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Abstract

A classical order picking problem is the case where items have to be

picked from both sides of an aisle and the picker cannot reach items on

both sides simultaneously. Hence the picker must cross the aiile one or

more times. Efficient optimal algorithms are developed for the cases

where the picker enters and exits the aisle at the same end or at "

opposing ends. For all practical aisle widths and number of picks in an

order, it is more efficient to enter and exit the aisle at opposing

ends. The algorithms can be implemented in real time on a microcomputer. "

An optimal fixed picking sequence, suitable for implementation in a

manual system is also developed and compared with the optimal policy.
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1. INTRODUCTION

One of the most frequently encountered order picking problems occurs

when items of an order have to be picked from both sides of an aisle and

the picker cannot reach items on both sides simultaneously. To fill a

customer order, the picker must cross the aisle one or more times.

Since the warehouse generally consists of many such aisles there are

two significant problems to be addressed. One problem is to determine

how to optimally travel from one aisle to another. For the case of

parallel narrow aisles with crossovers only at the ends of the aisles •

(Figure 1), this problem was efficiently solved in Ratliff and Rosenthal

(1983). They only considered the narrow aisle case where a picker can .

reach both sides simultaneously. However, their algorithm is optimum for .

any parallel aisle system provided that the optimum picking policies

within each aisle can be determined. The second significant problem is

to determine optimum picking policies within wide aisles. This is the ,

problem addressed here. In addition a heuristic for the case of wide '

aisles suitable for manual implementation is presented and compared with -

the optimum procedure.
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ITEMS IN A PARTICULAR ORDER

00

o 0. -o-
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AISCROSSOVER

LOADING DOCK.

Figure 1. Warehouse Aisle Configuration.

For the results presented here, it will be assumed that the picker

moves only on the aisle floor and travel from one position to another

0 -.

within the aisle occurs along a straight line connecting the positions.

It will also be assumed that aisles are entered and exited at points half

way between the sides of the aisle. The objective is to find the picking

sequence with the shortest travel distance for picking the order.

The solution for the general problem under the above asumptions is

the shortest Euclidean distance Hamiltonian path or circuit (i.e., the

traveling salesman problem). It is well known that this is a difficult
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problem to solve optimally, Karp (1982) and Garey et al. (1976).

Fortunately, in the case of a single wide aisle, there exist additional

structural properties, which allow an efficient algorithm. Other special

cases of the traveling salesman problem which we can efficiently solve .].

are given in Gilmore and Gomory (1964), Ratliff and Rosenthal (1983),

Lawler (1971) and Cutler (1980). .

0
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2. DIFINITIONS

Two major classes of picking policies for an aisle are defined. A

policy is called a "return policy" when the picker enters and leaves the 0

aisle at the sam end. A policy is called a "traversal policy" when the

picker enters the aisle at one end and leaves it at the other end. If

the aisle is part of a larger warehouse, then it might be efficient to 0

pick part of the items from one end of the aisle and pick the remaining

items from the other end of the aisle. This is called a "split return

policy". Similarly, it might be efficient to pick part of the items O

while traversing the aisle in one direction and pick the remaining items

while traversing the aisle in the other direction. This is called a

"split traversal policy". The different types of policies are

illustrated in Figure 2.

,'.-.~etu i - .. , -
Retlurn Traversal

-S

Split Return Split Traversal

Figure 2. Return and Traversal Picking Policies -
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For this discussion we will assume that there are the same number of

locations or slots on either side Of the aisle and that all slots have

the same dimensions. All of the properties and algorithms can be

extended in a straightforward fashion to the case in which the slot

dimensions are not the same or the number of locations on either side of

the aisle is not the same.

The following definitions are illustrated in Figure 3. Let a be the

width of one slot and let M be the number of slots on one side of the

aisle. Let W be the width of the aisle measured in slot widths. The

entry and exit points for the aisle will be located on the centerline of

- _the aisle and 1/2 slot width outside the end of the aisle.
*.0

The number of items in one order will be denoted by N. Of those N - -

items n will be assumed to be stored on the left side and m will be

assumed to be stored on the right side of the aisle. On each side the

storage locations are number from I through M starting from the near

location. The location of the items will be given by the number of their

storage loction. Items in the order on the left side of the aisle will

be denoted by LiL 2,...L n . Items in the order on the right will be

denoted by Rl,R 2 ,...R. The distance along the axis of the aisle from

the near entry point to item Li and Ri is Li and Ri slots respectively.

For the remainder of this discussion we will use one slot width as the -

unit of measurement.
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3. OPTIMAL TRAVERSAL PICKING POLICY

With a traversal policy, it is assumed that the picker starts the

picking sequence at the near entry point and leaves the aisle at the far

exit point. The following "no-skip" property allows the efficient

determination of an optimal picking sequence under a traversal picking

policy.

No-Skip Property

Before an item R. can be picked in an optimal traversal picking

sequence, all of the items R,R 2 ,...,R_ 1 must already have been picked.

The same relationship holds true between Lk and L,L 2 ,...,_. .

Proof. The proof is by contradiction. It relies on a well-known

result first proved by Barachet (1957) which says that any shortest

Euclidean distance Hamiltonian path or circuit does not cross itself.

Assume that there exists an optimal picking sequence, which has __

picked item Rk but has not yet picked item Ri. with j < k. The route

started at the near entry point and is now at Rk, it still must visit the

near point R and finish at the far exit point. There are four possible

cases, depending on whether the previous point A in the circuit and the

following point B are located at the same side of the aisle as and R."

These cases are illustrated in Figure 4. Each of these cases involves

the route crossing itself (an overlap is a degenerate cross). Hence the

picking sequence which ships R cannot be optimal. q.e.d.

A similar algorithm was developed by Cutler (1980) for planar

traveling sa.asman problems, where all points lie on two or three

parallel lines. Such problems occur in the design of printed circuits.

In these problems the begin and endpoints also lie on the parallel lines,

which makes these problems more complicated, compared to the order

7
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2 3
picking problem discussed here. Cutler presented O(N2) and O(N )

algorithms for the two and three line problem, respectively. The

algorithms are also based on the no-crossing property of Barachet.

9 8 8 8 5

K 'K K 'K ::aS

J V ,

A A AA

Figure 4. Four Possible Cases in Picking Rk before Rj. -

The above property allows the characterization of the state of the

system during an optimal traversal picking sequence by a 3-tuple

(Ri,Ljpk) , where R is the last item picked on the right side, L is the -

last item picked on the left side, and k is R or L, indicating whether

the picker is currently on the right or left side. S

For the entry point, R and L are equal to zero. For the exit
i ."•j- -

point, either (R1 - n+l and L m) or (R1 = n and L m+l), depending

on whether k is equal to R or L, respectively.

For each state there exist only two state transitions if the picking

is done by an optimal policy. Assume the system is in state (RiLj R). -

There are only two items that are candidates to be picked next. The ...

8



picker can either continue on the same side and pick the next item Ri+i,

or he can cross the aisle and pick the next item Lj+ 1* The travel

required for those transitions is given respectively by

t(R1 l =R i +I-Ri I)R

t(Lj+IRi) = SQRT(W 2+(L J+-R ) 2) (2)

The travel for the transition from the entry node and the travel to

the exit node for the left and right side respectively are given by

t(L1,O) = SQRT(W2 /4+Li) (3)

0)2 2
t(Ri,0) - SQRT(W /4+Ri) (4) ..

2 2
t(Ln+l, L) SQRT(W /4+(M+I-Ln (5)"

t(Rm 1lR) SQRT( 2/4+(M+I-R )2) (6)

The problem of finding the optimal picking sequence is now reduced

to finding the shortest path in an acyclic graph. The graph is

illustrated in Figure 5. For each state (RiLjlk) there is a node in the

graph. For each feasible transition there is an arc in the graph between

the corresponding nodes, with a length equal to the travel associated

with the transition. The length of the shortest path is the total

-" ."picking travel.

9

............................. . . . . . .....



I., (n m'L)

O~tR) (n(mii?

Figure 5. Shortest Path Graph for the Traversal Policy

There are a total of (n+l)m+(m+l)n+2 - 2nm+m+n+2 nodes in the graph.

On the average, n and m will be equal to N/2. Any node has at most two

outgoing and two incoming arcs. The computational effort to find the

shortest path is then proportional to the number of nodes and thus the

algorithm is O(N 2 ) or quadratic in the number of items in an order.

Several very efficient procedures exist for finding the shortest path in .""

an acyclic graph, see Christofides (1975). It is necessary to sort the

-""items by non-decreasing coordinates in order to specify the graph. This

requires a computational effort of O(n-log(n))+O(m.log(m)).

" An example is given by the two Figures 6 and 7, where N 10, W - 3,

N - 5, n - 2, and m - 3. The minimum travel to each state is given under

its corresponding node, the travel length of each transition is given

* _. above its corresponding arc. The optimal picking distance is 19.39.

A pseudo code representation of the algorithm is given in Appendix

A, together with a discussion of the comparison of computational effort

required on different computer systems.

10
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Figure 6. Example of a Traversal Sequence in an Aisle
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The following experiment vas conducted to examine the influence of

the number of items in the order and of the width of the aisle on the

picking time. The aisle had a length of 60 slots. Aisle widths of 2, 3,

* 4 and 5 slots were considered. The "order density" is the percentage of

total slots in the aisle visited in picking the order. Order densities

of 5%, 10%, 20%, 40% and 80% were considered. For each of these

combinations, 10 replications were computed. The resulting average

travel distance is given in Table 1. The width, the number of items and

their interaction are significant factors in the travel distance at the

0.001 significance level.

* Table 1. The Average Optimal Traversal Travel in Slots

DESIT
5% 10% 20% 40% 80% AVG.

* WIDTH
2 62.6 64.7 71.8 86.3 109.7 79.0

*3 63.8 69.8 79.8 98.5 123.3 87.0
4 66.0 72.5 84.6 107.3 134.7 93.0 1

f5 67.3 75.1 92.9 119.1 146.1 100.1

AVG. 64.9 70.5 82.2 102.8 128.5 89.8

Any traversal picking sequence must at least travel from entry point

to exit point, which is equal to the number of slots in the aisle plus

one. We will call this the fixed travel. The variable part of the

11



travel is defined as the difference between the total travel and the

fixed travel. Table 2 gives the variable travel for the same _
0

experiments. The variable travel approximately doubles when the density

of the order doubles. The average variable travel becomes equal to the

fixed part of the travel for a density of 75Z.

Table 2. The Average Optimal Variable Traversal Travel
0

DENSITY
51 10% 20% 40% 80% AVG.

WIDTH
2 1.6 3.7 10.8 25.3 48.7 18.8 -

3 2.8 8.8 18.8 37.5 62.3 26.0
4 5.0 11.5 23.6 46.3 73.7 32.0
5 6.3 14.1 31.9 57.1 85.1 39.1 •

AVG. 3.9 9.5 21.2 41.8 67.5 28.8 "

The optimal split traversal policy consists of picking all items on

one side of the aisle on the first traversal trip and all the items on

the other side of the aisle on the second traversal trip. For long --

aisles, its length is approximately twice the fixed traversal travel.

13- -
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4. OPTDIAL RETURN PICKING POLICY

With a return picking policy the picker enters and exits the aisle

at the same end. The two types of return policies are illustrated in

Figure 2. The split return policy occurs when in picking an order which .' .

contains items from more than one aisle, it is be advantageous to enter

the aisle from one end, pick some of the items and leave at the same end •

it entered. Later in the tour the picker enters that aisle again from

the other end, picks the remaining items and leaves again at the end it

entered. . .

For the standard return policies, the optimal picking sequence is

very simple to construct. The optimum picking sequence is to pick all

items on one side, cross to the last item on the other side the pick all 10

items on that side. This is illustrated in Figure 8. The optimality of

this tour follows from the following well known property.

Property - Barachet (1957)

If all the points of a set lie on the boundary of the convex hull,

or BCH, of this set of points, then this BCH is the shortest Euclidean

distance Hamiltonian circuit of those points.

i --

Figure 8. Optimal Standard Return Policy.

14
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The optimal split return policy is more difficult to determine. The

items must be divided into two sets. One set is picked from one end and

the other set is picked from the other end. It is easily shown that an

optimum split return policy from the near end would never include R. or

L j without including R. or L. Hence each subset can be optimallyLj R j-i LjI•

picked by an optimum standard return policy. Also all possible subsets

can be determined by determining the item on the left and the item on the

right where the tour ends. Complete enumeration of all possible

combinations requires a computation effort which is quadratic in the

number of items in the order. This is what was done in the experiments.

The set of experiments for the traversal policy was repeated for the.r
INV-

return policies. In this case only the number of items was a significant

factor in the travel distance at the 0.001 level of significance. The

* split return policy was, on the average, 5% better than the bottom or top

return policies. The following tables give the average travel distance

" :for the policies. The first set takes the average of the return policies

from each end.

"" - Table 3. The Average of Standard Return Policies from Each
End of the Aisle

DENSITY
5% 101 20% 40% 80% AVG.

WIDTH
2 96.9 110.7 114.6 119.9 122.1 112.9
3 103.6 114.0 119.0 120.9 123.2 116.2
4 107.7 115.4 119.7 122.0 124.0 117.8
5 103.9 116.6 121.5 124.2 127.0 118.6

AVG. 103.0 113.5 118.3 121.8 124.1 116.1

e 15
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Table 4. The Average Split Return Travel

DENS ITY
5% 102 20% 40% 80% AVG.

- WIDTH
2 97.2 101.0 109.0 115.3 119.6 108.4
3 94.6 100.0 106.4 114.7 121.5 107.5
4 92.7 100.6 109.6 119.1 125.2 109.4
5 96.8 107.7 115.4 121.8 128.6 114.1

AVG. 95.3 102.4 110.1 117.7 123.7 109.8

The best of the return policies was also compared on a case by case

basis with the optimal traversal policy. The travel by the best of the

return policies is given in Table 5. The best of return policies was, on

the average, 232 longer than the optimal traversal policy. The breakeven

3 point, when both policies performed equally well, was dependent both on

the density of the order and on the width of the aisle. The density of

the breakeven point decreased as the aisles became wider. The average

3 density of the breakeven point was 752.

Table 5. The Best of the Return Policies Travel.

DENSITY
52 102 202 402 802 AVG.

WIDTH
2 73.4 97.8 107.5 114.8 119.6 102.6
3 88.6 99.5 105.9 114.7 121.2 106.0
4 85.2 97.3 109.6 118.6 123.4 106.8
5 83.6 104.0 113.3 121.1 126.6 109.7

AVG. 82.7 99.7 109.1 117.3 122.7 106.3

( 16
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Table 6. Percentage Increase in Travel for Beat of Return
Versus Optimal Traversal Travel

DESITY
5% 10% 20% 40% 802 AVG.

WIDTH
2 17 51 50 33 9 32
3 39 43 33 17 - 2 26
4 29 34 30 11 - 8 19
5 24 39 22 2 -13 15

AVG. 28 42 34 16 - 4 23

To complete this analysis it is worthwhile to determine how much

difference there is between the optimal traversal policy and a good

heuristic traversal policy. One of the most widely used traversal

policies is discussed in the next section and compared with optimum.

177



.. . °

5. OPTIMAL FIXED SEQUENCE PICKING POLICY

A fixed sequence or fixed route picking policy is a policy which

orders all the slots or locations on both sides of the aisle at one time.

The item of any actual order are then picked following this fixed

sequence. The main virtue of a fixed route is that the picking sequence

for each individual order is very easy to determine since all slots are

preordered. The disadvantage is that the required travel is not

necessarily minimal.

-O
In industry a much used fixed sequence is a repetitive Z pattern, as

illustated in Figure 9. The pattern length X is an integer number of

slots.

axX
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It is possible to compute the optimal pattern length assuming that

all slots have to be visited. This is equivalent to the situation where

all orders contain 2M different items or the density is 100%.

Let TH(X) be the total travel required by a pattern of length X,

where X is an integer factor of M. Let TE be the travel from the entry

point to the first item plus the travel from the last item to the exit

point. TE is independent of the pattern length. TE is drawn in Figure 9

as a dashed line. Observe that TE compensates for the one unit length

that the pattern travel is to long. This one unit compensation is

indicated in Figure 9 by the dotted line.

TE = 2.SQRT(W2 /4+1)-l (9)

2 2T.(X) = (N/X).(2X-1+SQRT(W +(X-l) )+TE (10)

In order to find the optimum X with limited effort, the function

TH(X) must satisfy certain conditions. In Appendix B it is proved that

TH(X) is quasi-convex and differentiable, hence the optimal X can be

found by setting the first derivative equal to zero.

In reality no order has a 1002 density, but its items are still

picked in the sequence that is optimal for a 100% dense order. The

picking policy thus becomes heuristic for orders with a density less than

100Z.

The same set of experiments run for the optimal traversal travel was

also run for the heuristic Z-pick travel distance. These results are

given in Table 7. The fixed sequence travel, is on the average, 122

longer than the optimal traversal travel. The difference is maximal for

19 _
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a width of four and for an order density of 40%, at which time the

relative difference is approximately equal to 30%.

0

Table 7. Increase in Travel for Z-pick Versus Optimum Traversal Travel

DENSITY
5% 10% 20% 40% 80% AVG.

WIDTH
2 0.3 1.0 6.5 9.7 11.1 5.7
3 1.4 7.3 10.0 17.2 11.4 9.5
4 8.4 13.4 20.1 28.5 18.3 17.2
5 6.5 14.3 22.5 20.5 11.2 15.0

AVG. 4.2 9.0 14.8 18.3 13.0 11.9

200
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6. CONCLUSIONS

The problem of determining the optimal picking sequence for a single

aisle can be solved very efficiently both on large and micro computers.

The computation times are in the order of a few seconds for orders up to "'

a 100 items. This small computational effort for obtaining the optimal -

solution makes the use of heuristics unnecessary, if the data are

available in machine readable form. The optimum fixed sequence Z-pick

is very suitable for a completely manual system but results in a

substantial increase in distance (up to 30%) over the optimum traversal

policy.

For traversal policies both the density of the order and the width

of the aisle are important to determine the travel distance, for return

policies only the density is important for all practical widths. Except

for very high densities the traversal policy yields a shorter travel

distance than the return policies. The density breakpoint at which a

return policy becomes more efficient, decreases with larger widths, from

75% for width 3 to 50% for width 5. Thus for most practical densities
IV

the traversal policy is better. If the order density is close to the -

breakpoint, it is best to compute the travel for both policies and to

select the minimum option.

21
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APPENDIX A

COMPUTER IMPLEMENTATION OF THE TRAVERSAL ALGORITHM

A specialized algorithm for finding the optimal traversal travels as

the shortest path in a acyclic graph can be constructed, which implicitly

incorporates the structure of the graph. Let f(R.,L.,k) be the travel

required to pick all the remaining 4tems optimally and to exit the aisle,

given the system is currently in state CR.,L.,k).

Algorithm 10

f(R L nL) -t(L n+l1 L n

*( n R Rm , m

for i -m-l to 1 with step -1

fCRi'Ln L) - f(R ~ ,L ,R) + t(R. 1 L)

f(RiL n R) =f(R i+i L n R) + tRi1

nexti

f(R0,L L) f(R 1 ,L R) + t(RigLn

for j -n-l to I with step -1

f(R ,LPL) -f(R ,L L)+(L ,L)mlj+,l) + jt l

f(Rm, j, m'lL.R) ERL+,L) ,(1R)

for i -m-l to 1 with step -1

f(R.,L.,R) min(fCR.i1 ,L.,R) + tRi1

1 j iRlj

f(R.,L.,L) min(f(R. L 1R) + t(R ,L.)
1 .1 i+l' j i+l .

next i

f(O~,) min(fRL yL) + jL+l, ) ,f(R1 L Ojl +tL ,L R) + t(R1,L.)

22



next j

f(R ,L0 ,R) f(R,L 1 ,L) + t(L1,R )

for i - m-i to 1 with step -1 .

f(Ri,L0,R) - min(f(Ri,L1,L) + t(L1,Ri),f(Ri,+,L 0 ,R) + t(Ri+l,Ri))

next i

f(RoLoL) - f(Ro,L1 ,L) + t(L 1 ,LO )

f(R0 ,L0 ,R) = f(R1,L0,R) + t(RI,R 0 )

f* min(f(R0 ,L0 ,L),f(R0,L0 ,R))

This specialized algorithm was programmed both on a CYBER 6400

mainframe and on an IBM PC in PASCAL to compare solution times. The

sorting of the items was executed by the Quicksort procedure, Singleton

(1969). The resulting computation times in seconds are given in Table 8

and are the average of three experiments. For each computer the first

column gives the times for the computation phase (excluding input and

output) and the second column gives the total run time. On both

computers all debugging checks were turned off to generate the fastest

running code.

Table 8. Computation Times on Different Computing Systems

CYBER IBM PC
items comp total comp total

6 0.01 0.02 0.02 0.59
12 0.02 0.03 0.06 0.88
24 0.08 0.09 0.28 1.58
48 0.23 0.32 1.06 3.28
96 1.14 1.19 4.14 8.31

23
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The IBM PC used a Intel 8087 numerical coprocessor to execute all real

arithmetic. The IBM PC used a 64 bit real format and the CYBER a 60 bit

I. 
real format.

The following observations can be made about the computation times.

The ratio of the actual computation times is equal to 3.64, i.e. the IBM

PC is less than four times slower than the mainframe. This is a very

favorable ratio for the PC, considering the relative cost price of CPU

time on each machine. On the PC the input and output operations required

more CPU time than the actual computations. Finally the small running

times on mainframe and PC make computing the optimal solution very

feasible in a real life environment.
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APPENDIX B

QUASI-CONVEXITY OF Z-PICK FUNCTION
Recall from expression (10) that

TR(Z) -(MIX) (2X-1+ScRT(W2 2(-))T

Property 4

TH(X) is a differentiable and quasi-convex function.

Proof. Let S be the level set of TH(X) with value a. Then
a

S a (X:X >,TH(X) ( a) (1

Substitution of (10) in (11) generates the following equation for the

level set.

((a/M-2) -_1)K + 2(aIM-1)X -W 2 0 (12)

This is the equation of a parabola, which goes through the point with

2coordinates (0,-UW) Several cases arise depending on the sign of the

2
coefficient (a/M-2) -1, which are illustated by Figure 12.
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Figure 10. Level Set of Fixed Sequence Travel.
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In each case the set of X values which generates positive function values

is a convex set. Thus the level set is convex and TR(X) is a quasi-

convex function. TH(X) is also differentiable for all x > 0. The global

minimum is then found by setting the first derivative equal to zero.

q.e.d.

This yields the following optimal pattern length.

X , (W 2+1)/2 (13)

In the derivation of this formula, it was assumed that an integer

number of patterns fit exactly in the length M of the aisle. The

previously determined X might not satisfy that condition. The

quasiconvexity of TH(X) makes it sufficient to search to the left and

1 0right of X for the first integer factor of M on each side, say XL and

XR . The minimum of TH(L and TR(X1) is the optimal solution.
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The optimal fixed sequence travel TH(X )is equal to

a 2
TH(X - (3-2/(W +1))#rE (14)

This value is a lower bound on the optimal fixed sequence travel. The

lover bound can be achieved when X is a factor of M.
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