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Optical Implementation of the Synthetic Discrimination Function
Steve Butler, James Riggins

Electro-Optical Terminal Guidance Branch
Armament Laboratory, Eglin AFB, FL 32542

Abstract

Computer-generated holograms of geometrical shape and synthetic discriminant function
(SDF) matched filters are modeled and produced. The models include ideal correlations and
Allebach-Keegan binary holograms, A distinction between Phase-Only-Information and
Phase-Only-Material Filters is demonstrated, Signal-to-noise and efficiency measurements
were made on the resultant correlation planes,

Introduction

-Much attention is focused on the use of coherent optical pattern recognition (OPR)
using matched spatial filters for robotics and intelligent systems. The OPR problem
consists of three aspects -- information input, information processing, and information
output, This paper discusses the information processing aspect which consists of choosing
a filter to provide robust correlation with high efficiency,

The filter should ideally be invariant to image shift, rotation and scaleiprovide a
reasonable signal-to-noise (S/N) ratio and allow high throughp?t effgciency. Such 3
generalized matched filter algorithms are reported by Casasent , Lee", anq/baulfield .

The physical implementation of a spatial matched filter involves many choices, These
include the use of conventional holograms or computer-generated holograms (CGH) and
utilizing absorption or phase materials, Conventional holograms inherently modify the
reference image by non-uniform emphasis of spatial frequencies. Proper use of film
nonlinearity provides improved filter performance by emphasizing frequency ranges crucial
to target discrimination., 1In the case of a CGH, the emphasis of the reference magnitude

and phase can be controlled independently of the continuous tone or binary writing
processes. TRe « ®1_, 5

This paper describes computer simulation and optical implementatipn of a geometrical
shape and a Synthetic Dlscriminant#Function (SDF) matched filter, chose the binary
Allebach-Keegan (AK) CGH algerithm Yto produce actual filters, The performances of these
filters were measured to verify the simulation results. This paper provides a brief

summary of the matched filter theory, the SDF, CGH algorithms, Phase-Only-Filtering,
simulation procedures, and results. P

Background

Spatial matched gllters are used to detect the presence of specific patterns in an
image. Vander Lugt” combined matched filter techniques, well documented in books on
communication theory, with holographic techniques to provide a real time optical
correlator, The Vander Lugt Filter of a function f(x,y), created through conventional
holographic techniques, yields the following transmittance function:

HGu,v) = A2 o JFCu,v| 2 + aF (u,v)ed?73Y 4 apt(u,v)ed27au (4,

where F(u,v) = Fourier Transform of f(x,y) = ql{f%x.v)}

A e-JZ”au the off-axis reference wave used to provide the spatial carrier for the
hologram,

a8 = 52?9 = the filter's spatial carrier freq ( © = off-axis angle)

The filter contains the D.C. bdias, A2: the baseband magnitude, |F(u.v)|2' and two ternms

’

heterodyned to +a. These heterodyned terms contain the complex valued information
describing the reference input f(x,y). If the spatial carrier frequency i3 sufficiently
high, the heterodyned terms are separable and no aliasing exists, When the filter {s
illuminated by the Fourier Transform of an input function g(x,y) and the resulting image
inverse transformed, three terms result, A baseband product of the reference and input

magnitudes is brought to focus on axis, The heterodyned terms form the correlation and
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convolution images spatially separated from the baseband image when the carrier frequency
is sufficiently high, The correlation jmage is used to detect the presence of the
reference pattern in the input image., This ideal correlation is symbolized by:

Rrg(x.y) = f(x,y) @g(x.y) B /fr(x-xo.y-yo)g(xo.yo)dxodyo
- »
= 37 F e, vIGu, v ) (2)
where ® denotes correlation
An optical matched filter only approximates the ideal case, The continuous tone
hologram has a limited dynamic range and thus introduces nonlinearity., The CGH algorithms
sample the complex transmittance in space and quantize the phase and amplitude. The
filter output, then, cannot be modeled by equation (2) but rather by
-1 .
RUpg(xoy) = T {u(p (u,v)) - c(u.v)} (3)

L]
where H(F ) describes the Holograpnic, tuncticn operating on the filter transform. In
general, F and G are complex but H(F ) is a real, zero phase function,

Synthetic Discriminant Function

The filter reference function, gsg,y), used in our work was an SDF, The SDF has been
widely described in the literature and will only be summarized here, In this case the
SDF is used to provide rotation invariance., The SDF {s designed to provide a constant
cross-correlation peak between the filter function F, and all members of a set ign}. In
other words,

sn (J f = constant

where CJ denotes a correlation process and the constant is typically chosen to be unity,
For our work, the set gn} consists of two-dimensional images of a tank rotated every
107, The filter function f is a linear combinastion of an image training set which may be

3 subset of {sn} .
Thus, f = Z: e,* 8 (u)
P

where the e . are chosen to give cross correlations as close as_possible to one for each
member of the training set, That is, the quantity zlf‘gi-ll is minimized,
i

The SDF is calculated digitally, off line, resulting in a two-dimensional, digital,
object space image, To then implement the SDF optically, two techniques can be used: (1)
transform the digital image to an optical image via a high resolution CRT or digitally
addressed camera and produce a Vander Lugt Filter in the conventional holographic manner,
or (2) retain the image in a digital format and produce the filter through
computer-generated hologram techniques, Because of increased flexibility and
repeatability, the latter technique was chosen.

Computer-Generated Holograms

Computer-generated holograms have found applications in optical informatio
tnterferomggqg. synthesis of novel optical elements, laser scanning, and lgser
machining. With computer—geneqited holograms we can implement computér-optimized
optical pattern recognition masks. The hologram transmittance function is expressed in
equation (1), If we represent the image f(x,y) using a digital représentation, the
transmittance function H(u,v) can be computed digitally,

processing,

The computer writes the hologram by transferring the traps&mittance function to an
appropriate holographic medium, Typically the computer drives a plotter or scanner and
writes the hologram one point at a time, The primary limitation is writing resolution, A
conventiocnal optically generated hologram may have a-resolution of one quarter of a
micron., A computer system using visible light to xrite holograms (plotters, flying spot
scanners, CRTs, etc.) cannot achieve resoluti:}y‘mucn better than several microns.

Writing systems utilizing electron beams are Urrently achieving better than 1 micron
resolution, The electron beam systems are {ypically binary and thus the transmittance
function must be quantized in some fashigh 10to two levels, "on" or "off", Binary
holograms are attractive because binapys computer-graphics output devices are widely
available and,gecuuse problems with fionlinearities in the display and recording medium l{g
circumvented, When photogrlph}: emulsjons are involved, granularity noise §{s reduced,

Several computer hologra
continuous tone holograms

Types are modeled and produced at Eglin, Theae include
nd three classes of binary holograms: BrowneLohmann (Ly! .

" “Y
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Lee17. and Allebach-Keegan (AK)u binary holograms,

The continuous tone holograms are sampled and quantized versions of the theoretical
optically produced hologram., When the sampling frequency is sufficiently high, this CGH
most closely resembles the optically produced hologram. Of course, even the largest
computers cannot reasonably match the large space-bandwidth-product typical of optically
produced holograms.,

The Brown-Lohman (BL) binary hologram uses a clear aperture to represent each pixel
value, The aperture is made larger or smaller according to the magnitude of that pixel
value., The aperture is then shifted to increase or decreas> the path length according to
the pixel phase value (detour phase),

The Lee binary hologram uses four apertures for each pixel.17 Each aperture is
positioned to cause a quarter-wave phase shift by increased path length, The two
non-negative quadrature terms are weighted to vector sum to the appropriate magnitude and
phase for each pixel. The two appropriate apertures are opened according to their weight,

The CGH used in our experiments was the Allebach-Keegan., Squires and Allebach18
b performed a thorough analysis of various commen binary CGH algorithms with respect to
‘I three error categories. In most cases, the total RMS reconstruction error was minimal

with the AK algorithm. The AK algorithm encodes the object as quadrature components
calculated in the same manner as the Lee method. The binary value of the individual
hologram elements is determined through comparison with an ordered dither threshold mask.
i the physical construction of an AK hologram, each hologram sample point is left clear
when that quadrature component is greater than the threshold, All other areas are opaque,
Allebach provides a formal description in reference 4,

p
t Phase-Only=-Filters
}

In the Fourier representation of images, Spectral magnitude and phase tend to play

different roles and, in some situations, many of thqgimportant features of a signal are

1 preserved if only the phase is retained, Oppenheinm shows that when the magnitude

L . portion of an image Fourier Transform is set to an arbitrary constant and the phase left

= intact, the reconstructed image closely resembles the original., The Phase-Only image

- typically emphasizes the edges by which we recognize shapes by essentially performing a
high pass filtering. For example, only the edges tell us the difference between a circle

’ and a square. This is very closely related to high pass filtering. As in the previous
example, the low pass version of the circle and square are indistinguishable but the high

pass versions are distinctly different, Most images have spectra where the magnitude

tends to drop off with frequency. In the Phase-Only case, we set the magnitude of each

AN pixel to unity. This implies multiplying each pixel magnitude by its reciprocal. Thus
the Phase-Only process applied to a mound shaped Fourier Transform is high pass filtering.

The advantage of using a Phase-Only image or High-Pass image is the increase in optical
efficiency of the resultant matched filter. As shown in equation (1), the transmission of
each hologram element depends on the magnitude of the reference image Fourier Transform.
As the magnitude drops off for high frequencies, so does the transmission of light through
the holographic filter, and hence, filter efficiency is low. If we set the magnitude to
unity (Phase-Only-Filter) for all frequencies the overall efficiency increases
dramatically, Thus, efficiency is incsaased while subsequent correlation and
reconstruction remains useful, Horner shows that the maximum throughput efficiency of
an 1deal autocorrelation of a 2-D rect function is only 44% while the autocorrelation
using a Phase-Only-Filter achieves 100% efficiency. Phase-Only-Filters have generated
great interest in applications involving limited input power,
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The Phase-Only process just described implies only the phase portion of the image
information was used to produce the holographic filter, Thus, we may call this process a
Phase-Only-Information process, A separate but related process 1s accomplished during the
production of the physical hologram, When the holographic filter is exposed by the filter
image and reference beam, a latent image js stored on the film (see equation (1)), 1If
'] developed and fixed, the film absorbs light according to the illuminating intensities
which created the latent image.

- . Ta(u.v) oKX H(u,v) (5)

- where T (u,v) is the amplitude transmission and H(u,v) is the filter transmittance
. function defined in equation (1),

¢ If we bleach the hologram after development, the metallic silver is removed and T = 1,
The accompanying shrinkage of the emulsion causes a change in the path length througﬂ the
holographic medium. The resultant wavefront phase is dependent upon the latent image
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H(u,v) store on the film. For the bleached hologram we obtain the expression
iH(u,v) (6)

y yw

Ta(u,v)ze

PR B

which essentially defines a phase modulation process, Note that there is no absorption
involved. This bleached and other phase holograms merely vary the phase of the light
passing through the hologram, The absorption hologram necessarily absorbs light striking
it and is thus inefficient with its use of incoming light, This "phase media”" hologram
transmits all of the light (ignoring the emulsion, substrate, and reflection losses).
Phase holograms are very efficient but as is evident in equation (6) they are very
nonlinear, This nonlinearity causes an increase in noise due to intermodulation
distortion,

The choice of absorption or phase holographic material is dependent upon the
application, Use of a phase-only material is entirely independent of
Phase-Only-Information, Thus, six separate cases were studjed:

(1) Amplitude and Phase Information +« Absorption Media,

(2) Phase-Only-Information + Absorption Media,

(3) High-Pass Filtered Information + Absorptjion Media

(4) Amplitude and Phase Information + Phase (Bleached) Media,
(5) Phase-Only-Information + Phase (Bleached) Media,

(6) High-Pass Filtered Information +« Phase (Bleached) Media,

Computer Simulations

Figure 1 outlines the basic steps of implementing the theory, Two filter input image
types were used for this experiment, The first was a 10 x 10 pixel square centered in a
128 x 128 pixel field. This input image served to set a baseline and verify the computer
encoding by providing a known transform, The second computer image was an SDF of a
nonsymmetric, edge-enhanced object -~ in this case a tank. The SDF was constructed as a
linear combination of 36 tank images, The 36 images represent a set of 36 infrared tank
images taken at a constant depression angle and with the tank rotated 10 degrees per
image, The SDF is a 128 x 128 image.

FILTER IMAGES

18 X 128
CHOOSE
CREATE ANP&PHASE OR CALCULATE
» cpr \\\\\5~ 51T X512 PHASE ONIT KOLOGRAM
k) EMPED . _| prasE *
i‘x""l 2‘(x.y) m »| FFT ) >l InNFC > F(H ) 3|
. Flu.v)
TEST
SQUARH

FORM
*LEACH| ABSCORPTI I QR
FHASE HD! 3PAM

fFigure 1, Simulation Procedure Flow Chart
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We pad the 128 x 128 images with zeroes to create a 512 x 512 array which when Fast
Fourier Transformed (FFT), yields a diffraction image that is smooth over four pixel
intervals. The 512 x 512 diffraction image is band limited to 64 cycles/frame by the
padding process, When Phase-Only-Information is chosen, the diffraction image is divided
by the magnitude at each pixel location to assign unity magnitude, This result is input
to the AX hcologram algorithm,

The result of the AK hologram step is a binary 512 x 512 matrix, A value of 1 is
assigned to those hologram sample points where a clear aperture should exist (based on the
AK algorithm), and a zero value is assigned elsewhere, Figure 1 indicates two options
exist after calculating the AK hologram {(matched filter), The digital hologram is used as
the input to CGH writing devices to physically implement the matched filter for use in an
optical system, This task has been accomplished using the Honeywell Electron Beam writing
device., The Honeywell system can create either absorption or phase holograms, A second
option indicated in Figure 1 is to simulate the optical correlation process with the
computer (VAX-T750), The phase hologram is simulated by converting the binary
transmittance values to phase delays. A phase shift of a half wavelength is chosen to
simplify the programming and to minimize the D, C., term of the hologram, The complex
Fourier Transform of a test image is multiplied by the CGH filter image, The result is
inverse Fourier Transformed to create the correlation or output plane as described by
equation (3), The final result is then displayed on DeAnza image processing hardware and
analyzed for efficiency and signal-to-noise ratio,

Optical Implementation and Testing

In the Honeywell e-beam direct writing system, the hologram fringe pattern is created
by a combination of beam deflections and workstage translati Bs. Both are under control
of the e-beam computer, The achievable number of pixels (10 ") can approach that of
interferometrically recorded off-axis holograms because of the submicron resolution. For
our experiments, Honeywell fabricated our 512 x 512 holograms with one micron spacing
between pixels, These absorption holograms consist of etched chrome on 2-inch-square
glass substrates,

The completed filters were placed into the optical correlator shown in Figure 2. The
appropriate input image was placed before the Fourier transform lens, We recorded the
output plane on film for qualitative analysis, We performed the quantitative analysis by
measuring the input plane energy, correlation spike energy, and total correlation plane
energy using an E.G,& G. 550-1 radiometer with appropriate masks.
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Figure 2. Setup for Optical Testing
Results

The simulation results are given in Table 1, Column 1 specifies the image used to
produce the holographic filter, Column 2 specifies the test image to be correlated with
the filter image, We determined, for each of these cases, signal-to-noise ratio and
efficiency., The signal-to-noise ratio is defined as the peak amplitude of the correlation
Spike divided by the root mean squared average of the entire correlation plane, The
efficiency is defined as the energy in the correlation spike divided by the input energy.
The results are given for six combinations of absorption or phase modulation (bleached)
holograms and normal, phase-only, and high pass information, The normal columns represent
the results when the normal Allebach-Keegan algorithm is applied to the filter image;
that is, the threshold is based on the FFT maximum as per reference 4, The phase-only
columns apply to those cases where the filter {mage FFT magnitude was set to unity
preserving the information phase at each point, The high pas: cciunas apply to those
cases where the AK threshold was lowered to emphasize higher spatial frequencies, That is
the threshold is based on the square root of the maximum as per reference 21,

We ran six simulation cases, The autocorrelation of 8 square using the AK algorithm is
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presented as a reference, We then caused the AK algorithm to cross-correlate the SDF with
various views of a tank chosen at random from the 36 images in the training set, In each,
the signal-to-noise ratio and efficiency are tabulated so as to easily compare the
absorption and phase modulation hologram materials along with the varjous pre-emphasis
techniques applied to the filter 1image,

Ed it 2 ol

“"’;‘"' L ‘ﬂ'f’v’ "
-
[ -
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=

FILTER TEST SIGNAL-TO-NOISE RATIO (PEAK/AVE) EFFICIENCY(COR.SPIKE ENERGY/INPUT ENERGY)
IMAGE IMAGE ABQOSRPTION BLEACH ABSORPTION BLEACH
NORMAL PHASE HIGH NORMAL PHASE HIGH NORMAL PHASE HIGH NORMAL PHASE HIGH
ONLY FREQ ONLY FREQ ONLY FREQ ONLY FREQ
SQUARE SQR 69 277 203 69 2771 203 3% 6% 1% 113 2u1 uug
SDF 11 27 28 " 217 28 0,03% 0.6% 11 0.1% 3% u1
SDF 4c® 5 7 8 5 7 8 0.1%  0.53 0.9% 0.4% 3 4y
1 SDF 130° " 30 30 1 30 30 0.03% 0.7% 11 0.1% 3% us
g SDF 2u0° 6 16 17 6 16 17 0.2% 0.8% 13 0.6% 3% 5%
SDF 2?00 7 20 19 7 20 19 0.01% 0.5% 0.7% 0.05% 2% 33

v

TABLE 1, Simulation Results of Alleback-Keegan CGH Matched Filter

N

Discussion

Table 1 shows the signal-to-noise ratio is independent of the choice of absorption or

phase modulation (bleach) materials, Bec? se the domain of valvu- the absorption
{ hologram includes only 1 and 0, the y = e mapping yields on -1 when k is set to
3 pi. For this binary case, the bleaching process can be repre *d by y = 2x-1, a linear
< process. Thus the correlation plane structure and signal-to ste ratio are independent
3 of bleaching. However, the efficiency increases dramaticall wi*th bleaching making phase

modulation materials the obvious choice for binary holograms,

|- The pre-emphasis of the filter image by either high pass or Phase-Only-Filtering

3 improves the signal-to-noise ratio and the efficiency. The signal-to-noise ratio is about
the same for the high pass and Phase-Only~Information filters. However, the effjiciency {s
higher for high pass filtering than f051Phase-0n1y-Filtering. Because the high pass

1‘ filter was chosen in an ad hoc fashion™ , there may be room for further improvement,

1 Figure 3 shows the holograms and resulting correlations for the three cases of filter
information pre-emphasis. The correlations shown in Figure 3 are normalized to show the
relationship between the spike and the noise and do not show the difference in throughput
efficiency.

Conclusion

The holographic matched filter in conjunction with the SDF shows promise in deformation
invariant pattern recognition applications, A possible implementation of such theory is
through computer-generated holography, This paper has described computer simulations
which demonstrate the feasibility of implementing a SDF filter using the Allebach-Keegan

@ CGH algerithm,
3
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