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ABSTRACT

>Experimental submerged arc welds were made on quenched
and tempered 3/4-in.-thick C-Mn-Mo-Nb plate using various
combinations of filler wires and fluxes. The welds were
made under conditions of constant heat input (75 kJ/in) and
a constant deposition ratio of wire speed to travel speed of
13.

Standard quantitative metallographic techniques were
used to evaluate the volume fraction of the weld metal
microconstituents, the acicular ferrite lath spacing, and
the average prior austenite grain size., Along with hardness
values, other weld metal properties were obtained from
subsize (5.0 x 10.0 x 55.0 mm)\Charpy V-Notch specimens,
subsize (7.6 x 7.6 x 55,0 mm) Izod specimens, and subsize
(5.0 x 9.5 x 101.6 mm) ‘tensile specimens.

Results indicated that a commercial low Siog, high CaF?
flux, combined with a filler wire microalloyed with
titanium, boron, and molybdenum, provided the optimal
microstructure in terms of weld metal propertie§4 Welding
with & high SiO2 flux was shown to produce high dxygen in
the weld metal, increasing the volume fraction of grain
boundary ferrite. The study further indicated that

replacing MgO with CaO in the flux produced a slightly
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coarser microstructure which exhibited poorer weld metal o
properties. This result implies that MgO does not simply

substitute for CaO in submerged arc welding fluxes. The ;ﬁ

experimental results also showed that the low Si02, high -
Ca!-‘2 flux alone did not produce good weld metal
microstructures in the absence of microalloyed filler wire.

The percentages of acicular ferrite increased systematically

with increase in the Ito-Bessyo carbon equivalent in the B
range of 0.18 - 0,22, Experimental mechanical testing

Py confirmed the generally accepted principle that increasing

t: volume fractions of fine acicular ferrite will result in ;-
improved weld metal properties. Further analysis indicated .
that increasing weld metal oxygen content in the range from

100 to 500 ppm reduced weld metal toughness through a o

austenite grain boundary pinning effect, At high oxygen ]

content, fine oxide particles were assumed to refine the |
austenite grains, thereby allowing formation of larger

fractions of grain boundary ferrite. The fractions of

ferrite formed for a given grain size were shown to be
consistent with fractions predicted by well-established

overall transformation kineties theory.
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I. INTRODUCTION

I1.1. MICROALLOYED STEELS
High strength, low-alloy (HSLA) steels, which have been
developed for high strength and toughness applications such

as arctic linepipes, are superjor to plain carbon steels,

but cost significantly less than alloy steels., Other
desired properties of microalloyed steels include good
weldability, good ductility, good formabiliy, and high
fracture resistance, Microalloyed steels are typically low
carbon-manganese steels with small amounts of elements added
such as niobium, vanadium, aluminum, or titanium, High
yield strengths are largely obtained through a refinement of
grain size, produced by the addition of these elements in
combination with various forms of thermo-mechanical
processing. In addition to increasing the yield strength, a
fine ferrite grain size also enhances toughness and
increases the ductility. The size distribution, shape, and
volume fraction of non-metallic inclusions and second-phase
particles will also influence the mechanical properties of

HSLA steels.

Submerged arc weldments of microalloyed steel also
obviously require high strength and toughness properties

which are governed by the weld metal microstructure., The
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optimal microstructure for carbon-manganese steel weld
metals has been generally agreed upon to consist of a high
amount of acicular ferrite (1), This fine grained, high
angle grain boundary microstructure gives optimal weld metal

strength and toughness properties. The influence on weld

VDAY S NI

AL

metal mechanical properties as controlled either by the

microconstituents or by inclusions was investigated by

, . , ,..,
ndndecdd  Andas

Taylor and Farrar (2). They showed that below 300 ppm
oxygen, the effects of the microconstituents were to
dominate the mechanical behavior; between 300 and 600 ppm .

oxygen, there was shared microconstituent and inclusion

control; and above 600 ppm oxygen, the inclusion effects

B
PO A N

were dominant, The mechanical properties are controlled by
a number of factors including welding process parameters,
(current, voltage, and travel speed), welding consumables,

(composition of flux and filler wire), and base metal

composition.

I.2. WELDING CONSUMABLES

The consumed materials in submerged arc welding include

the wire electrode and the welding flux, The welding
consumables contein balanced additions of various alloying .
elements (Nb, V, Cu, Ni, Cr, Mo, B) and complex deoxidizers

(Si, Mn, Al, Ti) to develop the optimal weld metal
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microstructure. Alloying elements may change toughness
through solid solution effects in ferrite and modifications
of the microstructure, which include grain size, the type of
transformation product (hardenability), and the type of
carbides produced. The microstructure and its related
mechanical properties of HSLA weldments will depend on the

multiple interactions of the welding consumables and the

baseplate.

1.2.1 The Nature Of Fluxes L

‘o

The submerged arc welding fluxes, which are granular,
fuseable, mineral materials containing oxides or carbonates ]

of manganese, silicon, calcium, magnesium, aluminum,

titanium, sodium, and other compounds such as calcium _j
fluoride, have a varjety of functions (3) whieh include: ‘j
'
1) protecting the weld pool from the atmosphere o
(oxygen, nitrogen, and hydrogen).
2) deoxidizing the weld pool. T
. . . . L
3) decreasing the impurities in the weld, or weld N
pool refining. -
4) stabilizing the arc. e d
®
5) controlling the weld metal composition. : j
1
6) insulating the weld. ]
-1
o
L
o
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? 7) controlling the bead morphology. “f
1
4
[.2.2. Chemical Reactions Of Submerged Arc Welding ;
The chemical reactions occur very rapidly in welding as ; 4
. - ‘1
compared to ladle refining in steel because of both the IR
extremely high metal temperatures involved, and the very
large slag/metal and gas/metal interfacial area available ; 1
1
for interaction. However, the characteristic non-isothermal
nature of arc welding makes it is very difficult to outline
the sequence of reactions taking place during various stages ° j
y
of the process. As & result, the understanding of weld K
metal chemistry is far less developed than that of .
steelmaking. As a consequence, predictions of the weld

metal chemical composition, based on those of the welding
consumables and the parent plate, must be done solely on
empirical grounds, and it is only possible at present to
describe the reaction pattern in general terms,

The chemical interactions taking place during submerged

arc welding can be derived from a simplified two step

reaction model proposed by Grong and Christensen (4). This

mode] assumes:
]
.1
1) A high temperature stage, where at least some
of the reactions approach a state of
L

P "
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- - R
) pseudo-equilibrium, .
)
2) A cooling stage, where the concentrations ‘
established during the initial stage tend to ‘
re-adjust by precipitation of new phases. -
)

In the case of submerged arc welding, the high temperature
stage include both slag/metal and gas/metal interactions,

the former factor being more important. This stage includes

reactions occurring at the electrode tip, in the arc plasma,

) et
Y SR TPy alaiaa o watot .,

and in the hot part of the weld pool. The cooling stage -

starts immediately after the passage of the arc and is

.
e

characterized by deoxidation reactions, such as
precipitation of non-metallic inclusions in the bath,
succeeded by a more or less complete separation of the

dispersed particles. The boundary between the two stages is

not very well defined, which means that deoxidation and ~
phase separation may proceed simultaneously with oxidation
in the hot part of the weld pool. In the following, the
sequence of chemical reactions in submerged arc welding will
be briefly discussed in light of this two stage model.

In submerged arc welding, the flux will be the main

source of oxygen due to its content of easily reduced oxides

such as SiOz, MnO, Tioz, etec, Consequently, during the high

temperature stage, oxygen will be introduced into the weld

. RS S SE, L IS R P, A S SRRL . SO Y AL PO
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metal (location of the main reaction is not known at the :
. present state) to an increasing extent, with an increasing

oxygen potential of the flux, according to the overall

reactions:

(sio,) = §i + 20 (1) ;
(MnO) = Mp + Q (2) ’
(TiO) = Ti + 20 (3) o

During cooling of the weld pool, & supersaturation with
respect to the various deoxidation reactants is initially . 1
increasing. When the conditions for nucleation of the oxide "
inclusions are reached, deoxidation by a specific reactant . Z
will occur. Thus, conditions for competitive reactions

between the various deoxidation elements, either introduced 7

by the filler metal or the bese metal, are established.

:. These processes can lead to loss of certain deoxidation i
i elements not present in the flux, and to a pickup of T
Ej deoxidation elements present as oxides in the flux, -]
?‘ The degree of deoxidation achieved will be determined .
- by the possibilities of the oxide inclusions to collide, ﬁ
=
grow, and float out of the weld pool before metal R
)
e
- )
: ]
, .4
; 1
e

VOIS DR U L S a Catala®a . lalalat P T o S O S T




T —— T R T T I ——— Paphirai . T T L T—————wen——y—

-

T-2942 7

solidification., As a result, it is very difficult to
predict on theoretical grounds the final weld metal oxygen
content.

Early investigators (5-8) attempted to improve the
toughness of submerged arc welds by varying the standard
high silica Sioz-CaO-MgO flux. Poor toughness properties
were attributed to the large volume of inclusions and high
amounts of oxygen and silicon in the welds. Lewis, et
al.(8) obtained welds with lower oxygen contents (450 ppm as
compared to 960 ppm) and fewer and smaller inclusions using
a modified flux which consisted of 40% CaO, 20% Si02, 20%

CaFZ, 10% MgO, and 5% TiOz. They found that CaF, and TiO2

2
additions were beneficial in improving the weld metal
toughness., Lower weld metel oxygen contents (and thus
higher weld metal toughnesses) are now being obtained with
new submerged arc welding fluxes that are based on lower
silicon contents, and usually with a substantial CaF2
content. Researchers have shown large variations in weld
metal oxygen content with both FeO and CaF2 additions to
manganese silicate and calcium silicate flux systems, as
shown in Figure 1 (9-10). Data such as these show the
importance of developing advanced submerged arc welding

fluxes to produce the optimal weld metal microstructure.

Researchers (11-12) have also shown that as the oxygen
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content varies due to different flux basicities, the
inclusion composition will also change. In the iron and
steel making industries, the concept of basicity is used to

describe the refining behavior of the siag. Oxides are ;ﬁ

either classified as acid oxides or basic oxides depending

o .
, -
[ VIS W N WY

on their capacity of forming or breaking anion networks.
5 Tuliani, et al,, (13), proposed a basicity index (Bl) that
is now the most commonly used in welding metallurgy today.

It reads as follows:

\
mmade  Aem a4 4

O + 1/2(MnO + FeO)
+ ZrOz)

Ca0 + CaF2 + MgO + KZO + Na20 + Li2
5102 + 1/2(A1203 + ’I‘xO2

Bl =

(4)

A decrease in the total number of non-metallic inclusions is

normally essociated with an increase in flux basicity.
Researchers (13-16) have shown that an increase in flux f

basicity will decrease the amount of oxygen in the weld :
a
)

metal and improve toughness. Eager (17) has recently shown
that, by using two different forms of the basicity equation,
the weld metal oxygen content drops from 900 ppm to 300 ppm
for a basicity index change from 0.5 to 1.5 and then remains j
constant with increasing basicity. )

Tulieni, Boniszewski, and Eaton (13) admitted, however,




P am e areh an | JB o s e B e et s S aee e NJMNE il ALass scse gseno B sanes s Snge ¥ St it B ~ A Rt SRl Sty s B M R A YA A A el S G bl ot ey
R . -~ - . - . . - . B . .

T-2942

that their basicity index equation had a serious error in
that it was unaeble to correlate the strength and toughness
of welds made with high Al203, TiOZ, and ZrO2 fluxes
correctly. Submerged arc welds using & variety of reagent
grade manganese silicate fused fluxes were made and studied
by Indacochea and Olson (18). They found that by holding
the SiO2 content constant at 40 percent, the weld metal
oxygen content increased with FeO additions (see Figure 2).
These results contradict the basicity index theory wherein
MnO and FeO are considered to have equivalent behavior,
Palm (19) could not justify how the mechanical properties o
the weld metal could be fully characterized by the basicity
of the flux., Other researchers (20-21) also agreed that
using the basicity index to determine the weld metal oxygen
content was fortuitous. They (19) explained that the
oxygen's chemical potential, which represents the driving
force for oxygen transfer from the oxide flux to the weld
metal, is the important factor involved, not basicity. A
high acidic oxide such as A1203 has & very low oxygen
chemical potential, while basjc oxides such as FeO and MnO

have relatively high oxygen chemiceal potentials,
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E =
% An oxygen chemical potential equation for acidic fluxes -;’3
- O
2 was proposed by Noor (21): T
: ]
4 o 100 - (FeO + MnO + Si0, + TiO,) (5) o]
r 3
(FeO + MnO + SiO2 + Ti02) ]
3 -7
3 ]
h where Of is the oxygen potential in the flux. =;'4
3
i Unfortunately, this equation fails to predict the behavior ]
of the more commonly used basic fluxes.
L' Other approaches to define basicity were also proposed -‘ !
3 . 4
and applied (22). Wood (23) suggested that the silica S
activity in the submerged arc welding flux should replace fﬁi
the basicity index. Wegrzyn (24) showed that the amount of : ';':
mangenese and silicon in the weld metal and the ratio of
manganese to silicon could control the oxygen content in
submerged arc welds made with neutral or basie fluxes. ;TJ
o
Aithough there have been multiple attempts to develop a w0
simple parameter to represent the behavior of welding -Q':
R
fluxes, none of them have been totally correct., Thus, more .; b
]
fundamental research in this area is necessary to develop an o
adequate empirical formule. 571
o
RS
]
B
°
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1.3. VARIOUS MICROSTRUCTURES OF HSLA WELDMENTS
The final weld metal microstructure, and thus

toughness, in microalloyed steel results from the combined

effects of the solidification structure and the
corresponding decomposition of austenite on cooling.
Numerous researchers (14,25-44) have attempted to
characterize the weld metal microconstituents, and the
terminology applied to these microstructures has not been
universal, as shown in Table I. The metallographic terms
used in this study follow the guidelines of Abson and Dolby
(30). The five main categories of low carbon weld metal
microstructure using these guidelines are: primary ferrite
(F), ferrite with aligned second phase (AC), acicular
ferrite (AF), ferrite-carbide aggregate (FC), and martensite
(M).

1) Primary ferrite, which needs little or no
undercooling, occurs by & nucleation and growth process.
Primary ferrite occurs in two forms, grain boundary ferrite
(GF) and polygonal ferrite (PF). When the cooling rate is
extremely slow, grain boundary ferrite nucleates at the
prior austenite grain boundarjes. The ferrite grows in
either elongated or granular form along the austenite grain
boundaries, as shown in Figure 3. The grain boundary

ferrite is usually considered detrimental in weldments

~ v v ey . i
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Figure 3. Examples of weld metal grain boundary ferrite
(GF) and polygonal ferrite (PF) found in microalloyed
HSLA steels. (2% nital etch) 750x.
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“!! because the ferrite veins provide for an easy crack f
E propagation path, Figure 3 also gives an example of

intragranular polygonal ferrite. Polygonal ferrite can be ) h

just as detrimental to the weld metal if it is sufficiently ~
prevalent to provide & nearly continous crack path.

2) Ferrite with aligned second phase requires some j
degree of undercooling. The boundary nucleated ferrite may E

grow away from the austenite grain boundary along a

2 s 4 aa

preferred growth direction as parallel laths as shown in

-a  ala

Figure 4. Ferrite with aligned second phase is defined as

two or more parallel laths of ferrite having an aspect ratio .
(length/width) greater than 4:1. A high proportion of
coarse AC can decrease the weld metal toughness. A main
problem using the guideline by Abson and Dolby is that
sidepiate ferrite and bainite are not distinguished, but are .
both categorized as "aligned carbide" morphologies. 1
However, bainite and sideplate ferrite are formed by two
totally different phase transformations., Beainite is a lower
temperature transformation product than sideplate ferrite or !
acicular ferrite, During cooling, bainite forms as the

final transformation product when acicular ferrite laths

fail either to nucleate or to grow to mutual impingement, 2

3) Acicular ferrite, which requires a greater degree

of undercooling than sideplate ferrite, is characterized by
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Figure 4. Example of weld metal ferrite with aligned
second phase (AC) found in microalloyed HSLA steels.
(2% nital eteh) 750x.
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fine interlocking ferrite laths of high acicularity, such as
shown in Figure 5. The fine interlocking structure provides
high resistance to cleavage initiation and propagation.
Acicular ferrite heterogenously nucleates intragranularly on
non-metallic inclusions (1,15,39,45-46) and grows until
impingement. The maximum lath size is governed by the mean
spacing of nuclei. Therefore, a fine distribution of
intragranular non-metallic inclusions results in fine
intragranular laths (15). Observations by the electron
microscope (46) have shown that the acicular ferrite laths
have high angle boundaries with high dislocation
substructures, The acicular ferrite formation start
temperature is higher than that of bainite and martencsite
formation, but is slightly lower than that of grain boundary
ferrite or sideplate ferrite, as shown in Figure 6.

4) Ferrite carbide aggregate (FC) is pearlite and
ferrite with interphese carbides. Ferrite carbide
aggregates, which are shown in Figure 7, need to be larger
than the surrounding ferrite laths in order to be counted
FC., The aggregates occur because excess carbon is rejected
out of the ferrite into the austenite. The pools of carbon-
enriched austenite trapped between ferrite laths then

trensforms during further cooling to FC, bainite, or even
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Figure 7, Examples of weld metal ferrite carbide (FC),
grain boundary ferrite (GF), and acicular ferrite (AF)
found in microalloyed HSLA steels. (2% nital eteh) 1500x.
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martensite,
5.) Martensite (M) is formed when carbon-enriched
retained austenite pools transform at large undercoolings.
Small amounts of martensite have been reported to be very b

detrimental to weld metal properties (37). ff

1.4. FACTORS WHICH INFLUENCE THE WELD METAL MICROSTRUCTURE N
The development of the microstructural constituents i

during the austenite decomposition in HSLA steel weld metal

is very complex, The weld metel microstructure is mainly

determined by the heat input and the weld metal composition, o

The inclusion content, which is a function of the weld metal |

composition, plays an important role in producing the weld . A

metal microstructure,

I.4.1. Heat Input Effects 1
The influence of heat input or cooling rate on weld metal

microstructure was studied by Glover (37). He showed that

L; decreasing the heat input or increasing the cooling rate in ;
F low carbon steel will refine the weld metal microstructure
i from coarse primary ferrite to acicular ferrite, banite, and
7. eventually to martensite, Figure 8 is & schematic showing
| the effect of two different heat inputs on weld metal
microstructural transformation., Figure 8 shows that an
o ‘
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increased cooling rate will change the weld metal from a
predominately acicular ferrite microstructure to one

consisting primarily of bainite.

1.4.2, Weld Metal Composition Effects

The composition of the weld metal results from the
alloving elements in the base plate, welding electrode, and
the welcding flux. The austenite decomposition
trensformations will shift to longer delay times when
hercdernability agents such as manganese, molybdenum,
chromium, and boron are added, Figure 9 summarizes the
effect of herdenability changes on weld metal
transformation, and shows the importance of compositional
control to procduce the desired microstructure,

Curbon 1s the strongest hardensbiiity agent, and is
usually selected at the lowest possible level for the
purpose of high fracture toughness and good weldability of
HSLA steels. Small amounts of carbon can cause grain
refirement, which will result in lowering the austenite-
ferrite transformation temperature, if combined with strong
carbide formers, such as niobium, vanidium, and zirconium,
However, excess carbon usually tends to form large cementite
particles which provide crack nucleation sites.

Manganese, which is a strong hardenability aegent, will
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strengthen the material by grain refinement and solid
solution hardening. Manganese additions from 0.6 to 1.8
weight percent were shown by Evans (47) to refine and

increase the amount of acicular ferrite in the weld metal

and decrease the amount of primary ferrite,

for this was that manganese both delays the ferrite-pearlite 7

transformation and depresses the bainitic trensformation

temperature, forming fine-grained acicular ferrite.

study also indicated that there is an specific amount of

manganese to have in the weld deposit, (in his case

1.5 weight percent), which will produce optimal impact
properties.
Molybdenum is another element
on hardenability (16).
austenite to ferrite transformation, which will lower the
trensformation temperature and cause & reduction in grain

size, It also suppresses the pearlite formation, giving

rise to acicular ferrite, bainite, and martensite,

Molybcenum acts in conjunction with manganese to produce
fine-grained acicular ferrite rather than coarse-grained
primary ferrite,.
produce a bainitic microstructure and/or undesirable

molybdenum carbides,

Niobium has been observed to decrease the amount of

SN SRR S W

The explanation

Evans'

it was 1

that has a strong effect

Molybdenum kinetically retards the

Too much molybdenum in the weld metal will

both which will reduce the toughness.
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acicular ferrite in the weld metal in some studies (32,48),
but in others (16,32,49-51) an increase is reported.
Invariably, additions of niobium reduced the amount of grain
boundary ferrite. Increases in niobium have shown to
increase the dislocation density (51-52), and precipitation
has been reported in the as-welded plus reheat conditions
(51-53). Niobium has been shown (32-33,53) to combine with
carbon and/or nitrogen to form a fine dispersion of
carbides, nitrides, or carbonitrides, in the esustenite, thus
retarding grain growth and recrystallization. At moderate
levels of niobium of around 0.07 weight percent, molybdenum
when used in combination with niobium will increase the
toughness of the weld metal. However, &t lower niobium
levels, molybdenum does not effect the toughness.

Vanedium has been observec to promote acicular ferrite
(49,54-56) for levels up to 0.1 weight percent in the
absence of other elements, e.g. molybdenum (55). However,
two studies have shown a decrease in ferrite with aligned
carbide (48,54), while another study has observed an
increase in ferrite with aligned car' 'de (57). Vanadium
carbonitrides have been observed (52,58) and behave the same
way as niobium carbonitrides, acting as grain growth and
recrystellization inhibitors only at lower temperatures.

The effects of low levels of niobium (<0.02%) and

L 4




N N Y T T T T O

T-2942 28

vanadium (<0.05%) have been summarized by Dolby (59). The
effects of niobium and vanadium on weld mete] microstructure
and properties can differ if the cooling rate differs or if
there are changes in alloy additions. In particular, at

these low niobium and vanadium levels, observations show

that:

1) an increase in Charpy V-Notch transition
temperature occurs when Atg., 00 < 50
seconds, Mn < 1.1%, and there are no other
deliberate alloy additions.

2) little change or some improvement in Charpy
V-Notch transition temperature occurs when
btgnp-500 < 90 seconds, Mn > 1.1%, or
a loying with Mo, Ni, or Ti-B is present,

3) an increase in Charpy V-Notch transition
temperature occurs when Atg., 50 > 50
seconds, Mn < 1,4%, and there are no other
deliberate alloy additions,

4) an increase in Charpy V-Noteh transition
temperature occurs when Nb and V asre added to

multipass deposits from the wire, electrode

coating, or the flux.
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Titanium is an important element for improving weld
metal toughness., Titanium can combine with oxygen to form
titanium oxides (TiO) which promote intragranular nucleation
of acicular ferrite (14,42). This has been reported to be
related to & favorable crystallographic orientation between
the nucleating agent and the nuclesated ferrite., Titanium
nitride particles (TiN) have elso been shown to promote the
formation of acicular ferrite (39).

Titanium is commonly added with boron. The rationale
for the duel benefit is thet the titanium nitride
precipitates reduce the amount of free nitrogen in the weld
metal, thus preventing boron nitride (BN) formation and
ellowing boron to segregate easily into prior eustenite
grain boundaries (14,42,60-61), The solute boron segregeated
at the austenite boundaries seems to suppress the nucleation
of primary ferrite by a mechanism not yet clearly
understood. Relatively low amounts of titenium (<0.02
weight percent) and boron (<0.005 weight percent), are
typically added to microalloyed steel weld metel. The
optimal values determined by other researchers are
summarized in Table 11 (57,62-67). Titanium and boron
contents depend on both other alloying elements and on the

welding parameters of the submerged arc welding process.
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i The optimal ranges for titanium and boron within limits of L

[ other elements were determined by Masumoto (58) as follows:

Ti = 0.01 - 0.05% (< 0.03% preferred) .

.
B = 0.001 - 0,003% )
Mo = 0.15 - 0.35% .
Nb < 0.025%
o
V< 0.035%
Al < 0.026% (< 0.015% preferred)
0
The amount of weld metal oxygen content seems to play ;j
an importeant role in determining the proper titanium and EJA
poron values. It hes been shown by Terashima (61) that the
optimai titanium content shifts to lower levels with , :
“ecreasing weld metal oxygen content., Figures 10 and 11, :E
which were taken from this peper, show that &8 decrease in .
oxvgen or an addition of aluminum leeds to 8 decrease in * f
irsoluble titanium and an increase in insoluble nitrogen. -3
This suggests that, with decreasing oxygen in the weld ]
metal, titanium fixes nitrogen more effectively because the QT?
insoluble titanium meinly exists as an oxide or nitride. E
Aluminum was shown to combine with oxygen in preference to 5':
titanium, allowing the free titanium to combine with * E
nitrogen (61). Watanabe (69) showed that, in MIG welding, ]
.> L
3
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insoluble boron as well as insoluble titanium increased with
increasing weld metal oxygen. Koukabi (70) showed that, in
low oxygen (<200ppm) submerged arc weldments, the toughness
of the titanium bearing weldments was superior to the
toughness of titanium-boron bearing weldments. The
austenite to ferrite transformation temperature was shown to
increase in titanium-boron weldments with increases in weld

metal oxygen (71).

1.4.3. Weld Metal Inclusion Effects

Cochrane and Kirkwood (72), in dilatometric CCT
studies, have shown oxygen to have a major effect on the
transformation behavior of low-carbon austenite. High-
oxygen weld metals began transforming at temperatures
considerably above those of lower oxygen deposits, and they
also proceeded to completion more rapidly as compared to the
low oxygen weld metals. In low-carbon (0,08 %), high-
manganese (1.8 %) weld deposits, Garland and Kirkwood (73)
observed the formation of aciculsr ferrite using basic
submerged arc welding fluxes with weld metal oxygen levels
below 0.03 weight percent. However, a bainitice
microstructure was obtained by using acidic fluxes which
gave oxygen levels of 0.07 to 0.1 weight percent, The weld

metal transformation behavior was explained (1,73-74) to be
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influenced not by the effect of oxygen in solution but by
the oxygen as it affects the number of small inclusions
available as potential nucleation sites for transformation
products during continous cooling.

Researchers (75-76) have found that the inclusion shape
and composition changes with the flux, and that different
inclusions may nucleate different microstructures. This
could be attributed to the inclusion/matrix interfacial
energy, which would change with differences in composition
of the inclusion. Pargeter (76) showed an association
between inclusion type and microstructural constituents.
Specifically, he found that inclusions containing manganese
and silicon, with or without sulfur, were associated with
coarse grain boundary ferrite and ferrite with aligned
carbide, as indicated in Figure 12a. Aluminum-bearing
inclusions seemed to be associated with acicular ferrite,
Figure 12b. Thus it seems that weld metal oxygen is only
indirectly related to the formation of a specific ferrite
mierostructure, but the density and size distribution of the
inclusions appears to play an important role in the

nucleation process of ferrite.
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11, MATERIALS AND EXPERIMENTAL PROCEDURE

II.1., FLUX PREPARATION
The four fluxes used in this study included one
agglomereted commerciel flux and three experimental fused

fluxes. Compositions of these fluxes are given in Table

I1l. The commercial flux, OP121TT, is a high MgO-CaF2 - low

5102 flux made by Oerlikon. This flux will be designated
“OP" throughout this report. The experimental fluxes

include a 15%Sioz~50%MgO-35%CaF2 flux designated "MgO", =a
QO%SiOZ-SOmCaO-30%CaF2

4C$CaO-20%CaF2

filuxes are essentially equivalent, except that one contained

50% MgO while the other ccntained 50% CaO. These fluxes

were designed to evaluate the potential differences between

CeO and MgO adcditions. The fused fluxes were made using
reagent grade chemicals which were mixed, then melted in a

grephite crucible heated by & induction furnace and

protected by & nitrogen cover gas. The furnace temperature

was raised to at leest 1550°C, then the crucible was
removed, and the molten flux was poured into water &t
anbient temperature. The rapid quench caused the flux to
break up into fine, very brittle sponge-like pieces. The

flux was then dried under & heat lamp, and basked in a air-

flux designated "CaO", and & 40%5102

flux designated ”SiOz”. The "MgO" and "CaO"
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blowing furnace at approximately 800°C to remove water and
excess carbon (introduced from the graphite crucibles during
melting). The flux was crushed to a size that screened in
the range from 14 to 100 mesh. The flux was introduced to
the weld during the welding operation by means of a standard

flux bin.

11.2. WIRE PREPARATION

Two 3/32-in. diameter filler wires were used in this
study. These wires were: 1) TiBor 22, a commercial
microalloyed steel wire made by Oerlikon and containing
additions of boron and titanium (herein designated "TB"),
and 2) & research heat with the same base composition as
TiBor 22, but without boron, titanium, or molybdenum. This
experimental wire, designated "CSM", was produced by
shearing strips from & 1/8-in, thick plate, which were then
swaged to final dimensions and cleaned in a 60% hydrochloric
acid solution. The wire compositions are found in Table [V,
The other two filler metal compositions mentioned in Table
IV resulted when a pure molybdenum strip was added to a weld
made with "CSM” wire (designated "CSM + Mo"), or when a pure
molybdenum strip and a pure titanium strip were added to a

weld made with "CSM" wire (designated "CSM + (Ti/Mo)").
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I1.3. WELDING OPERATION

At the beginning of this investigation, welds were made
of Lukens Steel Company's quenched and tempered 3/4-in.-
thick C-Mn-Mo-Nb steel plate using a commercial wire (Tibor-
22), and flux (OP-121TT). The composition of the baseplate
is shown in Table V., The welding consumables are well known
to produce fine acicular ferrite weld metel and thus,
optimal weld metal properties. By using the commercial
product weld as the basis for this investigation, and by
keeping the heat input at 75 kJ/in (3.0 kJ/mm), and the
deposition ratio of wire speed to travel speed constant at
13, a systematic variation of submerged arc welds were
produced to investigate the influence of certain
microalloying elements and flux variations in determining
the quality of mieroalloyed steel weld metal. The welding
parameters are given in Table VI, and their resulting
compositions are given in Table V, Note that welds TB-OP‘
and CSM—OP‘ are duplications of welds TB-OP and CSM-OP

respectively.

I1.4. METALLOGRAPHY
The welds were sectioned transverse to the welding
direction in at least three different areas. These areas

were then examined both macroscopically end microscopically.
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For macroscopic examination, the welds were ground,

NE polished, and etched with a solution of 85 volume percent

——y

water, 15 volume percent nitric acid, and 5 volume percent

Ii methanol. The samples were then photographed &t the same

magnification, 4X, in order to easily calculate the bead

T
o

area, depth of penetration, and dilution of each weld,

These data are summarized in Appendix A.

> I.rr'

The weld samples were then repolished and etched with a

L 2 volume percent nital solution and analyzed on the

- metallograph. Since the microstructure of each weld was
]

E‘ relatively constant throughout, the micrographs shown in
o

this study were taken from the centerline of each weld bead
as viewed parallel to the welding direction. Standard
quantative metallographic techniques were used to evaluate

the volume fraction of the various microconstituents and the

acicular ferrite lath size (77). The volume fraction of the
microconstituents was calculated from over 800 point counts
at 500X and 1000X using the guidelines for classification by
Abson and Dolby (30). The accuracy of point counting was
determined using the technique described by Gladman and
Woodhead (78). The mean lath size was determined using the
linear intercept technique on micrographs taken at 1000X.
For the purpose of determining prior austenite grain

size, the welds were sectioned perpendicular to the columnar
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growth direction (shown schematically in Figure 13). Prior
austenite grain diemeters were then measured and averaged
using the linear intercept technique, To etch out the grain
boundaries, several etchants were tried, with the most
successful being a § volume percent nital solution. The
prior austenite grain size values are summarized in Appendix
B. The accuracy of the prior austenite grain diameter

calculations were determined by following ASTM standards

(77).

I1.5. CHEMICAL COMPOSITION

The carbon,sulfur,oxygen, and nitrogen content of the
weld metal were analyzed using Leco interstitial analyzers.
All of the remaining elements were analyzed using an ARL
34,000 Emission Spectrometer. The wire and the weld metal
were analyzed at least three different times in three
different areas and then averaged to give the compositions
listed in Tables IV and V respectively.

Compositional differences, were calculated by
subtracting the nominal value from the analytical value.
Figure 14 shows a schematic of how the nominal composition
was calculated. The nominal composition is equal to the
wire composition multiplied by the weight of the deposited

metal, plus the base plate composition multiplied by the
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weight of the parent metal melted, all divided by the total
weight of the fused metal. A negative compositional
difference for a given element implies that a portion of
that element was removed by the slag. 1In contrast, a
positive compositional difference implies that the flux has
rejected that element into the weld pool. The compositional

differences for each weldment are summarized in Table VII.

11.6. HARDNESS

Weld metel hardness values were measured by using a
Rockwell hardness tester. Measurements were taken from at
least five different areas of the weld besd and then
averaged. The values were then converted to the diamond
pyramid hardness scale and are recorded in Appendix C.
Microhardness values were also taken across the center of
the weld bead. Thie average micro-hardness values are also

given in Appendix C.

I1.7. MECHANICAL TESTING

ASTM subsize (5.0 x 10.0 x 55.0 mm) Charpy specimens
(79) were machined from welds TB-OP  and CSM-OP  as shown in
Figure 15, Their impact energy results were measured at

various temperatures using the Tinius Olsen
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10O mm __L_ Thickness : ]
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ASTM Subsize Charpy Impoct Tests 4
Specimen Orientation }

Sas g

Smm thick

IOmm depth -

s

Figure 15, Schematic of & submerged arc weld showing
the dimensions and orientation of subsize Charpy
V-Notch specimens.
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testing machine, Subsize (7.6 x 7.6 x 55.0 mm) Izod
specimens were machined from all the weldments as shown in
Figure 16. All these specimens were broken at -40°C with
the Tinius Olsen testing machine., After both the Charpy and
lzod bars had been broken, they were washed with methanol
and stored in a dessicator., The fractured surface area was
then examined by the naked eye to measure the percent shear
fracture,

ASTM subsize (5.0 x 9.5 x 101.6 mm) tensile specimens
(80), an example of which is shown in Figure 17, were also
machined from welds TB-OP' and CSM—OP‘. Tiny strain gauges
were placed on the weld metal area of the specimen to record

the weld metal yield strength.

11.8. ELECTRON MICROSCOPY

Weld metel fractographs of the lzod specimens were
teken using the AVMR scanning electron microscope. Since
they were used to compare with the optical micrographs, the

centerline fractographs were taken at 500X, 1000X and 2000X.
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7.5mm 4 Thickness :
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Subs'ze lzod Impoct Test ]
Specimen Orientation , ]
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X _
7.5mm depth N

Figure 16. Schematic of 8 submerged arc weld showing
tre cimensions and orientation of subsize Izod specimens, 1
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4 Figure 17. Schematic of a submerged arc weld showing ]
the dimensions and orientation of tensile bar specimens. °
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I1T. RESULTS AND DISCUSSION

111.1., WELDING OPERATION

Table V displays the systematic changes in the weld
metal composition that were produced using the various wires
and fluxes. Weld CSM-OP of course did not contain titanium
or boron in the weld metal. The molybdenum content also
dropped considerably (to 0.13 weight percent as compared to
weld TB-OP which contained 0.25 weight percent) due to lack
of molybdenum in the CSM filler metal. By adding molybdenum
to the CSM wire to produce weld (CSM + Mo)-OP, then
molybdenum plus titanium to produce weld (CSM + Ti/Mo)-0OP,
the effects of lone microalloying additions on weld metal
micrestructure and properties could be investigated.

By changing from the OP flux to the low oxygen
potential Ca0 or MgO flux, the amount ¢ oxygen in the weld
metal was reduced considerably. Weld TB-SiOZ, which was
produced by using a high oxygen potential silica flux,
contained a weld metal oxygen content aslmost double that of
the commercial weld TB-OP, Weld TB-SiOz, when compared to
weld TB-OP, also contained losses in carbon and manganese,
as well as an increase in silicon. The compositional
differences which are given in Table VII show a gain of 0,21

weight percent silicon and a loss of 0.39 weight percent
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manganese in weld TB-SiOZ. Figure 18 displays a plot of the

compositional changes of silicon and manganese versus the f :
basicity index (given by Equation 4 on page 8). This graph 13
shows that by increasing the basicity of the flux, the : !
amount of silicon gained or manganese lossed will become :{?
nil, One of the most important terms in the basicity index Nf
% is the concentration of SiOz. As already discussed on page .‘x
p 6, oxygen will be introduced into the weld pool during the
high temperature stage due to a reduction of silica
L‘ (Equetion 1). Consequently upon cooling, the following . ]
P competitive reactions between the various deoxidation -.;
i elements present will take place: ,i

E Mn + O = (MnO) (6)

E?_ Si + 20 = (Si0,) (7)

‘[‘ 2A1 + 30 = (A1,04) (8) 0
Ti + 20 = (TiO,) (9) ‘

C *

p This will lead, in the case of the high 8102 flux system, to s
r an increase in the weld metal silicon content and a decresase -iT

in the manganese content, as indicated in Figure 18,

] However, when welding is performed with fluxes containing ; j
L. lower amounts of silica, the oxygen picked up during welding ,.f
. will be low and hence, the oxidation loss of manganese will
i |
5 '
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also be small.

IT1.2., WELD METAL MICROSTRUCTURAL ANALYSIS

The resulting microstructures of the seven experimental
weldments are presented at 500X in Figures 19a and 19b. The
micrographs present the centerline microstructures of each
weld bead as viewed parallel to the welding direction. The
microstructures shown were found to be representative of the
remainder of the bead. As shown in Figure 19a, a large
volume fraction of fine acicular ferrite was produced in all
of the experimental welds using the TiBor wire. 1In each of
these four welds the remainder of the weld metal
microstructure mainly consisted of primary ferrite (ranging
from 11 percent in weld TB-OP to 29 percent in weld TB-
SiOz). The majority of the primary ferrite in these welds
consisted of grein boundary ferrite, which ranged from 7
percent in weld TB-OP to 18 percent in weld TB-SiOz.

Figure 19b shows the different weld metal
microstructures produced by changing the wire, The
micrographs show that by changing the wire from TB to CSM +
Ti/Mo to CSM + Mo to CSM, the microstructure changes from
almost entirely acicular ferrite to & structure consisting
mainly of "AC" (which in more specific terms is bainite in

these cases), with the remainder being made up of primary

s
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and acicular ferrite.

The volume percent of the microconstituents and the
acicular ferrite lath spacing are summarized for each weld
in Figures 20 and 21 respectively. These figures
substantiate the observations made from the micrographs in
Figures 19a and 19b, The commercial product weld TB-OP
contained the highest amount of acicular ferrite,
approximately 85 percent, and the finest lath spacing of 1.4
microns. Weld TB-CaO produced 79 percent acicular ferrite,
which was the second highest amount, and approximately the
same acicular ferrite lath size as weld TB-OP. Weld TB-MgO
contained 68 percent acicular ferrite followed by weld TB-
SiO2 with 63 percent. Their acicular ferrite lath sizes of
1.8 and 1.9 microns respectively were coarser than the two
previous welds TB-OP and TB-CaO. The primary ferrite was
found to increase in the weld as the flux changed from OP to
CaO to MgO to Si02.

Weld CSM-OP, which was welded with a wire that did not
contain molybdenum, titeanium, or boron, exhibited the lowest
amount of eciculaer ferrite, approximately 26 percent, and
the coarsest microstructure. By adding molybdenum to the
wire, weld (CSM + Mo)-OP produced little change to the
volume percent of the microconstituents compared to weld

CSM-OP, but did refine the acicular ferrite lath spacing
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from 2.4 to 2.1 microns. Weld (CSM + Ti/Mo)-OP showed a
large change in microstructure which came from the addition
of titanium and molybdenum to the weld pool from the wire.
This weld produced about 50 percent acicular ferrite and
contained an acicular ferrite lath spacing of 2.0 microns.
The only compositional difference between weld (CSM +
Ti/Mo)-OP and the commercial weld TB-OP , which produced the
best microstructure, was that weld TB-OP contained boron in
the weld metal, The cheange in transformation behavior due
to this boron addition from the wire caused the volume
percent acicular ferrite to increase from 50 to 85 percent,
and refined the lath size from 2,0 to 1.4 microns. A
comparison of Figures 20 and 21 show that there is a
systematic correlation between the volume fraction of
ecicular ferrite and acicular ferrite lath spacing. An
increese in the volume fraction from 26 percent to 85
percent, directly correlates with a decrease in mean lath
size from approximately 2.4 microns to 1.4 microns.

Figure 22 shows the acicular ferrite lath spacing
plotted against the hardness values that were recorded in
Table VIII. This plot is analogous to & Hall-Petch (81)
type expression of:

1/2

¢ = 0o + kd~ (10)
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where o is the yield strength, 0o is the base level of
strength, k is a constant, and d is the average grain
diameter. Equation 10 shows the dependence of grain size on
strength, which can be directly related to hardness of the

material by the following expression:

H = Cl(c ) (11)

where H s the hardness, and C1 is a constant, Figure 22
exhi1bits 8 trend of decreasing hardness in the weld metal as

the aciculer ferrite lath size increases.

I11.3. ELEMENT EFFECTS

An aspprosch often taken to quantify the effect of alloy
elements in weld metal is to relate the transformation
nrocducts to & combined hardenability index such as an
effective carbon equivelent. A carbon equivalent as
formulated by Ito and Bessyo (82), which was initially used
as & cold craecking perameter, has been used successfully to
determine the relative hardenability of various microalloyed

steels (83-84). This empirical expression is:

C+ (Mn + Cu +Cr) + Si+Ni +Mo+ V5B (12)
20 30 60 15 10

Pem =

Al a L

et i,
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where _ompositions are in weight percent., Figure 23 shows
the Pcm carbon equivalent plotted against the volume percent
acicular ferrite for each weldment., As the weld metal
carbon equivalent is increased from 0,18 to (.21, the
acicujar ferrite content in the microstructure increases
from 26 to B85 percent. The volume percent grain boundary
ferrite as well as the total amount of primary ferrite was

plotted ageinst the PC carbon equivalent and is shown in

m
Figures 24 and 25 respectively. Both exhibit a decreasing
trend in eirther grain ooundary ferrite or primary ferrite
wilh incresasing carbon equivelent.

Grong (853) has reviewed the current literature, a&and
shown that the Ito-Bessyo carbon equivalent is an indicator
of the microstructure developed in weld metel only if the
titanium Jlevel is greater than approximately 0.0045 weight
percent, as shown in Figure 26, The titanium contents in
the weid metals of the current study were plotted against
the percent acicular ferrite in Figure 27. These data show
the same trend as that presented in the previous figure.

The two solid squares in Figure 27 represent welds (CSM +
Mo)-OP and (CSM + Ti/Mo)-OP. For these welds, one of the
differences between their respective weld metel compositions

was that weld (CSM + Mo)-OP did not contain titanium.

Although titanium can not be sassumed to be the only
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important microalloying element, Figure 27 suggests that it
is indeed important to the promotion of acicular ferrite.
Since titanium and boron have been shown by resear~hers
(14,39-40,42,57,60-67) to have a favorable effect on the
production of acicular ferrite, the calculation of the
amount of boron per grain boundary area was made (see
Appendix D) using the assumption that all the boron was at
the grain boundaries. This is a reasonable assumption based
on the result of Hondros and Seah (86) who showed that only
one in ten thousand boron atoms would remain in solution in
the lattice and not at the grain boundaries. Weld metal
boron content per grain boundary area was plotted against
the volume percent acicular ferrite, as shown in Figure 28,
An increase in the amount of acicular ferrite (from 26 to 85
volume percent) with a corresponding increase in grain
boundary concentration indicates that boron helps in the
production of acicular ferrite, probably by suppressing the
grain boundary ferrite transformation (39-40,42,60-61).
Figure 29 shows the weld metal boron content per grain
boundary area plotted against the percent grain boundary
ferrite. A Increase in grain boundary concentration was
shown to decrease the amount of grain boundary ferrite in
the weld metal from 18 to 5 percent. The two dark squares

in this plot represent welds TB-OP and (CSM + Ti/Mo)-OP,

i . U S L e aeCna” - S Cr o e d ik a i Ao

P Bemdede il o) B

e

PRSP EP S

PRSIy T




LA Sutl Sbut aren mu mbek-gBde

A" v g

Wy

Ty

g R vwwged

Sl gl et sk Sk Wi bl )

"R

T

= ©SUO(1841U30U0D uoJoq AJepunoq uiBJI3 3A1103d53J
J19y} jJo uorjouny 8 su aie[(d qN-OW-UW-D paJadwdy pus payouanb uo pawdojiad
Sp[{om 248 padsowgns Jo 311II0] JBINOIOEB ]O afejuoosad awnjoa 3y)], °g7 aJndt]
e1-01 x ANEE\mEo.oV NOILVHLIN3IONOD NOHO8 AHVANNOB NIVY9
Se G Sl G0
T T T T T T T T
B 1 02 _..m
. B
(@)
m
5 p
l
- 1 0ov
_m, o
@
C
—
P
= % 1 09 2
-
m
X
0
— —
i \W 08 m
0 SPIaM Ut/f% G
(]
> 2iD|d GN-OW-UAN-D 18 0
M 1 1 | 1 1 ) 1 1

A . S - ./ - .. . -
| " I PRI W S SRy P - . LA &b T /S {} e PRI ) -




w. . 'm - _ ' J . - g - . _ . . A ,... _ " Al S 'ﬂ Clnliat e _ T e _ g '1. vy, -
ﬁ. N
”_ ]
¥, L
v .
ﬁ.
[ :
v. ...
- -« *SU013IJIU3OUO0D uodaoq AJgvpunoq uiwdd aarioadsaas Jirayy !
m. = Jo uotilouny v s8 3318]d QN-OW-UW-) paJadwd) pus payduanb uo pawdsojiad spiom
m. dJ8 padJawgns Jo 81(JJ9) AJspunoq utrJdd jo a3mjuadiad awnjoa 3yl 67 24n314 J
Y. 4
w. ¢-Ol % (zWw /swoio) NOILVHLNIOINOD NOYHOS AHMVANNOS NIVYHY {
] S¢ G2 Gl G0 ]
r._ T T T T T T T ! :
d -
3 .L
s o -1 G 0 1
O b
4._ m :
v i o
: = |
- )
d0-81
) 20
. - 40 2 .
Z
@ B
O -
dO-ON/'L ¢+ NSO C
™ T 4 Sl =
y O
: g 1
P
Tlll <
-
_ - 102 M
: SPI9M ul/ MY G2 - D
(]
- 310jd QN-OW-UWN-D 18D m
M | 1 ] 1 1 I L 1 -
,..
-
| N Y " p;>‘\' _




T ey

——————

> Al T A ik e St T e i S i (st N Y A Sk Nl Mk e St AR AR S A et~ ol d AUEL SR Aan S et et e i ae

FV, ¢

0
e e RSN

T-2942 15

with the main difference between their respective weld metal
concentrations being a change of 0,0010 weight percent
boron. This extra amount of boron changes the
transformation behavior of the weld metal enough to decrease
the volume percent grain boundary ferrite from 18 to 7
percent. Thus, the amount of grain boundary ferrite lossed,
corresponds to the gain of acicular ferrite that was shown
in Figure 28. Although boron can not be assumed to be the
only important microalloying element, Figures 28 and 29
agrees with other researchers (39-40,60-61) in showing that
boron is indeed important in suppressing the nucleation of
allotriomorphic ferrite.

Recent literature has shown (87) that excessive amounts
of boron or titanium will be detrimental to the weld metal
properties; thus, a specific amount of titanium and boron
are required to produce the desired microstructure. The
optimal values of these two elements are affected by other
elements such as oxygen, nitrogen, aluminum, manganese,
molybdenum, and nickel, as well as the welding parameters
(87). Comparing the experimental weld metal compositions in
Table V with data from researchers in Table Il (57,62-67),
shows thet the optimal values of titanium and boron have not

been exceeded.

LISA e e aatey

Lo

RITLR & W WY

e N

s




TR

g

L FELNL A S el e g

T~

MR A S M St AL RS Y e A v i S st Sl S g S AiC Sads EA) B S ANA A AN St aP S St sk e s sk S e S o

T-2942 76

111.4. MECHANICAL TESTING

Subsize Charpy specimens were tested from welds TB-OP
and CSM-OP at various temperatures and these results are
presented in Figure 30, Weld TB-OP, which is the best weld
microstructurally, exhibited & transition temperature of
about -100°C, while weld CSM-OP, the worst weld in terms of
microstructure, showed a transition temperature of -40°C.
Trte fracture surfaces of these impact specimens are shown in
Figure 31, showing the percent shear fracture at their
respective test temperatures. Subsize tensile bars were
tested from welds TB-OP and CSM-OP and they exhibited the

following weld metal yield strengths:

WELD YIELD STRENGTH
TB-0P" 80 ksi
csM-0p" 70 Ksi

Corparing these results with the data in Figure 30, a fine
interlocking acicular ferrite microstructure was shown to
enhance the toughness of the weld as well &s improving the
weld metal yield strength, while welds that contain & large
amount of primary ferrite and bainite will exhibit poorer
weld metai properties.

Recorded impact velues of subsize lzod specimens that

PP e W

P P PSPt

st

ad




[
b e *3aJinjwsadway Jo uorjodoun) B8 sB
' 3181d QN-OW-UW-D padadwal pus payouanb uo pawdojiad spiam dJ48 padaswans
i om) Jo sanjevAa jovdwi AdJBy) (umw 0°SS X 0°01 X 0°G) @azisqng °(, J4ndiy

(Je) 3HNLVHIAWIL

001 (o) 00lI- 00¢2-
ﬁ Y L g Y L T T T T T T T T T
” ot} do
4
X m
. - ) >
! ) m
3 D
: ON o ) o
<
-1 G¢
- >
. m
) wn
o) A L w
ui/ry GL oy
: | $91}10d0sd 1 M
pPIp|am sD 4 0Ov .
: 09} . = )
] 5
- # z
: : ]
V. S o8t §idep wwQ| X Wiy wwg | ng 1
g w.. —_ 159 §o0dw) Adiby) 921SQNS WISV
T ) [N R A
b = ~ 'y 4 Iy i A 1 4 i i A L )
7 (de) OGI 0 oS! - 00¢-

~

-




'ﬁl.!..i 7 “ 41 e Lond n T h enae) .q. T .1 v T v " 1\‘ M " M e re————
.

[ o]
. t~
. rooundeodde odanijord) uo adnirndadws)
[ Summoys 21w [d aN-oOl-uUp- pododwol pue payouanb uo pawdojaad
- oml JO soorIJdnNN adaniorvd] Adany) (wuogtec X ptol X a°¢)
.
b

0 O 0G6- 06- 0L- 0.4- 06- 06-

F.
b
x
S
3
w
r..
ﬁ_
8
s
!
.
5 ~

-
2 > 0 0 Gp-  Gb- 06- 06- G2I- Gll-
4 K
: =

JO 109119 9y}

Splom doJr pojJlawgns

a7 1sqng

*1¢ @Jndtyg

(Do)
ainjosadwa |
isa ]

d0-WSD

d0-81

(Do)
anjpiadwa |
isaj




v

P
P .

5y

e
/

M T T % T TS TN LW T Y - W T . R W W W e T WU WS W w L e vy w

T-2942 78

were tested from all seven experimentel welds at -40°C, were
plotted against the volume percent of acicular ferrite, as
shown in Figure 32. These data exhibit an increase in
energy absorbed from 9 to 38 ft-lbs as the volume of
acicular ferrite increases from 26 to 85 percent in the weld
metal. These results correlate well with Figure 33, which
shows the same .acrease in energy ebsorbed as the primary
ferrite content decreases from 37 to 11 percent. The two
solid squares in Figure 33 represent welds TB-CaO and TB-
Mg0O, with the only difference between them being the flux
compositions. Figure 33 shows that the weld made with the
MzO flux produced more primary ferrite in the weld metal
microstructure and thus exhibited poorer toughness than the
weld mede with the CaO flux. These results indicate that
MgO does not simply substitute for Ca0O as & submerged earc
fiux ingredient.

Figure 34 shows the fracture surfaces of the subsize
lzcd specimens. The percent shear fracture was measured
from the Izod specimens and these results are plotted
against the volume percent acicular ferrite in Figure 35,

As indicated in Figure 35, an increase in percent shear from
10 to 100 percent was observed as the acicular ferrite

volume fraction incressed from 26 to 85 percent. Figure 36,

which is a plot of the energy absorbed at -40°C versus the
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mean acicular ferrite lath size, exhibits a decrease in the
energy absorbed from 38 to 9 ft-lbs as the lath size
increases from 1.4 to 2.4 microns. Figures 35 and 36
support other previous work (1) in showing that by
increasing the percent acicular ferrite in the weld metal,
and decreasing the acicular ferrite lath size, improved weld
metal properties will be obtained.

Weld metal fractographs of the Izod specimens were
taken at 1000X. The centerline fractographs, which are
presented in Figures 37a 37b, 37c¢, and 37d, were taken at
the root of the notch and 0.6 mm in from the notch. A
schemetic diagram showing where the fractographs were taken
is located in the bottom left hand corner of the photographs
in Figures 37a, 37b, 37c, and 37d (the crack propagates from
left to right). The surfaces in Figures 37a and 37b show
the different fracture appearances produced by changes in
the flux during the welding operation. Weld TB-OP features
a microvoid coslescence fracture mechanism with some tearing
both at the notch and at 0.6 mm from the notch. Welds TB-
CaO and TB-MgO also exhibit microvoid coalescence, but weld
TB-CaO conteins more elongated tearing dimples at the notch,
which become equiaxed dimples as the crack front propagates.
In contrast, weld TB-MgO exhibited elongated dimples

throughout. A correlation can be made between the fracture
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surfaces of the welds and their respective weld metal
microstructures, presented in Figure 19a. As the percent of
acicular ferrite decreased in the weld metal (going from

weld TB-OP to TB-CaO to TB-MgO), the fracture surface

changed from upper shelf microvoid coalescence to elongated
- tearing dimples, indicative of being in the transition range '5
. of the impact curve. Although weld TB-SiO2 contaeined more ﬁi
F equiaxed dimples on the fracture surface compared to welds 4

TB-CaO and TB-MgO, large inclusions and other second phase o

particles were found on the surface which could explain the
lower impact energy exhibited.

Figures 37c and 37d show the different fracture
surfaces produced by changing the wire composition during
the welding procedure. Weld (CSM + Ti/Mo)-OP, which does
not contain boron in the weld metal as compared to weld TB-
OP, exhibited an elongated dimple, tearing-type fracture
mechanism at the notch, which reverted to equiaxed microvoid
coalescence as the crack propagated onward. Both welds (CSM

+ Mo)-OP and CSM-OP show a small amount of mierovoid

coalesence at the notch center which then immediately
transformed into a cleavage fracture mode as the crack

x propagated onward., Cleavage type fracture is a brittle type

failure mode which will occur on the lower shelf of the

transition curve and explains why both welds exhibited poor
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impact toughness values. Weld (CSM + Mo)-OP, which does not
contain titanium, shows & drastic difference in the fracture
appearance when compared to weld (CSM + Ti/Mo)-OP. The
fracture mechanism changes from a microvoid coalescence mode
to a cleavage mode when titanium is not present in the weld
metal. On the other hand, adding molybdenum to the weld
metal, as in weld (CSM + Mo)-OP, does not seem to have much
effect on the fracture appearance or the impact properties
as compared to weld CSM-OP. The same correlati- ) be
made between the fracture surfaces of these w s and their
respective weld metal microstructures presented ~ /Figure
19b. As the amount of AC (in this case bainite) in the weld
metal increases [going from TB-OP to (CSM + Ti/Mo)-OP to
(CSM + Mo)-OP to CSM-OP], the fracture surface changes from

upper sheif microvoid coalescence to lower shelf cleavage.

111.5., EFFECT OF PRIOR AUSTENITE GRAIN SIZE

Weld metal oxygen content was plotted against the
volume percent grain boundary ferrite for each weldment and
these results are shown in Figure 38. As the weld metal
oxygen increased from 0,011 to 0.051 weight percent, the
grain boundary ferrite increased almost linearly from § to
18 percent. Figure 39 exhibits a virtually linear

correlation between the weld metal oxygen content and the
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prior austenite grain size, As the weld metal oxygen
increased from 0,011 to 0.051 weight percent, the prior
austenite grain size decreased from 100 to 70 microns. This
can be explained by the work of Liu (88), which showed that
increasing weld metal oxygen content increased the inclusion
volume fraction, &s shown in Figure 40. Futhermore, Liu
also showed (see Figure 41) that the inclusion size
decreased with increasing weld metal oxygen, if all the
particles having a diameter greater than 0.08 microns are
counted. This result is in contrast to the results of
others (89-90), who have reported that average oxide
particle size increased with increasing oxygen content,

Fine second phase particles are known to increasingly
inhibit grain growth as the particles get smaller and more
abundant in the weld metal (91-92). This explains why
increasing the weld metal oxygen content will decrease the
prior austenite grain size., Figure 42 relates the prior
austenite grain size to the amount of grain boundary
ferrite, and shows that increasing amounts of grain boundary
ferrite will be formed aes the prior austenite grain size
decreases., These results indicate that if the austenite
grain size (which is dependent on the amount of oxygen)
decreases, more austenite grain boundary surface will be

available to provide nucleation sites for grein boundary
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ferrite. B
An approximate measure of the fraction of grain
boundary ferrite created from a certain austenite grain size

can be obtained from a specific form of the Avrami equation:

X =1 - exp(-2SGt) (13)

where X is the volume fraction of allotriomorphic ferrite, S
is the grain boundary area per unit volume, G is the growth
rate of the ferrite/austenite boundary, and t is the
reaction time, Figure 43 shows a schematic comparing low
oxygen weld metal to high oxygen oxygen weld metal. The
prior austenite grain size will be smaller for high oxygen
weld metal contents, thus allowing more grain boundary
ferrite to be nucleated which will be detrimental to weld
metal properties. But for lower oxygen contents, a increase
in austenite grain size will result, producing fewer
nucleation sites for grain boundary ferrite. Thus, more
acicular ferrite will be created, resulting in improved weld
metal properties. Liu (88) modified Equation 13 by

assuming: 1) that all the potential nucleation sites are

consumed in the process (i.e. site saturation), 2) that .
diffusion-controlled growth occurs in both directions

perpendicular to the boundary, and 3) that the grain shape
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AVRAMI KINETICS : g.;g}l

X
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: -
- exp (kt2) s
i X
I-exp(°4¢'2) ,f
d i:'_‘,‘»'i
(const) -

x
"

Ln(l-X) =

U TR

Figure 43. Schematic comparing low oxygen weld metal to o
high oxygen weld metel showing the Avrami relationship -.j
between the volume fraction of grain boundary ferrite 1
and the prior austenite grain diameter.
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is eylindrical. By using these assumptions he showed the
growth rate to be:

1/2 (14)

G = dr/dt = 1/2gt"
where o is a parabolic rate constant that has been measured
by Kinsman and Aaronson (93) for various alloyed steels.
Assuming that each grain is sharing with another, the

surface area per unit volume can be shown to be:

(15)

where d is the average diameter of the austenite grains.
Putting these values into Equation 13, the following

equation can be obtained:

X =1 - exp(-2a tl/z) (16)

d

Taking the natural logarithm of both sides gives the

following:

In (1 - X) = (20 tY/2) « 174 (17)
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Equation 17 indicates that the natural logarithm of the
volume fraction of grein boundary ferrite transformed should
be proportional to the reciprocal of the austenite grain
diameter. Figure 44 shows the correlation between the
average austenite grain diameter and the volume fraction of
weld metal grain boundary ferrite. Christensen (94) showed
that the reaction time (& tg,, .,,) for submerged arc welds
can be estimated if the plate thickness and heat input are
known. By using a 3/4-in-plate thickness and a 3.0 KJ/mm
heat input, 8 reaction time of 21 seconds was calculated for
the experimental welds. Aaronson and Kinsman (93) measured
the grain boundary ferrite thickness and plotted it against
the growth time for iron-carbon alloys so that the parabolic
rate constants could be calculated. Their maximum and
minimum values of the rate constant for a 0.11 weight
percent carbon alloy was calculated to be 3.0 and 2.0

um/secl/2

respectively., By using 21 seconds for the
reaction time and the maximum and minimum values for the
parabolic rate constant, theoretical lines were calculated
using Equation 17 and plotted on Figure 44 to see if the
experimental date compared to the theoretical data. As
Figure 44 shows, the experimental deta fits in between the

theoretical lines., Using a regression analysis on the

experimental deta, a value for a was calculated to be
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2.4 um/sec”2

y» Which falls between the theoretical range of
Aaronson and Kinsman (93). These data imply, by increasing

the prior austenite grain size, the percent grain boundary

| P s s _a A b v e s

ferrite will decrease in the weld metal, thus providing e
better microstructure in terms of weld metal toughness.

Although the austenite grain size is probably the most

'R
A w e aa sk

important parameter affecting the transformation of grain
boundary ferrite, other factors such as weld metal boron
content can also have an effect, as shown previously in
Figures 28 and 29,

Transforming Equetion 16 and assuming a constant for X
and a, one can show thet the square of the austenite grain

diameter is directly proportional to the reaction time:

<
AL & a

42 = ( 24 )% st (18)
In 1-X
]
In the case of the seven experimental weldments, the largest
prior austenite grain size (given in the Appendix) was N
]

I‘JJ Ao ol u £ EK

approximately 100 microns, while the smallest grain size was
approximately 70 microns. Therefore the ratio of the
x largest prior austenite grain size versus the smallest

. squared is:
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E This result shows that no matter what constants are ;
3 appropriate for a and X, the observed change in prior N

austenite grain size should effect the transformation time
] for alltriomorphic ferrite by a factor of 2. This idea is <
I schematically displayed in Figure 45. Increasing the prior

austenite grain size from approximately 70 mierons to

*. approximately 100 microns decreases the transformation time {
b
for grain boundary ferrite by a factor of 2, thus producing e
j @ finer acicular ferrite microstructure. ;
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L Figure 45, Schematic of a continuous cooling
e trensformation diaegram of a microalloyed HSLA steel 3
- weldment showing the effect of prior austenite grain '
size on weld metal microstructural transformation.
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IV. CONCLUSIONS

The largest amount of weld metal acicular ferrite
was produced in a quenched and tempered C-Mn-Mo-Nb
base plate by using the commercially available
OP121TT welding flux and the TiBor-22 welding wire.
Weld metal made from these consumables also

exhibited the best mechanical properties.

High SiO2 fluxes produce weld metal which is
high in oxygen and silicon and low in manganese
and carbon. High oxygen welds contain relatively

lerge volume fractions of grain boundary ferrite.

Replacing MgO with CaO in the flux produced a
slightly coarser microstructure which exhibited
poorer weld metal properties. This result
implies that in welding fluxes, MgO does not
simply and equivalently substitute for CaO as

has been previously reported.
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4. Increasing amounts of acicular ferrite, and thus .4
decreasing amounts of primary ferrite, correspond
with increasing Ito Bessyo carbon equivalent
numbers (in the range of 0.18 - 0.22) for submerged - -
arc welds performed on quenched and tempered

C-Mn-Mo-Nb plate. Z;f

5., Microalloy additions of titanium and boron, 1
together with low oxygen activity, are effective
in producing weld metal with large fractions of :

fine acicular ferrite.

6. Increasing weld metal oxygen content will create

many fine oxides which pin the austenite grain

boundaries and decrease the prior austenite

P
o T LI

grein size, thus producing more surface area for

. 4
graein boundary ferrite nucleation. 7
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i 7. A predominant effect of high weld metal oxygen , :
3
content is to increase the volume fractions of .o
grain boundary ferrite through a reduction in
austenite grein size, Fractions of grain iJ
. V.1
r:f' boundary ferrite can be adequately predicted by B
- =
F - means of well-established overall transformation E
j kinetics theory. » :
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v Appendix E. Submerged arc welding machine used for
bead on plate weld tests.
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