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BETATRON-SYNCHROTRON DETRAPPING IN A
TAPERED WIGGLER FREE ELECTRON LASER

It has been pointed out by M. Rosenbluthl that electron detrapping in the I

ponderomotive wave can occur if a resonance between the electron”s synchrotron
and betatron oscillations exist. Synchrotron oscillations are due to the
trapped electrons oscillating longitudinally in the ponderomotive wave,z.7
while the betatron oscillations are predominantly transverse electron
oscillations due to the transverse spatial gradients associated with the

8-14

wiggler field. If the radiation wavefronts are curved these two : B

oscillations can be resonantly coupled and can lead to electron detrapping in

1,15-18 unhen the radiation wavefronts are curved the

the ponderomotive wave.
electrons which are undergoing transverse betatron oscillations will . 2
experience periodically different phases in the ponderomotive wave. When the
periodically changing phase, due to the transvarse betatron oscillations, is

resonant with the electron”s synchrotron oscillations these later oscillations

can be amplified and result in detrapping.

APTEP PSP

A very qualitative model for this process can be seen by considering the ’-;H

pendulum equationl-‘j’6-7’15.18 for electrons in a wiggler field with

transverse spatial gradients and a radiation field with a curved wavefront. i{:

For electrons deeply trapped in the ponderomotive wave the pendulum equation, :i
»
\.\

roughly speaking, reduces to a driven harmonic oscillator equation. The o

o

PP ST

characteristic frequency of the electron oscillation is the sychrotron

f frequency and is proportional to the fourth root of the radiation field -;T:
b .
; power. The amplitude of the periodic driving term in the oscillator equation o
{ [ J
t is proportional to the inverse of the radius of curvature associated with the T
3 v
; radiation field and the perfod of the driving term {s proportional to the L j
: electron betatron period. The electron phase, described by the pendulum "‘l
¢ _ o
1 Manuscript approved October 22, 1984, ~ S
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where A (z) and k,(z) are the spatially slowly varying amplitude and

i%i
equation, can be amplified if the frequency of the driving term is resonant f"f
with the characteristic trapping frequency. This detrapping mechanism could £
limit the level of radiation power generated by the FEL. E’l
In this paper we suggest and analyze an alternative mechanism for .|
sychrotron-betatron resonant detrapping which does not depend on the curvature i;i
of the radiation wavefronts. We show that even for a one dimensional ;;;i
radiation field sychrotron-betatron resonant detrapping can take place for ' ;:i;
tapered wiggler fields, i.e., the wiggler magnetic field amplitude. :n?i
To analyze this synchrotron-betatron resonant aetrapping mechanism we N ‘;
choose a tapered linearly polarized wiggler field described by the vector ,. 1
potential E
= : J
Q‘w(y,z) = Aw(z)cosh(kw(z)y)cosfg kw(z‘)dz’)ex, (1) ° 1

wavenumber. It will be assumed later that k,(z)y 1s somewhat less than unity o

P
'-

. P
. . .
o ,
Yoy .

so that cosh(kwy) =1 + (kwy)2/2. The one dimensional radiation field is

described by the vector potential

¢
L

)
NPeY

QL(z,t) = AL sin(kz-mt+e);x, (2)

ok

P

where the amplitude Ap, wavenumber k = w/c , frequency w and phase 6 are f‘u
assumed constant. Since (1) and (2) are independent of the x coordinate, the

electron”s canonical momentum in the x direction is conserved, i.e.,

I . .
R I, P
. I". BN

ontd hnd

f
N

d( - |e|(éw + A )/e) - e /dt = 0 vhere P = ym v = (px’Py'Pz) denotes the

electron”s mechanical momenta. The relativistic particle orbit equations T
become ‘
2 .2 o
o - b

§ - le] , M (y,z,t) ’ (3a) o
y dy ol

2ym _c .
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where A(y,z,t) = (Qw(y,z) + QL(z,t))- e, is the total x component of the

vector potential and y = (1 + P » leicz);/z. In obtaining (3) we used the
fact that
»
lel
= +
Px - A(y,z,t) Pox’ (4) R
and assumed that the injected momentum in the x direction is zero, i.e., ) ‘

Pox = 0. Using (3) and (4) the electron”s axial velocity, vV, is given by

2 ®.
v -
* -le 3 z 9 2 y
= —  —— — .
Y2 " 5222 (7 + 7 50) A (20 (5)
Ym e c
o
In what follows 1t proves convenient to perform a transformation from the °
X \
independent time variable t to the independent position variable z. An f!-iﬁ
electron”s phase with respect to the ponderomotive wave, in terms of the _'q
Y
position variable z, is defined as @
1
-
1 ~ z ~ 1
. w<yo,wo.w;,z) =¥t f (kw(z‘) +k - w/vz(yo.wo,w;,z’))dz', (6) _
» [o} J
- .
‘ o
3 -
. where y  1s the electron”s y position at z = 0, wo is the phase at z = 0, -ﬁy
& .t
- ~ .
p-. - = 3y/3z] =k (0) + k - w/v_and v_is the axial velocity at z = 0 B
. o 2=0 w o o g
‘ (assumed to be identical for all electrons). Quantities denoted with the °® 1
_ E
E, superscript ~ are functions of the initial condition variables yo,wo,w; and T
) {
t the independent variable z. Thus, for example, vz is the axial velocity at f
ti position z of an electron with init{al condition (at z = 0) variables ° )
2 4
E_
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¢
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yo’wo and w;. Differentiating (6) twice yields T
R
R ) S
w z z! ot
-9
where “ denotes the operator 3/3z. Upon performing the operation
3/3z + vzcza/at in (5), transforming the resulting equation from the
' ]
independent variable t to the variable z and substituting the result into (7), e 1
we arrive at the generalized pendulum equation for a tapered wiggler with -fiﬂ'
transverse spatial gradients, S
®
~ e 2w 1
v kg - YRR ]
oz e
[(2A A” cosh®(k 3) + A%Kk“S sinh(2k ~))cosz(zf k dz”) ]
wow w wow w o v ]
2 2, ~ z )
- k A cosh"(k y) sin(2 [ k dz*) .
ww w 0 w T
]
R
~ ~ ~ ~ i L
+ » - .
(AwAL cosh(kwy) +AA kY sinh(kwy))sinw 2
. 4
~ 2 ~ ~
+ + k -
(k, +k - v w/c )AwALcosh(kwy)cosw] (8)

where 32 = w/(kw +k - 19¥°) and y = y(z). The last term in (8) represents the
usual ponderomotive potential wave.

Before going on to simplify (8) an equation describing the electrons

{ betatron motion (transverse oscillations in y) is needed. Using (3a) and
3 assuming lkwy|(<l and |AL|<<|AwI we find that

O

_

h
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p

q
- 2,22
1 - |e| Aw W 22
] y = —5 5 cos (f kw(z‘)dz‘)y. )
- m c o
) o
?l In arriving at (9) we have also assumed that |;§|<<Yy, these approximations

can be shown to be well satisfied. Transforming (9) from the independent

variable t to z and setting ;z = ¢ ylelds the following equation for the

’ betatron orbits,
yo© o+ ké(z)(l + cos(2 [ kw(z’)dz‘)); = 0, (10)

=~ 2 = ~ 2
where k(z) IeIAwkw/(/2 ym c”) Bwkw//2 and 8 Ie[Aw(z)/Ymoc is the

normalized wiggle velocity. Since the betatron wavenumber, kB’ is much

greater than k., the betatron motifon can be separated into a slowly varying
part and a small rapidly varying part. Neglecting the rapid variations
in y(z), the solution of (10) is

z
llzcos(f ko(z7)dz” + $(0)), (11)

y(z) = ;w)(kB(O)/kB(z))
[o]

where y(0) and $(0) are constants.
We can now proceed to simplify the pendulum equation in (8). Assuming
~.2 . . 2
(kwy) K1, Aw <4 kwAw’ kw <« kw and keeping only the slowly varying terms,

(8) reduces to the form

2
2~ dk dA
d°y 2 ~ W 20w
}. ;1———2- + Ks(Z)COSlD il P a [dz
: z
5 z -
§ + £(z)(1 + cos(2 [ kedz‘ + 2301 )1, (12)
' o
L
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- here K (z) = (e|%uk A A /(¥m2c))/? 15 en h b ~‘~.-1
- - where K_(z e|“uk A A /(¥ c s the synchrotron wavenumber, S
o~ o = |e|2w/(472mic5), E(z) = ;2(0)(kB(O)/ZkB(z))d(Awkw)z/dz and (11) was used j}_:]

to replace ;(z). We can further simplify (12) by noting that

dk da2 ©
K2 2 ’

a2£(z) T

Therefore we may keep only the driving term associated with the betatron

oscillations which could amplify the synchrotron oscillations, {.e.,

S ;
. ST . A
Aeataaaaty L

z
cos(2 [ dez‘ + 2$(0)), and (12) reduces to =
o o

2 dk
L g—% + Kz(z)sinw = EEE ]
}. dz .. s
2 ]
.- 2 dAw z .
. - - a [E;— + E(z)cos(2 [ dez‘)], (13)

e o

where for later convenience we have shifted the phase v by n/2,
f.e. ¥ = 9 + n/2, and set $(0) = 0. Note that the electron’s energy,

neglecting transverse wiggler gradients, is determined by the relation

2
le] A Ak
2 4

2ymoc

3y/3z = - siny. (14)

Defining the resonant phase, wR’ in the usual way, i.e.,

2,2 2
sinty (dkw/dz o dAw/dz)/Ks, (15)
the pendulum equation (13) becomes
6
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z
g—% + &2 siny = Kz(l + ¢ cos(2 [ k,dz”))siny
s s : ] R
dz o
Bi k dkw z
- e(l + 'R E;) P cos(Zg dez ), (16)

where € = ki ;2(0)/2.
We now consider the particularly simple illustration of a wiggler field

with a constant period (akw/az = 0) and linearly changing amplitude, :i:.:

A (z) = A (0) + 6A z/L , where A (0) >> |6A | 1s constant and L_ {s the length of R

w w wlw w w w .

the wiggler field. The pendulum equation in (13) for the case where

IGAW/AW(O)I «1, K= ZkB/(l + 68) and |6] << 1, i.e., the synchrotron and

betatron oscillations are resonant, reduces to

2
L+ sty = (1 + € cos(1 + 8)z)sinyy, (17)
dz
where Z = X z and siny, = - YZ(GA /A (0))/(2k L ). For the case where A, is
s R z w oW ww

constant and kw(z) = kw(O) + kaz/Lw varies linearly, the pendulum equation {in
(13) reduces to

a2y 2.2

~= + siny = (1 - €B°Y" cos(l + 6§)Z)siny_, (18)

2 W'z R
dz
- 2

where sian = (ka/kw(O)/(ZBwkaw(O)).

Rather than obtain an approximate solution to (17) or (18), using a multiple -7
time scale approach, we simply solve (17) numerically. Initially the phases are
distributed uniformly between 0 and 2w with 3y/3z = 0. Figure (1) shows the
precentage of trapped particles as a function of normalized distance for
sian = 0.3 and € = 0.1 and 0.15. Initially approximately 65X of the particles
are trapped and for € = 0 this fraction i{s of cause maintained. After about 5
synchrotron oscillations 55% are trapped for € = 0.1 and 50% for € = 0.15.

Since we have assumed zero beam emittance, these results apply only to those

7
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¢
t electrons initially on the outer edge of the beam, i.e., those having the largest
value of €. Figure (2) shows the percentage of particles detrapped after 10
synchrotron oscillations as a function of the mismatch parameter §, for
sian = 0,3 and ¢ = 0.1, 0.15. The percentage of detrapped particles maximize
when 6§ < O since the more deeply trapped particles oscillate slightly faster than
those trapped nearer the phase space sepratrix. Here again these results apply ]
to only a small fraction of the total number of beam electrons, those initially -® B
near the edge of the beam. *-]
.4
.
Our model is somewhat idealized since, among other things, beam emittance ]
has been neglected. The neglect of emittance implies that all the electrons have . 1
the same initial betatron phase, 3(0), see Eq. (11). Hence, those electrons
injected near the axis will not experience the betatron synchrotron detrapping
;
since the value of € for these electrons is much smaller than those near the edge ®
of the beam. 1
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