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ABSTRACT

At the beginning of this contract both we and the rest of the optical
community imagined that simple analog optical computers could produce
satisfactory solutions to eigenproblems. Early in this contract we improved
optical computing conceptually and tested it experimentally. This demonstrated
that high accuracy required digital optics. This led us to explore digital
optical systolic array processors., Here we made sufficient progress to guarantee
that the original contract goal (the use of optics for fast, accurate eigen
soiution) is now perfectly practical and to show that the hoped-for advantages in
size, cost, and power consumption relative to equally fast electronic computers

should be obtained.
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1. CONTRACT BACKGROUND

1.1 Background on Eigenproblems

The simplest eigenproblem can be stated in the form

Ae, =1\.e (1-1)

where

31 %2 %

821 322 2m

A= . . N (1-2)
anl anz ) &mn
(ey)y
(ey)y

e =l - , (1-3)
.(ei)n

and Ay 1s a scaler. The vector 31 1s called an eigenvector and the scaler
Ay is called an eigenvalue. We will deal almost exclusively with the m = n

case.

We must make two observations about eigenproblems. First, they are a
special case of a more general and powerful matrix analysis technique called

singular value decomposition or SVD. We will deal with SVD as well in this
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report. Second, eigenproblems are of vital interest to the Air Force for several
reasons. We note, as an example, how to use eigen solutions in antenna array

processing.

In the selected example the antenna element weights (i.e., amplitude and/or
phase adjustments) are to be found that steer a static multi-element antenna so
as to maintain maximum signal-to-noise ratio (S/N) reception. As shown in Figure
1.1, each of m antenna elements receives (at a given time) a signal and a noise
contribution, and these generally complex contributions form the m dimensional
signal and noise vectors $ and 3, respectively. Each antenna element is
connected through a generally complex weight, and these weights form the vector
Ww. Note from Figure 1.1 that the weighted contributions from all antenna
elements are summed to form the output (complex) signal whose S/N is to be
maximized. This S/N may be expressed as shown in terms of the time-averaged
squared moduli of the signal and noise parts of the output signal, and the
resulting expression may then be reduced to the indicated eigenvalue equation.
The matrix (in brackets) in this equation may be expressed as shown in terms of
the time averaged outer products R, and Rgg of the noise and signal vectors
respectively; these vectors are known from measurements on the unweighted output
of each element. Thus the eivenvalue equation may be solved, and the eigenvector
associated with the dominant (or maximum) eigenvalue will give the weights that
maximize the S/N.

A computer simulation of the method that would be used by an optical
systolic matrix vector system to solve the eigenproblem described above was
carried out. This simulation required the specification of certain signal and
noise statistics 1n accordance with practical expectations. Discussions with
RADC experts familiar with such expectations led to the selection of a m = 128
antenna element problem with an average S/N on the order of unity at each
element. A bimodal signal distribution across the antenna elements was selected
so that Rgg = 3'5'T + 3"8"T, where the logncrmal distributions ;k ~
(1/k) exp [=(1n k = u)?/(26%)] and &} = 87,0 .
?/2), 647 = (exp o® - 1) « exp (2u + 0?), &) = 1, and k = 1, 2, ..., 128.

were used with 64 exp (u +

(5]
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3 The matrix R, was selected to correspond to uncorrelated Gaussian noise so
that R = T 4 °§I' where Ek =1 =1, o§ - E(;& - Eé), and I is the identity

matrix. Explicit matrix inversion was avoided in forming the eigenvalue equation

3
*i matrix M = R~1 R by using the expressionl“
nn ss
R;i =t op @I ol + 3T 07 By , (1-4)

where D = ciI. Note that M 1s a real, symmetric, positive definite matrix which

va' -

will therefore have a set of real, positive eigenvalues. In general M and the
weight eigenvector will be complex, but this case may be divided into separate

real-part and imaginary-part eigenproblems of the form described above.

——
at

The computer simulation used the same power method that would be used by a
typical optical systolic matrix vector system to obtain the eigenvector
4 solution. The power method iterates matrix-vector multiplication operations, and
! the simulation determined that N = 35 such iterations were required to obtain the
dominant eigenvalue and associated eigenvector of the 128 x 128 matrix M to a

precision of 10~ . The total time required to perform each matrix-vector

multiplication iteration is, according to Table 1-1 and the discussion
approximately Tp = 23 pus. At a 100 MHz clock rate the initial matrix input
time is the time required to read in the 128(128 + 1)/2 symmetric matrix elements

or approximately Ty = 83 ps, the final weight eigenvector output time for 128
vector elements is T, = 1.3 us, and the test for convergence time is T, =

0.01 ps. Thus the total OSAP system eigenvector solution time 1is approximately
T =Ty + N(Tyy + Tc) + T = 0.89 ms. Note that the basic block-floating-

point computation rate is approximately 2n,/Ty = 2 (128)2/(24 us) or about 1.4
GigaFLOPS (1.4 x 10° Floating Point Operation per Second).

The same eigenvector solution could be obtained by a state-of-the-art 5
MegaFLOPS all electronic board level array processor. In this case the matrix
input and elgenvector output times would remain approximately the same, but the
matrix vector multiplication for each iteration would require, in general, 2n? =

2(128)2 multiply and add operations. Since each operation would require 0.2 ys

e
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at the 5 MegaFLOPS rate, the total matrix vector multiplication time would be
approximately Ty = 6.6 ms. Thus the total non-Optical Systolic Array Processor
(0OSAP) system eigenvector solution time would be approximately T = 35 (6.6 ms) =
230 ms, which is about 250 times longer than the Optical Systolic Array Processor
(OSAP) system solution time estimated above. This comparison, which is displayed
in Table 1-1, does not take into account the time required to calculate the
matrix M given the vectors s and n. Assuming all electronic array processing at
a 5 MegaFLOPS rate, this time would be on the order of 13 ms since the equivalent
of roughly 4(128), multiply and add operations are involved in the calculation

(which, as mentioned above, does not involve explicit matrix inversion). Thus

Table 1-1 - Optical Systolic Array Processor System Application Example
Performance and Comparison

All Electronic Board
OSAP System Level Array Processor
Symmetric matrix 83 pus 83 us
read-in time
General matrix-vector 23 ps 6.6 ms
multiplication time
Dominant eigenvector 1.3 us 1.3 us
readout time
Total eigenvector > 0.89 ms 230 ms
Solution time*
Typical arithmetic 1.4 GigaFLOPS 5.0 MegaFLOPS
operation rate
*Includes read-in and read-out times and the time to execute the 35 iterations
required to obtain the 129 eigenvector elements to a precision of 107",

even {f the M matrix calculation time is included in the comparison, the OSAP
system soiution time 1is still much less than the non-Optical Systolic Array
Processor (USAP) system solution time. A separate Optical Systolic Array

Processor (OSAP) system calculation of the M matrix could also be carried out, in
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:.l which case the Optical Systolic Array Processor (0SAP) system eigenvector

solution time would be at least two orders of magnitude less than the non-Optical
s Systolic Array Processor (OSAP) system solution time. Hundreds of all electronic
! . board-level array processors working in parallel might match the Optical Systolic
ii Array Processor (OSAP) system computation speed, but only at considerable expense

in size, power consumption, reliability, etc.

The specific adaptive antenna array processing example considered above
clearly shows the potential of the Optical Systolic Array Processor (QSAP)

" system. In some applications (e.g., future millimeter wave adaptive arrays on

tactical aircraft) an antenna array steering time for S/N maximization of less

than 10 milliseconds may be required for arrays of more than 100 elements. The

3 Optical Systolic Array Processor (OSAP) system would be of unique value as an

enabling technology in such cases, and there is little doubt that an operational

- Optical Systolic Array Processor (OSAP) system would have a similar enabling role

; in a broad range of other applications.

1.2 Precontract Background Eigenproblem Algorithm

A group of optics workers from Aerodyne, Stanford, and Georgia Tech.
published the first paper on optical solutions to eigenproblems (Appendix A).
This paper led to this contract as well as to much research elsewhere on the same
and related subject. The basic idea 1is extremely simple. We start with any
vector X;. We can show that the set of n eigenvectors {31} forms a complete

set, so we can write

.)
+a e +o--+ane . (1_5)
Calling

% ) -Aim (m=o0, 1, 2, ...) , (1-6)
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we have

>

¢ e . (1-7)

m m » m
im-al;\l +a, Ny &, e ta_ AL &

Clearly (except for the case of degenerate eigenvalues dealt with in Appendix A

and elsewhere in this report) for large enough m we can approximate

EY

m
Xm =a A & , (1-8)
where

) > () (1-9)

for all 1 # k.

That 1is, by raising all of the elgenvalues to successively nigher powers we
reach a point at which one eigenvalue dominates. Hence this is called the power

method.

Usually we set
e, =1 , (1-10)

where the superscript T indicates transposition. Having Zk, we find Ay using
Eq. (1-1).

1.3 Precontract Status of the Optical Matrix Processor

The optical processor we conceived of using was the Stanford processor

(Appendix B). The reason was very simple: there was no alternative. The
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Stanford processor was the beginning and the prototype, but it {s clear in

retrospect that its two major drawbacks were
1. Totally analog operation and hence very limited accuracy and

2. The necessity of using a two-dimensional spatial light modulator to
allow changing of the matrix.

1.4 Precontract Goals and Approaches

The explicit overall goal of this contract was to use optical methods to
solve efigenproblems rapidly and with "sufficient accuracy.” Naturally we held
closely to that goal.

The precontract approach was to implement the algorithm of Subsection 1.2 in
the processor of Subsection 1.3. As we began to do this, we found that both
approaches essentially guaranteed failure to meet the overall goal. Accordingly
we set out to improve both the algorithm and the hardware. Both were
accomplished, and we can now show that extremely useful optical eigenproblem

solvers can be constructed showing advantages in

o Size,
o Welght, and

o Power consumption

over electronic procesgors havirg th: same extremely high speed or, conversely,
advantages in speed over electronic computers of the same size, weight, and power

consumption.
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2. REPORT APPROACH AND RATIONALE

A great deal of productive work was done under this contract. Therefore,
telling the whole story as a continuous narrative runs the risk of hiding the
coherence of the effort. Accordingly, we have chosen to relegate to appendices
detailed discussions which were either published or prepared for publication
under this contract. The text, therefore, serves as a comprehensible guide to
and through these various individual efforts and concludes with an attempt to tie
summarize of these efforts as they relate to the contract goal is ennunciated in

Subsection 1.4.

10
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3. PROBLEMS WITH THE PRECONTRACT ALGORITHM AND PROCESSOR APPROACHES

3.1 Algorithm Approach

Early in the contract we noted several major problems with the power method

,Vr'—.f'!

as described in Subsection 1.2. We summarize these briefly here. First,

: convergence might be very slow. Suppose the two highest eigenvalues are A(l+e)
a and A, where 0 ( e < 1, Clearly convergence is not achieved until the iteration
m in which
[A(1+e)]™ > [A]" (3-1)
or
(I+e)" >> 1 ., (3-2)
We have
(1+e)™ = 1+me . (3-3)
or
m > l/e . (3-4)

There 1is reason to believe that we may not need m = 10 or more. Even the speed
of optics might not overcome this disadvantage so well as to make it superior to
electronics. Second, the original approach (Appendix A) did not include a truly

satisfactory way of finding eigenvectors beyond the first one. The general

11
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problem is called deflation -~ removing all previously-calculated eigenvector

information from the problem.

3.2 Optical Processor Approach “

The two drawbacks of the original Stanford processor for the goals of this
contract were noted in Subsection 1.3. Here, we want to discuss in more detail
why analog processing must be abandoned. For any processor we can argue that the
solution obtained, while an inaccurate answer to the problem posed, 1is a
perfectly accurate solution to another problem (an inaccurately-posed problem).
Following this line of reasoning, mathematicians have been able to cast most
linear algebra accuracy problems in the following manner. The average error in
the answer, e(x), is related to the average error in the calculation itself,

e(c), by

e(x) = cond (A) e(c) , (3-5)
where

cond (A) = “"condition number"

of the matrix. The condition number is the ratio of the largest to the shallest
eigenvalue. Ih the case of antenna arrays with jammers in the field, the
condition number of the matrix of interest can easily be 106. On the other hand
the calculation error of a super analog optical processor might be e(c) ~ 10~2.
This suggests that the results of optical eigenproblem solvers might be
essentially meaningless. This is why analog electronic computers have been
largely abandoned in favor of digital electronic computers. This 1s also why we
too soon abandoned analog computers in favor of digital ones. Optical digital
computers will be slower and more expensive than optical analog computers, but we

have no alternative when solving eigenproblems optically.

12
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4., A DIGRESSION ON ANALOG OPTICAL COMPUTERS

While considering and rediscovering these concerns with optical analog
computers, we developed a totally new way to use analog matrix processors. This
new approach offers significant speed and convergence advantages over methods
borrowed directly from the digital computer literature. We do not belabor these
advantages here, because we hiave now abandoned analog methods for this problem.

Our work in this area 1is shown in Appendices C and D.

13
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5. ALGORITHM IMPROVEMENTS

Having noted the problems with the precontract algcriihm in Subsection 3.1,
we now describe our successful efforts to solve those problems. The convergence
was accelerated greatly by going to another type power method. We explain it
crudly here and in much more detail in Appendix E. The explanation here will be
in terms of matrix-matrix multipliers but we show in Appendix E that much the

same advantage can even be extended to matrix-vector multipliers.

A matrix can be expanded in terms of its eigenvectors. The eigenvectors

themselves are orthonormal, i.e.,

T 1 1f 1 = }
e

ei j = 61j = {

. (5-1)
0 1if 1 # j

The outer product of a single eigenvector is

GDEY,  CPEYD, - B @Gy

+ +» T +> > > +> »> >
ei ei = (ei)Z(ei)l (ei)z(ei)z"‘ (ei)z (ei)n (5-2)
> > > + > »
(Cpale)y  (Bp(edy on (), (&)
We can write
» T + + T » » T
A = kx e, e, + AZ e, €, + .. + Kn e e, (5-3)

14

. . Lt e . PR . - Lt
s - - . M . Te et

. . . . . - . . - - . -
.- .. . . - PR (SR . . L - ettt . .. .
L ORISR A teat a B e I AT GRS WU, PR WS WS W W WAL AR, IR WA WD U L. W S LU WA W WIS WOE QA W g S W

Bl i "R A i AN/ A B A S St A A A el |




. O " A "R B "R T "R e e ‘il Wit taul S el Nl M B Nadh M L S Bl Sl S PN A BN S Sl Y N SN ML AN P e

We now evaluate A2, It will contain "homogeneous” terms like

@ eh @ eh-2 @t ]’ (5-4)
and “heterogeneous” terms like

@ 8D @eh =8 @t 1.8 =0 (5-5)
Thus

A= Af . EIT + }\i ¢, EZT + ..+ xi e, enT . (5-6)

Squaring again we get A“, etc. After m squarings we obtain

2" 2ms >T . 2% » m
A N] € € tA & & + ...+ e e . (5-7)

-
N
+
+
I-!

Thus, for example, 10 squarings leads to raising the )\ 's to the power 1024!

Thus the convergence has been improved tremendously. Of course once we conclude

S Y zk , ‘ (5-8)

we can extract Ek by, for example, projecting along either the rows or the

columns.
-
o The other problems with the power method were also successfully attacked in
»‘ . Appendix E, but the required explanations are too tedious for the text.

i5




IR A A Ca S A e el e e e T e—— Sl A A WA el e A a3 T

In the process of working on this matrix squaring algorithms, we also made
some important observations and innovations regarding Singular Value )
Decomposition (SVD). This work is shown in Appendix F and will be referred to in

more detail later. #

16
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] 6. ACCURACY ISSUES

As noted in Subsection 3.2, the major non-algorithm issue in accomplishing
the contract goals is accuracy. We have attacked the accuracy issue in several

ways. We examine these complementary approaches below.

6.1 Matrix Reconditioning

This is an important but rather subtle method suggested in Appendices E and
F. The basic idea 18 rather simple. There may be a way to replace A by an
"approximate matrix” A' such that, for the given calculation accuracy, we get
closer to the true answer by using the less-accurately-posed-but-better—
conditioned matrix A than by using the more-accurate-but-worse-conditioned matrix
A. As an "existence proof” we showed how to remove a singularity from A;
converting an unsolvable problem into a solvable one! We show here only the

basic ideas.

The SVD of A can be written

T T T
A= 8 VI Vl + s, VZ 72 et Vn V“ , (6-1)
where, by convention,
8, > B, D ve. ) 8 , (6-2)

The scalar sy is called the k+h/ singular value and V) is called the k+n/
singular vector. For symmetric A, Egs. (5-3) and (6-2) are equivalent. Oune of
many interesting properties of the SVD is that, in a meaningful and well-defined

sense, the best ¢ < n outer product expansion of A is

Tt e . NI L. . L Lot 3 .
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A -5, 61 §2 +s, Vz 62 * o ts, Vl Vl . (6-3)

Furthermore, the “"goodness of fit" is given by

(@) _ .2 2 2 2 2 2 _
G (s1 8, ..+ Se)/(s1 +sy+ ...+ sn) . (6-4)
It appears reasonable to choose g such that
¢ ~ (o) . (6-5)

All of this is quite reasonable and, unfortunately, usually impractical.
The reason is that the SVD is seldom given and is very difficult to calculate -
usually much more difficult than the eigenproblem we set out to solve. Hence we
set out to invent an Approximate Singular Value Decomposition (ASVD) method which
is

o Very easy to calculate and
o Leads to an approximate matrix which is between the original matrix A
and the optimum approximation A(),

The ASVD 1s discussed in Appendix G.

6.2 Digital Optical Processing

Aerodyne did not invent optical digital processing, but it has made some
advances in this area. The history of this field is described in Appendix H.
The basic concept is to encode a digital number by a string (in space, time, or
both) of analog signals. By a judicious encoding we can achieve high overall

accuracy without overtaxing the dynamic range of any analog channel.

Aerodyne's contribution to this effort in this contract was to develop an

arithmetic well suited to optical digital computing. In optics, since we are
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using analog channels, there is no a priori reason to restrict ourselves to radix
2 numbers. With binary numbers only, one extra digit is needed to carry the sign
information which converts a non-negative amplitude (e.g., 16 bits) into a real
(positive or negative) number. In any other base there appears to have been no
way to do this same thing. We have 1nvented a new arithmetic which (a) solves
the problem and (b) reduces to the known result for binary numbers. Details are
glven in Appendix I. Here we simply illustrate the result for decimal (radix 10)

numbers in the range -99 to +99.

For a positive number, e.g., 5, we write

+ 5 « 505

where 5 is the sign digit which can be any of the following digits: 0, 2, 4, 6,
8.

For a negative number, e.g., -8, we first complement the magnitude (subtract

it from 100) to obtain 92 and write

n = 592

where 5 = 1, 3, 5, 7, or 9. All 5 values are equally valid.

We now show side by side ordinary decimal operations and operations in the

new arithmetic

+ 8 208
+ 3 +603
+11 811
v
+11
19
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6.3 Floating Point Operation

Simple fixed point arithmetic as conceived of in all other optical digital
computers will probably be inadequate for many Air Force needs. Like their
electronic counterparts, optical computers need floating point operations. Under
this contract, Aerodyne devised the only two floating point systems yet proposed
for optical computers. One method (Appendix J) computes magnitudes and exponents
independently and accumulates magnitudes on exponent-determined detectors. The
other method (Appendix K) uses a simultaneous spatial encoding for the same

purpose.
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7. HARDWARE CONSIDERATIONS

The interest in optical systolic array processing developed around the
country in parallel with the work on this contract and, in fact, stimulated by
the work on this contract (see Appendix H). On this contract "only" one new
hardware approach was developed and a new way of using electronics in iterative

linear algebra problems was described.

7.1 The RUBIC Cube

Invented under this contract in the course conversations with employees of
the Naval Ocean Systems Center, the Rabid Unbiased Bipolar Incoherent Calculator
(RUBIC) cube is a fully three-dimensional systolic matrix-matrix multiplier
(Appendix L). The basic idea 18 to use two CCD shifting spatial light modulators
(as made by Lincoln Labs. or as could be made by Hughes) to move two-dimensional
data in such a way that the proper data are registered on proper detectors at the
proper time. As the proper two-dimensional spatial light modulators were not
available to us, we simulated the RUBIC cube with moving masks. That is, the
problem was not that the needed components were too expensive or impossible.

They were simply not available for sale or use. Indeed, working with Hughes, we
showed that they could be built (Appendix M). Moving black and transparent masks
allowed us to test the other hardware of a RUBIC cube. We tested squaring (the
key operation in eigen solution as previously noted) for a 64 x 64 tridiagonal
matrix of 1's along the diagonal and neighboring elements and 0's elsewhere.

That is, the matrix is

21
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32
A
4 g <
1 10 . . . . O
1110 . . .0 7~
o 1 11 . . . O )
A= « e e . . 32 . (7-1)

These data are rearranged so that the left-to-right flow follows Figure 7.1 and
the up-to-down flow follows Figure 7.2. The 1's are the clear (white) regions
while the 0's are black. Figure 7.3 shows the two data sets immediately before
they enter the region of the detector array and before the first light pulse.
The first data pulse involves some overlap as indicated in Figure 7.4. The
second pulse involves more overlap as shown in Figure 7.5. At the end of the
second pulse, the (1,1) component of A? has been computed. The overall result
should be

2 2100 . . . 0
2 3210 . . .0
1 2 3 2 1 . . 0
01 2 3 2 . . 0
A2= 10 0 1L 2 3 . . . O (7-2)
.o 0
0 0 0 0O .2

The question we examined is light source and detector variability effects.
We found that we could not approach 12 overall uniformity in lighting without
diffueing the light so badly as to be quite inefficient. Relief by photographic
precompensation is clearly possible. We believe, however, that independent a
posteriori gain control on each detector is the proper approach. For an NxN
detector array at most N at a time must be read out; 8o sequential switches, N
amplifiers, and N circulating memories can accomplish this. It follows, as well,
that the same mechanism can correct for typical nonlinearities (a few percent) in

detector arrays since the number of possible "true detector values” 1{s quite

22
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Figure 7.3. Immediately before the data enters the region

of the detector array, the detectors see no
signal as indicated here.
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Figure 7.4. On the first data pulse a 'l' is received
from both data matrices in the (1,1) position
on the detector array.
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On the second pulse 4 detectors receive unit
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small. We conclude that digital optical implementation of matrix squaring {s
quite feasible with components which have not but could be built. The speed,
cost, size, and power advantages relative to current supercomputers make this

appear quite worthwhile.

7.2 Iterative Algorithm Operation

Two basic types of algorithms can be devised for problems such as least
squares, matrix inversion, and eigenproblems: iterative and direct. The power
method we have chosen is an iterative method. Direct methods require a foreknown
number of cycles but (unlike the iterative case), direct methods require full
accuracy in each cycle. Thus it is not clear a priori which will work faster
since the iterative schemes can use fast analog electronics (not of digital
accuracy) in the loop. Thus iterative schemes require more cycles but the cycles

can be faster.

Under this contract we worked out the feedback logic for iterative methods
in general (Appendix N). 1In the power method one nonlinear step is required in
each cycle: a renormalization to keep the result from growing either too large
or too small. The Aerodyne approach, among other things, describes what may be
called a "lagging renormalization” method which allows each digit to be

renormalized and recycled in the same clock time in which it is generated.

28




8. CONCLUSION

This contract began with an inadequate algofithm to be implemented in an
as-yet-unspecified manner on slow, inaccurate, aqalog optical hardware. It
concluded with a vastly improved algorithm which can be implemented by
well-defined methods on highly-accurate, digital optical hardware. The need now
is no longer to determine what to do but to do what we have already learned how
to do in principle. Significant advantages in speed, size, cost, and power

consumption over electronics should result.
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PRE-CONTRACT STATUS OF OPTICAL EIGEN
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Eigenvector determination by noncoherent optical methods

H. J. Cauliield, David Dvore, J. W. Goodman, and William Rhodes

An iterative method for finding the eigenvectors and eigenvalues of a matrix via incoherent optical matrix-
vector multiplication and simple electronic feedback is described.

i. Introduction

A variety of methods have been developed for doing
certain simple matrix operations, e.g., multiplying a
matrix by a vector, using optical methods.!> These
methods are of interest because they perform all or most
of the required operations in parallel and thus poten-
tially offer extremely high speed. More complicated
matrix operations are as yet extremely difficult to carry
out by optics. The finding of eigenvalues and eigen-
vectors of large matrices is quite difficult and slow by
digital methods. Of course, the matrix of eigenvalues
can be used to invert the matrix, so solving the eigen-
value problem is tantamount to doing matrix inversion.
An iterative approach to matrix inversion has been at-
tempted optically,? but it requires for convergence es-
timation of the largest eigenvalue. This is easily done
by forming the square root of the squares of the ele-
ments of the matrix. We offer here a matrix inversion
method of somewhat greater generality. In particular,
we will find the eigenvectors and eigenvalues sequen-
tially.

Il. Method

The proposed optical approach utilizes an iterative
method of computing eigenvalues and eigenvectors,
known in linear algebra as the power method,*? based
on the orthogonality of the eigenvectors. This method
works well if the matrix is of the real symmetric form
assumed by the covariance matrix of a real vector. This

William Rhodes 1s with Georgia Institute of Technology. Depart-
ment of Electrical Engineering, Atlanta. Georgia 30332; J. W. Good-
man 1s with Stanford Untversity, Department of Electrical Engi-
neering. Stantord. California 94305: the other authors are with
Aerodvne Research. Ind., Bedford Research Park, Bedford, Massa-
chusetts N1730
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guarantees real eigenvalues. We have no general test
for its applicability to other cases. We suppose we have
an N X N matrix M of rank N with a full set of eigen-
vectors ey, . . ., ey and corresponding eigenvalues A,
..., An. We assume that the eigenvalues are not re-
peated and that they are numbered in order of de-
creasing magnitude. Thus

ML > (A2l > o> [An=t] > AL )

As a starting point we choose some arbitrary input
vector

Vioyscier+... +cven. (2)
Multiply V(0) by M yields
Vin =cihieg + ...+ enAnen. (3)

With successive such matrix multiplications, we obtain
the general term

Vi =MV =ciMleg +. ..+ cviken. (4)
So long as the starting vector Vo) contains some of ei-
genvector e, (for which, recall, the corresponding ei-
genvalue is greatest in magnitude), the first term of Eq.

(4) comes to domination after a sufficient number of
iterations. Thus for n sufficiently large, we have

Vi = ciAfe;. t3)
Similarly, with an additional iteration, we have

Vinen = AT ey, 16)
and, therefore,
Vinen = MV, i)}

This relationship holds on a component by component
basis, and thus the value of A; can be solved for. The
rate at which the process converges is determined by the
ratio | A [/|Aqf.

If Ay is significantly larger or smaller than unityv in
magnitude, V', may become unacceptably large or
small afte- a number of iterations. and in practice we
must normalize at zach iteration to keep the vectors of

1 July 18981 . Vol. 20. No. 13 / APPLIED OPTICS 2263
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controlled size. Thus we might obtain an output after
n iterations which we normalize to U, so that |U .
= 1. Multiplving U.,, by M produces an output
W...... We normally would normalize W, 4+, to
U..+1. butif (n + 1) is the terminal iteration, we can
write

wlnd-l\z A]Um,. 18)

To check for termination we compare the values of W,
and Wi,y either on a magnitude or a component-
by-component basis. If the percentage change is ac-
ceptable, we terminate the iteration.

ii. Implementation

It is clear that we need an optical matrix multiplier
for speed with certain rapid electronic processing be-
tween matrix multiplications. Figure 1 shows the
configuration in schematic terms. The optical matrix
multiplier devised by Goodman et al. ? seems to be
ideally suited for this purpose. The feedback method
of Psaltis et al.3 is based on Goodman's method and
appears to have all the necessary components to im-
plement this scheme.

IV. Representation of Bipolar Quantities

Because we want to use nonnegative definite masks
and incoherent light, the handling of negative quantities
requires some encoding of the vectors and matrix to
achieve monopolar operation. Let the matrix be

myp . MN

M= ' 9)
mpy myy
and the kth input vector be V,. We write
M=M,-M_, (0]

where M, and M_ have nonnegative entries only, and
the convention is adopted that

Moa =0if mpn €0 man =0if mp, 0. 1

Similarly. let

Vi=Vi =V i12)
Then
Vieets = MV, (13)
or
Vi = Vi = tM* = MV VL, = Vi
= [M*V%., + MV,
~ IM*Vi ot M-VILL (14)
Thus
Vi = M*Vi o+ M-V, 115}
Ve = M*V . + MV, 18

We replace the vector Vi, of NV real components with
rew vectors

2264 APBLIED OPTICS Vol 29.No. '3 * 1 Juiy 1981

3 Coherence Convargence Elgenvalue l
Achtaved? Tast Deterwinacion
(Analog) ‘Analos)
Y
E{genvector
Eigenvalue

Fig. 1. Heart of the eigenvector analysis device is the optical matrix
multiplier. ! Analog circuitry provides the required feedback.

[\’7"1. 1N

Yo = -
lv-hn
which contains 2N nonnegative components. We then
operate on that vector by a new rank 2V matrix:

M* u-
pali ]
to obtain
Vieen
Yoen = Byu = {V" l 119}
ke

Note that neither y(, nor B has negative components,
s0 incoherent optics is quite adequate to represent them
both.

V. Finding New Eigenvectors and Eigenvalues

We suppose the first K — 1 eigenvalues and eigen-
vectors of M have been found to be \|, e}, Ao, €2, . ...
Ak-1,e,-,. We want want to find the kth eigenvalue
and eigenvector. To do this we form a new matrix:

Ll
Mo =11 /M= AD (20
el
where IT is the matrix product operator, and / is the
unity matrix twhich converts all vectors into them-
selves). We suppose M, operates on an eigenvector e
of M having an eigenvalue \. Then
e

1
Mie =[]\ =\, le 21

Thus M, and M have the same eigenvectors. Note,
though, that for e;, .. .. es-). the M, eigenvalues are
zero. Asour method tends to find that eigenvector with
eigenvalue of highest absolute value, 1t will find an ei-
genvector e;.(te;, . . ,e,—1'. Call the M. eigenvalue
for e, “Ax". Then we can tind the corresponding M
etgenvalue \,. by solving the equation

[T e =V = e A

A-3
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Fhus we van [ind 44 the ergenvectors and eigenvalues
1M sequentially

vi. Conciuding Remarks

A hvbrid electronie and incoherent optical approach
tor 1inding ewgenvalues and eigenvectors of matrices has
been proposed. The opuical hybrid appears particularly
attractive because of the extremely high speed with
which the iterative matrix multiplications can be per-
furmed.”  [13 most important potenual application
Appears to be in probiems in which the rank of the ma-
trix 1s 50 large that standard digital methods are too
siow. Accuracy required ror complete implementation
of the processing scheme depends on the ratio of the
.argest elgenvalue to the smallest (the condition number
of the matrnixi. Specifically, to find A,, all larger ei-
genvalues \;,. \», . ., \,_; must be known to within an
error of <{\,|. Variations on the method allow some
relaxation in accuracy requirements.® The power
method proposed here suffers from many of the range
and accuracy problems common to optical processors.
Fur higher accuracy we mignt use the eigenvectors de-
rermined optica.'v as inputs for a few iterations of the
digitallv implemented method. In so doing we would
utilize the optical processor for speed and the digital
processor tor numerical accuracy.

The optical matrix muitiplier proposed!- has the
capabiiity of handling multiple input vectors in parallel.
This capability should be of advantage, if used properly.
to allow for degenerate eigenvalues. If two eigenvalues

are identical, unique eigenvectors are no longer defined
Rather, any vector in a plane detined by two spanning
vectors is an eigenvector. Of course. this is extendabie
to more than two eigenvalues. We conjecture twithout
proof) that by starting with .V orthogonal vectors we can
guarantee at least .M eigenvectors for each M -degen
erate eigenvalue. This is an automatic check tor el
genvalue degeneracy as well as an automatic generator
of spanning vectors for the corresponding eigenvectors
By a Gramm-Schmidt process we can orthogonalize
those vectors and reduce them to their minimum
number M.

This work was performed under contrast F1962a.
80-C-0087, Rome Air Development Center. Deputy tor
Electronics Technology, Hanscom AFB, Mass. 01731,
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Fully parallel, high-speed incoherent optical method
for performing discrete Fourier transforms

J. W. Goodman, A. R. Dias, and L. M. Woody

Jweogrtmen at Beectrica Snginesning Stentora Univessiiy

" Stanford, Caitornia 94303

Recerved Se tember 12,1977

Anincoherent upt.cai duta-process.ng meihod is deseribed, which has the potential for pertorming discrete Fourier
transiorms ot short .enyth at rates far exceeding those afforded by both special-purpose digital hardware and repre-

sentative coherent optical processors.

We repurt here on an incoherent optical method for
performung discrete Fourier transforms (DFT's), which
has the potential for an extremely high data-throughput
rate. The DFT operation mav be viewed as a process
of multiplving an input vector f tconsisting of N possi-
biv complex-valued input samples; times an N X N
matnx 4 'the n.mth element being exp' —;2xam/N}|
o vield an vutput vector g 1consisting of the N complex
Fourier coefficients); thus we desire to perform

g = #f. (1)

Two separate 1ssues must be addressed in describing the
method of interest here: (1) How do we perform the
matrix product in a highly parallel ard fast way? (2)
How do we perform complex arit imet:c using inco-
herent {ight. for which only nonnegative and real
quantities (intenstties) can be manipulated?

To address the first issue, suppuse that the elements
of f and # are nonnegative and real. Then the system
<hown in Fig. 1 can be used to perform the matrix-
vector product  The elements of f are entered in par-
alied by controthing the intensities of N hight-emitting
dicdes tLED's) Lenses [ and [ image the LED arrav
borizontally onto the matrix mask M whiie spreading
the irght from apv single LED vertically to fill an entire
column of the matrix mask. Lens L. 1s a field lens.
The matrix mask M consists of N X N subcells, each
containing a transparent area proportional to one of the
matrix elements. Lens L, 15 a cvlindrical lenslet array,
which 15 not essential to the operation of the svstem but
which can be used to improve light efficiency. Lens
combination L+ collects ail light from a given row and
brings it to focus on one element of a vertical array of N
photodetectars.  Each photodetector measures the
value of one component of 1he nutput vector g.

To permit the multiplication «" a matrix & with
complex eiements umes a vector £ with complex ele-
ments, we decompose each of these quantities as fol-
Tow s~
frro s fiexpls i+ 9 expydr 3,

i A

w Aexpl2e + 0 exptyde 3,
Pl Py

(B3]

Coand £ each consist of N real and non-
D146 WA TR O OLARNY NG R0, 0

- e ..

negative elements, and #'¢', %' and #'? consist of
N X N real and nonnegative elements. If the output
vector g is similarly decomposed, then we find that the
overall matrix-vector product can be expressed as

g\O" }fu); 42 zHU, fi(]h
g“i = '}‘f(“ F0) .}{(21 i {3)
g\'Z) F pptle geh £

Thus, complex operations can be performed at a price
of a factor of 3 in the length of the input and output
vectors.

L Ly LyM Ly Ly
-/ Vi
L : W A JETECTORS
LEDs . . £ £ ¢ v

[y aM .
N
o ) - ; 3 >
2 Y ! .
B o v WL;—J\; 3 DETECTORS
_ED's v v v
-, [P Ly “a L,
13}
) M L3
———— _ -4 —— &
o~ -
) g
LED's £
— 2 g
¢ v DETECTORS
<, s
(c}
Fig 1 incoherent optical processor contiguration  (al.

pictonai view: thi, top view: ¢}, «ide view.
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Simple electronic circuits for producing the compo-
nents £, ' and f'*' from f exist,! as do simple circuits
for producing the real and imaginary parts of g from
g““. g.ll_ and gr_‘l_

Experiments have been carried out to verify the
abihity to perform complex arithmetic. The source was
an untiltered. linear-filament, clear-envelope, incan-
descent bulb. The 30 X 30 matrix mask used to per-
form a 10-point DFT is shown in Fig. 2. This mask is
designed so that the three entire vectors f'9', f'1' and 12

Fig 2 Matrix mask tor a 10-point DFT.

120°

240°—u {—

OQ
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are entered side bv side, whereas the three output
components £;'?, gx 1", and g, ® for the kth Fourier
coefficient appear side by side. Thus the output display
shows each DFT component as a triplet of real and
nonnegative components.

For this experiment the input functions were entered
by hand as masks placed against the matrix mask, and
output functions were detected on a 1024-element Re-
ticon CCD detector array. Figure 3 shows both theo-
retical output distributions and experimentally ob-
tained output distributions, the latter being photo-
graphed from an oscilloscope display. In parts (a) and
{b), the function to be transformed consists of the se-
quence (1,0,0,0,0,0,0,0,0,0). The resulting DFT should
be entirely real and of constant magnitude. Asshown
in these figures, the DFT components along the real axis
are all nonzero and equal, whereas the components
along 120° and 240° are all zero.

In parts (¢) and (dJ, the input sequence was entirely
real and constant. The DFT consists of a large, real
zero-frequency component (on the far right), followed
by triplets of equal strength for all other DFT compo-
nents. Some thought shows that any DFT component
with elements g,'"". g,'". and gi'® exactly equal is
equivalent to a zero result. Hence all DFT components,
except the zero-frequency component, are zero.

Parts te) and (1) show the results when the entire

Fig 3 Thevreniai v 0 erf and experimental [third). (8] DFT results
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matrix mask is uniformly illuminated. In this case,
some thought shows that the input is effectively a se-
quence containing all zeros. The output DFT shows
triplets of equal strength. or a sequence of all zeros for
the output.

A svstem composed of 96 high-speed LED’s and 96
avalanche photodiodes would be capable of performing
a32-point DFT. Commercially available components
have sufficient bandwidth, output power, and sensi-
tivity to permit such a DFT to be performed every 10
nsec. The total throughput rate for such a processor
is about 3 x 10" complex samples per second, whereas
a corresponding number for special-purpose digital
array processors is about 3 X 10° complex samples per
second and a representative coherent optical processor3
has a throughput of 3 X 107 real samples per second.

The chief significance of this processor is that the
input data can be entered in parallel, and it is this fact
that leads to its high throughput rate. Another system
recently described* performs a similar matrix-vector

January 1978 . Vol 2, No.1 / OPTICS LET. £RS 3

processor described here is especially well suited for
problems in which the elements of the input vector f are
gathered by parallel sensors. Of course, matrices other
than the DFT matrix can also be used if desired.

This work was supported by the O:fice of Naval Re-
search.
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APPENDIX C

NEW ANALOG OPTICAL COMPUTER
FOR ALGEBRAIC EQUATIONS

THIS APPENDIX HAS INTENTIONALLY BEEN LEFT BLANK.
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APPLICATION OF THE OPTICAL PROCESSOR
OF APP. C TO THE EIGEN PROBLEM
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ALGORITHM IMPROVEMENTS FOR THE EIGEN PROBLEM
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Algorithm improvements for optical eigenfunction

computers

John Gruninger and H. J. Caulfield

Prior iterative approaches to optical eigenfunction solution have at least three major proulems: slow con-
vergence (sometimes}); decreasing accuracy after the first solution; and imperfect parallel renormalization
(leading to poor use of svstem dynamic range and hence poor accuracy). We introduce new approaches and
algorithms to solve these problems. The new algorithms lead to a tight error bound on eigenvalues and an
automatic handling of degenerate or near degenerate eigenvaiues. Applications are discussed.

I.  Introduction

There has been a recent increase in interest in using
optics to perform certain simple algebraic operations! -+
and to use those optical operators to perform iterative
operations solving practical problems.>*® We are con-
cerned here with the use of optical algebraic operations
to solve eigenvector problems. Prior work®® used op-
tical vector-matrix multiplication to carry out a classical
procedure called the power method. We will review the
nower method here, indicate the three major problems
from which it suffers, and show how those problems can
bhe solved.

Let us assume that we have a full rank symmetric .V
X N matrix A. We know that A has .V real eigenvalues
N Ay, o o Ay and N eigenvectors ey, €9, . . . . ey satis-
tving

€n -8y = Oma. 1)

Futhermore e;. e-, . . ., ey span the allowable vector
space. Thus an arbitrary vector V,, can be written

Vy=a,e +aze; +,. .., +aney, 12)

where a,, as ..., ay are scalers.

Let us write
Vi = AV, [X}]
Applving A to successive Vi, values, we obtain
Vo= AV, = AV,

14}
v,

i

AV, =47V,

Since
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APgner = auAPer = Qe ey, 15)
therefore,

VpaalAXPex+43,\y’ez+. Ltanvds ey 18)

If
N> (Al (0

for m = [, the [th eigenvector will (above some number
of iterations p) come to dominate V., so for p suffi-
ciently large

Vo > ad e 1R

Of course, we recognize this condition by the fact
that

VD Voo 19}
Indeed
V, > AV, 10

We can now discuss the problems with this method.
First, the convergence can be very slow. If we require
P = 108, even an optical processor is slow. The second
problem relates to detlation, that is. finding the smaller
[As| values and the corresponding e, values. While
there are many deflation methods, most lead to answers
with decreasing accuracy. The primary problem is that
most deflation methods assume a perfect accuracy of
previously calculated results. Thus errors tend to ac-
cumulate, and very significant errors can occur for rel-
atively low values of [\ |. It is sometimes true that we
want anly a few of the dominant eigenvectors, but it
would be unwise to accept this limitation if it can be
avoided. Third. we need a fully parallel way to deal
with the normalization problem. Otherwise we lose the
advantages of parallel optical computation. The
renormalization referred to is a4 necessity forced on us
by the fact that optics uses fixed point rather than
floating point calevlations.  The vector components of
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V. may be either very iarge tif |\ | > 1V or very small
(it | \¢e! < 1. Thus we renormalize after each iteration.
Tu renormaliz: we must estimate the maximum com-
ponent and set the input so that the maximum output
value is large but not bevond the range of our optical
computer. How do we estimate that component? How
can we check for saturated components without looking
at the components seauentially and thus slowing down
operations? Besides these major problems there are
also unanswered questions on how to handle degenerate
solutions and how (o estimate accuracy etc.

Having introduced the problems with prior ap-
proaches, we move to a discussion of possible solutions
to those problems.

IIl. Convergence Problem

By reformulating the power method, we can intro-
duce considerably more parallelism in each iteration
and thus reduce the number of iterations dramatically.
For example. a problem which would have required 10%
iterations by the prior method will now require only 20
iterations. In general K iterations with the new power
method 1s equivalent to 2¥ iterations of the prior
method. We achieve this bv using the matrix squaring
method.” We brieflv explain the method as well as add
our own observations concerning the advantages of the
matrix squaring algoritnm over the power method just
described. The reader will note that matrix squaring
1s 1tselt a power method, but it operates on the given
matrix itself rather than cperating on a vector while
leaving the matrix uncharged.

The matrix squaring method for eigenvalue eigen-
vector analvsis i3 based un the spectral representation
of a svmmetric matnx:

A=EAET, b

where \ is a diagonal matrix containing the eigenvalues
of A and E s an orthogonal matrix whose columns are
the eigenvectors ot A. Thatis. “he Ath column of E is
the eigenvedtor e, assoctated with the cigenvalue \,.
The arthogonabity of eigenvectors of svmmetric matri-
ces1s expressed in mairnix torm as

BE = 87F = 12)

We use *his property te express powers of A. Writing
ATas EARE TV EAE T JEAET with n factors,

v Rk RRY

Pertarranyg the mars o m inoleations, A7 can be ex-
Dresse s

= Ve 4)

where V-t hedimer 2o of AL
Foor copemmerce we ao asoome that erzenvalues are
arlered

. Y
Forthe cose thal Ve s a1 e evener ite opgenvalitie, for

srtticienty faree o

LOTR APOLET 0T ot Je ot Tty TR

Each oiumn of A" is proportional to the normalized
eigenvector ey, each row is proportional to the transpose
e!. T,obtain the eigenvalue A}, anv column of A" can
be multiplied bv A. The power to which A must be
raiser! depends on the duminance of A,. The conver-
gence s of the order of (A, N\, If n is sufficiently
large "he rank of A" is one, and each column can he
normelized to e,.  This operation forms a test to ensure
that the eigenvalue is nondegenerate. Since the spec-
tral decomposition of A contains contributions from all
its eigenvectors, all the dominant eigenvectors are
contained in A7, Thus+the rank of A7 is the degeneracy
of the dominant eigenvalue. For a degenerate case, sav

. degencracy two, where two eigenvectors have the same

eigenyalue, A" can be approximated by
A7 = Allere’ + eqed), 117

where e; and e» are orthogonal but are associated with
Ay Each column of A" is a linear combination of e; and
e; anc hence is an eigenvector of A. However, on nor-
malizstion, the columns of A will not be identical. The
rank «f A7 is equal to two, the degeneracy of A\|. Any
two linearly independent columns of A” can be used to
obtair. two orthogonal eigenvectors of A. The clear
advan-age of the matrix squaring method is that ail the
degenecrate eigenvectors of an eigenvalue can be ob-
taine¢ at once because no mechanism tavors one over
the otners.

By actually forming A~ a useful error bound for the
magnitude of the dominant eigenvalue can be obtained.
The bounds can be derived as follows. If we raise A to
an even power, n = 2m, all the eigenvalues of A" are
positive. [ts dominant eigenvalue A} will be smaller
than its trace, which is equal to the sum of all its eigen-
values.

N N
Tra=S 47 =T A0

Here .V is the dimension of A. On the other hand, the
dimension times the dominant eigenvalue is larger than
the trace. Therefore,

AP < TrAT < NAY (RE.]

Rearranging this and taking the nth root vield

| n

|1
} (TrADL s < PN <(Tramin 119)

‘-—
RS
For n sufficiently large. (1/N)''" approaches one to
within the precision of the processor. A good estimate
of [\ is the mean of the upper and lower bounds,
[ 1\tn
= *{——\ IQT:‘:\’)"‘"'_‘. 2
Wit

' AN

with error

S R
h= == T e, 20

[V |

{t should be noted that the matrix squaring method
raises A to an even power, and hence we are finding ei-
cenvectors and eigenvalues of A” rather than A. The
esrgenvectors of AY will he identical to eigenvectors of A\

exeent o the coase where A has two rool s whinch watisgs
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A, = —=\,. In this case A” has a doubly degenerate ei-
genvalue A;.  Only two particular linear combinations
of the degenerate eigenvectors of A” will be elgenvectors
of A. When a degeneracy or an apparent degeneracy
occurs, a new eigenvalue eigenvector problem must be
solved. We use the orthogonalized linear independent
columns Ve, of A" to form a new matrix G given by

Gu = VIAV, 122)

The dimension of G is of the order of the apparent de-
generacy. The eigenvectors of G yield the linear com-
binations of the V%, which are eigenvectors of A. For
a true degeneracy G is already diagonal.

If we accomplish matrix-matrix multiplication by
sequential matrix-vector multiplications using the
columns of the matrix as vectors, we require .N matrix
vector multiplications to accomplish one matrix
squaring. If convergence requires M squarings, a total
of MN matrix-vector cycles will be needed. Accom-
plishing the raising of A to the same power by the prior
method would require 2% matrix-vector multiplica-
tions. For slowly converging systems

2M >5> 1, 123)

while M and .V may be relatively smajl. For example,
it M =20and NV = 50, we would need 20 matrix-matrix
multiplications by matrix squaring or 1000 matrix-
vector multiplications, whereas 105 matrix-vector
multiplications would be required by the prior power
method. Clearly the convergence is improved dra-
matically by matrix squaring even if the hardware is
restricted to vector-matrix multipliers.

. Deflation

Deflation remains a vexing problem in that it tends
to lead to decreasing accuracy in subsequert eigenso-
lutions. This problem is magnified when only low
precision is available. While we have arrived at no final
solutions to the problem, we suggest two methods which
may prove truittul.  The main problem is that one finds
onlv approximate eigenvaiues \; and approximate ei-
Zenvectors é; rather than the exact quantities. We seek
methods which will be adaptable to the matrix squaring
approach and for which the errors do not accumulate
as successive eigenvalues and eigenvectors are found.
The latter restriction is the most important for pro-
cessing with fow precision.  Common approaches which
can be incorporated into the matrix squaring method
include deflation by subtracrion and detlation by or-
“hogonabization. Perhaps the most obvious technique
= detlation hy subtraction in which a new matrix to use
or Tie power method s generated from A by subtract-
ing \:& & [ trom A, This approach was first suggested
bv Hoteiing.«© However, in practice. errors in both the
esiimated elgenvalue and eigenvector can lead to nu-
merical errors when the power method is applied to the
deflated matrix to obtain A..' For these reasons, the
method snould be nused only in tormal analvsis.

The detlation by orthogonatization method addresses
these ditficuities by choosing o "rial vector V tor the
power method. which .- srthogonal to e, However.

40 S

since we only know e, and A, approximately, the or-
thogonalization is only approximate, and the true e,
component grows and may become dominant again.!!
A wise procedure is to reorthogonalize the current vector
to previously found eigenvectors from time to time. A
useful way to perform the orthogonalization in a trial
vector V is to use the annihilation operation (A —
M),

Vi=(A-ADV. (24

Orthogonalizing in this way has the advantage of re-
moving explicit error contributions due to errors in the
eigenvector. Only the error in the eigenvalue estimate
contributes to the growth of the unwanted component
in the power method. This approach can be incorpo-
rated into the matrix times matrix approach by forming
the product A™(A — A\ )%, where we have multiplied
the starting vector with A a total of m times and reor-
thogonalized k times.

Under the conditions of low precision the best pro-
cedure may be to reorthogonalize at each step. Then
k = m, and the method is equivalent to finding the
principal eigenvector of the matrix A = A(A - A\(]).
Error analysis shows that the A\ component contami-
nates the A\, as

Aym ) \k )

—_ |———]. 1251

(/\‘.’J (t\l - A+ 5)
where 9 is the error in our estimate of Ay, i.e.,0 = A\ —
A1 This procedure is safe, and the power method can
be made to converge to each eigenvector in turn. The
accuracy is limited by the accuracy of the previously
estimated eigenvalues. The errors in estimates of ei-
genvalues must remain small compared with all the ei-
genvalues sought and to differences between eigenval-
ues sought. For the later eigenvectors the method be-
comes cumbersome, but as long as the magnitude of the
eigenvalue sought is larger than the largest error in a
previously estimated eigenvalue the method will con-
verge.

A little known method for finding all the eigenvalues
and eigenvectors involves double shifting.!>13 It has
the advantage that one starts fresh at each time, and
thus no accumulation of errors results. It also is no
more cumbersome as more eigenvalues are found. At
no stage is the knowledge of eigenvalues to high preci-
sion required. It is based on forming a family of ma-
trices

B = A ~ ul)- - B-/ 1261

for use with the power method. The eigenvectors of A
are eigenvectors of §. & has eigenvalues

¢ =b' =B

127
where

h =\ - u (Rb ]
The strategv is as follows. The 5- are all positive.
The smallest one s the one tor which u is closest to the

ergenvalue N\, B- is chosen so that the most negati
¢ . the one associated with the smallest b-. is the dom-
15 July 1983 Vol 22 No 14 APPLIED OPTICS
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inant root. A sufficient condition is to choose B so that
all the g, are negative. Then the ¢, associated with the
smallest b? will be the most negative and hence the
dominant root. The approach is to apply the matrix
squaring method to the family of matrices @u,B) until
all the eigenvectors and eigenvalues of A are obtained.
If the power method is first applied to A to obtain \; and
ey, asafe value of B 1s any number larger than B > |\ |
+ |u|. Here u can be our best guess as to the next ei-
genvalue of interest. The convergence of the method
to a solution depends on the two eigenvalues of A which
are closest to u. If A, is closest and A, is next closest.
that is, if

k=1

1A, = u) <HA, = p) <Ay = p) forall ko (29)
J.
Q™ converges to q"e; e’ as
(A, — u)? = Bqm
(q,/g" = (——E 2|7 (30)
919 [(}\. —u)‘:—B:]

[t is clear that only good choices for u and B zre re-
quired: no precise values are needed. However, the rate
of convergence can be slowed by excessively large
choices of B or a choice of u for which (\, = u) = (\; -
u). The method is no more cumbersome for small roots
than for large roots. The rate of convergence will be
slower, however, if there are several small roots which
are close together. Under those conditions g;/q, will
be close to unity for any choice of u. Precision will limit
the dvnamic range of eigenvalues that can be found.
The magnitude of B must be such that q,/q; is less than
one for convergence. Both deflation by orthogonali-
zation and deflation by double shifting are attractive
approaches for obtaining subsequent eigenvectors and
eigenvalues of a matrix. Both are easily incorporated
into the matrix squaring method.

IV. Role of Precision in Error Analysis

Important considerations in the application of the
power method are the limits placed on the method by
the precision of the computer.

These limits are based on the precision to which we
can obtain the eigenvalue of largest magnitude. De-
flation techniques based on orthogonality will not find
eigenvectors for eigenvalues which are smaller than the
er. Jr in any proceeding eigenvalue. Assuming that
errors arise only because of precision, the largest error
will be associated with the principal eigenvalue. For
example, if the precision is such that only s decimal
tigures are significant, the error associated with A, is
approximately \; X 10~*.

Therefore, the smallest eigenvalue of A that can be
found A, satisfies

Pl ERLR 131)

FA
This can be shown directly by substituting 5 = \; X 10~
into the convergence factor of Eq. 127), which must be
less than unity. It is alru not possible to distinguish
hetween true degeneractes and near degeneracies if two
or more eigenvaiues differ hy less rnan the errer in the
principal elgenvalue.
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While the double-shift method does not require ac-
curate values of previously obtained eigenvalues, there
are direct effects of precision un the ability of the ap-
proach to resolve near degeneracies. If there are sig-
nificant figures, the convergence factors must be <1-
10—,

For the double-shift method

(N, = u)— B2
L - 10> e o B
(A, = it - B*
To insure that the most negative eigenvalue is the most
dominant, B must have the same magnitude as \;. The
best choice of u is A;, and, therefore, the best possible
convergence factor for the double-shift method is

(A, = A)?

t32)

1-107>1 ——L)‘—z—— 133)
1
where we have substituted u = A,, \; = B, and rear-

ranged.

In this method eigenvalue pairs whose square dif-
ference satisfy (A, — A,)2 < A;2 X 107 will appear to be
degenerate.

Another practical consideration is the power to which
a matrix should be raised to obtain an eigenvalue esti-
mate that is consistent with the number of significant
figures of precision. An upper bound on the power to
which a matrix can be raised to obtain meaningful re-
sults can be found by considering the bounds on the
eigenvalue obtained from the trace. The error is given
by

1~ (/N
b= [——;——p] (TrAPYUP = (TrAP)1/P100. (34)

Dividing Eq. (34) by (TrA#)/P and solving for P, using
the approximation In(1 + x) = x for small x, yield P =~
(10° InN)/2, where N is the dimension of the matrix.
This assumes s is the number of significant decimal
figures. P represents an upper bound to the power to
which the matrix should be raised. Fors =2and N =
50, we have P = 185.

V. Renormalization

The renormalization problem may become very im-
portant. Thei,j termof A% is

ah, = }E QnQi;. (35)
k=1

A very conservative approach is to note that the maxi-
mum possible a2, is ¥ times the square of the maxi-
mum a,,. The trouble is that this approach is so con-
servative that it is likely to make very poor use of the
available dynamic range of the optical processor and
erode the accuracy of results in a system which already
has limited accuracy. By doing each iteration twice
(doubling an extremely short processing time), we can
do much better. We use the ultraconservative but
simple approach just described to normalize the inputs
to estimate the maximum component of A’ from A,
With the estimated A- we do far less conservative

renormalization and thus preserve accuracy
Thus we must search both the accuratelv calculated
A and the crudelv calculated A~ for their maximum




components. Remembering that in optical processors
we work only with non-negative components which we
can call 4, ,, we seek a parallel way to search for max-
16, ). The search need not occur on all N* components
in parallel if (as often happens) the processor does not
produce them that way. In a systolic processor, for
example, as many as N components are available at any
instant. We can find the maximum among them,
compare with the prior maximum, and pass the larger
value. In this way we can minimize memory require-
ments while achieving enough parallelism to avoid
slowing down the process substantially.

A parallel search can be made by subtracting in par-
allel from all available component signals (0;,) a ramped
signal

Sty = Spt/T, (36)

where S, is the maximum allowable signal (a physical
constraint) and 7 is a preselected time constant. We
then detect

d,(t) =4, - St) 137)

in parallel for all i,j. Each time a d;; goes to zero its
detector sends a unit signal to a counter. When the
total count reaches 2N?, we note the time to. Then

maxté, ) = Spto/ T (38)

Vi. Applications

Applications of eigenanalysis to direction finding,
handwidth compression (Karhunen-Loueve), pattern
recognition, etc. are familiar. Here we want to point out
that some nonobvious applications may prove quite
usetul as well.

Eigenvalue determination is one approach for finding
roots of a polynomial:

P‘X)=00X"=(21,\"‘_I'P . +a,=0. (41)
[t is convenient to write
PiXy=agpX*+ 5. X"+ + ba), (42)
where, of course,
he = Qu.ao. (43)
We can then write a matrix
() i t) V]
) 0 1 0
= 144
0 1) 3] 1
—‘)n —ba-y _hﬂ‘.' _hl

so that the eigenvalues \ of C are the roots of P(X).
The eigenvalues must satisfy
dettC = A=), 145)
but
det!C = Ny =v=11"Pid)a, 146)

The torm of ( is easiest to see tor a low-order polvno-
mial. Thus forn = 4,

[P U U SUP UL

C= 47)
V] v] 0 1
—by =by =by —b,
In this case
X 1 0 0
A 1 :
det{C — A/) = det = PtA)/ap. 148)
1] A
-by =—by =—ba -b,

By our method we can easily find the root nearest a
chosen value. Likewise multiple roots are readily de-
tected.
Of course, if we can solve P(X) = 0, we can solve
Pi(X) = P X), 149)
since
Pn(X) = PiX) = Py X)

must have a zero when P;(X) = P>(X). More generally,
to solve

1501

PiX)=PoX)=.. . =PyiX) =0, (51)
we form the new polynomial
N
RIXY= T [P(X)]? (52)

1=

Clearly @(X) can be zero only if each of the P,(X) is
zero.

Vil. Summary

Prior proposals for optical computation of eigenpairs
have encountered major problems relating to slow
convergence of the iterative algorithm, lower accuracy
on less dominant eigenpairs, and low accuracy from poor
renormalization. This paper discusses some methods
reducing these problems considerably, although it

cannot be said to have finally and definitively solved

them. The convergence speed is increased dramatically
by the matrix squaring approach. The deflation ac-
curacy may be improved by the matrix reformulation
methods discussed. Excellent use of the available dy-
namic range can be assured for a factor of 2 decrease in
overall speed using the technique described.

Problems relared to degeneracies and numerical ac-
curacy have also been attacked here. In particular we
have been able 10 show that matrix squaring handles
degeneracies easilv and automatically and that tight
simple error bounds can be determined.

What we have dealt with are algorithm related
problems. Implementation problems are also numer-
ous, but they are beyond the scope of this paper. There
are also rather fundamental problems relating to the
numerical accuracy of the final answers. We believe
that these probiems can be solved so as to make optical
eigenfunction solution practical and attractive.

This work was performed under U.S. Air Force con-
tract F19628-82-C-N068.
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APPENDIX F

GENERALIZATION OF THE EIGEN PROBLEM TO
SINGULAR VALUE DECOMPOSITION BY OPTICAL MEANS
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OPTICAL SINGULAR VALUE DECOMPOSITION FOR THE AX = b
PROBLEM

John Gruninger and H.J. Caulfield
Center for Optical & Photographic Sciences

Aerodyne Research, Inc.
45 Manning Road, Billerica, MA 01821

Abstract

Optical approaches to solving the A; = % problem have suffered from four
difficulties: (1) an inability to handle the probleam for nonsquare A, (2) the
necessity of insuring convergence for nonsingular A, (3) the inability to
handle a singular A, and (4) inaccuracies due to an ill conditioned A. We
show that these problems can all be solved or mitigated by singular value

decomposition (SVD). An accurate approach to optical SVD is shownm.

Introduction
Optical computing has drawn much attention in terms of both

1-5 and algorithmse“9 in che last few years. This paper aims at a

architecture
thorough discussion of optical singular value decomposition (SVD): a topic
recently treated by Kumar.'? We will show why SVD is not only particularly

well suited for optical computation but also particularly useful as part of

optical computing's repetoire. Our emphasis will be on a particular type of

problem represented as

F-2
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> +
Ax = b,

>
where A {s a known m x n (m rows, n columns) matrix, x as an n dimensional

unknown vector, and B is an m dimensional known vector. Our task 1s to find
;. When m=n, this the familiar case o9f 0 linear equations with n unknowns.
It i{s solvable in principle if A 1s nonsingular, When m > n, this {s the
equally familiar problem of optimum curve fitting'(usually using a least
squares criterion).SVD has numerious other applications in image processing,
antenna field calculation and pattern recognition which have been discussed
elsewhere,

The A; = S problem is arguably the most important and most commmon
problem in computing. A large fraction of all of the computer time in the
world is used in solving large linear programming problems. Linear
programming solutions occur in two parts: the solution of large A; = B
problems is the most time consuming part, the other part is some bookkeeping
called the simplex algorithm. The authors have heard expert mathematicians
argue that the least squares problem 1s the most important problem in
mathematics in terms of its impact on the world. Such a claim could be
supported by applications ranging from statistics to phased array antennas.
Control theorists and many others are fond of posing sets of differential in

equations in the AR = b format. The number of applications there is quite

large.
; Prior optical approaches to solving Ax = b run into a variety of

problems., First, thev are limited %c the m=n case and thus omit many
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E‘ important cases. Second, each of the iterative methods has a convergence

{ condition which can be guaranteed oanly by going through a precalculation which
either confirms the convergence or transforms the problem to assure |
m convergence, Third, the result of our calculations may be 1ia very serious
error if A is ill conditioned. This problem is compounded by the inaccuracy
of optical computers relative to their electronic counterparts., All of these

>
problems combine to make optical solution of the A; = b problem less

T -]

make optical soution of the Ax = b problem less attractive than electronic

solution for many problems even though optics has well known advantages in m

and n size, speed, computer size, and power consumption.

In the balance of this paper we will argue that SVD alleviates all of
those problems for Ax = b solution. Specifically: (1) it allows m # n and
gives the least squares solution in that case; (2) it can be made to converge
even when A is singular; and (3) it can offer us a way to find good but
inexact solutions even when A is 111 conditioned.

We consider here solving the least squares problem for non symmetric non

. square matrices A. In particular we will be concerned about matrices which
may be less than full rank, and which may be ill conditioned. That is, if the
dimensions of A are m x n with m > n, then we include for consideration
matrices which have rank k < n and hav2 pseudo rank & < k. A natural approach
to such problems 1is through the singular value decomposition of A. A can be

{ expressed as

R . . . - . . L. . .
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where W {s a m x m orthogonal matrix and V 1s an n x n orthogoral matrix. A
is a m x n matrix whose only non zero elements are the "diagonals”, Ayy, for
1 = 1,k where k is the rank of A. The singular values: Ay are assumed to be
in descending order A; > A5 ...> Ax. We have dropped the second, redundant

index. Performing the implied matrix multiplicatlions ylelds
13 >
A = ) A, W,V . ’ (2)
i

We use the lower case letters ; and ; to indicate column vectors of W and V
respectively. The subscript i indicates the column number. If the matrix A
has a pseudo rank of £ < k, then the singular values Ag4] to Ap will be

11

very small. The Eckart Young Theorem suggests that the last k- outer

products can be deleted from the sum. That is A can be written as

a = at +aa" ’ (3)
where
NP
i:1 i 11
and

P "N N . . Ll T . . . . . S e
e P P LI o . Chaa PR g -
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Eckart and Young showed that A is the best rank £ approximation to A in the

Frobenius norm. The norm of the error term

% : K

~e MAIFZ ) xi
i=m2+1
t. is given by the square root of the sum of the squares of the neglected

singular values. 1f the elements of the matrix A were obtained experimentally

or if they are stored in a computer with low precision, such that the stored

‘: version differs from the "true” version by §A then carrying more singular
values than that number, £, for which 14A%1 =~ 15A1 1is useless.

For numerical stability we replace A with A', In matrix form we write

()
2 L
’ Ao At T (4)
!
e
F’ where W is the m x £ matrix whose columns are the first & columns of W,
-
- v is the n x £ matrix whose columns are the first £ columns of V and A%
g is the 2 x £ matrix of singular values Ay,i=],%. ;
} I
e The least squares problem A; - E is transformed into a new one by i
multiplying on the left by Wl and using the fact that wlw=1,
} [
3
L]
%A F-6
L
b
p
k N S T R e
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WAx = AVX = Wih: (5)
b Tx > T4
Defining y = V'x and g = Wib the least squares problem is
> +>
Ay = g (6)
The components of ; are given by
g
i
y, = — 1 =1,k
i ki
(7
v, o 0 1 = ktl,n .

The solution vector x is obtained from V;. The norm of X s a measure of the
stability of the least squares solution. It is obtained from the square root

of

> +> 2 k

1x0 S =yt = Y (=) (8)
i

The square of the norm of the residuvuals 1is given by

RS = fax - o1° = ] g7 (9)

At ieb, |
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In the event that A is 111 conditioned some of the columns of A are
nearly linearly dependent, and some of the singular values will be small.
->
Contributions from the small singular values lead to erratic changes in x and
in a dramatic increase in its norm. Defining a pseudo rank of £ less than k
. * L+ +L
we obtain solutions x* for the least squares problem A x = b defining g

as (WH)T b we obtain

L
<
74 X, 1=1,2
i
(10)
y = 0 i = +1,n
i
’l >
The solution vector x* is obtained from sz. The square of the norm of
xYs
£
L g
L
AT ()‘—i)2 (11)
i=] i

and the square of the norm of the residual is

2
iR d2 = I|A£;£ - 1;312

<>
the pseudo rank & is chosen so that the norms of the solution vector ﬂxlﬂ,

the residual IR%i and the error matrix 18A%1 are exceptably small. More

F-8
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details of this aspect of least squares problems can be found in Lawson and
Hanson.12

When the pseudo rank £ is much less than n, a method for finding only the

first £ singular values and the residual matrices W* and V¢ is desired.

We propose obtaining this partial singular value decomposition of A by use of

MR~

’

a power method. An iterative scheme can be based on the following pair of

equations.

E v AW (13)
) A vy 191
(]
}
and
2 T> >
1 A wi Xi vi (14)

which are obtained from Eq. (2). Starting with an initial guess at ;1 namely

‘ ;? and an initial ;?, and an estimate of the singular value, A|, can be
obtained from Eq. (13). 5? in turn can be used in Eq. (14) to find an

b, '

{ improved ;1. We use superscripts to indicate iteration numbers.

g

s

After J iterations we have

.y

(15)

. ™ L d . ] PN Py . S 3 o alann PR . Wl
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AW, = AV . (16)

J=1

+J = +J +J-1
The procedure can be stopped when Tvi — v I and 'w) - w; ! are sufficiently

small. This procedure will yield the dominant singular value A; and singular

vectors ;q and ;1. Applying the procedure to the deflated matrix

+ »T
A=A-) w v (17)

will yield A;, w and v, and so on. This approach has been recently proposed
by Shlien!3 and by Kumar.!® An alternate approach is suggested here. If

Eq. (15) and (16) are substituted into one another one obtains

2 +J T +J=-1 +J-1
A v = (A AV =S v (18)
and
A2 - aal) W -yt (19)

This approach is equivalent to finding the principal eigenvectors of the n x n

and m x m positive semidefinite matrices S = ATA and M = AAT,

respectively, The right singular vectors, ;i of A are eigenvectors of § -
while the left singular vectors, ;1 are eigenvectors of M. The non-zero
eigenvalues of S and M are equai to the square of the corresponding singular

value, A

i

F-10
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It is not necessary to find the eigenvectors of both $ and M. A simple
approach is to find the eigenvectors to the matrix of smallest dimension,
namely S. Several approaches to the use of the power method for eigenvectors
of symmetric matrices have appeared in the literature.®,!*,13 Once the

>
first eigenvector v; of S is found, ;1 can be obtained from Eq. (13). The

matrix A can be deflated by the combined use of Eq. (17) and Eq. (13).

+ =+ T
A= A=-Av v (20)

~ -

The positive semi definite matrix ATA can be formed and the procedure
repeated to find ;2, A2 and ;2 and so on.

One concern in using a power method for singular value decomposition is
the loss in dynamic range that occurs when ATA or AAT is formed. As Egs.
(18) and (19) we derived from (15) and (16), the formation of these square
matrices results from any formulation of the power method. The best one can
do 1s to initially equilibriate the columns of.A and normalize the approximate
(singular vectors) eigenvectors at each iteration. Equilibdration is the
process of finding that diagonal matrix D which will scale the columns of A so

that they have unit length. We let

F-11
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and solve

ap) o % = 1

We assume that A was previously equilibrated in the above discussion.
The key to numerical stabilicy in the power method is not in the formation of
the square anatrices S and M. The key is that deflation be performed on A in

order to find additional singular values. One should not attempt to deflate S

or M. The success of our proposed method as well that the methods of Shlien!3
and Kumar'® is based on this deflation.
The difficulties that we address in terms of dynamic range can be
illustrated by the following example matrix.
1 1
A =|0 € (21)
€ 0

where € 1s within the dynamic range of the computer and €2 1s not. The norm
of its columns is (1 + &2)1/2 = 1, so the matrix is equilibrated. The

matrix A has rank 2 but 1is i1l conditioned. The matrices S and M that will be

S - ™ (22)
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2 € £ 2 € €
M ={ ¢ e2 o - € 0 0 (23)
€ 0 g2 € 0 0

generated in the computer will be the rank | matrices on the right in Eq. (22)
and (23) respectively. The key point here is information about ;1 and ;1 are
still retaiued in S and M while information about ;2 and ;2 are lost.
Numerical instability will occur when attempting to deflate S or M to find
subsequent eigenvectors. Numerical stability is maintained only if A is

deflated through Eq. (20). That is the power method will find

. 0 0
A-% -1 1
1 -1

;2 (1//2) [1, -1]T will be found by applying the power method to ;T;. The

key to the successful use of the power method for singular values is the use
of the deflation of A. Attempts to deflate S or M will yield matrices which
contain only noise., The principal eigenvectors to the matrices S and M can be
obtained from the power method however. The use of a power method requires

the formation of at least one of these matrices.

F-13
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We summarize the proposed procedure for singular values decomposition as

follows

(i)  Equilibrate A, call it A.

(i1) Form Sy = A: A , scale if necessary.

! (1i1) Find the principal eigenvector 31 of S4.
]

>
! (1iv) Calculate A vy.

(v) Find Ay by normalizing A ;i

if Ay = 0 stop.

(vi) Wy is the resulting normalized
->
A vy

- - + T
(vii) Form Ajy4] = Ay - A vy vy,

scale if necessary.
(viii) Go to ii.

This procedure will terminate after obtaining the Lth singular value Ay and

singular vector ;2. The least square problem is then solved using Egs.

, (10), (11) and (12).

F-14
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APPENDIX G

APPROXIMATE SINGULAR VALUE DECOMPOSITION

(This work was presented at the 1983 0SA
meeting as noted using the attached view-
graphs. The write up for publication is
still being pursued. We will submit the
paper for publication in Applied Optics).
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APPENDIX H

A BRIEF OVERVIEW OF THE FIELD OF OPTICAL DICGITAL
PRCCESSING SPAWNED BY THIS CONTRACT
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OPTICAL COMPUTING:
THE COMING REVOLUTION
IN OPTICAL SIGNAL
PROCESSING

Development is progressing toward a new generation of optical
computational devices that may provide for ultra-high-speed
matrix algebra and for the density of interconnections needed in
optical supercomputers.

By H. John Caulfield. John A. Neff, and
Willlam T. Rhodes

-

A mumchannel, systoiic acousto-optic bincry convolver
(JACBC) s crentecturclly configured as @ systofic-crroy
processor. The architecture provices g high-speec

mecns of mamx-vector muthplications using the digic
mutiplicchens vic anaiog convolution aigorthm. This !
sigonmm ana C systonc ceousto-optic impiementction
permt the speed Of cohes tc be combined with the
QCCWIaCy of Qigtal compuraion
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"1 retroanect, the beginning of modern optice:-
array nrocessors was the invention of what s now
often caﬁed the Stanford optical matrix-vecior
mulziplier “OMVM), This device, illustrated in
Fig. 2, nas a8 capability of multipiving & 100-
cotaporent vector by a 100 x 100 matrix in
roughiv 20 ns. Components of the input vector x
are input via a linear array of LEDs or laser
diodes. The light from each source is spread out
norvizontally by cylindrical lenses, optical fibess,
er planar lightgaides to iiluminate a two-dimen-
sional '2-D° mnask that represents the matnx A
Light from tne rask, which has been reduced in
intersizy My varations in the mask trans-
mittance “inction, 15 collected column by column
and directed to discrete homzontally arraved de-
teciors. The nutputs Tom thece detertors repre-
sert the cornonents of nutput vector y, where y
'] given v the matrix-vector product ¥ = AX
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nremsity, whoeh is always nonnega-
Ve, e cesd o nroeent the varous mathe"\ft:-
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of 7 Z-corponent vector by 8 2 2 matrix.

The ©-st 1rput to the acousto- optic cell, vector
component Iy, nrodures a short diffraction grat
‘ny, with 2o raction efficiency proportiona!l to xy,
that moves across the cell. When that grating
gegment v in front of LED 1, as shown in Fig
Trn;, the LE 2 is osulsed with light energy pro“c‘r‘-
uonal o n-u'r v ceeificient a,., ancd Integrating
Detector itluminated with light energy n
proportion o che nroduct a,,x, The pext critica!
moement ocours when the x, grating segment is 1o
front of LED 2 and a second grating segment,
with diffy acﬁr‘n efficiency in proportion to vector
compenent xp, zas moves in frgat of LED 1. as
shown ;n Fig. 3(c). At that moment LED 1 s
JLJ ac with '1ght anargv 1 proportion to @, and
JBI 2. with light erergy in nroportion to @qp. The
‘..otegrateu ourput of Detector 1 is cow proportion-
al %0 ay,xr; - 2y.%y, which 1s the output vector
component vy; the integrated output of Detector 2
is @oyx;. The fina! critical moment in the comp -
satior, showrn in Fig. 3id), occurs after grating
segment x; has moved in front of LED 2. -\ final
puise from that LED in proportion to a,, yields at
the cutput of Detect~- 2 a voltage in proportion to
G91X; + CoaX, the second component yp of the
outpu: vector.

Much hke the Stanford OMVM, the systolic
optica!l provessor described has a dynamic range
and accurac determined by the sources. modula-
tor, and detectors. Qutput accuracy is limited to
eight to ten bits. A realistic processing capability
for such a system would be the multiplication of a
100-component vector by a 100 x 100 matrix in
approximately 10 ws. This is much slower than
the Stanford vrocessor speed: however, unlike the
latter, the svitoiic system does not require a 2-D
SLM, and the matrix can be changed with each
operation.

Shortly after the development of the optical
svrtolic marnx-vecter multiplier, two important
advances took place—the invention of optical
matrxomatoomuitiolers (see box: "Matrix-Ma-
) hers™ by Dias; by Athale, Stilwell,
v Baclker Br:wm.ey. and C‘mlﬂe:f‘
:semt. and the achievement by Gull

The

b

“2

‘e, Coilins, and Stilwell: and ov
ta’ accuracy with optical al ebraic

e for ohtaining high digital accuracy
nroceasors s to implement digice!
orohy cepvelutien. This ooethod was
e attenton of the opheal Sk
pooor oTinity by Spevser and White.
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Thus 18 way G52- 4nc even B-L10 2(CJracy
CUTLOULAlIOns Wre s0mel.mes Lo0E even wWhen a
8-0it answer will suilce. Thuz .3 aiso why ana-
log sciutions (electronic or opl.cal) to algeopralc
problems must often be avoicea.

In electronics, ana’og cermputers are 1sed x'or
ugh spee(* casily impiemented operat ons, bu
digital computers are used for augeord \og
surprisingly, optﬂal computation makes the
‘same division of tasks

levels be cistinguishable at the output. Negative
auwmbers can be handled using 2's complement
aritametic or other methods.

The atove method for digital multiplication by
sonvoiution can be used in a variety of ways in
algeoraic optica: processors to obtain higher ac-
curacy, albeit at the cost of lower processing
rates. A digital-accuracy matrix-vector processor
conceived by Guilfoyle achieves high processing
rates by using multitransducer acousto-optic
celis Athate, Collins, and Stiiwell have imple-
mented algital-accuracy outer-product matrix-
InairX muitipilers using a singie pair of acousto-
aptic cells,

Current research and new directions

Lilorts andertaken quring the next few vears wili
De.n two alcecnons. first, optical matrix comput-
er svstens cased on the concerts we have been
cuscnbing Wil he b i1it, testeq, improved, and
Secona. new ypes of non-

o hed
prm e

Ml S0ICal COTILLTErs 'm';) be deveiopea. We
W WD ot Dola of These directions oriefly
o CAL TOalrLK OGS LLeTs the Two TRrusts are
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process governed by a xnown differential equa-
tion and measured in a fixed way with known
measurement statistics. Because a single "cycle”
of a Kalman fitering ’)PQ"JCIOH 'nvolves many
matrix calculations, real-time Kalman filtering
must he restricted to relatively sma!! problems.
Performing the matrx operations ‘triple muitipli-
cations, inversiops, etc.) optxca‘]v may perrit the
handling of large problems in real time. Casasent
has started this effort, and several others are
working on it. Fither floating-point operations or
on-the-fly scal~ adjustment 1s needed. Caulfield
has showm that both are pessible, but his solu-
tions are probably more existerce proofs than
fina! answers. New algorithms are needed to
extend the rang2 of apniirations and, possibly, to
speed up ca"“.'amons To cate, all important
algorithrns have been iterative, Noniterative,
fally pa.ra'lei solution of lincar equations is possi-
ble in analog optmax processors. Can similar
things be done for digital eptica! processors?

Nonmatriy optical processors are developing
independent!y and ra“idly. Perhaps the most

widely pursued of these is the use of optics 0
make arbitrary interconnecticns among electron-
ic (Goodman) or electro-optic (Lohmann, Lee,
Collins, Coodman, Sawcauck, Strand, etc.) sys-
tems. Sawchuck, Strand, and their coworkers
have impiemented a variety of space-variant and
space-invariant :nterconnect patterns using com-
puter hclugrams to generate th2 patterns and
spatial light modulators to feed the information
back into the svstem. Their system (like those
due to Lohmarz, Lee, Coljins, ete.) closes on itself
for feedback. Clearly, however, this is not the
only configuration. Feedforward configurations
lead to @ variety of optical artificial-inteiligence
systems.

The continuing demand for higher throughput
rates will drive future research tcward higher
speeds and greater parailelism In these large
systems. ar supercomputers, of the future, a ma-
;or problem ‘n achieving high throughput rates
wiil be hew o aciitate generalzed communica-
woms among the ‘arge number of processing
un'ts. 'n a general-purpose como: wer, Ho il
3c.v_uw;r- i paralelien w1 aniv e renlized of
each proceszing unit has direct comrnun:cation
with evers o her unir, thus permitting 2ach %o
handle 3 part «{ “he acticn on a continuing basis.

The Righest Teve! of communicatlions, or inter-
connect as it ¢ called, emtails 2 generalized
crusshar N't*v')r“' mm’vmg AN* in-ereannects
available for N arecessors N units communicat-
ing with M oopist as shown b Ye 5 Sach a

hcveerW signctsﬂwtuvwm,ﬁo o
Noutpu? mceivers. fach hol.canbe |
0 0, 1, 2. — N ouinuts. This concept is Dest
as ¢ crossbay arangement, te-ihat
here for M = N = A.hh&;:ﬁocranw*o/&

‘ . [-1001 o
A = 0010y -
1000¢- . -7
goocC1y. -

ruie for obtaining A s simple. »omcmcfrb(lmm
1 where every connection *nmecrosbapbt
r‘haeuompre

e

FIGURE 8§ Terercized Crosshar rehwnrk
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MATRIX-MATRIX MULTIPLIERS. [a) RUBIC cube. This is g systolic architecture whose major components are o 1
puisec nonconerent ight tource, o spatial light moduiator for each cf the two input matrices, g 2-D photodector

aray for reading out the output matrx, and a polaridng beam spiitter. The two light modulators synchronousty |
E mareh he matrx intormation across the optical aperture, where the proper terms supermpaose to produce each
element of the outout mamx. ‘ -
(b) Outer proauct processor. it one desires to reiax the drmensxoncirfy requirements cf the Inpu‘t devices, the
. MCr-Mcx propiem may be formuiated m tems of outer products, rather than the custormary innef produc?s.

‘ For the mumplication of two N x N matrices A and B, the cuptut may be expressed Qs
N 2o
C = E cﬂz . . ..
ne . .. - .
M !
. - t
Tybmy " O1n B
. . t
q
- - o
o) Dfﬁa bw . PO _- P ,
) |

- Eoch matix temm My Da taken Qs the cuter procduct between the rnh column vector of A and the nth row vector
» of 8. This may be cdone opfically as shown in the figure employing two cressec amrays. The summcﬂon of me indi-
- vidual matrices may be recmzed via a 2-0 time mtegrafing photodector array. .

|
. !
(c) Fequency muttiplexed. Thtslscsvx‘tohc architecture that uses a linecr LED arroy, cnocousfo-opﬂccell a J‘
Founer Tanstorm ens, and a linear photodetector arrcy. Input matrix B is fed in the space- and time-muttiplexed |
tashon shown (rows of B spatially muttiplexed and columns fime mutfiplexed), while thé matrix A is muitiplexed In |
L frequency and space, using the acousto-optic cedl. Eoch row element of matrix A s ploced on a separcte -
frequency comter, such that after muttipiication with the cppropnate B eiements va acousto-optic moduicton,
he resuting output term i deflected by the fransform lens to g pemicuiar photodetector eiement, depending on
the ccmer frequency. This archtecture may be viewed as o Mmafrx-vector mumpller n whuch :requencw
muhpbexmsmedtoexocndthevector'{ocmm - -
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network beccmes very axpensive when imple-
mented electronicallv for large V. hut the inher-
ent parailelism of spties holds great potential for
inexpensive and high-speed crossbar switching.

The generaiized cressbar can be expressed ana-
lytically in terms of a vector-matrix multiplica-
tion, so optical a.gebra forms the basis of sclving

the interconnect proble:a. For example, consider

the Stanford OMVYM described previously. Let x
and y be the vectcrs of the <rossbar inputs and
outpu:s, respectively, and let A represent the
interconnect switch settings. That is, a, = 1 if,
and oaly if, the ithoviput 1s connected to the jth/
input. Otherwise, a, = ¢ The OMVM with these
2,'s avtomativally makes the desired connections
opticallv. Note, too, that numerical accuracy is
not an issue ‘or this application.

The Stanford processor (3, of course, nonpro-
grammable, therefore, it can only be used in a
system with a pre-astablished set of intercon-
nects. If one were to replace “he matrix filter with
a real-time device such as a 2-D spatiai light
modulator, then a switchable. generalized cross-
bar becomes a possibility; likewise, the binary
matmx mask could be replaced with a hologram.
Going one step further, one begins to envision
generalized crossbars with picosecond switching
speeds via real-time four-wave mixing or an
optically addressed bistable array. Such a capa-
hiilty would oring us into 3 realm of computer
communcaticns beyord the wildest dreams of
electronic interconnection architects.

A more atructured aptical arrangement is the

1
1
i
{
i

FIGURE 4. -.C
cessing N

fiseroptic lattice filter (Tur, Goodman, etc:
When the computational problem has sufficient
symmetry, a fu!l matrix appr-ach may be an
inelegant and expensive approach. The lattice
filter work represen:s an exploration of simpler
systems for simpler problems. A very common
problem ir. algebra is the evaluation of pelynomi-
als. If an analog optical polynomial evaluator
could be built, it would be possible to find the
roots of peciynomials in a totally new way: scan
the independent variable(s) and see where the
roots occur. This leads to a solution of another
long-standing optical problem as well The quo-
tient l/a is simpiy the root of the function
{liz) = a, which can oe evaluated efficiently in
polynom:al form. Work alopg this line is being
carried out (Verber, Caulfieid, Ludman, Stilwei!,
etc.). Since holographic memory technology a:-
lews ready content-addressable access to vast
amounts of data, a truth-table lookup processor
appears both feasible and appealing. This an-
proach is now being studied closely (Gaylord
etc.).

Finally, all of these optical computers are in
need of improved or specialized components. A
major DARPA-sponsored effort to improve spa-
tial light modulators is just beginning. This
seems likely to lead to improved throughput rates
bv providing a 2-D medium capable of 1000 x
1000 individually addressable modulator ele-
ments, a cycle rate (READ/WRITE time cycle) of
1 kHz. a dynamic range of 30 dB, and less than
3% spatial nonuniformity. Other needs include
source and detector arrays that are compatible in
resolution, intensity, and dynamic range with
these spatial light modulators and that possess
incividually addressable elements.

Conclusions and outiook

Upon considering the broad area of optical alge-
bra. including parallel algorithms, architectures,
devices, and their associated mcteriais. a large
spectrum of interesting and important research
areas comes 10 “ight " As the national interest in
the computational sciences begins o shift towa-d
the supercomputers envisioned for the 1990s, ¢
wiil be vitally important or the optics commun:-
tv to pursue :hose research areas for which optics
heo.ds the greatest appeal. such as large-scale
matnx-matrix or matrix-tensor operations and
processor inter- and intracommunications. We
must also allow aurselves to lock past the re-
searth discussed above and into the use of optics
to perform real-yime circuit reconfiguration. For
swample, Light could be used to modify the index
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of refraction within waveguides in such a manner
as to change channel layouts and beam-control
elements on a circuit module, thereby adding
much-needed flexibility to optical computing.
These new directions are mentioned to convey to
the reader something of the excitement of a field
that is not only maturing, but also expanding.
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Further reading

Rather than provide a complete list of specific
references, which would lengthen the article con-
siderably, the authors direct the interested read-
er to the following general sources. Much recent
research on optical computing architectures is

LBt S B el A Sad et A i atadh el iadh il Sl g '—-‘*"Vﬁ'fv*?-r"_'T
Pl el et . - - rrres

reported in Applied Optics issues of the past two
years. In addition, the r~ader is referred to prr-
ceedings of conferences on the subject: Advances
in Optical Information Processing, G. M. Morris,
ed. (Proc. SPIE 388, 1982); 10th International
Computing Conference (IEEE, 1983, Catalog No.
83CH1880-4); Real Tirme Signal Processing VI,
K. Bromley, ed. (Proc. SPIE 431, to be published
late 1983 or early 1984); Optical Engineering,
Jan. 1984. For papers reviewing the general area
of analog optical signal processing, see the follow-
ing: Proc. IEEE 69, 1 (Jan. 1981), special issue on
acousto-optic signal processing; Proc. IEEE 65, 1
(Jan. 1977), special issue on optical computing;
Proc. IEEE 62, 10 (Oct. 1974), invited paper by
A. B. Vander Lugt.
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APPENDIX I

NEW FORM OF NUMBER REPRESENTATION SUITABLE
FOR OPTICAL TMPLEMENTATION

(Submitted to Applied Optics)
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EFFICIENT REAL NUMBER REPRESENTATION WITH ARBITRARY RADIX
H.J. Caulfield, D.S. Dvore, and J.H. Gruninger
Aerodyne Research, Inc.
45 Manning Drive
Billerica, MA 01821
ABSTRACT

Because most optical digital computers use only nonnegative quantities,
it is of great interest to find an efficient way to represent real numbers.
For radix 2 (binary) numbers the twos complement method requires only ome
extra digit beyond that needed for non negative numbers. We introduce here an
arbitrary radix generalization.
BACKGROUND

Optical computers (1-10) have become extremely popular because of their
speed, low power counsumption, and relatively low volume and weight. Digital
number representation is as necessary for accuracy in optics ag it is {n
electronics. 1In optical digital computers the optimum radix choice is by no
means clear and may even be computer or problem dependent. For radix 2
(binary) representation, the twos complement method (1l1) is an optimally-
efficient way to represent real numbers in that an N-bit real number can be
represented with only N + 1 digits. Obviously no more efficient representa-
tion can be devised. We have been unable to locate in the literature a scheme

for representing N digit radix R ( > 2) numbers with only N + 1 digits. This

work represents our attempt at the needed generalizationm. <
I-2

-~ . o ’ dedenh PRSP P S - PRI ST, Wi SO | ‘Lllj




'-v" P

EXPOSITION APPROACH

Our exposition will proceed in two stages aimed at making the method
understandable. We avoid theorum and lemma proving in favor of simplicity and
clarity. The method works only with even radix. First, we will illustrate
this method with examples from the familiar radix 10 numbers. Second, we will
offer an explanation which is radix independent.

NOTATION (Radix 10)

We suppose that the numbers of interest are of absolute value less than
10N, where N is a preselected integer such as 4. For N = 4, the numbers lie
between -9999 and 9999. Thus ouly N digits are needed to represent the
absolute value. To this we add a single sign digit. The sign digit for a
positive number will be 0, 2, 4, 6, or 8. The sign digit for a negative
number will be 1, 3, 5, 7, or 9. For negative numbers we complement the
absolute value, i.e., subtract it from 10N, For convenience of notation, we
glve this new method the name "parity sign” and the normal representation
“"arithmetic”. Table 1 shows some sample arithmetic and parity sign
representations of the same aumber.

ADDITION EXAMPLES

Let us add +0012 to +0008. We know that the answer 1s +0020. 1In parity

sign we might have
20012

+ 80008 (1)
100020

TRV




Table 1.

The same radix 10 numbers represented in both
arithmetic and parity sign notation. For each number
there is one and only one arithmetic representation but
five equally-valid parity sign representation.

Arithmetic
Representation

+0012
+0012
+0012
-0012
-0012
-9092
+0008

Acceptable Paricty
Sign Representation

00012
80012
20012
19988
99988
70908
40008

APt A A .‘71.1




The last five digits are (00020 which is one of the parity sign

representations of +0020. Now let us add +0008 to -0012. We might write

40008
+ 99988 (2)
139996

The last five digits are 39996 which is one of the parity sign representations
of -0004.

MULTIPLICATION EXAMPLES

Let us multiply +0012 by +0004. We might write

00012
x 40004
00048
00000 (3)
00000
00000
00048
000480048

The last five digits zre 80048 which i3 one of the parity sign representations

of +0048.

Now let us multiply -0012 by +0004. We might write

99988
x 00004 (4)

The last five digics are 99952 which is one of the parity sign representations

of -0048.
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EXPLANATION

We are used to graphing the arithmetic representation of a number versus
itself (i.e. plotting f(x) = x in arithmetic notation). Figure 1 shows such a
plot for the domain Ix' < 10°. If we restrict ’xl to that domain, we can plot
a multivalued representation m(x) vs. x as shown in Figure 2. 1If we now
restrict ourselves to m(x)> 0, we can still represent any number in !x"s

10°. the negative x's will have an odd fifth digit. Even numbers will have

an even fifth digit. Furthermore

m(x + y) = a(x) + aly), (s)
where we mean by m(x) all of the values of m(x) , etc. Likewise

m(xy) = m(x)m(y) (6)

OTHER EXAMPLES

For the special case of radix 2 we obtain a signed twos complement, Thus

+0011 plus -1010 (+3 ~10 :n radix 10) is in parity sign

00011
+ 10101 (7)
11000

which {3 the parity sign representation of -011ll1 (-7 in radix 10). Thus in

the binary case the parity sign digit {s no longer multiple.
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Lt. CONCLUSION
€

The parity sign representation is easy to use and easy to understand. It
includes the traditional binary signed twos complement method as a special

case while extending the one-digit-sign-indication_efficlency advantage to

- - arbitrary radix. Finally, one must be careful to prevent "overflow" -
} )
£~. attempted calculation of numbers greater than the maximum the system is
tis designed to handle. When overflow occurs, the numerical part of the result
o (in our example, th. last four digits) 1as correct but the amount of overflow
1s undetermined,
E. The simplest way to prevent overflow is to test input numbers. We
E suggest the following; quite~conservative test for radix r amplitudes which
E must be less than r2N, Ve write
a
r = 2s
‘.E since r {s even. We ignore the sign digit and require

(1) For multiplication both numbers be less than r¥, so the first s
most significant digits must be zero and
‘. (2) For addition both numbers be less than s . r2N-l and therefore the

most significant digf* must be s-1 or less.
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Figure 1:

Figure 2:

—ta

A representation R(n) of numbers n satisfying -9999 £ n < 9999.

A multivalued representation m(n). All values of m(n) for a
given n are equally valid.
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APPENDIX J

FLOATING POINT OPTICS
FOR MATRIX VECTOR MULTIPLIERS
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Floating point optical matrix calculations

H. J. Caulfield Abstract. The recent explosion of interest and activity in optical numerical
Aerodyne Research, Inc. processing has occurred despite thg fact that caiculations had to be carried out
45 Manning Road with integer or fixed point arithmetic. We show here that floating point opticai
Billerica, Massachusetts 01821 matrix-vector muitiplication is feasibie.
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1. BACKGROUND ON FLOATING POINT ALGEBRA

A wide variety of new architectures and algorithms for optical matrix
operations have been introduced recently.'~¢ Without exception
these have used fixed point arithmetics. The sustained interest in
these systems arises from the high capacity, high speed, and low
power consumption of these optical computers and from the fact that
therr fixed point calculations can be very accurate.’~% Of course, the
range of applications could be expanded tremendously if ﬂoatmg
point calculations could be performed.
In floating point notation (base b) every number is written

=00 tay e - s i X BT, n

where 1,15, . . . 1y areintegers betweenOand b — |, M s a preset
integer, 1, # 0, and ¢ is an integer. We call

=001, 0 -1y (2)

the mantissa and ¢ the exponent. With two numbers of the form

n, = mb% (3
and
ny = mibt . (4)

Short Communication SC-6108 recerved June 22, 1983, accepted for publication July | ).
IOIH rece:ved by Managing Editor July I8, 1983
© 1981 Society of Photo-Optical Instrumentation Engineers

we have
nny, = mmp * e (&

Neither the mantissa muitiplication (m,m;) nor the exponent addi-
tion (¢, + ¢,) is difficult to achieve optically. What is necessary but
far more d:ﬂzicult optically is adding n; and n,. Obviously,

n, +n, = m,b" + mzbcz = m,be’ . (6)

In a computer one finds the larger of ¢, and ¢,. Without loss of
generality, we assume e, > ¢,.

Clearly,
n, + 0, = mb® + mb LT = (m) + mybtT )t . (7
Therefore,
e; =e; (8)

and m, is calcuiated by rounding off m; + m, b2~ © after M
places. We see no obvious way to do those steps opucally so we have
adopted a new but largely equivalent approach.

2. BACKGROUND ON OPTICAL VECTOR-MATRIX
MULTIPLIERS

The prototypical modern vector-matrix multiplier is that of Good-
man et al.' More recently systolic and engagement versions have
been introduced to simplify hardware and speed up the operations.© -
All of these start with a linear array of N discrete incoherent hight
sources representing the input vector components and produce a
linear array of N discrete points of light (each of which i1s detected on
a discrete detector) to give the N components of the product vecto:

The Goodman processor calculates the full matrix “instarn iy, " whiie
the systolic approaches require time integration over N pulses to
arrive at the final answer. The floaung point need s present in both

OPTICAL ENGINEERING / November./December 1983 / Vol 22 No 6 768
J=2
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3. DUAL REPRESENTATION APPROACH

The approach proposed here 1s limited to the systolic processors. The
kev 1dea is to use different means for representing input and output
numbers opticaily The input vector components are represented by
encoding both their mantissas and exponents as source brightnesses
in separate and parallel processors. One processor does nothing but
muluply mantissas. A similar but separate processor adds the expo-
nents. We assume

—em Se.eSey )]

and encode ¢ as

f=e+eqn . = (10)
clearly,

0<f<22e, . (n
The signal

fy =10, +f, = 2eq +(f; -1y (12)

1s used todrive an optical light deflector to one of (2e, + 1) possible
positions (one for each possible value of f; + f,) spatially normal to
the line of output vector component points. A two-dimensional
detector array [N vector components by (2e, + 1) exponents]
recerves the deflected light and integrates over the required N pulses.

While this looks in form like Eq. (1), the condition 1in Eq. (1) that
1, # 0 may not hold. Thus, we may not have e, = ¢, Nevertheless,
this is a floating point operation with all of the accuracy advantages
thereof

4. UNRESOLVED PROBLEMS

Two major problems with this technique remain unsolved. First,
simple electro-optical light deflectors are very fast but do not give
many resolvable spots (limiting ¢, ). while mechanical or acousto-
optic light deflectors give many resolvabie spots but may slow up the
system too much. Thus, the choice of deflector is critical and diffi-
cult. Second. because one spatial dimension is used for the exponent,
it is by no means clear if this technique is extendable to the modern
optical matrix-matnx multipliers*® which already require a two-
dimensional detector array.

S. PERSONAL CONCLUSION

It has been my experience that an “existence proof™ (such as | have
offered here for opuical floating point algebra) invanably produces
almost immediate improvements by others. | trust and hope this will
happen here.
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Spatial encoding for optical floating point computation

H. John Caulfield

Following the lead of electronic computers, optical computers must adopt floating point calculation to allow
for both high accuracy and high dynamic range. Given here is a method for using spatial encoding for that

purpose.

l.  Introduction

High numerical accuracy is required for most alge-
braic calculations. Long ago this forced electronic
computer designers to adopt digital rather than analog
number representations and to introduce floating point
calculations. Recently optical computer designers have
devised a number of ways of using digital number rep-
resentations.!= Thus the remaining step is floating
point calculation. Although a preliminary step toward
floating point optical computing has been taken,® no
universally applicable method is known.

Il. Basic Concepts

The basic idea of floating point operation is to rep-
resent a positive number by

nsmXbe, (1)

where m = a positive number within a well-defined

range.

b = a fixed positive integer called the base or
radix, and

e = a real (positive or negative) integer called

the exponent.
{Negative and even complex numbers are easily repre-
sented also, but this would be an unnecessary digression
here.) In an electronic digital computer one normally
keeps b > m 2 1. Foroptical computing we may relax
that requirement slightly.
. Now consider two numbers:

n;, =my X o, (2)

ny = mg X He (3)

The author :s wmith Aerodvne Research. Inc.. 45 Manning Road,
Bilierica, Massachusetts 01821
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The two operations optical computers perform are ad-
dition and multiplication. Multiplication is the easier
task. We have

ny X ng = (my X mo) X barvez (4)

We already know how to multiply m,; by m,. We need
to add e; and e, at the same time. Adding two integers
of moderate size can be done either electronically or
optically. The only problem appears to be that of
bringing m, X mj back within the desired range before
subsequent calculations. This, it appears, will be a
recurrent problem in optical floating point operations.
If

b>myma21, (5)
then
52> myxmy2 1. 6)

If we have time to test m; X m, we can either use it (if
my X mg < b) ordivide it by b (if 52> m, X m3 > b) and
replace e; + eg by'e; + eq + ;.

Adding n; to ny is more difficult. In an electronic
computer we calculate

ny 4+ ng = mbo + mobez (7
If we determine e; 2 ey, then
ny+ng = (my + mabez-erjber, (8)
Since
bere < | {9

(for e = e,), this means attenuating m. before adding
ittom,. Finally, in an electronic computer, we round
off m; + mobe2~e1 to the desired number of bits. Thus
there is a nonlinear decision step which is difficult to
implement optically.

These difficulties are compounded by the fact that
all optical matrix algebra computers involve accumu-
lating products, e.g.,

niny X ny) + 1n3 X ng + (ng X ngl 10

15 January 1984 - Vol. 23. No. 2/ APPLIED OPTICS 238
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That is, multiple products must be added. What fol-
lows is a solution {indeed several solutions) to this
problem.

. Vector-Matrix Multipliers
Here we use optics to calculate

Ax=y (n

or

N
Y= T g, (12)
7=t
We assume that all g;; and x, values are furnished in
floating point form.

We must begin with a naive and totally fallacious
solution. We could introduce an attenuator with
transmission b¢1*¢2 before the detector of mym,. This
places the whole burden on the dynamic range and re-
peatability of the mulitiplier. That is, it offers no im-
provement over fixed point operation.

We conclude that we need a separate detector for
each e; + e2 value. Then, in final readout, the accu-
mulated values in each e, + e5 bin are first thresholded
to eliminate pure noise and then added with appropriate
weights to give the {inal resuit.

Let us illustrate with the following b = 10 example:

12
=yt
2 10

(13)

1X2+2x10
2X2+10x10

1x100 2x1
) . (14)
2X 100 1 x 10

2 x .
x= [2 “’0} . (18)
1 x 10!

[1x2x1w*°+2x1x10°*l v1
= = .
12X 2x 10040+ § x| x 101*!

We suppose that there are at least three detectors for
each v, corresponding to 10%, 10!. and 102 products. We
then operate electronically according to the decision tree
of Fig. 1. Clearly we can achieve as many exponent
sums as we have detectors.

Ip optical vector-matrix multipliers each y; is de-
tected by a single detactor. To allow floating point
calculation, we need o replace each single detector with
multiple detectors—one for each possible exponent
sum. One way to do this is to use a light deflector for
each y, driven to deflect the mantissa product onto the
aporopriate detector. This is the method of Ref. 5.

In integrated optical matrix-vector multipliers the
deflectors inight be buiit 'n since the common hase
material flithium nioknte) makes a good acoustooptic
detlector.?

In bulk optics, convenience demaads many deflectors
on asingle suhstrate. This 13 now practicai. Another

y=Ax =

We write

Then

(16)

240 APOLIED CPTICS /ol 23.%Mo 2 15 ,anuary 1984
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Fig. 1. Logic for assigning mantissa and exponent to the number
accumulated in three bins (detectors).

way of doing this is encoding the exponent sum (com-
puted electrically) as a frequency of modulation on the
input light and frequency analyzing the output with an
acoustooptic frequency analyzer.

Unfortunately these methods fail for matrix-matrix
multipliers which aiready use 2-D detector arrays.

IV. Matrix-Matrix Muitipliers

As just indicated, deflectors seem impractical for
matrix-matrix multipliers, so alternatives must be
considered.

One alternative is to use frequency encoding of ex-
ponent sums as suggested before but analyze the bins
electricallv. This is no real solution in the sense that
it stiil uses only one detector for all the frequency bins
to be searched. Indeed we must accept multiple de-
tectors as a fundamental price to be paid for floating
point operation.

Spatial encoding exponents seem to be a rational
approach to the problem. We show below how we
might encode the matrix-vector problem used as an
earlier example:
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Exponent
111222 0
009 000 1
1=t 00 0 0 0 O 2 an
v3 222000 0
00 0 1 1 1 1
0 0 0 0 00 2
r'.’ 00
ii‘ 00
200
Xe— | 010 (18)
\,‘3
01 0|
0 1 0
01 2 Exponent

Note that each number is represented by a 3 X 3 array of numbers.
In A the number is repeated three times horizontally. In X the
number 18 repeated three times vertically. :
Multiplying, we have

g

o C© N

4
0

o

[T =2 &1

0

0
0
0

TV T

—

01)X1+013x:]
yﬂ
021x1+azgx'z
-
r11112001222010
50002004»5000010
o 0 ofl2 0 00 1 0
22 2\ (2 0 00 o0Yfo 10
=lo o ol|2 += 1o 1
3 3
Loooz kooooxo_j
po— —
20 0 0 0
0 al+{o0
0 0 0 0

= . (19)

4 0 0
(L2 Y]

LO 0 ‘)_J

Each position in the output 3 X 3 detector array corre-
sponds to a unique exponent sum. Assigning exponent
values as shown beiow

G+0)=Q N+!lm] Q+2=2
0=l i+ i=2 1 +2=]
2r0u=2 2ei=d 2+2=my,

in the final resuit leads to

R I AL .
It o da Ao B o 8

2% 100+ 2 X 10}
4X 10 +1x%x102

22
- 20)
oq |
as required. Clearly this extends readily to the ma-
trix-matrix case.

V. Conclusions

Optical floating point calculations are readily
achievable by spatial encoding. Like all the other im-
provements in number representation for optical
computing (capability of representing real numbers,
complex numbers, and digital numbers), the price that
is paid is a loss in the throughput rate at which numbers
are processed. As high throughput is one of the sup-
posed advantages of optical computing, designers must
exercise care in system design. Finally, we should note
that on-the-fly scale adjustment can achieve many of
the effects of floating point operation with no penalty
in throughput but some penalty in complication.” Thus
multiple solutions to the dynamic range problem are
now available.

This v;aork was sponsored under contract F19628-
82-C-0068 from Rome Air Development Center, Han-
scom AFB, Mass.
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THE MATRIX-MATRIX MULTIPLIER
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Rapid unbiased bipolar incoherent calculator cube

R. P. Bocker, H. J. Caulfield, and K. Bromley

Presented in this paper is one of several pussible electrooptical engagement array architectures for perform-
ing matrix-matrix multiplication using incoherent light. Essential components of this new signal-process-
ing device include two dynamic hight valves operating in a reflection mode. a 2-D photodetector array, and

a single polarizing beam splitter.

I.  Introduction

In this paper we present a new concept for performing
the mathematical operation of matrix-matrix multi-
phication using electrooptical technology.  This concept
s hased on the pioneering work of Kung! for performing
matnx-matrix multiplication using an all-electronic
svstonte-array architecture. A novel feature of the
electrooptical approach 1s that it is not limited to 2-D
architectures as is the case when emploving silicon
rechnology noan electronic implementation. Before
describing the electrooptical approach, let’s briefly re-
view prior work for performing hoth matrix-vector and
matrix matnx muluplication using optical tech-
ngues

. Background

e use o1 opticat correlation techniques involving
coherent Gght for performing matrix -matrix and ma-
trix cector multiplication has been extensively studied
Matfematicoiliy- and experimentally demonstrated for
matrives of order 2.0 This technique has the undesir-
able feature that, as the matrix order increases, the
number ot anwanted circular distributions of light ap-
pearina i che output plane ot the processor rapidly
escalates thus reducing the hght available at those
pustiions corresponding to product matrix element in-
tormation  Inaddition to this technigue, there have
Deend number of other techniques investigated using
ieenerent DRt tor pertorming matrix-vector multi-
pincation. Forexample, preliminary studies in this area
leseribe ine computation ot 1-D discrete Fourier
transbermsc e cosine, and Walsh-Hadamard
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transforms as well as a variety of linear filtering opera-
tions.> The technical feasibility of this particular ap-
proach was demonstrated for matrices of order 32 using
an optical device earlier developed® for performing
correlation and convolution operations with incoherent
light. In the original version of this optical correlator,
a single light-emitting diode. photographic film trans-
parency. mechanical scanning mirror, and a vidicon
detector were emploved. More recently,’3 the scanning
mirror and vidicon detector were replaced by a solid-
state area-array charge-coupled device, thus greatly
reducing the size of the processor. Matrix-vector
multiply operations involving matrices of order 128 are
presently performed using this approach.

A second technique for computing matrix-vector
products using incoherent light involves the use of a
linear arrav of light-emitting diodes, an optical trans-
parency, and a linear array of photodetectors.? This
architecture has the advantage that the data vector
information may be entered in parallel, thus allowing
tor higher throughput rates. The feasibility of this
approach has been demonstrated for matrices of order
10. Combining this architecture witha 1-D adderin a
feedback loop gives rise to an iterative electrooptical
processor.!Y With this capability, it is possible to per-
form other higher-level matrix cperations such as the
solution of simultaneous algebraic equations, least-
squares approximate solution of linear svstems. matrix
inversion, and eigensystem determination,!!-i< just to
mention a few.

Most recently, much attention has heen focused on
implementing parallel-processing architectures for
performing a varietv of matrix operations using exclu-
sively electronic components. Most noteworthv is the
work of Kung on svstolic-array architectures. 1314
Combining VLSI/VHSIC technology with systolic-arrav
processing techniques should give rise to increased
signal-processing capabilities by at least a factor of
10017 Already a 2-D svstolic-arrav testbed has heen
designed and tabricated for validating manv ot the
proposed architectures and algorithms envisioned.'® A
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similar all-electronics parallel approach has been pro-
posed!” using an engagement-array architecture. As
it turns out, these new systolic’engagement types of
architecture are not restricted to solely electronic im-
plementations. For example, an acoustooptic approach
using incoherent light for performing matrix-vector
multiplication employing the systolic/engagement-array
architecture has recently been described.!® This ac-
oustooptic processor uses a linear array of light-emitting
diodes for inputting the matrix information, an acous-
tooptic traveling-wave moduiator for inputting the
vector information, and a linear-array charge-coupled
device for computing the desired output vector infor-
mation. This approach.has the advantage that the
input vector and matrix information may be entered in
real time.

ill. Preliminaries

To illustrate the concept of matrix—matrix multipli-
cation using an optical engagement-array architecture.
consider the case when the matrices involved have
real-positive elements onlv and are of order 3. That

apr a1z appflbn b by i € <3
az; az axz {{ba b buf =len cm el (D)
a3 ax ax]{bm ba by ca1 <y €33
or, equivalently,
AB =C, (2)

where A and B are known input matrices, and C is the
desired output matrix. Each element of matrix C is
obtained hy the equation
3
co= T aybe k=123 3
Jj=1l

The techniques presented here certainly apply 1o ma-
trices of order >3. Order 3 matrices were chosen merely
to illustrate easily the concepts involved. Shown in Fig.
1 is a 2-D array of photodetectors initially containing
zero charge at each detector site, two optical transpar-
encies encoded with the matr.x A and B information,
with each transparency capable of translating in front
of the photodetector array as shown, and an incoherent
light source providing a spatially uniform collimated
lizht beam comprised of a time sequence of equal in-
tensity pulses. Light propagetion is from left to right.
As seen ip this figure, each optical transparency is
partitioned into an 1rray of rectangular-shaped reso-
lution cells, some containing the matrix A and B infor-
mation, the remaining being optically opaque. Those
cells containing matrix information each have an in-
tensity transmittance proportional to the magnitude of
the correspondinz matrix element located at that cell
as depicted in Fig. 1. At any one instant in time, only
a3 X 2arrav of resolution cells in each transparency is
illuminated hy a single 'izht nuise of short time dura-
tion. The resulting spatigily modulated light heam
impinges or the photodetectar arrav, whenee photo-
electric charge is venerated and aceumulated.

Qe
Transpsrency
8

Opticat
Transperency

Photodetector
Arrmy

Fig. 1. Optical engagement matrix--matrix multiplier using shding
vptical transparencies. (lmtial States

Coltimated
Lght Source

Fig. 2. Optical engagement matrix-matrix multiplier using sliding
optical transparencies. (Final State.)

Initially the optical transparencies are so positioned
that the first light pulse passing through the system
passes through those 3 X 3 arrays containing only the
a;; and b;; element information, respectively. The
result is that only the photodetector in the upper-left
corner of the detector array receives light. The amount
of photoelectric charge generated at that particular
detector is proportional to the product of a;, and by;.
Next, optical transparency A is shifted horizontally to
the right one resolution cell width, and transparency B
is shifted vertically downward one resolution cell height.
At this point, the light source generates a second pulse
of light identical to the first. Now the upper-left three
photodetectors in the array each generate quantities of
photoelectric charge proportional to the product of the
transmittances of those resolution cells directly in front
of each detector. This process continues in this manner
until the optical transparencies have physically trans-
lated past the detector array as shown in Fig. 2. On
closer examination, we find that at each photodetector
element site there is a quantity of photoelectric charge
which has accumulated that is proportional to each
matrix element comprising the desired matrix C. This
then represents a simple version of the engagement-
arrav architecture for performing matrix-matrix mul
tiplication using two optical transparencies which
phvsically translate across the face of a fixed photode-
tector array.
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. IV. Proposed Electrooptical Configuration o
- The architecture just described for performing ma-
R trix-matrix multiplication using an optical engage-

i ment-array approach was primarily examined for the
purpose of illustrating the basic concepts involved. Doty
z Unfortunately, this architecture lacks the capability of Lignt Vaive N Folarieing Sesm
updating or changing the input ma: s Aand Bina BN
’ real-time manner. This is principally because most
optical transparencies are made of photographic film.

Ot course, one way around this difficulty is through the ~
use of light valves whose optical properties can be N

[‘ changed in real time by electronic means. That is, if we

! simply replace the translating optical transparencies by

b stationary light valves whose transmission character- Ronectiop
r

i

istics can be changed and updated, matrix-matrix Conmateg I
multiplication can be performed without the need for Liont Source
translating components.
. A compact architecture based on these ideas isillus-  Fig. 3. Key components of a solid-state optical engagement array
b trated in Fig. 3. The basic components required for this matrix-matrix multiplier.
system concept include a polarized incoherent colli-
mated light source with the same properties as before,
a polarizing beam splitter, two light valves operating in
a reflection mode, and a 2-D array of photodetectors
also with the same properties as before. Collimating
M and imaging optics may be required but are not shown
2 here. The use of optical lens elements would certainly
. have to be emploved when diffraction effects could not
he ignored. The matrix A and B information are
clocked into their respective light valves shown in Fig.
4. The transferring of the matrix data within the light
valves using this architecture is analogous in all respects
to the physical translating of the optical transparencies
as previously described. Again, the desired matrix C
information is generated within the photodetector
array, where it may be clocked out at a later time.
The reason for using a polarizing beam splitter in this
architecture is to eliminate light from propagating di-
rectly from the light source to the photodetector array
without first retlecting from each of the two light valves.
Of course, for this to be true, the incoherent light source
must be polarized as noted earlier. If the light valves
were to behave, for example, as reflecting mirrors, one
type of polarizing beam-splitter arrangement which
- could he employed is shown in Fig. 5. The polarizing
4 beam splitter would be of the Glan prism variety.!® In
addition, an input linear polarizer and two quarterwave
plates would also be required. It is noted that the exact
electrooptical configuration used for performing the
matrix-matrix multiply operation will be highly de- WovePate
pendent on the nature of the particular light valves
‘ employed. Light-emitting diodes or laser diodes appear
most attractive as the incoherent light source. The '
photodetector array could be an array of photodiodes
or possibly a photoactivated charge-coupled device.
For the architecture described herein, it has been i
i assumed for the sake of simplicity that the elements of e
' the matrices A, B, and C were real and positive only. Polaner
q The 1ssue of perfurming matrix operations involving
matrices and vectors whose elements are bipolar or even
complex «sing ircoherent light has previously been
addressed. 7' These techniques, therefore, could Fig. 5. Polarizing heam splitter with support optics.
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Fig. 8 Architectures for performing (a} basic matrix~matrix mul-
upiication AB. (b} the matrix operation ABC., (c) iterative processing
using teedback.

eastlv be extended to include this architecture as well.
Since the mathematical operation of matrix-matrix
multiplication is so fundamental to a number of
higher-order matrix operations, this basic architecture
could serve as a modular building block for these
higher-order operations. The basic matrix-matrix
multiply operation using the processing cube structure
presented in this paper is symbolically represented by
the diagram in Fig. 61a). Again, A and B are the input
matrices. and AB is the desired output matrix. If it was
important to perform the multiplication of three ma-
trices, that is,

. ayy ae aizl|bu bz by e e <3
ABC = [an aw amy{|bzn bay baafjcu c2 cozfr (4
a1 ay am;m] by b bunjlon e cm

two processing cubes could be connected in a serial
manner as depicted in Fig. 6(b). It should be noted here
that the AB data must be both spatiailv and temporally
reformatted hetween the two cubes employed for this
algorithm to work. The product of three matrices
would be useful for image-processing tvpe applications.
One example would he computing the 2-D discrete
Fourier transform of an array of pictorial information.
Matrix B would contain sampled values of the image,
matrices A and € would contain the discrete Fourier
transform kernel information, and matrix ABC would
vield the desired disrrete Fourier transform. The ar-
chitecture depicted in Fig. Hic) would be useful in those
areas for examnle, using iterative processing requiring
feedback. The expression A - AB as seen in Fig. 6¢
means A is replaced by the matrix product of A and B,

1-5
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As previously mentioned, the solutions of simultaneous
equations, matrix inversion, and eigensvstem deter-
mination are representative of higher-order operations
which can be performed using iterative processing.

V. Summary

This paper has presented the basic concept of a rapid
unbiased bipolar incoherent calculator cube (RUBIC
cube) for performing matrix-matrix multiplication
using an optical engagement-array architecture. Fu-
ture work will address the implementation of this ar-
chitecture.
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THE APPLICATIONS OF SILICON LIQUID CRYSTAL LIGHT VALVES TO
OPTICAL DATA PROCESSING: A REVIEW

U. Efron and B. H. Soffer
Hughes Research Laboratories
Malibu, CA 93065

and

H. J. Caulfield
Aerodyne Research, Inc.
The Research Center at Manning Park
Billerica, MA 01821

ABSTRACT

The applications of the photo—-activated, the CCD-addressed, and the variable~
grating mode liquid crystal light valves (LCLVs) to optical data processing are
described. These applications include image correlation, level slicing, spectral
analysis and correlation, bi-spectral image division, and matrix-matrix
multiplication.

INTRODUCTION

Coherent optical data processing (CODP) (ref. 1) offers many potential
advantages in image processing as well as in the processing of wide bandwidth
electrical signals which are amenable to two-dimensional (2-D) form. Ome of the
main limitations of this technology has been the lack of a fast, high-resolution,
real-time spatial light modulator (SLM) (refs. 2, 3). These devices impose, on a
coherent optical beam, a 2-D image that is derived from either an incoherent optical
source {photoactivated SLM) or directly from a properly formatted electrical input
signal (electronically addressed SLM). While the first of these tasks can be
accomplished with the photoactivated hybrid field-effect mode (HYFEM) liquid crystal
light valve (LCLV) (ref. 4), the second can be implemented by the use of the charge-
coupled device (CCD)-addressed LCLV (ref. S5).

The first generation, CdS-based photoactivated device is already im production
at Hughes. A second-generation, fast-response silicon photoconductor-based device
is currently under development at Hughes Research Laboratories. These types of
devices operate in conjunction with an optical input source, such as a CRT or a
laser scanner to provide a real-time coherent output image (ref. 6). The novel,
photoactivated silicon LCLV (Figure l) with its high-broadband input sensitivity may
also be used for diract imaging of the scene and subsequent image processing (e.g.,
for roborics,.
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In CODP applications (such as radar signal processing or real-time matched
filters), it is desirable to convert the electrical input directly to an optical
output image without the intermediate step of first converting to an input image v,
a CRT. To realize this function, we have designed and developed a novel type of
CODP inputting device that uses a CCD array to serially load and store a full frape
of analog electrical information which 1is subsequently transferred in parallel to ,
liquid crystal (LC) layer (Figure 2). The elimination of the CRT (or equivalent
process) from the ODP system greatly simplifies the system; in particular, it
eliminates several of. the drawbacks associated with it, such as geometrical
distortions, stability, and jitter. This device can be used with both coherent ang
incoherent readout sources, extending in spectral range from the near ultraviolet to
the near infrared.

In the following section, some applications of both the silicon photoactivated
LCLV and the electronically addressed CCD-LCLV to ODP will be described. These
applications include image correlation and level slicing, spectral analysis and
correlation, bi-spectral image division, and matrix—matrix amultiplication.

OPTICAL PROCESSING APPLICATIONS OF THE SILICON LIGHT VALVES
Image Correlation and Level Slicing

Optical data processing is applicable in two mgin categories of data
processing: the processing of wideband serial signals, and in 2-D or image
processing. The photoactivated device is most effectively used in image processin;
applications, while the CCD-addressed spatial light modulator can be used in both of
these categories.

One example of image processing is that of correlating an image with a
reference pattern, as shown in Figure 3. Here the images analyzed, A(t) (in video
form), and the reference image, B(t), are correlated using a joint-transform
technique (ref. 7). The two CCD-SLMs are used as the electro-optic tramsducers to
Zenerate real-time coherent optical images in which amplitudes are superimposed in
the Fourier plane. The intensity at the input to the photoactivated device
contains, among other terms, the multiplied amplitudes of the two Fourier-
transformed images. The photoactivated LCLV is then used to retransform the
multiplication image, resulting in the correlation required.

An important application of the photoactivated silicon LCLV is direct-scene
imagery followed by coherent processing. This function is required, e.g., in rabot
vision systems. Here, one can utilize the two important features of the silicon
device: (1) its broadband sensitivicty (400 to 1,100 nm, with typically 50 WW/cm*® at
540 nm); and (2) its fast time response, permitting fast scenery changes to be
processed. In the configuration shown in Figure 4, the input scene is imaged and
converted to coherent modulation using the Si-LCLV, and is subsequently correlated
with a matched pattern using the CCD-LCLV as a programmable matched filter.

The use of thne siilcon photoactivated device for such direct image processing
further permits the dual-frequency mode of the liquid crystal activation to be
applied (ref. 3). This may result in cutting the response time from the curreant
16 a8 to 1 to 2 ms.
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Another powerful application of optical processing is with the use of a special
.yotoactivated device: the variable grating mode (VGM) SLM (ref. 9). The device is
sased¢ on the formation of grating-type regions in the LC, the spatial frequency of
virch 1s determined bv the voltage drop across the LC. Since a very high-impedance
.accoconductor is required for this light valve, the silicon-MOS configuration is a
-gzential candidate,

A useful application of the device is intensity-to-spatial frequency
conversicn, shown in Figure 5. Here, the device is used to level slice an input
.zage (shown 1n three levels: I, I,, I,). Filtering at the frequency plane with
7+ Fy (corresponding to 1 = I) resuits in the generation of the I = I, level of
:ne input image at the output plane.

Large Time-Bandwidth Spectrum Analyzer

We have demonstrated a real-time rf spectrum analyzer with an extraordinarily
-.gh resolution and time-bandwidth product using the LCLV, with resolution <102 yz.
e scheme of the apparatus 1is shown in Figure 6. The rf signals were amplified and
::splaved in raster fashiom on a CRT. The signals were obviously asynchronous with
ine raster scan of wg = 20 x 103 sec™! and a frame time of 7 x 10~% sec. The
.azoherent optical display was focused on the photoconductive input of the LCLV
~1zh acted as a coherent-to-incoherent transformer as the output of the LCLV was
.iluminated with a coherent HeNe laser. This transformation permitted am optical
fourier transformation to be performed. It is well known that the Fourier transform
:¥ a raster pattern in time is a raster pattern in frequency, as shown in Figure 6.
Lov-frequency, Morse—coded tone-modulated rf signals from oil field transmitters
{isplayed the simple textbook A.M. spectral pattern of a carrier and two pulsating
1idebands. More complex modulations were also evident in-the display. The
neoretical resolution is given by the ratio of wy to the number of lines, which
vith N = 1.4 x 10° lines is 14 Hz. Because of the falloff in resolution of the
LV and associated optics, the resclution achieved was somewhat less (80 Hz). An
*vious improvement of this system will be the replacement of the CRT-imaging lens
vith a CCD—~addressed LCLV.

In this case, the ultimate, 1,000 array CCD-LCLV would provide 106 poiat
esolution over 100 MHz bandwidth at (real-time) frame rates of 100 Hz. Comparable
cerformance, taking into account size and power requirements, will not be achievable
> even the most advanced digital technology currently in development (i.e., VHSIC).

A Real-Time Spectrum Analyzer/Correlator

Another important application is real-time spectrum analysis of a given
tcene. A silicon lignc valve-based system that can perform this operation is shown
3 figure 7, The operation of this system is described below.

The radiation from the scene to be analyzed, I(W), is split by the beam
volitter in a Michelson interferometer configuration. Two mirrors, a standard one
128 2 staircase one, are used. The {nterference pattern at the output of the
“terlerometer (i.e., at the input to the LCLV) is the (spatial) Fourier transform
" the input spectrum. This is analogous to a conventional Fourier transform
‘?ectrometer (TTS® (ref. 10), in that each of the staircase steps represents one
2:77or location in a moving mirror spectrometer. The subsequent spatial Fourier
‘“4asform of the output of the light valve results in the spectral analysis of the
TP Leam at e imaging arrav Figure 7 shnwe the nparatinn nf the qpectral
“frelator, The readcu: laser beam 1Ls spalially uwwdulated Ly e Mouries
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transformed reference spectrum using the CCD light valve. This modulated beam ig
then used as a readout light for the photoactivated light valve. At the input of
the photoactivated light valve, the spatial interferogram of the input beam is
present. The emerging output beam consists of a multiplication of the input and ta,
reference, Fourier-transformed spectra presented by the CCD-LCLV. The subsequent
inverse Fourler transformation carried out by the lens results in the appearance ¢
correlation and coavolution terms of the two spectra at the imaging array. This
system, which is based on the FTS principle, benefits from two important advantages
of the FTS system, namely, the multiplexing, or the Felgett's advantage in signal-
to-noise ratio, and the throughput, or the Jaquinot's advantage.

An attractive feature of this system is that it can be used for pattern
recognition purposes with a flip of a mirror. In this way, the pattern of the
incoming beam, rather than its spectral content, can now be analyzed and correlateqd
with a suitable reference image presented by the CCD light valve, as in Figure 4,
The gystem can thus perform both spectral and pattern correlations of the scene.

The spectral range of this system is limited by the photoactivated light valve
since it must be sensitive in the spectral range used. The existing silicon light
valve enables us to use the 400-nm fo 1,200-nm range. Since the detection of longer
wavelengths may require cooling of the light valve, the LC will be the limiting
component for such a longer wavelength light modulator. It is estimated that
operation up to 3 um can be achieved using LC operating at low temperatures.
Possible photoconductor candidates for such IR light valves are Ge, InAs, InSb, or
extrinsic silicon, depending on the cutoff wavelength required.

The spectral resolution largely depends on the manufacturing of the staircase
airror. One could conceive more than 10,000 elements of resolution. It should be
pointed out that for the photoactivated and CCD-addressed light valves, a resolutiocn
on the order of 10° elements is possible.

One obvious limitation for the application above is the intensity of the input
beam, or the radiation level from the scene analyzed. Using the silicon light
valve, a rough estimate for the input illumination level required is 100 uW/cm? in
the visible spectral region. Projected performance of sucan a correlator for two
spectral regions 1s presented in Table 1. Finally, it should be pointed out that
other, possibly more efficlent methods of self-interference of the incoming analyzed
beam have been previously suggested (ref. 1l1).

A particularly important type of signal processing 1n which the CCD-LCLV aay
be used {3 radar signal processing. This field encompasses ambiguity-function
generacion and synthetic aperture radar (SAR) processing.

An ambiguity-function generation system using two LCLVs was previously
described (rer. 12). The replacement of the photoactivated LCLV by a CCD-addressec

LCLV will significantly improve the system, elimating the CRT and the acousto-opt:i:
unlts required.

The Bi-Spectral Imaging/Image Division System

Another potential application of the Si-LCLV for combined spectral and scene
analvsis is the Bi-Spectral Imaging/Image Division System. The purpose of this
svstem 1s to obtain the (logarithmic) 1mage of the intensitwv ratio of the scene at
two wavelengths in the 400-om to 1100-am spectral range. This operation results :a
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the enhancement of specific textures in the scene. Thus, it has applications in
texture recognition such as the remote Earth-features identification system
currently under development by NASA (ref. 13). The schematics of the Si-LCLV-based
system are shown in Figure 8. The operation is as follows. The scene imaged by the
input optics is split into two channels which are each wavelength filtered in the
2wo speccral regions (A}, X,) required (400 mm < A1, A, < 1100 nm). Then the
f{ilteved images are spatially modulated by logarithmic halftone screens with
differeat spatial frequency for each channel, A,-F, and A,-F,. A variable
attenuation compensator placed at one of the channels acts to compensate for
iotensity imbalance between the two channels. The two images, each modulated by a
different spatial carrier, are then recombined at the input to the silicom liquid
crystal light valve. Thus, each of the two images at the two different wavelengths
ts "tagged”™ with a different spatial frequency modulation. The photoactivated
silicon liquid crystal .light valve acts as a sensitive, broadband, incoherent-to-
coherent image coanverter. A spatial Fourier transform is then performed on the data
readout by the laser beam. The diffractions of the two wavelength images will now
ippear separately in the Fourier plane, due to the different spatial carriers for
each of those images. Spatial filters corresponding to each of the two halftone
screens are placed at the appropriate locations in the Fourier plane. This results
in the formation of logarithmic intensity images following a retransforming lens
(ref. 14). A 180° phase retardation plate placed at ome of the filter locatioums
vill result in one of the logarithmic images (},) having a reversed phase with
respect 7o the other. Thus, the amplitude of this image formed at the video
detector plane will be proportional to

A = Al(x,y) + Az(x.y) a log Il(x,y) - log Iz(x,y) = log [12/12]

out
vhere I,(x,y) and Iz(x,y) are the intensities of the input images at Al and A,,
respectlvelv The image amplitude following recomstruction at the vidicoa input
vill be proportional to log [I(A,)/I(X})], i.e., to the (logarithmic) ratio of the
inages at A; and X Due to the high sensitivity of the silicon photoconductor in
tne silicon light valve configuration (about 40 uW/cm 2 ), the imaging system is
expected to have sufficient sensitivity for direct imaging of Sun-illuminated
scenes.

It should be noted that the same physical region of the light valve is utilized
in doth channels. This is done in order to minimize non-uniformities in the ratio
image obtained by the wavefront substraction. Thus, non-uniformities associated
vith amplitude or phase defects originating in the light valve will be automatically
substrated. The '"penalty', however, is the need to use two different spatial
frequencies, reducing the bandwidth available for image information.

The Spectral Range of the bi-gpectral imaging/image division system is limited
% the silicon LCL7 (400 am to 1100 nm). As indicated above, it may be possible to
extead the gpectral range of the silicoun device into the 3- to 5-um region.

The Dynamic Range of this system is limited by the Si-LCLV, which is typically
-50°1. An important advantage of this optical processing system is that the output
"at13 1s pregentad by a coherent light. This enables a straightforward use of

ae

33tical vost-processing (e.z., ratio image correlation).

he Spatial Resolution of this system depends on the spatial frequencies
*3ploved, 3s we.l as on the $i-LCLV performance. Taking Fo = 25 cycles/mm at 30%
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modulation as the current performance of the Si-LCLV, and using the two carrier
frequencies, as: Fo/4 and 3Fo/4, it 1s found that over 500 pixels of resolution are
available using the 43-mm aperture device, with AF = Fo/2.

Application of the CCD~LCLV to Systolic Array Processing

Optical numerical processing offers a unique application of CCD-addressed
LCLVs. For high speed, an optical numerical processor must utilize spatial
parallelism. A two-dimensional data array offers great parallelism but can eatail |
significant addressing problem. If, however, data could be entered a line at a tipg
and be made to march across the LCLV at the chosen clock rate, a single N x 1 CCD
line could address a full N x N data array. The use of moving electronic data in 3
plane for such numerical operations was popularized as 'systolic array processing"
by Kung (ref. 15). The first extension of systolic array processing to the optical
domain used one-dimensional transducers (acousto-optic delay lines and CCD
detectors) in direct analogy with VLSI transducers (ref. 16). Recently, Bocker
et al. (ref. 17) proposed the use of optics for systolic array processing in three
dimensions, which electronics cannot do. Their Rapid Unbiased Incoherent Calculatof
cube (or RUBIC cube) uses two electromically addressed spatial light modulators to
move components of matrices A and B across the spatial light modulator at certain
clock rates. One possible configuration is shown in Figure 9. Because two pixels
are needed for real-number representation, we can multiply the two (N/2) x (N/2)
matrices together with the RUBIC cube in (N-1) clock periods. The cube's ability ¢
multiply very large matrices very rapidly with low power consumption should make U*
RUBIC cube very importamt. To use the CCD-addressed LCLV for the RUBIC cube, one
aust use an external buffer memory which will feed the CCD-LCLV with ome line/coluA
displacement in each frame. Alternatively, it may be possible to modify the
structure of the CCD-LCLV to incorporate an intermal buffer memory. This will
enable the line/columm clocking operation required. This possibility, although not
a simple t sk, may also be desirable for other applications of the CCD=SLM.
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TABLE l.- PRCJECTED SPECIFICATICNS OF THE S1-LCLV-BASED
FOURIER TRANSFORM SPECTROPHOTOMETER/CORRELATOR

1. VISIBLE RANGE: 400 mm < A < 1200 nm
BANDWIDTH: 4&f = 16,700 cm~!
NO. OF RESOLUTION ELEMENTS: N = 100 x 100
SPECTRAL RESOLUTION: 6f = 1.67 cm~!
MAXIMUM "STROKE": &Dy,y = 1/6f = 0.6 cm
"ROUGH" STEPS: &Dy = 0.6 cm/100 = 60 um

"FINE" STEPS: 6Dy = 60 um/100 = 0.6 um

2. 1.5-ym TO 4.5-um REGION
BANDWIDTH: Af = 4440 cm™!
NO. OF RESOLUTION ELEMENTS: N = 100 x 100
SPECTRAL RESOLUTION: 6f = 0.44 cm~!
MAXIMUM "STROKE": 6Dy,aq = 1/0.44 = 2.27 cm
"ROUGH" STEPS: 4Dy = 227 um

"FINE" STEPS: §Dy = 2.27 um

STEPS DIMENSION (BOTH CASES) =0.5 mm X 0.5 mm FOR 50-mm APERTURE

. e e Y A O . . al la 8. o .aliso N
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Feedback methods for optical systolic and engagement matrix
processors

H. ] Caulfield and John Gruninger
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I'he mateniag of tne feedback cireuitry to the oplcai 3ystolic or engagement processor permits simple pipelining
of stati.nary iteralive aroritams as well as on-the 11y scale adjustment similar in effect to floating-point calcula-

tion

Once a suitable stationdry (terative aigorithm 1s cho-
sen. an optical systolic or engagement matrix algebra
processor can be used to perform a useful operation,
such as solution of' N linear equations with N unknowns,
<ingular vaiue Jdecomposition, and eigen problems.
Maost past work has been etther on algorithms! 2 or on
processors.™  Here we seek to complete the analvsis
hv showing how the processor and reedback circuitry
can he combined to achieve pipelined iterative systolic
processing (e, a teedback data low ~o mat-hed to the
processor input. output ddata Now  nat no slowdown of
the processor s required:  That s the feedback elec-
tromes that implements the iterztions must e matched
to the matrix processor  We sin w that sucn electronics
can aiso adyust the scale of the protiem during each
evele insuch a way as to assu. + cptimum use of the dy-
namic range of the svatemn.  Thus optical processors can
aperale N g namerical mode That s nether integer
cfixed pont) nor floating point bt much closer to the
Citter and mach miore et tnae e tortaer

We consider oniy malnx: vect - Lrovessors o detald,
DU eXtension To matrix -matria | . cessors s straight -
“aeward. Inasvstoue or engucerent processor for the
cgaation

Ax = b, B

A X OmIDOnen s 4re npit segientan’y and atter 4
certanoading fime of the pipeline' the b components
it ot pnt secaentaily For oo tad untbanded optical
COYSSeInENt TALIIX Ve tor Drocessor, the tirst b come
sonent < oompieted during tne same clock per.od in
wnich the Lzt X component i~ entersd. [t there s 1) be
Cosowdown, tne Pirst s omponent of the new iteration
©ox mst e calenlated durning the same clock time
P e sieration must be of o tori s hoas

¢ ko= ko 12y
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x = A~ b, 14)
We write
A=L+D+ LU, (3)

where L and (" are lower and upper triangular matrices,
respectively, and D is a diagonal matrix. Inserting Eq.
(5} into Eq. (1) and rearranging leads to

x=-D"UL+ Uix +D"'b 6)
From this we obtain
XK+ = ylKi 4 e (7
where
vK) = By Ky
B=-D-4L+U),
c=D""b

Ulearly, Eq. +7) has the form of Eq. 12). For many
problems,

hm x K= x, K—== (8)

A necessary and sufficient condition is that the spectral
radius of B be less than one.'? Again, this is just an
example for defimiteness. Many other stationary iter-
auive algorithms for this problem and for other prob-
lems. e.g.. the eigen problem, exist.

An engagement processor produces the components
of x5+ in sequence. To obtain the ith component,
we require the following: (1) a sequencer that puts the
proper v, 'K' signal (the one just completed) into the
adder. 121 a sequencer that puts the proper ¢, into the
adder. +3) an adder of v,'®** 4nd ¢, and 4) whatever
amplifier mayv be needed to insert x,'X* ¢ into the ma-
trix multiplier.  Figure 1 shows the svstem schemati-
caliv.  Note that only one adder and only one amplifier
are needed

One problem remains. scaling. et us define M~
as the magnitude of the largest component of XK' Let
ax alsoodetine Moas the maxamum value that a compo-
nent of X canaosume and stli be represented.  Usuallv
the components of X are represented by transmissions,

~0
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Fig. 1. Implementation of x'¥' = Bx'A=1' + ¢ with an optical engagement processor. The by's

are the components of the B matrix.

M=1 (9)

It M5 <« M, the svstem accuracy is poor. If M'K1'>
M, the input saturates and accuracy 13 poor. Clearly,
good accuracy requires that M'K' ~ M. Unfortunately
we do not know MK yntil after it is calculated. The
best that we can do is to use M'K-1) to approximate
M and scale the input to aim at M'A*1 = aM, where
a < 1. We might choose o = 0.9. We then set the
amplifier to feed back not x,“®* Y but sx,'K*+!), where
~ 18 a scale chosen to give MK+ D =~ yAM. Here we are
using the fact that. if Ax = b,

Alsx) = sb. (1)

To find x from sx we will need to remember the last s
used. It mayv happen that. despite the fact thats < 1,
the next M‘K" is equal to one indicating probable sat-
uration). In that case we applv in the next iteration a
smailer scale. These improvements require more
electronics than the simple system of Fig. 1, including
some memory (as it uses iterations of the form of Eq.
{3]. Inthis regard the logic is similar to that of using
Kalman filtering in contral systems.

What we gain is adaptive scaling.  If we can divide the
output into N leveis of spacire M/N, the full V:1 dy-
namic range ‘s available a: teration K only if MK«
M. Sofaras M 5 goes tre adaptive scaling makes this
a floating-point caiculation.  Ad other components of
x are not calcilated with equal accuracy since only one
scale is used for x and it i= chosen to be optimum for the
large<t-magnitude component of x.

The crmponents of x now appear to be calculated in
floating point.  Unfortunately, this s not the case.
Only the maximum romponent is calculated by a true
floating-point method. While ensuring that the largest
component remain close to but less than M, this ap-
proach can reduce other components to be much less
than M. We seek 1 method that w:il scale al! compo

nents individually. A generalization of the above
scaling method will permit a floating-point calculation
on all components of x. We rewrite Ax = bas

AS-ISx =b
and multiply on the left by S:
(SA5-1)8x = Sb,

where S is a diagonal matrix that is used to scale x. The
diagonal element S,, scales the ith component of x.
This matrix also scales b. If all the diagonal elements
of § are equal, that is, if S is the constant matrix s/, then
this approach simplifies to the previous one. The ma-
trix & = SAS-Tissimilar to A. It has the same eigen-
values, determinant, and condition number. The
condition number gives an indication of the size of
uncertainties generated in the solution vector x from
uncertainties in the elements of A. The size of the
uncertainties in x is bounded by the condition number
times the size of the uncertainties in 4. The transfor-
mation to & causes no change in the conditioning. If
S is the constant matrix s/, it commutes with 4, and Eq.
111) reduces to Eq. (10). The matrix S can be changed
at each iteration to scale x.
We define

(11}

vl = §KxK {12a)

as the scaled solution vector after the Kth iteration
and
wK+1 ,._SKXKH 12

as unscaled output vector after the £ + 1-th iteration.
Further defining

BK = SKB(SK)-! (12¢)
:nd

ch = [-I8Kp 112d)
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leads to the generalization of Egs. 16) and (7). For the
K~ th iteration the two-step process is to find wh *! as

whti= BRyK 4+ ¢K (13

and then scale wXA*1 1o find SK*!and vA*1.

The matrix BK is simila; to B. It has the same ei-
genvalues as B. In particular, the spectral radius of BK
1s equal to that of B. Therefore the convergence
properties of the method using Eqg. (13) are the same as
those vbtained from Eq. (6). In principle. the method
allows B to be updated at each iteration. If N is the
dimension of the problem, this update requires 2N?
operations. However, far fewer updates may be re-
quired. If wis not saturated or if none of its elements
is small compared to M. then SK*i can be taken to SK,
and no update of B is needed. The dynamic range of
B changes from update to update and is different from
B The elements of B are related to B by B, =
S.B.,S,, ' The columns of B are scaled by S~ the
rows are scaled bv 5. The method permits apportion-
ment of the dynamic range between the solution vector
v and the matrix B.

In conciusion, we have considered a generalized
scheme that allows the scaling of each component of x
in the solution of the Ax = b problem and a simplified
version in which a single scale is used for all components.
The propused method does not alter the conditioning
of the problem (the (; matrix is similar to 4), nor does
it alter the convergence rate (the matrix B is similar to
B). In the general form, however, a new B must be

formed from time to time, a computational burden of
2N? multiplications. If the simpler form is used, in
which all scale factors are the same, then G = 4, 8 = B,
and no additional computational burden is requirel.

It is clear that, to the extent that the dynamic range
of both the given problem ard the given hardware per-
mits it, floating-point optical systolic and engagement
processors are feasible.

This research was supported by U.S. Air Force con-
tract F19628-82-C-0068.
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MISSION
of
Rome Avr Development Center

RADC plans and executes research, development, test and
selected acquisition proghams 4in Auppol‘ut o4 Command, Control
Communications and Intelligence (C31) activities. Technical
and engineering support within areas of technical competence
8 provided to ESD Program Offices (POs) and othen ESD
elements. The prineipal technical mission areas are
commundications, electromagnetic guidance and control, Auwt-
vedllance of ground and aerospace objects, intelligence data
collection and handling, ingormation system technology,
Lonospherdic propagation, s08id state sclences, microwave
ohysics and electrondic reliability, ma,cnta,cnabw,tg and
compatibility.
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