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ABSTRACT

-We-present the derivation and implementation of asymptotic boundary COPY

conditions at "artificial boundaries for semi-linear elliptic boundary value

problems on semi-infinite cylindrical aomains. A general theory developed by

the authors in a previous work [11] is applied to establish the existence of

exact boundary conditions and to obtain useful approximations to them. 4-Tey

are based on the Laplace transform solution of the linearized problem at in-

finity. -We discuss the incorporation of these conditions in a finite differ-

ence scheme and present the results of a numerical experiment: the solution

of the Bratu problem in a two dimensional stepped channel. -We also examine

certain problems concerning the existence of solutions on infinite domains.
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SIGNIFICANCE AND EXPLANATION

Many computational problems arising in applied mathematics are posed in

infinite pipes and channels. One of the most important exz.niples of this is

the problem of incompressible fluid flow in such a geometry. As computations

are only possible on finite domains, "artificial" boundaries must be intro-

duced and boundary conditions must be imposed there. For the fluids problem

these are referred to as inflow and outflow boundary conditione.

In a previous work the authors developed a general theory of boundary

conditions at artificial boundaries. In this work we show how to apply that

theory to the numerical solution of semi-linear elliptic problems. Such prob-

lems are well-suited for numerical experimentation for a variety of reasons:

first, the abstract theory can be directly applied to them; second, the

derivation of boundary conditions for these problems is formally applicable to

* . the equations of incompressible flow; third, the problems are physically and

mathematically interesting in their own right.

We illustrate the large reduction in the error brought about by use of

the asymptotic boundary conditions through presentation of the results of

computations on the Bratu problem. This deals with the existence of stable

solutions to the equation V u - -Xe , which is used as a model of thermal

ignition. For X sufficiently large and positive, solutions do not exist

and, hence, ignition is said to have taken place. The problem is to determine

the minimum value of A for which this occurs. We present some results

concerning the change in the critical value of X due to finite perturbations

of infinite domains.

The responsibility for the wording and views expressed in this descriptive
summary lies with MRC, and not with the authors of this report.



NUMERICAL SOLUTION OF SEMI-LINEAR ELLIPTIC

PROBLEMS ON UNBOUNDED DOMAINS

Thomas M. Hagstrom* and H. B. Keller**

1. Introduction

We consider boundary value problems of the form:

a) Lu(x,y) = f(u,X), (x,Z) e [0,-)xa, Q C R

au(.) b) a (y,) . + b~q(,)u = C%(x), , e )a

c) a0 lZ) L + b0l Wu = C0( ), x = 0;

d) lim limau

x += u(x 'z) = ua(x) , -- (x q ) = 0

Here, L is a linear uniformly elliptic second-order operator which is

independent of x:

Ia) L -- + L1  + L2
2 a

a2  a
ax2

n-1
(1.2) b) L1 E an(,)- +a

i~i i

n-1 n-1 a2  n-1

F c) L ai + __ a _ a(X)2 i=1 9=1 i y a i=I i aY i
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The expression - denotes the conormal derivative associated with L and

0. The function u (X) must satisfy the limiting cross-sectional problem

obtained by formally letting x + - and setting u u 0 in (1.1a,b) tox xx

*get:

a) L2u =f(u,,X), X e 2;

(1.3) au

b) a (X) -*- + b,(y)u = cO(X), e a.

Equations such as (1.1a) arise, for example, in equilibrium problems in non-

linear heat generation. (See, e.g., Aris [31.) Furthermore, the method we

describe can be generalized to systems and to higher order equations [11]. As

*such it has potential for application to steady state problems of fluid flow

-: in pipes and channels.

Our procedure is to introduce an artificial boundary at some point

T > 0, impose boundary conditions there and solve the resulting finite

problem on [0,T] x Q by a standard numerical technique. A theory of boun-

*. dary conditions at an artificial boundary has been developed by the authors in

*" [11] and we use it here. Indeed, one of the purposes of this work is to

illustrate the power of the general theory.

Other authors have discussed the problem of deriving boundary conditions

*, at an artificial boundary for linear elliptic problems. Gustafsson and Kreiss

[10) point out the possibility of deriving exact conditions by use of a

Laplace transformation in x. Fix and Marin [7] and Goldstein [9] use a

related approach to solve problems in underwater acoustics and wave propa-

gation in cylindrical waveguides. The first approximation to the boundary

condition given by our method coincides with that obtained by applying the

Laplace transform method to the problem linearized about um(X).

-2-
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In section 2 of this work we state the basic results of [111 and show how

they can be applied to (1.1). In particular, we present detailed asymptotic

expansions of the exact boundary conditions and state sufficient conditions

for their validity. Extensions to other problems are also discussed. In

section 3 the inclusion of the expansions in a discrete approximation is

described and their efficient use is considered.

A special case of (1.1a), the Bratu problem in a two-dimensional channel,

is introduced in section 4. we discuss its physical interpretation and quote

various existence results for finite domains. The results of some numerical

experiments are presented assessing the effects of varying the location of the

artificial boundary and the number of terms in the asymptotic expansion. Some

questions concerning the existence of solutions in unbounded domains are also

examined.

-3-
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C.

2. Construction of the Boundary Conditions

In order to conform to the notation of [11], we write the problem as a

first order ordinary differential equation in a Banach space. Letting

v 2 u - u. we introduce:IV x+ x 1
(2.1) w(x) ( X

. v(x,X) 2

We seek a solution, v, which for each x is an element of the space

W 0() - that subspace of the Sobolev space W2 (Q) consisting of functions
22

which satisfy the homogeneous version of (1.1b), i.e. with C, = 0. Here for

each x we require:

* wI
a) w(x) e B {(w1): w I e w1 (l ), w 2 e w2 (), (2.2b) holds.}

(2.2)

b) -+a n.a, -w ++ a Ibwe3S
ai=1 j=1n Iw 2 n- 0 a e w2

Here ni  is the it h component of the unit normal to 3Q. Choosing T > 0 as

the location of the artificial boundary, we rewrite the equation in the tail

in the abstract form:

dw
* a) .= Aw + R(w), x > T;

(2.3) dx

b) x w(x) = 0;

where

L* w 1 Lw -Lw 2+ f (u)w 2a) A(w ( 22 u w2
w2 w 1 /

(2.4)

b) R( w 1 ) (f(u. + w2) - f u(uO)w 2 - f(u))

-4-
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In (11] an explicit approximation to the solution of (2.3) is constructed

in terms of the eigenfunctions of A. That is, we consider pairs

(XI, wO) e x B such that:

(2.5) Awt = )lw, £ = 1,2,...; Ow 1 0

We assume that:

a) The eigenvalues, X., are distinct and bounded away from the

(2.6) imaginary axis.

b) The eigenfunctions, w£, form a Riesz basis of B. (See,

e.g., Gohberg and Krein [8] for a discussion of non-orthonormal

bases.)

Note that (2.6a) ensures that the linearized problem has an exponential

dichotomy. From (2.4a) we see that (2.5) is equivalent to the eigenvalue

problem obtained by application of a Laplace transformation in x to the

linearization of (1.1) about u.:

a) L2 - fu(U)Y + X LIY + X Y- 0, Z e a;
2 uu

n-1 n-1
(2.7) b) a. I ni{( aij  + a + baYl , ;i=aiY += =j 0, ni X

c ) w -

Condition (2.6b) can be particularly difficult to check for

nonselfadjoint problems. (See, e.g., Berezanskii [6] for a discussion of the

selfadjoint case.) Agmon (1] treats the case LI = 0 while Agmon and

Nirenberg [2] give sufficient conditions for completeness in the class of

initial data leading to absolutely integrable solutions in the tail. Note

-5-
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that the set of all decaying solutions of the linearized problem is generated

by those w, whose eigenvalues have negative real part. We denote this

subspace of B by A

(2.) A - span{w£: Rex < 0}.

We now state our fundamental result concerning the existence of solutions

of (2.3):

Theorem 2.9 Let 6 > 0 satisfy

(2.9) 6 < 1

+ -

where

a) inf Re(X inf (-Re(X,));a) + Rexf>0 ReI), Rex <0

I I

b) K, sup Ifuu(U. + v x)i

Xeez2=1 I1 <2 "rs u +6,~
n-1

c) 2 £ sp f~ (Ur +

4 i=1 " II< <
xee

e) '1 is a constant appearing in Sobolev's inequality (see Agmon [1]),

ai= l~ul y("U~w2(a + luR wo~)
3 sup (u 0 (X) uu O

f) all (1 2 are constants such that if w= c~w£ then:

aA 21/ IU 4 a I 12 1-6 a 2

-6-



(Such a 6 clearly exists if the necessary derivatives of f are continuous

near u..) Then, for any e A which also satisfies:

(2.11) uIB < 6

there exists a solution, w(x), of (2.3) such that, if QO is the projection

operator into A whose nullspace is the span of the wt whose eigenvalues

have positive real part, then:

(2.12) Qw(T) = F.

Furthermore, w(x) is unique among small solutions satisfying (2.12). /

we note that Theorem 2.9 is the specialization of some results of (111 to
I

the present case. The proof, as given there, follows this path: [i) a

solution, w0 (x), of the linearized problem satisfying w0 (T) = is written

down, (ii) w(x) is represented as w0(x) + w(x), (iii) an integral equation

for w is derived from an integral representation (in this case a Green's

function representation) of solutions of the linearized inhomogeneous equations,

(iv) the existence of w is established by a contraction mapping argument.

In order to carry out step (iv), it is necessary to prove certain estimates.

This leads to the inequality (2.9). As their derivation is straightforward,

we postpone its presentation to the appendix.

The solution we have constructed, w(x;), can now be used to write down

an exact boundary condition at x = T. Written in abstract form it is

(see [11] ):

(2.13) (I-)w(T) -fG S(T,p)(I-Qn) R( (p,Q.w(-)))dp,

Here, the combination S(s,t)(I-Q.) is the solution operator of the

* linearized problem restricted to the span of w£ whose eigenvalues have

positive real part. Its existence is guaranted only for s 4 t. Equation

-7-
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(2.13) is an exact condition in that there exists a small solution, w, of

(2.3) if and only if w(T) satisfies (2.13).

A useful approximation to (2.13) is obtained in terms of the eigen-

functions, w . The iterative process implicit in the contraction argument is

-(n)
truncated to give some approximation, w (x;E), to w(x;). Furthermore,

the nonlinearity R is replaced by a finite Taylor series. Then the

integrals involved only contain exponential functions of the integration

variable and can be evaluated explicitly. The result is an expression

relating the expansion coefficients. (See [11], eq. (6. . rewrite the

quadratic approximation below for an expansion in terms . Y0 (X). This, in

turn, makes use of solutions of the adjoint problem:

a) L £ - f (u ) y + X L Y£ + X = 0, X e Q;2u

(2.14)

aY n-1 n-1 3a..
b) a - + (b + a (I h - ai)) i£ = o, e a .

SI-vi=1 j=1 aj

Here, L2  and L, are the formal adjoints of L2  and L 1. We choose our

normalization so that:

n-1
a)f da[( + + a - (a Y )]ym=

Z. m nZ X ay. nii k

(2.15)
b) Ily I ) = 1.

Given the pair (x) we define expansion coefficients in the following

way:

CE f dy f 9 (v(T,xy)

(2.16)
n-1

+ '(X + a())Y(X) - (a
Z n3 i Z

' -8-



We further define matrix elements of the quadratic approximation to R:

L (2.17) a(z) I£ _
(217 f d ZYX() fuu(uo,)Ym(X)Yn(X)-

We then have as an 0(Uv(T,X) 02 )  approximation to (2.13):

( 2C() mCn
(2.18) C = a mn X+X- X such that ReX > 0.

m n m n X
ReX <0 ReX <0

m n

Equations (2.16) and (2.18) take on a more familiar form when the

eigenvalue porblem, (2.7), is selfadjoint. In particular we consider the case

when L is the laplacian and the boundary conditions are of Dirichlet type.

We then have : n- 1 2y X
2. 2

a) . - f u(u)YX + X YZ= 0, e Q;
i=u

(2.19)

b) Y = 0, x e 3.

Define Y to he normalized in L,"2):

(2.20) f dX 2X)

Then we have by (2.15a):

(2.21) Y ( X)  - 2X £

Note that each eigenfunction Y corresponds to two distinct eigenvalues,

v
+LX . Consider the expansion of the pair (Vx) in terms of the two bases:

2. h'x - Y (x)
(2.22) \ x, {C+(x)( X + C (x ) ( - 2.

2. +x Z. L . h k(x)' k

The expansion coefficients are related by:

-.9-F" .. * . *1: : .. . ": : ' - -.. ... . . . .*-: ,,I,: ,: .. :



"" c (h + ,

(2.23)

2 R h - 9) .

Define matrix elements in the new basis by:

(2.24) cc - f dX f (U , )mn 2 I

They are related to the old matrix elements through:

(2.25) CL (
mn 2XXYmyn  mn

Using (2.23) and (2.25) the boundary condition (2.18) becomes:

(M) h'h'

(2.26) hj + Xh£ m "(hm -44"') (h n - m.) ,
m n Xm +X9n m nn

which can be replaced, to the same quadratic order of approximation, by:

-(9.)

(2.27) h = -XjhX- X +mn-- h hn
m n m n

Condition (2.27) is used in the calculations presented in section 4.

In closing this section we note that the analysis given above can easily

be extended to a variety of different situations. The assumption concerning

the lack of dependence of the domain and coefficients on x is necessary only

in the tail, i.e. for x sufficiently large. In fact, the asymptotic

expansions given in [111 allow for a dependence of the coefficients on x so

lonq as they approach their limiting values sufficiently fast. Also, the

restriction to scalar equations in not needed.

-10-



3. Discrete Approximations

We show how to implement the boundary conditions discussed above in a

numerical computation. For simplicity we assume a one dimensional cross-

section, 2, with Dirichlet boundary conditions. We also consider centered

finite difference approximations to the derivatives with a uniform mesh

width. Let p denote the number of gridpoints in a cross-section, h be the

mesh width and i, 1 4 i 4 p, parametrize the points in a cross-section.

Then, if j parametrizes the x coordinate, the index, k, of a mesh point

is given by k = p(j-1) + i. At an interior point a finite difference

approximation to (1.1a) is given by:

S(u(k+p) - 2u(k) + u(k-p)) + a2)(u(k+p) - u(k-p))
h

a1 1(yi)

+ (u(k+l) - 2u(k) + u(k-1))h2

(3.1) a 21 (Y.)lk+

+ 2 (uk+p+) + u(k-p-1) - u(k-p+l) - u(k-p+l))

+ ah (u(k+1) - u(k-1)) + a(y )u(k) - f(u(k),yi) = 0

In order to implement (2.18), it is necessary to solve the eigenvalue

problems (2.7) and (2.14). We approximate these on the same cross-sectional

mesh as the full equation. We must therefore assume that the eigenvalues and

eigenfunctions which are approximated well on this mesh are enough to resolve

the solution. (See Kreiss [13] for a discussion of the approximate solution

of nonselfadjoint eigenvalue problems.) We denote our approximate solutions

to (2.7) and (2.14) by the pairs (LA YL(yi)), (t, (yi)). Approximate

expansion coefficients C are given by:

Ii -11-



L

c= _) (yi)Vx(Ty + Y(

(3.2)

Ih (a  (Yi+1) Y i - a2 1 (Yi-1 Y(yi-1 )jv()}Ty)

and, if approximations, a ( to the matrix elements a are calculated.mn mn

in a similar fashion, (2.18) can be replaced by:

(3 C a m n C . such that ReX 0  >0.

m nXm+Xn-X

ReX <0 ReX <0
m n

We note that v(T,yi) = u(T,yi) - u.(Yi) and that Vx(T,y i ) must be replaced

by a difference approximation. A simple approach is to take T half way

between vertical grid lines and to calculate v(T,y i ) by averaging. In

general, there will be 2p eigenvalues, A£, of the discrete problem.

Equation (3.3) represents as many equations as there are eigenvalues with

positive real part. If this is not equal to p, then we cannot expect the

discrete equations to be well-posed. (One reason for this might be that the

original problem is ill-posed.)

As expected, all of this is simplified in the selfadjoint case. Then,

(3.3) can be replaced by a discrete analogue of (2.27) where

(3.4)

= 1 (Yi)VT,yi

Since the p-vectors £(yi) are orthogonal, our approximation to (2.27) can

be rewritten in the convenient form:

K -12-
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• , -4 . . - . - . - - ' - -J , . . 0. . . 0 _ °j|

v x(ty =- £(Yi)£ (y )V(TIy)
£=1 j=1

(3.5)

P =1 M-1 n=1 X m +X n +X j--1 mj=1 -

We now consider the solution of the system of nonlinear equations by

Newton's method. From (3.1) we see that the interior of the Jacobian will be

banded with band width at most p + 1. Assuming we use (3.3) to relate two

vertical grid lines, the last p rows will have nonzero elements in the

last 2p columns, increasing the band width by as much as p. If, however,

(3.5) can be used, it is possible to write the condition in sch a way that

the band width is not increased. Therefore, in the latter case, no extra work

is needed to solve the system by banded Gaussian elimination. In the former,

a bordering technique is necessary to avoid significant additional calcula-

tion. The effect of the nonlocal boundary conditions on the performance of

iterative techniques has not been examined in general. Bayliss, Goldstein and

Turkel [5] have found that the use of the linear version of (3.5) has essen-

tially no effect on the convergence of their preconditioned conjugate gradient

algorithm for the Helmholtz equation in three dimensions.

A significant number of new calculations are, however, required to

evaluate the Jacobian. From (3.5) we see that, for the quadratic

approximation, this involves an evaluation of

P
Q.A. v(T,y;),)Qij - i v

(3.6) ^(m)
i Aij£ -- m(Yi ) anK nY ) K(j

A ) (y n (y (y
ijtm=1 n=1 K=I m I+

m n K

1

i -13-
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Since A. can be evaluated beforehand, this entails 0(p3 ) new
ijI

multiplications at each iteration. The direct solve itself requires 0(p3q)

operators where q is the number of gridpoints in the x direction. There

are two ways to reduce the error due to the introduction of the artificial

boundary: first, to take more terms in the expansion of the boundary

condition; second, to move the boundary further out. The latter requires

O(p 3Aq) additional multiplications. The increased cost of evaluating the
"" 0(S+1)

Jicobian in the former approach is O(p ) where s is the number of terms

taken in the expansion. This suggests that the quadratic approximation is an

efficient choice. These considerations might change, of course, if a

different solver was used or if the dimension of the cross-section were

4 higher.

1-m-'4
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4. The Bratu Problem

We consider the following special case of (1.1a):

3 2u 2
(4.1) 32u I 32u = -Xe .(x2  ay2

Equation (4.1), which is also associated with the names of Gelfand and Frank-

Kamenetskii, arises in the theory of thermal ignition of gases. (See, e.g.,

Aris [31.) The problem of existence of positive solutions has been considered

by various authors. We state below two theorems from the literature for the

Dirichlet problem on a finite domain - that is (4.1) holds on some finite

domain, D, and:

(4.2) u = 0, (x,y) e 3D.

Theorem 4.3 (Keller and Cohen [12]) Let X > 0 be such that (4.1, 4.2) has

a positive solution. (We say that X is in the spectrum.) Then, if

0 4 X X A, X is in the spectrum. Furthermore, for all X in the

spectrum, there exists a minimal positive solution, u0 (x,y; A), such that,

if U(x,y; X) is any other positive solution, then

(4.3) u0 (x,y; A) 4 U(x,y; x) V(x,y) e D.

The minimal positive solution is stable in that the linearized eigenvalue

problem

a) V 2 + XeU in D;

(4.4)
b) =0 on 3D;

has only negative eigenvalues.

Theorem 4.5 (Bandle (4)) Let D' C D. Then, if A is in the spectrum for

D, it is in the spectrum for D'. Furthermore, the minimal positive

solutions satisfy:

(4.5) u0 (x,y; A,D') < u0 (x,y; X,D) V(x,y) e D'.

-15-



That is, the minimal ecuilibrium temperature increases with the size of the

domain.

We consider the problem (4.1) on domains with infinite boundaries of the

following types:

(4.6) y e [0,1], Ix - x0 1 > a; y e (d,1], Ix - x0l < a;

} 1 0  <0

* x0

-X

0 a

where d can be positive or negative. On the top and bottom of the channel

and on the step at x = x0 + a we require u = 0. As +I + we require:
- lira

(4.7) ixI. u(x,y) = u (y)

Here, u.(y) is a solution of the limiting cross-sectional problem:

a) u" = -Xe , y e (0,1);

(4.8)
* b) u.(0) = u(1) = 0.

We are now assuming that X is in the spectrum of the cross-sectional

problem at infinity. Furthermore, in order to ensure that condition (2.6a) is

* met, we must take u. to be the minimal positive solution. It is possible to

solve (4.8) analytically. The spectrum is found to range between 0 and XC

where

(4.9) X = 3.51

-16-
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Finally, we seek solutions which are symmetric with respect to x0 . This

allows us to consider solutions on the semi-infinite domain created by the

restriction of the original domain to x ) x0* At x0  we impose the boundary

condition:

(4.10) -. (xo,Y) = 0.

For the numerical solution of the problem an artificial boundary is

introduced at the point x = T. Three different boundary conditions are

imposed there:

(i) the quadratic condition, (2.26);

(ii) the linear approximation, h + X£ht = 0;

au-
(iii) the "naive" zero-order condition, a- 0.

Before discretization, the stepped channel was mapped to a straight

channel using the conformal mapping, with d > 0:

-1
a) s + it= w = F (z), z = x + iy;

b) F(w) =2 {n[(erwl) 1/2 + (eiw_(1cl))l/ 2 ] -

(4.11)
(1-) 1/2£In [(e7rw-(1-))1/2 + (1-a)1/2( eTW1 1/2]} + (1-a)1/2

2
c) a =2d - d

"--d -1 co i 'j
For d < 0, set d* =-- and replace F by - F cng(-wCong; d*) + d.

* 1-d l-d*

The straight boundaries at x = x0 , T are mapped into slightly curved

boundaries. The resulting perturbation of the boundary conditions are

calculated using linear interpolation. The equations are discretized andI

solved (Newton's method and Gaussian elimination) as described in section 3.

For all cases shown the uniform mesh width is h = .05. Due to the curvature

of the boundary, it is necessay to implement the condition at x = T in such

a way that the band width is increased. To avoid additional computation, a

-17-
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bordering technique is used to solve the Newton iterates. All calculations

were performed on VAX 11/780 computers at the California Institute of

Technology and the Mathematics Research Center.

If the step parameter, d, is taken to be zero a trivial solution exists-

namely u = u.(y). Theorem 4.5 (which has not been established for an

unbounded domain) suggests that solutions exist if 0 < d < 1. We always

found this to be the case. Presented below are results d = .4 and A= 3.51,

very close to the critical value for the cross-section. The minimum

eigenvalue of the cross-sectional problem is .66825, so the decay to u~is

relatively slow. In Table I we list the maximum error as a function of T

and the order of the asymptotic boundary condition. (The exact solution is

taken to be a finite difference solution on a large domain, T= 2.262, using

the quadratic approximation to the boundary condition.)

T # vertical gridlines B.C. approximation max Iuh. Uh_

to the right of step order x=T approx.

0: ux = 0 .0743

1.262 20 1: linear .076 .0030

2: quadratic .0015

0 .1472

.764 10 1 .177 .0082

2 .0018

0 .1936

.520 5 1 .269 .0154

2 .0051

40 .2131

.381 2 1 .341 .0213

2 .0105

TABLE I



We see that the quadratic condition is consistently the best and that the

naive condition is consistently the worst. The success of the quadratic

condition is graphically displayed in Figures 1-4. Ficrure 1 shows the

solution using the solution using the quadratic condition on a lirge domain,

T = 1.262. (The step is located at x = -.057.) Plotted are level curves

of u. In Figure 2 the same level curves are plotted for a solution on a

small domain, T = .381. Figure 3 shows the superposition of the two

solutions. As predicted by the linear error analysis (Hagstrom and Keller

[11]), the error decays as we move into the interior. Figure 4 shows the

superposition of the large domain solution and a solution on the small domain

found using u x(T,y) = 0. The level curves are seen to be greatly distorted.

x = 0.057 x 1.262 x = 0.057 x = .381

FIGURE 1. FIGURE 2.

I.1.,



FIGURE 3. FIGURE 4.

A more interesting case, from the point of view of existence theory,

occurs when d < 0. Then we may expect that the presence of the finite thick

reqion will preclude the existence of steady solutions, even though the

infinite part is thin enough for a one dimensional solution to exist

(X < X c ). In terms of the physical problem this says that a finite area of

qC

excess thickness can cause spontaneous ignition in a slab whose infinite part

is stable.

In order to find critical values of X., we used regular continuation in

that parameter to qenerate initial gvesses for Newton's method. The minimum

-20-
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step size used was AX = .001. Tabulated in Table II are the critical values

of X thus found as functions of a = Xstep - x0 , the half-width of the

thick part. Here, d = .4. As expected, they vary between the one

dimensional critical values of the thick region and the infinite region.

Plotted in Figure 5 are the level curves of the solution for X = 1.857,

a = 2.013, just before the steady solution ceases to exist. Here, the

maximum of u at the left boundary is 1.27 while at infinity it is 0.3.

d half-width: a X crit.

-.4 W 1.791

-.4 2.994 1.821

-.4 2.013 1.858I
-.4 1.028 1.978

-. 4 .7415 2.049

TABLE 11

d=-0.4

a =2.013

I FIGURE 5.
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In summary, the calculations we have presented confirm the usefulness of

the asymptotic boundary conditions described in [11] and provide a practical

example of their implementation.

F
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II

Appendix: Proof of Theorem 2.9

We need to establish the conditions of [11], assumption 6.6. (here, we

take 6I = 2 ) Note that the combinations S(x,p; F (U,))Q.,

S(x,P; Fu(u.))(I - are easily represented in terms of the eigenfunction

expansion - namely, if = w,
£

a) S(x,p; Fu(U.))Q. = e CRwX, x ) p;

(A.1) Rel£<0
lx-p)

b) S(x,p; F u(u.))( I-Qaj1 e Cew£I x 4 P
e

ReXX>0

From (2.10f) we then have:

-X_(x-p)

a) HS(x,p; Fu(U.))QII ce , x >

(A.2)
X+(x-p)

b) S(x,p; Fu(uC ) )(I-Q )II 9ie , x < p.

maxI1I ma 1)
We now estimate xR(w - R(w2 )II where maX1 i <, I = ( • . Byx x

(2.4b) and the definition of the 
norm we have:

1 - R(w 2

IIR(w ) ~ )II

(A.3)I2

1 122K -f(u + w2 ,X)- f u,)w2 - f(u w X) + fu+ U w2 (Y)

We note that Sobolev's inequality (Agmon [1]) implies that:

(A.4) 1w ' < 2-y~w'iw21 )1 < 2y6 .

We have (suppressing the X in the argument of f):

-23-



, _. - 1 . -.

1 2 1 2f(U +w2 uW +w2 f u,)( 2 W2
. 2 - - f u+w-(u)(w 2 -w2) =

"l 2l 1 22 f(Wu +2(W +2 U~
L.

dt fl ds fu + S(W + t(w - 2- + 1 - 2
0' 0O +u s 2  2 2 2(w2  2~~w 2 2

Taking absolute values and integrating yields:

2I 1 2

Uf(u. + w) f(u + w2  ) f _u fu()(w 2 w)2

wu 1 f + w 11w 1 w 22

2 2 -2 2fL 2 2 w 2 )
4K 1 .3_ 1 12 1 _ 12

2 2 2 L2 ()

Similarly we have:

uYi 2 Y i WYiY 0

+ (f u s + + 1 M w ) (U )(w 1 2))
1 2 1 2C 2 2 2'

+ dt0 w (u. +w w( +2w- f (u)(w 1 w 2

Y UG 2 y. 2 uy. 2 2

i 1.1

The first and third terms of the right-hand side of the expression above are

easily estimated in precisely the same fashion as used to produce (A.5). It

is only necessary to replace ifu by if for the first term and by

(u.) YiI Ifuu I for the third. For the second we have:

* 1
fl (uf u + w1 )( 1 2-f + tw w2  1 _ w ) (w2 + w w

0uu 2 2y. u 2 2y 2~ 2 22

+ f'dt flds f (u +- S(w2 + t(w1  w))(wl w2 ) ('w2 + tuw1  w 2)
2 2 2 2 2y 2 2

i
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Taking absolute values and integrating the expression above yields, in

combination with estimates of the other terms:

+ ~ 'u 2 -w W2f(u + w2) _ f ( _ 2
22 u 2 (2L 2 )

From (A.3), (A.5) and (A.6) we conclude:

1 2 1 2

(A.7) KR(wK ) - R(w2) 4 2y6(KI + K 2 + K3 )Kw -w 1,

which implies :

max If' dp S(x,p)Q.(R(w ) 1 R(w 2))- dp S(x,p)(I-Q")(R(w ) 1 R(w 2)f
x y

(A.8) 4 216aK I + K2 + K )( +.L ma olw)

1 2 3 1

< max Ow 1 - w 2 .

x

~Similarly we have :

(A.9) IR(w 1 )H =  f(u + w f (U)w f(u 2)1

2 0 2id
oUsing the previous estimates (with w

(A.10) I1R(w)1 q Y62(K + K + 132

1U 26K K23)t I

which implies:

(A.11) x dp S(x p( (w1) - R(w) - dp S(x,p)(I-Q.)R(w )P- < ).

x T x

-2+ -x

-. ..... .. :.. .... . .... .... ..max -1 ... -2.



0a
Finally, we require e A such that ma IS(X,T) I < .-. From (A.2a) this

x

- becomes:

(A.12) 1 0 <6
2az

All of the requirements for [11], assumption 6.6, have now been met, so

* the proof of Theorem 2.9 is complete./
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