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ABSTRACT
4%

At the beginning of this contract both we and the rest of the optical

community imagined that simple analog optical computers could produce

. satisfactory solutions to eigenproblems. Early in this contract we improved

optical computing conceptually and tested it experimentally. This demonstrated

that high accuracy required digital optics. This led us to explore digital

optical systolic array processors. Here we made sufficient progress to guarantee

that the original contract goal (the use of optics for fast, accurate eigen

solution) is now perfectly practical and to show that the hoped-for advantages in

* size, cost, and power consumption relative to equally fast electronic computers

should be obtained.
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1. CONTRACT BACKGROUND

1.1 Background on Eigenproblems

The simplest eigenproblem can be stated in the form

A ei " Xe 1  (1-1)

where

I

a a11  a 12 . a11l
a 2 1  a22 " a 2mA = • , (12

nl n2 .. amn

.(e i

(el1)2

ei - *(1-3)

4 [(e dnJ +

and Xi is a scaler. The vector ei is called an eigenvector and the scaler

Xi is called an eigenvalue. We will deal almost exclusively with the m - n

case.

We must make two observations about eigenproblems. First, they are a

special case of a more general and powerful matrix analysis technique called

- singular value decomposition or SVD. We will deal with SVD as well in this

2
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report. Second, eigenproblems are of vital interest to the Air Force for several

reasons. We note, as an example, how to use eigen solutions in antenna array

processing.

In the selected example the antenna element weights (i.e., amplitude and/or

phase adjustments) are to be found that steer a static multi-element antenna so

as to maintain maximum signal-to-noise ratio (S/N) reception. As shown in Figure

1.1, each of m antenna elements receives (at a given time) a signal and a noise

contribution, and these generally complex contributions form the m dimensional

signal and noise vectors s and n, respectively. Each antenna element is

connected through a generally complex weight, and these weights form the vector

w. Note from Figure 1.1 that the weighted contributions from all antenna

elements are summed to form the output (complex) signal whose S/N is to be

maximized. This S/N may be expressed as shown in terms of the time-averaged

squared moduli of the signal and noise parts of the output signal, and the

resulting expression may then be reduced to the indicated eigenvalue equation.

The matrix (in brackets) in this equation may be expressed as shown in terms of

the time averaged outer products Rnn and Rss of the noise and signal vectors

respectively; these vectors are known from measurements on the unweighted output

of each element. Thus the eivenvalue equation may be solved, and the eigenvector

associated with the dominant (or maximum) eigenvalue will give the weights that

maximize the S/N.

A computer simulation of the method that would be used by an optical

systolic matrix vector system to solve the eigenproblem described above was
carried out. This simulation required the specification of certain signal and

noise statistics in accordance with practical expectations. Discussions with

RADC experts familiar with such expectations led to the selection of a m = 128

antenna element problem with an average S/N on the order of unity at each
element. A bimodal signal distribution across the antenna elements was selected

so that R., a ,'T + s 8 , where the lognormal distributions +k

(1/k) exp [-(ln k - P)2 /(2c 2 )1 and +s - a were used with 64 exp ( +
k+129-k

02/2), 642 - (exp 0 2 
- 1) . exp (24 + 02), 8 - 1, and k = 1, 2, ... , 128.

"
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The matrix Rnn was selected to correspond to uncorrelated Gaussian noise so

that R +nn _I, wheren _n 1, - - , and I is the identity
n s k k

matrix. Explicit matrix inversion was avoided in forming the eigenvalue equation

matrix M = R-1 R by using the expression
14

nn ss

-l -1 -1 +-.T -1T -1
R n D D nn D /(l + D n) , (1-4)nnl

where D - a21. Note that M is a real, symmetric, positive definite matrix which

will therefore have a set of real, positive eigenvalues. In general M and the

weight eigenvector will be complex, but this case may be divided into separate

real-part and imaginary-part eigenproblems of the form described above.

The computer simulation used the same power method that would be used by a

typical optical systolic matrix vector system to obtain the eigenvector

solution. The power method iterates matrix-vector multiplication operations, and

the simulation determined that N - 35 such iterations were required to obtain the

dominant eigenvalue and associated eigenvector of the 128 x 128 matrix M to a

precision of 10 - • The total time required to perform each matrix-vector

multiplication iteration is, according to Table 1-1 and the discussion

approximately Tm - 23 ps. At a 100 MHz clock rate the initial matrix input

time is the time required to read in the 128(128 + 1)/2 symmetric matrix elements

or approximately T, = 83 ps, the final weight eigenvector output time for 128

vector elements is Tr - 1.3 4s, and the test for convergence time is Tc -

* 0.01 is. Thus the total OSAP system eigenvector solution time is approximately

T - T1 + N(Tm + Tc) + Tr - 0.89 ms. Note that the basic block-floating-

point computation rate is approximately 2n2/Tm - 2 (128)2/(24 ps) or about 1.4

GigaFLOPS (1.4 x 109 Floating Point Operation per Second).

The same eigenvector solution could be obtained by a state-of-the-art 5

MegaFLOPS all electronic board level array processor. In this case the matrix

input and eigenvector output times would remain approximately the same, but the

matrix vector multiplication for each iteration would require, in general, 2n2 -

• 2(128)2 multiply and add operations. Since each operation would require 0.2 4s

5
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at the 5 MegaFLOPS rate, the total matrix vector multiplication time would be

approximately Tm - 6.6 ms. Thus the total non-Optical Systolic Array Processor

(OSAP) system eigenvector solution time would be approximately T - 35 (6.6 ms) -

230 ms, which is about 250 times longer than the Optical Systolic Array Processor

(OSAP) system solution time estimated above. This comparison, which is displayed

in Table 1-1, does not take into account the time required to calculate the

matrix M given the vectors a and n. Assuming all electronic array processing at

a 5 MegaFLOPS rate, this time would be on the order of 13 ms since the equivalent

of roughly 4(128)2 multiply and add operations are involved in the calculation

(which, as mentioned above, does not involve explicit matrix inversion). Thus

Table 1-1 - Optical Systolic Array Processor System Application Example
Performance and Comparison

All Electronic Board

OSAP System Level Array Processor

Symmetric matrix 83 js 83 ps
read-in time

General matrix-vector 23 4s 6.6 ms
multiplication time

Dominant eigenvector 1.3 is 1.3 s
readout time

Total eigenvector 0.89 ms 230 ms
Solution time*

Typical arithmetic 1.4 GigaFLOPS 5.0 MegaFLOPS
4 operation rate

*Includes read-in and read-out times and the time to execute the 35 iterations
required to obtain the 129 eigenvector elements to a precision of 10- 4

I

even if the M matrix calculation time is included in the comparison, the OSAP

system solution time is still much less than the non-Optical Systolic Array

Processor (QSAP) system solution time. A separate Optical Systolic Array

Processor (OSAP) system calculation of the M matrix could also be carried out, in

6
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which case the Optical Systolic Array Processor (OSAP) system eigenvector

solution time would be at least two orders of magnitude less than the non-Optical

Systolic Array Processor (OSAP) system solution time. Hundreds of all electronic

board-level array processors working in parallel might match the Optical Systolic

Array Processor (OSAP) system computation speed, but only at considerable expense

in size, power consumption, reliability, etc.

The specific adaptive antenna array processing example considered above

clearly shows the potential of the Optical Systolic Array Processor (OSAP)

system. In some applications (e.g., future millimeter wave adaptive arrays on

tactical aircraft) an antenna array steering time for S/N maximization of less

than 10 milliseconds may be required for arrays of more than 100 elements. The

Optical Systolic Array Processor (OSAP) system would be of unique value as an

enabling technology in such cases, and there is little doubt that an operational

Optical Systolic Array Processor (OSAP) system would have a similar enabling role

in a broad range of other applications.

1.2 Precontract Background Eigenproblem Algorithm

A group of optics workers from Aerodyne, Stanford, and Georgia Tech.

published the first paper on optical solutions to eigenproblems (Appendix A).

This paper led to this contract as well as to much research elsewhere on the same

and related subject. The basic idea is extremely simple. We start with any

vector X. We can show that the set of n eigenvectors {ei} forms a complete

set, so we can write

0 al eI + a2 e2 + ... + a e . (1-5)

Calling

M~l A m (m =o, 1, 2, .. ) ,(1-6)

S"



we have

m a1  e" e + a 2  e 2 + .. + a ne n (1-7)

Clearly (except for the case of degenerate elgenvalues dealt with in Appendix A

and elsewhere in this report) for large enough m we can approximate

k % (1-8)

where

0
(Xk) > (X1 ) (1-9)

for all I * k.

That is, by raising all of the eigenvalues to successively higher powers we

reach a point at which one eigenvalue dominates. Hence this is called the power

- method.

Usually we set

+ T +

ek ek = 1 (1-10)

* +

where the superscript T indicates transposition. Having ek, we find Xk using

. Eq. (1-1).

1.3 Precontract Status of the Optical Matrix Processor

The optical processor we conceived of using was the Stanford processor

(Appendix B). The reason was very simple: there was no alternative. The

8S



Stanford processor was the beginning and the prototype, but it is clear in

retrospect that its two major drawbacks were

1. Totally analog operation and hence very limited accuracy and

2. The necessity of using a two-dimensional spatial light modulator to
allow changing of the matrix.

1.4 Precontract Goals and Approaches

The explicit overall goal of this contract was to use optical methods to

solve eigenproblems rapidly and with "sufficient accuracy." Naturally we held

closely to that goal.

The precontract approach was to implement the algorithm of Subsection 1.2 in

the processor of Subsection 1.3. As we began to do this, we found that both

approaches essentially guaranteed failure to meet the overall goal. Accordingly

we set out to improve both the algorithm and the hardware. Both were

accomplished, and we can now show that extremely useful optical eigenproblem

solvers can be constructed showing advantages in

0 Size,

o Weight, and

o Power consumption

over electronic processors having ti- same extremely high speed or, conversely,

advantages in speed over electronic computers of the same size, weight, and power

consumption.

9
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2. REPORT APPROACH AND RATIONALE

I A great deal of productive work was done under this contract. Therefore,

telling the whole story as a continuous narrative runs the risk of hiding the

coherence of the effort. Accordingly, we have chosen to relegate to appendices

detailed discussions which were either published or prepared for publication

under this contract. The text, therefore, serves as a comprehensible guide to

and through these various individual efforts and concludes with an attempt to tie

summarize of these efforts as they relate to the contract goal is ennunciated in

Subsection 1.4.

0
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3. PROBLEMS WITH THE PRECONTRACT ALGORITHM AND PROCESSOR APPROACHES

3.1 Algorithm Approach

Early in the contract we noted several major problems with the power method

as described in Subsection 1.2. We summarize these briefly here. First,

convergence might be very slow. Suppose the two highest eigenvalues are X(l+e)

and X, where 0 < e << 1. Clearly convergence is not achieved until the iteration

m in which

[ (+e)] m >> IJ m  (3-1)

or

(1+e) >> I (3-2)

We have

(l+e)m = l+me (3-3)

or

m >> I/e .(3-4)

There is reason to believe that we may not need m - 106 or more. Even the speed

of optics might not overcome this disadvantage so well as to make it superior to

electronics. Second, the original approach (Appendix A) did not include a truly

satisfactory way of finding eigenvectors beyond the first one. The general

II
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problem is called deflation- removing all previously-calculated elgenvector

information from the problem.

3.2 Optical Processor Approach

The two drawbacks of the original Stanford processor for the goals of this

contract were noted in Subsection 1.3. Here, we want to discuss in more detail

why analog processing must be abandoned. For any processor we can argue that the

solution obtained, while an inaccurate answer to the problem posed, is a

perfectly accurate solution to another problem (an inaccurately-posed problem).

Following this line of reasoning, mathematicians have been able to cast most

linear algebra accuracy problems in the following manner. The average error in

the answer, e(x), is related to the average error in the calculation itself,

e(c), by

e(x) = cond (A) e(c) (3-5)

where

cond (A) - "condition number"

of the matrix. The condition number is the ratio of the largest to the smallest

eigenvalue. In the case of antenna arrays with jammers in the field, the

condition number of the matrix of interest can easily be 106. On the other hand

4 the calculation error of a super analog optical processor might be e(c) - 10- 2.

; This suggests that the results of optical eigenproblem solvers might be

essentially meaningless. This is why analog electronic computers have been

largely abandoned in favor of digital electronic computers. This is also why we

4 too soon abandoned analog computers in favor of digital ones. Optical digital

computers will be slower and more expensive than optical analog computers, but we

have no alternative when solving eigenproblems optically.

12
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4. A DIGRESSION ON ANALOG OPTICAL COMPUTERS

While considering and rediscovering these concerns with optical analog

computers, we developed a totally new way to use analog matrix processors. This

new approach offers significant speed and convergence advantages over methods

borrowed directly from the digital computer literature. We do not belabor these

advantages here, because we have now abandoned analog methods for this problem.

Our work in this area is shown in Appendices C and D.

4

13
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5. ALGORITHM IMPROVEMENTS

Having noted the problems with the precontract algcriLhm in Subsection 3.1,

we now describe our successful efforts to solve those probiems. The convergence

*was accelerated greatly by going to another type power method. We explain it

crudly here and in much more detail in Appendix E. The explanation here will be

in terms of matrix-matrix multipliers but we show in Appendix E that much the

same advantage can even be extended to matrix-vector multipliers.

A matrix can be expanded in terms of its eigenvectors. The eigenvectors

themselves are orthonormal, i.e.,

1 if i j
e i e 6 - { if . (5-1)

- The outer product of a single eigenvector is

(e i t(e i1  (e i)(ei) 2 ... (i) (e dn

+ -*T + +- + + +
e ei  - (ei) 2 (ei) 1  (ei) 2(ei) 2... (el) 2 (ei)n (5-2)

I
.- (e dn(e i (e i)n(e 1)2 ... (dn (e l n

We can write

+T T + +T (53)
A X e I eI + X e2 e + "' +  n en en (5-3)

14
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g2

We now evaluate A2. It will contain "homogeneous" terms like

T + TT T T + T T-4)
(e 1 e )e e1 e )e 1  (e 1  e0)e1  -e e1  (

and "heterogeneous" terms like

+ + T + + + +Te + +T + T(e e T ) (2 e e ( e2 e e I * e T 0 (5-5)
1 1T ( 2  2 T) 1  1 e2  e2  1 2

* Thus

2 2 + + T 2 + +2T 2 T
A e I e I + X2 e2 e2  + ... +  e e n (5-6)

Squaring again we get A4 , etc. After m squarings we obtain

2m + +T+ ++T+X2 T(57

2e 2 e e e' + eeA~ ~ 1 l I + "2 2T + "" + 2 n nA -K e1e1  +~2 ~e 2  .. +~ ee .(5-7)

v n

-Thus, for example, 10 squarings leads to raising the Kk's to the power 1024!

Thus the convergence has been improved tremendously. Of course once we conclude

2m~ m.eT (5-8)
ekek

we can extract ek by, for example, projecting along either the rows or the

columns.

The other problems with the power method were also successfully attacked in

Appendix E, but the required explanations are too tedious for the text.

15
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In the process of working on this matrix squaring algorithms, we also made

some important observations and innovations regarding Singular Value

Decomposition (SVD). This work is shown in Appendix F and will be referred to in

more detail later.

1

16
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6. ACCURACY ISSUES

As noted in Subsection 3.2, the major non-algorithm issue in accomplishing

the contract goals is accuracy. We have attacked the accuracy issue in several

ways. We examine these complementary approaches below.

6.1 Matrix Reconditioning

This is an important but rather subtle method suggested in Appendices E and

F. The basic idea is rather simple. There may be a way to replace A by an

" approximate matrix" A' such that, for the given calculation accuracy, we get

closer to the true answer by using the less-accurately-posed-but-better-

conditioned matrix A than by using the more-accurate-but-worse-conditioned matrix

A. As an "existence proof" we showed how to remove a singularity from A;

converting an unsolvable problem into a solvable one! We show here only the

basic ideas.

The SVD of A can be written

A - s 1 T + s2 12 2z + " + s n n T (6-1)11 22n nn

where, by convention,

1  _> 2 _> ... > sn (6-2)

The scalar sk is called the k+h/ singular value and Ik is called the k+n/

* singular vector. For symmetric A, Eqs. (5-3) and (6-2) are equivalent. One of

many interesting properties of the SVD is that, in a meaningful and well-defined

sense, the best I < n outer product expansion of A is

17
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q

AM 1 1 2T + s2 2 2T + + s T (6-3)

Furthermore, the "goodness of fit" is given by

GC O (52 + s+ **+ S ,M s +s +* + s2 (6-4)1 2e 1 2n

It appears reasonable to choose I such that

G ~(c) (6-5)

* All of this is quite reasonable and, unfortunately, usually impractical.

The reason is that the SVD is seldom given and is very difficult to calculate -

usually much more difficult than the eigenproblem we set out to solve. Hence we

set out to invent an Approximate Singular Value Decomposition (ASVD) method which

is

O Very easy to calculate and

o Leads to an approximate matrix which is between the original matrix A
and the optimum approximation AMt).

The ASVD is discussed in Appendix G.

* 6.2 Digital Optical Processing

Aerodyne did not invent optical digital processing, but it has made some

advances in this area. The history of this field is described in Appendix H.

The basic concept is to encode a digital number by a string (in space, time, or

* both) of analog signals. By a Judicious encoding we can achieve high overall

accuracy without overtaxing the dynamic range of any analog channel.

Aerodyne's contribution to this effort in this contract was to develop an

arithmetic well suited to optical digital computing. In optics, since we are

18
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I

*using analog channels, there is no a priori reason to restrict ourselves to radix

2 numbers. With binary numbers only, one extra digit is needed to carry the sign

information which converts a non-negative amplitude (e.g., 16 bits) into a real

(positive or negative) number. In any other base there appears to have been no

way to do this same thing. We have invented a new arithmetic which (a) solves

the problem and (b) reduces to the known result for binary numbers. Details are

given in Appendix I. Here we simply illustrate the result for decimal (radix 10)

numbers in the range -99 to +99.

For a positive number, e.g., 5, we write

+ 5 - 505

6
where 5 is the sign digit which can be any of the following digits: 0, 2, 4, 6,

8.

For a negative number, e.g., -8, we first complement the magnitude (subtract

it from 100) to obtain 92 and write

n - 592

*where 5 - 1, 3, 5, .7, or 9. All 5 values are equally valid.

We now show side by side ordinary decimal operations and operations in the

new arithmetic

S+ 8 208
+ 3 +603

* +11

19



-8 792
+3 x203

-59

-5

-8 592
x 3 x003
-24

-24

4 6.3 Floating Point Operation

Simple fixed point arithmetic as conceived of in all other optical digital

computers will probably be inadequate for many Air Force needs. Like their

electronic counterparts, optical computers need floating point operations. Under

this contract, Aerodyne devised the only two floating point systems yet proposed

for optical computers. One method (Appendix J) computes magnitudes and exponents

independently and accumulates magnitudes on exponent-determined detectors. The

other method (Appendix K) uses a simultaneous spatial encoding for the same

purpose.

I
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7. HARDWARE CONSIDERATIONS

The interest in optical systolic array processing developed around the

country in parallel with the work on this contract and, in fact, stimulated by

the work on this contract (see Appendix H). On this contract "only" one new

hardware approach was developed and a new way of using electronics in iterative

linear algebra problems was described.

7.1 The RUBIC Cube

Invented under this contract in the course conversations with employees of

the Naval Ocean Systems Center, the Rabid Unbiased Bipolar Incoherent Calculator

(RUBIC) cube is a fully three-dimensional systolic matrix-matrix multiplier

(Appendix L). The basic idea is to use two CCD shifting spatial light modulators

(as made by Lincoln Labs. or as could be made by Hughes) to move two-dimensional

data in such a way that the proper data are registered on proper detectors at the

proper time. As the proper two-dimensional spatial light modulators were not

available to us, we simulated the RUBIC cube with moving masks. That is, the

problem was not that the needed components were too expensive or impossible.

They were simply not available for sale or use. Indeed, working with Hughes, we

showed that they could be built (Appendix M). Moving black and transparent masks

allowed us to test the other hardware of a RUBIC cube. We tested squaring (the

key operation in eigen solution as previously noted) for a 64 x 64 tridiagonal

matrix of l's along the diagonal and neighboring elements and O's elsewhere.

That is, the matrix is

0

0

21
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32

S1 0.... 0

0 1 1 0 . . 0

A =•32 (7-1)

[ 0 0 0 J . -

These data are rearranged so that the left-to-right flow follows Figure 7.1 and

the up-to-down flow follows Figure 7.2. The l's are the clear (white) regions

while the O's are black. Figure 7.3 shows the two data sets immediately before

they enter the region of the detector array and before the first light pulse.

The first data pulse involves some overlap as indicated in Figure 7.4. The

second pulse involves more overlap as shown in Figure 7.5. At the end of the

second pulse, the (1,1) component of A2 has been computed. The overall result

should be

2 2 1 0 0 .. •0

2 3 2 1 0 . . . 0
1 2 3 2 1 . . .0
0 1 2 3 2 . . 0

A2 = 0 0 1 2 3 . . . 0 (7-2)
0

0 0 0 0 0 .. . 2

The question we examined is light source and detector variability effects.

We found that we could not approach 1% overall uniformity in lighting without

diffusing the light so badly as to be quite inefficient. Relief by photographic

precompensation is clearly possible. We believe, however, that independent a

posteriori gain control on each detector is the proper approach. For an NxN

detector array at most N at a time must be read out; so sequential switches, N

amplifiers, and N circulating memories can accomplish this. It follows, as well,

that the same mechanism can correct for typical nonlinearities (a few percent) in

detector arrays since the number of possible "true detector values" is quite

22
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Figure 7.2. Up To Down Data Flow Representing Matrix A.4
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Figure 7.3. Immediately before the data enters the region
of the detector array, the detectors see no
signal as indicated here.
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Figure 7.4. On the first data pulse a '1' is received

from both data matrices in the (1,1) position

on the detector array.
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Figure 7.5. On the second pulse 4 detectors receive unit
pulses.

2

"0'

m2



small. We conclude that digital optical implementation of matrix squaring is

quite feasible with components which have not but could be built. The speed,

cost, size, and power advantages relative to current supercomputers make this

appear quite worthwhile.

7.2 Iterative Algorithm Operation

Two basic types of algorithms can be devised for problems such as least

squares, matrix inversion, and eigenproblems: iterative and direct. The power

method we have chosen is an iterative method. Direct methods require a foreknown

number of cycles but (unlike the iterative case), direct methods require full

accuracy in each cycle. Thus it is not clear a priori which will work faster

since the iterative schemes can use fast analog electronics (not of digital

accuracy) in the loop. Thus iterative schemes require more cycles but the cycles

can be faster.

Under this contract we worked out the feedback logic for iterative methods

in general (Appendix N). In the power method one nonlinear step is required in

each cycle: a renormalization to keep the result from growing either too large

or too small. The Aerodyne approach, among other things, describes what may be

called a "lagging renormalization" method which allows each digit to be

renormalized and recycled in the same clock time in which it is generated.

28
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8. CONCLUSION

This contract began with an inadequate algorithm to be implemented in an

as-yet-unspecified manner on slow, inaccurate, analog optical hardware. It

concluded with a vastly improved algorithm which can be implemented by

well-defined methods on highly-accurate, digital optical hardware. The need now

is no longer to determine what to do but to do what we have already learned how

to do in principle. Significant advantages in speed, size, cost, and power

consumption over electronics should result.
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Eigenvector determination by noncoherent optical methods

H. J. Caulfield, David Dvore, J. W. Goodman, and William Rhodes

An iterative method for finding the eigenvectors and eigenvalues of a matrix via incoherent optical matrix-
vector multiplication and simple electronic feedback is described.

I. Introduction guarantees real eigenvalues. We have no general test

A variety of methods have been developed for doing for its applicability to other cases. We suppose we have

certain simple matrix operations, e.g., multiplying a an N x N matrix M of rank N with a full set of eigen-

matrix by a vector, using optical methods.1 2  These vectors e,. eN and corresponding eigenvalues Xi,
methods are of interest because they perform all or most ... kN. We assume that the eigenvalues are not re-

of the required operations in parallel and thus poten- peated and that they are numbered in order of de-

* tially offer extremely high speed. More complicated creasing magnitude. Thus
matrix operations are as yet extremely difficult to carry IX1 I> 1A21 > ... > IN.-1I > IXNI. 1)
out by optics. The finding of eigenvalues and eigen-
vectors of large matrices is quite difficult and slow by As a starting point we choose some arbitrary input
digital methods. Of course, the matrix of eigenvalues vector

can be used to invert the matrix, so solving the eigen- v 0) = ciei + + cve,. (2)
value problem is tantamount to doing matrix inversion.
An iterative approach to matrix inversion has been at- Multiply V(O) by M yields
tempted optically,3 but it requires for convergence es-
timation of the largest eigenvalue. This is easily done
by forming the square root of the squares of the ele- With successive such matrix multiplications, we obtain
ments of the matrix. We offer here a matrix inversion the general term

method of somewhat greater generality. In particular, vf,) = MV,,_,) = ciA\ei +... + cNA' ev. (4)
we will find the eigenvectors and eigenvalues sequen- SN
tially. So long as the starting vector V(0) contains some of ei-

genvector el (for which, recall, the corresponding ei-
II. Method genvalue is greatest in magnitude), the first term of Eq.

The proposed optical approach utilizes an iterative (4) comes to domination after a sufficient number of
method of computing eigenvalues and eigenvectors, iterations. Thus for n sufficiently large, we have

* known in linear algebra as the power method,4.5 based v(n) _ cixiei. 15)
on the orthogonality of the eigenvectors. This method
works well if the matrix is of the real symmetric form Similarly, with an additional iteration, we have
assumed by the covariance matrix of a real vector. This V t 'iM 1,

and, therefore,

Vm. ) % \1 V' , 7)

Wiiliam Rhodes is with Georgia Institute of Technology, Depart- This relationship holds on a component by component
"'ent ,f Electrica! Engineering, Atlanta. Georgia 30332; J. W. Good. basis, and thus the value of X, can be solved for. The
man is with Stanford University, Department of Electrical Engi- rate at which the process converges is determined by the
neering. Stanford. California 94305: the other authors are with rat i c
Aerodvne Research. Ind.. Bedford Research Park. Bedford. Masse- ratio l'/ '_?.

* .r'.,e'ts )1730 If X, is significantly larger or smaller than unity in
Received 21 February 1981. magnitude, Viri may become unacceptably large or
" ()).93,5 81i32263-O)350(i) :,0 small afte- a number of iterations, and in practice we
" 198 Optical Society of America. must normalize at ach iteration to keep the vectors of

1 July 1981 Vol. 20. No. 13 APPLIED OPTICS 2263
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controlled size. Thus we might obtain an output after .
n iterations which we normalize to Uin, so that IU, ,:
= 1. Multiplying U,1 , by M produces an output
W,,.+,. We normally would normalize Wn+i to
U,,+,. but if (n + 1) is the terminal iteration, we can
write

A=\

To check for termination we compare the values of Wi,
and Wmn+i) either on a magnitude or a component-
by-component basis. If the percentage change is ac-
ceptable, we terminate the iteration. o- nS.. Eievl

Ill. Implementation

It is clear that we need an optical matrix multiplier
for speed with certain rapid electronic processing be-
tween matrix multiplications. Figure 1 shows the
configuration in schematic terms. The optical matrix
multiplier devised by Goodman et al. 2 seems to be Fig. 1. Heart of the eigenvector analysis device is the optical matrix
ideally suited for this purpose. The feedback method multiplier'.2 Analog circuitry pro%,ides the required feedback.

of Psaltis et al.3 is based on Goodman's method and
appears to have all the necessary components to irn-
plement this scheme. )= ,

which contains 2N nonnegative components. We then
IV. Representation of Bipolar Quantities operate on that vector by a new rank 2N matrix:

Because we want to use nonnegative definite masks ow r-i

and incoherent light, the handling of negative quantities m = r -.- 1)

requires some encoding of the vectors and matrix to [ M
achieve monopolar operation. Let the matrix be to obtain

=9) Note that neither y, nor B has negative components,

rnv I rnvvso incoherent optics is quite adequate to represent them
both.

and the kth input vector be VA. We write

M = V. M_ 0 V. Finding New Elgenvectors and Eigenvalues
We suppose the first K - 1 eigenvalues and eigen-

where M+ and M_ have nonnegative entries only, and vectors of M have been found to be \ 1, el, ,\., e, ...
the convention is adopted that XK- I, ek_-. We want want to find the kth eigenvalue

mI,. = 0if m,, < 0 mr. = 0 if M, 0. (11) and eigenvector. To do this we form a new matrix:

Similarly. let .I, = (I - ,(20)
1, V 20)2= Vh, - V,12) where 1I is the matrix product operator, and I is the

Then unity matrix iwhich converts all vectors into them-
selves). We suppose Mk operates on an eigenvector e

Y,, = MV,, I13) of M having an eigenvalue \. Then

or ,-.
Vt, e -- , X] , I - e ,1211

V, - V-,. = 'M* - v-*,, - Vhe= TI, .\. ! 1

4 V MV'KI Thus Mk and M have 'he same eigenvectors. Note.
[M*.- + 114) though, that for e. ek-i. the k eigenvalues are

- [MV,+ -V 14) zero. As our method tends to find that eigenvector with

Thus eigenvalue of highest absolute value, it will find an ei-
genvector ekl -= -e4 il . ('ail the .L eigenvalue

v.,= MfV,, - , tor eA "Ak" Then we can find the corresponding Al

v-, , MwV;., + .t4-V,,;. ,I eigenvalue \. L;v olvin Z the equation

We replace the vector V,k, )fN real component, with - , _ \.,
r ew vectors

2264 APOLED OPTICS Vol 20. No. 3 Juiy 18 1
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l'hw, we can :inu ai che eii.envectors ant eigenvalues are identical, unique eigenvectors are no longer defineOc
I M eljUentially Rather, any vector in a plane defined by two spanning

vectors is an eigenvector. Of course, this is extendabie
Vl. Concluding Remarks to more than two eigenvalues. We conjecture iwithout

A hvria electronic and incoherent optical approach proof) that by starting with N orthogonal vectors we can
tr finding eigenvalues and eigenvectors of matrices has guarantee at least M eigenvectors for each M-degen
been proposed. The optical hybrid appears particularly erate eigenvalue. This is an automatic check for ei-
attractive because of the extremely high speed with genvalue degeneracy as well as an automatic generator
which the iterative matrix multiplications can be per- of spanning vectors for the corresponding eigenvectors
iurmed.' Its most important potential application By a Gramm-Schmidt process we can orthogonauze
appears to oe in problems in which the rank of the ma- those vectors and reduce them to their minimum
trix i-s so large that standard digital methods are too number M.

iow Accuracy required for complete implementation This work was performed under contrast F19626-
of the processing scheme depends on the ratio of the This o e ai eome t entr.et for
:argest eigenvalue to the smallest tthe condition number EleCtronic To lom Centa. 01u31.
of the matrixi. Specifically, to find ,. all larger ei- Electronics Technology, Hanscom AFB, Mass. 01-:31

4envalues NI, N. .. i must be known to within an
error of < \, 1. Variations on the method allow some
relaxation in accuracy requirements.6 The power References
method proposed here suffers from many of the range 1. J W Goodman. A. R. Dias. and L. M. Wood%, Opt. Lett 2. 1
and accuracy problems common to optical processors. (19781.
For higher accuracy we might use the eigenvectors de- 2. J. W Goodman. A R. Dias. L M. Woodv. ana L. ErlCKon. Prot

termined )ptica'% as nputs for a few iterations of the Soc. Photo-Opt. lnstrum. Eng. 45 197'

digitallv implemented method. In so doing we would :. D. Psaitis. D. Casasent. and M. Carlotto, Opt Lett 4. i4,- " 1979).
utilize the optical processor for speed and the digital 4. J. H. Wilkinson. The Alge'ra)c EigenLahse P~ooiem Clarendon.

processor ror numerical accuracy. Oxford, 1,965)
The optical matrix multiplier proposed 2'  has the 5. D .I. YoungandR. T Gregor\.r.4 , \ 0/ .\."',*'2c. ,Z' ,

capabiiity of handling multiple input vectors in parallel. mattes 1l Addison-Westey. Readig.NMa~s. 197"

This capability should be of advantage, if used properly, 6. G. Strang, Linear .4 gebra and hs .4pp cation., Acaoem N.t
to allow for degenerate eigenvalues. If two eigenvalues York. 1976). p. 175.
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Fully parallel, high-speed incoherent optical method
for performing discrete Fourier transforms

W.V Goodman, A. R. Dias, and L. M. Woodv5
- .jM7 ":utm ', 0 r.,eir;, -i Sjotorc 'nit tr v Siuntord, Cajifornia c u

Recce ,eu Sc embtcr 12. :97W

-kn rtconerent ,.pt.cai aat~i-processn4 MeLh"C is cescribed. which has the potential for periorming discrete Fourier
t~norr. ,rt or en#-th- at rate,, far exceeding those afforded by both special-purpose digital hardware and repre-

senltative conerent optical processior

\e report here o)n an incoherent optical method for negative elements, and H 11'h I and ly 2 consist of
performing discrete Fourier transforms (DFT's), which N X N real and nonnegative elements. If the output
has the potential for an extremely high data-throughput vector g is similarly decomposed, then we find that the
rate. The DFT operation may be viewed as ia process overall matrix-vector product can be expressed as
of multiplying an input vector f iconsisting ofN. possi-
h 1 complex-valued input sarnples times ,n N.\ ' 

0 1 
V0

o ielid an output vector g consisting of the N complex [9I :0 (1 4( Ht] P1~ 3)Fourier coefficients), thus we desire to perform 2 (21/I1 (0 f2

g =f .li Thus, complex operations can be performed at a price
T wo separate issues must be addressed in djescribing the of a factor of 3 in the length of the input and output
method o4f interest here: 1 1)How (d0 "i perform the vectors.
matrix product in a hignlY paralletir ind fst way) (2)

a Hw. do we perform complex ari, imetnc using inco-
*herent 'light, for which only nonnegative and real L, L1  L, M L, L

Lquantities (intensities) can he manipulated?'V
To address the first issue, suppose that the elements 2

4 f Cand ft are nonnegative and real. Then the system -. ~. EE~R
hrow~n in Fig I can he used to perform the matrix- LED's r F F F DET FR

Avt-('ttr product The elements of f are entered in par-
,lil h% c ntri 11mg the intensities of .\ l1iht-emitting
diodces LE[') Lenses~lta-nd L.imige the LED arrav
norizontallx% onto t he matrix mask Al while spreading
Tie iight from anv. single LE[D 'erticallv to fill an entire
cOlumn of the matrix mask Lens L, is a field lens. --

The matrix masp. Ni cons:sts ifNX N subcells, each-
k ' ntairiing a transparent area proportional to one of the -DETEC-ORS

matrix eiemnenis Lens L, is a cylindrical lenslet arrav, _ED's
whiich is not e-senial to the operation of the system hut L, -4 L5
which can he used to improve light efficiency. Lens
conination L-, collects ail light from a given row andt D)

hrinics ito focus, on one element of a vertical array of N
pho~timdetecto.rs. Each photodeiector measures the

0~~ aoelu I i-ns- comnpo nent Of Ta(e0output vector g.
r, toermit *he mult:piication (, a matrix 'ft with -

* ompiex est-menus Times a vector r with complex eie-
itiettt-.H3 h~ ti(rtot a Ti hese quantities as fol- < V

w -. LED's

f- C', f, +'' f'.0 - ' expi /4,T 2I.*, DETECTORS
* L

;i - tt 'expm'2ir2 - 'expt_4- 2.i, (C)

Fig I Icohe-rent opt cal nricessor configuration (8.
f" f and f' each coniist (;t real and non - pic, oriai view., h i, top view; c) side view.

I~~~~ s1 97>1~.5~.V, ~s Optical Societv of Atnerica



2 OPTIc(S LE'1ERS Voi . No I lanuar, 1978

Simple electronic circuits for producing the compo- are entered side by side, whereas the three output
nents f"', r ''. and r2, from f exist.' as do simple circuits components gk'o), gkM1 , and g,"2) for the kth Fourier
for producing the real and imaginary parts of g from coefficient appear side by side. Thus the output display
g', g'. and 9' shows each DFT component as a triplet of real and

Experiments have been carried out to verify the nonnegative components.
ability to perform complex arithmetic. The source was For this experiment the input functions were entered
an unfiltered. linear-filament, clear-envelope, incan- by hand as masks placed against the matrix mask, and
descent bulb. The 10 X 10 matrix mask used to per- output functions were detected on a 1024-element Re-
form a l11-point DFT is shown in Fig. 2. This mask is ticor CCD detector array. Figure 3 shows both theo-
designed so that the three entire vectors f"1, f 1 , and f12) retical output distributions and experimentally ob-

tained output distributions, the latter being photo-
graphed from an oscilloscope display. In parts (a) and
(b), the function to be transformed consists of the se-
quence (1,0.0,0,0.0.0,0,0,0). The resulting DFT should
be entirely real and of constant magnitude. As shown
in these figures, the DFT components along the real axis
are all nonzero and equal, whereas the components
along 120' and 2400 are all zero.

S lIn parts (c) and (d), the input sequence was entirely
real and constant. The DFT consists of a large, real
zero-frequency component (on the far right), followed
by triplets of equal strength for all other DFT compo-
nents. Some thought shows that any DFT component
with elements gh,, gk,1', and gk 2 exactly equal is
equivalent to a zero result. Hence all DFT components,
except the zero-frequency component, are zero.

Fig 2 Matrix mask for a 10-point DFT. Parts ie) and f) show the results when the entire

1200

2400~ F00

a) (b)

FiI T lh-,ro,i. , ... in1 m ox peri mental [(hl,td). ,f ) DFT r ,tjlt,

B-3

• m m.. .,: -n d.:;:: ____- _ _ _..
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matrix mask is uniformly illuminated. In this case, processor described here is especially well suited for
,oie t hought shows that the input is effectively a se- problems in which the elements of the input vecur f ire
quence containing all zeros. The output DFT shows gathered by parallel sensors. Of course, matrices other
triplets of equal strength. or a sequence of all zeros for than the DFT matrix can also be used if desired.
tfe output. This work was supported by the O:'fice of Naval Re-
hA sstem composed of 96 high-speed LED's and 96 efrces
avalanche photodiodes would be capable of performing search.
a :2-point DFT. Commercially available components References
have sufficient bandwidth, output power, and sensi-
tivity to permit such a DFT to be performed every 10 1. J. W. Goodman and L. M. Wood,. "Method for performing
nsec. The total throughput rate for such a processor complex-valued linear operations on complex-valued data
is about :1 × 10' complex samples per second, whereas using incoherent light." Appl. Opt. 16, 2611 (1977).
a co~rresponding number for special-purpose digital 2. If one is sufficiently clever in eliminating unwanted terms
array processors is about 3 x 10-5 complex samples per at the output, real and imaginary components on biases can

and a representative coherent optical processor3  be used. However. the dynamic range of the system is

has a throughput of 3 X 10 real samples per second. reduced by such an approach.

The chief significance of this processor is that the 3. We refer specifically to a system with an electron-beam
input data can be entered in parallel, and it is this fact addressed DKDP input light valve, which is capable of

entering 106 data points 30 times per second. See D. Ca-
that leads to its high throughput rate. Another system sasent, Proc. IEEE 65, 143 (1977).
recently described 4,' performs a similar matrix-vector 4. R. P. Bocker, Appl. Opt. 13, 1670 (1974).
product, but the data must be entered serially, and as 5. M. A. Monahan, K. Bromley, and R. P. Bocker. Proc. IEEE
a consequence the throughput rate is much lower. The 65, 121 (1977).
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Algorithm improvements for optical eigenfunction

computers

John Gruninger and H. J. Caulfield

Prior iterative approaches to optical eigenfuncton iolution have at least three major pr.oIem: slow con-
vergence sometimes); iecreasing accuracy after the first solution; and imperfect parallel renormalization
I leading to poor use of system dynamic range and hence poor accuracy). We introduce new approaches and
algorithms to solve these problems. The new algorithms lead to a tight error hound on eigenvalues and an
automatic handling of degenerate or near degenerate eigenvaiues. Applications are discussed.

I. Introduction Ala4e, - a.APek - AkPe;, 15)

-- There has been a recent increase in intere t in using therefore,
optics to perform certain simple algebraic operations V+
and to use those optical operators to perform iterative V a1 X1Pe + A,\e 2 + + a, v,.e 61

operations solving practical problems. 5-' We are con- If
cerned here with the use of optical algebraic operations I, I >1 71
to solve eienvector problems. Prior work5,'s used op-
tical vector-matrix multiplication to carry out a classical for m i 1, the /th eigenvector will (above some number
procedure called the power method. We will review the of iterations p) come to dominate Vp, so for p suffi-
power method here, indicate the three major problems ciently large
from which it suffers, and show how those problems can Vp aX,;e ,
be solved.

Let us assume that we have a full rank symmetric N Of course, we recognize this condition by the fact
X. Nmatrix A. We know that A has N real eigenvalues that
A ....., \.v and N eigenvectors ei, e2.. e.v satis- V,
fying

Indeed

Futhermore el, e2.  e v span the allowable vector
space. Thus an arbitrary vector V) can be written We can now discuss the problems with this method.

First, the convergence can be very slow. If we require
= ae ae +...+ a.e., ,2) P = 10', even an optical processor is slow. The second

where a, a- ..... av are scalers. problem relates to deflation, that is. finding the smaller
Let us write I X, I values and the corresponding ek values. While

there are many deflation methods, most lead to answers
V = .v. 0) with decreasing accuracy. The primary problem is that

Applying A to successive V k values, we obtain most deflation methods assume a perfect accuracy of
previously calculated results. Thus errors tend to ac-* V, = Av 1 = 4'Va., cumulate, and very significant errors can occur for rel-

4 atively low values of 1,\k I. It is sometimes true that we
V. = AV _. =APv,, want only a few of the dominant eigenvectors. hut it

in 'e would be unwise to accept this limitation if it can be
avoided. Third, we need a fully parallel way to deal

The authors are witn Aprocivne Research. Inc is .V.\annirg Road, with the normalization problem. Otherwise we lose the
Bil! rica. lasmachisote,,i!521 advantages of parallel optical computation. The

Received 13 lanuary 198:) renormalization referred to is a necessity forced on us
M)03 .9:5;5,;?i '142O1)7-, f$. i( 0 by the fact that optics uses fixed point rather than

19 3 Optical So4iety oi America floating point calculations. The vector components of

15 July 1983 Vol 22. No 14 APPLIED OPTICS 2075
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V; may be either very large it ,\ j 1 or very small Each ,uoiumn of A' is proportional to the normalized
V(if 1,\k < 1). Thus we renormalize after each iteration. eigenvector el, each row is proportional to the transpose

Tu renormalize we must estimate the maximum com- e,'. ' I oobtain the eigenvalue \ 1 , anv column of An can
ponent and set the input so that the maximum output be multiphed by A. The power to which A must be
value is large but not beyond the range f our optical raised depends on the dominance of A1. The conver-
computer. How do we estimate that component? How gence is of the order of \,.\ ". If n is sufficiently
can we check for saturated components without looking large -he rank of A" is one, and each column can be
at the components sequentially and thus slowing down normnIized to el. This operation forms a test to ensure
operations'? Besides these major problems there are that ti eigenvalue is nondegenerate. Since the spec-
also unanswered questions on how to handle degenerate tral de composition fA contains contributions from all
solutions and how to estimate accuracy etc. its e4.envectors, all the dominant eigenvectors are

Having introduced the problems with prior ap- contaiied in An. Thus-the rank of A, is the degeneracy
proaches, we move to a discussion of possible solutions of the dominant eigenvalue. For a degenerate case, say
to those problems. .degen#-racy two, where two eigenvectors have the same

11. Convergence Problem eigen\ alue. A' can be approximated by
A .?(ele , e.2eI), 7

By reformulating the power method, we can intro-
duce considerably more parallelism in each iteration where el and e, are orthogonal but are associated with
and thus reduce the number of iterations dramatical!y. X\. E ch column of An is a linear combination of el and
For example. a problem which would have required 106 e- anc hence is an eigenvector of A. However, on nor-
iterations by the prior mnethod will now require only 20 miaizztion, the columns of A" will not be identical. The
iterations. In general K iterations with the new power rank ,.f A " is equal to two, the degeneracy of X1. Any
method is equivalent to 21" iterations of the prior two liiiearly independent columns of A r can be used to
method. We achieve this by using the matrix squaring obtai,, two orthogonal eigenvectors of A. The clear
method." We briefly explain the method as well as add advantage of the matrix squaring method is that ail the
our own observations concerning the adv.ntages of the degenerate eigenvectors of an eigenvalue can be ob.-
matrix squaring algorithm over the power method just tainec at once because no mechanism favors one over
described. The reader will note that matrix squaring the otqers.
is itself a power method, but it operates on the given By actually forming An, a useful error bound for the
matrix itself rather than operating on a 'ector while magnitude of the dominant eigenvadue can be obtained.
leaving the matrix uncharged. The bounds can be derived as follows. If we raise A to

'he matrix squaring method for eigenvalue eigen- an even power, a = 2m, all the eigenvalues of A" are
vector analysis is based un the spectral representation positi,.e. Its dominant eigenvalue Xn will be smaller
,, a symmetric matrix: than its trace, which is equal to the sum of all its eigen-

values.
\= E.E ,,Il

where _\ is a diai.,,nal matrix containing the eigenvalues TrA = .4g, = =" V.
A A and F is an rth,,gonal matrix whose columns are

the ,i,4envect,,rs tA. That is. he ) th column of E is Here N is the dimension of A. On the other hand, the
the ,tgenvei.:,r e., as.,'ociated with the -igenvalue ,\ dimension times the dominant eigenvalue is larger than
The .rthovonaitv if eizenvectors of symmetric matri- the trace. Therefore.
ces is expressed in matrix t,,rm as A ' < T-A < .,\? Q1st

= . ,,12) Rearranging this and taking the nth root yield

W e use hs proprtv to express powers of A. W riting (i1
a ds FK F .E T 1.,,EAE wi-hn factors, (<)

k :1r11 For n sufficiently large. !1/NI. l1 approaches one to
within the precision of the processor. A good estimateP,, v~ z'h , xn i , tim-. A",az be ex- 1e, NIJ is the mean of the upper and lower bounds,

= , -~ TrA ' ;2, 120)

,vith error

.r ' v - n r C - ., . i n . e -t , , vl iie are I '1 " 21
* ,rter,, I.. j' -TA 1 " .'

- . , ,., It shouid be rioted that the matrix squaring method
raises A to an f.ven power, and hence we are finding ei-

r -e 1iat . r o . ei< it'- , I~nva ', :c.tor 4envectors and eigenvalues of'A2 rather than A. The
-Iti~ [i. ' ar,,, ) fr,  f .\2 wil! h,, Identical to eicenvectors 'f .

' "(rpit r 'he ;-, . h r, .\ h;is w,, r, ' l 14 h , I
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0

,, = -,. In this case A2 has a doubly degenerate ei- since we only know e, and A1 approximately, the or-
genvaiue X. Only two particular linear combinations thogonalization is only approximate, and the true ei
of the degenerate eigenvectors of A2 will be eigenvectors component grows and may become dominant again. 1

of A. When a degeneracy or an apparent degeneracy A wise procedure is to reorthogonalize the current vector
occurs, a new eigenvalue eigenvector problem must be to previously found eigenvectors from time to time. A
solved. We use the orthogonalized linear independent useful way to perform the orthogonalization in a trial
columns Vk, of An to form a new matrix G given by vector V is to use the annihilation operation (A -

G, = VrAV. (22)

The dimension of G is of the order of the apparent de- V1 = iA - ,I)V. 4241

generacy. The eigenvectors of G yield the linear com- Orthogonalizing in this way has the advantage of re-
binations of the Vi, which are eigenvectors of A. For moving explicit error contributions due to errors in the
a true degeneracy G is already diagonal. eigenvector. Only the error in the eigenvalue estimate

If we accomplish matrix-matrix multiplication by contributes to the growth of the unwanted component
sequential matrix-vector multiplications using the in the power method. This approach can be incorpo-
columns of the matrix as vectors, we require N matrix rated into the matrix times matrix approach by forming
vector multiplications to accomplish one matrix the product Am(A - XI)k, where we have multiplied
squaring. If convergence requires M squarings, a total the starting vector with A a total of m times and reor-
of MN matrix-vector cycles will be needed. Accom- thogonalized k times.
plishing the raising of A to the same power by the prior Under the conditions of low precision the best pro-
method would require 2 matrix-vector multiplica- cedure may be to reorthogonalize at each step. Then
tions. For slowly converging systems k = -n, and the method is equivalent to finding. the

principal eigenvector of the matrix A = A(A - X1I).
• >>> 1, (23) Error analysis shows that the X, component contami-

while M and N may be relatively small. For example, nates the ,, as
if M = 20 and N = 50. we would need 20 matrix-matrix (\, \

multiplications by matrix squaring or 1000 matrix- t A 4, 25)
vector multiplications, whereas 106 matrix-vector
multiplications would be required by the prior power where 5 is the error in our estimate of X, i.e., 5 = X, -
method. Clearly the convergence is improved dra- A,. This procedure is safe, and the power method can
maticallv by matrix squaring even if the hardware is be made to converge to each eigenvector in turn. The
restricted to vector-matrix multipliers, accuracy is limited by the accuracy of the previously

estimated eigenvalues. The errors in estimates of ei-
III. Deflation genvalues must remain small compared with all the ei-

Deflation remains a vexing problem in that it tends genvalues sought and to differences between eigenval-
to lead to decreasing accuracy in subsequeikt eigenso- ues sought. For the later eigenvectors the method be-
lutions. This problem is magnified when only low comes cumbersome, but as long as the magnitude of the
precision is available. While we have arrived at no final eigenvalue sought is larger than the largest error in a
solutions to the problem, we suggest two methods which previously estimated eigenvalue the method will con-
:nay prove fruitful. The main problem is that one finds verge.
.,nlv approximate eigenvaiues N and approximate ei- A little known method for finding all the eigenvalues
genvectrs i rather than the exact quantities. We seek and eigenvectors involves double shifting.1'2 :3 It has
methods which will be adaptable to the matrix squaring the advantage that one starts fresh at each time, and
approach and for which the errors do not accumulate thus no accumulation of errors results. It also is no

* a, successive eigenvalues and eigenvectors are found. more cumbersome as more eigenvalues are found. At
The latter restriction is the most important for pro- no stage is the knowledge of eigenvalues to high preci-
cessing with low precision. Common approaches which sion required. It is based on forming a family of ma-
can he incorporated into the matrix squaring method trices
Include deflation by oubtracrion ind deflation by or- qla,.) = ,. - ,1)2 - 82! 1261
*,iu ,,naiizatiof. Perhaps the ms)st obvious technique
:/,deflaton 1 subtraction in which a new matrix to use for use with the power method. The eigenvectors of A
1,,,, ae power method is gentrated trm A by subtract- are eigenvectors of Q. Q has eigenvalues
fl \4 .ie rim A. This approach was first suggested q =7

by Horeing. " However, in practice. errors in both the
2. ,;mate,i _i.t:nvaiue and eigenvector can lead to nu- where
merical errors when the p,,wer method is applied to .he = -,

detJated matrix to obtain A For the-se reasons, the
Sn h,,d nmld he e(i ,nlv n tormai analysis. The strategy is as follows. The :5- are all positive.

The ,e:atIn Uv ,rtno ,rahzaton method addres.es The smallest ome is the one t,,r which a is closest to the
Ie.e (it ficutit es b h.y ch a rial vector V for the eigenvalue *\ A- is chosen so that the most negati

power method. %khuh . rth,)uonai to e l However. , . the one associaled with the smallest h-. is the dom-
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inant root. A sufficient condition is to choose B so that While the double-shift method does not require ac-
all the q, are negative. Then the q, associated with the curate values of previously obtained eigenvalues, there

* smallest b: will be the most negative and hence the are direct effects of precision on the ability of the ap-
dominant root. The approach is to apply the matrix oroach to resolve near degeneracies. If there are sig-
squaring method to the family of matrices QkAB) until nificant figures, the convergence factors must be <I-
all the eigenvectors and eigenvalues of A are obtained. L0-.

, If the power method is first applied to A to obtain \ and For the double-shift method
el, a safe value of B is any number larger than B > ,X1 I,1\ - ,).- B2

+ I . Here .i can be our best guess as to the next el- I - t0-, > IX- - B2 C32

genvalue of interest. The convergence of the method - B
2

to a solution depends on the two eigenvalues of A which To insure that the most negative eigenvalue is the most
are closest to u. If X, is closest and X, is next closest, dominant, B must have the same magnitude as X1. The

r that is, if best choice of p is X,, and, therefore, the best possible
k ~convergence factor for the double-shift method is

IX, - M <G\-g) < k- )forall k j. (29) XO- -
,)

I - 0- >1 2 33 1
Qm converges to q7e, eT as

where we have substituted u X,, X, = B, and rear-
V= - _ B9- (30 ranged.
5~,v = ", ,'- l In this method eigenvalue pairs whose square dif-

It is clear that only good choices for A and B are re- ference satisfy (X, - X, )2 < X,12 X 10- will appear to be
quired: no precise values are needed. However, the rate degenerate.
of convergence can be slowed by excessively large Another practical consideration is the power to which
choices of B or a choice of ju for which (\ - (X, - a matrix should be raised to obtain an eigenvalue esti-
4). The method is no more cumbersome for small roots mate that is consistent with the number of significant
than for large roots. The rate of convergence will be figures of precision. An upper bound on the power to
slower, however, if there are several small roots which which a matrix can be raised to obtain meaningful re-
are close together. Under those conditions qj/q, will suits can be found by considering the bounds on the
be close to unity for any choice of . Precision will limit eigenvalue obtained from the trace. The error is given
the dynamic range of eigenvalues that can be found. by
The magnitude of B must be such that qj/qi is less than (A O'.
one for convergence. Both deflation by orthogonali- =P , (T.A-'b (34
zation and deflation by double shifting are attractive
approaches for obtaining subsequent eigenvectors and Dividing Eq. (34) by (TrAP)"/P and solving for P, using
eigenvalues of a matrix. Both are easily incorporated the approximation In(1 + x) - x for small x, yield P
into the matrix squaring method. (10 lnN)/2, where N is the dimension of the matrix.

This assumes s is the number of significant decimal
IV. Role of Precision in Error Analysis figures. P represents an upper bound to the power to

Important considerations in the application of the which the matrix should be raised. For s = 2 and N =
power method are the limits placed on the method by 50, we have P - 185.
the precision of the computer.

These limits are based on the precision to which we
can obtain the eigenvalue of largest magnitude. De- The renormalization problem may become very im-
flation techniques based on orthogonality will not find portant. The i,j term of A" is
eigenvectors for eigenvalues which are smaller than the

* er. )r in any proceeding eigenvalue. Assuming that (a
2), = a,a, (35

errors arise only because of precision, the largest error
will be associated with the principal eigenvalue. For A very conservative approach is to note that the maxi-
example, if the precision is such that only s decimal mum possible (a 2),, is N times the square of the maxi-
figures are significant, the error associated with X, is mum a,. The trouble is that this approach is so con-
approximately NI x 10- ' .  servative that it is likely to make very poor use of theTherefore. the smallest eigenvalue A that can be available dynamic range of the optical processor and

T found e, sa satisfies erode the accuracy of results in a system which already

has limited accuracy. By doing each iteration twice
X >_ .- 31) (doubling an extremely short processing time. we can
1 ,\,," do much better. We use the ultraconservative but

This can be shown directly by substituting,5 -= X x 10-  simple approach just described to normalize the inputs
into the convergenco fictor of Eq. 127), which must be to estimate the maximum component of A2 from A.
less than unity. It is ,u:' not possible to distinguish With the estimated A-' we do far less conservative
between true degeneracles and near degeneracies if two renormalization and thus preserve accuracy
or more eigenvaiues diff r by less 'nan he error in the Thus we must search both the accuratelv calculated
principal eiwenvalue, A and the crudely calculated A2 t'4)r their m,x inmuIM
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components. Remembering that in optical processors
we work only with non-negative components which we Ccan call 5, 1,we seek a parallel way to search for max- ( [ .- 47)

16,,). The search need not occur on all N2 components
in parallel if (as often happens) the processor does not -b4 -b -b -b,_

produce them that way. In a systolic processor, for In this case

example, as many as N components are available at any X 1 0 
instant. We can find the maximum among them, 0 X 1 0
compare with the prior maximum, and pass the larger det(C - Xl) det =X P,)/ao. 148)

value. In this way we can minimize memory require- L o
ments while achieving enough parallelism to avoid -b, -b3 -b2 -b,
slowing down the process substantially. By our method we can easily find the root nearest a

A parallel search can be made by subtracting in par- chosen value. Likewise multiple roots are readily de-
allel from all available component signals (ij) a ramped tected.
signal Of course, if we can solve P(X) = 0, we can solve

Sit) - Sot/r, (36) Pi(X) = P (X), (49)

where So) is the maximum allowable signal (a physical since
constraint) and r is a preselected time constant. We P.vX) = PI(X) - P x) (50)
then detect must have a zero when PI(X) - P2(X). More generally,

d, 1it) = b, - Sit) (37) to solve

in parallel for all i,j. Each time a do) goes to zero its P(X) = P,.x) PNVX) 0, (51)
detector sends a unit signal to a counter. When the
total count reaches 2N 2 , we note the time to. Then we form the new polynomial

maxl6, = S(o/r (38) Q(X) = 1" [P, (X)1 252)

Clearly Q(X) can be zero only if each of the P,(X) is
zero.V1. Applications

Applications of eigenanalysis to direction finding, VII. Summary
bandwidth compression (Karhunen-Loueve), pattern Prior proposals for optical computation of eigenpairs
recognition, etc. are familiar. Here we want to point out have encountered major problems relating to slow
that some nonobvious applications may prove quite convergence of the iterative algorithm, lower accuracy
useful as well. on less dominant eigenpairs, and low accuracy from poor

Eigenvalue determination is one approach for finding renormalization. This paper discusses some methods
roots of a polynomial: reducing these problems considerably, although it

.cannot be said to have finally and definitively solved
= aoX = l- + o = 0. them. The convergence speed is increased dramatically

It is convenient to write by the matrix squaring approach. The deflation ac-
PX= aX + +')( curacy may be improved by the matrix reformulation

- 1X - 
+ + ba), (42) methods discussed. Excellent use of the available dy-

where, of course, namic range can be assured for a factor of 2 decrease in
overall speed using the technique described.

h =(43) Problems related to degeneracies and numerical ac-

We can then write a matrix curacy have also been attacked here. In particular we
have been able io show that matrix squaring handles
degeneracies easily and automatically and that tight
simple error bounds can be determined.

= 44) What we have dealt with are algorithm related
-L , -h_1 -h -h 1  problems. Implementation problems are also numer-ous, but they are beyond the scope of this paper. There

so that the eigenvalues \ of C are the roots of P(X). are also rather fundamental problems relating to the
The eigenvalues must satisfy numerical accuracy of the final answers. We believe

det C - A,= 1. ,45) that these problems can be solved so as to make optical

but eigenfunction solution practical and attractive.

4detl C- V -i ,)'P a.,16

The form of C is easiest to see for a low-order polyno- This work was performed under U.S. Air Force con-
mial. Thus for n = 4. tract F19628-82-C-0068.
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OPTICAL SINGULAR VALUE DECOMPOSITION FOR THE Ax -

PRO BLEM

John Gruninger and H.J. Caulfield

Center for Optical & Photographic Sciences
Aerodyne Research, Inc.

45 Manning Road, Billerica, MA 01821

Abstract

Optical approaches to solving the Ax - b problem have suffered from four

difficulties: (I) an inability to handle the problem for nonsquare A, (2) the

necessity of insuring convergence for nonsingular A, (3) the inability to

handle a singular A, and (4) inaccuracies due to an ill conditioned A. We

show that these problems can all be solved or mitigated by singular value

decomposition (SVD). An accurate approach to optical SVD is shown.

Introduction

Optical computing has drawn much attention in terms of both

architecture I-5 and algorithms6 -9 in the last few years. This paper aims at a

thorough discussion of optical singular value decomposition (SVD): a topic

* recently treated by Kumar.1 0 We will show why SVD is not only particularly

well suited for optical computation but also particularly useful as part of

optical computing's repetoire. Our emphasis will be on a particular type of

* problem represented as

F-2

r



Ax b

where A is a known m x n (m rows, n columns) matrix, x as an n dimensional

unknown vector, and b is an m dimensional known vector. Our task is to find

x. When m-n, this the familiar case of n linear equations with n unknowns.

It is solvable in principle if A is nonsingular. When m > n, this is the

equally familiar problem of optimum curve fitting (usually using a least

squares criterion).SVD has numerious other applications in image Processing,

antenna field calculation and pattern recognition which have been discussed

0• elsewhere.

The Ax - b problem is arguably the most important and most commmon

problem in computing. A large fraction of all of the computer time in the

Uworld is used in solving large linear programming problems. Linear

programming solutions occur in two parts: the solution of large Ax - b

problems is the most time consuming part, the other part is some bookkeeping

@1 called the simplex algorithm. The authors have'heard expert mathematicians

argue that the least squares problem is the most important problem in

mathematics in terms of its impact on the world. Such a claim could be

0supported by applications ranging from statistics to phased array antennas.

Control theorists and many others are fond of posing sets of differential in

equations in the Ax - b format. The number of applications there is quite

large.

Prior optical approaches to solving Ax - b run into a variety of

problems. First, they are limited to the m-n case and thus omit many

0



important cases. Second, each of the iterative methods has a convergence

condition which can be guaranteed only by going through a precalculation which

either confirms the convergence or transforms the problem to assure

convergence. Third, the result of our calculations may be in very serious

error if A is ill conditioned. This problem is compounded by the inaccuracy

of optical computers relative to their electronic counterparts. All of these

problems combine to make optical solution of the Ax - b problem less

make optical soution of the Ax - b problem less attractive than electronic

solution for many problems even though optics has well known advantages in m

and n size, speed, computer size, and power consumption.

In the balance of this paper we will argue that SVD alleviates all of
+ +

those problems for Ax - b solution. Specifically: (1) it allows m * n and

gives the least squares solution in that case; (2) it can be made to converge

even when A is singular; and (3) it can offer us a way to find good but

inexact solutions even when A is ill conditioned.

We consider here solving the least squares problem for non symmetric non

square matrices A. In particular we will be concerned about matrices which

may be less than full rank, and which may be ill conditioned. That is, if the

dimensions of A are m x n with m > n, then we include for consideration

matrices which have rank k < n and have pseudo rank Z < k. A natural approach

to such problems is through the singular value decomposition of A. A can be

expressed as

A = WA V



where W is a m x m orthogonal matrix and V is an n x n orthogot:al matrix. A

is a m x n matrix whose only non zero elements are the "diagonals", Aii, for

i - L,k where k is the rank of A. The singular values.Ai are assumed to be

g in descending order A1 > A2 "..> Ak" We have dropped the second, redundant

index. Performing the implied matrix multiplications yields

A A i vi (2)
i

We use the lower case letters w and v to indicate column vectors of W and V

respectively. The subscript i indicates the column number. If the matrix A

has a pseudo rank of Z < k, then the singular values Xi+I to Xk will be

very small. The Eckart Young Theorem1 1 suggests that the last k-k outer

products can be deleted from the sum. That is A can be written as

0A -A Z+ AA Z(3)

where

T

- -A w v

and

and



- k

__ , Eckart and Young showed that A2 is the best rank 2. approximation to A in the

~Frobenius norm. The norm of the error term

n F2 2
F i

is given by the square root of the sum of the squares of the neglected

singular values. If the elements of the matrix A were obtained experimentally

or if they are stored in a computer with low precision, such that the stored

version differs from the "true" version by 6A then carrying more singular

values than that number, 2, for which IAAX1 a 16AJ is useless.

For numerical stability we replace A with Al. In matrix form we write

A z V A' (V2.)T (4)

* where W is the m x Z matrix whose columns are the first X columns of W,

V2 is the n x X matrix whose columns are the first 2 columns of V and Al

is the 2 x I matrix of singular values Ai,i-1,2.

* The least squares problem Ax - b is transformed into a new one by

multiplying on the left by WT and using the fact that WTW-i.

F-6
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T AvT T(
W Ax x W b: (5)

Defining y - x and g, WiT the least squares problem is

+ +

Ay - g (6)

The components of y are given by

y - i-1,ki

(7)
Yi w 0 i - kl,n

The solution vector x is obtained from Vy. The norm of x is a measure of the

stability of the least squares solution. It is obtained from the square root

of

.2 +2 k gi 21X2 17y1 "[ (8)

The square of the norm of the residuals is given by

2 + 2 m
R = Ax- 2  g (9)

i-Fk+ -

F-7
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In the event that A is ill conditioned some of the columns of A are

nearly linearly dependent, and some of the singular values will be small.

Contributions from the small singular values lead to erratic changes in x and

in a dramatic increase in its norm. Defining a pseudo rank of . less than k

we obtain solutions x1 for the least squares problem A x b defining9

as (WZ)T b we obtain4
gi

yi i- ,2.
1 

(10)

Y 1 0 i -+I,n

The solution vector is obtained from V50. The square of the norm of

giis

-*z224x .2 . g( 2 (Ii)

and the square of the norm of the residual is

Z.2 Z+. + 2
!IR d 11A x - b

the pseudo rank I is chosen so that the norms of the solution vector Ix q,

the residual IR'I and the error matrix IAAI are exceptably small. More

F-8



details of this aspect of least squares problems can be found in Lawson and

Hanson. 12

When the pseudo rank I is much less than n, a method for finding only the

first t singular values and the residual matrices WI and VI is desired.

We propose obtaining this partial singular value decomposition of A by use of

a power method. An iterative scheme can be based on the following pair of

equations.

A vi 
i 

1

and

Aw i v (14)

I i

which are obtained from Eq. (2). Starting with an initial guess at v, namely

Vi and an initial wl, and an estimate of the singular value, X1 , can be

+0obtained from Eq. (13). wI in turn can be used in Eq: (14) to find an

improved vj. We use superscripts to indicate iteration numbers.

After J iterations we have

T PJ-1
v A w1 (15)



X t - Av . (16)11

+J +J-1 J +J-1
The procedure can be stopped when Iv -v I and 1wI - w I are sufficiently

small. This procedure will yield the dominant singular value 1 and singular

vectors wI and vj. Applying the procedure to the deflated matrix

A - A 1 l v1  (17)

will yield X 2 , w2 and v2 and so on. This approach has been recently proposed

by Shlien 13 and by Kumar.1 0  An alternate approach is suggested here. If

Eq. (15) and (16) are substituted into one another one obtains

2 -J T +)J-1 +J-1
X v - (A A)v S v (18)

a
and

2 J -AT *J-1 +J-
A w (AA )w M w (19)

I

This approach is equivalent to finding the principal eigenvectors of the n x n

and m x m positive semidefinite matrices S - ATA and M - AAT,

respectively. The right singular vectors, v i of A are eigenvectors of S
|..

while the left singular vectors, wi are eigenvectors of M. The non-zero

elgenvalues of S and M are equai to the square of the corresponding singular

value, X

F-10
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It is not necessary to find the eigenvectors of both S and M. A simple

approach is to find the eigenvectors to the matrix of smallest dimension,

namely S. Several approaches to the use of the power method for eigenvectors

of symmetric matrices have appeared in the literature.6,14, 15  Once the

4.

first eigenvector vj of S is found, w, can be obtained from Eq. (13). The

matrix A can be deflated by the combined use of Eq. (17) and Eq. (13).

+ -- T

A - A - A v 1 v (20)

q1

The positive semi definite matrix ATA can be formed and the procedure

repeated to find v2 , X2 and w2 and so on.

One concern in using a power method for singular value decomposition is

the loss in dynamic range that occurs when ATA or AAT is formed. As Eqs.

(18) and (19) we derived from (15) and (16), the formation of these square

matrices results from any formulation of the power method. The best one can

do is to initially equilibriate the columns of A and normalize the approximate

(singular vectors) eigenvectors at each iteration. Equilibration is the

process of finding that diagonal matrix D which will scale the columns of A so

that they have unit length. We let

A. AD x *D x

I

F-Il
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and solve

(AD) (D x) -b

We assume that A was previously equilibrated in the above discussion.

The key to numerical stability in the power method is not in the formation of

the square matrices S and M. The key is that deflation be performed on A in

order to find additional singular values. One should not attempt to deflate S

or M. The success of our proposed method as well that the methods of Shlien 13

and Kumar10 is based on this deflation.

The difficulties that we address in terms of dynamic range can be

illustrated by the following example matrix.

A 0 C (21)

0

where c is within the dynamic range of the computer and e2 is not. The norm

of its columns is (1 + c2)1 /2 - 1, so the matrix is equilibrated. The

matrix A has rank 2 but is ill conditioned. The matrices S and M that will be

S (22)
2

F-12



"M C C2  0 C 0 0 (23)

20 C2 (2 0 0

generated in the computer will be the rank 1 matrices on the right in Eq. (22)

and (23) respectively. The key point here is information about v1 and are

+ a r
still retaiijed in S and M while information about v2 and w2 are lost.

Numerical instability will occur when attempting to deflate S or M to find

subsequent eigenvectors. Numerical stability is maintained only if A is

deflated through Eq. (20). That is the power method will find

1  (1\
1, 2 1

and deflation of A will yield

A - E- 1

v2 (I/i2) [i, -1]T will be found by applying the power method to ATA. The

key to the successful use of the power method for singular values is the use

of the deflation of A. Attempts to deflate S or M will yield matrices which

contain only noise. The principal eigenvectors to the matrices S and M can be

obtained from the power method however. The use of a power method requires

the formation of at least one of these matrices.
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We summarize the proposed procedure for singular values decomposition as

follows

(i) Equilibrate A, call it Al.

"T"

(ii) Form Si - Ai A, scale if necessary.

(iii) Find the principal eigenvector vi of Si.

(iv) Calculate A vi.

(v) Find Xi by normalizing A vi

if Xi w 0 stop.

(vi) Wi is the resulting normalized

A vi.

(vii) Form Ai+j - Ai - A vi vi,

scale if necessary.

(viii) Go to ii.

This procedure will terminate after obtaining the £th singular value X4 and

singular vector vZ. The least square problem is then solved using Eqs.

(10), (11) and (12).
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APPENDIX G

APPROXIMATE SINGULAR VALUE DECCMPOSITION

(This work was presented at the 1983 OSA
meeting as noted using the attached view-
graphs. The write up for publication is
still being pursued. We will submit the
paper for publication in Applied Optics).6
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APPENDIX H

A BRIEF OVERVIEW OF THE FIELD OF OPTICAL DIGITAL
PROCESSING SPAWNED BY THIS CONTRACT



OPTICAL COMPUTING.
THE COMING REVOLUTION
IN OPTICAL SIGNAL
PROCESSING
Development is progressing toward a new generation of optical
computational devices that may provide for ultra-high-speed
matrix algebra and for the density of interconnections needed in
optical supercomputers.

By H. John Caulfiekd, John A. Neff, and
William T. Rhodes

A .1cMannel, s'tolic ocousto-opic binary convotver

(,A..8C; s crcnrtec'urcity configured as a systolic-crray
processor 'he architecture provices a ohigrl-speea
means of mrrcmx-vec or mutplicarioris using the digitci

r -n, tpli-pccrons vi natog convoution algorrt'm. This
cigorimr cr a sstoiic ccousto-optic impiementation
per,t *he speec of opics to be combined with the
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C tU~-..~ - -~ -':*~ f 2ccrc:~ntvectc,- by a 2 A2 mnatr~x.w, t2 O 'hCac'ousto-optic CelI, vector
Mves arc :x *:r V~r- coivloren rodlures a short diffraction grat-

c~rnz~*-, n'Z, with ii.fraction emlciency proportional to x,,
A ~ R ~ _f ,et that 'c--s acrm ss tne zell. When that grating

5Tht -~, tet''a- emn' v, §rcnt of 'LED 1, as shown in Fig.
cocot i-- :4-ne -rrn n. 3' the I.il ' s *ncised wi-:h light en~ergyv por-

U t--.on. V s~ i ma cmcry'cP~n (,j, and Lntegratin.E

jqa 0 - te ke Detecto' 9 1o~ri~n .ted with 'ivjt energ-y in
-M~R,2c prpr'.0 11 r:i. I ~ r Th C 1,i. e nex cr, t i c 3

-p -- I;-&-, r, icr mmn cus~he h ai~~gnn is r
r .-e - ''t on of LED) 2 and a-i sfonr., g-ratng segment,

Ar~-x-~ with difraction etii~c in proportion. to4 v-ctor
~ !cru~cso' clirneneri ::2, rai ovec :n lfront of LED 1, as

IC C. :,pr -,T :ray, Snown ( ig. 3(c). A-,, hat rmoment LED 1 :s
i~t-'irrc Di~!5iC..'A'h lght*"?rj7- .-i proportion to a 2 and

a1 rear L~)'2 ih li Jt ere.,Y ?,yn rc'rtion to a2~. T1he
~r'-c 2 ~-- -o"-a integr-atedl out-ut 'it Dcetectoer I is Low proportion-

~xaz o~ p':r 'ton a!o 1. -xwhh is the output vector

* .component v,,; th e integ-atled output of Deteictor 2
is a~l-i. T'he crictical moment in the comnpu-
tatort, shown :n Fig. 3'd', occurs after grat; r g

iseg-ment r2, has moved in front of LTED 2. A finai

-, ~ r~. ~pulse from that LED in proportion to a22 yields at.
~. jcr"~~. - ~the outtiut of Detect"- 2 a voltage in proportion to

2~ . aoX, at-.x2 , the second component Y2 of the

- * .. ~- * out.put,- vector.
- , 'Much like the Stanford OMYVM, the systolic

,~ ,optica. proc) eszor described has a dynamic range
~ ~ j a-nd accuracv d.etermnined3 by the sources, tnodula-

. , ~ ~ -, totano detectors. Output accuracy is lmtdt
4T.................~~ 7 '1 ght to ten bits. A realistic processing capability

c'or such a system would be the multiplication ef a
- 1010-component vector by a 100 x 100 matrl--in

SLM, and the natrix can be changed with each
oiperation.te

*2a Shortlv afte- the development of the optical
j s-'to!i n, 1 vectcr multiplier, two important

7 Ivan c 'r'- ace-the )ient~on i-f optical
rn x-u. :.chier- -sec box: "Matrix-Ma-

- - - ~ b'Dias; byv Athale, St:Iwe'i.
- Roce omevy. and iaulf~el

r.b", i'md the ,cchievement bv Gi:
.0hov: c .e, Coilins, and Stilwell: and -

3 . ~ - >rk-)f~t i"t cc':racv wtioptical: a, qbrp' c

S.~~ 'J.e rn F ''Jro.Thraining high digital accuracy
..................................' c'-c EiRSO-S to imaplement'd'

~r'1V'~~Vnltr-n&h~, i h"~ o!''
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C
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C, MU, Ecr (:- i r' i electronics, ana.og ccmpucers are isea tor

repes-nt irlin #gb-speiefi !asiiy irnperrented operat .ons, JULr

sn~ftc, ' -j~rr *~ p j diitzl computers are used fralgba o
mhe -r-i,_ nrl .s - urriinly opucal computation ma-kes the

C_ *, % i "same avi s ion of t as ks

mec ~'~ levels, be a:sm.nt;uishaoie at the output. Negative
swI , L uarrners .,3n be handled using 2's complement

ni::~ 0- .- ' i -1 -Z~ 3"- arme'c or otter methods.
Thie &steve method for digital multiplication byv

i,10! 1  V :n13"aJ as Gnvoiut~oa can be used in a variety of ways in
-i naalgebraic optical processors to obtain higher ac-

rd-C , -~ Yesac c- -is curacy, albeit at the cost of lower processing
_s ,an :-i1 * razes. A digital-accuracy matrix-vector processor

w, L er conceivedi by Grnalf'oyie achieves high processing
T 1 07.. i rates- by using rnulzizransducer acousto-optic

cm cc-;,s .thl.Colima, and Stiiwell have iropie-
vfl'A. . .~..- ncntec aig-It-accuracy outer-product niatn-

!>o5.. 3Kra t Ma:nx Muitipliers uiga sigepar of acousto-
- t-* -, toa oztc eus.
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process governed by a kno-wn differential equa-
tion and measured in a Fx-,d way with known
measurement statistics. Becaus-e a sigle "cycle"
of a Kalmnan fil1tering opera*tion ,rvolves rnpnv 2 ---.

matrix calculations, rea.-tirne Kalman filtering
must be restricted to relatively small problems. ~
Performg the matrix operations 'triple muitipli-J
catioafs, Inversior2E, etc.) optically mnay perrn-;t Ohe o..-4---.
handling of lairge problems in real time. Casasent _ .

has started this effort, and several others are 7

working on it. Either floating-point operations or .:jj-

on-the-fly scali adjustmnent ;s needed.. Caulfield
has sho-wn that both are possible, but his samu- M

Pose e hae nM r-4 sgnoa lkir we-O.
tionis are probably more existerico proofs than to N aeu -eOLtve a- Yf- abe

(final answe.-s. 'New algo.rithmis are needed to to 0 1, 2. - oix T)s netsb
extend the rangea of apt ii-ation3s and, possibly, to as C =rz amlveet rk t&.
speedi up calk:~otations. -Po date, all important her'e for M = N - . In - ii Mv
algorithms hnave been iterative. Noniterative, aodark got *tofridlocecr'etoit Th~z
fully parallel solution of: unrcar equations is possi- Put 1IsL connected to Outmuts I cr 1 tIf-we
ble in analog optical processors. Can similar the tipit as a vector
things be done for d gital ortica processors? F

Noratrix optical processors are developing X rY
irndeoendert'y and rzipmdlv. Perhaps the most ~
widely pursued of these is the use of optics to

make arbitrary .n-cerrcrmnectizns among electron- _1

'.c~~ ~Go~ a r elpcrzro-otic (Lohmann, Lee, TeOt~ S0Vc~
Collins, Goodman. Sawciiuck, Strand, etc.) sys- -

I ~teins. Sawchaick, S3trand, and their coworkers Y]
have impiemented a variety of space-variant and
space- invari ant _nte:,connect patterns using com- Y
puter holograms to gerierate th? patterns and - -

spatial 'tight mo dulators to feed the information "n e con wi'lte
back into the svstem-n Their system (like those - ~

4 due to Lohnar, Lee, Collins, etc.) closes onk itself Y AX

for feedback. Clearly, however, this is not the
only configuration. Feediforward configurations eAsabicym1.frThcaeltlfa'td
lead to a vwiriety of optic-Al airtificial-inteiligence 1a

systems.A 0010
ThE conitinuing demand for higher throughput

rates will &xive futu.re research tcward higher00 I
speeds and greater paraiuceism In these large rule for obtaining A ts !mole. -c M a Mfrt R Wtft
systierns)Y ~ucercorrputers, ol tre ", ture, a mna- I wh~ere every Connection vi fthe crcssbcr plot
jor probleminahe~i high throughoult rates I' 4)e exrnpe,
wili Le how .--a' genra- coniunica- % ~id

t~ons mc~ 4  ._o-e number of processirg
un-ts. In r o -nera"-'.rp05 COMD'Iter. -lie '*1'

each p~rocrns1 -),, as direct corm-_n! ation -. 00
with e-er- r-her lanit, thu oriitting - ach tio ~
h an -4e a an ' e a,: t icn o n a cotinuinig basis. A S

1he -i !est lpvol ' comimunica'.ions, or inter- -

conneict as it c,11 Pld, e r tzi !q t generalized t~r T hndicated trrazoo ton -WOT-M-x-
cms -Ar t w or! ,:-,vn1-inw \ 'je~nic hn~
availabie or N emosr; r mulct

ing wi-h _T: , i' s Thiw. . ~Such. a FIGURE 5. izr~~ncostcr reworw
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" hX-Mx-TRILX MULTIPUEUS. (a) PUBIC cube. This I a systolic orchiteclure whose rna~r component ore a
C xse noncorerent i~ht -ource, a spatial llght modulator for each cf the two input matrices o 2-D photodector

array tor -ecing out the output malnx ond a polottzlng beam spultter. The two light mnodultors synchron'ousl
march fl-e matix information across the optical aperture, where the proper terms SUperimpose to prodluce ec
e~ement of e out!put marix.

(b) Cufer product oc, f one deieres to rea the drimensionaltty recluiremenls at the Input devices the
m4irr rrx proo~em may be tormnulatel in tem'ns of outer products, rather than the cutmr inner lrodcts
fir te muihlotllon oftwo N x N marie A and I1, the OUp~tut may be expmressedas

N -C. c1 , = -

'I-i

Lr :f '"X D:o a . . .

Eac m c ;erm mt Ie taken a e e outer product between te o r h column vector of A anr the n row vector
or. Thr may be do e oputcally as shon in the figure emayling two cTrosse awol The summation Of the n-
vduar mcfes my be realized va a 2 tie ictegratung hotodeopr array. -

- -" ' - " '

(c) r-eouen--y rutfp~ee. This Is a systolic architctre that e a linear LED array, an acut-pi Cell, a
Fourier ltansforn tens, and a linea photodetector array. Ilnput matrix !1 is fedl in th spce andi lme-n4lulexedl
fCrof shtow hro,, of ut spu tlol multiplexed and columns lime muiplexedi, whie t matrix A is multiplexed In
(r)auena nrd spce song the acousto-optc cel. Each row element of mr A t placed on a sepa.rate
frequency orner. sh that after multilicrlon with the oprodute I elements va ocousto-olc rodultson.

Fo he resutlinog itput t d t the trnsform ndn to a parbTcular photodetector element, depe ng on
tah corner r oo:)e. Thin archrtec oure may be viewed as a matrI-vector multplir in whic t reouency tor

(c) iexin mi ipsedto expd the vectoto- a tre ta
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4network becomes verN expens,,ve when imple- fTeroptic lattice filter (Tur, Goodman, etcl
7inted electroli.:cally 'or large V but -he inher- Wvhen the computational problem has9 sufficient
ent parallIelism 'f o ':s oldz great potential for sv-mrnetrv, a full matrix appr, ach may be ar
inexpensive aru ni-gh-pee. crossbar swit:hing. inelegant and expensive approach. The latticE

The genera~ized crcssbar can be expressed ana- filter work represents an exploration of simpier
lytically in te~rnis of a vector-rnatrix ,nultiplica- systems for simpler problems. A very common
tion, so) optical algebra form s the basis of solving problem ir. algebra is the evaluation of polynorri-
the int-erConnect pzoble!.l. For example, consider als. If an analog optical polynomial evaluator
the Stanford OM'VY Ciescribed previously. Let ir cou-Id b,- bu~lt, it would be possible to ind the
and be the vec*tcrs of the :rossbar inputs, and roots of pciy-nomials in a totally new way: scar
outputs. respectively, and 1c t A represent the the independent va-riable~si and see where the
interconnect switch settings. TIhat Is, av = I if, roots occur. This leads to a solution of another
and only if, the zth~or+ nut is connected to the jthl long-stand-ing optical problem as well. The quo-4 input. Otherwise, a, = C'The _MVM with these tient 1/a is simpliy the root of the function

<sautomiatically taksthe desired connections :') = a, which can, ot evaluated efficiently in
.1oticailv. Note, too, trt numerical accuracy is polynomial fo.-m. Work along this line is being
not an issue 'or Jisavplication,. carried out (Verber, Caulfield, r udman, Stilweil,

T'he Stanford processor :si, of course, nonpro- It4 Sic oorpi eoytcnlog "I
gramnmable, therefore, it can only be used in a lows ready content -addressable access to vas'
system wiha pre- stablished set of intercon- amounts or data, a truth-table lookup processor
.nects. If one were to replace the aiatrix filter with appears both feasible and appealing. This an-
a real-time device such as a 2-D spatial light proach is now being studied closely (Gaylord
modulator, then a switchable. generalized cross- etc.).
bar boecomesi a possibiilty; livewise, the binary Finally, all of these optical computers are in
matrix mnask could be replace-l with a hologram., need of improved or specialized components. A
Gomng one step further, one begins to envision major DARPA-sponsored effort to improve spa-
generalized crossbars with Dicosecond switching tial light modulators is just beginning. This
speeds via real-tirrit four-wave mixing or an seems likely to lead to improved throughput rates
optically adds-essei bistable array. Such a capa- by providing a 2-D medium capable of 1000 x
biiity would 6ring u--. -ta 3 real-n of computer 1000 individually addressable modulator ele-
communication~s bev y-)m the wldest dreams of ments, a cycle rate READ/WrIT time cycle) of
electronic ;ittrconnection architects. 1 kl~z, a dynamic range of 30 d.B, and less than

4 A more trur;cure, w- aiarangement is the 3% spatial nonuniformity. Other needs include
source and detector arrays that are compatible in
resolution, intensity, and dynamic range with

- .~ these spatial !ight irodulators and that possess
incividually addressable elements.

Conclusions and outlook
Upon considering the broad area of optical alge-

bainluding paallagrthms, architectures.
devices, and their associated mccerials. a la-rge
spectrumr ol, . teresting and imnport-ant research

-;Aareas comesz to ig-. s the .natiaDnal inte-rest n
the cormputationa' szciences 'begins to shift towa-d

tesiuD-rcc=mD;ters e-vt3ione6 for the '.99 0s.
wi.!l be vita'lv impor-ant "or the optics commun.-

~-~'~T ~ tv~ to pursue those f-srti areas for which optics
'- -'holds -he greatest appeal. such as large-scale
~ ~#. matrix-matrix or matrix-tensor operations anda

Trc _essor inter- and intracorrmunications. We
'7 ms Nlo allow ourselves to) 'o(k past the re-
sear':h discuissed above and into the use of opti.cs

FGURE 6. . t nertor-n real-tirne circuit recon-fiuration. Fi~r
oess.';~r - ~.~ ~~r-;-. ~ r'iije liht e ould be use t diy tnhe ird'

~~o*e t,) mo7 - iif.-



of refraction within waveguides in such a manner reported in Applied Optics issues of the past two
as to change channel layouts and beam-contro years. In addition, the r-ader is referred to prr,.
elements on a circuit module, thereby adding ceedings of conferences on the subject: Advances
much-needed flexibility to optical computing. in Optical Information Processing, G. M. Morris,
These new directions are mentioned to convey to ed. (Proc. SPIE 388, 1982); 10th International
the reader something of the excitement of a field Computing Conference (IEEE, 1983, Catalog No.
that is not only maturing, but also expanding. 83CH1880-4); Real Tizhe Signal Processing VI,

K. Bromley, ed. (Proc. SPIE 431, to be published
Acknowledgment late 1983 or early 1984); Optical Engineering,I Many of the ideas presented in this paper were Jan. 1984. For papers reviewing the general area
topics of discussion at a May 1983 workshop, of analog optical signal processing, see the follow-
"Optical Techniques for Multi-Sensor-Array Data ing: Proc. IEEE 69, 1 (Jan. 1981), special issue on
Processing," sponsored by the Army Research acousto-optic signal processing; Proc. IEEE 65, 1
Office and the Air Force Office of Scientific (Jan. 1977), special issue on optical computing;
Research. Proc. LEEE 62, 10 (Oct. 1974), invited paper by

A. B. Vander Lugt.
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EFFICIENT REAL NUMBER REPRESENTATION WITH ARBITRARY RADIX

H.J. Caulfield, D.S. Dvore, and J.H. Gruninger
Aerodyne Research, Inc.

45 Manning Drive
Billerica, MA 01821

ABSTRACT

Because most optical digital computers use only nonnegative quantities,

4 it is of great interest to find an efficient way to represent real numbers.

For radix 2 (binary) numbers the twos complement method requires only one

extra digit beyond that needed for non negative numbers. We introduce here an

arbitrary radix generalization.

BACKGROUND

Optical computers (1-10) have become extremely popular because of their

£speed, low power consumption, and relatively low volume and weight. Digital

number representation is as necessary for accuracy in optics as it is in

electronics. In ootical digital computers the optimum radix choice is by no

means clear and may even be computer or problem dependent. For radix 2

(binary) representation, the twos complement method (11) is an optimally-

efficient way to represent real numbers in that an N-bit real number can be

represented with only N + 1 digits. Obviously no more efficient representa-

tion can be devised. We have been unable to locate in the literature a scheme

for representing N digit radix R ( > 2) numbers with only N + I digits. This

work represents our attempt at the needed generalization.

1-2
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EXPOSITION APPROACH

Our exposition will proceed in two stages aimed at making the method

understandable. We avoid theorum and lemma proving in favor of simplicity and

clarity. The method works only with even radix. First, we will illustrate

this method with examples from the familiar radix 10 numbers. Second, we will

offer an explanation which is radix independent.

I NOTATION (Radix 10)

We suppose that the numbers of interest are of absolute value less than

1 0 N, where N is a preselected integer such as 4. For N - 4, the numbers lie

between -9999 and 9999. Thus only N digits are needed to represent the

absolute value. To this we add a single sign digit. The sign digit for a

positive number will be 0, 2, 4, 6, or 8. The sign digit for a negative

number will be 1, 3, 5, 7, or 9. For negative numbers we complement the

absolute value, i.e., subtract it from 10 N. For convenience of notation, we

give this new method the name "parity sign" and the normal representation

"arithmetic". Table I shows some sample arithmetic and parity sign

representations of the same oumber.

ADDITION EXAIPLES

* Let us add +0012 to +0008. We know that the answer is +0020. In parity

sign we might have

20012
+ 80008 (1)

100020

-



Table 1.

The same radix 10 numbers represented in both
arithmetic and parity sign notation. For each number
there is one and only one arithmetic representation but
five equally-valid parity sign representation.

Arithmetic Acceptable Parity
Representation Sign Representation

+0012 00012
+0012 80012
+0012 20012
-0012 19988
-0012 99988
-9092 70908
+0008 40008

-

a
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The last five digits are 00020 which is one of the parity sign

representations of +0020. Now let us add +0008 to -0012. We might write

40008
+ 99988 (2)
1 39996

The last five digits are 39996 which is one of the parity sign representations

of -0004.

MULTIPLICATION EXAMPLES

Let us multiply +0012 by +0004. We might write

00012
x 40004

00048
00000 (3)

00000
00000
00048
000480048

The last five digits are 30048 which is one of the parity sign representations

of +0048.

4ow let us multiply -0012 by +0004. We might write

99988
x 00004 (4)

The last five digi:s are 99952 which is one of the parity sign representations

of -0048.

L-5
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I EXPLANATION

We are used to graphing the arithmetic representation of a number versus

itself (i.e. plotting f(x) - x in arithmetic notation). Figure 1 shows such a

plot for the domain Jxj < 105 . If we restrict lxi to that domain, we can plot

a multivalued representation m(x) vs. x as shown in Figure 2. If we now

restrict ourselves to m(x)> 0, we can still represent any number in 1xI <

4 105. the negative x's will have an odd fifth digit. Even numbers will have

an even fifth digit. Furthermore

m(x + y) - m(x) + m(y), (5)

where we mean by m(x) all of the values of m(x) , etc. Likewise

MOxy) - m(x)m(y) (6)

OTHER EXAMPLES

For the special case of radix 2 we obtain a signed tos complement. Thus

+O011 plus -1010 (+3 -10 Ln radix 10) is in parity sign

00011
+ 10101 (7)

11000

which is the parity sign representation of -0111 (-7 in radix 10). Thus in

the binary case the parity sign digit is no longer multiple.

1-6



CONCLUSION

The parity sign representation is easy to use and easy to understand. It

includes the traditional binary signed twos complement method as a special

case while extending the one-digit-sign-indication-efficiency advantage to

arbitrary radix. Finally, one must be careful to prevent "overflow" -

attempted calculation of numbers greater than the maximum the system is

designed to handle. When overflow occurs, the numerical part of the result

(in our example, th_ last four digits) is correct but the amount of overflow

is undetermined.

The simplest way to prevent overflow is to test input numbers. We

suggest the following, quite-conservative test for radix r amplitudes which

must be less than r2N. We write

a
r 2s

since r is even. We ignore the sign digit and require

(1) For multiplication both numbers be less than rN, so the first s

most significant digits must be zero and

(2) For addition both numbers be less than s • r2N-1 and therefore the

most significant dig4' must be s-1 or less.
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FIGURE CAPTIONS

Figure 1: A representation R(n) of numbers n satisfying -9999 s n 9999.

Figure 2: A multivalued representation m(n). All values of m(n) for a
given n are equally valid.
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Floating point optical matrix calculations

H. J. Caulfield Abstract. The recent explosion of interest and activity in optical numerical

Aerodyne Research. Inc. processing has occurred despite the fact that calculations had to be carried out

45 Manning Road with integer or fixed point arithmetic. We show here that floating point optical

. Billerica. Massachusetts 01821 matrix-vector multiplication is feasible.

Keywords. optical compling matrix calculatiom" aigotr" flowing point systems.

Optical Enginering 22f6)l 765-766 (Novomber/Decomber 1983).

CONTENTS we have
1. Background on floating point algebrael+z
2. Background on optical vector-matrix multipliers n~n2 =. mlmzbei+e
3. Dual representation approach
4. Unresolved problems Neither the mantissa multiplication (m IM2) nor the exponent addi-
5. Personal conclusion tion (cI + e ) is difficult to achieve optically. What is necessary but
6. Acknowledgment far more dfAcult optically is adding n , and n2. Obviously,

7 Rfernce n,+ n2 = mIbVi + m2be2 = M3bV3. (6)

1. BCKGOUNDON LOATNG OINTALGBRA In a computer one finds the larger of el and C2. Without loss of
A wide variety of new architectures and algorithms for optical matrix generality, we assume e, > e2.
operations have been introduced recently.'- 8 Without exception
these have used fixed point arithmetics. The sustained interest int Clearly,
these systems arises from the high capacity, high speed, and low
power consumption of these optical computers and from the fact that n +n2=mbl+Meblbe (,+ 2V ebl-(7
their fixed point calculations can be very accurate.'-' Of course, the n 2 =mbi+mblCbi=(n ~~e)e 7
range of applications could be expanded tremendously if floating Teeoe

* point calculations could be performed. Teeoe

In floating point notation (base b) every number is written e3 = el (8)

nl = 0. 11 12 13...IM X be () and m3 is calculated by rounding off ml1 + m2 be? - el after M
places. We see no obvious way to do those steps optically, so we have

where 1. 1:' 1 M .are integers between 0and b - 1, M is a preset adopted a new but largely equivalent approach.
integer. 1#0. and e is an integer. We call

m = 0.111' - 'I'm (2) 2. BACKGROUND ON OPTICAL VECTOR-MATRIX

the mantissa and e the exponent. With two numbers of the formMUTPIR
The prototypical modern vector-matrix multiplier is that of Good-

n, = mb" (3) man et al.' More recently systolic and engagement versions have
been introduced to simplify hardware and speed up the operations -

and All of these start with a linear array of N discrete incoherent light
* sources representing the input vector components and produce a

*n,=m, be2 (4) linear array of N discrete points of light (each of which is detected on
a discrete detector) to give the N components of the product s-ecto!

ShortCommuicatin SC-'009receied Jue 22.1983 Accehed Goopumanatprocessor.Thecalculatescssothelcfulls matrix mat instistal,:yy'*hwhi
199 iorec c hv Managin Editorle July 18.~aio Ju98 the systolic approaches require time integration over N pulses to
0 1991 Societvo Photo-optical instrumentation Engineers arrive at the final answer. The floating point need is present in both

*OPTICAL ENGINEERING /Novemnber/December 1983 /Vol 22 No 6 765
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* CAULFIELD

- 3. DUAL REPRESENTATION APPROACH While this looks in form like Eq. (I). the condition in Eq (I) that
" The approach proposed here is limited to the systolic proe.ssors. The i1 , 0 may not hold. Thus, we may not have 0 = e, Nevertheless,

this is a floating point operation with all of the accuracy advantages
ke idea is to use different means for representing input and output thereof
numbers optically The input vector components are represented by
encoding both their mantissas and exponents as source brightnesses 4. UNRESOLVED PROBLEMS
in separate and parallel processors. One processor does nothing but
multiply mantissas A similar but separate processor adds the e - Two major problems with this technique remain unsoled. First.

nents. We assume simple electro-optical light deflectors are very fast but do not give
many resolvable spots (limiting em). while mechanical or acousto-

-emn e l. e, <em (9) optic light deflectors give many resolvable spots but may slow upthe
system too much. Thus. the choice of deflector is critical and diffi-

and encode e as cult. Second. because one spatial dimension is used for the exponent.
it is by no means clear if this technique is extendable to the modern

f = e 4- e (10) optical matrix-matrix multipliers' which already require a two-
dimensional detector array.

clearly, 5. PERSONAL CONCLUSION

0 !S f SS 2 em (II) It has been my experience that an "existence proor' (such as I have
offered here for optical floating point algebra) invariably produces

The signal almost immediate improvements by others. I trust and hope this will
happen here.

= f f = 2em + (f I f,) (12)
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detector array [N vector components by ( 2em + I) exponents]
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an exponent co. We then take the time-integrated mantissa products 40. 861981).
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Spatial encoding for optical floating point computation

H. John Caulfield

Following the lead of electronic computers, optical computers must adopt floating point calculation to allow
for both high accuracy and high dynamic range. Given here is a method for using spatial encoding for that
purpose.

1. Introduction The two operations optical computers perform are ad-

High numerical accuracy is required for most alge- dition and multiplication. Multiplication is the easier

* braic calculations. Long ago this forced electronic task. We have

computer designers to adopt digital rather than analog n x n2 - (in X M 2) X be, 2 (4)
* number representations and to introduce floating point

calculations. Recently optical computer designers have We already know how to multiply m, by M 2. We need
devised a number of ways of using digital number rep- to add e, and e2 at the same time. Adding two integers

* resentations. 1 '- Thus the remaining step is floating of moderate size can be done either electronically or
point calculation. Although a preliminary step toward optically. The only problem appears to be that of
floating point optical computing has been taken,5 no bringing rni X m 2 back within the desired range before
universally applicable method is known. subsequent calculations. This, it appears, will be a

recurrent problem in optical floating point operations.
II. Basic Concepts If

The basic idea of floating point operation is to rep- b > m1,m2 'a 1, (5)
resent a positive number by then

" nmXbl. (1)

where m = a positive number within a well-defined b2 >m 1 XM2a~l. (6)

range. If we have time to test m x m 2 we can either use it (if
b = a fixed positive integer called the base or m1 X n 2 <b) or divide it by b (if b2 > Mi X m2> b) and

radix, and replace el + e2 by'ej + e2 + eI.
e = a real (positive or negative) integer called Adding nj to n2 is more difficult. In an electronic

the exponent. computer we calculate
(Negative and even complex numbers are easily repre- n, + n -= rnb', + M2 b'2. (7)
sented also, but this would be an unnecessary digression
here.) In an electronic digital computer one normally If we determine ei > e 2 , then

' keeps b > m > 1. For optical computing we may relax ni + n2 - (MI + Mn2b2-@1)bi. (8)
that requirement slightly.

Now consider two numbers: Since
ri, - rn, x btl. (2) be - < 1 (9)

n2 - m2 X b4% (3) (for e -- e2), this means attenuating m 2 before adding
it torm. Finally, in an electronic computer, we round
off m, + mrn2b 

.- to the desired number of bits. Thus
there is a nonlinear decision step which is difficult to
implement optically.

The author ;s with Aerodyne Research. Inc.. 45 Manning Road, These difficulties are compounded by the fact that
Billerica. Massachusetts 01821 all optical matrix algebra computers involve accumu-
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0), -935,84,020239-0 $0.00/0.
C 1984 Optical Society of America. ninXn 2 ) + In3 X n4 ) + inX n6l I0
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That is, multiple products must be added. What fol-
lows is a solution (indeed several solutions) to this SIYA L3 ,i,.
problem. . si, 2

Ill. Vector-Matrix Multipliers
Here we use optics to calculate ,.

Ax -y 
C 114

or

y, = C (12)

We assume that all aj and x, values are furnished in ,u ,o
floating point form. !r.

We must begin with a naive and totally fallacious
1 solution. We could introduce an attenuator with

transmission be,+e2 before the detector of m1rn 2. This [ 1 ,-1 1 F -7
places the whole burden on the dynamic range and re- 0
peatability of the multiplier. That is, it offers no im- L"!' " "

provement over fixed point operation.
We conclude that we need a separate detector for

each el + e2 value. Then, in final readout, the accu-
mulated values in each el + e2 bin are first thresholded
to eliminate pure noise and then added with appropriate
weights to give the final result

Let us illustrate with the following b = 10 example: ,a I

10 21j (13)

y 1 X 2 + 2 x 101

[2We write Fig. 1. Logic for assigning mantissa and exponent to the number
e waccumulated in three bins (detectors).

[1 X 10  2xI00 1
A=[ (14)

f2 x 10
0

Then way of doing this is encoding the exponent sum (com-

Ix2X1'-+2XI 100puted electrically) as a frequency of modulation on the
- II - I . (16) input light and frequency analyzing the output with an

,2 x 2 X 10o ' I X I X 1o, * (1 acoustooptic frequency analyzer.
We suppose that there are at least three detectors for Unfortunately these methods fail for matrix-matrix
each y, corresponding to 100. 101. and 102 products. We multipliers which already use 2-D detector arrays.
then operate electronically according to the decision tree
of Fig. 1. Clearly we can achieve as many exponent IV. Matrix-Matrix Multipliers
sums as we have detectors. As just indicated, deflectors seem impractical for

In optical vector-matrix multipliers each y is de- matrix-matrix multipliers, so alternatives must be
tected by a single detector. To allow floating point considered.
calculation, we need Ao replace each single detector with One alternative is to use frequency encoding of ex-

4 multiple detectors----one for each possible exponent ponent sums as suggested before but analyze the bins
sum. One way to do this is to use a light deflector for electrically. This is no real solution in the sense that
each y, driven to derlect the mantissa product onto the it still uses only one detector for all the frequency bins
appropriate detector. This is the method of Ref. 5. to be searched. Indeed we must accept multiple de-

In inteirated optical matrix-vector multipliers the tectors as a fundamental price to be paid for floating
deflectors might be buiit -n since the common base point operation.
material (litnium nio -2te) makes a good acoustooptic Spatial encoding exponents seem to be a rational

6 deflector.6 approach to the problem. We show below how we
In bulk )pticis. convenience demands many deflectors might encode the matrix-vector problem used as an

on a single substrate. This is now practicaj. Another earlier example:
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I Exponent
0 0 0 0 0 J0

A 0,0 0 0 0 0 2 (17) o

3 2 2 000!Lo 000
0 0 0 0 0 ( 0

2 001 011 0

X j 1o 00
3 0 ( 1 8 )2 x 0 0 2 x 1 0 i

10 1 14 XI F+ 1 X 1021Lo I o lOii~

0 1 2 Exponent [122] (20)

Note that each number is represented by a 3 X 3 array of numbers. 041

in A the number is repeated three times horizontally. In X the as required. Clearly this extends readily to the ma-
numoer is repeated three times vertically. trix-matrix case.

Multiplying, we have V. Concluions

Y ai1X+ aX Optical floating point calculations are readily
0 -achievable by spatial encoding. Like all the other im-

1 1 2 0 0 122 2/ 0 1 0provements in number representation for optical
00020 0 0 010 computing (capability of representing real numbers,(0 0 0 2 0 0 0 0 0 1 0 complex numbers, and digital numbers), the price that

/ 0 0is paid is a loss in the throughput r a t which numbers
are processed. As high throughput is one of the sup-
posed advantages of optical computing, designers must

2 22\(2 0 01 (00 0(0 10 exercise care in system design. Finally, we should note
0 0 012 0 0 1 1 10101 that on-the-fly scale adjustment can achieve many of

3 0 0 0 2 the effects of floating point operation with no penalty
0 o 0 1 in throughput but some penalty in complication." Thus

multiple solutions to the dynamic range problem are
I 2 0 01 (0 2 01 now available.

(0 001 (000

0 0 000 This work was sponsored under contract F19628-
82-C-0068 from Rome Air Development Center, Han-

2 0 19 scorn AFB, Mass.
S00
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Rapid unbiased bipolar incoherent calculator cube

R. P Bocker, H J. Caulfield, and K. Bromley

Presented in rnis paper is one of several possible electroopucal engagement array architectures for perform.
Ing matrix-matrix multiplication using incoherent light. Essential components of this new signal-process-
Ing ,ievice include two dynamic light valves operating in a reflection mode, a 2-D photodetector array, and

na s ile polarizing neam splitter.

I. Introduction transforms as well as a variety of linear filtering opera-
In ires paper we present a new concept for performing tions.5 The technical feasibility of this particular ap-

the mathematical operation of matrix-matrix multi- proach was demonstrated for matrices of order :32 using
pitcation Lising electrooptical technology'. This concept an optical device earlier developed 6 for performing
is based ,n the pineering work of Kung' for performing correlation and convolution operations with incoherent
matrix- matrix multiplication using an all-electronic light. In the original version of this optical correlator,

*i- irav architecture. A novel feature of the a single light-emitting diode, photographic film trans-
'-i er,,,pticai approach is that it is not limited to 2-D parencv. mechanical scanning mirror, and a vidicon
architeti uro, as is the case when employing silicon detector were employed. More recently, ,. the scanning
Tei,hn,,h,4 ,.n an electronic implementation. Before mirror and vidicon detector were replaced by a solid-
,iecribing the eiet-rooptical approach. let's briefly re- state area-array charge-coupled device, thus greatly
vtew pr:o r work for performing both matrix-vector and reducing the size of the processor. Matrix-vector

matrix matrix multiplicatmn using optical tech- multiply operations involving matrices of order 128 are
presently performed using this approach.

A second technique for computing matrix-vector
11. Background products using incoherent light involves the use of a

Vhe u.e ,- , ptwai correiation techniqlues involving linear array of light-emitting diodes, an optical trans-
S,*,,- :, .t tr pert',rming matrix -matrix and ma- parency, and a linear array of photodetectors.9 This
rix .,C rir miltiplication has been extensivelvstudied architecture has the advantage that the data vector
t.0:n tia , -nv- and experimentally demonstrated for information mav be entered in parallel, thus allowing

:natrme, ,t .,rder 2. ' This technique has the undesir- for higher throughput rates. The feasibility of this
irie tf:ture thit. i the matrix order increases, the approach has been demonstrated for matrices of order
iptmi t-r t inw;ant-d circular distrihutiins of light ap- 10. Combining this architecture with a I-D adder in a
peirit;a i '-.t"e ,tliput plane if the processor rapidly feedback loop gives rise to an iterative electrooptical

*l e-ilCte- :hi- redtwing the light available at those processor.' With this capability, it is possible to per-
jwt,,i-rs. ,rre~piiing *,, product matrix element in- form other higher-level matrix operations such as the

rat 1,i In adoition to thi- technique, there have solution of simultaneous algebraic equations, least-
'0-ti ii-tmtttr t ither techniques investigated using squares approximate solution of linear systems, matrix

r, n..r' rtt )r perfrmin- matrix-vector multi- inversit)n, and eigensystem determination.! 1!  just to
r.,;:,,rV ,r'-xanp. preliminary stdiesin this area mention a few.il, )r -n- .-,mputal, in f ii-D) discrete Fourier Most recently, much attention has been focused on

inp. ,,ine. and Waish-Hadamard implementing parallel-processing architectures for
performing a variety of matrix operations using exclu-
sively electronic components. Most noteworthy is the
work of Kung on systolic-arrav architectures.t1.li : 4
Combining VLSI/NHSIC technology with systolic-array

. .", '--,. .... ri In, %lanni r,, processing techniques should give rise to increased
; ,, ':, ... .. i - ir ,th-iri.wh I" Naval signal-processing capabilities by at !Yast a factor ,t

--..... ..-. .,. - ,.... 1..1 0n,, Brn . 1 
' '  

Already a 2-1) systolic-array testbed has been
designed and fabricated if r validatinc many of the
pr. ,)-oposed architecture., and algorithms envisiomed. 11 A

-- _ " _ " - _ - . _ar



similar all-electronics parallel approach has been pro-
posed t 7 using an engagement-array architecture. As
it turns out, these new systolic'engagement types of T"p"

architecture are not restricted to solely electronic im-
plementations. For example, an acoustoiaptic approach A

,using incoherent light for performing matrix-vco
multiplication employing the systolic/etgagement-array
architecture has recently been described.M This ac- . ,, °

oustooptic processor uses a linear array of light-em itting , ,3 .....
diodes for inputting the matrix information, an acous-tooptic traveling-wave modulator for inputting the
vector information, and a linear-array charge-coupled
device for computing the desired output vector infor- CW.Ir,.n.

mation. This approach.has the advantage that the
input vector and matrix information may be entered in Fig. 1. Optical engagement matrix -matrix multiplier using sliding
real time. optical transparencies. Iitial State

Ill. Preliminaries

To illustrate the concept of matrix-matrix multipli-
cation using an optical engagement-array architecture. A-

consider the case when the matrices involved have *, . .k

real-positive elements on!y and are of order 3. That .2'

is, -1 &C
r, 1ir r1 A7 .-

Ught So"€ !Ml;* W

a2 a2: b2 .,. J-1 , b = C2| i C 2 , cj b ,

La31 a 32  a 3  b3• b3" b33  C31 CT. C33

or, equivalently,

AB - C. (2) Fig. 2. Optical engagement matrix-matrix multiplier using sliding

where A and B are known input matrices, and C is the optical transparencies. (Final State.)

desired output matrix. Each element of matrix C is
obtained by the equation Initially the optical transparencies are so positioned

that the first light pulse passing through the system
= a b 1.k = 1.2.3. (3) passes through those 3 X 3 arrays containing only the

I-i all and bil element information, respectively. The
The techniques presented here certainly apply to ma- result is that only the photodetector in the upper-left
trices of order >3. Order 3 matrices were chosen merely corner of the detector array receives light. The amount

7 to illustrate easily the concepts involved. Shown in Fig. of photoelectric charge generated at that particular
1 is a 2-D array of photodetectors initially containing detector is proportional to the product of a,1 and b,1 .
zero charge at each detector site, two optical transpar- Next, optical transparency A is shifted horizontally to
encies encoded with the matrix A and B information, the right one resolution cell width, and transparency B
with each transparency capable of translating in front is shifted vertically downward one resolution cell height.
of the photodetector array as shown, and an incoherent At this point, the light source generates a second pulse
light source providing a spatially uniform collimated of light identical to the first. Now the upper-left three
light beam comprised of a time sequence of equal in- photodetectors in the array each generate quantities of
tensity pulses. Light propag;,tion is from left to right, photoelectric charge proportional to the product of the
As seen iT, this figure, each optical transparency is transmittances of those resolution cells directly in front
partitioned into an irray of rectangular-shaped reso- of each detector. This process continues in this manner
lution cells, some containing the matrix A and B infor- until the optical transparencies have physically trans-
mation, the remaining being optically opaque. Those lated past the detector array as shown in Fig. 2. On
cells containing matrix information each have an in- closer examination, we find that at each photodetector
tensitv transmittance proportional to the magnitude of element site there is a quantity of photoelectric charge
.he -,)rrespondinz matrix element !ocated at that cell which has accumulated that is proportional to each
as depicted in Fig. 1. At anv one instant in time, only matrix element comprising the desired matrix C. This
a 3 3 arrav of rosou ion cells in each transparency is then represents a simple version of the engagement-
illuminated by a sinvle !*,:ht r)il9is i)f short time dura- array architecture for performing matrix-matrix mul
tiin. The rfsultrou spatiallv," modulat.ed light beam tiplication using two optical transparencis which
impinv'es or *he ph todle.-,-t,r array. wlhenc, photo- physically translate across the face ,t a fixed photode-
-iectric charge is ciao,-rat. d aTi wiir:1 ited tector array.
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IV. Proposed Electrooptical Configuration

. The architecture just described for performing ma-
trix-matrix multiplication using an optical engage-
ment-array approach was primarily examined for the
purpose of illustrating the basic concepts involved. o
Unfortunately, this architecture lacks the capability of 'f a.

• updating or changing the input maz :-s A and B in a
real-time manner. This is principally because most
optical transparencies are made of photographic film.
Of course, one way around this difficulty is through the

*- use of light valves whose optical properties can be
changed in real time by electronic means. That is, if we
simply replace the translating optical transparencies by

.* stationary light valves whose transmission character-

istics can be changed and updated, matrix-matrixco,,, . ,
. multiplication can be performed without the need for Lgh' ft.

translating components.
* •A compact architecture based on these ideas is illus- Fig. 3. Key components of a solid-state optical engagement array

trated in Fig. 3. The basic components required for this matrix-matrix multiplier.
system concept include a polarized incoherent colli-
mated light source with the same properties as before,
a polarizing beam splitter, two light valves operating in
a reflection mode, and a 2-D array of photodetectors
also with the same properties as before. Collimating
and imaging optics may be required but are not shown
here. The use of optical lens elements would certainly
have to be employed when diffraction effects could not
be ignored. The matrix A and B information are
clocked into their respective light valves shown in Fig.
4. The transferring of the matrix data within the light .

valves using this architecture is analogous in all respects 52

to the physical translating of the optical transparencies
as previously described. Again, the desired matrix C a
information is generated within the photodetector
array, where it may be clocked out at a later time.

The reason for using a polarizing beam splitter in this
architecture is to eliminate light from propagating di-
rectly from the light source to the photodetector array
without first reflecting from each of the two light valves.
Of course, for this to be true, the incoherent light source
must be polarized as noted earlier. If the light valves Fig. 4. Data handling in the optical engagement array processor.
were to behave, for example, as reflecting mirrors, one
type of polarizing beam-splitter arrangement which
could be employed is shown in Fig. 5. The polarizing

4beam splitter would be of the Glan prism variety.' 9 In
addition, an input linear polarizer and two quarterwave
plates would also be required. It is noted that the exact "

electrooptical configuration used for performing the
matrix-matrix multiply operation will be highly de- o ... oo

pendent on the nature of the particular light valves If
4 employed. Light-emitting diodes or laser diodes appear j'

most attractive as the incoherent light source. The
photodetector array could be an array of photodiodes
or possibly a photoactivated charge-coupled device.

For the architecture described herein, it has been
assumed for the sake of simplicity that the elements of
the matrices A. B. and C were real and positive only.
The issue of performing matrix operptions involving
matrices and vectors whose elements are bipolar or even
complex ,.ing ircoherent light has previously been
addressed." !' Vhese techniques, therefore, could Fig. 5. Polarizing beam splitter with support optics.
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. As previously mentioned, the solutions of simultaneous

equations, matrix inversion, and eigensystem deter-
mination are representative of higher-order operations
which can be performed using iterative processing.

V. Summary
As S This paper has presented the basic concept of a rapid

unbiased bipolar incoherent calculator cube (RUBIC
cube) for performing matrix-matrix multiplication

A .c using an optical engagement-array architecture. Fu-
ture work will address the implementation of this ar-
chitecture.

As

Fig. '6 Architectures for performing (a) basic matrix-matrix mut-
i'pication AB. t b) the matrix operation ABC, (c) iterative processing

using feedback.
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THE APPLICATIONS OF SILICON LIQUID CRYSTAL LIGHT VALVES TO
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ABSTRACT

4 . The applications of the photo-activated, the CCD-addressed, and the variable-
grating mode liquid crystal light valves (LCLVs) to optical data processing are
described. These applications include image correlation, level slicing, spectral
analysis and correlation, bi-spectral image division, and matrix-matrix

- multiplication.

iINTRODUCTION

Coherent optical data processing (CODP) (ref. 1) offers many potential
°. advantages in image processing as well as in the processing of wide bandwidth

electrical signals which are amenable to two-dimensional (2-D) form. One of the
main limitations of this technology has been the lack of a fast, high-resolution,
real-time spatial light modulator (SLM) (refs. 2, 3). These devices impose, on a
coherent optical beam, a 2-D image that is derived from either an incoherent optical
source (photoactivated SLM) or directly from a properly formatted electrical input
signal (electronically addressed SLM). While the first of these tasks can be

4 accomplished with the photoactivated hybrid field-effect mode (HYFEM) liquid crystal
light valve (LCLV) (ref. 4), the second can be implemented by the use of the charge-
coupled device (CCD)-addressed LCLV (ref. 5).

The first generation, CdS-based photoactivated device is already in production
at Hughes. A second-generation, fast-response silicon photoconductor-based device

* is currently under development at Hughes Research Laboratories. These types of
devices operate in conjunction with an optical input source, such as a CRT or a
laser scanner to provide a real-time coherent output image (ref. 6). The novel,
vnotoacti-vated silicon LCLV (Figure 1) with its high-broadband input sensitivity may
also be uised for direct imaging of the scene and subsequent image processing (e.g.,
for robotics).

- -.



In CODP applications (such as radar signal processing or real-time matched
filters), it is desirable to convert the electrical input directly to an optical
output image without the intermediate step of first converting to an input image V1,
a CRT. To realize this function, we have designed and developed a novel type of
CODP inputting device that uses a CCD array to serially load and store a full frame
of analog electrical information which is subsequently transferred in parallel to a

liquid crystal (LC) layer (Figure 2). The elimination of the CRT (or equivalent
process) from the ODP system greatly simplifies the system; in particular, it
eliminates several of the drawbacks associated with it, such as geometrical
distortions, stability, and jitter. This device can be used with both coherent and

incoherent readout sources, extending in spectral range from the near ultraviolet tu
the near infrared.

In the following section, some applications of both the silicon photoactivatrd
LCLV and the electronically addressed CCD-LCLV to ODP will be described. These
applications include image correlation and level slicing, spectral analysis and
correlation, bi-spectral image division, and matrix-matrix multiplication.

OPTICAL PROCESSING APPLICATIONS OF THE SILICON LIGHT VALVES

Image Correlation and Level Slicing

Optical data processing is applicable in two main categories of data
processing: the processing of wideband serial signals, and in 2-D or image
processing. The photoactivated device is most effectively used in image processing
applications, while the CCD-addressed spatial light modulator can be used in both of
these categories.

One example of image processing is that of correlating an image with a
reference pattern, as shown in Figure 3. Here the images analyzed, A(t) (in video
form), and the reference image, B(t), are correlated using a joint-transform

~technique (ref. 7). The two CCD-SLMs are used as the electro-optic transducers to
generate real-time coherent optical images in which amplitudes are superimposed in
the Fourier plane. The intensity at the input to the photoactivated device
contains, among other terms, the multiplied amplitudes of the two Fourier-
transformed images. The photoactivated LCLV is then used to retransform the
multiplication image, resulting in the correlation required.

An important application of the photoactivated silicon LCLV is direct-scene
imagery followed by coherent processing. This function is required, e.g., in robot
vision systems. Here, one can utilize the two important features of the silicon
device: (1) its broadband sensitivity (400 to 1,100 nm, with typically 50 4W/cm 2 at
540 nm); and (2) its fast time response, permitting fast scenery changes to be

4 processed. In the configuration shown in Figure 4, the input scene is imaged and
converted to coherent modulation using the Si-LCLV, and is subsequently correlated
with a matched pattern using the CCD-LCLV as a programmable matched filter.

The use of the silicon photoactivated device for such direct image processing
further permits the dual-frequency mode of the liquid crystal activation to be
aoplied (ref. 8). This may result in cutting the response time from the current
16 ms to I to 2 ms.

!.



Another powerful application of optical processing is with the use of a special

:-,toaccivated device: the variable grating mode (VGM) SLM (ref. 9). The device is
:ased on the formation of grating-type regions in the LC, the spatial frequency of
,ih is determined by the voltage drop across the LC. Since a very high-impedance
:ic.toconductor is required for this light valve, the silicon-MOS configuration is a
.-0,ential candidate.

A useful application of the device is intensity-to-spatial frequency

-onversicn, shown in Figure 5. Here, the device is used to level slice an input
* .=age (shown in three levels: I, I2, 12). Filtering at the frequency plane with

. F2 (corresponding to I - 17) results in the generation of the I - 12 level of
:,e input image at the output plane.

Large Time-Bandwidth Spectrum Analyzer

We have demonstrated a real-time rf spectrum analyzer with an extraordinarily
%gh resolution and time-bandwidth product using the LCLV, with resolution <102 Hz.
"7e scheme of the apparatus is shown in Figure 6. The rf signals were amplified and
-isplaved in raster fashion on a CRT. The signals were obviously asynchronous with
".e raster scan of - 20 x i0 3 sec- 1 and a frame time of 7 x 10-  sec. The

6 *.:onerent optical display was focused on the photoconductive input of the LCLV
ii:h acted as a coherent-to-incoherent transformer as the output of the LCLV was
.Juminated with a coherent HeNe laser. This transformation permitted an optical
-ourier transformation to be performed. It is well known that the Fourier transform
a raster pattern in time is a raster pattern in frequency, as shown in Figure 6.

,o-frequency, Morse-coded tone-modulated rf signals from oil field transmitters
!.splayed the simple textbook A.M. spectral pattern of a carrier and two pulsating
,idebands. More complex modulations were also evident in-the display. The
:ieoretical resolution is given by the ratio of ws to the number of lines, which
vt i N - 1.4 x 103 lines is 14 Hz. Because of the falloff in resolution of the
._.V and associated optics, the resolution achieved was somewhat less (80 Hz). An
. V ous improvement of this system will be the replacement of the CRT-imaging lens
-iKt a CCD-addressed LCLV.

In this case, the ultimate, 1,000 array CCD-LCLV would provide 106 point
,esolution over 100 MHz bandwidth at (real-time) frame rates of 100 Hz. Comparable
-erformance, taking into account size and power requirements, will not be achievable
.- even the most advanced digital technology currently in development (i.e., VHSIC).

A Real-Time Spectrum Analyzer/Correlator

*. Another important application is real-time spectrum analysis of a given
scene. A silicon lignc valve-based system that can perform this operation is shown
-n Figure 7. The operation of this system is described below.

The radiation from the scene to be analyzed, I(W), is split by the beam
'=,Litter in a Michelson interferometer configuration. Two mirrors, a standard one

a staircase one, are used. The interference pattern at the output of the
.:erferometer (i.e., at the input to the LCLV) is the (spatial) Fourier transform

'e input spectrum. This is analogous to a conventional Fourier transform

'%ecrometer (-TS, (ref. 10), in that each of the staircase steps represents one
o ocation in a moving mirror spectrometer. The subsequent spatial Fourier

o1'rm of the output of the light valve results in the spectral analysis of the
' PA r ~ ,"I* IMAZird arraf Fiuio 7 4tho tho )),urgrion fl r ho- qPorrra-

* -~eiat.~r.The readout laier beam Ls sp~cily iuudjjai ao ,y b?'~'c



transformed reference spectrum using the CCD light valve. This modulated beam is
then used as a readout light for the photoactivated light valve. At the input of
the photoactivated light valve, the spatial interferogram of the input beam is

present. The emerging output beam consists of a multiplication of the input and t,
reference, Fourier-transformed spectra presented by the CCD-LCLV. The subsequent

inverse Fourier transformation carried out by the lens results in the appearance c;
correlation and convolution terms of the two spectra at the imaging array. This
system, which is based on the FTS principle, benefits from two important advantages
of the FTS system, namely, the multiplexing, or the Felgett's advantage in signal-
to-noise ratio, and the throughput, or the Jaquinot's advantage.

An dttractive feature of this system is that it can be used for pattern

recognition purposes with a flip of a mirror. In this way, the pattern of the
incoming beam, rather than its spectral content, can now be analyzed and correlated
with a suitable reference image presented by the CCD light valve, as in Figure 4.
The system can thus perform both spectral and pattern correlations of the scene.

The spectral range of this system is limited by the photoactivated light valve
since it must be sensitive in the spectral range used. The existing silicon light
valve enables us to use the 400-nm to 1,200-nm range. Since the detection of longer

* wavelengths may require cooling of the light valve, the LC will be the limiting
component for such a longer wavelength light modulator. It is estimated that
operation up to 3 wm can be achieved using LC operating at low temperatures.
Possible photoconductor candidates for such IR light valves are Ge, InAs, InSb, or

extrinsic silicon, depending on the cutoff wavelength required.

The spectral resolution largely depends on the manufacturing of the staircase
mirror. One could conceive more than 10,000 elements of resolution. It should be
pointed out that for the photoactivated and CCD-addressed light valves, a resolution
on the order of 106 elements is possible.

one obvious limitation for the application above is the intensity of the input
beam, or the radiation level from the scene analyzed. Using the silicon light
valve, a rough estimate for the input illumination level required is 100 uW/cm 2 in
the visible spectral region. Projected performance of ctuch a correlator for two
spectral regions is presented in Table I. Finally, it should be pbinted out that
other, possibly more efficient methods of self-interference of the incoming analyzed
beam have been previously suggested (ref. 11).

A particularly important type of signal processing in which the CCD-LCLV may
be used is radar signal processing. This field encompasses ambiguity-function

generation and synthetic aperture radar (SAR) processing.

An ambiguity-function generation system using two LCLVs was previously
described (ref. 12). The replacement of the photoactivated LCLV by a CCD-addresse
LCLV will significantly improve the system, elimating the CRT and the acousto-opt.z
'irnts required.

The Bi-Spectral Imaging/Image Division System

* Another potential application of the Si-LCLV for combined spectral and scene
analysis is the Bi-Spectral Imaging/:mage Division System. The purpose of this

s'/stem is to obtain the (logarithmic) image of the intensity ratio of the scene at
two wavelengths in the 4 00-nm to 1100-nm spectral range. This operation results -a
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the enhancement of specific textures in the scene. Thus, it has applications in
texture recognition such as the remote Earth-features identification system
currently under development by NASA (ref. 13). The schematics of the Si-LCLV-based
system are shown in rigure 8. The operation is as follows. The scene imaged by the
input optics is split into two channels which are each wavelength filtered in the
two spectral regions (XI, X2) required (400 nm< K 1 2 < 1100 nm). Then the
i'.tered images are spatially modulated by logarithmic halftone screens with

different spatial frequency for each channel, AI-Fj and A2-F 2. A variable

attenuation compensator placed at one of the channels acts to compensate for
intensity imbalance between the two channels. The two images, each modulated by a

different spatial carrier, are then recombined at the input to the silicon liquid
*- crystal light valve. Thus, each of the two images at the two different wavelengths

is -tagged" with a different spatial frequency modulation. The photoactivated
silicon liquid crystal-light valve acts as a sensitive, broadband, incoherent-to-
coherent image converter. A spatial Fourier transform is then performed on the data
readout by the laser beam. The diffractions of the two wavelength images will now
appear separately in the Fourier plane, due to the different spatial carriers for
each of those images. Spatial filters corresponding to each of the two halftone
screens are placed at the appropriate locations in the Fourier plane. This results
in the formation of logarithmic intensity images following a retransforming lens
,ref. 14). A 1800 phase retardation plate placed at one of the filter locations
will result in one of the logarithmic images (X2) having a reversed phase with
respect to the other. Thus, the amplitude of this image formed at the video
detector plane will be proportional to

Aout M A1 (X,y) + A 2 (x.,) a log 1l(x,y) - log 12 (x,y) - log [12/12]

where I,(x,y) and 12 (x,y) are the intensities of the input images at X, and A2,
respectively. The image amplitude following reconstruction at the vidicon input
will be proportional to log [!(X2 )/I(X 1)], i.e., to the (logarithmic) ratio of the
images at A, and X2 . Due to the high sensitivity of the silicon photoconductor in
:'e silicon light valve configuration (about 40 uW/cm 2), the imaging system is
expected to have sufficient sensitivity for direct imaging of Sun-illuminated

* scenes.

It should be noted that the same physical region of the light valve is utilized
:n ooth channels. This is done in order to minimize non-uniformities in the ratio
image obtained by the wavefront substraction. Thus, non-uniformities associated
vih amDlitude or phase defects originating in the light valve will be automatically

substrated. The "penalty", however, is the need to use two different spatial

- ,frequenciei, reducing the bandwidth available for image information.

* The Spectral Rante of the bi-spectral imaging/image division system is limited
Y the silicon LCL7 (400 nm to 1100 nm). As indicated above, it may be possible to
eXteTd th spectral range of the silicon device into the 3- to 5-jM region.

The Dynamic Range of this system is limited by the Si-LCLV, which is typically

. An imoortant advantage of :his optical processing system is that the output
71'j,) is presented by a coherent light. This enables a straightforward use of
[--a' post-processing (e.g., ratio image correlation).

The Spatial Resolution of this system depends on the spatial frequencies
" roved, as weL as on the .- LCLV p,,rformance. Taking Fo - 25 cycles/m at 30%
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* modulation as the current performance of the Si.-LCLV, and using the two carrier
frequencies, as: Fo/4 and 3Fo/4, it is found that over 500 pixels of resolution are
available using the 43-m aperture device, with AF - FoI2.

Application of the CCD-LCLV to Systolic Array Processing

Optical numerical processing offers a unique application of CCD-addressed
LCLVs. For high speed, an optical numerical processor muist utilize spatial
parallelism. A two-dimensional data array offers great parallelism but can entail
significant addressing problem. If, however, data could be entered a line at a ti
and be made to march across the LCLV at the chosen clock rate, a single N x 1. CCD
line could address a full N x N data array. The use of moving electronic data in a
plane for such numerical operations was popularized as "systolic array processing"
by Kung (ref. 15). The first extension of systolic array processing to the optical
domain used one-dimensional transducers (acousto-optic delay lines and CCD
detectors) in direct analogy with VLSI transducers (ref. 16). Recently, Bocker
et al. (ref. 17) proposed the use of optics for systolic array processing in three
dimensions, which electronics cannot do. Their Rapid Unbiased Incoherent Calculato
cube (or RUBIC cube) uses two electronically addressed spatial light modulators to
move components of matrices A and B across the spatial light modulator at certain

* clock rates. One possible configuration is shown in Figure 9. Because two pixels
are needed for real-nuamber representation, we can multiply the two (N/2) x (N/2)
matrices together with the RXIBIC cube in (N-1) clock periods. The cube's abilityt
multiply very large matrices very rapidly with low power consumption should make 01
RUBIC cube very important. To use the CCD-addressed LCLV for the RUBIC cube, one
must use an external buffer memory which will feed the CCD-LCLV with one line/colua
displacement in each frame. Alternatively, it may be possible to modify the
structure of the CCD-LCLV to incorporate an internal buffer memory. This will
enable the line/colo clocking operation required. This possibility, although not
a simple t-sk, may also be desirable for other applications of the CCD-SLM.

0
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TABLE I.- PRCTECT= SPECIFICATIONS OF THE Si-LCLV-BASED

FOURIER TRANSFORM SPECTROPHOTOMETER/ CORRELATOR

1. VISIBLE RANGE: 400 rim < ( 1200 rim

E BANDWIDTH: af - 16,700 =-l

NO. OF RESOLUTION ELEMENTS: N a 100 X 100

SPECTRAL RESOLUTION: 6f -1.67 crn1

* MAXIMUM "STROKE": dDMAX = 1165f -0.6 cm

"ROUGH" STEPS: 6DX 0.6 crn/100 - 60 urn

"FINE" STEPS: t5DY 60 wm/100 - 0.6 urn

2. 1.5-urn TO 4.5-urn REGION

BANDWIDTH: Af - 4440 cm- 1

NO. OF RESOLUTION ELEMENTS: N - 100 x 100

SPECTRAL RESOLUTION: 6f - 0.44 =-

MAXIMUM "STROKE": 6DMAX 1/0.44 - 2.27 cm

"ROUGH" STEPS: Sdox - 227 urn

6

"FINE' STEPS: 6D 2.27 urn

STEPS DIMENSION (BOTH CASES) =0.5 mm x 0.5 nmm FOR 50-mm APERTURE

1

I
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Figure 3.- A joint transform-based image correlation system
using CCD-addressed and photoactivated devices.
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Figure 4.- An imaging/scene correlation system using the
silicon liquid crystal light valves.
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Figure 5.- Intensity level slicing of an image using the VGM modulator.
The I - 12 level is reproduced at the output.
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Feedback methods for optical systolic and engagement matrix
processors

H. 1. Caulfield and ]ohn Gruninger
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l'ht maiming I tie i eIbdck :rcuitrv to the pokidi .y;,toilc !)r engagement proteisor permits simple pipehning

i stati.narv iterative .tiirllims a well as in the 1lv icale adjustment simlIar in effect to filoating-point calculs-

toofl

Once a suitable stationdry ,terative aigorithm is cho- x = A- b. (4)
sen. an optical systolic ir engagement matrix algebra
processir c'an be used to perform a useful operation, We write
such as solttion of .\ linear equations with .V unknowns, 4 = L + D + U, (5)
-ongular value iiecompiisition. and eigen problems.
Most past work has been either m ilgorithms '. or in where L and Uare lower and upper triangular matrices,

processors. Here we seek it) complete the analysis respectively, and D is a diagonal matri Inserting Eq.

v n- showing bow the processor arid iieelack circuitry (5) into Eq. (1) and rearranging leads to

can be combtined to achieve pipelined ,ter i.e svstolic x = -D-t'L + U)x + D-b. t6)
pr, tessing ii e . :a feedback data riw mat.-hed to the
pr,,it--r input. nottput data tView t- ,Iwdiwn of From this we obtain

the procesr is required; <[hat '. ,ht. ifeedback etec- Ki K +  
= yiK) + C, (7)

:*- irmli's that inpietnen s the tter.tw- mui ne matched
to the matrix processor We si, .v i nat Auc electronics where
can aiso adjiost the scale if the j:r.,1:em during each viK) = BXK )

cycle In such a way as t) ass.i., - un; ,Ise of the dy-
namii' range ,f the svstem Tws optical processors can B = -D-Ii. + U),
,itierite in a n, neric;ii n,(i, 'nai - neilther integer
t tiixd point or no ,atlun , p ), ti.t niuch closer ti the e = B b.

avtr itn,3 m h -i,,r, ,'. .t, 'i. rn-,-r Cilearlv. Eqi I has the form of Eq. 12). For many
W'e t' iiir.iaer . n li..! trix a rne.i,,rs i ,i uleiat, problems,

rlit extensi''ii to nutmrx iItil:.. : , s is .traight-
rward In i sst, ir ,.ngielni, processoir f,r the lim x 'K  

= x, K ( 8)
-'i, nit 'i ,nA necessary and sufficient condition is that the spectral

-1 X = b. radius of B be less than one." ) Again, this is just an
example for definiteness. Many other stationary iter-

x , ip,,nor>'> irk, .:ip, ' e,i:ent,a inl ,alter i aive algorithms for this problem and for other prob-
-rI ill i 'litt, - I .pli)te'l e the b iimpinents lems. e.g., the eigen problem, exist.
irt. ,nC J e) , iii,. F,,r , i i ni,ided optical An engagement processor produces the components
.'.,'.,:eoe fl, n~ ri x '. ',,r :,r,,, ,ir. the first b co of x' K1 in sequence. To) obtain the ith component,

,loet -.. -itt ,i ciir:n-, tie .ime , iock per.,m ;n we require the following: 1 1) a sequencer that puts the
t• .n he h, t X) xi, m~pnetit ;-, ntero. It tcro i, ., h.e proper ., 'K signal ithe one just completed) into the
S... , ).. "t ,wn. :no, t :r-,, ,t )-p..iett )it the new iterati,,n adder. 12) a sequencer that puts the proper c, into the
* x I . t-il;l,tl turuitg 'h -anue clock inr adder. :I) an adder of ,./ ' and c. and 14) whatever

n:I, .e , t, i,,n mwit ne- , , r . ti a amplifier may be needed to insert .r' K-t+ into the ma-
. trix multiplier. Figure 1 shows the system schemati-

i-ally Note that inlkone adderand only vne amplifier
are needed

.=ir.. , ()ne prioblem remains, scaling. Let us define MK,
as the magnitude- tof the largest component of xK '. Let

, - ' ir, '.- ". . 1,, a -efine %I ;v.. the maximum valu that a compo-
..- ;iir - r;r, r:' :.noi. I. fr - I-t f x co iI. t a. slime and 'till be reprer tnted. I'suallv

.;Ik: r .r, ,- i i <,.. : t. .. - ir x the cuimpiunents (4 x are represented hy transmissions,
li t ie f.I , I l : to' i

t 
A i n' ',t i,r H t
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Fig. t. Implementation ofx' = BxA 1- + c with an optical engagement processor. The h,,'s
are the components of the B matrix.

M = 1. (9) nents individually. A generalization of the above
If M"k ' << M. the system accuracy is poor. If MIKI > scaling method will permit a floating-point calculation
M, the input saturates and accuracy is poor. Clearly, on all components of x. We rewrite Ax = b as
gtd accuracy requires that MIK :: M. Unfortunately AS-ISx = b
we do not know M.4,K until after it is calculated. The
best that we can do is to use M' K - 1 to approximate and multiply on the left by S:
MA"K and scale the input to aim at , = xM, where (SA.-4S)Sx =Sb, (l1
a < 1. We might choose a = ().9. We then set the
amplifier to feed back not xiK11' but sxLK+1, where where S is a diagonal matrix that is used toscale x. The
s is a scale chosen to gi',e ,i "  aM. Here we are diagonal element S,, scales the ith component of x.
using the fact that, if Ax = b, This matrix also scales b. If all the diagonal elements

of S are equal, that is. if S is the constant matrix sl, then
A .(sx) = sb. (no) this approach simplifies to the previous one. Thema-

trix G = SAS- 'is similar to .4. It has the same eigen-
To find x from sx we will need to rememher the last s values, determinant, and condition number. The
used. It may happen that, despite the fact that s < 1. condition number gives an indication of the size of
the next M 'K ' is equal to one iindicating probable sat- uncertainties generated in the solution vector x from
uration). In that case we apply in the next iteration a uncertainties in the elements of A. The size of the
smaller scale. These improvements require more uncertainties in x is bounded by the condition number
electronics than the simple system of Fig. 1, including times the size of the uncertainties in A. The transfor-
some memory [as it uses iterations of the form of Eq. mation to G causes no change in the conditioning. If
3)]. In this regard the logic is similar to that of using S is the constant matrix sl, it commutes with A, and Eq.
Kalman filtering in control systems. 4 11) reduces to Eq. (10). The matrix S can be changed

What we gain is adaptive scaling. If we can divide the at each iteration to scale x.
output into , ie~eis ot spacirL M,' N. the full NI dy- We define
namic range s ava.ilabie a: tration K only if KA '
V, .o far as 14 e t'e aaptive staling makes this vK SKxK (12a)
afloating-point a;culati,,n. Al ,thv components of as the scaled solution vector after the Kth iteration
x are not calciulated with equal accuracy since only one and
scale is us 5d for x and it is hosen to be optimum for the
large't-magnitude cw)mporent of x. w(1StxK+i il2b)

The c,?mponents of x now appear to be calculated :n as unscaled output vector after the k + I -th iteration.
floatinu point. nfortunately, this is not the case. Further defining
Only the maximum compoment is calculated by a true
floating-point method. While ensurnin that the largest 1= KBSK) ,12c)
component remain close to but less tyian M. this ap- nd
proach can reduce other compments to be much less
than M. We seek :i method that w-ll scale all cmo, cA D- KI 412d)

N- i
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leads to the generalization of Eqs. 16i and (7). For the formed from time to time, a computational burden of
Kth iteration the two-step process is to find wr *

1 as 2N-' multiplications. If the simpler form is used, in

"- I
K  = P;KVK + cK (13) which all scale factorsare the same, then G = A,A = B,

and no additional computational burden is requireht.
and then scale w" K + to find S K + I and vK + 1 . It is clear that, to the extent that the dynamic range

The matrix [3K is similai to B. It has the same ei- of both the given problem ard the given hardware per-
genvalues as B. In particular, the spectral radius of AK mits it, floating-point optical systolic and engagement
is equal to that of B. Therefore the convergence processors are feasible.
properties of the method using Eq. (13) are the same as
those obtained from Eq. 6). In principle, the method This research was supported by U.S. Air Force con-
ailows P to be updated at each iteration. If N is the tract F-9628-8,--0-,,.
dimension of tne problem, this update requires 2N 2

operations. However, far fewer updates may be re- References
quired. If w is not saturated or if none of its elements
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