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1. INTRODUCTION

A recent analysis of rotorcraft operations (Adams, 1984, section 3.1, The
Environment) indicates that the "typical flight mission consists of Point A to
Point B flights that average 22 minutes in length, incorporating 5 interim
stops for a total round-robin flight averaging 1 hour 48 minutes." The
granularity (geographic and time) of weather information for rotorcraft
operations is very small in comparison with what is required for fixed wing
operations. Thus, the rotorcraft pilot has little interest in mid-range
(4-6 hours) weather forecasts. What is needed is short range (10-120 minutes)
forecasts for short range distances. The unique characteristics of rotorcraft
allow them to land at places where airplanes can not. Many of these landing
areas have low density traffic which does not justify a weather observer much
less a forecaster. The rotorcraft community is extremely interested in an
automatic weather sensor and an associated system for short term weather
forecasting. It is for this reason that the FAA is sponsoring the NWS effort
described in this report as an operational requirement.

The statistical technique for predicting the probability distribution of all
surface weather elements minute-by-minute is called GEM for Generalized
Equivalent Markov. It uses only the current local automated surface weather
conditions as predictors. From these probability distributions, categorical
predictions are made for each automated surface weather element. The
technique is a Markov procedure which is briefly described in the following
quotation from William Feller (1950):

In stochastic processes the future is never uniquely determined, but
we have at least probability relations enabling us to make predic-
tions .... The term "Markov process" is applied to a very large and
important class of stochastic processes .... Conceptually, a Markov
process is the probabilistic analogue of the processes of classical
mechanics, where the future development is completely determined by
the present state and is independent of the way in which the
present state has developed ... in contrast to processes ... where
the whole past history of the system influences its future.

GEM is a multivariate linear regression system in which all variables, both
predictors and predictands, are zero-one. It uses only the most recent obser-
vation of the automated surface weather elements to predict the probability
distribution of those same automated weather elements. It does this in
1-minute increments. A categorical forecast is then made of each element,
satisfying the constraint of balancing the number of times an element category
is predicted with the number of times it is observed to occur.
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If one were to approach the problem of predicting the probability distribu-
tions of future weather events by employing the classical Markov-chain model, it
would soon become evident that enumerating the required states of nature, under
a realistic number of characteristics, is infeasible. A new, or at least dif-
ferent, method must be tried. In GEM, a system of regression equationv is set *,

up to estimate the probability of all subsequent events at one time step. Then
the transition probabilities in the usual Markov chain are essentially replaced
by the regression-estimated probabilities. To accomplish this estimation of
probabilities, all predictands are either a zero or a one in each observation.
To facilitate the iterative characteristics of the chain, all predictors are

similarly expressed as zero or one in each observation. The simplicity of such
a system should be evident: Forecast all elements into the future by iterative
steps, using only the present observed conditions of the events.

The mathematical model, data preparation, statistical analyses, and nonlinear

prediction approach are given in Section 2. Section 3 presents results
comparing GEM with climatology and persistence. Section 4 is a summary of work
performed under the contract. Section 5 deals with future work to be performed.

2. TECHNIQUE DEVELOPMENT

1 This section describes the procedure from the mathematical model, through
data preparation and statistical analyses, to a discussion of a nonlinear
prediction method. The reader is referred to a NOAA Technical Report for
further details (Miller, 1981).

2.1. Mathematical Model

Assumed given are measurements on a set of Zl, Z2 , .. ,, Zp predictor
variables and a set of Y1 , Y2 , ... , YQ predictand variables for a group
of N observations. The problem of multivariate regression is to construct a
set of Q linear functions

Y, a1 0 + a1 1Z1 + a , ' + +.. l pY a + alZ + a Z + . + a Z + +a Z
2 2,0 a, 1Z 1  2,2 2 2,p p 2,p p

Y a + a Z + a Z + .. + a Z + ... + a Z
q qP ql 1 q,2 2 q1p p q-p p

Y -aQ + aQ Zl+ Z + .+ a Z + + a Z
Q Q,0 +Q, aQ,2Z2 Q,p p Q,pZp

2
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which have the property that the sum of the squares of the errors

(Y)2 (Y a a Z (2)
q l 'q iiq qO ql i'l

a Z -..- a Z 2
q,p i,p)

" qp i,p " "'" %q-l,2,...,Q)

are as small as possible. That is, the problem is to determine values of the
aq,p'S (q - 1,2, ..., Q; p - 1,2, ... , P) which minimize the quantities

2S(qul,2,. .. ,Q).
q

This is done by taking the partial derivatives of the Eq. (2) with respect to
the unknown a's, setting each derivative equal to zero, and then solving for
the a's. The process yields a set of normal equations which can be written in
matrix notation as (underlining signifies a matrix or vector):

A - (Z'Z)'I(Y'Z) (3)

Expressed statistically this is the multivariate linear regression of the Y's
on the Z's (Tatsuoka, 1971, pp. 26-38). In GEM, the Y values are advanced by
one hour from the corresponding Z values. Thus

Y i+l,q =  
i,q

or

Y -l Z (il,2,...,N; q-l,2,...,Q; p-l,2,...,P).
i+l~p i,p

Once A has been determined, it can then be used to estimate the value of Y
at one time step, given a set of z values at a zero time step (lower case
values denote new observations of Y and Z):

' (4)
To employ an iterative scheme, such as in GEM, the estimate of at time T can
be expressed as

yT ET_,A (multiplicative form) (5)

with z at time T-1 taken to be the previous estimate YT-I"

An equivalent alternative to estimating y at time T is to power A as follows:

T
z A.d.T  (additive form) (6)

iTi
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The distinction between the two forms, multiplicative and additive, is that in
the former, the operation required is to pnotmultiply the observation and then
subsequent forecasts by A, minute-by-minute. In the latter, since all obser-
vations in .o are either zero or one, the operation only requires adding the
coefficients whose observations are one, at any projection. To permit this,
however, the powered versions of A must be determined initially, stored, and
made available for the projections of interest.

2.2. Data Preparation

Data began to be collected at the National Weather Service's Techniques

Development and Test Branch location at Sterling, Virginia, in April 1984.
The following weather elements are observed once a minute by equipment similar
to the FAA's Automated Weather Observing System (AWOS). The elements are:

o Lowest cloud hit
o Second cloud hit
o Third cloud hit
o Fourth cloud hit
o Visibility
o Station pressure
o Temperature
o Dew point temperature
o Wind speed
o Wind direction
o Precipitation amount in one minute
o Precipitation occurrence
o Frozen precipitation occurrence (when successfully measured)

o Date of the observation

The elements were transformed into categories, and dummy predictors and
predictands were created. Table I shows the specific categories defined for
each zero-one dummy predictor. Column 1 indicates the dummy variable number
while column 4 gives the index of that variable. One dummy variable must be
"left-out" because of mathematical redundancy.

2.3. Statistical Analyses

The statistical analyses which are performed on these data result from the
processing of crossproduct matrices. The actual steps are as follows:

Step 1. Compute the Z'Z and Y'Z crossproduct matrices from the data
matrices Z and Y.

Step 2. Solve for A from A - (Z'Z)'I(Y'Z) where A is the matrix of
regression coefficients for making a 1-minute forecast.

4
".-I



S

Step. 3. Solve for the threshold probabilities p* for making categorical 0
forecasts.

Derivation of the two crossproduct matrices Z'Z and Y'Z, in step 1, was
accomplished by using a pointer system which saved a considerable amount of
computer time. This efficiency is made possible because of the zero-one
nature of the observations.

For the labeled predictors in Table 2, Column 4 gives the sum row of the
Z'Z matrix and Column 5 the lowest ceiling row of the Y'Z matrix. This gives
the products between the Y variable for lowest ceiling hit times each of the
88 predictors over the sample N. 6

We solved for the regression coefficient matrix A in step 2 using the Crout
method (Crout, 1941). This method does not require solving for the inverse
matrix, (Z'Z) "1 , but instead derives the regression coefficients by first P

foreyard and then a backward solution. Avoided are many of the computat4
instabilities encountered by inverting large matrices. The Crout metho
yields an 88 x 87 matrix--88 predictor coefficients for each of 87 pred .ands.

The lowest ceiling hit equation for the A matrix appears as Column 6 in

Table 2. _ S

2.4. Nonlinear Prediction Approach

Meteorologists have desired forecast guidance that is capable of predicting
changes in the weather, such as frontal passages and their attendant
variations, onset and discontinuation of severe weather (types and inten-
sities), wind shifts and wind speed variations, as well as ceiling and
visibility changes of a critical nature for aviation. Classical statistical
approaches like regression have not succeeded in completely satisfying this
desire, partly due to the additive nature of the statistical model currently
employed. What seems to be needed is a model which will act in a multi-
plicative fashion--one capable of completely shutting down the prediction of
an event when the antecedent conditions warrant. For example, when it rains,
it is "never" preceded I minute before by a clear sky. However, a statistical-
regression operator will fail to turn off the chance of rain fully if there
are other antecedent conditions, say, easternly wind, high humidity, fog, and
low visibility--conditions which are usually associated with future occurrences
of rain. Regression would tend to increase the probability of rain because of
each of these elements. In general with regression, the lack of any clouds .-

would not be enough to negate completely the effect of these other elements.

5
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Table 1. Predictor and predictand categories which specify the dummy variables
used in GEM. Shown under the index column are the left-out categories not
included because of redundancy.

Number Weather Element Category Index

1 (Always unity) 1
2 Lowest cloud hit (00') 0 - 1 2
3 2 -4 3
4 5 -9 4
5 10 -29 5
6 30-60 6
7 61 - UNL Left out
8 Second cloud hit (00') 0 - 1 7
9 2 -4 8
10 5 -9 9
11 10 -29 10
12 30 - 60 11
13 61 - UNL Left out
14 Third cloud hit (00') 0 - 1 12
15 2 -4 13
16 5 - 9 14
17 10 - 29 15
18 30 - 60 16
19 61 - UNL Left out
20 Fourth cloud hit (00') 0 - 1 17
21 2 - 4 18
22 5 - 9 19
23 10 - 29 20
24 30 - 60 21
25 61 - UNIL Left out
26 Visibility (miles) 0 - 31/64 22
27 1/2 - 63/64 23
28 1 - 2 63/64 24
29 3 - 4 64/64 25
30 5 - 6 63/64 26
31 7 - 100 Left out
32 Station pressure (inches of Hg) 0 - 29.235 27
33 29.236 - 29.530 28
34 29.531 - 29.677 29
35 29.678 - 29.825 30
36 29.826 - 29.973 31
37 29.974 - 30.120 32
38 30.121 - 30.268 33
39 30.269 - 30.563 34
40 30.564 - 35.000 Left out
41 Temperature (OF) -30 - 4 35
42 5 - 14 36
43 15 - 24 37
44 25 - 34 38
45 35 - 39 39
46 40 - 44 40

6
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Table 1. Continued. .

Number Weather Element Category Index

47 45 - 49 41
48 50 - 54 42
49 55 - 59 43
50 60 - 64 44
51 65 - 74 45
52 75 - 84 46
53 85 - 94 47
54 95 - 110 Left out
55 Dew point depression (0F) 0 - 1 48
56 2 - 7 49
57 8 - 15 50
58 16 - 25 51
59 26 - 99 Left out
60 Wind speed (kt) 0 - 1 52
61 2 - 9 53
62 10 - 19 54
63 20 - 29 55
64 30 - 99 Left out
65 Wind direction (deg) 00 - 44 56
66 45 - 89 57
67 90 - 134 58
68 135 - 179 59 -
69 180 - 224 60
70 225 - 269 61
71 270 - 314 62
72 315 - 359 Left out
73 Precipitation amount (inches) .002 - .100 63
74 .001 - .0019 64
75 .000 - .0009 Left out
76 Precipitation occurrence (Y or N) Yes 65
77 No Left out

78 Frozen precipitation (Y or N) Yes 66
(when successfully measured)

79 No Left out
80 Month January 67
81 February 68
82 March 69
83 April 70
84 May 71
85 June 72
86 July 73
87 August 74
88 September 75
89 October 76
90 November 77
91 December Left out
92 Hour (LST) 00 - 01 78
93 02 - 03 79

7
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Table 1. Continued.

*Number Weather Element Category Index

94 04-0 80 -

*95 06 -07 81

96 08 -09 82
97 10 -11 83

*98 12 -13 84

99 14 -15 85

100 16 -17 86

101 18 -19 87

102 20 -21 88

*103 22 -23 Left out

8



Table 2. Quantities derived for the designated dummy variables; the number of 0
times each category occurred in the sample (EZ), the number of times each
predictor occurred when it was followed by the lowest ceiling hit one minute
later (EYZ), and the regression coefficient for each predictor when lowest
ceiling hit was the predictand (A).

Index Element Category ZZ ZZY A

I (Always unity) 51882 1620 -.37821
2 Lowest cloud hit (00') 0 - 1 1620 684 .06854
3 2 -4 2954 167 -.00320
4 5 - 9 2348 19 .00741
5 10 - 29 3342 21 .00465 -
6 30 - 60 5771 40 -.00437
7 Second cloud hit (00') 0 - 1 646 536 .33712
8 2 - 4 1442 227 .01249
9 5 - 9 1638 3 -.01058

10 10 - 29 2773 9 -.00494
11 30 - 60 4777 36 -.00751 .O
12 Third cloud hit (00') 0 - 1 474 375 .08702
13 2 - 4 1332 339 .02272
14 5 - 9 1575 5 .01517
15 10 - 29 2655 4 .00173
16 30 - 60 4002 31 .00283
17 Fourth cloud hit (00') 0 - 1 251 188 -.02576
18 2 - 4 1245 433 .00099
19 5 - 9 1505 3 -.05200
20 10 - 29 2436 0 -.02365
21 30 - 60 3109 12 -.01352
22 Visibility (Miles) 0 - 31/64 508 413 .44201
23 1/2 - 63/64 544 306 .34377
24 1 - 2 63/64 2443 118 .02758
25 3 - 4 63/64 2132 78 .02444
26 5 - 6 63/64 2049 43 .00145
27 Station pressure

(inches of Hg) 0 - 29.235 0 0 .00000
28 29.236 - 29.530 1461 26 -.00045
29 29.531 - 29.677 722 7 -.00125 .
30 29.678 - 29.825 8054 303 -.01045
31 29.826 - 29.973 15669 489 -.01004
32 29.974 - 30.120 19879 699 -.01522
33 30.121 - 30.268 5793 86 -.01149
34 30.269 - 30.563 304 10 .00000
35 Temperature OF) -30 - 4 0 0 .00000 .
36 5 - 14 0 0 .00000
37 15- -24 0 0 .00000
38 25 - 34 216 9 .02964
39 35 - 39 549 9 .00781
40 40 - 44 1937 26 .00826
41 45 - 49 3454 52 .00659
42 Temperature (F) cont. 50 - 54 5955 288 .00636
43 55 - 59 9335 517 .00017

9
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Table 2. Continued.

Index Element Category ZZ .ZY A

44 60 - 64 8601 236 .00433
45 65 - 74 12494 236 .00662
46 75 - 84 7648 151 .01197
47 85 - 94 1692 32 .01222
48 Dew point depression (F) 0 - 1 2943 581 .00123
49 2 - 7 18062 550 -.00827
50 8 - 15 13835 195 -.00682
51 16 - 25 12817 214 -.00670
52 Wind speed (kt) 0 - 1 1357 84 .41415
53 2 - 9 40844 1386 .40452
54 10 - 19 9420 150 .40351
55 20 - 29 260 0 .31831
56 Wind direction (deg) 00 - 44 2932 93 -.00687
57 45 - 89 2435 121 -.00160
58 90 - 134 4893 234 .00886
59 135 - 179 5913 392 -.00877
60 180 - 224 11272 356 -.00500
61 225 - 269 4655 93 -.00009
62 270 - 314 11514 184 -.00896
63 Precipitation amount (inches).002 - .100 22 2 -.01724
64 .001 - .0019 97 4 .00564
65 Precipitation occurrence

(Y,N) Yes 2766 141 .01106
66 Frozen precipitation

(Y,N) (when
successfully measured) Yes 0 0 .00000

67 Month January 0 0 .00000
68 February 0 0 .00000
69 March 0 0 .00000 -.
70 April 5655 92 .00684
71 May 37790 1342 .00688
72 June 8437 186 .00000 j
73 July 0 0 .00000

74 August 0 0 .00000
75 September 0 0 .00000
76 October 0 0 .00000
77 November 0 0 .00000
78 Hour (LST) 00 - 00 4334 209 .00684
79 02 - 03 4314 172 .00688
80 04 - 05 4103 215 .00000
81 06 - 07 4254 270 .00978
82 08 - 09 4223 156 -.00461
83 10 - 11 4370 50 -.01057
84 12 - 13 4425 70 -.00257
85 14 - 15 4389 65 -.00758
86 16 - 17 4376 78 -.00703
87 18 - 19 4380 62 -.00346
88 20 - 21 4373 99 -.00787
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Fortunately, there is a statistical model or operator which possesses this
necessary capability. The discrete likelihood function (DLF) approach is
fairly new (see Miller, 1979), but the basis for its existence is founded on . "
the work of the eminent statistician, Sir Ronald A. Fisher, whose own work and
ideas on this subject were derived in the mid-eighteenth century from the
inverse probability notions of Bayes. Basically, the concept is this: given

that we observe a set of current conditions of the weather, the question to be
asked is '"hat is the likelihood that these current conditions are those that
would be the conditions preceeding rain and, conversely, what is che likeli-
hood that these current conditions are those that would be the conditions
preceeding no rain?" The two likelihoods are obtained by multiplying the
conditional probabilities of each antecedent condition thus getting the joint
probability of the entire observation. It should be emphasized that the
presence of any antecedent condition which is incongruous with an event of
interest (say, rain) will have a dramatic effect on that likelihood: it will
force the likelihood to zero. Such a nonlinear system would seem to conform
to meteorologists' desires. Should the usual conditional probabilities
(posteriors) be of interest, they can be gotten directly from Bayes' theorem
and the climatological frequencies of the possible events (priors). The
likelihoods are obtained from a set of regression estimated probabilities
(REEP) (see Miller, 1964). Empirical evidence has shown that rarely if ever
is a REEP probability of an event < 0 when the event occurs and > 1.0 when it
does not occur. Certainly the situations arise when PEEP forecasts P < 0 and
P > 1. However, truncating these BEEP forecasts to 0 and 1.0, respectively,
will not invalidate the reliability of the estimates.

Finally, a method which makes optimum use of these likelihoods for selecting
categorical forecasts is an event selection based on a function of the
likelihood ratio (see Von Mises, 1945).

3. RESULTS

To demonstrate the ability of the GEM equations to predict at a 1-minute . -

projection, Brier scores have been computed for climatology, persistence, and
GEM for each of the predictands of interest. These are given in Table 3 for
the specified dumy variables. At the present time, only the dependent sample
scores are presented. When one year's data has been compiled, Brier scores
will be computed on a running sample of that next independent year. The Brier
score for persistence as defined here uses only that dummy element correspond-
ing to the specific predictand dummy. A greater reduction (lower values are
better) in Brier score for persistence could have been achieved if all dummies
of the predictand element were used as predictors. All dummies of a predictand
element were not used as predictors in computing persistence's Brier score for -o-

two reasons: a) the procedure is so complex that it would severely strain the
resources available to this project, and b) more importantly, persistence's

11.-



Table 3. Brier scores of each specified predictand for climatology, persistence,
and GEM based on the developmented sample of 51882 cases. Dashes denote
inapplicability.

Index Element Category Climatology Persistence GEM

1 (Always unity)
2 Lowest cloud hit (00') 0 - 1 .03025 .02532 .01969
3 2 - 4 .05370 .04582 .03732
4 5 - 9 .04328 .03256 .02578
5 10 - 29 .06037 .03229 .02481

6 30 - 60 .09876 .04538 .03768
7 Second cloud hit (00') 0 - 1 .01224 .00510 .00413
8 2 - 4 .02691 .01204 .00954
9 5 - 9 .03068 .01218 .01006

10 10 - 29 .05061 .01449 .01219
11 30 - 60 .08361 .03010 .02495
12 Third cloud hit (00') 0 - 1 .00898 .00449 .00373
13 2 - 4 .02496 .00899 .00734
14 5 - 9 .02935 .01008 .00838

15 10 - 29 .04859 .01236 .01034
16 30 - 60 .07127 .02483 .02082
17 Fourth cloud hit (00') 0 - 1 .00474 .00314 .00276
18 2 - 4 .02337 .00813 .00661
19 5 - 9 .02826 .01050 .00877
20 10 - 29 .04475 .01441 .01179
21 30 - 60 .05633 .02305 .01999
22 Visibility (Miles) 0 - 31/64 .00979 .00143 .00137
23 1/2 - 63/64 .01030 .00333 .00318
24 1 - 2 63/64 .04478 .00909 .00854
25 3 - 4 63/64 .03946 .01384 .01312
26 5 - 6 63/64 .03800 .01702 .01649
27 Station pressure

(inches of Hg) 0 - 29.235 - -
28 29.236- 29.530 .02737 .00008 .00008
29 29.531 - 29.677 .01370 .00029 .00029
30 29.678 - 29.825 .13112 .00203 .00203
31 29.826 - 29.973 .21082 .00357 .00356
32 29.974 - 30.120 .23634 .00259 .00259
33 30.121 - 30.268 .09923 .00129 .00128
34 30.269 - 30.563 - -
35 Temperature (°F) -30 - 4 - -

36 5 - 14 - -

37 15 - 24 - --

38 25 - 34 .00415 .00070 .00069
• 39 35 - 39 .01041 .00335 .00325

40 40 - 44 .03594 .00856 .00820
41 45 - 49 .06228 .01488 .01441
42 Temperature (F) cont. 50 - 54 .10162 .02654 .02577
43 55 - 59 .14739 .04132 .03965
44 60 - 64 .13928 .04266 .04152
45 65 - 74 .18288 .02990 .02923

12
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Table 3. Continued.

Index Element Category Climatology Persistence GEM

46 75 - 84 .12567 .01705 .01655
47 85 - 94 .03160 .00679 .00666
48 Dew point depression (*F) 0 - 1 .05339 .03719 .03084
49 2 - 7 .22691 .06910 .05609
51' 8 - 15 .19571 .04583 .04504
51 16 - 25 .18597 .03262 .03178
52 Wind speed (kt) 0 - 1 .02565 .01008 .00995
53 2 - 9 .16756 .04999 .04867
54 10 - 19 .14856 .04221 .04069
55 20 - 29 .00497 .00231 .00225
56 Wind direction (deg) 00 - 44 .05342 .01359 .01330
57 45 - 89 .04450 .01226 .01200
58 90 - 134 .08548 .01578 .01541
59 135 - 179 .10103 .02544 .02490
60 180 - 224 .17003 .02868 .02759
61 225 - 269 .08169 .02400 .02369
62 270 - 314 .17264 .03634 .03520
63 Precipitation amount

(inches) .002 - .100 .00044 .00036 .00034
64 .001 - .0019 .00189 .00186 .00174
65 Precipitation Occurrence

(Y,N) Yes .05037 .00503 .00498
66 Frozen precipitation

(Y,N) (when
successfully measured) Yes - -

67 Month January - -

68 February - - -

69 March - - -

70 April - - -
71 May - - -
72 June - - -
73 July - - -
74 August - - -
75 September - - -

76 October - - -

77 November -- -

78 Hour (LST) 00 - 00 - - -
79 02 - 03 - - -
80 04- 0 - -

81 06 - 07 - -

82 08 - 09 - - -
83 10 - 11 - - -

84 12 - 13 - - -

85 14 -15 - - -

86 16 -17 - - -

87 18- 19 - - -

88 20 - 21 - - -
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function is as a simple readily-available "no skill" statistical control. The
more complex procedure Is neither "readily available" nor simple, but a
full-blown statistical forecasting procedure unto itself. The development of
such a procedure is beyond the scope of this project.

4. BACKGROUND MATERIAL AND SUMMARY

Work on this contract began with a familiarization of the microcomputer
programming language S Basic (structured compiler Basic) for the KAYPRO 10--a
ZSO machine with a 10 megabyte Winchester hard disk, one floppy drive, and two
RS232C ports plus a centronics port for a printer. Two such computers were
acquired along with a letter quality printer about 3 months into the contract.

We engaged ARTAIS, Inc. through a subcontract to modify the experimental
system at Sterling, Virginia. As a consequence, we now receive raw
minute-by-minute sensor data plus observations derived from an algorithm
developed for the Automated Surface Observation System (ASOS). One KAYPRO 10
computer was wired to the ARTAIS equipment at one of the KAYPRO's RS232C ports
and was dedicated to the Sterling facility.

Capturing these data into files on the hard disk could not be done through
the S Basic language. It was necessary to seek other ways of performing this

task. Two such ways were found. One was through a C program written by Donald
Ouimette and the other through the purchase of MITE commercial telecommunica-
tion software. Both approaches succeeded; however, the former way was chosen
for use because the program better suited our needs. We began collecting live
data before the end of April and have collected data almost continuously since
that time. Data collection has been interrupted very infrequently. The only
serious type of interruption was caused by lightning striking elements of the
observing system. When there is an interuption, we lose data until the outage
has been brought to our attention or until we arrive at the Sterling facility
to download the data onto floppies once a week. Most importanti such outages
will here bias the observations collected (e.g., deficiency in thunderstorm
cases) to an, as yet, unknown degree.

Processing of the ASCII data, collected through the C program, is performed
in the S Basic computer language. Gross error checking is performed on both
the fixed and variable length data records. Eighty-eight predictors are set
up to predict 87 predictands (described in Section 2.B). A pointer system was
employed to get the croseproducts needed to solve the statistical equations for
making a 1-minute forecast. Such a system is very efficient when dummy
variables, such as are employed with GEM, are used. Nevertheless, it was
necessary to acquire an additional KAYPRO 10 in June to permit the testing of

the nonlinear DLF approach. Further details on DLF can be found in
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Section 2.D. DLF can enhance the project in two ways: a) the DLF approach
captures all the information contained in first-order interactions between
each pair of predictors, avoiding the need to add such terms in the regular
minute-by-minute GEM, and (b) the two methods, GEM and DLF, are compatible and
will be used together should the contribution made by DLF be deemed worthwhile, . "
based on further testing.

At the present time, we have exercised all the necessary development programs
on as much data as have been collected. We will monitor the equations as they
are produced on more and more data. Tests will be made to judge the value of
DLF.

5. FUTURE WORK

Our plans for the remainder of the contract are:

o Complete the collection of a full year of AWOS and ASOS data at
Sterling.

o Process these data for making a set of minute-by-minute (for 10-, 20-,
30-, 40-, 50-, and 60-minute projections) GEM equations for both AWOS
and ASOS variables, both probabilities and categorical forecasts.
These efforts will specifically predict ceiling, visibility, wind,
precipitation, and temperature.

o Perform a verification on these equations on observations independent
of the original sample.

o Test the effectiveness of Discrete Likelihood Functions (DLF).

o Prepare a plan for demonstration of the GEM system.

o Process any data acquired from other locations akin to the manner in
which the Sterling data were processed.

One of the objectives during the period of this contract is to develop a
prototype computer facility that will be self-standing as a:

o Real-time collector of automatic weather observations data

minute-by-minute, both AWOS and ASOS.

o Decoder of each observation into dummy variables for processing into
GEN.
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o Accumulator of the statistical croasproduct into statistical covariance
matrices within each predictand category.

o Creator of updated regression prediction equations.

o On-demand predictor of each element out to 60 minutes in 10-minute
intervals.

Features of this facility will be that maintenance will be at a minimum.
Only hardware breakdowns will disrupt the facility. Power breakdowns will not
affect the operation, and it will not be required to periodically maintain the
facility as was once thought necessary.

16

-.

' ~'.- . -. *. . . . . . . . . . . . .



REFERENCES

Adams, R. J., and Pitts, J. T., 1984: Investigation of hazards of helicopter

operations and root causes of helicopter accidents.

Crout, P. D., 1941t A short method for evaluating determinants and solving

systems of linear equations with real and complex coefficients. Trans.

AIEE, 60, 1235-1241.

Feller, W., 1950: An Introduction to Probability Theory and its Applications.
John Wiley and Sons, New York, 419 pp.

Miller, Robert C., 1964t Regression estimation of event probabilities.

Travelers Research Center Tech. Report, 7911-121, Contract Cwbl0704,

Hartford, Conn., 153 pp.

1979: Estimating event probabilities by discrete likelihood functions.

Proceedings Sixth Conference on Probability and Statistics in Atmospheric

Sciences, Banff, Amer. Meteor. Soc., 93-97.

1981: GEM: A statistical weather forecasting procedure. NOAA Tech-

nical Report NWS-28, National Oceanic and Atmospheric Administration,

U.S. Department of Comerce, 103 pp.

von Mises, R., 1945t On the classification of observation data into distinct
groups. Ann. Math. Stat., 16, 68-73.

Tatsuoka, M. M., 1971: Multivariate Analysis: Techniques for Educational and

Psychological Research. John Wiley and Sons, New York, 310 pp.

17



* .FILMED

2-85

D


