

MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

AD-A149 543

Technical Report 979

October 1984 Interim Report May 1983 — January 1984

STATISTICAL ANALYSIS OF AUTOREGRESSIVE SPECTRAL ESTIMATES FOR NOISE CORRUPTED AUTOREGRESSIVE SERIES

D. F. Gingras

Prepared for Office of Naval Research Code 411

Naval Ocean Systems Center

San Diego, California 92152

Approved for public release, distribution unlimited

B

85 01 14 016

NAVAL OCEAN SYSTEMS CENTER SAN DIEGO, CA 92152

AN ACTIVITY OF THE NAVAL MATERIAL COMMAND

J.M. PATTON, CAPT, USN Commender

R.M. HILLYER Technical Director

ADMINISTRATIVE INFORMATION

This task was performed for the Office of Naval Research, Code 411, Arlington, VA, 22217, under program element 61153N, subproject RR014110B (NOSC ST73733). This work was carried out by the Naval Ocean Systems Center, Code 733, San Diego, CA 92152.

Released by D. F. Gingras, Head Signal Processing Technology Branch

Under Authority of R. R. Smith, Head Signal and Information Processing Division UNCLASSIFIED SECURITY CLASSIFICATION OF THIS PAGE

C

í

) T

				ENTATION PA			
				15 RESTRICTIVE MARKINGS			
UNCLASSIFIED SECURITY CLASSIFICATION AUTHORITY				3. DISTRIBUTION/AVAILAB			
				Approved for public release;			
DECLASSIFICATION, DOWINGRADING SCHEDULE				distribution unlimited.			
PERFORMING ORGANIZATION REPORT NUMBER(S)			5 MONITORING ORGANIZATION REPORT NUMBER(S)				
NOSC TR	979						
NAME OF PERFORMING ORGANIZATION		Ň	Bb OFFICE SYMBOL 78 NAME OF MONITORING ORGANIZATION				
Naval Ocean Systems Center		Code 733					
ADDRESS (City State and ZIP Code)				7b ADDRESS (City, State an	d ZIP Code		
San Diego,	.CA 92152						
NAME OF FUNDING SPONSORING ORGANIZATION BO			86 OFFICE SYMBOL	9 PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER			
Office of N	Naval Research		(if applicable) Code 411				
ADDRESS (Cry S	State and ZIP Code;		L	10 SOURCE OF FUNDING NUMBERS			
				PROGRAM ELEMENT NO	PROJECT NO	TASK NO	WORK UN
Atlington,	VA 22217			61153N	RR014110B	ST73733	
TITLE (Include Se	curity Classification)			1			<u> </u>
D. F. Ging TYPE OF REPOR Interim	RT	136 TIME COVER	кер ay 83 то Jan 84	14 DATE OF REPORT (Veer, October 1984	Month, Day)	15 PAGE COL 28	JNT
ERSONAL AUTH D. F. Ging TYPE OF REPOR Interim	RT		ay 83 to Jan 84	October 1984			JNT
ERSONAL AUTH D. F. Ging Type of Repor Interim Supplementary	IT AS	FROM	18 SUBJECT TERMS (Continue	October 1984			JNT
ERSONAL AUTH D. F. Ging TYPE OF REPOR Interim	RT		18 SUBJECT TERMS (Continue Spectral	October 1984			JNT
PERSONAL AUTH D. F. Ging TYPE OF REPOR Interim SUPPLEMENTARY COSATI CODES FIELD ABSTRACT (Contr Estim	GROUP GROUP	SUB-GROUP	18 SUBJECT TERMS (Continue Spectral Autoregi Asymptotion for a gaussian distrik	October 1984	nnally by block number) ries from observa	28	orrupted ve
PERSONAL AUTH D. F. Ging TYPE OF REPOR Interim SUPPLEMENTARY COSATI CODES FIELD ABSTRACT (Confi Estim is consider autoregres: normal wit	GROUP GROUP GROUP Inter on reverse if nece nation of the spe red when the ord sive parameters	SUB-GROUP SUB-GROUP Estery and identify by block in extral density functi der of the autoregre are used to form th d finite variance. A	18 SUBJECT TERMS (Continue Spectral Autoregi Asympto	October 1984 e on reverse if necessary and de Estimation essive Series otic Statistics buted autoregressive se to be known. When the ate, it is shown that th	ries from observa e high-order Yule- e estimate is weal	tions of a noise c Walker equation kly consistent an	orrupted ve estimates o d asymptoti
ERSONAL AUTH D. F. Ging TYPE OF REPOR Interim SUPPLEMENTARY COSATI CODES FIELD ABSTRACT (COM Estim is consider autoregress normal wit for the firs	GROUP GROUP GROUP Inter on reverse if nece nation of the spe- red when the ord sive parameters th zero mean an	SUB-GROUP SUB-GROUP estery and identify by block in extra density function der of the autoregree are used to form th d finite variance. A es case.	18 SUBJECT TERMS (Continue Spectral Autoregi Asymptotion for a gaussian distrikt ssive series is assumed t e spectral density estim	October 1984 e on reverse if necessary and de Estimation essive Series otic Statistics buted autoregressive se to be known. When the ate, it is shown that th	ries from observa e high-order Yule- te estimate is weal ariance is develope	tions of a noise c Walker equation kly consistent an	orrupted ve estimates o d asymptoti ssion is analy
COSATI CODES FIELD ABSTRACT (COM) Extim is consider autoregress normal wit for the tirs	GROUP GROUP	SUB-GROUP SUB-GROUP szery and identify by block in extra density function der of the autoregree are used to form the d finite variance. A es case.	18 SUBJECT TERMS (Continue Spectral Autoregr Asympto ion for a gaussian district e spectral density estim a closed form expression	October 1984 e on reverse if necessary and ide Estimation ressive Series outed autoregressive se to be known. When the ate, it is shown that th i for the asymptotic va 21 ABSTRACT SECURITY UNCLASSIF	ries from observa e high-order Yule- te estimate is weal ariance is develope	tions of a noise of Walker equation kly consistent an ed and the expres Accession Nun DN388506	orrupted ve estimates o d asymptoti ssion is analy

CONTENTS

INTRODUCTION . . . page 1 PRELIMINARIES . . . 1 ASYMPTOTIC PROPERTIES . . . 5 EXAMPLE . . . 13 REFERENCES . . . 19

APPENDIX . . . 20

5

ILLUSTRATIONS

- 1. Spectral Estimate Variance vs. Signal-to-Noise Ratio. AR Parameter Equals 0.5, $\lambda = 0$ Radians . . . page 16
- 2. Spectral Estimate Variance vs. Signal-to-Noise Ratio. AR Parameter Equals 0.1 and 0.8, λ = 0 Radians . . . 18
- 3. Spectral Estimate Variance vs. Frequency (radians). Signal-to-Noise Ratio equals 0 dB; AR Parameter Equals 0.1, 0.5, and 0.8 . . . 18

i

Г	Access	ion For	-+	-
ŀ	NTIS	GRASI	E	
1	DTIC T	priced -	ā	
	J 1	::::::::::::::::::::::::::::::::::::::		_
	B			
	Distr	thetion. Labilit	v Codes	
	Ava-	-3781 E	malor	
(comp)	Dist	Spoo	lei I	
	11.	Å		
	n	1		

I. INTRODUCTION

This report considers the problem of estimating the spectral density of a discrete-time autoregressive (AR) series from observations of a noise corrupted version. The spectral density estimate is based on the high-order Yule-Walker equation estimates of the AR parameters. Under the assumption that the order of the autoregressive series is known, the limiting distribution of the spectral density estimate is normal with mean zero and finite variance. The mean and variance of the limiting distribution, for the noise corrupted case, have not previously been evaluated.

 \bigcirc

1

The problem of AR <u>parameter</u> estimation for the noise corrupted case was previously considered by Walker (reference 1), Pagano (reference 2), and Lee (reference 3). Walker was the first to consider this problem; he evaluated the asymptotic efficiency and variance for the parameter estimates of a first order series. Pagano proved that an equivalent model for an autoregressive series plus noise is an autoregressive-moving-average (ARMA) model. Through the use of nonlinear regression methods, he developed strongly consistent, efficient parameter estimates. Lee recently examined the multivariate noise corrupted case and proved that the multivariate parameter estimates are strongly consistent and asymptotically normal.

The organization of this paper is as follows: In Section II, the form of the spectral density and the AR parameter estimator for the noise corrupted case is established. In Section III proof is offered that the limiting distribution of the AR spectral density estimate is normal with mean zero and the asymptotic variance expression is evaluated. In Section IV, the variance expression for the first-order Markov series (as an example) is evaluated.

II. PRELIMINARIES

Let $\{Y_n\}_{n=-\infty}^{\infty}$ be a discrete parameter time series satisfying the following assumption:

<u>Assumption A</u>: The series $\{Y_n\}$ consists of the sum of an autoregressive series $\{X_n\}$ of known order p and a noise series $\{W_n\}$. The AR series $\{X_n\}$ is generated (or modeled) by

$$X_{n} - a_{1}X_{n-1} - \cdots - a_{p}X_{n-p} = \varepsilon_{n}$$
⁽¹⁾

and

(i) $\{\epsilon_n\}$ is stationary independent identically distributed $N(0,\sigma_{\epsilon}^2)$ (ii) $\{W_n\}$ is stationary independent identically distributed $N(0,\sigma_w^2)$ (iii) $\{\epsilon_n\}$ and $\{W_n\}$ are uncorrelated

The parameter set $\{a_i\}_{i=1}^p$ is referred to as the AR parameter set.

<u>Assumption B</u>: The AR parameters are constrained such that the zeros of the polynomial

$$A^{p}(z) = 1 - \sum_{j=1}^{p} a_{j} z^{j}$$
(2)

lie outside of the unit circle on the complex z-plane.

Under Assumption B the AR series is stationary. It was assumed that the noise is wide-sense stationary; thus, the spectral density function for the noise corrupted series Y can be written as

$$\phi_{\gamma}(\lambda) = \frac{\sigma_{w}^{2}}{2\pi} + \frac{\sigma_{\varepsilon}^{2}}{2\pi A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda})} \qquad (3)$$

Walker (reference 1) and Pagano (reference 2) showed that the AR plus noise series can be expressed as an ARMA series. We express the noise corrupted series Y by

$$Y_n - a_1 Y_{n-1} - \cdots - a_p Y_{n-p} \neq \varepsilon_n + w_n - a_1 w_{n-1} - \cdots - a_p w_{n-p}$$
 (4)

Let the covariance sequence of the series Y be $\{r_k\}$, where $r_k = E[Y_n Y_{n-k}]$. Multiplying (4) through by Y_{n-k} and taking expectations term by term we obtain the Yule-Walker (Y-W) equations:

$$r_{o} - a_{1}r_{1} - \dots - a_{p}r_{p} = \sigma_{\epsilon}^{2} + \sigma_{w}^{2}$$
 (k = 0) (5)

$$r_{k} - a_{1}r_{k-1} - \cdots - a_{p}r_{k-p} = -a_{k}\sigma_{w}^{2}$$
 $(1 \le k \le p)$ (6)

$$r_k - a_1 r_{k-1} - \cdots - a_p r_{k-p} = 0$$
 (p+1 $\leq k \leq 2p$). (7)

The set of p equations of (7) are often referred to as the high-order Yule-Walker equations. We express this set of equations in matrix form as

$$\underline{\Gamma}_{p} \underline{a} = \underline{R}_{p+1} \tag{8}$$

where the (p \times p) covariance matrix $\underline{\Gamma}_{p}$ is defined by

$$\underline{\Gamma}_{p} \stackrel{\Delta}{=} \begin{bmatrix} r_{p} & r_{p-1} & \cdots & r_{1} \\ r_{p+1} & r_{p} & \cdots & r_{2} \\ \vdots & \vdots & & \vdots \\ r_{2p-1} & r_{2p-2} & \cdots & r_{p} \end{bmatrix} .$$
(9)

and the (p \times 1) vectors \underline{a} and \underline{R}_{p+1} are defined by

$$\underline{\mathbf{a}}^{\mathsf{T}} = [\mathbf{a}_{1}, \mathbf{a}_{2}, \cdots, \mathbf{a}_{p}]$$
$$\underline{\mathbf{R}}_{p+1}^{\mathsf{T}} = [\mathbf{r}_{p+1}, \mathbf{r}_{p+2}, \cdots, \mathbf{r}_{2p}].$$

Given a finite set of observations of the noise corrupted series Y, that is $\{Y_n\}_{n=1}^N N > 2p$, we estimate the covariance sequence $\{r_k\}$ using

$$\hat{r}_{k} = \begin{cases} \frac{1}{N} \sum_{n=1}^{N-|k|} Y_{n}Y_{n+|k|} & |k| \leq N-1 \\ 0 & |k| > N-1 \end{cases}$$
(10)

When the covariances r_k of the matrix $\underline{\Gamma}_p$ and the vector \underline{R}_{p+1} are replaced by their corresponding estimates of (10), the estimated matrix and vector will be denoted by $\underline{\Gamma}_p$ and \underline{R}_{p+1} , respectively. The high-order Y-W equations (8) can be expressed in terms of the estimated covariances as

$$\hat{\underline{\Gamma}}_{p} \hat{\underline{a}} = \hat{\underline{R}}_{p+1} \quad . \tag{11}$$

The solution of (11) in terms of $\underline{\hat{a}}$ provides the high-order Y-W equation estimate of the AR parameters.

In order to estimate the AR spectral density we require estimates of the AR parameters such as those formed by (11) and an estimate of σ_{ϵ}^2 . In the noise free case, given estimates of the covariances $\{r_k\}$ and AR parameters $\{a_j\}_{j=1}^p$ (5) can be used to estimate σ_{ϵ}^2 . For the noise corrupted case (5) will provide an estimate of $\sigma_{\epsilon}^2 + \sigma_{w}^2$, thus, one of the equations of (6) must also be used to estimate σ_{w}^2 . Using this approach, with covariance estimates of (10) and estimates of the AR parameters of (11) we have

$$\hat{\sigma}_{\varepsilon}^{2} = -\sum_{j=0}^{p} \hat{a}_{j} \hat{r}_{j} - (1/\hat{a}_{p}) \sum_{j=0}^{p} \hat{a}_{j} \hat{r}_{p-j}$$
(12)

where $a_0 = -1$ and $a_p \neq 0$.

In the subsequent development of asymptotic statistical properties for the parameter and spectral density estimates, we make use of the following vectors and matrices:

$$\underline{\mathbf{R}}^{\mathsf{T}} \stackrel{\Delta}{=} [r_1, r_2, \cdots, r_{2p}]$$

$$\underline{\mathbf{R}}^{\mathsf{T}}_{p} \stackrel{\Delta}{=} [r_p, r_{p+1}, \cdots, r_{2p-1}]$$

$$\underline{\mathbf{U}}_{\mathsf{nm}} \stackrel{\Delta}{=} \{\mathbf{u}_{\mathsf{k},\mathsf{j}}\} \quad \mathsf{k} = \mathsf{n}, \mathsf{n} + \mathsf{1}, \cdots, \mathsf{2p}$$

$$\mathsf{j} = \mathsf{m}, \mathsf{m} + \mathsf{1}, \cdots, \mathsf{2p}$$

$$\mathsf{u}_{\mathsf{k}\mathsf{j}} \stackrel{\Delta}{=} e^{\mathsf{i}(\mathsf{k}+\mathsf{j})\lambda} + e^{\mathsf{i}(\mathsf{k}-\mathsf{j})\lambda}$$

$$\mathsf{0} = [\mathsf{0}, \mathsf{0}, \cdots, \mathsf{0}].$$

III. ASYMPTOTIC PROPERTIES

A. AR Parameter Estimate Statistics

Define the AR parameter vector
$$\underline{\theta}^{T}$$
 by
 $\underline{\theta}^{T} \triangleq [\sigma_{\varepsilon}^{2}, a_{1}, \cdots, a_{p}]$. (13)

Our present goal is to establish the asymptotic distribution for estimates of the AR parameter vector. First, we present the asymptotic distribution of the covariance estimates of (10) as established by Brillinger (reference 4).

<u>Theorem 1</u>: For the AR plus noise series Y, under Assumptions A and B, the elements of the covariance vector

 $N^{\frac{1}{2}}(\hat{\underline{R}} - \underline{R})$

are asymptotically jointly multivariate normal with mean zero and covariance

$$\lim_{N\to\infty} \mathbb{E} \{ N^{\frac{1}{2}} (\hat{\underline{R}} - \underline{R}), N^{\frac{1}{2}} (\hat{\underline{R}} - \underline{R})^{\mathsf{T}} \} = 2\pi \int_{-\pi}^{\pi} \underline{U}_{11} \phi^2(\lambda) d\lambda .$$
(14)

The following lemma establishes the existence of a random vector \underline{Z} that is equivalent in distribution to the high order Y-W AR parameter estimate vector $(\underline{\hat{a}} - \underline{a})$. In preparation for this lemma we define the matrix D by

$$\underline{D} \triangleq \begin{bmatrix} -a_{p} & -a_{p-1} & \cdots & -a_{1} & 1 & 0 & \cdots & 0 \\ 0 & -a_{p} & \cdots & -a_{1} & 1 & 0 & \cdots & 0 \\ \vdots & & & & & & \vdots \\ 0 & \cdots & 0 & -a_{p} & \cdots & -a_{1} & 1 \end{bmatrix}$$

<u>Lemma 1</u>: For the AR plus noise series Y there exists a $p \times 2p$ matrix <u>D</u> and a random vector <u>Z</u> such that

$$N^{\frac{1}{2}}(\hat{\underline{a}} - \underline{\underline{a}}) \sim N^{\frac{1}{2}} \underline{\underline{Z}} = N^{\frac{1}{2}} [\underline{\underline{\Gamma}}_{p}^{-1} \underline{\underline{D}}(\hat{\underline{R}} - \underline{\underline{R}})]$$
(15)

where \sim indicates that the limit distribution as N+ ∞ is identical for both random vectors.

<u>Proof</u>: Define the vector \underline{V} by

$$\underline{\underline{v}} \stackrel{\Delta}{=} \begin{bmatrix} v_1 \\ v_2 \\ \vdots \\ v_p \end{bmatrix} \stackrel{\Delta}{=} N^{\frac{1}{2}} (\hat{\underline{\Gamma}}_p^{-1} - \underline{\underline{\Gamma}}_p^{-1}) (\underline{\underline{R}}_{p+1} - \hat{\underline{\Gamma}}_p^{-1}) .$$

Since $\underline{\Gamma}_p$ is positive definite and $\hat{\underline{\Gamma}}_p \xrightarrow[N \to \infty]{P} \underline{\Gamma}_p$, element by element, it follows

that
$$\hat{\Gamma}_{p}^{-1} \xrightarrow{P} \Gamma_{p}^{-1}$$
, and
 $v_{j} \xrightarrow{P} 0 \qquad j = 1, 2, \cdots, p$. (16)

Let (Ω , \mathscr{F} , P) be the underlying probability space. For arbitrary ϵ > 0 and N > p let

$$\Lambda_{\varepsilon,\mathsf{N}} = \{ \omega \in \Omega: |v_j| < \varepsilon, j = 1, 2, \cdots, p \}$$

then for all $\omega \in \Lambda_{\epsilon,N}$, since $|v_j| < \epsilon$, we can write

$$\hat{\underline{\Gamma}}_{p}^{-1} (\hat{\underline{R}}_{p+1} - \hat{\underline{\Gamma}}_{p\underline{a}}) = (\hat{\underline{a}} - \underline{a}) .$$

It follows that

$$\underline{V} = N^{\frac{1}{2}} \left[\left(\hat{\underline{a}} - \underline{a} \right) - \underline{\Gamma}_{p}^{-1} \left(\hat{\underline{R}}_{p+1} - \hat{\underline{\Gamma}}_{p} \underline{a} \right) \right] .$$

for all $\omega\in\Lambda_{\epsilon,N}^{}.$ By (16) we have that for every $\alpha\epsilon[0,1]$ there exists a $N^\star_{\epsilon,\alpha}$ such that

$$P(\Lambda_{\varepsilon,N}) > 1 - \alpha \qquad N > N_{\varepsilon,\alpha}^{\star}$$

•

Since the selection of ϵ and α is arbitrary we can conclude that

$$N^{\frac{1}{2}}(\hat{\underline{a}} - \underline{a}) - N^{\frac{1}{2}}\Gamma_{p}^{-1}(\hat{\underline{R}}_{p+1} - \hat{\underline{\Gamma}}_{p}\underline{a}) \xrightarrow{P} \underline{0}$$

By the definition of the matrix \underline{D} and by the high-order Y-W equations (8) and (11) we can write

$$\underline{D}(\hat{\underline{R}} - \underline{R}) = \hat{\underline{R}}_{p+1} - \hat{\underline{\Gamma}}_{p}\underline{a}$$

and the desired result follows directly.

We previously established an estimator for the variance σ_{ϵ}^2 , see (12). In the following lemma we establish the existence z_{ϵ} an equivalent (in distribution) random variable from which the asymptotic distribution of $\hat{\sigma}_{\epsilon}^2$ can be evaluated. In preparation for the lemma we define the vectors:

$$\underline{\mathbf{R}}_{0}^{\mathsf{T}} \stackrel{\Delta}{=} [\mathbf{r}_{0}, \mathbf{r}_{1}, \cdots, \mathbf{r}_{2p-1}]$$

$$\underline{\tilde{a}}^{\prime} \stackrel{\Delta}{=} [a_{p}^{}, a_{p-1}^{}, \cdots, a_{1}^{}].$$

<u>Lemma 2</u>: For the AR plus noise series Y there exists a random variable $\boldsymbol{\xi}$ such that

$$N^{\frac{1}{2}}(\hat{\sigma}_{\varepsilon}^{2} - \sigma_{\varepsilon}^{2}) \sim N^{\frac{1}{2}} \xi = N^{\frac{1}{2}} \underline{H}[\hat{\underline{R}}_{0} - \underline{R}_{0}] \quad .$$
(17)

where

$$\underline{H} = -\{[-1, \underline{a}^{\mathsf{T}}, \underline{0}] + (1/a_p) [\underline{\tilde{a}}^{\mathsf{T}}, -1, \underline{0}]\} .$$

<u>Proof</u>: By (5), (6), and (12) we write

$$N^{\frac{1}{2}}(\hat{\sigma}_{\epsilon}^{2} - \sigma_{\epsilon}^{2}) = N^{\frac{1}{2}} \left\{ -\sum_{j=0}^{p} \hat{a}_{j}\hat{r}_{j}^{+} \sum_{j=0}^{p} a_{j}r_{j}^{-} (1/\hat{a}_{p}) \sum_{j=0}^{p} \hat{a}_{j}\hat{r}_{p-j} + (1/a_{p}) \sum_{j=0}^{p} a_{j}r_{p-j} \right\}.$$

By Gersch (reference 5) we have that the high-order Y-W equation AR parameter estimates converge in probability to the true parameters as $N \rightarrow \infty$. Thus, we can write

$$N^{\frac{1}{2}}(\hat{\sigma}_{\varepsilon}^{2} - \sigma_{\varepsilon}^{2}) \sim N^{\frac{1}{2}} \left\{ -\sum_{j=0}^{p} \hat{r}_{j}(\hat{a}_{j} - a_{j}) - \sum_{j=0}^{p} a_{j}(\hat{r}_{j} - r_{j}) - (1/a_{p}) \sum_{j=0}^{p} \hat{r}_{p-j} - r_{p-j} \right\} \left\{ -(1/a_{p}) \sum_{j=0}^{p} a_{j}(\hat{r}_{p-j} - r_{p-j}) \right\} . \quad (18)$$

Also, by the convergence in probability result of Gersch (reference 5) we have P that $N^{\frac{1}{2}}(\hat{a}_j - a_j) \longrightarrow 0$ as $N \rightarrow \infty$ $(j = 1, 2, \dots, p)$; thus, the first and third terms on the right-hand side of (18) converge to zero and the desired result follows directly.

<u>Theorem 2</u>: Under Assumptions A and B the AR parameter estimates converge in distribution to a zero mean normal random vector, that is

$$N^{\frac{1}{2}} (\underline{\hat{\theta}} - \underline{\theta}) \xrightarrow{\mathscr{S}} N_{p+1} (\underline{0}, \underline{\Sigma})$$

where

$$\underline{\underline{\Sigma}} \stackrel{\Delta}{=} \lim_{N \to \infty} N \in \left[\begin{bmatrix} \underline{\xi} \\ \underline{Z} \end{bmatrix} \begin{bmatrix} \underline{\xi} & \underline{Z}^{\mathsf{T}} \end{bmatrix} \right]. \tag{19}$$

 \underline{Proof} : This result follows directly from the results of Lemmas 1 and 2 and Theorem 1. $\hfill \square$

We now proceed to evaluate the terms of $\underline{\Sigma}$. Let

$$\underline{\Sigma} = \begin{bmatrix} v^{2^{1}} & \underline{C}^{\mathsf{T}} \\ - & - & - \\ \underline{C} & - & \Phi \end{bmatrix}$$

where V^2 , <u>C</u>, and <u>S</u> are defined by (19). For V^2 we have

$$v^{2} = \lim_{N \to \infty} N E[\xi^{2}] = \lim_{N \to \infty} N \underline{H} E \{ [\underline{\hat{R}}_{0} - \underline{R}_{0}] [\underline{\hat{R}}_{0} - \underline{R}_{0}]^{\mathsf{T}} \} \underline{H}^{\mathsf{T}}$$

and by Theorem 1 we have

$$V^{2} = 2\pi \int_{-\pi}^{\pi} \underline{H} \underline{U}_{00} \underline{H}^{T} \phi_{Y}^{2}(\lambda) d\lambda$$

After further manipulation (see appendix) we get

$$V^{2} = \sigma_{w}^{4} \left[\sum_{j=0}^{p} a_{j}^{2} + (2/a_{p}) \sum_{j=0}^{p} a_{j}a_{p-j} - 1 + (1/a_{p})^{2} \sum_{j=0}^{p} a_{j}^{2} \right] + \sigma_{w}^{2} \sigma_{\varepsilon}^{2} \left[\left(2/\sum_{j=0}^{p} a_{j}^{2} \right) + 3 + (1/a_{p})^{2} \right] + \sigma_{\varepsilon}^{2} \left[\sigma_{\varepsilon}^{2} + r_{o} + (2/a_{p})r_{p} + (1/a_{p})^{2}r_{o} \right]$$
(20)

We also have

$$\underline{\mathbf{C}}^{\mathsf{T}} \approx \lim_{\mathsf{N}\to\infty} \mathsf{N} \; \mathsf{E}[\underline{\boldsymbol{\xi}}\underline{\boldsymbol{Z}}^{\mathsf{T}}] = \lim_{\mathsf{N}\to\infty} \mathsf{N} \; \underline{\mathsf{H}} \; \mathsf{E}\{[\underline{\hat{\mathbf{R}}}_0 - \underline{\mathbf{R}}_0][\underline{\hat{\mathbf{R}}} - \underline{\mathbf{R}}]\} \; \underline{\mathbf{D}}^{\mathsf{T}} \; (\underline{\boldsymbol{\Gamma}}_p^{-1})'$$

and by Theorem 1 we have

$$\underline{\underline{C}}^{\mathsf{T}} = 2\pi \int_{-\pi}^{\pi} \underline{\underline{H}} \underline{\underline{U}}_{01} \underline{\underline{D}}^{\mathsf{T}} \left(\underline{\underline{\Gamma}}_{p}^{-1}\right)^{\mathsf{T}} \phi_{\mathsf{Y}}^{2}(\lambda) d\lambda .$$

After further manipulation (see appendix) we get

$$\underline{c}^{\mathsf{T}} = \underline{P}^{\mathsf{T}} \left(\underline{\Gamma}_{\mathsf{p}}^{-1} \right)^{\mathsf{T}}$$
(21)

where the vector \underline{P} is defined by

$$\{\underline{P}^{\mathsf{T}}\}_{1} \stackrel{\Delta}{=} -\sigma_{\varepsilon}^{2} r_{p+1} - \sigma_{\mathsf{w}}^{\mathsf{4}} \sum_{j=1}^{p} a_{j} a_{p+1-j} - (1/a_{p}) \sigma_{\mathsf{w}}^{\mathsf{4}} \sum_{j=0}^{p-1} a_{j} a_{j+1} - (1/a_{p}) \sigma_{\varepsilon}^{2} r_{1}$$

$$1 = 1, 2, \dots, p.$$

By (15) we get

ŝ

$$\Phi = \lim_{N \to \infty} N E[\underline{Z} \ \underline{Z}^{\mathsf{T}}] = \lim_{N \to \infty} N \ \underline{\Gamma}_{p}^{-1} \underline{D} E\{[\underline{\hat{R}} - \underline{R}][\underline{\hat{R}} - \underline{R}]^{\mathsf{T}}\} \underline{D}^{\mathsf{T}} (\underline{\Gamma}_{p}^{-1})^{\mathsf{T}}$$

and by Theorem 1 we can write

$$\underline{\Phi} = 2\pi \int_{-\pi}^{\pi} \underline{\Gamma}_{p}^{-1} \underline{D} \underline{U}_{11} \underline{D}^{\mathsf{T}} \left(\underline{\Gamma}_{p}^{-1}\right)^{\mathsf{T}} \phi_{\mathsf{Y}}^{2}(\lambda) d\lambda .$$

After further manipulation (see appendix) we get

$$\underline{\Phi} = \sigma_{\varepsilon}^{2} \underline{\Gamma}_{p}^{-1} \underline{\Gamma}_{o} \left(\underline{\Gamma}_{p}^{-1}\right)^{T} + \sigma_{w}^{2} \underline{\Gamma}_{p}^{-1} \left[\sigma_{\varepsilon}^{2} \underline{I} + \sigma_{w}^{2} \underline{Q}\right] \left(\underline{\Gamma}_{p}^{-1}\right)^{T}$$
(22)

where \underline{I} is the p × p identity matrix and Q is given by

$$Q \triangleq \begin{bmatrix} p & 2 & p^{-1} & 1 & 1 \\ \sum & a_{m}^{2} & \sum & a_{m}a_{m+1} & \cdots & \sum & a_{m}a_{m+(p-1)} \\ p^{-1} & & & & \\ p^{-1} & & & & \\ \sum & a_{m}a_{m+1} & & & \\ \vdots & & & & \vdots \\ 1 & & & & & \\ \sum & a_{m}a_{m+(p-1)} & & & & \\ p^{p} & a_{m}^{2} & & \\ m^{p} & & & m^{2} & \\ m^{p} & & & m^{2} & \\ m^{p} & & & & & \\ m^{p}$$

B. AR Spectral Density Estimates Statistics

We now proceed to evaluate the limiting distribution of the spectral density estimate for the AR series X formed from observations of the noise corrupted series Y. From (3) we see that the AR spectral density estimate can be written in terms of the parameter estimate vector $\hat{\theta}$ as

$$\hat{\phi}_{\chi}(\lambda, \hat{\underline{\theta}}) = \frac{\hat{\sigma}_{\varepsilon}^{2}}{2\pi \hat{A}^{p}(e^{i\lambda})\hat{A}^{p}(e^{-i\lambda})}$$
(23)

where the estimate $\hat{A}^{P}(e^{i\lambda})$ is formed by substituting the AR parameter estimates of (11) into (2) and evaluating at $z = e^{i\lambda}$ and $\hat{\sigma}_{\epsilon}^{2}$ is estimated using (12). We now state and prove the main result of the document.

<u>Theorem 3</u>: Under Assumptions A and B the AR spectral density estimate $\hat{\phi}_{\chi}(\lambda, \hat{\theta})$ converges in distribution to a zero mean normal random variable, that is

$$N^{\frac{1}{2}}[\hat{\phi}_{\chi}(\lambda, \hat{\theta}) - \phi_{\chi}(\lambda, \theta)] \xrightarrow{\mathscr{L}} N(0, \rho^{T}(\lambda) \underline{\Sigma} \rho(\lambda))$$
(24)

where $\rho(\lambda)$ is a gradient vector given by

$$\varrho^{\mathsf{T}}(\lambda) = \left[\frac{\partial \phi_{\mathsf{X}}(\lambda, \underline{\theta})}{\partial \sigma_{\varepsilon}^{2}}, \frac{\partial \phi_{\mathsf{X}}(\lambda, \underline{\theta})}{\partial a_{1}}, \cdots, \frac{\partial \phi_{\mathsf{X}}(\lambda, \underline{\theta})}{\partial a_{\mathsf{p}}}\right]$$

Proof: By Theorem 2 we have that

$$N^{\frac{1}{2}}(\hat{\underline{\theta}} - \underline{\theta}) \xrightarrow{\mathscr{L}} N_{p+1} (\underline{0}, \underline{\Sigma}).$$

Since the function $\phi_{\chi}(\lambda, \underline{\theta})$ is totally differentiable with respect to the vector $\underline{\theta}$ the desired result follows directly by a convergence theorem of Rao (reference 6).

By the result of Theorem 3 we see that from observations of the noise corrupted AR series Y_n , through the use of the high-order (Y-W) equations, we can form a weakly consistent spectral estimate for the nonnoise corrupted series X_n ; the resulting spectral estimate is asymptotically normal with limiting variance $(1/N) \rho^T(\lambda) \Sigma \rho(\lambda)$. We now express $\rho^T(\lambda) \Sigma \rho(\lambda)$ in terms of previously defined terms.

Let the gradient vector $\underline{\rho}^{\mathsf{T}}(\lambda)$ be written as $\underline{\rho}^{\mathsf{T}}(\lambda) \stackrel{\Delta}{=} [\mathbf{b}(\lambda), \underline{B}^{\mathsf{T}}(\lambda)]$

where

(ż

$$b(\lambda) \stackrel{\Delta}{=} \frac{\partial \phi_{\chi}(\lambda, \underline{\theta})}{\partial \sigma_{\epsilon}^{2}} = \frac{1}{2\pi A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda})}$$
(25)

and

$$\underline{B}^{\mathsf{T}}(\lambda) \stackrel{\Delta}{=} \left[\frac{\partial \phi_{\chi}(\lambda, \underline{\theta})}{\partial \mathsf{a}_{1}}, \frac{\partial \phi_{\chi}(\lambda, \underline{\theta})}{\partial \mathsf{a}_{2}}, \cdots, \frac{\partial \phi_{\chi}(\lambda, \underline{\theta})}{\partial \mathsf{a}_{p}} \right]$$
$$= \phi_{\chi}(\lambda, \underline{\theta}) \left[\operatorname{Re} \left\{ \frac{e^{i\lambda}}{A(e^{i\lambda})} \right\}, \operatorname{Re} \left\{ \frac{e^{i2\lambda}}{A(e^{i\lambda})} \right\}, \cdots, \operatorname{Re} \left\{ \frac{e^{ip\lambda}}{A(e^{i\lambda})} \right\} \right]. \tag{26}$$

We previously defined the matrix $\underline{\Sigma}$ by

$$\underline{\Sigma} \stackrel{\Delta}{=} \begin{bmatrix} v^{2^{1}} & \underline{c}^{\mathsf{T}} \\ -\frac{1}{2} & -\frac{1}{2} \\ \underline{c}^{\mathsf{T}} & \underline{\Phi} \end{bmatrix}$$
(27)

thus, we can write

$$\underline{\rho}^{\mathsf{T}}(\lambda) \underline{\Sigma} \underline{\rho}(\lambda) = b^{2}(\lambda)V^{2} + b(\lambda) \underline{B}^{\mathsf{T}}(\lambda) \underline{C} + b(\lambda) \underline{C}^{\mathsf{T}} \underline{B}(\lambda) + \underline{B}^{\mathsf{T}}(\lambda) \underline{\Phi} \underline{B}(\lambda) .$$
(28)

In the next section, (28) will be evaluated for the first order AR series.

IV. EXAMPLE

First Order Autoregressive (Markov) Series

The first order AR series (p = 1) is given by

$$X_{n} = a X_{n-1} + \varepsilon_{n}$$
⁽²⁹⁾

where the parameter a must satisfy the condition -1<a<1, i.e., Assumption B, for the series to be stationary. For this first order example the covariance sequence is expressed by

$$r_{k} = \frac{\sigma_{\epsilon}^{2} a^{|k|}}{(1 - a^{2})}$$
 $k = 0, 1, \cdots$ (30)

and the spectral density is

$$\phi_{\chi}(\lambda, \underline{\theta}) = \frac{\sigma_{\varepsilon}^{2}}{2\pi[a^{2} - 2a \cos \lambda + 1]}$$

where $\underline{\theta}^{\mathsf{T}} = (\sigma_{\varepsilon}^2, a)$.

Given observations of the noise corrupted version of the AR series, the variance of the spectral density estimate, as given by (28) can be evaluated in terms of the parameter, a, and the variances σ_{ϵ}^2 and σ_{w}^2 . For the first order case, p = 1, we have

$$\lim_{N\to\infty} N \operatorname{var}\{\hat{\phi}_{\chi}(\lambda, \hat{\theta})\} = b^2(\lambda)V^2 + 2b(\lambda)B(\lambda)C + B^2(\lambda)\Phi$$
(31)

where

$$b(\lambda) = \frac{1}{2\pi A(e^{i\lambda})A(e^{-i\lambda})} = \frac{1}{2\pi[a^2 - 2a\cos\lambda + 1]}$$
(32)

and

$$B(\lambda) = \frac{2\phi_{\chi}(\lambda, \underline{\theta})(\cos \lambda - a)}{A(e^{i\lambda})A(e^{-i\lambda})} = \frac{2\sigma_{\epsilon}^{2}(\cos \lambda - a)}{2\pi[a^{2} - 2a \cos \lambda + 1]^{2}} .$$
(33)

Using (20) and (30) we can evaluate V^2 for the first order case

$$V^{2} = \sigma_{W}^{4} \left\{ \frac{a^{4} - 3a^{2} + 1}{a^{2}} \right\} + 2\sigma_{W}^{2}\sigma_{\varepsilon}^{2} \left\{ \frac{2a^{4} + 4a^{2} + 1}{a^{2}(1 + a^{2})} \right\} + \sigma_{\varepsilon}^{4} \left\{ \frac{-a^{4} + 4a^{2} + 1}{a^{2}(1 - a^{2})} \right\}.$$
 (34)

Using (21) and (30) we evaluate C and get

$$C = \frac{(1 - a^2)}{a} \left\{ \sigma_{\varepsilon}^2 + \frac{\sigma_{w}^4 (1 - a^2)}{\sigma_{\varepsilon}^2} \right\}$$
(35)

and by using (22) and (30) we get

$$\Phi = \frac{(1 - a^2)}{a^2} \left\{ 1 + (\sigma_w^2 / \sigma_\varepsilon^2) (1 - a^2) + (\sigma_w^2 / \sigma_\varepsilon^2)^2 (1 - a^4) \right\}.$$
 (36)

Substituting (34), (35), and (36) into (31) yields

$$\lim_{N\to\infty} N \operatorname{var}\{\hat{\Phi}_{\chi}(\lambda, \hat{\underline{\theta}})\} = \frac{\sigma_{\varepsilon}^{2}}{(2\pi)^{2} [a^{2} - 2a \cos \lambda + 1]^{2}} \left[\sigma_{\varepsilon}^{2} \left\{ \frac{-a^{4} + 4a^{2} + 1}{a^{2}(1 - a^{2})} \right\} + 2\sigma_{w}^{2} \left\{ \frac{2a^{4} + 4a^{2} + 1}{a^{2}(1 + a^{2})} \right\} + \frac{\sigma_{w}^{4}}{\sigma_{\varepsilon}^{2}} \left\{ \frac{a^{4} - 3a^{2} + 1}{a^{2}} \right\} \right] + 2\sigma_{w}^{2} \left\{ \frac{2a^{4} + 4a^{2} + 1}{a^{2}(1 + a^{2})} \right\} + \frac{\sigma_{w}^{4}}{\sigma_{\varepsilon}^{2}} \left\{ \frac{a^{4} - 3a^{2} + 1}{a^{2}} \right\} \right] + \frac{2\sigma_{\varepsilon}^{2}(\cos \lambda - a)}{(2\pi)^{2} [a^{2} - 2a \cos \lambda + 1]^{3}} \frac{(1 - a^{2})}{a} \left[\sigma_{\varepsilon}^{2} + (\sigma_{w}^{4}/\sigma_{\varepsilon}^{2})(1 - a^{2}) \right] + \frac{4\sigma_{\varepsilon}^{4}(\cos \lambda - a)^{2}}{(2\pi)^{2} [a^{2} - 2a \cos \lambda + 1]^{4}} \frac{(1 - a^{2})}{a^{2}} \left[1 + \left\{ \sigma_{w}^{2}/\sigma_{\varepsilon}^{2} \right\} (1 - a^{2}) + \left\{ \sigma_{w}^{2}/\sigma_{\varepsilon}^{2} \right\}^{2} (1 - a^{4}) \right].$$

We see that the limiting variance expression is composed of three major terms: the first term represents the contribution due to variation in estimating σ_{ϵ}^2 , the second term represents the contribution due to the cross-covariance between σ_{ϵ}^2 and a, and the third term represents the contribution due to variation in estimating the parameter a.

(37)

Even for the first-order AR series we see from (37) that the limiting variance expression is a complicated function of the parameters. To provide some insight into the relationship between the variance and the parameters a, σ_{ϵ}^2 , $\sigma_{\rm w}^2$ and λ , (37) was evaluated for a few parameter values.

Figure 1 shows the spectral density estimate variance plotted as a function of signal-to-noise ratio (SNR). The AR series used is given by

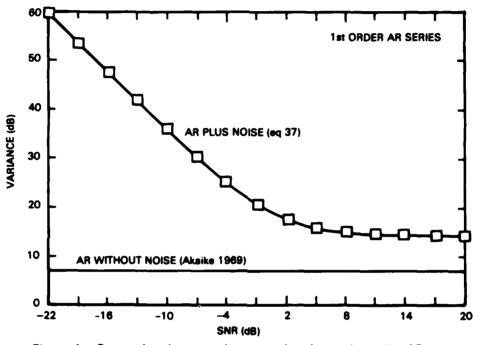
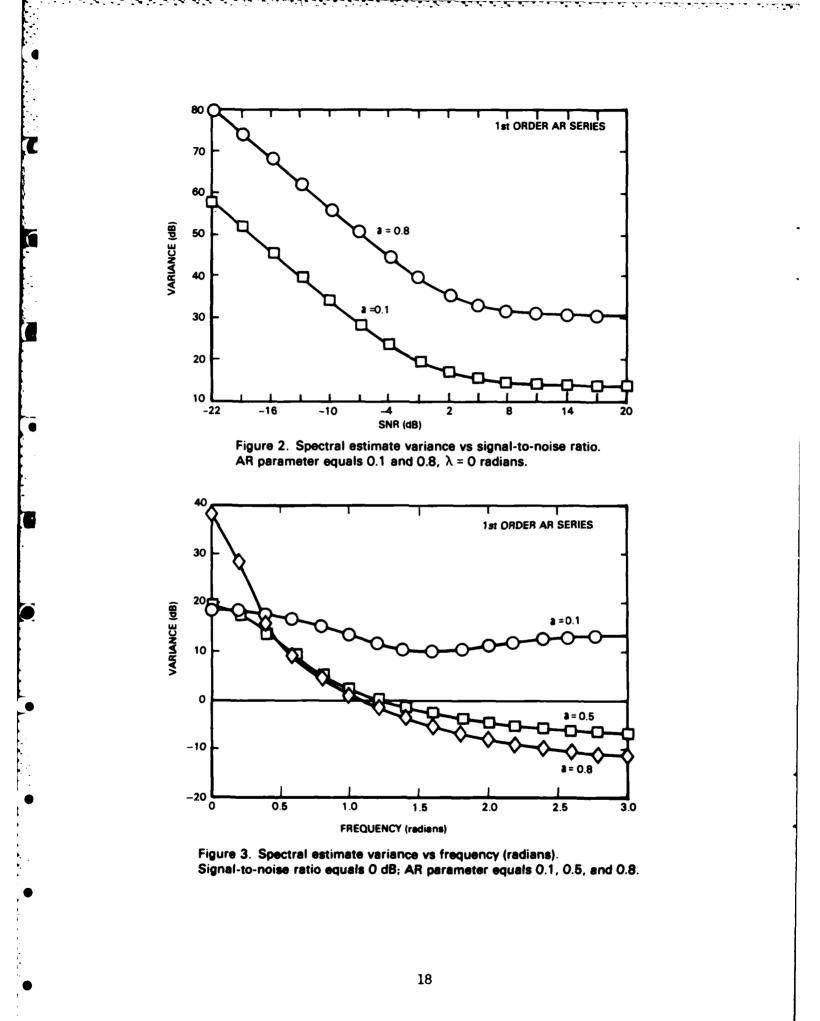


Figure 1. Spectral estimate variance vs signal-to-noise ratio. AR parameter equals 0.5, $\lambda = 0$ radians.

$$X_{n} = a X_{n-1} + \varepsilon_{n}$$
(38)


with a = 0.5; low pass spectral density. The variance (37) was evaluated for $\lambda = 0$, $\sigma_{\epsilon}^2 = 1$ and σ_{W}^2 set to achieve the indicated SNRs. We see that the variance decreases monotonically with increasing SNR to a value of 14 dB at a SNR of 8 dB. Also plotted is the variance obtained by Akaike (reference 7) for the first-order AR series without noise as indicated by the horizontal line at about 7 dB. Note that the AR plus noise case variance, at high SNR, does not asymptotically approach the no noise variance. This is the case because the high-order Y-W equation estimates of the AR parameter used for the AR plus noise case produces a larger parameter estimate variance than that of the conventional Y-W equation estimate. That is, for the first-order AR series with a = 0.5 we have from Akaike (reference 7) that

lim N var(\hat{a}) = (1 - a^2) = 0.75 N+ ∞

and for the AR plus noise case we have from the third term on the right side of (37) with $\sigma_{u}^2 = 0$ that

 $\lim_{N\to\infty} N \operatorname{var}(\hat{a}) = (1 - a^2)/a^2 = 3.0$.

In figure 2 the estimated variance is plotted as a function of SNR for $\lambda = 0$ for two values of the AR parameter, a = 0.1 and a = 0.8. We see the same monotonic decrease with increasing SNR for both cases as in figure 1. The asymptotic limit for the a = 0.8 case is about 15 dB greater than that for a = 0.1. Thus indicating that as the spectral density bandwidth decreases the spectral estimate variance increases. In figure 3 we have spectral estimate variance plotted as a function of frequency for three values of the AR parameter a = 0.1, a = 0.5, and a = 0.8. We see that for the two narrower bandwidth cases, a = 0.5 and 0.8, the variance decreases monotonically with increasing frequency over the range evaluated.

V. REFERENCES

- 1. Walker, A. M., Some Consequences Of Superimposed Error In Time Series Analysis, Biometrika, vol. 47, pp. 33-43, 1960.
- Pagano, M., Estimation Of Models Of Autoregressive Signal Plus White Noise, Ann. Statist., vol. 2, pp. 99-108, 1974.

- Lee, T.S., Large Sample Identification and Spectral Estimation Of Noisy Multivariate Autoregressive Processes, IEEE Trans. Acoust., Speech, Signal Processing, vol. ASSP-31, pp. 76-82, 1983.
- 4. Brillinger, D.R., Asymptotic Properties Of Spectral Estimates Of Second Order, Biometrika, vol. 56, pp. 375-390, 1969.
- Gersch, W., Estimation Of The Autoregressive Parameters Of A Mixed Autoregressive Moving Average Time Series, IEEE Trans. Automat. Contr., vol. AC-15, pp. 583-588, 1970.
- 6. Rao, C.R., Linear Statistical Inference and Its Application. New York: John Wiley and Sons, Inc., p. 321, 1965.
- 7. Akaike, H., Power Spectrum Estimation Through Autoregressive Model Fitting, Ann. Inst. Statist. Math., vol 21, pp. 407-419, 1969.

VI. APPENDIX

A. Evaluation of $\underline{\Phi}$:

()

(🤋

From Section III we have

$$\underline{\Gamma}_{P} \stackrel{\Phi}{=} \underline{\Gamma}_{P}^{\mathsf{T}} = 2\pi \int_{\underline{-\pi}}^{\pi} \underline{D} \underbrace{\underline{U}}_{11} \underbrace{\underline{D}}^{\mathsf{T}} \phi_{\mathsf{Y}}^{2}(\lambda) d\lambda. \tag{A-1}$$

We first evaluate the n, \textbf{m}^{th} element of $\underline{\textbf{D}}~\underline{\textbf{U}}_{11}~\underline{\textbf{D}}^{T}$ and have

$$\{\underline{D} \ \underline{U}_{11} \ \underline{D}^{\mathsf{T}}\}_{\mathsf{nm}} = \sum_{k=1}^{2\mathsf{p}} \sum_{j=1}^{2\mathsf{p}} d_{\mathsf{nk}} u_{kj} d_{\mathsf{mj}} \qquad \mathsf{n} = \mathsf{1}, \ \cdots, \ \mathsf{p}; \ \mathsf{m} = \mathsf{1}, \ \cdots, \ \mathsf{p}.$$

By the definition of the matrix $\mathbf{U}_{\ensuremath{\mathbf{11}}}$ we have

$$\{\underline{D} \ \underline{U}_{11} \ \underline{D}^{\mathsf{T}}\}_{\mathsf{nm}} = \sum_{k=1}^{2\mathsf{p}} \sum_{j=1}^{2\mathsf{p}} d_{\mathsf{nk}} e^{ik\lambda} d_{\mathsf{mj}} \{e^{ij\lambda} + e^{-ij\lambda}\}$$

and by the definition of the matrix \underline{D} we get

$$\{\underline{D} \ \underline{U}_{11} \ \underline{D}^{\mathsf{T}}\}_{\mathsf{nm}} = \mathsf{A}^{\mathsf{p}}(\mathsf{e}^{-i\lambda}) \ \mathsf{e}^{i(\mathsf{p}+\mathsf{n})\lambda} \left\{ \mathsf{A}^{\mathsf{p}}(\mathsf{e}^{-i\lambda}) \ \mathsf{e}^{i(\mathsf{p}+\mathsf{m})\lambda} + \mathsf{A}^{\mathsf{p}}(\mathsf{e}^{i\lambda})\mathsf{e}^{-i(\mathsf{p}+\mathsf{m})\lambda} \right\}.$$
(A-2)
Substituting (A-2) into (A-1) we get

$$\underline{\Gamma}_{p} \underline{\Phi} \underline{\Gamma}_{p}^{\mathsf{T}} = \underline{\mathsf{I}}_{1} + \underline{\mathsf{I}}_{2}$$

where

$$\{\underline{T}_{1}\}_{nm} \stackrel{\Delta}{=} 2\pi \int_{-\pi}^{\pi} A(e^{-i\lambda}) A(e^{-i\lambda}) e^{i(2p+n+m)\lambda} \phi_{\gamma}^{2}(\lambda) d\lambda \qquad (A-3)$$

and

$$\{\underline{T}_{2}\}_{nm} \stackrel{\Delta}{=} 2\pi \int_{-\pi}^{\pi} A(e^{-i\lambda}) A(e^{i\lambda}) e^{i(n-m)\lambda} \phi_{\gamma}^{2}(\lambda)d\lambda . \qquad (A-4)$$

For the AR(p) plus noise process we have that

$$\phi_{Y}^{2}(\lambda) = \left\{ \sigma_{w}^{4} + \frac{2\sigma_{w}^{2}\sigma_{\epsilon}^{2}}{A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda})} + \frac{\sigma_{\epsilon}^{4}}{[A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda})]^{2}} \right\}.$$
 (A-5)

Substituting the expression (A-5) into (A-3) and (A-4) and carrying out the integration we get

$$\{\underline{T}_1\}_{nm} = 0$$
 $n = 1, \dots, p; m = 1, \dots, p$

and

$$\{\underline{T}_2\}_{nm} = \sigma_w^4 \sum_{j=0}^{p-|n-m|} a_j a_{j+|n-m|} + \sigma_w^2 \sigma_\varepsilon^2 \delta(n-m) + \sigma_\varepsilon^2 r_{n-m} .$$

Using these results we get

$$\underline{\Phi} = \sigma_{\varepsilon}^{2} \underline{\Gamma}_{p}^{-1} \underline{\Gamma}_{0} \left(\underline{\Gamma}_{p}^{-1}\right)^{\mathsf{T}} + \sigma_{\mathsf{w}}^{2} \underline{\Gamma}_{p}^{-1} [\sigma_{\varepsilon}^{2} \underline{I} + \sigma_{\mathsf{w}}^{2} \underline{Q}] \left(\underline{\Gamma}_{p}^{-1}\right)^{\mathsf{T}}$$
(A-6)

where the matrix \underline{Q} was defined in Section III.

B. Evaluation of \underline{C}^{T} :

From Section III we have

$$\underline{\mathbf{C}}^{\mathsf{T}} = 2\pi \int_{-\pi}^{\pi} \underline{\mathbf{H}} \, \underline{\mathbf{U}}_{01} \, \underline{\mathbf{D}}^{\mathsf{T}} \left(\underline{\mathbf{\Gamma}}_{\mathsf{p}}^{-1} \right)^{\mathsf{T}} \, \phi_{\mathsf{Y}}^{2}(\lambda) d\lambda \tag{A-7}$$

with <u>H</u> defined in Lemma 2. Substituting the expression for <u>H</u> into (A-7) we have

$$\underline{\underline{C}}^{\mathsf{T}} = -2\pi \int_{-\pi}^{\pi} [-1, \underline{a}^{\mathsf{T}}, \underline{0}] \underline{\underline{U}}_{01} \underline{\underline{D}}^{\mathsf{T}} \left(\underline{\underline{\Gamma}}_{p}^{-1}\right)^{\mathsf{T}} \phi_{\mathsf{Y}}^{2}(\lambda) d\lambda$$

$$- 2\pi (1/a_{p}) \int_{-\pi}^{\pi} [\underline{\underline{a}}^{\mathsf{T}}, -1, \underline{0}] \underline{\underline{U}}_{01} \underline{\underline{D}}^{\mathsf{T}} \left(\underline{\underline{\Gamma}}_{p}^{-1}\right)^{\mathsf{T}} \phi_{\mathsf{Y}}^{2}(\lambda) d\lambda \qquad (A-8)$$

$$\underline{\underline{A}} \underline{\underline{I}}_{1} + \underline{\underline{I}}_{2} .$$

We first examine the contribution due to \underline{I}_1 . By the definition of the matrices \underline{U}_{01} and \underline{D} we can write the 1th element of [-1, \underline{a}^T , 0] \underline{U}_{01} \underline{D}^T by

$$\{[-1, \underline{a}^{\mathsf{T}}, \underline{0}] \sqcup_{01} \underline{0}^{\mathsf{T}}\}_{1} = \sum_{k=0}^{p} a_{k} e^{ik\lambda} \sum_{j=1}^{p+1} a_{p-j+1} \{e^{ij\lambda} + e^{-ij\lambda}\} \quad 1 = 1, 2, \cdots, p$$
$$= A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda}) e^{i(p+1)\lambda} + A^{p}(e^{i\lambda})A^{p}(e^{i\lambda})e^{-i(p+1)\lambda} \quad . \quad (A-9)$$

Thus, by (A-9) and (A-8) we have

$$\{\underline{T}_{1} \ \underline{\Gamma}_{p}^{T}\}_{1} = -2\pi \int_{-\pi}^{\pi} \{A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda})e^{i(p+1)\lambda} + A^{p}(e^{i\lambda})A^{p}(e^{i\lambda})e^{-i(p+1)\lambda}\}\phi_{\gamma}^{2}(\lambda)d\lambda$$
$$\stackrel{\Delta}{=} \{\underline{S}_{1}\}_{1} + \{\underline{S}_{2}\}_{1} . \qquad (A-10)$$

Evaluating \underline{S}_1 we get

$$\{\underline{S}_{1}\}_{1} = -2\pi \int_{-\pi}^{\pi} A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda})e^{i(p+1)\lambda} \phi_{\gamma}^{2}(\lambda)d\lambda$$

Using (A-5) and carrying out the integration yields

 $\{S_{2}\}_{1} = -\sigma_{\varepsilon} r_{p+1}$ (A-11)

For $\{\underline{S}_2\}_1$

$$\{\underline{S}_{2}\}_{1} = -2\pi \int_{-\pi}^{\pi} A^{p}(e^{i\lambda})A^{p}(e^{i\lambda})e^{-i(p+1)\lambda} \phi_{\gamma}^{2}(\lambda)d\lambda$$

and by (A-5) we get

$$\{\underline{S}_{2}\}_{1} = -\sigma_{w}^{4} \sum_{j=1}^{p} a_{j}a_{p+1-j}$$
 (A-12)

For \underline{T}_2 we have by the definition of \underline{U}_{01} and \underline{D} that the 1th element of $(1/a_p) [\underline{\tilde{a}}^T, -1, \underline{0}] \underline{U}_{01} \underline{D}^T$ can be expressed as $(1/a_p) \{ [\underline{\tilde{a}}^T, -1, \underline{0}] \underline{U}_{01} \underline{D}^T \}_1 = \sum_{k=0}^p a_{p-k} \sum_{j=1}^{p+1} a_{p-j+1} \{ e^{i(k+j)\lambda} + e^{i(k-j)\lambda} \}$ $= A^p (e^{-i\lambda}) A^p (e^{-i\lambda}) e^{i(2p+1)\lambda} + A^p (e^{-i\lambda}) A^p (e^{i\lambda}) e^{-i1\lambda}$

and

$$a_{p}\left\{\underline{T}_{2} \ \underline{\Gamma}_{p}^{T}\right\}_{1} = -2\pi \int_{-\pi}^{\pi} \{A^{p}(e^{-i\lambda})A^{p}(e^{-i\lambda})e^{i(2p+1)\lambda} + A^{p}(e^{-i\lambda})A^{p}(e^{i\lambda})e^{-i1\lambda}\}\phi_{\gamma}^{2}(\lambda)d\lambda$$
$$\triangleq \{\underline{S}_{3}\}_{1} + \{\underline{S}_{4}\}_{1} \qquad (A-13)$$

Evaluating \underline{S}_3 using (A-5) for $\phi_Y^2(\lambda)$ we get

$$\{\underline{S}_{3}\}_{1} = 0$$
 $1 = 1, 2, \dots, p$ (A-14)

and evaluating \underline{S}_4 we get

$$\{S_{4}\}_{1} = -\sigma_{w}^{4} \sum_{j=0}^{p-1} a_{j}a_{j+1} - \sigma_{\varepsilon}^{2}r_{1} . \qquad (A-15)$$

Define the 1th element of the vector \underline{P}^{T} by

$$\{\underline{P}^{\mathsf{T}}\}_{1} = \left\{\underline{\mathsf{I}}_{1}\underline{\mathsf{\Gamma}}_{p}^{\mathsf{T}}\right\}_{1} + \left\{\underline{\mathsf{I}}_{2} \ \underline{\mathsf{\Gamma}}_{p}^{\mathsf{T}}\right\}_{1}$$

then using (A-11) and (A-12) in (A-10) and (A-14) and (A-15) in (A-13) we get

$$\{\underline{p}^{\mathsf{T}}\}_{1} = -\sigma_{\varepsilon}^{2}r_{p+1} - \sigma_{w}^{4}\sum_{j=1}^{p}a_{j}a_{p+1-j} - (1/a_{p})\sigma_{w}^{4}\sum_{j=0}^{p-1}a_{j}a_{j+1} - (1/a_{p})\sigma_{\varepsilon}^{2}r_{1}$$

$$1 = 1, 2, \dots, p.$$

It follows that

$$\underline{\mathbf{C}}^{\mathsf{T}} = \underline{\mathbf{P}}^{\mathsf{T}} \left(\underline{\mathbf{\Gamma}}_{\mathbf{p}}^{-1} \right)^{\mathsf{T}}$$

C. Evaluation of V^2 :

From Section III we have

$$v^{2} = 2\pi \int_{-\pi}^{\pi} \underline{H} \underline{U}_{00} \underline{H}^{T} \phi_{Y}^{2} (\lambda) d\lambda$$
 (A-16)

where <u>H</u> was defined in Lemma 2. Using the expression for <u>H</u> in (A-16) we get

$$V^{2} = 2\pi \int_{-\pi}^{\pi} [-1, \underline{a}^{\mathsf{T}}, \underline{0}] U_{00}[-1, \underline{a}^{\mathsf{T}}, \underline{0}]^{\mathsf{T}} \phi_{\mathsf{Y}}^{2}(\lambda) d\lambda$$

$$+ 2\pi \int_{-\pi}^{\pi} [-1, \underline{a}^{\mathsf{T}}, \underline{0}] U_{00}[\underline{a}^{\mathsf{T}}, -1, \underline{0}](1/a_{\mathsf{p}})\phi_{\mathsf{Y}}^{2}(\lambda) d\lambda$$

$$+ 2\pi \int_{-\pi}^{\pi} (1/a_{\mathsf{p}}) [\underline{a}^{\mathsf{T}}, -1, \underline{0}] U_{00}[-1, \underline{a}^{\mathsf{T}}, \underline{0}]^{\mathsf{T}} \phi_{\mathsf{Y}}^{2}(\lambda) d\lambda$$

$$+ 2\pi \int_{-\pi}^{\pi} (1/a_{\mathsf{p}})^{2} [\underline{a}^{\mathsf{T}}, -1, \underline{0}] U_{00}[\underline{a}^{\mathsf{T}}, -1, \underline{0}]\phi_{\mathsf{Y}}^{2}(\lambda) d\lambda$$

$$\stackrel{\Delta}{=} \mathsf{T}_{1} + \mathsf{T}_{2} + \mathsf{T}_{3} + \mathsf{T}_{4} .$$

By the definition of the matrix ${\rm U}_{\rm oo}$ we have for ${\rm T}_1$

$$T_{1} = 2\pi \int_{-\pi}^{\pi} \sum_{k=0}^{p} \sum_{j=0}^{p} a_{k}^{a} e^{ik\lambda} (e^{ij\lambda} + e^{-ij\lambda})\phi_{\gamma}^{2}(\lambda)d\lambda$$
$$= 2\pi \int_{-\pi}^{\pi} [A^{p}(e^{i\lambda})A^{p}(e^{i\lambda}) + A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda})]\phi_{\gamma}^{2}(\lambda)d\lambda$$

Using (A-5) for $\phi_Y^2(\lambda)$ and performing the integrations we get

$$T_1 = \sigma_w^4 + \sigma_\epsilon^4 + \sigma_w^2 \sigma_\epsilon^2 + \sigma_\epsilon^2 r_0 + \sigma_w^4 \sum_{j=0}^p a_j^2 + 2\sigma_w^2 \sigma_\epsilon^2 / \sum_{j=0}^p a_j^2 .$$

For T_2 we have

$$T_{2} = 2\pi \int_{-\pi}^{\pi} (1/a_{p}) \sum_{j=0}^{p} \sum_{k=0}^{p} a_{j}a_{p-k} [e^{i(k+j)\lambda} + e^{i(k-j)\lambda}]\phi_{\gamma}^{2}(\lambda)d\lambda$$

again using (A-5) and performing the integrations we get

$$T_{2} = -\sigma_{w}^{4} + (1/a_{p})\sigma_{\varepsilon}^{2}r_{p} + (1/a_{p})\sigma_{w}^{4} \sum_{j=0}^{p} a_{j}a_{p-j}$$

For ${\rm T}_{3}$ we have

$$T_{3} = 2\pi \int_{-\pi}^{\pi} (1/a_{p}) \sum_{j=0}^{p} \sum_{k=0}^{p} a_{p-j}a_{k} e^{ik\lambda}(e^{ij\lambda} + e^{-ij\lambda})$$
$$= 2\pi \int_{-\pi}^{\pi} (1/a_{p})[A^{p}(e^{i\lambda})A^{p}(e^{-i\lambda})e^{ip\lambda} + A(e^{i\lambda})A(e^{i\lambda})e^{-ip\lambda}]\phi_{\gamma}^{2}(\lambda)d\lambda$$

Using (A-5) and performing the integrations we get

$$T_{3} = -\sigma_{w}^{4} + (1/a_{p})\sigma_{\varepsilon}^{2}r_{p} + (1/a_{p})\sigma_{w}^{4} \sum_{j=0}^{p} a_{j}a_{p-j} + 2\sigma_{w}^{2}$$

For T₄ we have

$$T_{4} = 2\pi \int_{-\pi}^{\pi} (1/a_{p})^{2} \sum_{j=0}^{p} \sum_{k=0}^{p} a_{p-j}a_{p-k} e^{ik\lambda}(e^{ij\lambda} + e^{-ij\lambda})\phi_{Y}^{2}(\lambda)d\lambda$$
$$= 2\pi \int_{-\pi}^{\pi} (1/a_{p})^{2} [A^{p}(e^{-i\lambda})A^{p}(e^{-i\lambda})e^{i2p\lambda} + A^{p}(e^{-i\lambda})A^{p}(e^{i\lambda})]\phi_{Y}^{2}(\lambda)d\lambda$$

Using (A-5) and performing the integrations we get

$$T_{4} = (1/a_{p})^{2} \left\{ \sigma_{w}^{4} \sum_{j=0}^{p} a_{j}^{2} + 2\sigma_{w}^{2} \sigma_{\varepsilon}^{2} + \sigma_{\varepsilon}^{2}(r_{0} - \sigma_{w}^{2}) \right\} .$$

Thus,

$$v^{2} = \sigma_{w}^{4} \left\{ \sum_{j=0}^{p} a_{j}^{2} + (2/a_{p}) \sum_{j=0}^{p} a_{j}^{a} a_{p-j} - 1 + (1/a_{p})^{2} \sum_{j=0}^{p} a_{j}^{2} \right\}$$
$$+ \sigma_{w}^{2} \sigma_{\varepsilon}^{2} \left\{ \left(2 / \sum_{j=0}^{p} a_{j}^{2} \right) + 3 + (1/a_{p})^{2} \right\}$$
$$+ \sigma_{\varepsilon}^{2} \{ \sigma_{\varepsilon}^{2} + r_{0} + (2/a_{p})r_{p} + (1/a_{p})^{2} r_{0} \}$$

END

FILMED

2-85

DTIC