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INTRODUCTION 

In nonlinear finite element problems, particularly continuum prob¬ 

lems, much of the problem is, in fact, linear and homogeneous in its 

behavior. Further, these characteristics can often be recognized by the 

analyst at the outset. These facts have motivated research towards the 

development of general-purpose nonlinear computer programs that possess 

a combined solution concept that treats the linear, homogeneous part of 

the problem with the boundary integral equation formulation and the 

nonlinear part with the finite element (FE) formulation. 

The boundary integral equation method or its numerical implementa¬ 

tion, the boundary element (BE) method, has only recently been given 

much attention as a general solution scheme for linear, homogeneous 

boundary value problems. It is a solution strategy for such problems in 

its own right, but here it competes with the more universal finite 

element methods or finite difference methods. However, the latter 

methods are more suited to the solution of nonlinear problems as well. 

Today it is well accepted among researchers that nonlinear continuum 

problems are too costly, and as a result most research today is directed 

at making nonlinear analyses more affordable. Thus, a primary contribu¬ 

tion of the boundary integral equation methods may well turn out to be 

reduction in the costs of nonlinear analyses. 

In this report the potential of a combined solution approach is 

investigated by examining the behavior of the coupled domains. 

Objective 

The ultimate objective of this research is to determine whether or 

not the boundary element and finite element solution methods can be 

combined with advantage towards more economical solutions of nonlinear 
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structural problems. The immediate emphasis will be on the interface 

conditions and the methodology necessary to combine the solution methods 

and the resulting behavior of the implementation. 

Background 

About 12 years ago, as today, the analysis of geotechnical structures 

in a semi-infinite medium with finite element methods was very common. 

The problem of the influence of artificial boundaries at finite distances 

from the structure was recognized more or less as a necessary evil in 

the modeling procedure, as there was no practical alternative to the 

specification of these boundary conditions. 

To minimize the problem, a systematic convergence study was con¬ 

ducted. An unpublished, actual case study illustrating this method is 

included in Appendix A. Several successive computer runs, each with a 

corresponding increase in the geometrical extent surrounding the struc¬ 

ture, were made, while the response of most interest was observed. The 

procedure was continued until this response seemed to converge within 

some tolerance that was satisfactory to the analyst. The necessary 

increase in the size of the finite element model caused the cost of each 

analysis to successively increase. Because of the uncertainty in the 

final size neccessary for satisfactory accuracy, planning the resources 

neccessary for accomplishing the analysis was difficult. This difficulty 

is severely compounded in a nonlinear finite element framework. 

The technique that held the most promise of resolving the difficulty 

at that time was the global-local finite element method, which was 

developed orginally by Mote (1971). This, so far, has not proven to be 

the case. Two .other (newer) methods now seem to be more promising. 

These are the method of using infinite finite elements, first developed 

by Bettess (1977), and the method of using a combined boundary/domain 

solution, which is to be studied in this investigation. 

The first examples of using a combined solution approach were Chen 

and Mei (1974) and Shaw (1974). Neither study was concerned with a 

semi-infinite soil medium, but instead they dealt with wave phenomena in 

media that possessed both a homogeneous and an inhomogeneous region. 
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The former region was treated with a boundary solution method and the 

latter region with a domain method. A theoretical study, of a distinctly 

mathematical nature, of the combined solution approach was conducted by 

Atluri and Grannell (1978). Many applications of combined solution 

methods have occurred (e.g., water wave problems by Zienkiewicz et al. 

(1977), electromagnetic field problems by Lean et al. (1979), acoustic 

field problems by Shaw (1979), and geotechnical problems). The so-called 

coupled-field problems, such as in Fellipa et al. (1974), wherein the 

differential operators are different in adjacent domains, are omitted 

from the perspective of this study, although these, too, are sometimes 

approached by combined solution methods. 

The research that came closest to the direction that is pursued in 

this report is the works by Beer and Meek (1981) and Beer (1983a and b). 

Here comparisons are given for the numerical performance of boundary 

elements and infinite elements in geotechnical applications. 

Other studies on the mechanics of coupling approximation theories 

include Fellipa et al. (1974), Shaw and Falby (1978), Shaw (1978), 

Zienkiewicz et al. (1978), Kelly et al. (1979), Mustoe (1979), and 

Brebbia and Georgiou (1979). 

Scope 

This study was carried out in a microcomputer framework. The 

numerical demonstration problems are correspondingly small. But since 

the focus of the study is upon the interface between the boundary element 

and finite element regions, small problems do not pose an inconvenience. 

The programs used in the study are written in Pascal. Pascal is a 

modern programming language in which programs are comparatively more 

easy to debug and maintain in a microcomputer environment as contrasted 

with FORTRAN. Further, modularity is supported well, particularly in 

UCSD Pascal, through the use of library units. Modularity is deemed 

very important by Fellipa (1981) relative to coupled field software 

applications. The authors believe this to be true also of research 

software dealing with coupled solution methods of any type. 



Combined boundary and finite element solutions are applied to small 

two-dimensional elastostatic problems. The indirect boundary element 

method (BEM) is used as the boundary solution method and the displacement- 

based finite element method (FEM) as the domain method. Simple element 

formulations are used in both cases. The indirect boundary element 

program is a Pascal-conversion of a FORTRAN program developed earlier 

that used constant elements (Shugar and Cox, 1983). The finite element 

and coupling programs were written during the present investigation. 

The finite element program uses the constant strain triangle element. 

Coupling of the BE and FE methods can take two approaches. The 

first approach views the boundary element region as a super finite 

element (Zienkiewicz et al., 1977; and Kelly et al., 1979), in which 

case the BE equations are developed in a symmetric manner. This is an 

efficient method if a relatively small BE system is being coupled with a 

large FE system. The main advantage of this method of coupling is that 

the resulting algebraic system of equations that must be solved is 

symmetric. Existing methods for the efficient solution of sparse, 

symmetric systems can then be used. 

As the relative size of the BE system increases, the greater effort 

of developing the symmetric BEM equations outweighs the reduced effort 

of solving a symmetric system of equations. At this point the second 

approach is more efficient. This approach views the FE region as a 

homogeneous BE region (Brebbia, 1978). The BE system of equations is 

nonsymmetric. 

COUPLING THEORY 

The general problem that is to be solved numerically by some approxi 

mation theory is stated in the conventional boundary value problem form 

in the following. The nonlinear partial differential equation, 

Ljj ({> = f in fi 
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where is a nonlinear operator, <|) is the unknown function sought, and 

f is the prescribed data (force, temperature, etc.)- This equation is 

presumed to govern throughout the domain ÎÎ, shown in Figure 1. Further, 

on the boundary F of the domain there are, in general, two boundary 

conditions to be satisfied, 

A <(> = g on F^ 

B 4> = h on rB 

where A and B are likewise differential operators but presumed here to 

be linear, and g and h are prescribed data on the boundary. 

While the nonlinear equation suffices to govern throughout Q, there 

is a portion of Q where the behavior of the solution is linear. There¬ 

fore, the domain is divided into two subdomains: fi1, in which the 

2 
behavior is nonlinear; and Q , in which the behavior is linear. The 

subdomains share a common boundary as shown in Figure 2. 

By way of an example nonlinear equation, the nonlinear operator may 

be defined as 

and the data f = 0. This equation describes the one-dimensional, non¬ 

linear unsaturated flow through porous media, where <|>(x,t) is the water 

table height, for example, during drawdown of a reservoir adjacent to 

the confining porous medium (Bruch and Zyvoloski, 1973). 

One way to solve the nonlinear problem is to first linearize it. 

(Another way is to apply explicit finite difference to it, as is.) This 

method begins by introducing an initial guessed solution, <|> , such that 

the differential equation is linearized. The linear operator in this 

case would be 

5 
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where with f = 0, the linearized differential equation is 

L ¢) = 0 in fi 

The boundary conditions are not important in this example and are 

therefore omitted. This equation is thereafter solved by some standard 

numerical, approximation theory. The result 0 is compared to <|> , and if 
& 

the comparison is satisfactory, convergence has been achieved, and ¢) is 

the solution sought. Otherwise <|> is systematically changed (for example 
8 

replaced by the latest value of ¢) and the solution procedure is repeated 

The iterative process continues until convergence is achieved. Depending 

on the strength of the nonlinear terms, many iterations of the above 

scheme may be required to achieve convergence. 
2 

So long as the solution in Q can be assumed to behave linearly, 

the solution for the entire domain Q is more efficiently obtained if the 

iterative nonlinear solution scheme is confined to Í!*, while a linear 
2 

solution procedure is used in il . However, in general, this is not 

standard procedure, and a nonlinear finite element (or finite difference) 

solution procedure is used throughout fl. Thus, an unnecessarily large 

problem is solved during the nonlinear, iterative solution process. 

This inefficiency is further compounded when, as is most often the case 

jn practice, multiple analyses of the problem are conducted. 

What is required is a combined solution procedure for such problems 

1 2 
in which the two subdomains, fi and fi , can be defined a priori. For 

example, many geotechnical problems involving semi-infinite media fall 

into this class. The exact demarcation between the linear and nonlinear 

subdomains does not need to be known in advance, for the location of the 

boundary can always be prescribed in a conservative fashion while still 

retaining the prospect of substantial savings in cost of analysis. 



Nothing said so far relates to the appropriate numerical, approxi- 
1 2 

mation theories to be applied to the two subdomains, Q and 0 . In 

fact, it would seem possible to retain the prospect of the savings just 

stated while using the same approximation theory in both regions. 

However, in this study, the finite element method shall be used in fi 
2 

and the boundary element method shall be used in fi . 

Since the amount of benefit to be derived from a combined solution 

approach depends on the number of nonlinear solution iterations required 

for convergence in as well as on other problem-dependent characteris 

tics, quantification of these benefits will not be emphasized in this 

study for the sake of brevity. Instead, the mechanics of coupling the 

two approximation theories mentioned above will be emphasized. And 

further, for that purpose, only a linear differential equation operator 

in the subdomain fi1 will be used for clarity and simplicity of presenta¬ 

tion. Extension to a nonlinear problem should be straightforward in 

principle, only more lengthy from an implementation standpoint. 

Two-Dimensional Elastostatics Boundary Value Problem 

The class of problems to which the combined solution method is 

applied in this study is illustrated in Figure 3 and’ is described as 

follows: Find the stress components and the displacement components 

u¿ that satisfy the following governing equations of equilibrium (body 

forces are assumed to be zero): 

8ct 
XX 

dx 
+ 

3ct 3ct 
__0L+ _JSX 
3y 3x 

0 

in n 

0 

and the boundary conditions, 

u. = u. 
i i 

(1) 

(2) 

- rB 
o. . n. = t. on F 
ij J 1 

(3) 

7 
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where u. and t. are prescribed displacements along the boundary F and 
B 

prescribed tractions along the boundary segment F , respectively, and n. 
B J 

is the direction cosines for a point on F . 

This class of problems will be solved numerically and will use the 
12 

finite element method to one side of the artificial boundary F and the 

indirect boundary element method to the other side. 

The Finite Element Method in Q* 

As shown in Figure 4, the domain fi has been divided into two sub- 
12 1 

domains, Q and Q . Here the solution in Í2 is described using the 

finite element method. The elastostatics boundary value problem will be 

confined, for the moment, to only Q1, and its solution is to proceed 
2 

independently of fi . Thus, the governing equations apply as stated 

above except that the domains are changed to Q* in the region and F^* 
Bi 

and F on the boundaries. In addition, to account for conditions on 
12 

the new boundary F , a displacement compatibility equation is written 

as 

u. - u. 
i i 

= 0 on F 
12 

(A) 

where u. = u(x ). The point x approaches indefinitely the point x e 
12 1 

F from the right in Figure 4. This interface condition specifies the 

continuity of displacement across the artificial boundary. Though u^ 

is unknown, it is convenient to think of it as a prescribed quantity 

until later when the boundary element solution procedure is addressed in 

fl2. 

The derivation of the finite element solution procedure is conve¬ 

niently approached in this case by the principle of minimum potential 

energy because this approach easily incorporates the needed constraint 

equations on the artificial boundary into the finite element formulation 

(see Gallagher (1975) for example). 



The potential energy FI for the subdomain fi1 is written as 

n = / ! <° 
ii 

u + t v) df 
X y 

where the strain tensor components e.. are defined as 

It is assumed that u¿ = 0, so that no potential energy is contributed 

by the reaction forces along However, the energy of the interface 

condition must be included since u^ is, in general, nonzero. This is 

accomplished by augmenting the potential energy with the product of the 

given constraint equation and Lagrange multiplier components, The 

augmented potential energy is written as 

n' 
r 

The Lagrange multiplier components are additional unknowns in the energy 

description. It will be especially important later to recognize them as 

12 
traction components along F . This can be seen here since the integral 

12 
on F must have units of energy for consistency. The Lagrange multipliers 

are further interpreted as the tractions necessary to maintain displacement 

compatibility along the artificial boundary. 

The augmented potential energy can now be subdivided as follows: 

NE 

na = 2 n a 
e=l e 

where NE is the number of subdivisions of the subdomain Q*. That is, in 

set notation, 

9 



fi 

Since this subdivision may not have smooth edges along the boundary F , 

it is recognized as an approximation. The augmented potential energy 

for each subdivision is 

/ 
fi 

(a e +a e +2a e)dfi 
2 XX XX yy yy xy xy 

/ t. u. dF + / (u. - u.^) X. 
^ 11 •' l 11 
-Bl r-12 

dF 

For convenience, this expression can be written in matrix form. To 

do this, the following one-dimensional matrices are first defined: 

O' 

e' 

ï' = [V Jyj 

where 2 e 
xy 

The superscript prime denotes the matrix transpose. Further, let the 

linear, elastic stress-strain relations represent plane strain conditions 

as follows: 

o = D £ 

10 
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P 
S. *. 

a 

where D = 
1 - V 

0 0 

V 0 

1 0 

1-v 
2 J 

and where E is Young's modulus and v is Poisson's ratio for the material 

A 
comprising the subdomain fi . 

After substituting the above matrices into the total energy expres¬ 

sion and the stress-strain relations into the strain energy expression, 

the following matrix form is obtained for the augmented potential energy 

of a typical subdivision, e: 

"e“ = i/s' 8 £ « -/B1 £’ » dr +/„(!i ‘ ^ ~ dr 
fi 

12 

Next, it is assumed that ÍT is a triangular-shaped subdomain as 
’ e 

shown in Figure 5. The displacement components u and v are approximated 

by interpolating them linearly within the triangle as follows: 

u 2 N. u. 
.,11 
i=l 

2 N. v. 
i=l 1 1 

where N is the well-known finite element constant strain triangle (CST) 
i 

polynomial shape functions. The discrete internal nodal point displace¬ 

ment components at the corner i are, from here on, u^ and v^. 

Further, for the present, interpolate the unknown displacements u^ 
*1 O 

along F in the same way for consistency. Thus, 

b -cub u « 2 N u 
i=l 

11 

."„■vV*' 

«"'W- 
* ' ' 
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'1 V."' 
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b 
V 

3 
1 N. 
i=l 

The prescribed tractions t. are often interpolated as statically 
* Bl 

equivalent constant tractions between the nodes along the boundary F 

in finite element analysis. The Lagrange multipliers can also be inter- 
12 

polated as constants along F in the same way. Thus, 

When the various interpolation schemes are substituted into the 

augmented potential energy matrix expression, the scalar rie becomes a 

function of the discrete nodal variables as follows: 

V xe' ) 

The principle of minimum potential energy is used to find the conditions 

under which the unknown discrete variables can be found. These conditions 

are (see Gallagher, 1975): 

an 3 an 3 
—— = 0 —— 

au. ’ 3v. 
i i 

o, (i = 1,2,3) 

12 



and 

an a a 
e e 

0 
xe ye 

When the first two partial derivatives are evaluated for an element, 

the resulting equations are the discrete system of linear algebraic 

equations representing equilibrium for that finite element in a local 

coordinate system. When the equations for all finite elements are 

transformed from the local to the global reference system and then 

assembled, they can be written as 

(5) K D + E A = Q 
/%/ /s/ «-v H'V' /"O 

These are equations of equilibrium expressed in terms of unknown external 

nodal point displacement vectct D, unknown external element traction 

vector along the interface A, and known external nodal point force 

vector g, which is formed from the prescribed tractions.* The global 

stiffness matrix is K, and the coefficient matrix E contains entries 

formed by integrating the shape functions N. along the interface boundary 

pl2 1 

When the last two partial derivative conditions are evaluated and 

then expressed in terms of global variables, the result can be written 

as 

(6) 0 

*The vector D henceforth is used for displacements and is not to be 
confused with the elasticity matrix. Further, "external displacements" 
means the same as "global displacements." 

13 



This is the prescribed displacement constraint equation on the artificial 

interface boundary expressed in terms of external nodal displacements on 
12 f 

the boundary F . The vector D is composed of those entries in D that 
12 b 

correspond to nodes on F . The vector D represents global displacements 

for the same nodes, but they are determined by the boundary element 
2 

solution in fi . 

2 
The Indirect Boundary Element Method in 0 

Here the governing equations of elastostatics and the boundary 
2 

conditions, Equations 1 to 3, are applied to the subdomain Q and its 
2 

boundary F , respectively, as shown in Figure 6. Thus, to the boundary 

conditions on F^ and F^, a displacement compatibility condition at the 
12 

artificial boundary F is appended to complete the formulation of the 

problem independently of the left side of Q. This condition is 

f n r12 u. - u. = 0 on F 
i i 

(7) 

where u.^ = u.(x ), and the point x approaches indefinitely the point 
121 1 f 

x e F from the left side. Here u. is treated as if it were known. 
x 

The indirect boundary integral equations appropriate to this problem 
2 

can be found in Banerjee and Butterfield (1981). For the subdomain fi 

these equations are as follows. For displacements of a point x° on the 

boundaries 1^2 and F^, 

u.(x°) = f G..(x°,£) P.(£) dF + C , (x° e F^) 
-2-V12 J J 
F uF 

u.f(x°) = f G (x°,£) P (£) dF + C , (x° e F12) 

r urlz 

14 
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B2 , ,-12 
and for tractions of a point x on the boundaries F and F , 

i.tx0) = ! 6.k Pk(x°) + pr.v. J F^íxP.Í) Pk(£) dr , (Xo E rB2) 
_2 *>12 
F uF 

‘i'*0) = l6ik Pk(,!0) * pr-v- PkU) 
dF , (x° e F12) 

r2 r12 F uF 

The point x° must have a unique tangent, otherwise the constant is other 

than 1/2 in the last two equations. 

The fundamental singular solutions and which are also 

known as infinite-space Green's functions, are the heart of the boundary 

integral method. They are classical results from the theory of elasti¬ 

city, and for plane strain conditions are given by the following formulas: 

GjjCx.i.) c, c 
IV 2 

6. . 
iJ 

£n r - 
ii) 

r ' 

F. . 
ij 
(x.D k 

- n. yk) + 
yj 

n. 
J 

where C. 
8 n p(l - v) 

3 - 4 V 

4 n(l - v) 

1 - 2 v 

1 

2 

yj 
= x. - Z. , yt = xk ■ 

6. . 
ij 

i = j 

i j 
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The term A., is a constant tensor that is chosen to mdke G.. zero at 
ij ij 

some arbitrary distance from the load point. The quantities p and v are 

the shear modulus and Poisson ratio for the material in fi , respectively. 

When X = 4, the function In r is weakly singular as shown in Figure 7a, 

and the function 1/r is strongly singular as shown in Figure 7b. Integrals 

involving weakly singular functions will always exist in the normal 

sense of integration even when x = £• However, integrals involving 

strongly singular terms must be interpreted in the Cauchy principal 

value sense (i.e., in the sense of a limiting value as x +4)- 

Pj(4) is the only term normally presumed unknown in the above 

indirect boundary integral equations. This term represents an artificial 
2 12 2 

distribution of tractions around the entire boundary, F uf , of Q . 

The point 4 is a member of the set of points constituting this boundary, 

4 e (F2ur12). 

In the strategy of the indirect boundary element method, once the 

artificial tractions are solved, the stresses and displacements for any 

point in the subdomain fi or on its boundary are found by formulas that 

are similar to those above for u^ and t^. These formulas are not pre¬ 

sented here for the sake of brevity. Thus, the artificial tractions 

Pj(4) play the same, unknown-variable role in the indirect boundary 

element method as the displacements u^(x,y) in the displacement-based 

finite element method. 

The indirect boundary element procedure is the process of integrating 

numerically the above indirect boundary integral equations. The bound- 
2 12 

aries F and F are subdivided into N2 and M straight line segments, 

respectively, for a total of S2 = N2+M segments entirely enclosing fi . 

The source density function Pj(£) is approximated by interpolation in 

terms of discrete nodal values Pje associated with each segment e. 

These segments may be called boundary elements since the discretization 

and interpolation are similar to the finite element method. 

The discretized boundary integral equations, or boundary element 

equations, for a point x at the center of a typical element are: 

- ( ^(x ) 
Di£ 

S2 

2 
e=l 

.. A, (/, 
je ij 

4) dr + c 
ie 

(xÄ e r^2) 
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u. 
1 

f 
(x ) 

t.(x£) 

t.(x£) 

DJ 

S2 

1 
e=l 

/g.4(x£, 
je r XJ 

V dr + C. 0 ' 1 ie 
, £ r12s 
(x e r ) 

, S2 f 

') + 5 kJ F-, ht - 1 6ik + ^ ■'ke-i Fik(x‘'5) «ir , 
e=l ! 

e 

, £ rB2. 
(x e r ) 

l S2 f l 
<) + 2 P.7 F.Jx*, 

Ti£ 2 ik k ke r ik 
e=l F 

e 

V dF , 

/ 4 rl2% (x e F ) 

In the above equations, the external (global) displacements are and 

the external tractions are T^. The superscript bar, as usual, indicates 

that the value is prescribed. 

After the indicated integrations over the length of each boundary 

element are carried out, a coupled set of four systems of linear algebraic 

equations in the unknown artificial traction vector P may be formed. 

The set of equations may be expressed as 

GA2 P = D (8) 

(9) 

F®2 P = T (10) 

(11) 

.-V: 

In what follows, these equations are combined and coupled with the 

discrete finite element equations, Equations 5 and 6, developed earlier. 
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Coupling the Finite Element and Indirect Boundary Element Equations 

The boundary value problem in the domain fi, as expressed by Equa¬ 

tions 1, 2, and 3, was discretized by two different numerical processes. 

The finite element method was used in the subdomain Q* and resulted in 

the algebraic system of Equations 5 and 6. The indirect boundary element 

2 
method was used in the complementary subdomain fi and resulted in the 

linear algebraic system represented by Equations 8 through 11. 

An accounting of the entries in the unknown vectors D, A, DJ, T, 

and P reveals that the number of unknowns exceeds by 2M (M is the number 

12 
of nodes along F ) the number of equations available for solution, 

Equations 5, 6, and 8 through 11. Apparently another interface condition 

besides the displacement compatibility condition of Equation 6 is required 

to obtain a solvable system. 

The additional interface condition is provided by equilibrium 

consideration as follows. The vector A represents the discrete tractions 

1 12 
that act on fi along F . These tractions must be in equilibrium with 

2 12 
those that act on fi along F and that are represented by the vector T. 

Thus, the required 2M additional equation is: 

A + T = 0 (12) 
/V /"W /%>> 

The unknown vector A can be eliminated from the total system by 

combining Equations 11 and 12 and substituting the result for A in 

Equation 5. The result is 

K D - E F12 P = Q (13) 

To eliminate from the total system, it is first necessary to 

partition Equation 13 as follows: 

}n\}u 

» 
D 0 2 

~21 1 ^22 
L i J 

7f 
12 

E F P 0 

(13a) 

»V»'.-*'.'* VV 
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where the vector D' is simply constituted of all the elements of D 

exclusive of those in D . Upon substituting the left-hand side of 

Equation 9 for Df, the partitioned system becomes, 

I io 

Ï21 ! «22 S12) 

(13b) 

Thus, the displacement vector Df is eliminated. 

Combining Equation 13b with Equations 8 and 9, the total system in 

final, reduced form is represented by the following linear algebraic 

system of equations: 

K 
11 

“21 

0 

«12 G 
12 

1 ? 12 
(K22 2 - E E ) 

,A2 

32 

5’ 

(14) 

Once Equation 14 is solved for D' and P, the displacements Df can 

be found from Equation 9. Then D is entirely known and the finite 

element stresses in can be calculated in the usual way. And with P 
2 

known, the displacements and stresses for any specified point in Q , or 

on its boundary, can also be calculated in the usual way for the indirect 

boundary element method. 

EXPERIMENTAL NUMERICAL IMPLEMENTATION 

The theory for the coupling of finite element and boundary element 

equations was presented in the previous section. The purpose of this 

section is to present some implementation aspects of this coupling 

theory. 
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All programs are implemented in the Pascal language on an Apple 

microcomputer. The boundary element method (BEM) program is a Pascal 

version of the FORTRAN program presented in a previous report (Shugar 

and Cox, 1983). The finite element method (FEM) program and the coupling 

programs were written during the course of this study. Some aspects of 

the FEM program are discussed in Appendix B. At this time, all of the 

programs are at a research-and-development stage. 

The coupling of the FEM and BEM takes the point of view that well- 

tested finite element and boundary element codes already exist. The 

existing codes are best viewed as a group of modules each with a distinct 

task. From an implementation viewpoint, both the FEM and BEM can be 

broken into three tasks: 

1. Develop the system of equations 

2. Solve the system of equations 

3. Calculate internal responses 

In the FEM the system of equations is a result of discretizing the 

domain into elements, then expressing the displacement field in terms of 

nodal displacements. These unknown nodal displacements are related to 

the applied nodal forces in Equation 5. When Lagrange multipliers are 

not involved it is expressed as 

0=2 (15) 

where K, D, and g represent the structural stiffness matrix, unknown 

external nodal displacements, and applied external nodal loads, respec¬ 

tively. Solution of the system of equations yields the external nodal 

displacements. From these nodal displacements internal responses, such 

as stresses and strains, can be calculated. 

In the indirect BEM the system of equations is a result of discre¬ 

tizing the boundary of the domain into elements, then expressing the 

known boundary values in terms of artificial boundary tractions. The 

distribution of the unknown artificial boundary tractions is expressed 



in terms of discrete nodal values and is related to the known boundary 

values in Equations 8 through 11. Combining the equations for an un¬ 

coupled BE domain, the system is expressed as 

EG P = KBV (16) 

where FG is the system matrix, P is the nodal artificial boundary trac¬ 

tions, and KBV is the vector of known boundary values of displacements 

and tractions. 

With an overview of the system of equations that results from each 

method, the logistics of the coupling can be further considered. A 

modular approach to the coupling, as outlined above, requires minimal 

modification of the individual programs. A schematic of the program 

interaction is shown in Figure 8. The intent in the modular design is 

to allow the alternative of both of the codes to be used as stand-alone 

or coupled stress analysis tools. The dashed lines represent the steps 

of the schematic for uncoupled analyses. This software strategy is 

reminiscent of the "partitioned solution" approach suggested by Fellipa 

(1981) for dynamic problems. 

Development of the system of equations requires minimal modification 

of the existing codes. As explained in the previous section, the nonsym- 

metric coupling requires compatibility and equilibrium to be satisfied 

explicitly. Thus, for the interface nodes the BEM code must generate 

equations for known boundary tractions and displacements. This requires 

modification of the existing BEM code only if it is limited to homoge¬ 

neous problems (i.e., if it consists of only one bounded region). 

However, this modification does not otherwise place any restrictions on 

the stand-alone BEM code. The BEM and FEM codes begin by reading their 

respective input data files and end by writing their equations to second¬ 

ary storage. 

The additional step of coupling the two systems of equations is the 

focus of this study. The coupling and solution steps become part of the 

same program for this implementation. The program begins with the 

coupling routine reading a file, which provides for the connectivity 

B 
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between the BEM and FEM regions. Then the BEM and FEM systems are read 

and inserted into the combined system. Details of the coupling algorithm 

are presented in Appendix C. With the equations coupled the solution 

routine can be brought into memory by overlaying and then used to solve 

the system of equations. In this study a Gauss elimination procedure 

with scaled partial pivoting is used to solve the system of equations in 

which a full matrix is assumed. (Iterative techniques for linear systems 

may also be used.) Once the system is solved the nodal displacements 

and artificial tractions are written to the appropriate files on secondary 

storage. 

The files created by the coupling solution program are identical to 

those created by the stand-alone BEM and FEM codes. Thus, the programs 

representing the third step in the analysis, calculation of the internal 

responses, require no modification. 

This study is restricted to the coupling of multiple FEM regions to 

only one BEM region. Nonetheless, one BEM region is adequate for many 

practical problems, and insight toward more efficient algorithms can be 

gained. To explain the algorithm used in the coupling, the coupled 

system of equations must be considered. The systems of equations for 

both the BEM and FEM were presented in Equations 15 and 16. 

Coupling the BEM anu FEM systems requires involving equilibrium at 

the interface. The matrix E, introduced in Equation 5, was formed by 
~ 12 

integrating the shape functions ^ along the interface boundary F . In 

this particular implementation an incompatible interface is used, where 

the displacements along the edge of the finite element vary linearly and 

those along the boundary element are constant. With this incompatibility 

E must be developed in a different manner. From an intuitive approach E 

can be shown to be a diagonal matrix of the interface element lengths 

(times -1). Consider equilibrium at a nodal point along the interface. 

The BEM considers the boundary tractions as continuous stresses rather 

than discrete nodal forces. For a constant distribution boundary element, 

each row of Equation 11 multiplied by the length of the interface element 

converts the traction to a nodal force. This is mathematically equivalent 

to multiplying E by F , where E is the diagonal matrix of interface 



element lengths (times -1). Assuming no loads on the interface nodes, 

the interface equations can be extracted from Equation 13 and can be 

rewritten as 

,12 
SEE- «21 ! ^221 E = 2 (17) 

where : E = diagonal matrix of interface element negative lengths 

i o 
F = coefficient matrix from Equation 11 

P = vector of unknown artificial boundary tractions 

(K K_„) = portion of the structure stiffness matrix that 
~21 ~22 - - - . . . ^ _ 

relates displacements to forces at the interface 

nodes 

D = vector of external nodal displacements 

For a homogeneous BEM code, where there is no provision for the 
,12 

interface of two regions, the multiplication of E and F is most readily 

performed when developing the BEM equations. For a more general nonhomo- 

geneous code, converting the tractions to nodal values when coupling the 

equations might be more efficient. The first approach was taken in this 

study. 

The second condition to be satisfied at the interface is compati¬ 

bility. This condition was expressed in Equation 6 as 

Df - Db = 0 

where Df and Db are the interface node displacements obtained from the 
rs* ** 

finite and boundary element methods, respectively. Equation 6 can be 

rewritten in terms of the system unknowns by expressing the boundary 

element displacements in terms of the artificial boundary tractions and 

using an array A to extract the interface displacements from the total 

FEM displacement vector. The compatibility equation is now given by 

(0 ! -A) D + G 
^ I •*-> ~ 

12 
P = 0 (18) 
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where A is a rectangular matrix with columns composed of identity vectors, 

~ 12 
D is the finite element displacement vector, and G £ is taken from 

Equation 9. 

The coupled system of equations is obtained by combining Equations 15 

through 18. Equations 15 and 16 must be satisfied in the FEM and BEM 

domains, respectively, while Equations 17 and 18 impose equilibrium and 

compatibility conditions, respectively, at the interface. The coupled 

system of equations can be written as 

FG 

,12 

•E F 

0 

12 
lu. K 

K 
11 

K 
1Z 

12 

(19) 

Figure 9 graphically represents the nonzero entries in the coeffi¬ 

cient matrix of Equation 19 for the problem shown in Figure 10. A 

one-to-one correspondence exists between the submatrices shown in this 

figure and those of the above coefficient matrix. The sparsity of the 

finite element equations is clearly exhibited and contrasts sharply with 

the density of the boundary element equation. 

This system can be reduced to the system of Equation 14 by elimi¬ 

nating the interface displacements, Df, from the vector of unknowns. 

However, the full system of equations presented in Equation 19 is better 

suited for implementation since the system of equations is partitioned. 

SOME NUMERICAL RESULTS 

Two problems are presented in this study of the behavior of the 

coupled solution technique. The first problem, an axially loaded plane 

stress model, involves a rectangular membrane. The restraints are 

applied to the boundary element region and the loads are applied to the 

finite element region. The second problem is a plane strain problem 
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consisting of a lined, cylindrical tunnel surrounded by an infinite 

medium. The liner is modeled by finite elements and the infinite medium 

by boundary elements. The elements in both methods are relatively 

crude; thus, the accuracy is of secondary interest. The behavior at the 

interface is of primary interest. The amount of computational time for 

each domain of the analysis is also presented in the first problem. 

Axially Loaded Plane Stress Model 

The model for this problem is shown in Figure 10. The right edge 

of the boundary element region, elements 10 to 14, is fixed. 

The solution times for each major step of the combined analysis are 

presented in Table 1. The operation steps, except the solution of the 

system of equations, required considerable disk input/output (I/O) 

operations. It is instructive to look at the execution times in a 

relative manner since they are strongly dependent upon the type of 

device used for secondary storage. (In this study a hard disk was used 

to store all data files. This is the fastest type of secondary storage 

device available for a microcomputer with the exception of disk emulators.) 

As mentioned in the EXPERIMENTAL NUMERICAL IMPLEMENTATION section, a 

full matrix solution routine was used to solve the system of equations. 

The solution step could be made faster with a routine that avoids opera¬ 

tions on zero entries of the matrix. 

The listed execution times indicate that the BEM is considerably 

slower. It differs by almost a factor of 2 in the formation of the 

equation and by slightly more than a factor of 5 in the calculation of 

an equivalently sized field response. In practical BEM analysis, however, 

large homogeneous domains are subdivided into smaller domains to reduce 

the solution time. Execution times shown for the two methods, however, 

do not indicate the total cost of the analysis since they exclude the 

analyst's labor cost in the development of the model. The labor cost is 

expected to be greater for the FEM since more prescribed data are required. 

Table 2 gives the axial stress values for each of the finite elements 

above the axis of symmetry (Figure 10). The corresponding boundary 

element values are recorded for points that are symmetrically located 
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about the interface from the finite element centers. The restrained end 

of the boundary element region introduces a Poisson effect; the stress 

values should all approach unity with distance from this end. 

The primary interest is in the percent difference in the finite 

element and boundary element stresses as the interface is traversed. 

The data for elements 25 to 28 show that the difference is affected by 

the proximity of the upper plate boundary. If the interface is traversed 

there, the percent difference is greater (7%) than if it is traversed 

along the symmetry axis (1%). The accuracy of the boundary element 

stress is more adversely affected by the upper plate boundary. 

In examining the error of the BEM region one must consider that for 

the indirect method the BEM region can exactly represent a constant 

stress field only in the limit as the size of the elements approaches 

zero. Conversely, the CST finite element (except for numerical inaccu¬ 

racies) can exactly represent the constant stress field. 

The displaced structure is indicated in Figure 11. Arrows are used 

in the BEM region to indicate the displacements of sample response 

points. 

Figure 12 shows the interface displacements. Because of the constant 

distribution boundary elements used, a stair-stepping effect occurs near 

the restrained corner of the BEM region. As mentioned in the EXPERIMENTAL 

NUMERICAL IMPLEMENTATION section, this coupling has involved incompatible 

edge displacements at the interface. Compatibility is satisfied at the 

nodes, however. In this problem smaller boundary elements are placed 

near the free edge of the plate along the interface. This modeling 

scheme compensates for the center node of the boundary element not 

coinciding with the outside node of the corner element. Though these 

two nodes do not coincide, they have been coupled through the compati¬ 

bility equations so that they have the same displacements. The smaller 

displacements of boundary elements 1 and 5 reduce the displacements of 

finite element nodes 25 and 21, respectively. This contributes to the 

increased stress in finite elements 32 and 25 (see Table 2). 
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Cavity in an Infinite Medium 

This problem represents a cavity subjected to an internal pressure 

(100 psi) in an infinite medium. The models for this problem are shown 

in Figures 13 and 14 (one-quarter of the domain is illustrated). It is 

modeled as a plane strain problem where the FEM region could possibly 

represent a pipe or tunnel liner. Both regions are of the same material 

for easy comparison with elasticity theory. The ability of the BEM 

region to accurately model the infinite domain relates directly to its 

potential application in soil-structure interaction problems and geotech¬ 

nical problems. 

Two models are used in this coupled problem. Each uses a different 

technique for the interface between the FEM and BEM regions. The first 

model, Figure 13, contains alternative gaps and overlaps with none of 

the coupled interface nodes coinciding. The second model, Figure 14, 

adjusts the position of the interface nodes so that the corresponding 

coupled boundary element and finite element nodes actually coincide, but 

at the expense of creating a larger gap. Radial stress results for the 

two models as a function of distance from the cavity center are presented 

in Table 3. Included also are values from elasticity theory and the 

results from both direct and indirect BEM solutions incorporating constant 

elements. 

Results for coupled model 1 are presented in Figure 15. The highest 

radial stress value plotted is the computed finite element stress in the 

cavity liner. This value should not exceed 100. This inaccuracy in the 

FEM region is somewhat expected; a constant strain element is used in 

the region of maximum gradient. The important result of this coupled 

problem is the demonstrated ability of the computed stress gradient to 

transcend the interface in a relatively continuous manner. 

Coupled model 1 is comparable in accuracy to the 12-element indirect 

BEM model, both of which are more accurate than model 2, which includes 

the large gaps. Thus, in this case, forcing nodes to coincide along the 

interface did not pay dividends. 
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The direct BEM results (Brebbia, 1978) are the most accurate at the 

distances considered. However, as the response points in the surrounding 

medium near the boundary elements, the strong singularity in the direct 

method can be expected to cause the response to blow up as discussed in 

Banerjee and Butterfield (1981). This behavior is not shown here because 

the nearest response point is still too distant to capture that inaccu¬ 

racy. The 24-element indirect BEM model gives results slightly less 

accurate than the direct BEM model, but would be expected to behave 

better near the cavity surface. This is one reason why the indirect 

method appears preferable (Shugar and Cox, 1983). 

Considering the coarseness of the model and the inaccuracy of the 

elements used, this problem illustrated reasonably well the ability of 

computed stress gradients to pass through the interface region in a 

continuous manner. The accuracy was acceptable in the BEM region. For 

a soil-structure interaction problem where boundary elements are used to 

model the infinite medium, the constant distribution boundary element 

might prove to be sufficiently accurate. For problems where accuracy 

near the interface is required, a higher order boundary element would be 

needed. 

SUMMARY 

A theoretical investigation of coupling the displacement-based 

finite element method with the indirect boundary element method was 

conducted and the results were implemented within a microcomputer frame¬ 

work. The class of engineering problems that was addressed was limited 

to two-dimensional elastostatics. The study emphasized the interface 

conditions between the subdomains in which the two techniques were 

applied and the behavior of the computed response across that interface. 

Prior to coupling the finite element and boundary element methods, 

a simple finite element computer program was written in Pascal, and a 

previously written boundary element computer program was converted from 

FORTRAN to Pascal. 



The coupling method used was based on direct satisfaction of dis¬ 

placement compatibility and force equilibrium conditions at node points 

along the common border between the two subdomains. Lagrange multipliers, 

which introduce the necessary constraint equations imposed by the above 

conditions, were used to facilitate the mathematical description of the 

coupling. Since the system of simultaneous algebraic equations that 

results from this direct coupling method is unsymmetrical, the method is 

sometimes referred to elsewhere in the literature as unsymmetrical 

coupling. 

Two small planar elastostatic problems were used in a limited 

numerical study of the coupled solution method. The first problem 

involved the stretching of a rectangular plate, and the second problem 

involved a pressurized circular cavity within the plane of an infinite 

elastic domain. 

CONCLUSIONS 

1. There are two approaches to the coupling of finite element and 

boundary element methods. One approach is to treat the finite element 

domain to appear as if it is a boundary element domain to the adjacent 

boundary element domain. The second approach is to treat the boundary 

element domain to appear as if it is a finite element (super element) 

domain to the adjacent finite element domain. We choose the former 

approach. We believe that this is the more effective approach when the 

combined system is computationally dominated by a boundary element 

domain. 

2. Computed stress distributions across the interface between the two 

subdomains, one of finite extent and the other of infinite extent, were 

relatively smooth considering that both element formulations were of the 

lowest order. The constant boundary element would be adequate for 

semi-infinite and infinite domain problems in which the BEM subdomain is 

used to model the infinite domain but not expected to provide exceptionally 

.-.v;.y , % ¿s 
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accurate results near the interface. We believe that higher order 

boundary elements would provide better local results near the interface 

of the two subdomains. 

3. The computer code implementation of the direct coupling method is 

straightforward and, for the small problems investigated, the solution 

of an unsymmetrical system of equations posed no problem. 

4. Some execution time comparisons were recorded that show the indirect 

boundary element method to be a considerably slower stress analyzer than 

the finite element method. For equal (but finite) subdomains, the 

boundary element method will account for the majority of the execution 

time in a coupled solution approach. 

RECOMMENDATIONS 

From the results of this study, the authors believe that a combined 

finite element and boundary element computer program could reduce the 

high cost now associated with nonlinear finite element programs. Further 

work is needed to make the BEM more effective. The areas requiring 

further investigation are: 

(1) Higher order (isoparametric) boundary elements. 

(2) Symmetric modeling capability. This requires elements that 

allow for either displacement or traction boundary conditions 

in either direction or an algorithm that incorporates lines of 

symmetry. 

(3) Body forces within the BEM region. 

(4) Effective equation solvers for block-banded nonsymmetric 

systems. 

(5) Development of symmetric BEM equations. 
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To better determine the potential of the BEM in reducing nonlinear FEM 

cost, a more accurate boundary element must be developed. A quadratic, 

isoparametric boundary element would allow a better evaluation of accuracy 

capability and the associated cost of problems involving a BEM region. 

The authors recommend that the theoretical and numerical treatment of 

isoparametric boundary elements be investigated. 
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Table 1. A Comparison of Boundary Element Method (BEM) 

and Finite Element Method (FEM) Solution Times 

for Coupled Analysis 

1. 

Operation Step 

Develop the system of 

equations 

BEM Subdomain 

11.25 min 

FEM Subdomain 

6.5 min 

2. a. Insert the system in 

the coupled system 

b. Solve coupled system 

(order 82) 

6.25 min 2.25 min 

30.5 min 

3. Calculate responses: 

For a single 

point/element 

Displacement 

Stress 

Combined 

For the field 

16 sec 

16 sec 

25 sec 

16.2 min 

N/A 

3.5 sec 

3.2 min 

Table 2. Stress Comparison for Axially Loaded Plate 

Finite 

Element 

Number 

Finite Element 

Stress - Loaded 

End to Interface 

(psi) 

Boundary Element 

Stress - Restrained 

End to Interface 

(psi) 

Percent 

Difference 

1 

2 

3 

4 

9 

10 

11 

12 

17 

18 

19 

20 

25 

26 

27 

28 

1.000 
1.001 

1.000 
1.000 

0.999 

1.001 

1.001 

1.000 

1.001 

1.002 

1.002 

0.995 

1.026 

1.001 

0.984 

0.989 

1.110 

1.018 

0.972 

0.983 

0.937 

0.970 

1.006 

1.010 

0.946 

0.969 

0.999 

1.005 

0.952 

0.984 

0.997 

0.995 

6.4 

3.1 

0.5 

1.0 

6.4 

3.3 

0.3 

1.0 

7.5 

1.7 

1.3 

0.6 

* -/ n ./ 
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Figure 3. Two-dimensional elastostatics problem. 
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Figure 7a. Weakly singular function. 

Figure 7b. Strongly singular function 
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Appendix A 

BOUNDARIES AND BOUNDARY CONDITIONS IN THE 

FINITE ELEMENT MODELING OF SOILS 

The problem being addressed is of a very practical nature in solving 

semi-infinite media problems (soil, rock) by the finite element method. 

Its solution may be somewhat case-dependent, but in all cases it must be 

reckoned with to at least some degree. 

Difficulty always exists in determining the extent of surrounding 

media to be included in a finite element model whose dimensions are 

necessarily finite, at least that is the case at present.* In addition, 

what selection of boundary conditions should be made; should they be 

completely fixed, completely free, or partially constrained? 

The solution is to run a number of analyses with differing finite 

element model size until further increases in extent'make little differ¬ 

ence in the information considered most important: displacements, 

stress, etc. This is a costly operation, but unless accomplished, the 

analysis is open to criticism. Further, if it is not a one-shot analysis, 

the smallest domain consistent with the desired accuracy may be desirable 

from an economic standpoint. 

An analysis of the vertical deflection of a simple elastic soil 

mass will help illustrate the solution dependence or geometrical extent. 

The problem and its solutions are shown in Figure A-l. 

*Semi-analytic finite element methods, such as the global-local concept, 
may, with further development, provide workable codes where only a 
portion of the semi-infinite media need be discretized while the 
remainder is characterized by appropriate orthogonal functions in the 

classical Ritz sense. 
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For any given depth £ of geometrical extent, an assumed uniform 

strain distribution (along any horizontal section) can be integrated to 

find the deflection u. Obviously, the solution u is dependent on &, the 

geometrical extent factor in the problem. 

Imagine, for a moment, that lim u was not known. Now the equation 

must be solved for several trial values of £ and the results must be 

plotted until further solutions provide little change in the displace¬ 

ment to be sure that the geometrical extent £ is sufficiently great that 

convergence has been achieved. 

While this problem is almost trivial, it nevertheless illustrates 

exactly what happens when applying the finite element method to semi¬ 

infinite soil problems. A single finite element model of the media is 

no more sufficient than is one value of £ to establish reliable results. 

A convergence study must be accomplished by several trial finite element 

model solutions, each with a different geometrical extent in the semi¬ 

infinite media. 

The elastic model illustrates one other point that is also applicable 

to finite element models. Since lim u is a function of cot a, the limit 

does not exist for a = n/2. This means that the convergence study must 

be posed properly by allowing expansion of geometrical extent in both 

the horizontal and vertical directions simultaneously. Otherwise the 

convergence study is ill-posed; in most cases convergence to erroneous 

values will occur, and in others the solution may be unbounded. 

Convergence studies of this nature were necessary for a nonlinear, 

axisymmetric analysis of repaired bomb craters in runways. The partic¬ 

ulars are not important, but the finite element model was to simulate 

small-scale field tests of repaired craters. Surface deflections were 

the criterion on which the convergence study was based. 

Three geometrical techniques for achieving convergence were studied: 

(1) Dual expansion—both width and depth expanded. 

(2) Single expansion on width--depth constant. 

(3) Single expansion on depth--width constant. 
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In Figure A-2, maximum vertical centerline displacement is plotted 

against a geometry parameter C, which may represent either the width or 

the depth or both depending on the technique being studied. Each point 

represents a complete computer run. 

Though the boundary condition along the outer edge was also studied, 

concentrate for now on the three solid curves (a fixed edge condition). 

The two single expansion concepts, the lower two curves, tend to converge 

prematurely. But the dual expansion technique indicates the true deflec¬ 

tion to be much higher and, while convergence has not as yet been achieved, 

it is imminent. 

Looking at the three dashed curves (a roller edge condition), it 

can be seen that one of the two single expansion techniques refuses to 

converge and the other tends to converge prematurely. The dual expansion 

technique again indicates imminent convergence. 

Before carrying the convergence study further, the influence of 

the vertical edge condition can be seen by comparing the dashed and 

solid curves for the dual expansion technique. In theory both curves 

should converge monotonically to the same value because when C is infi¬ 

nite the edge condition should not matter. Based on that, the roller 

edge condition converges faster and therefore is the choice over the 

fixed edge. 

The study was continued using only the dual expansion technique. 

The same kind of data is shown in Figure A-3, except the geometry param¬ 

eter is extended farther. Little is to be gained by extending beyond 

500 inches, so that at this point the study was terminated (about a 12% 

difference in the highest and lowest curves exists). An argument can 

probably be made for adopting any of the curves. Nevertheless, the 

inclination is to choose the middle two curves as they are flatter over 

a longer distance. 
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Appendix B 

ï' 

ASPECTS OF THE FINITE ELEMENT IMPLEMENTATION 

The finite element program (PASFEM) used in this study is a static, 

two-dimensional, linear, finite element code. The initial version only 

contains a constant strain triangular element. Part of the program 

design parallels the methodology presented by Bathe and Wilson (1976). 

The emphasis in this appendix is on the design decisions related to 

assembly of the finite element method (FEM) system of equations. 

Part of the "bookkeeping" involved in assembling the FEM system of 

equations consists of relating element degrees-of-freedom (DOF) to 

system DOF. There are three important arrays involved in this process. 

An identification array (ID) of dimension "number DOF per node" by 

"number of nodes" relates nodal DOF to system DOF. For the two- 

dimensional problems being considered, the "number DOF per node" equals 

three: two translations and one rotation. 

There are two steps in defining the ID array. The first step is to 

flag the restrained degrees of freedom. Most FORTRAN finite element 

codes flag the restrained degrees-of-freedom with a "1" in the array. 

This convention is based on the form of the formatted input data, where 

a "1" is placed in a field if the corresponding degree-of-freedom is to 

be restrained. The Pascal language does not include formatted input, 

and a more self-documented data file is preferred. Flagging the free 

degrees-of-freedom with a "1" results in less effort since a replacement, 

in the second step, is only performed at the free DOF. The second step 

in the definition of the array then involves scanning the columns and 

replacing "l"s with successively larger integers. 
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élément DOF. To increase the amount of high-speed memory available for 

the structure stiffness matrix, additional I/O operations are required 

to force ICONN and ICODE to reside in memory one element at a time. For 

a two-dimensional code, this results in approximately 2.5 times the 

number of element DOF, I/O operations. 

The design used for the PASFEM program does not involve any I/O 

operations related to element stiffness matrix storage. The only I/O 

operations are involved with requiring ICONN and ICODE to be resident 

one element at a time. The disadvantage of this design is that the 

nodal coordinates, material properties, and section properties are 

resident in memory during the assembly of the stiffness matrix. Thus, 

the I/O operations related to ICONN and ICODE are more of a necessity. 



Appendix C 

COUPLING ALGORITHM 

The equations are coupled exactly in the form shown in Equation 19. 

The following explains the algorithms used to couple the equations by 

presenting the algorithms in a structured pseudo-code or Pascal. 

Before explaining the algorithm, the form of the boundary element 

method (BEM) and finite element method (FEM) equation and coupling data 

files must be understood. The first BEM program (BEMI) of Figure 8 

creates a data file that consists of a full matrix of coefficients, 

while the first FEM program (FEMI) creates a data file that consists of 

the coefficient matrix stored in a "skyline" manner (Bathe and 

Wilson, 1976). 

The BEM equations are developed two rows at a time, corresponding 

to the two known boundary values at each constant element. The BEM 

INPUT DATA file indicates whether each element has known boundary dis¬ 

placements, tractions, or if it is an interface element. Known boundary 

displacement elements result in BEMI generating two rows of G (Equa¬ 

tion 8); known boundary tractions result in BEMI generating two rows of 

B2 
F (Equation 10). Hence, interface elements result in BEMI generating 

^ 12 12 
two rows of G and F (Equations 9 and 11, respectively). BEMI writes 

the equations to the disk file COEF as they are developed so that this 

first program is not "memory limited." Each set of linear equation 

coefficients is prefaced by a flag indicating which boundary values are 

known. The coefficients are written to the disk in blocks of four 

terms, corresponding to the relationship between the artificial boundary 

tractions at one element and the known boundary values at another element. 

The corresponding boundary values are written to the file for noninterface 

elements. 



The development of the FEM equations is performed one element at a 

time. Some aspects of the implementation are explained in Appendix B. 

The stiffness matrix is written to the disk file STIFF as a one-dimensional 

array, stored in a skyline manner. Each column of terms is prefaced by 

the number of terms in the given column and the pointer array (MAXA) 

value. In addition to the STIFF file two other files associated with 

the FEM program are needed by the interface program. The AFILE file 

contains coordinate data, the ID array, and material properties. The 

LOAD file contains the nodal load vector. 

The coupling data file simply provides for the connectivity between 

the BEM and FEM regions. This is the first file read by the coupling 

program. Each data item contains a boundary element (BE) number and a 

corresponding finite element (FE) node number (BE numbers must be listed 

in descending order in this implementation). Counting the data items 

gives the total number of interface nodes. The data are read into the 

two-dimensional array IFACE (see partial listing below). 

BEGIN (the FACEIN procedure) 

WRITELNC Executing the FACEIN procedure'); 

RESET(INFACE, ' CEDATA: INTERFACE.TEXT’) ; 

N:=0; {initialize the interface element number} 

READLN(INFACE); {skip the INFACE header} 

READ(INFACE,LETTER) ; {read first letter of the next line} 

REPEAT 

N:=N+1; {increment the number of interface elements} 

WHILE LETTERS . ' DO 

BEGIN 

READLN(INFACE) ; 

READ(INFACE,LETTER) 

END; 

READLN( INFACE, IFACE [N, BOUNDEL ] , IFACE [N, FEMNODE ] ) ; 

RE AD (INFACE, LETTER) 

UNTIL EOF(INFACE) 

END; (the FACEIN procedure) 
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Each row of IFACE represents an interface element: the first column 

contains the boundary element number and the second column represents 

the finite element node number. (Note that the second array indexes, 

BOUNDEL and FEMNODE, are not variables in this case. These are values 

of a user-defined data type, analogous to using 1 and 2 in the FORTRAN 

language. The advantage is that the Pascal code is closer to self- 

documented.) 

With the coupling connectivity known, the boundary element equa¬ 

tions are first placed in the coupled system. The submatrices associated 

with the boundary element system are relatively simple to insert in the 

coupled system as compared with inserting the finite element submatrices. 

The procedure INSERTBEM reads from the COEF file the number of boundary 

elements and the number of interface elements. These data do not provide 

enough information to determine the order of the coupled system; however, 

AB 12 12 
the position of the submatrices FG , G , and -EF can be determined. 

The submatrix pointers are given by 

POINTBOUND = 1 

POINTCONT = 2*(NUMBEL-NUMINTEL) + 1 

POINTEQUAL = 2*(NUMBEL) + 1 

where NUMBEL 

NUMINTEL 

POINTBOUND 

POINTCONT 

POINTEQUAL 

the number of boundary element equations 

the number of interface boundary elements 

the pointer for the uncoupled BEM equations, 

AB 
FG and KBV, set to 1 in this implementation 

~ 12 
the pointer for the continuity equations, G 

~ 12 
the pointer for the equilibrium equations, -E F 

With the above pointers determined, a set of rows can be read from the 

COEF file into the proper submatrix. The input loop for reading the 

boundary element equations is outlined as 



FOR each element (1 to the number of elements) 

READ the known boundary condition 

IF the element is not an interface element 

AB 
THEN READ two equations of FG 

increment POINTBOUND by 2 

READ two known boundary values of KBV 

12 
ELSE READ two equations of -E F 

increment POINTEQUAL by 2 

set the corresponding equilibrium 0 values to zero 

12 ~ 
READ two equations of G 

increment POINTCONT by 2 

set the corresponding continuity 0 values to zero 

next element 

The above loop results in the completion of submatrices FG^, G1^, and 
12 ~ ~ 

-E F in the coefficient matrix and the KBV and 0 submatrices in the 
A* A/ 

known vector of the system. 

With the BEM system of equations placed in the combined systems, 

the FEM system is now coupled to it. Prior to this coupling some pre¬ 

liminary steps are required. The first step is to set pointers to the 

FEM submatrices. This is similar to the process performed for the BEM 

submatrices. The number of nodes (NUMNODE) and the number of equations 

(NUMEQ) are read from AFILE. Then submatrix pointers and the order of 

the final system of equations are given by 

PFEMCOL = 2*NUMBEL + 1 

PEQUAL = PFEMCOL 

PFEM = PEQUAL + 2*NUMINTEL 

ORDER = NUMBEL*2 + NUMEQ 
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where PFEMCOL = the column pointer for the F!iM equations 

PEQUAL = the row pointer for the equilibrium equations, 

~21:~22 

PFEM = the row pointer for the uncoupled FEM equations, 

Kn:Kio ~11 ~12 

The second preparation step is to zero sections of the coefficient 

matrix. The remainder of the matrix consists of 0 matrices and the 

sparce matrices K and A. The stiffness matrix is stored in a skyline 

manner on the disk and A is composed of negative identity vectors that 

are generated while reading K. 

The last step required prior to inserting the FEM system is to 

relate the FEM equation numbers to the coupled system equation numbers. 

A pointer array, similar to the one used in relating element DOF to 

structure DOF in finite element implementations, handles the "book¬ 

keeping." This pointer array, NEWROW, gives the new row numbers of 

finite element stiffness terms. The column order of the system of 

equations does not change. The use of NEWROW allows the finite element 

equations to be read from the file and to immediately be placed in the 

system of equations. Since the coupling is nonsymmetric, each FEM 

stiffness term must be inserted into two locations of the coupled system. 

NEWROW is developed in a three-phase process in the MAKENEWROW 

procedure. The final contents of the ith term in NEWROW give the row 

number of the coupled system into which the ith row of the finite element 

system are to be read. 

The first phase of the development involves the finite element ID 

array (see Appendix B), which relates nodal DOFs to the system equation 

numbers. The first phase is outlined as 
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initialize the NEWROW index, ROW, to 1 

FOR each finite element node (I) 

FOR each nodal degree-of-freedom (J) 

READ the J,I value of ID from AFILE 

IF the ID value is not zero 

THEN NEWROW [ROW] = I 

increment ROW by 1 

next nodal degree-of-freedom 

next finite element 

Following this phase, the NEWROW array contains the node number that 

corresponds to each structure DOF in the FEM system. 

The second phase of the development replaces the node numbers in 

NEWROW of the interface elements with the negative of their equation 

numbers in the coupled system. The second phase is outlined as 

FOR each interface element (I) 

initialize the NEWROW index, ROW, to 1 

set the NODEISFOUND flag to false 

REPEAT for each NEWROW value 

IF NEWR0W[R0W] is the Ith interface node 

THEN set NODEISFOUND to true 

IF the next NEWROW value, ROW+1, 

corresponds to the same interface node 

THEN NEWROW [ ROW+1 ] = -1*2 + 1 - PEQUAL 

NEWROW [ROW] = -1*2 + 2 - PEQUAL 

increment ROW by 1 

UNTIL NODEISFOUND 

next interface element 

where PEQUAL is equivalent to POINTEQUAL given earlier; however, in this 

loop the equilibrium equation point continues to point at the first 

equation of the equilibrium submatrices. Following this phase the 

NEWROW array contains the node numbers at noninterface nodes and the 

.. 
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negative equation numbers at the interface nodes. The final values for 

the interface nodes are now in the NEWROW array. The negative is used 

as a flag in the third phase of development to indicate the number is an 

equation number and not a FEM node number. 

The final phase of the NEWROW development, which loops over all the 

NEWROW values replacing positive node numbers (noninterface elements) 

with equation numbers and switching negative equation numbers (interface 

elements), is outlined as 

set I to PFEM, the pointer for the uncoupled FEM equations 

FOR each FE equation (ROW) 

IF the NEWROW[ROW] value is positive 

THEN NEWROW[ROW] = I 

1 = 1 + 1 

ELSE NEWROW [ROW] = -NE\ TROW [ROW] 

next FE equation 

The equation counter for noninterface nodes starts at PFEM and increments 

by one; thus, the and submatrices of the equations will be the 

FEM stiffness matrix with the rows corresponding to interface nodes 

removed. NEWROW now contains the coupled system equation numbers that 

correspond to each row in the finite element stiffness matrix. 

With the NEWROW array complete the submatrices associated with the 

FEM can now be developed. The major effort involves reading the stiff¬ 

ness terms from the data file and inserting them into the coupled system. 

Because of the nonsymmetric coupling, each stiffness term is placed in 

two positions within the coupled system. In this implementation the two 

positions for the stiffness term are not, in general, symmetric either; 

this is due to the manner in which interface DOFs of the stiffness 

matrix are coupled for equilibrium. 



In the PASBFI program the stiffness submatrices and [A] are developed 

in one algorithm and the known vector submatrix is developed later. The 

known vector submatrix is relatively simple to construct given the 

NEWROW array, so emphasis here is placed upon development of submatrices 

in the coefficient matrix. The algorithm is outlined as 

initialize JCOL to PFEMCOL - 1 

FOR each column of the FEM equations (J) 

increment the JCOL pointer by 1 

initialize the ICOL pointer to JCOL + 1 

IF the column number corresponds to an interface DOF 

(NEWROW[J] < PFEM) 

THEN put a -1 in the proper term of -[A] given by 

(A[NEWROW[J]-2*NUMINTEL,JCOL] = -1) 

skip the skyline pointer value (MAXA) in the STIFF file 

READ the number of terms in the Jth column (TOP) 

FOR each term in the column (I = J DOWNTO J-TOP+1) 

decrement the ICOL pointer by 1 

READ a term from STIFF into A[NEWROW[I],JCOL] 

IF this is not a diagonal term (I J) 

THEN place it in the NEWROWfJ] row 

(A[NEWROW[J],ICOL] = a[NEWROW[I],JCOL]) 

next term in the column 

next column 

f 

After inserting the FEM load vector into the coupled vector of known 

values the system of equations can be solved. The artificial boundary 

loads and displacements are directly written to the output files. Then 

the response programs BEMIII and FEMIII calculate the internal responses 

for the boundary and finite element domains, respectively. 
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INSTRUCTIONS 

The Naval Civil Engineering Laboratory has revised its primary distribution lists. The bottom of 
the mailing label has several numbers listed. These numbers correspond to numbers assigned to the list of 
Subject Categories. Numbers on the label corresponding to those on the list indicate the subject category and 
type of documents you are presently receiving. If you are satisfied, throw this card away (or file it for later 

reference). 
If you want to change what you are presently receiving: 

• Delete - mark off number on bottom of label. 

• Add — circle number on list. 

• Remove my name from all your lists — check box on list. 

• Change my address - line out incorrect line and write in correction (ATTACH MAILING LABEL). 

• Number of copies should be entered after the title of the subject categories you select. 

Fold on line below and drop in the mail. 

Note: Numbers on label but not listed on questionnaire are for NCELuse only, please ignore them. 

Fold on line and staple. 

DEPARTMENT OF THE NAVY 

NAVAL CIVIL ENGINEERING LABORATORY 
PORT HUENEME, CALIFORNIA 93043 

OFFICIAL BUSINESS 
PENALTY FOR PRIVATE USE. S300 

I IND-NCEL.2700/4 (REV. 12-73) 

OS30-UL-L70-0044 

POSTASE AND FEES PAID 

DEPARTMENT OF THE NAVY 

DOD-3IS 

Commanding Officer 

Code LI 4 

Naval Civil Engineering Laboratory 

Port Hueneme, California 93043 



DISTRIBUTION QUESTIONNAIRE 

The Naval Civil Engineering Laboratory is revising its primary distribution lists. 

SUBJECT CATEGORIES 

1 SHORE FACILITIES 
2 Construction methods and materials (including corrosion 

control, coatings) 
3 Waterfront structures (maintenance/deterioration control) 
4 Utilities (including power conditioning) 
5 Explosives safety 
6 Construction equipment and machinery 
7 Fire prevention and control 
8 Antenna technology 
9 Structural analysis and design (including numerical and 

computer techniques) 
10 Protective construction (including hardened shelters, 

shock and vibration studies) 
11 Soil/rock mechanics 
13 BEQ 
14 Airfields and pavements 
15 ADVANCED BASE AND AMPHIBIOUS FACILITIES 
16 Base facilities (including shelters, power generation, water supplies) 
17 Expedient roads/airfields/bndges 
18 Amphibious operations (including breakwaters, wave forces) 
19 Over the Beach operations (including containerization, 

materiel transfer, lighterage and cranes) 
20 POL storage, transfer and distribution 
24 POLAR ENGINEERING 
24 Same as Advanced Base and Amphibious Facilities, 

except limited to cold-region environments 

28 ENERGY/POWER GENERATION 
29 Thermal conservation (thermal engineering of buildings, HVAC 

systems, energy loss measurement, power generation) 
30 Controls and electrical conservation (electrical systems, 

energy monitoring and control systems) 
31 Fuel flexibility (liquid fuels, coal utilization, energy 

from solid waste) 
32 Alternate energy source (geothermal power, photovoltaic 

power systems, solar systems, wind systems, energy storage 
systems) 

33 Site data and systems integration (energy resource data, energy 
consumption data, integrating energy systems) 

34 ENVIRONMENTAL PROTECTION 
35 Solid waste management 
36 Hazardous/toxic materials management 
37 Wastewater management and sanitary engineering 
38 Oil pollution removal and recovery 
39 Air pollution 
40 Noise abatement 
44 OCEAN ENGINEERING 
45 Seafloor soils and foundations 
46 Seafloor construction systems and operations (including 

diver and manipulator tools) 
47 Undersea structures and materials 
48 Anchors and moorings 
49 Undersea power systems, electromechanical cables, 

and connectors 
50 Pressure vessel facilities 
51 Physical environment (including site surveying) 
52 Ocean based concrete structures 
53 Hyperbaric chambers 

54 Undersea cable dynamics 

TYPES OF DOCUMENTS 

85 Techdau Sheets 86 Technical Reports and Technical Notes 82 NCEL Guide 8c Updates 

83 Table of Contents 8c Index to TDS 91 Physical Security 

□ None— 
remove my name 



PLEASE HELP US PUT THE ZIP IN YOUR 
MAIL! ADD YOUR FOUR NEW ZIP DIGITS • 
TO YOUR LABEL (OR FACSIMILE), 
STAPLE INSIDE THIS SELF-MAILER, AND 
RETURN TO US. 

(fold hare) 

DEPARTMENT OF THE NAVY 

NAVAL CIVIL ENGINEERING LABORATORY 
PORT HUENEME. CALIFORNIA 93043-5003 

OFFICIAL BUSINESS 

PENALTY FOR PRIVATE USE. *300 

I IND-NCEL.2700/4 (REV 12-73) 

0330-LL-L70-0044 

Commanding Officer 

Code LI 4 
Naval Civil Engineering Laboratory 
Port Hueneme, California 93043-5003 

'• r*— 

POSTAGE AND PEES PAID 

DEPARTMENT OF THE NAVY 

DOD-31S 

Iras'-*." 


