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I. INTRODUCTION

This report considers the problem of estimating the spectral density of a
discrete-time autoregressive (AR) series from observations of a noise
corrupted version. The spectral density estimate is based on the high-order
Yule-Walker equation estimates of the AR parameters. Under the assumption
that the order of the autoregressive series is known, the 1limiting
distribution of the spectral density estimate is normal with mean zero and
finite variance. The mean and variance of the limiting distribution, for the

noise corrupted case, have not previously been evaluated.

The problem of AR parameter estimation for the noise corrupted case was
previously considered by Walker (reference 1), Pagano (reference 2), and Lee
(reference 3). Walker was the first to consider this problem; he evaluated
the asymptotic efficiency and variance for the parameter estimates of a first
order series. Pagano proved that an equivalent model for an autoregressive
series plus noise is an autoregressive-moving-average (ARMA) model. Through
the use of nonlinear regression methods, he developed strongly consistent,
efficient parameter estimates. Lee recently examined the multivariate noise
corrupted case and proved that the multivariate parameter estimates are

strongly consistent and asymptotically normal.

The organization of this paper is as follows: In Section II, the form of
the spectral density and the AR parameter estimator for the noise corrupted
case is established. In Section III proof is offered that the 1limiting
distribution of the AR spectral density estimate is normal with mean zero and
the asymptotic variance expression is evaluated. In Section IV, the variance

expression for the first-order Markov series (as an example) is evaluated.
II. PRELIMINARIES

Let {Yn}:z_°° be a discrete parameter time series satisfying the following
assumption:

Assumption A: The series {Yn} consists of the sum of an autoregressive
series {Xn} of known order p and a noise series {wn}. The AR series {Xn} is
generated (or modeled) by
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X =g (1)

and

(i) {en} is stationary independent identically distributed N(O,oz)
(ii) {wn} is stationary independent identically distributed N(O,os)

(iii) {sn} and {wn} are uncorrelated
The parameter set {aj}?=1 is referred to as the AR parameter set.

Assumption B: The AR parameters are constrained such that the zeros of
the polynomial

p
AP(z) =1 - Zl ajz‘] (2)
J:

lie outside of the unit circle on the complex z-plane.

Under Assumption B the AR series is stationary. It was assumed that the
noise is wide-sense stationary; thus, the spectral density function for the
noise corrupted series Y can be written as

02 02

_ W £
¢Y(A) o’ 2nAp(eiA)Ap(e-iA) : (3)

Walker (reference 1) and Pagano (reference 2) showed that the AR plus
noise series can be expressed as an ARMA series. We express the noise
corrupted series Y by

1 -t Taw . (4)

Let the covariance sequence of the series Y be {rk}, where Ty = E[YnYn-k]'

Multiplying (4) through by Yn-k and taking expectations term by term we obtain
the Yule-Walker (Y-W) equations:




- = 2 -
R T aprp =0, *o, (k = 0) (5)
r, - a,r - es+ - ar = -a 02 (1 <k <p) (6)
k ~ %1"k-1 p k-p kW =Xz
" T 3Tk " T aprk_p =0 (p*1 < k < 2p) . (7)

The set of p equations of (7) are often referred to as the high-order
Yule-Walker equations. We express this set of equations in matrix form as

where the (p x p) covariance matrix Ep is defined by

D fp-1 L
\ T+l T e r
r - . . . .
SN E : 9
r

"2p-1 "2p-2 ©7" "p
and the (p x 1) vectors a and Bp+1 are defined by

T = .o
_a_ - [al’ az’ ’ ap]

T
Bp+1 - [rp+1’ rp+2) ’ rzp] .
Given a finite set of observations of the noise corrupted series Y, that
is {Yn}:=1 N > 2p, we estimate the covariance sequence {rk} using
N-| k]|
:E: YnYn+|k| [ki < N-1
n=1

0 Ikt > N-1

4

(10)

-
1]

When the covariances " of the matrix Ep and the vector R are replaced by

_.p+1
their corresponding estimates of (10), the estimated matrix and vector will be

denoted by [p and R respectively. The high-order Y-W equations (8) can be

_p+1 ’
expressed in terms of the estimated covariances as
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I a=R

=p = “p+l (11)

The solution of (11) in terms of & provides the high-order Y-W equation
estimate of the AR parameters.

In order to estimate the AR spectral density we require estimates of the
AR parameters such as those formed by (11) and an estimate of oz. In the
noise free case, given estimates of the covariances {rk} and AR parameters
{aj}P=1 (5) can be used to estimate 05. For the noise corrupted case (5) will

J
provide an estimate of 05 + 05, thus, one of the equations of (6) must also be
used to estimate 05. Using this approach, with covariance estimates of (10)

and estimates of the AR parameters of (11) we have

P p
A2__ ~ A - A A ~
5, = :E: aj P (1/ap) :E: 8 rp-j (12)
j=0 j=0
where a_ = -1 and a_ # 0.
o p

In the subsequent development of asymptotic statistical properties for
the parameter and spectral density estimates, we make use of the following
vectors and matrices:

Ta ...
B - [rl’ rz» ’ rzp]

L ...
B p - [rpy rp+1’ ’ rzp_l]

L

U =
—nm u

k,j} k=n,n+1, «--, 2p

j=mom+ 1, «--, 2p

g 8 T(KEA ei(k'j)A
kj
: 0=7[0,0, -, 0] .
o
y
=
F
-
b
» 4
[
K
K.
i.. .
L - R R I S IR ]




III. ASYMPTOTIC PROPERTIES

A. AR Parameter Estimate Statistics

Define the AR parameter vector QT by

T4 2
e < [oe, aj, , ap] . (13)

OQur present goal is to establish the asymptotic distribution for estimates of
the AR parameter vector. First, we present the asymptotic distribution of the
covariance estimates of (10) as established by Brillinger (reference 4).

Theorem 1: For the AR plus noise series Y, under Assumptions A and B,

the elements of the covariance vector
N (R - R)

are asymptotically jointly multivariate normal with mean zero and covariance

n
1imE (N R-R), NPR-R)3=2n [ u0l)an . (14)
Novco - = - = =11
-n
The following lemma establishes the existence of a random vector Z that
is equivalent in distribution to the high order Y-W AR parameter estimate

vector (3 - a). In preparation for this lemma we define the matrix D by
-ap -ap_1 . a3, 1 0 0
00 0 -a, . -a; 1 0 - 9
0 0 -a, R -a; 1

Lemma 1: For the AR plus noise series Y there exists a p x 2p matrix D
and a random vector Z such that

N (@ - )~ Nz = N R - B (15)
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where ~ indicates that the limit distribution as N»« is identical for both

random vectors.

Proof: Define the vector V by

V1

~

l<
[} >

ra).

) N
2 18 % ("
R ERY -

-

v
p

- P

Since Ep is positive definite and Ep ————*—[p, element by element, it follows

N->oo
1 P
that [ * —T =, and
P N P

v, —— 0 j=1, 2, «--

» P - (16)

Let (Q, #, P) be the underlying probability space. For arbitrary € > 0 and

N> p let

Ae,N = {w € Q: IvJ.I <eg, j=1,2, *--, p}

then for all w € A8 N’ since 'le < g, we can write
1

-l (R

—p —p+1 - [pé) = (.a_ - .a_) *

It follows that

V=NT[@-a) -t R

Lo Rouy = LT

for all w € A8 N* By (16) we have that for every aec[0,1] there exists a N;

such that

- *
P( As,N) >1-a N>N
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Since the selection of ¢ and a is arbitrary we can conclude that

. . p
Nia - a) - NI YR . - T a) ——0
- = P =ptl P~ e T

By the definition of the matrix D and by the high-order Y-W equations (8) and
(11) we can write

~

Q(B - B) = Bp+l - _I:p_a_

and the desired result follows directly. O

We previously established an estimator for the variance 02, see (12). In
the following 1lemma we establish the existence .. an equivalent (in
distribution) random variable from which the asymptotic distribution of 65 can

be evaluated. In preparation for the lemma we define the vectors:

T4
R - [r09 rl’ ’ rzp_l]

i’ 8 a, a

p p-l’ RN al] .

Lemma 2: For the AR plus noise series Y there exists a random variable §
such that

Nio%- of) ~ N¥ € = NIR, - Ry] (17)

where

H=-{[-1, a', 0] + (1/a) (a', -1, 01}
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Proof: By (5), (6), and (12) we write

N2 2. _ K b P P

1T - - - 3 4 - a A A

N (0E 05) =N Z ajrj+ Z a;r; (l/ap) Z a;f-;
j=0 j=0

p

+ (1 o

(1/a) 2, 33 p-
J=0

By Gersch (reference 5) we have that the high-order Y-W equation AR parameter

estimates converge in probability to the true parameters as N»®»., Thus, we can

write
N%&2 - o2) ~ N2 | - Zp: (A, - a.) - i a.(F. - r.)
e e i3 i
j=0 j=0
P p
- (1/a) E) Foej (35 - ) - (1/a) Jg‘, as(Fos = roo) (- (18)

Also, by the convergence in probability result of Gersch (reference 5) we have
p

1
that Nﬁ(éj - aj) — (0 as N>o (j =1, 2, «<-, p); thus, the first and third
terms on the right-hand side of (18) converge to zero and the desired result
follows directly. o

Theorem 2: Under Assumptions A and B the AR parameter estimates converge

in distribution to a zero mean normal random vector, that is

oo £
N° (6 - 8) —N (0, 2)
= = N__)m p+1 _- =

where

iMm
] =g
3.
P-4
m
yre
m
yre
IN
—
| —

(19)
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Proof: This result follows directly from the results of Lemmas 1 and 2
and Theorem 1. 0

We now proceed to evaluate the terms of 2. Let

where V2, C, and Z are defined by (19). For V2 we have

vZ = Tim N E[EZ] = Tim N H E {[Ry - RGI[Ry - Ry1'IH'

N~ N->oo

and by Theorem 1 we have

After further manipulation (see appendix) we get

p p
2 _ 4

p
2 2 2
V = - . .- .
o, :E: aj + (2/ap) :E: a3, j 1+ (l/ap) :E: aj
j=0 j=0 j=0

+

P
2.2 2 2
0.0, 2 :Z: aj + 3 + (l/ap)
J=0

2l 2 2
+ oe[o8 trot (2/ap)rp + (l/ap) ro] (20)
We also have

: . T
T_ . . ] ~km 0T (12
¢’ = lim N EL£2'1 = Tim N H (IR, - Ry(R - R1 ' (r;})

N>
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and by Theorem 1 we have

A T

1\ 2
fﬂ_g o' _p)cpY(A)d)\.
-

After further manipulation (see appendix) we get

where the vector P is defined by

p-1

p
T, 4 -5 _ ) _ 2
{P }] = -0, p+1 o Z ajap+1-j (l/ap) o, Z ajajﬂ (l/ap) AR

j=1 J'—'o
]:1, 2, EEIN  I

By (15) we get

®=1lim N E[Z 2

N->o

- ~ ~ - T
1= 1im N -2 E{{R - RIR - R1}D7 (r 1)
Noo P~ e S
and by Theorem 1 we can write

n

i

- -1 T -1 2

o= [rtoy, 0" (5}) dwa .
n

After further manipulation (see appendix) we get

T T

_ 2 -1 -1 2 2 2 -1
P=0"T I‘(F >+owl‘p [o£l+owg]([p>

where I is the p x p identity matrix and Q is given by

10
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p-1
Q 8 miO ndm+1
1 g 2
2 aa - a
m=0 m+(p-1) m=o M J

B. AR Spectral Density Estimates Statistics

We now proceed to evaluate the limiting distribution of the spectral
density estimate for the AR series X formed from observations of the noise
corrupted series Y. From (3) we see that the AR spectral density estimate

can be written in terms of the parameter estimate vector 6 as

~2
o

N = 3

where the estimate Rp(e1k) is formed by substituting the AR parameter
1A and Gg

estimates of (11) into (2) and evaluating at z = e is estimated using

(12). We now state and prove the main result of the document.

Theorem 3: Under Assumptions A and B the AR spectral density estimate
QX(A, 3) converges in distribution to a zero mean normal random variable, that

is

35 - d T
Nby(h, ©) - gy, ©)] ——=N(0, p'(0) £ p(A) (24)

where p(A) is a gradient vector given by

3, (A, 8) 3¢, (A, 8) 3, (A, 8)
QT(A) = X 2 ’ xaa y Tty _X—a_a—_
30s 1 p

11

WY A e el e el ata Aath o P T U S A D T S S - e e e e e




...-..‘-_" A A M Y .« e R . T . el BESaLASac] CH R B ACT - Rt reowew T ] S e —— DR A ar Bt A A Y

Proof: By Theorem 2 we have that

L - k4
N°(6 - 8) N—_m'*Np+1 (0, 2).

Since the function ¢X(A, 6) 1is totally differentiable with respect to the 1
vector 6 the desired result follows directly by a convergence theorem of Rao
(reference 6). u]

By the result of Theorem 3 we see that from observations of the noise
corrupted AR series Yn’ through the use of the high-order (Y-W) equations, we
can form a weakly consistent spectral estimate for the nonnoise corrupted
series Xn; the resulting spectral estimate is asymptotically normal with
limiting variance (1/N) QT(A) 2 p(A). We now express QT(A) 2 p(A) in terms of

previously defined terms.

Let the gradient vector QT(A) be written as

o' () & by, BT

where
3o, (A, 8)
bn) & g — - L (25)
ao8 2nAT (e T)AF(e )

1 and

b .
b . !

¢ 30, (A, 8) 80,(A, 8) 30, (A, © |
" T A bylA, 8 Oy(A, 8 Oy (A, 9)

3 B (A) = da ’ da » T da

{ 1 2 o]

L I

° iA i2A ipA

- = oy(A, ©) Re{e = } Red-E o e Re e ™ . (26)

: ACe ™) | ACe'™) A(e™) '
[

[ We previously defined the matrix I by

®

3

.

L4

3

b..

.
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Y - (27)

thus, we can write
pT(A\) £ p(A) = 22 + b(A) B(A) € + b(A) €T B(A) + BT(A) @BV . (28)

In the next section, (28) will be evaluated for the first order AR

series.

IV. EXAMPLE
First Order Autoregressive (Markov) Series

The first order AR series (p = 1) is given by

X =aX + g (29)

where the parameter a must satisfy the condition -1l<a<l, i.e., Assumption B,
for the series to be stationary. For this first order example the covariance

sequence is expressed by

o2 oI
r‘k=———2— k=0, 1, b (30)
(1-a%)

and the spectral density is

2
o]
£

2n[a2 - 2a cos A+ 1]

oy(A, 8) =

where QT = (os, a).

Given observations of the noise corrupted version of the AR series, the
variance of the spectral density estimate, as given by (28) can be evaluated

in terms of the parameter, a, and the variances 05 and 05. For the first

order case, p = 1, we have

13
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Tim N var{ey(A, 8)} = b2V + 26()BOC + B2

N-oo
where
b(A) = i)\l = 2 :
2n A(e "A(e ) 2rn[a” - 2a cos A + 1]
and
2¢X(A, 8)(cos A - a) Zog(cos A - a)
B(A) = A A = 2
A{e "A(e ) 2nfa” - 2a cos A + 1]
2

Using (20) and (30) we can evaluate V- for the first order case

4
V- =o0

4

> + 2070
a

w

2 4{a4-3a2+1} 22{2a+4a2+1}+04{-a+4a + 1

32(1 + az) a2(1 - az)

£

Using (21) and (30) we evaluate C and get

4 . _ 2
o, (1 -a%)

2
o]
€

2
€= il—i—é—l ,og +

and by using (22) and (30) we get

2

aZ

p=1-23) {1 + (02/02)(1 - a®) + (oZed)? (1 - a4)} .

Substituting (34), (35), and (36) into (31) yields

14
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(31)

(32)

(33)

(34)

(35)

(36)
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2

- ~ a _.4 2
Tim N var{ey(A, 8)} = ———— 2 053 PR l%
N> (2n)“[a” - 2a cos A + 1] a(1 - a%)
4 2 a2
+ 2 2Y2a + 43" + 1 wla -3a" +1
o 2 2 v 2
Y{a (1 +a%) o a

2 -
. 208(cos A - a) (1 _az)

(2n)2[a2 - 2a cos A+ 1]3 a

| |
N

oZ + (0:/05)(1 - az)]

4 2
40 (cos A - a) _ 2
. € (1 = ) [1 + 305/052 (1 - ad)

(2n)2[a2 - 2a cos A + 1]4- a

2
+ 305/0?% a- a4)] . (37)

We see that the limiting variance expression is composed of three major
terms: the first term represents the contribution due to variation in
estimating oi, the second2 term represents the contribution due to the
cross-covariance between o and a, and the third term represents the
contribution due to variation in estimating the parameter a.

Even for the first-order AR series we see from (37) that the limiting
variance expression is a complicated function of the parameters. To provide
some insight into the relationship between the variance and the parameters a,
og, 05 and A, (37) was evaluated for a few parameter values.

Figure 1 shows the spectral density estimate variance plotted as a

function of signal-to-noise ratio (SNR). The AR series used is given by
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Figure 1. Spectral estimate variance vs signal-to-noise ratio. AR parameter

equals 0.5, A= 0 radians.
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with a = 0.5; low pass spectral density. The variance (37) was evaluated for
A =0, og = 1 and 03 set to achieve the indicated SNRs. We see that the
variance decreases monotonically with increasing SNR to a value of 14 dB at a
SNR of 8 dB. Also plotted is the variance obtained by Akaike (reference 7)
for the first-order AR series without noise as indicated by the horizontal
line at about 7 dB. Note that the AR plus noise case variance, at high SNR,
does not asymptotically approach the no noise variance. This is the case
because the high-order Y-W equation estimates of the AR parameter used for the
AR plus noise case produces a larger parameter estimate variance than that of
the conventional Y-W equation estimate. That is, for the first-order AR
series with a = 0.5 we have from Akaike (reference 7) that
1im N var(a) = (1 - a2) = 0.75

N~

and for the AR plus noise case we have from the third term on the right side
of (37) with o2 = 0 that

1im N var(a) = (1 - az)/az = 3.0
N0

In figure 2 the estimated variance is plotted as a function of SNR for
A = 0 for two values of the AR parameter, a = 0.1 and a =0.8. We see the same
monotonic decrease with increasing SNR for both cases as in figure 1. The
asymptotic limit for the a = 0.8 case is about 15 dB greater than that for
a = 0.1. Thus indicating that as the spectral density bandwidth decreases the
spectral estimate variance increases. In figure 3 we have spectral estimate
variance plotted as a function of frequency for three values of the AR
parameter a = 0.1, a = 0.5, and a = 0.8. We see that for the two narrower
bandwidth cases, a = 0.5 and 0.8, the variance decreases monotonically with
increasing frequency but for the wider bandwidth case a = 0.1 there is little
variation with frequency over the range evaluated.
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VI. APPENDIX

A. Evaluation of &:

From Section III we have

n
T _ T 2 _
-p P Ep = 2n / b 911 0 ¢Y(A)dA' (A-1)
~ .. -n
- We first evaluate the n, mt" element of b Uyy QT and have
%E 2p 2p
T = = * e - = e s 0
L {0 Uy D3y = Z Z dnk Y dmj h=1, » Py om=1, » P
f k=1 j=1
;. By the definition of the matrix U11 we have
¢ 2p 2p
T - kA ijA =ijA
DU Dpp = 20 20 dye e dyy (e v e
k=1 j=1

LAl gaa n ae n e,
R ]
. ) N
S
[ e

and by the definition of the matrix D we get

)

nz

(0 U, QT}nm _ Ap(e-i)\) ei(p+n)A{Ap(e-iA) RICLTN Ap(ei)\)e-i(p+m))\}' (A-2)

[N

Cam

Substituting (A-2) into (A-1) we get

v
—

o

S where

o n
Ty & 2 / Ae™™y AT ™y o BTN (Fiyan (A-3)
-n




v

ey r—v-r‘—fv v

ot

NERGSs

SRARTA S
- -

t
(1 }nm 8 oo f A(e-i)‘) A(en) e1(n-m))\

=7

For the AR(p) plus noise process we have that

2.2
20w08 o

ST (A-4)

4
£ . (A-5)

2 4
oo(A) =<0 + : — + -
Y w Ap(e1A)Ap(e 1A) [Ap(elk)

Substituting the expression (A-5) into (A-3

integration we get

{Il}nm =0 n=1, =--, p;
and
p-in-m|
_ 4 22
{Iz}nm = 9y Z ajaj+|n-m| * 0% 6(
j=0

Using these results we get

Ap(e-iA)]Z

) and (A-4) and carrying out the

2
n-m) +o_ r
€ n-m

T T
_ 2 -1 -1 2 ~1.2 2 -1 )
®=al 71, ([,,) + o, [-Me? 1+ o 91<£p) (A-6)

where the matrix Q was defined in Section III

B. Evaluation of QT:

From Section III we have

Tt
;
T _ Tf--1 2
¢ = on f H Uy D <£p> 05 (A)dA

n

(A-7)

with H defined in Lemma 2. Substituting the expression for H into (A-7) we

have
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g

v

Lol 20 g munt
e [

oy
>
o

.
T_ T -1\ 2
C =-2n .I.[ 1, a, 0] U01 D (Ep ) ¢Y(A)dA
-
s T
- 2n(1/ap) f (&', -1, 01y, 0 (_r_;l> o5 (A) A (A-8)
-n
5
- Il + IZ

We first examine the contribution due to T By the definition of the

1
matrices 901 and D we can write the 1th element of [-1, gT, 0] 901 QT by
p p+1
_ T T, _ i kA ijA -ijA - .
{[ 1; é * 9] 901 [_) }] - Z ak e Z ap_j+" {e te } ] 1’2) ’p
k=0 j=

_ Ap(eiA)Ap(e-iA) ei(p+1)A + Ap(eiA)Ap(eiA)e-i(p+l)A . (A-9)

Thus, by (A-9) and (A-8) we have

n
-2n f (AP(eTA)AP (™ AT (PYIOA | AP(eMAPe™)e T (PTDMZ ) an

-n

(T, o}

1>

{S + {S

sS4y + 15,0 (A-10)

Evaluating S, we get

1

n

(5,1, = -2 f AP(eMAPe My (PPN pZ(yan

“n

Using (A-5) and carrying out the integration yields

{S

4 = 7% Tou (A-11)
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For {§2}]
n 3 L3 .
(s = -2n [ MW PN Zaya
-n
and by (A-5) we get
(5,3, = -0} 3 a.a (A-12)
=2°1 w ipt1-j -
J=1

For _1_’2 we have by the definition of 901 and D that the th element of

(1/7a.) [ET, -1, 0] U DT can be expressed as
p’ = =< =01 =

+

ptl

p
2 ok 2 iy e
k=0 1

T

"
(1/ap) {fa’, -1, 03 201 D

5 UGS AR IS IS

o
"

AP(e™ AP (e Ay T (CZP* DN | b= TA)pP Ay~ TTA

and
n 3 - ) 03 I3 .
2, {Iz E'T,}1 = -2n f{Ap(e-1}\)Ap(e-1k)e1(2p+1))\ . Ap(e-]}‘)Ap(em)e-1]}‘}¢$()\)d)\
-n
i} -
- {§3}~| + {_5_4}] . (A 13)

Evaluating §3 using (A-5) for ¢$(A) we get

{S3}, = 0 1=1,2, -, p (A-14)

and evaluating §4 we get
= a3 -2 -
{54}] = -0, Z ajaj-ﬂ ory - (A-15)
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Define the 1'" element of the vector ET by

T, _ T T
B = %Ilip}] 5, Ep}‘

then using (A-11) and (A-12) in (A-10) and (A-14) and (A-15) in (A-13) we get

p-1
_ .2 _ A _ 4 - 2
{P'}, = Ocp+1 = Ow Z 339p+1-j (l/ap)ow Z 3351 (l/ap)oer'l
= =0

] = 1’ 2, see, P-
It follows that

T
{ T = pTfr1
l. - - _p

C. Evaluation of V2:

From Section III we have

¢
- 1t
2 _ T .2 .
3 Ve = 2n f H U H' oy (A)dr (A-16)
._:‘ -1
.
F! where H was defined in Lemma 2. Using the expression for H in (A-16) we get
-
S n
- V2 = 2n f (-1, a', 01 Upyl-1, ', 01" 2(M)aA
__! -n
[ . It
ti + 2n (-1 aT 6] u [”T -1, 0](1/a )¢2(A)dA
t y B » ¥ 00 3 ] y X p Y
. -n
q t
[ ) B _ T T .2
3 con [ /) 1 -1 01 g1, af, 01 eyoa
5 -n
i ; o,
2 T T

) co [ azap? s -1, 01 Ugla', -1, Qleioa
. “n

LI A S A
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By the definition of the matrix Uoo we have for T1

np p
1 2n fz Z akajeIM(e”}‘+e-jJA)cps()\)d}\
-n k=0 j=0

—
1

n
2n f [AP(e™M)AP(ei™y + Ap(ei")Ap(e'i")J¢$(A)dA

-n

Using (A-5) for ¢$()\) and performing the integrations we get

p p
{ _ 4 4 2 2 2 4 2 22 2
| T1—0w+o +oos+oer0+owZaJ+20 /Zaj

j=0 j=0

For T2 we have

SR e an e & e

PP
: 1,=2n f (1/a) 3 3 aza et (DAL (DA 20,
3’ j=0 K=0

again using (A-5) and performing the integrations we get

PN

__4
? T.2 =-o,+ (l/ap)o r (l/a )0 Z: aJap ;
3
i For T3 we have
<
r PP o i i
- i ij
Ej Ty=2n f (l/ap) Z Z a5-33 © (e +e )
, j=0 k=0
g n \‘
3 = 2n f (1/ap)[AP(e"‘)Ap(e“")e‘p" + ae™ace™e P2y
- ;
-‘ |
f Using (A-5) and performing the integrations we get

25

}

3

¢

. _‘.'_'.. . S _-.. - -._‘-...- .- . . A-‘ .:._-:‘“. .._. . _.‘.. - i . .7... . ._-.‘_u ~...._.. IR
D A A S (T ST PP U PUURE WAL QAL ST IPUI DRLAP AN TP U . I




p
_ _4 2 4 2
Ty=-0, + (l/ap)oarp + (l/ap)crW Z a3, + 20
J:
For T4 we have
n 2 p p okA . -A » -A 2
- 1 1 =1
Ty = 2n f (l/ap) Z 2 ap_‘].ap_k e (e + e )¢Y(A)d)\
-n j=0 k=0

n
2n f (172 )21AP e AP (e Mye 2PN+ AP AP (e ™ Jeg( an

i

Tl
[

Using (A-5) and performing the integrations we get

—
1}

P
) 2) 4 2 2 2 2 _ 2
- 4 (l/ap) o, Z a;i + 20w o, * oe(ro ow)
j=0

& Thus,

{ 2 _ 4 P 2 P 2 P 2
Ve = o, Zo aj + (2/ap) Z(:) ajap_j -1+ (l/ap) Z aj
e
| 2 2 P 2 2
. + ool 2/2 aj |+ 3+ (Va)
- =0
[
-
..
: 2, 2 2
[‘ + 08{08 tryt (2/ap)r‘p + (l/ap) ro}
2
K
.
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