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I. INTRODUCTION

This report considers the problem of estimating the spectral density of a

discrete-time autoregressive (AR) series from observations of a noise

corrupted version. The spectral density estimate is based on the high-order

* Yule-Walker equation estimates of the AR parameters. Under the assumption

that the order of the autoregressive series is known, the limiting

distribution of the spectral density estimate is normal with mean zero and

finite variance. The mean and variance of the limiting distribution, for the

noise corrupted case, have not previously been evaluated.

The problem of AR parameter estimation for the noise corrupted case was

previously considered by Walker (reference 1), Pagano (reference 2), and Lee

(reference 3). Walker was the first to consider this problem; he evaluated

the asymptotic efficiency and variance for the parameter estimates of a first

order series. Pagano proved that an equivalent model for an autoregressive

series plus noise is an autoregressive-moving-average (ARMA) model. Through

the use of nonlinear regression methods, he developed strongly consistent,

efficient parameter estimates. Lee recently examined the multivariate noise

corrupted case and proved that the multivariate parameter estimates are

strongly consistent and asymptotically normal.

The organization of this paper is as follows: In Section II, the form of

the spectral density and the AR parameter estimator for the noise corrupted

case is established. In Section III proof is offered that the limiting

distribution of the AR spectral density estimate is normal with mean zero and

the asymptotic variance expression is evaluated. In Section IV, the variance

expression for the first-order Markov series (as an example) is evaluated.

II. PRELIMINARIES

0
Let {Y }0 be a discrete parameter time series satisfying the followingn n=-*assumption:

Assumption A: The series {Y n} consists of the sum of an autoregressive

series {X n} of known order p and a noise series {Wn 1. The AR series {X n} is
generated (or modeled) by

,'-"1
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- aX " a X =
n 1 n-i p n-p n (1)

and

(i) In } is stationary independent identically distributed N(O,o2)

(ii) {W } is stationary independent identically distributed N(O,a2 )n w

(iii) n} and {W n} are uncorrelated

The parameter set [a}P= is referred to as the AR parameter set.

Assumption B: The AR parameters are constrained such that the zeros of

the polynomial

p
A.(z) a.zi (2)

j=1

lie outside of the unit circle on the complex z-plane.

Under Assumption B the AR series is stationary. It was assumed that the

noise is wide-sense stationary; thus, the spectral density function for the

noise corrupted series Y can be written as

3
w  

)
y( =- 2CAP(ei )AP(ei)(

Walker (reference 1) and Pagano (reference 2) showed that the AR plus
noise series can be expressed as an ARMA series. We express the noise

* corrupted series Y by
.. .... a Y w .. ... a w (4)

Yn alYn-I apYn-p e n +n alWn-1 p n-p

Let the covariance sequence of the series Y be {r where r = E[YnY

Multiplying (4) through by Yn-k and taking expectations term by term we obtain
the Yule-Walker (Y-W) equations:

2
I.



.. a r 2 + 2  (k =0) (5)
r° -alr I  • ara

k 1 rk- = -akw (1 < k < P) (6)

rk - alrk-l -. . aprk-p = 0 (p+l< k < 2p) (7)

The set of p equations of (7) are often referred to as the high-order

Yule-Walker equations. We express this set of equations in matrix form as

LaP Rp+1  (8)

where the (p x p) covariance matrix rp is defined by

• rp rp- ' rl

• .. F rp+ 1  rp . .r 2
-P -• .(9)

-- p

2p1 2p-2 p

and the (p x 1) vectors a and Rp+ 1 are defined by

T = [a, a2, , ap]

-p +l =rp+l, r p+2 r r2p]

_0 Given a finite set of observations of the noise corrupted series Y, that

is [Yn n= N > 2p, we estimate the covariance sequence {rk} using

rk = n-k (10)

0 IkI > N-I

When the covariances r k of the matrix F and the vector Rp+ I are replaced by
-pp1

* their corresponding estimates of (10), the estimated matrix and vector will be

denoted by L and Rp+l' respectively. The high-order Y-W equations (8) can be

expressed in terms of the estimated covariances as

3
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Sa p+ . (11)

The solution of (11) in terms of a provides the high-order Y-W equation

estimate of the AR parameters.

In order to estimate the AR spectral density we require estimates of the
2AR parameters such as those formed by (11) and an estimate of o. In the

noise free case, given estimates of the covariances {rk} and AR parameters

,, (5) can be used to estimate a2. For the noise corrupted case (5) will

provide an estimate of a2 + o2  thus, one of the equations of (6) must also be

used to estimate a Using this approach, with covariance estimates of (10)w
and estimates of the AR parameters of (11) we have

p p
E= - a . -(1 ) a. rp . (12)

j=0 j=0

where a = -1 and a 0.'oo p

In the subsequent development of asymptotic statistical properties for

- the parameter and spectral density estimates, we make use of the following

vectors and matrices:

R RT Cr r
V [ 1 r2 ) .,r2p]

RT [ ***

T- p [rp, rp+l, ---, r2p-1 ]

0

U n {u } k = n, n + 1, .. 2p
[-[. ~-nm k

j m, m + 1, -.., 2p
S

u - e i(k+j)A + ei(k-J)X
U~kj

0 = [0, 0, , 0]

4
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III. ASYMPTOTIC PROPERTIES

A. AR Parameter Estimate Statistics

Define the AR parameter vector 6T by

T [a al , ,a]. (13)
p

Our present goal is to establish the asymptotic distribution for estimates of

the AR parameter vector. First, we present the asymptotic distribution of the

covariance estimates of (10) as established by Brillinger (reference 4).

Theorem 1: For the AR plus noise series Y, under Assumptions A and B,

the elements of the covariance vector

N (R - R)

are asymptotically jointly multivariate normal with mean zero and covariance

lim E {N (R - R), N (R - R)T} = 2n f U110
2(N)dA (14)

N-

The following lemma establishes the existence of a random vector Z that

is equivalent in distribution to the high order Y-W AR parameter estimate

vector ( - a). In preparation for this lemma we define the matrix D by

I

.- a -a • aI  1 0 . . . OF p p-11
S -ap -a I  1 0... 0

p 14 L 0• 0 -a p . . .- a 1

Lemma 1: For the AR plus noise series Y there exists a p x 2p matrix D

and a random vector Z such that
4

N ( a a) N Z = N (p ID(R - R)] (15)

4 5I



where indicates that the limit distribution as N- is identical for both

random vectors.

Proof: Define the vector V by

V 
-1

P, -1 - ra

V

P
^ P

Since F is positive definite and F --- Fp, element by element, it follows-P Np

P
that F- F -  and

N-w

4 P
v .0Oj = 1 , 2 , -. , p (16 )SN--

Let (Q, jc, P) be the underlying probability space. For arbitrary > 0 and

N > p let

A {W C 0: Ivjl <, j = 1, 2, ", P}

then for all w C A ,N, since Iv.I < e, we can write
P3

-P (Rp+ -pa)( - a)

It follows that

q V 0 U&[( a) -F - I  ^  -pa)]1 -1 (Rp.

-p -p+1 LP-

for all w C A N By (16) we have that for every a&[0,1] there exists a N*

such that

P(AN) > 1-i N > N*

6I



V, . 7 r- . . . - - - -- ------ .- , - w ---

Since the selection of and a is arbitrary we can conclude that

^P

0(a - a) - Nrp(R - jpa) 0

p -p+i l )--.

By the definition of the matrix D and by the high-order Y-W equations (8) and

* (11) we can write

D(R - R) R - F a

and the desired result follows directly. El

2

We previously established an estimator for the variance a 2 see (12). In

* the following lemma we establish the existence -, an equivalent (in

*" distribution) random variable from which the asymptotic distribution of a2 can

be evaluated. In preparation for the lemma we define the vectors:

0- [r2- r' "1

- [aap 1  ..., a1].

Lemma 2: For the AR plus noise series Y there exists a random variable

such that

N & o,0N) NH[Ro - E01 . (17)

where

SH -{[-1, aT , 0] + (1/ap) [gT -1, 0]}

7



Proof: By (5), (6), and (12) we write

0 2 + ar. - ( /)

j=o j=0 j=0

p
+ (1/ap) Y ajrp_j

j=O

By Gersch (reference 5) we have that the high-order Y-W equation AR parameter

estimates converge in probability to the true parameters as N-. Thus, we can

write

P pN ( -2) N - j - aj) - a( ~S0(& 2  a 2 0 ~ a ajj rj

j=O j=O

p

(1/ap) E p ( - a (1/a aj(Fp_j - rp_j) (18)

j=O j=O

Also, by the convergence in probability result of Gersch (reference 5) we have
I P

that N - a - - as N-x= (j = 1, 2, ---, p); thus, the first and third

terms on the right-hand side of (18) converge to zero and the desired result

follows directly. 0

Theorem 2: Under Assumptions A and B the AR parameter estimates converge

in distribution to a zero mean normal random vector, that is

N- (0 - 0) - pN (0, 1)
N-o p+l

where

- lim N E [ zT] (19)
N-o 

Z

[8



Proof: This result follows directly from the results of Lemmas 1 and 2

and Theorem 1. D

We now proceed to evaluate the terms of 1. Let

[V21 C T]

where V2  C, and I are defined by (19). For V2 we have

V2 - lim N E[ 2 2 lim N H E {[T To][R 0 R HT

N2 N -

and by Theorem 1 we haveI

v2  2n f u--HT 2(x)dX

-71

. After further manipulation (see appendix) we get

pp p 1
V 2 P4 a2" + (2/ap) ajapi -1 (1/a 2 : a2

j=0 j=0 j=0

+ (Jo2(2  a 2+ 3 + (1/a)2
Iw

j=O

+ a2E2 + ro + (2/ap)rp + (1/ap)r) (20)

We also have

CT - lir N E[T] lim N H E{[R 0  Ro][R- R]} DT(r )T

9
4



and by Theorem 1 we have

T = 2n H U2 '-(x'd2
C 2nFr)) ~(X)dA

-nt

After further manipulation (see appendix) we get

i'L )T
cT - T (EP1) (21)

where the vector P is defined by

p p-1

T -U 2 r 4 (1/a a ( )ar
& {T_ - - p+l 2.. aaa ap aja+l - a

j=l j=0

1 1, 2, "-, p

By (15) we get

'D= Iim N E[Z ZT = im N FplD E - - R]T}DT F 1

N-- pN-p

and by Theorem 1 we can write

71 T
_f L -f p 11 (E) (A)d

After further manipulation (see appendix) we get

*2 F-i 1 2 -1 [ I+ a 2 (22)
D - w _ w

* where I is the p x p identity matrix and g is given by

1

F. 10

_' ' ., " .S. ., -



4

p 2 p-1 1
I a M2 amam+1 • a
MO m mO 1nO mm+(p-1)

p-1
1 a mam+1. m=O

1 p 2
I a Ma M+XI a

m=O mam+(p-1) m=O m

B. AR Spectral Density Estimates Statistics

We now proceed to evaluate the limiting distribution of the spectral

density estimate for the AR series X formed from observations of the noise

* corrupted series Y. From (3) we see that the AR spectral density estimate

can be written in terms of the parameter estimate vector 6 as

i ^2

x(A, 0) 2iPiA)pe (23)

AP ix
where the estimate A(e ) is formed by substituting the AR parameter

estimates of (11) into (2) and evaluating at z = e and &2 is estimated using

(12). We now state and prove the main result of the document.

Theorem 3: Under Assumptions A and B the AR spectral density estimate

X(A, 0) converges in distribution to a zero mean normal random variable, that

* is

' X(A, 0) - ¢XOL , 0)] - N(O, P'(A) I()) (24)
.- N-*m

where 2 (A) is a gradient vector given by

T a4x(A, 0) 8$x(A, 0) a~x(X, )

T 11* P . - - _



Proof: By Theorem 2 we have that

I.,. N (6) - 6) ------- (0, 1E)
- I p+1

Since the function 0 x(A, 0) is totally differentiable with respect to the

31 vector 0 the desired result follows directly by a convergence theorem of Rao

(reference 6). 0

By the result of Theorem 3 we see that from observations of the noise

corrupted AR series Yn' through the use of the high-order (Y-W) equations, we

can form a weakly consistent spectral estimate for the nonnoise corrupted

series X n; the resulting spectral estimate is asymptotically normal with

limiting variance (1/N) pT(A) _ p (A). We now express p (X) I p (,) in terms of

*previously defined terms.

TLet the gradient vector p (A) be written as

ST(A) - [b(X), B T(A)]

* where

b X(N, _) 61
ob(A) 2 (eiA)AP(e-i) (25)

and

[0x(X, 6) a.x(X, 0) aox(A, 0)(A).aa ' aa ' ' aap

2 p

Re e) ,Re . ,"Re e >1. (26)
e A(e

We previously defined the matrix I by

12



21 T
S 1 4 -] (27)

* thus, we can write

pT(X) Y p(X) = b2(X)V2 + b(X) BT (X) C + b(X) C B( ) + BT (A) B() . (28)

In the next section, (28) will be evaluated for the first order AR

series.

IV. EXAMPLE

First Order Autoregressive (Markov) Series

The first order AR series (p = 1) is given by

Xn = a Xn- 1 + En (29)

where the parameter a must satisfy the condition -1<a<l, i.e., Assumption B,

for the series to be stationary. For this first order example the covariance

sequence is expressed by

a2 a kl

rk - 2 k = 0, 1, (30)(1 - a2)

o- and the spectral density is

2

2n[a - 2a cos A + 1]

where 2T = (a2, a).

Given observations of the noise corrupted version of the AR series, the

variance of the spectral density estimate, as given by (28) can be evaluated
2 2

in terms of the parameter, a, and the variances a and 0w* For the first

order case, p = 1, we have

13



-. = 2  2 2 (1

im N var{ x(X, 0)} =b )V + 2b(A)B(A)C + B2A) (31)

where

b(A) 1 2 1 (32)
2n A(ei)A(e-i ) 2n[a - 2a cos x + 1]

* "and

20X(X, O)(cos A - a) 2a2(cos X a)
A=e e - 2 2 (33)
= A(e)Wei )  2n[a - 2a cos X + 1]

Using (20) and (30) we can evaluate V2 for the first order case

SV 2 = 4 a4 - 3a2 + 1 + 2c22 2a4 + 4a2 +1 + ,4 -a 4 + 2+ + . (34)
2a ' 2 w a2(1 + a2  a~ ~ (1 -

* Using (21) and (30) we evaluate C and get

C = (1- a 2) '2 + (35)

a2

and by using (22) and (30) we get

=(1- a2 1+ 2 2 2 2
',"- 2 (0w/02)(l - a) + (wa (I -a). (36)

a

Substituting (34), (35), and (36) into (31) yields

4

14



C 2 -a 4 a+1lim N var{2x(A, 6)) 2 2 2  + & a2 2

mN- - (2n)2 [a2 - 2a cosA + 1]2 2(1 - a2)

+ 2o2 2a4 + 4a2 + 1 + w a 3a2 + 1
(a

2(1 + a2) + o a2

202(cs a) 2A 4 2 a2l[" (1 -a2) o + (O )1-a 2

S(2n) 2[a 2 
- 2a cos A + 1]3  a

+ 4.(cos A-a)2  (1-a 2 ) 1 + /c (1 a 2)

(2n) 2[a 2 -2a cos A + 1]4 . a2

2 (1 2 a4]. (37)

We see that the limiting variance expression is composed of three major

terms: the first term represents the contribution due to variation in

estimating o2  the second term represents the contribution due to the

cross-covariance between o2 and a, and the third term represents the

contribution due to variation in estimating the parameter a.

Even for the first-order AR series we see from (37) that the limiting

variance expression is a complicated function of the parameters. To provide

some insight into the relationship between the variance and the parameters a,

So, a2 and A, (37) was evaluated for a few parameter values.
W

Figure 1 shows the spectral density estimate variance plotted as a

function of signal-to-noise ratio (SNR). The AR series used is given by

15



I1st ORDER AR SERIES

50

40

AR PLUS NOISE (eq 37)
LU

Z30

20

10 - AR WITHOUT NOISE (Akaike 1969)

0
-22 -16 -10 -4 2 a 14 20

SNR ids)
Figure 1. Spectral estimate variance vs signal-to-noise ratio. AR parameter
equals 0.5, X =0 radians.
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L

Xn  a Xn- 1 + -n (38)

with a = 0.5; low pass spectral density. The variance (37) was evaluated for

= 0, 2  1 and a set to achieve the indicated SNRs. We see that the~w
variance decreases monotonically with increasing SNR to a value of 14 dB at a

SNR of 8 dB. Also plotted is the variance obtained by Akaike (reference 7)

* for the first-order AR series without noise as indicated by the horizontal

line at about 7 dB. Note that the AR plus noise case variance, at high SNR,

does not asymptotically approach the no noise variance. This is the case

because the high-order Y-W equation estimates of the AR parameter used for the

AR plus noise case produces a larger parameter estimate variance than that of

the conventional Y-W equation estimate. That is, for the first-order AR

series with a = 0.5 we have from Akaike (reference 7) that

* lim N var(a) = (1 - a 2 0.75
N-o=

and for the AR plus noise case we have from the third term on the right side
of (37) with a2 = 0 that

w

lim N var(a) = (1 - 2)/a2 = 3.0
," N-

In figure 2 the estimated variance is plotted as a function of SNR for

A= 0 for two values of the AR parameter, a = 0.1 and a =0.8. We see the same

monotonic decrease with increasing SNR for both cases as in figure 1. The

asymptotic limit for the a = 0.8 case is about 15 dB greater than that for

*a = 0.1. Thus indicating that as the spectral density bandwidth decreases the

spectral estimate variance increases. In figure 3 we have spectral estimate

variance plotted as a function of frequency for three values of the AR

parameter a = 0.1, a = 0.5, and a = 0.8. We see that for the two narrower

bandwidth cases, a = 0.5 and 0.8, the variance decreases monotonically with

increasing frequency but for the wider bandwidth case a = 0.1 there is little

variation with frequency over the range evaluated.

17
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80
1st ORDER AR SERIES

70

60

a 500.
w
z
cc 40

30

20

10 L
-22 -16 -10 -4 2 8 14 20

-* SNR (cIB)

Figure 2. Spectral estimate variance vs signal-to-noise ratio.
AR parameter equals 0.1 and 0.8, X = 0 radians.

I st ORDER AR SERIES

30

20

U

Sz

11= 0.8

• -20-
0 0 0.5 1.0 1.5 2.0 2.5 3.0

FREQUENCY (radians)

Figure 3. Spectral estimate variance vs frequency (radians).
Signal-to-noise ratio equals 0 d8; AR parameter equals 0.1, 0.5, and 0.8.
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VI. APPENDIX

A. Evaluation of P:

From Section III we have

71

[L4T 1 T 27 2 11 2T 02(X)dk. (A-i)

We first evaluate the n, mth element of D U1 DT and have

2p 2p
{ YI DT} dnk ukj dmj n 1 1, .-. p; m = 1 , p.

k=1 j=1

* By the definition of the matrix UI1 we have

2p 2p
JO U 11DT = nm dnk eik d mj {eijx + e-iJ}

k=1 j=1

and by the definition of the matrix D we get

{D Ul DT nm = AP(e -ix) ei(p+n)A{AP(e- ix) ei(p+m)A + AP(eix)e-i(+m)A}. (A-2)

Substituting (A-2) into (A-i) we get

•~ [p T = TI + T2
p -T1 +2

where

{T1n m  2n A(e- i ) A(e-ix) ei(2p+n+m)A (X)dX (A-3)
~1 nm f 2iY ~ Xd A3

* and

20



{2} nm -2n f A(e-i) A(eiA) e i(n-m (, X (A-4)

-71

For the AR(p) plus noise process we have that

2y 202a2 
424+ w F

+y w wAP(ei x)AP(e - i\ + [AP(e i)AP(e-i)]2 (A-5)

Substituting the expression (A-5) into (A-3) and (A-4) and carrying out the

integration we get

{11nm = 0 n = 1, --- , p; m = 1, --- , p

and

p-In-ml

T2anm =4 w  ajaj+in.mI + 2o2 6(n-m) + 2 r-11n w nm 7O n-m

j=O

Using these results we get

2 r 1 r ( p t + 2 r-1 2 I + 2 g] pA-t- 0 -w -p Lp0 _ w a ]  (a-6)

where the matrix g was defined in Section III.

* B. Evaluation of CT

From Section III we have

c = f = 21 Dt 2 (X)d (A-7)

-71

with H defined in Lemma 2. Substituting the expression for H into (A-7) we

have
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7TT TT -1 2
2n(l/a) f [&T -1, 0] U01 _T 2 (X)dx (A-8)

-TZ +T 2-1 -

We first examine the contribution due to Tl. By the definition of the

matrices -01 and D we can write the 1 element of [-1, a T, 0] U01 D by

p p+l

f[-1, aT 1 01 -U1 D} 1  Z ak ek Z ap-j+l {ej + ej} 1,2,---,p

k=O j=1

AP(eix)AP(e - i ) ei(p+l) + AP(e ix )AP(e ix )e-i(p+l)X (A-9)

Thus, by (A-9) and (A-8) we have

I1 T }!= -2n f {AP(eilx)AP(e-ilx)ei(p+I)X + AP(eix)AP(ei)e-i(p+l)x}42(X)dX

-nt

A I + IS 2}1 (A-10)

Evaluating 1 we get

ISlIl= -2 f AP(eix)AP(e- ix)ei(p+l)x 2 (X)dX

Using (A-5) and carrying out the integration yields

IS2}1 = -o rp+1  (A-lI)

22



.*.. For s2}1

[S -2n AP(eix )AP(e ix)e- (p+l)x 2 Xd
-n

and by (A-5) we get

p= -4
-.{c2 w ap (A-12)

j=l

For T 2 we have by the definition of U01 and D that the Ith element of

(1/a) [&T -, 0] U0, - can be expressed as

p p+l

(1/a) {[T, _, ] 0 T} = a apj+l {e i(k+j)k + e i(k-j)}

k=O j=l

= AP(e- ix)AP(e- ix )e i(2p+l)X + AP(ei )AP(e ix)e-
ilX

and

a p {2 -p 1 = -2n f{AP(e-iL)AP(e-i1)e1(2p+I)X + AP(e-ix)AP(eix)e-ilX}2 (X)dk

-n

{V1 + {S411 (A-13)

Evaluating S3 using (A-5) for 2 () we get

[S311 = 0 1 = 1, 2, --., p (A-14)

and evaluating _4 we get

p-1=-4 2~r
$4}I w E a a j+l- (A-15)

j=0
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Define the Ith element of the vector PT by

11= TIFr} + T2 -p}1

* then using (A-l1) and (A-12) in (A-10) and (A-14) and (A-15) in (A-13) we get

p p-1

T =- rp w r ajap+.-j (1/a)O 4 Y ajaj+l (1/ap2

j=l j=0

1 = 1, 2, ., p.

It follows that

C T PT(E)

C. Evaluation of V2

From Section III we have

71

V2 2 H U HT2 (X)dA (A-16)

-71

where H was defined in Lemma 2. Using the expression for H in (A-16) we get

V2 : 2 [i1 T, 0] U[-1, aT O]T 2()d

71

+ 2n f [-1, aT, 0] Uo [IT , -1, 0](1/ap)02(A)dk

-nt

2i f (I/ap) [T -1, 0] Uo0 [-l, aT, 0]T ¢2()dX

-i

+ 2n f (1/ap)2 [T 0 0] U[T - y()d

-it

ST1 + T2 + T3 + T4

24
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By the definition of the matrix U we have for TI

p p

TI = 2a aka i (ei + e-J X)O(A)dA

-n k=O j=O

IT

2n f [AP(e A)AP(e i ) + AP(eix )AP(e-ix)] 2 (A)dX
-71

Using (A-5) for o2(X) and performing the integrations we get

p
T a4 + G2C2 + a 2r + a4 E a + 202a2 / a2TI w w 0 w j i 0wG / =_

j=O j=O

For T2 we have

71 p pp P~ ~~~ei ( k+ j )A"  i (k-j) J ]2(,d)
T2 2 (1/ap) a p-k [e +

-7T j=O K=O

again using (A-5) and performing the integrations we get

p
= 4 + (1/ap)a2rp (1/ap)O4 1 ajap_j

2 w  p
j=0

For T3 we have

p p

T = 2n (1/a) ap_jak e (e +

-n j=O k=O

- 2n f (1/ap )[AP(eiX)AP(ei)e ip  + A(e i)A(ei)e-P(X()dk

Using (A-5) and performing the integrations we get

25
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p

T 3 - + (1/a)(72r~ + (1/a 4a ap~ +2a

j=0

For T4 we have

P P

T4 = 2n f (1/ap) 2 E E apjapk (e + eljx 2
- j=O k=O

= 2nf (1/ap) 2[AP(e-ix)AP(e-i )ei2PX + AP(e-i/t)AP(eJix)N 2(X)dk
-i

Using (A-5) and performing the integrations we get

T4  2(1/a)2 a 2+202G2 + 2(r0  y2)}
j=O

Thus,

pp p
V2  4

w a + (2/ap) ajap_j 1 (1/a(p aj=O j=O j=O

+ 022 -a 3a

+ j)~{2,/ a + 3 + (1/a p)
j=O

" 2 2 (/)2
"+ {%[ + r0 +( 2/ap)rp + ro}
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