leading

to very strong shears. The stability of the up- and downwelling jets

after one day of forcing are also shown in figure 12. The e-folding

times of the steady jet are nearly the same as the forcing time, which

seems to suggest nearly immediate disintegration of the jet.

This analysis has demonstrated that the unstable wavelengths

depend strongly on the ice concentration gradient, which can vary

from 12-14 km up to around 100 km. For moderate ice concentration

gradients the most unstable wavelength is 20-30 km. nue to the

divergence term, the downwelling jet is far more unstable barotropic-

ally than the upwelling jet. The growth rates for the upwelling jet

at different stages are so small that the jet can he considered nearly

stable if the ice concentration gradient at the edge is not very

strong.

I'



iL

4.3 Ice Bands

Banding is a frequently seen phenomenon in the marginal ice

zones. The observed band width varies strongly. The first observa-

tions from satellite pictures suggested the width to be around 10 km

with nearly an equal amount of open water between them (Muench and

Charnell, 1977). Later shipboard observations revealed even narrower

band structure at the ice edge. Typically these bands are 500 m to 1

km wide, the length of these band features being a few kilometers

(Bauer and Martin (1980)). The bands are usually seen with off-ice

a winds, with their long axis at 40'-90* to the left of the wind direc-

tion. However, in the above no references have been made to the wind

conditions that prevailed before the actual observations. As we will

F show, the preceding wind conditions are important for band formation.

Many theories have been offered to explain ice banding. One of

the theories offered by Wadhams (1983) suggests that the wave radia-

* tion pressure of the fetch-limited sea produced by the off-ice wind

plays the major role in the hand generation. In the initial state

the ice cover has randomly distributed polynyas. The wave pressure

is concentrated on the floes at the downwind end of each polynya

and accelerates them towards the neighboring floes further downwind.

Internal compacting stress and swell incident on the band from

seaward will maintain the bands' integrity.

61
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Another theory by Muench et al., (1980) suggests that there p

could be interactions between the internal waves and band formation,

because the bands are found overlying a two-layer density structure.

Furthermore, they show that the internal wave speeds and wave lengths S

are similar to the ice band speeds and spacings.

As seen from figure (10) from Johannessen et al. (1983),

there are "wave" like features in the pycnocline. These have p

amplitudes of 3-8 meters and their width is about 5-8 km. In two of

the at sections it appears as they would exist in pairs. Mork (1983)

has suggested that these "waves" are like lee-waves due to moving

ice, the major assumption being that the ice moves faster than some

of the first few baroclinic modes. It is his explanation that the
S

ice bands form due to these lee-waves, which have the same

wavelengths as the band widths.

All of the above mentioned theories are more or less suggestive, S

as none of them can actually show that they can produce the bands.

It is quite doubtful that randomly distributed polynyas can suddenly

reorganize into evenly spaced bands, Wadhams (1983) or that a

propagating internal wave field will organize the ice floes into

bands, Muench et al., 1983.

To see if these features are forced "waves" the model was run

with spatially constant wind stress, sinusoidal in time with a period

of four days. This experiment was designed to simulate successive

cyclone passings. The results after three cycles '12 days) are shown

i: ::i.:::: i : ,- :/ :- -: .:" ::-: :: , ..... . m h ---' " .= -" -- -'- --.= .= .1
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3. in figures (13) and (14) for a nonlinear (H = 25 m) and a linear (H =

100 m) case. The wind is inclined 300 away from the ice edge and its

maximum magnitude is 12 m/s. The drag coefficients used are

1 Cai = 3.6.10- 3 = 3 x Caw, Cwi = 10.=0 - 3 .

In the nonlinear case two upwelling enhancements are formed

during the 12 days, and this pair will tend to amplify with time.

The nonlinearity in the form of advection of the wave pattern

redistributes vorticity when Ekman transport varies with time. It is

the major reason that the formed up- and downwelling responses do not
0i

disappear in wind reversals: Initially one upwelling signal is

formed, after the wind changes this pattern moves away from the ice

edge (due to the opposite Ekman transport) while a downwelling

pattern is established at the edge. During the next wind change an

upwelling signal starts to develop again but it will be weaker than

the first one because it has to overcome the downwelling pattern

trying to propagate underneath the ice.

The variation in the upper layer thickness will cause conver-

gencec and divergences in the oceanic velocities which are

transferred to the ice velocities through the strong interfacial

stress. Thus the oceanic dynamics induces band formation.

Furthermore, from figure (13a) one sees that the deformation of the

ice concentration will support the existence of this upwelling

enhancement pair, thus maintaining the bands. The ice bands form

only in the case of a thin upper layer, where the band development is

. . . .-.
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Figure 13. The ice concentration (a) after 3 cycles of
sinusoidally varying wind stress (period = 4 days).
(b) x-t plot of the pycnocline chanqes, contours
in meters. In (a),the initial condition is shown
with dashed line. The uo'er layer thickness is 25 m
and the amplitude of the wind variation is 12 m/s.
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already evident after two cycles. For a thick upper layer there are

neither ice bands or strong pycnocline changes, figure (14).

The simulated ice bands are 10-15 km wide, about 2-3 Rossby
S

radius of deformation. After the innermost band is nearly separated

there will be formation of new bands (and new "waves" in the

pycnocline). If the ice is more mobile (smaller concentrations imply

less resistance to convergence), the cyclone passings can effectively

produce bands. Example of this is shown in figure (15) after 5

cycles (20 days).

Other model simulations show that the bands form more slowly if

the period of wind forcing is less than 4 days. For shorter period

forcing it takes a longer time to make the pycnocline changes strong

enough that the Ekman velocities can affect the ice velocities. For

longer period forcing only one wind reversal is needed to produce one

band.

In order to explain that the ice bands are seen especially

during off-ice winds, one sees from figure (13a) that the band

structure is not clearly separated: The off-ice winds can separate S

the ice bands because the underlying upper layer structure will force

the bands to move faster than the rest of the ice pack. This happens

during the first few hours of off-ice winds and before the Ekman flow S

is established in the ocean.

S
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5. Wind Forced Eddies

In addition to barotropic and baroclinic instability processes

as eddy generation sources in the MIZ, the studies of the 60-90km

eddy in the Greenland Sea (Wadhams and Squire, 1983, Smith et al., S

1984) can give a hint that there might be other processes. The

conservation of potential vorticity can explain this cyclonic (and

barotropic) vortex because it is lying on top of a deep topographic

feature in the area of southerly flow. The scale of the vortex would

be determined by the scale of the topographic feature, which may

explain why this Greenland Sea vortex is so much different in scale

compared with the other eddies seen in the Greenland MIZ.

In the above example the topography forces eddying motion in the

ocean. In this section we study how external forcing like wind forc-

ing could produce eddies at the ice edge. The satellite pictures

taken from the MIZ ice cover show that the ice concentration does not

follow any regular distribution along and across the ice edge direc-

tion. The disturbances in ice cover would modify the stress exerted

on the ocean. Even with a constant wind field, the variation in the

ice cover can generate vorticity. Since ice usually moves slower

than the internal wave speed, the ocean can respond to the varying

stress in such a way that up/downwelling enhancements will form.

68
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Two cases of disturbance configurations for the ice cover are 0

considered. In the first case the ice edge has a meandering structure

and the ice concentration is constant far away from the ice edge. The

second case describes disturbances in the ice concentration along the

ice edge, but the ice edge itself is straight. The strong interfacial

stress will make the effect of a varying ice thickness negligible

compared with the first two. The two-dimensional numerical model

described in section 3.1 is used where the ice thickness is taken to

be constant (= 4 m). The upper layer thickness is chosen to be 25 m,

so that nonlinear dynamics will be important.

5.1 Variations in the ice edge position

rT In order to demonstrate the dynamics it is assumed that the ice .

edge position takes a regular sine-wave form, figure (16), and further

in the ice pack the concentration is uniform. In principle the

variation can be of any kind of deviation away from a straight edge.

The way these disturbances have developed is irrelevant to this

problem, whether they have formed due to barotropic flow over a

varying topography or different melting rates etc. The essential

thing is that these features persist for several days or sufficiently

long time that the ocean can develop a baroclinic response.

It is necessary that the amplitude of the ice edge "wave" is of

the order of the Rossby radius of deformation so that the ocean can

resolve the variation in the stress. Figure (17) provides a sketch of

the oceanic response to upwelling favorable wind. The dynamics can be



70

y (km)
'70 0

ice

4.0-

20-

ocean

0 Q 20 30 40 50 50 70 so 90 CO

Figure 16. Wavy ice edge structure given as an initial condition
for the ice concentration.

. . . . . . .



WIND ICE

ICE EDGE DWWLN

A-I

U19

V1  OPEN OCEAN V

VTI

Fioure 17. Schematic diagram of the dynamics when forcina is aoolied
to the ice cover in figure 16.



72

explained by differential Ekman pumping: When Ekman suction is

initiated at the edge, the associated upwelling jet will begin to

develop. The variation in the ice edge position relative to the wind

direction will lead to the nonuniformity in the oceanic jet pattern

forming divergences and convergences. The up-and downwelling regions

in figure (17) are imbedded in the background upwelling which exists

because of the moving ice edge. The strongest upwelling signal forms

on the upwind side of the ice edge "wave" (the shaded area). If the

amplitude of the wave is large, this enhancement can split into two

maxima, one at the crest, the other in the trough of the wave.

Given the initial condition for the ice concentration (figure

16), the model simulation was done applying upwelling favorable wind

(12 ms- 1 , 30' angle off the x-axis) for 1.5 days. Open boundary

conditions were applied to the north and south, and cyclic conditions

to the east and west. The ice concentration is less than 85 % every-

where for all times, which implies negligible internal ice stresses.

The resulting ice configuration and the pycnocline changes are

shown in figures (18) and (19). The ice edge wave has deformed and I

amplified slightly, but it cannot be called unstable (figure 18).

Sharp concentration gradients start to build up in the trough and in

the front edge of the wave due to underlying oceanic cyclonic motion

(figure 19). The maximum pycnocline change is 2.5 times higher than

the background upwelling pattern. These eddies will not separate

I
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from the ice edge, they will stay connected to the ice edge

disturbance that supports their existence and move with the same

speed as the ice. Eventually these upwelling enhancements will
DI

surface, but the simulation was not carried that far. The pycnocline

tilt, higher in the southern part of the region, is needed to

compensate the velocity in the x-direction induced by the moving ice.

5.2 Varying ice concentration

In this class of disturbances there is a straight ice edge but

the ice concentration varies along the ice edge direction. Again the

initial distribution of the ice concentration in the model simulation

has been chosen to have a simple sinusoidal form (figure 20), the

wave length of the variation being 50 km. The concentration varia-

ion further out does not play an important role in the dynamics.

Figure (21) shows the principles of the oceanic response to

upwelling favorable wind. The Ekman transports underneath the ice

are higher in areas where there are high ice concentrations (diffe-

rential Ekman pumping). This implies that the pycnocline changes are

larger in high concentration areas than in low concentration areas.

Furthermore, the geostrophic currents associated with these pycno-

cline changes vary accordingly, which produces upwelling enhance-

ments behind the concentration maxima as shown in figure (21) with

shading.

Taking the initial conditions of figure (20) and applying the
I
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same wind field as in the earlier case ( 12 ms-1 inclined 300 from 0

the x-axis) the results after 1.5 days are shown in figures (22) and

(23). As seen there are negligible changes in the ice configuration.

The variation in the 10% concentration line has gained some more

amplitude, but the ice edge itself is nearly straight. The oceanic

structure underneath (figure 23) does not manifest itself clearly

in the ice cover. The pycnocline enhancement is nearly twice in

amplitude than the average upwelling signal. In this as in the

earlier case the enhancement is strictly tied to the ice concentra-

tion distribution and the "eddy" moves with the speed of the ice. In

the front edge of the disturbance the upwelling enhancement is

destroyed and behind it created again and amplified (figure 23)......

Furthermore, the ice is essentially in a state of free drift (as in

the earlier case), because at low ice concentrations (less than 85%)

the internal ice stresses are vanishingly small.

5.3 Eddy shedding

In the one-dimensional case the time varying forcing produced

a distinctive pattern of up- and downwelling signals (and ice bands).

The nonlinear advection terms redistributed the vorticity so that the

pycnocline changes (vortex tube stretching) were preserved in wind

-eversals. In the following we study a possibility of shedding

eddies at the ice edge under similar conditions.

For the ice cover variation in section 5.2, a simulation of

S I.
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passing of a cyclone was done. Starting from the conditions at 1.5

days, the winds were turned gradually off in 3 hours and increased

back in 3 hours but to the opposite direction. The resulting ice

configuration at 3.0 days is shown in figure (24). Now the ice edge

looks like a breaking wave, with a small amount of ice outside the

very sharp ice concentration gradient. Underneath the wave like

feature in the ice cover the ocean response is in the form of a

cyclonic eddy that previously was a mere enhancement in the upwelling

zone and hidden underneath the main ice pack (figure 25).

The dynamical reason for this shedding of eddies is the non-

linear interaction that appears in the vorticity equation (3.3.12) as

advection of the wave pattern with the Ekman velocity. When the

winds reverse, the Ekman transports also change to the opposite

direction, from northward to southward advecting the upwelling

enhancements out to the open ocean. In this way the temporally

varying Ekman transport redistributes vorticity which is supplied by

the winds acting on a nonuniform ice cover, i.e. the variation in the

ice cover acts like bottom topography. This eddy formation resembles

the topographically generated eddies due to temporally varying mean

flow discussed by Huppert and Bryan (1976).

If the model were linear, the generated upwelling enhancements

would be destroyed in wind reversals. In this nonlinear formulation

the cyclonic eddies are shed to the open water in wind reversals, but

the anticyclonic ones would be advected underneath the ice.
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6. Discussion and conclusions

The aim of this study is to model the mesoscale dynamics in the

marginal ice zones by means of a two-dimensional coupled ice-ocean

model. The major focus is to study the baroclinic response of the

ocean to forcing by the winds and moving ice on time scales of a few

days. The sea-ice model is coupled to the reduced gravity ocean

model through a stress on the ice-ocean interface.

In some of the earlier studies the internal ice stress was

crucial to the dynamics due to the chosen plastic-viscous stress law

of ice. In this work the internal stresses were formulated on the

basis of the Reiner-Rivlin thecry, which means that sea ice is a vis-

cous medium where the viscosity coefficients depend on the strain -

rate invariants and external parameters like the concentration and

and thickness of the ice. For typical MIZ ice concentrations the

stresses are negligible, and only when the ice converges strongly

they can be effective. The main dynamical balance in the ice is

between the water-ice stress and the wind stress, i.e. free drift.

In the reduced gravity ocean model two ca~es were considered, a

linear case where the upper layer is thick and a nonlinear one where

the upper layer is thin. The latter corresponds to typical condi-

tions in the late summer, early fall in the Greenland Sea. In the

84
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model the drag coefficients are chosen so that the air-ice stress is

three times bigger than the air-ocean stress, and also so that the

ice-ocean coupling is strong. With this choice of parameters winds

U parallel to the ice edge, ice on the right, can produce upwelling,

because the Ekman transport is much greater under the ice than in the

open ocean. In the nonlinear case an oceanic front starts to develop

together with a strong convergence of the ice edge during three to

four days of upwelling favorable wind. With a thick upper layer the

upwelling signal is nearly symmetric and also the ice is strongly

diverging at the edge. The frontal structure is clearly seen in the

summertime observations from the Greenland Sea.

The barotropic stability analysis was carried out for the

computed up- and downwelling jets in the thin upper layer case. The

most unstable wavelength is 20-30 km. For moderate ice concentration

gradient at the edge, the growth rates of the upwelling jet are very

slow. It can be considered nearly stable because e-folding time is

of order of several tens of days, only in the case of a step-like ice

edge can there be high growth rates. The upwelling jet is stabilized

due to the divergence. In the downwelling this term is negligible

and the jet appears to be extremely unstable. In general, the growth

rates depend strongly on the strength and direction of the wind,

because the wind together with the ice concentration gradient

determine the up/downwelling jet profile.

,..-,~ ~~~~~~~~ .---.-.... - . .. . . -"--. ... . ..



4!

86

The simple one-dimensional upwelling simulation was extended to

include temporally varying forcing, which was chosen to vary sinusoi-

dally with a 4 day period. The setup is designed to resemble cyclone

passings perpendicular to the ice edge. The linear model is not of

great interest, since the upwelling signal only grows and decays

symmetrically with changing wind direction. In the nonlinear case

the formed up-and downwelling responses do not vanish in the

successive wind reversals. The advection of wave patterns due to

Ekman velocities shifts the up-(or down)welling signal away from the

area where the reversed winds could destroy it. The variation of the

pycnocline is the originating force for the ice bands: the varying

upper layer thickness leads to convergences and divergences in the

Ekman velocities which are then reflected in the ice velocities due

to the strong ice-water coupling. Also after 1 1/2 cycles the ice

cover variation starts to enhance the pycnocline structure, and the

ice cover actually has taken a banded structure near the ice edge.

The width of the produced bands is about two Rossby radii of

deformation which is the smallest scale for the pycnocline variation

at the ice edge. There must be at least one wind reversal to produce

one band. This theory can well account for the Bering Sea ice bands

that are seen mostly in wintertime when the ice is lying on top of a

strongly stratified ocean. Furthermore, in the Bering Sea the most

frequent track of cyclones is from west to east or slightly curving

northeast, which is nearly perpendicul3r to the ice edge.

2.I
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j Jit is shown that not only the existence of the ice edge but also

a variation of the ice cover in the ice edge direction can lead to

pycnocline changes when the system is forced externally. The varying

ice cover together with wind forcing acts like small storm systems

passing, but because the ice moves very slowly the baroclinic

response of the ocean is possible. The way the variation in the ice

cover has developed is not of importance, and it is assumed that its

evolution time is far greater than the baroclinic time scale. For

instance, barotropic mean flow over topographic disturbances can be

reflected in the ice edge disturbances or in the ice concentrations.

If the barotropic mean flow is slow, there is not much coupling

between barotropic and baroclinic components due to ice.

The scales of the ice cover variability determine the oceanic

scales, the smallest scale being the Rossby radius of deformation.

If the cross-ice edge and along the ice edge scales are about the

same order the oceanic response to upwelling favorable winds looks

like a cyclonic eddy. Typically, the scales of tlese "orced eddies

can he from 2 to 10 times the Rossby radius of def-riaton. mh's 4s

the same scale range where the eddies generated tirough Sta ilit/

processes would belong. The eddy-like 'eatires are tore Droncuncei

if the supporting ice cover variation is 4n tr!e 4:e ece 4-se7 :an

in t e ice concentration 'the ice edge "eing st'a-mt \  "'e crun-

formity of the ice cover generates vorticity wr' , 4s :rans'e-ej

through tie diferentia' Ekman :)umong 4nto t*e edy rot'on 4- -e

0 - - . -
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ocean. The forced eddies move with the speed of the ice, and are

always attached to the ice disturbance that supports them when there

are no changes in the forcing.

It is shown that ice cover disturbances can shed eddies to the

open ocean with temporally varying wind fields. This is dynamically

similar to forming ice bands; the nonlinear advection of the wave

pattern due to the Ekman velocity shifts the upwelling enhancement to

the open ocean when winds reverse. The formed eddies force the ice

edge to meander strongly. If anticyclonic eddies were produced, they

would disappear underneath the ice cover leaving no trace of their

existence around the ice edge. This eddy formation hypothesis sup-

ports the fact that cyclonic eddies are more abundant in the satelli-

te pictures which can only show the eddies in the open ocean.

* There is a strong resemblance between varying ice cover and

bottom topography, because ice cover also couples the barotropic and

baroclinic motion, even though in this model only the baroclinic

ocean is considered. In the case that the ice-water stress is

* negligible, there can be decoupling. RarotroDic flow 'externally or

locally driven) forces the ice to move which in turn forces

up/downwelling in the baroclinic part at the ce edge. :t e

*barotropic flow is externally driven then up/downwelling can occur,

without winds. The effect of topography and the feedback between

barotropic and haroclinic flows and the 'ovinq 4ce gre needed or te

* full dynamical description of MIZ.
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Appendix

Assuming that the stress depends on the. strain rate only, the

stress tensor (of rank two) may in general be written in the form

a - ()

The principle of generalized dimensions requires that all

terms on the right-hand side are sums of mixed tensors of rank two

only, possibly multiplied by scalars, and of inner products of

*J such tensors which again reduce to tensors of rank two. The stress- •

strain relation may be written

a fn( ,9Z n (i)

or
Sfo~et,ea,e 3)1 + f ,e, e3 )E; + f 2 (e 1 ,e 2 ,e3 ) 2  (2)

+ f 3 (81,e,8'3) 4j + ." "

where e1,O,%3 are the three strain rate invariants, viz.,

81 = tr,

82 = (82 - trz)/2

83 =detc , p

where tr stands for trace and det for determinant.

Applying the Cayley-Hamilton theorem, all terms of order higher

89
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than Z2 reduces to order 1, i and i2 terms, i.e.

Thus, (1) may be written e -e2+8 .- S

In two dimensions 82  83 and the Cayley-Hamilton theorem reduces to

because

Thus the polynomial expansion (1) reduces to

= ~(1,2) *~(~,2+
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