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ABSTRACT

Experimental submerged arc welds were made on quenched

and tempered 3/4-in.-thick C-Mn-Mo-Nb plate using various

combinations of filler wires and fluxes. The welds were

made under conditions of constant heat input (75 kJ/in) and

a constant deposition ratio of wire speed to travel speed of

13.

Standard quantitative metallographic techniques were

used to evaluate the volume fraction of the weld metal

microconstituents, the acicular ferrite lath spacing, and

the average prior austenite grain size. Along with hardness

values, other weld metal properties were obtained from

subsize (5.0 x 10.0 x 55.0 mm) Charpy V-Notch specimens,

subsize (7.6 x 7.6 x 55.0 mm)-Izod specimens, and subsize

(5.0 x 9.5 x 101.6 mm) tensile specimens.

Results indicated that a commercial low SiO , high CaF
2' 2

flux, combined with a filler wire microalloyed with

titanium, boron, and molybdenum, provided the optimal

microstructure in terms of weld metal properties. Welding

with a high SiO flux was shown to produce high oxygen in
2

the weld metal, increasing the volume fraction of grain

boundary ferrite. The study further indicated that

replacing MgO with CaO in the flux produced a slightly

iii
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coarser microstructure which exhibited poorer weld metal

properties. This result implies that MgO does not simply

substitute for CaO in submerged arc welding fluxes. The

experimental results also showed that the low SiO 2, high

CaF flux alone did not produce good weld metal
2

microstructures in the absence of microalloyed filler wire.

The percentages of acicular ferrite increased systematically

with increase in the Ito-Bessyo carbon equivalent in the

range of 0.18 - 0.22. Experimental mechanical testing

confirmed the generally accepted principle that increasing

volume fractions of fine acicular ferrite will result in

improved weld metal properties. Further analysis indicated

that increasing weld metal oxygen content in the range from

100 to 500 ppm reduced weld metal toughness through a

austenite grain boundary pinning effect. At high oxygen

content, fine oxide particles were assumed to refine the

austenite grains, thereby allowing formation of larger

fractions of grain boundary ferrite. The fractions of

ferrite formed for a given grain size were shown to be

consistent with fractions predicted by well-established

overall transformation kinetics theory.

0
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I. INTRODUCTION

1.1. MICROALLOYED STEELS

High strength, low-alloy (HSLA) steels, which have been

developed for high strength and toughness applications such

as arctic linepipes, are superior to plain carbon steels,

but cost significantly less than alloy steels. Other

desired properties of microalloyed steels include good

weldability, good ductility, good formabiliy, and high

fracture resistance. Microalloyed steels are typically low

carbon-manganese steels with small amounts of elements added

such as niobium, vanadium, aluminum, or titanium. High

yield strengths are largely obtained through a refinement of

grain size, produced by the addition of these elements in

combination with various forms of thermo-mechanical

processing. In addition to increasing the yield strength, a

fine ferrite grain size also enhances toughness and

increases the ductility. The size distribution, shape, and

volume fraction of non-metallic inclusions and second-phase

particles will also influence the mechanical properties of

HSLA steels.

Submerged arc weldments of microalloyed steel also

obviously require high strength and toughness properties

which are governed by the weld metal microstructure. The

I0
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optimal microstructure for carbon-manganese steel weld

metals has been generally agreed upon to consist of a high

amount of acicular ferrite (1). This fine grained, high

angle grain boundary microstructure gives optimal weld metal

strength and toughness properties. The influence on weld

metal mechanical properties as controlled either by the

microconstituents or by inclusions was investigated by

Taylor and Farrar (2). They showed that below 300 ppm

oxygen, the effects of the microconstituents were to

dominate the mechanical behavior; between 300 and 600 ppm

oxygen, there was shared microconstituent and inclusion

control; and above 600 ppm oxygen, the inclusion effects

were dominant. The mechanical properties are controlled by

a number of factors including welding process parameters,

(current, voltage, and travel speed), welding consumables,

(composition of flux and filler wire), and base metal

composition.

1.2. WELDING CONSUMABLES

The consumed materials in submerged arc welding include

the wire electrode and the welding flux. The welding

consumables contain balanced additions of various alloying
0

elements (Nb, V, Cu, Ni, Cr, Mo, 8) and complex deoxidizers

(Si, Mn, Al, Ti) to develop the optimal weld metal

0." ..
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microstructure. Alloying elements may change toughness

through solid solution effects in ferrite and modifications

of the microstructure, which include grain size, the type of

transformation product (hardenability), and the type of i0
carbides produced. The microstructure and its related

mechanical properties of HSLA weldments will depend on the

multiple interactions of the welding consumables and the

baseplate.

1.2.1 The Nature Of Fluxes
.0

The submerged are welding fluxes, which are granular,

fuseable, mineral materials containing oxides or carbonates

of manganese, silicon, calcium, magnesium, aluminum,
S

titanium, sodium, and other compounds such as calcium

fluoride, have a variety of functions (3) which include:

1) protecting the weld pool from the atmosphere

(oxygen, nitrogen, and hydrogen).

2) deoxidizing the weld pool.

3) decreasing the impurities in the weld, or weld

pool refining.

4) stabilizing the arc.

5) controlling the weld metal composition.

6) insulating the weld.

,0

_ 0•
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7) controlling the bead morphology.

1.2.2. Chemical Reactions Of Submerged Arc Welding

The chemical reactions occur very rapidly in welding as

compared to ladle refining in steel because of both the

extremely high metal temperatures involved, and the very

large slag/metal and gas/metal interfacial area available

for interaction. However, the characteristic non-isothermal

nature of arc welding makes it is very difficult to outline

the sequence of reactions taking place during various stages

of the process. As a result, the understanding of weld

metal chemistry is far less developed than that of

steelmaking. As a consequence, predictions of the weld

metal chemical composition, based on those of the welding

consumables and the parent plate, must be done solely on

empirical grounds, and it is only possible at present to

describe the reaction pattern in general terms.

The chemical interactions taking place during submerged

arc welding can be derived from a simplified two step

reaction model proposed by Grong and Christensen (4). This

model assumes:

1) A high temperature stage, where at least some

of the reactions approach a state of

4 " 5": .
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pseudo-equilibrium.

2) A cooling stage, where the concentrations

established during the initial stage tend to

re-adjust by precipitation of new phases.

In the case of submerged arc welding, the high temperature

stage include both slag/metal and gas/metal interactions,

the former factor being more important. This stage includes

reactions occurring at the electrode tip, in the arc plasma,
and in the hot part of the weld pool. The cooling stage

starts immediately after the passage of the arc and is

characterized by deoxidation reactions, such as

precipitation of non-metallic inclusions in the bath,

succeeded by a more or less complete separation of the

dispersed particles. The boundary between the two stages is

not very well defined, which means that deoxidation and

phase separation may proceed simultaneously with oxidation

in the hot part of the weld pool. In the following, the

sequence of chemical reactions in submerged arc welding will

be briefly discussed in light of this two stage model.

In submerged arc welding, the flux will be the main

source of oxygen due to its content of easily reduced oxides

such as SIO 2 , MnO, TiC 2 , etc. Consequently, during the high

temperature stage, oxygen will be introduced into the weld

*.'.

• - ..... - - .. .. .. - .> .. - .- ]
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metal (location of the main reaction is not known at the

present state) to an increasing extent, with an increasing

oxygen potential of the flux, according to the overall

reactions:

(SiO 2) =Si + 2Q (1)

(MnO) = Mn + Q (2)

(TiO) = Ii + 20 (3)

During cooling of the weld pool, a supersaturation with

respect to the various deoxidation reactants is initially

increasing. When the conditions for nucleation of the oxide

inclusions are reached, deoxidation by a specific reactant

will occur. Thus, conditions for competitive reactions

between the various deoxidation elements, either introduced

by the filler metal or the base metal, are established.

These processes can lead to loss of certain deoxidation

elements not present in the flux, and to a pickup of

deoxidation elements present as oxides in the flux.

The degree of deoxidation achieved will be determined

by the possibilities of the oxide inclusions to collide,

grow, and float out of the weld pool before metal

0 , ": .. . - . . . - . . " " "
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solidification. As a result, it is very difficult to

predict on theoretical grounds the final weld metal oxygen

content.

Early investigators (5-8) attempted to improve the

toughness of submerged arc welds by varying the standard

high silica SiO 2-CaO-MgO flux. Poor toughness properties

were attributed to the large volume of inclusions and high

amounts of oxygen and silicon in the welds. Lewis, et

al.(8) obtained welds with lower oxygen contents (450 ppm as

compared to 960 ppm) and fewer and smaller inclusions using 0
a modified flux which consisted of 40% CaO, 20% SiO 2 , 20%

2'2CaF 2, 10% MgO, and 5% TiO 2 . They found that CaF 2 and TiO 2  J

additions were beneficial in improving the weld metal

toughness. Lower weld metal oxygen contents (and thus

higher weld metal toughnesses) are now being obtained with

new submerged arc welding fluxes that are based on lower

silicon contents, and usually with a substantial CaF 2

content. Researchers have shown large variations in weld

metal oxygen content with both FeO and CaF additions to
2S

manganese silicate and calcium silicate flux systems, as

shown in Figure 1 (9-10). Data such as these show the

importance of developing advanced submerged arc welding

fluxes to produce the optimal weld metal microstructure.

Researchers (11-12) have also shown that as the oxygen
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Figure 1. Weld metal oxygen content as a function of CaF 2

andFeO additions to the flux.
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content varies due to different flux basicities, the

inclusion composition will also change. In the iron and

steel making industries, the concept of basicity is used to

describe the refining behavior of the slag. Oxides are

either classified as acid oxides or basic oxides depending

on their capacity of forming or breaking anion networks.

Tuliani, et al., (13), proposed a basicity index (BI) that

is now the most commonly used in welding metallurgy today.

It reads as follows:

BI CaO +CaF 2 + MgO + K2 0 + Na 2 0 + Li O + 1/2(MnO + FeO)

SiO 2  1 1/2(A1 20 3 + TiO 2 + ZrO 2 )

(4)

A decrease in the total number of non-metallic inclusions is

normally associated with an increase in flux basicity.

Researchers (13-16) have shown that an increase in flux

basicity will decrease the amount of oxygen in the weld

metal and improve toughness. Eager (17) has recently shown

that, by using two different forms of the basicity equation,

the weld metal oxygen content drops from 900 ppm to 300 ppm

for a basicity index change from 0.5 to 1.5 and then remains

constant with increasing basicity.

Tuliani, Boniszewski, and Eaton (13) admitted, however,

, 6 . " ... .," . . . . _ , • ." . .. . .
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that their basicity index equation had a serious error in

that it was unable to correlate the strength and toughness

of welds made with high Al 20 3, TiO 2, and ZrO 2 fluxes

correctly. Submerged arc welds using a variety of reagent

grade manganese silicate fused fluxes were made and studied

by Indacochea and Olson (18). They found that by holding

the SiO 2 content constant at 40 percent, the weld metal

oxygen content increased with FeO additions (see Figure 2).

These results contradict the basicity index theory wherein

MnO and FeO are considered to have equivalent behavior.

Palm (19) could not justify how the mechanical properties of

the weld metal could be fully characterized by the basicity

of the flux. Other researchers (20-21) also agreed that

using the basicity index to determine the weld metal oxygen

content was fortuitous. They (19) explained that the

oxygen's chemical potential, which represents the driving

force for oxygen transfer from the oxide flux to the weld

metal, is the important factor involved, not basicity. A

high acidic oxide such as Al 0 has a very low oxygen
4~ 23
chemical potential, while basic oxides such as FeO and MnO

have relatively high oxygen chemical potentials.

L
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Figure 2. Weld metal oxygen content as a function of Feo
additions to the flux.
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An oxygen chemical potential equation for acidic fluxes

was proposed by Noor (21):

100 - (FeO + MnO + SiO 2 + TiO 2  (5)

(FeO + MnO + SiO 2 + TiO 2 )

where Of is the oxygen potential in the flux.

Unfortunately, this equation fails to predict the behavior

of the more commonly used basic fluxes.

Other approaches to define basicity were also proposed

and applied (22). Wood (23) suggested that the silica

activity in the submerged arc welding flux should replace

the basicity index. Wegrzyn (24) showed that the amount of

manganese and silicon in the weld metal and the ratio of

manganese to silicon could control the oxygen content in

submerged arc welds made with neutral or basic fluxes.
S

Although there have been multiple attempts to develop a

simple parameter to represent the behavior of welding

fluxes, none of them have been totally correct. Thus, more

fundamental research in this area is necessary to develop an

adequate empirical formula.

' .-. i".~~~ ~~~ . . . ."-. . .. .'" - . .. ., "
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1.3. VARIOUS MICROSTRUCTURES OF HSLA WELDMENTS

The final weld metal microstructure, and thus

toughness, in microalloyed steel results from the combined

effects of the solidification structure and the

corresponding decomposition of austenite on cooling.

Numerous researchers (14,25-44) have attempted to

characterize the weld metal microconstituents, and the

terminology applied to these microstructures has not been

universal, as shown in Table I. The metallographic terms

used in this study follow the guidelines of Abson and Dolby

(30). The five main categories of low carbon weld metal

microstructure using these guidelines are: primary ferrite

(F), ferrite with aligned second phase (AC), acicular

ferrite (.kF), ferrite-carbide aggregate (FC), and martensite

(M).

1) Primary ferrite, which needs little or no

undercooling, occurs by a nucleation and growth process.

Primary ferrite occurs in two forms, grain boundary ferrite

(GF) and polygonal ferrite (PF). When the cooling rate is

extremely slow, grain boundary ferrite nucleates at the

prior austenite grain boundaries. The ferrite grows in

either elongated or granular form along the austenite grain

boundaries, as shown in Figure 3. The grain boundary

ferrite is usually considered detrimental in weldments

- ." I.' • i I, "
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because the ferrite veins provide for an easy crack

propagation path. Figure 3 also gives an example of

intragranular polygonal ferrite. Polygonal ferrite can be

just as detrimental to the weld metal if it is sufficiently

prevalent to provide a nearly continous crack path.

2) Ferrite with aligned second phase requires some

degree of undercooling. The boundary nucleated ferrite may

grow away from the austenite grain boundary along a

preferred growth direction as parallel laths as shown in

Figure 4. Ferrite with aligned second phase is defined as

* two or more parallel laths of ferrite having an aspect ratio

(length/width) greater than 4:1. A high proportion of

coarse AC can decrease the weld metal toughness. A main

problem using the guideline by Abson and Dolby is that

sidepiate ferrite and bainite are not distinguished, but are

both categorized as "aligned carbide" morphologies.

However, bainite and sideplate ferrite are formed by two

totally different phase transformations. Bainite is a lower

temperature transformation product than sideplate ferrite or

acicular ferrite. During cooling, bainite forms as the

final transformation product when acicular ferrite laths

fail either to nucleate or to grow to mutual impingement.

3) Acicular ferrite, which requires a greater degree

of undercooling than sideplate ferrite, is characterized by

S ii .. .,
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fine interlocking ferrite laths of high acicularity, such as

shown in Figure 5. The fine interlocking structure provides

high resistance to cleavage initiation and propagation.

Acicular ferrite heterogenously nucleates intragranularly on

non-metallic inclusions (1,15,39,45-46) and grows until

impingement. The maximum lath size is governed by the mean

spacing of nuclei. Therefore, a fine distribution of

intragranular non-metallic inclusions results in fine

intragranular laths (15). Observations by the electron

microscope (46) have shown that the acicular ferrite laths

have high angle boundaries with high dislocation

substructures. The acicular ferrite formation start

temperature is higher than that of bainite and martensite

formation, but is slightly lower than that of grain boundary

ferrite or sideplate ferrite, as shown in Figure 6.

4) Ferrite carbide aggregate (FC) is pearlite and

ferrite with interphase carbides. Ferrite carbide

aggregates, which are shown in Figure 7, need to be larger

than the surrounding ferrite laths in order to be counted

FC. The aggregates occur because excess carbon is rejected

out of the ferrite into the austenite. The pools of carbon-

enriched austenite trapped between ferrite laths then

transforms during further cooling to FC, bainite, or even

0
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martensite.

5.) Martensite (M) is formed when carbon-enriched

retained austenite pools transform at large undercoolings.

Small amounts of martensite have been reported to be very

detrimental to weld metal properties (37).

1.4. FACTORS WHICH INFLUENCE THE WELD METAL MICROSTRUCTURE

The development of the microstructural constituents

during the austenite decomposition in HSLA steel weld metal

is very complex. The weld metal microstructure is mainly

determined by the heat input and the weld metal composition.

The inclusion content, which is a function of the weld metal

composition, plays an important role in producing the weld

metal microstructure.

1.4.1. Heat Input Effects

The influence of heat input or cooling rate on weld metal

microstructure was studied by Glover (37). He showed that

decreasing the heat input or increasing the cooling rate in

low carbon steel will refine the weld metal microstructure

from coarse primary ferrite to acicular ferrite, banite, and

eventually to martensite. Figure 8 is a schematic showing

the effect of two different heat inputs on weld metal

microstructural transformation. Figure 8 shows that an

0
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increased cooling rate will change the weld metal from a

predominately acicular ferrite microstructure to one

consisting primarily of bainite.

1.4.2. Weld Metal Composition Effects

The composition of the weld metal results from the

alloying elements in the base plate, welding electrode, and

t c welding flux. The austenite decomposition

transformations will shift to longer delay times when

har,'enability agents such as manganese, molybdenum,

chromium, and boron are added. Figure 9 summarizes the

effect of hardenability changes on weld metal

transformation, and shows the importance of compositional

control to produce the desired microstructure.

Carbon is the strongest hardenabiiity agent, and is

usually selected at the lowest possible level for the

purpose of high fracture toughness and good weldability of

HSLA steels. Small amounts of carbon can cause grain

refinement, which will result in lowering the austenite-

ferrite transformation temperature, if combined with strong

carbide formers, such as niobium, vanidium, and zirconium.

0 However, excess carbon usually tends to form large cementite

particles which provide crack nucleation sites.

Manganese, which is a strong hardenability agent, will

S1

S
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strengthen the material by grain refinement and solid

solution hardening. Manganese additions from 0.6 to 1.8

weight percent were shown by Evans (47) to refine and

increase the amount of acicular ferrite in the weld metal

and decrease the amount of primary ferrite. The explanation

for this was that manganese both delays the ferrite-pearlite

transformation and depresses the bainitic transformation

temperature, forming fine-grained acicular ferrite. Evans'

study also indicated that there is an specific amount of

manganese to have in the weld deposit, (in his case it was

1.5 weight percent), which will produce optimal impact

properties.

Molybdenum is another element that has a strong effect

on hardenability (16). Molybdenum kinetically retards the

austenite to ferrite transformation, which will lower the

transformation temperature and cause a reduction in grain

size. It also suppresses the pearlite formation, giving

rise to acicular ferrite, bainite, and martensite.

Molybdenum acts in conjunction with manganese to produce

fine-grained acicular ferrite rather than coarse-grained

primary ferrite. Too much molybdenum in the weld metal will

0 produce a bainitic microstructure and/or undesirable

molybdenum carbides, both which will reduce the toughness.

Niobium has been observed to decrease the amount of

6
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acicular ferrite in the weld metal in some studies (32,48),

but in others (16,32,49-51) an increase is reported.

Invariably, additions of niobium reduced the amount of grain

boundary ferrite. Increases in niobium have shown to

increase the dislocation density (51-52), and precipitation

has been reported in the as-welded plus reheat conditions

(51-53). Niobium has been shown (32-33,53) to combine with

carbon and/or nitrogen to form a fine dispersion of

carbides, nitrides, or carbonitrides, in the austenite, thus

retarding grain growth and recrystallization. At moderate

levels of niobium of around 0.07 weight percent, molybdenum

when used in combination with niobium will increase the

toughness of the weld metal. However, at lower niobium

levels, molybdenum does not effect the toughness.

Vanadium has been observed to promote acicular ferrite

(49,54-56) for levels up to 0.1 weight percent in the

absence of other elements, e.g. molybdenum (55). However,

two studies have shown a decrease in ferrite with aligned

carbide (48,54), while another study has observed an

increase in ferrite with aligned ca,''de (57). Vanadium

carbonitrides have been observed (52,58) and behave the same

way as niobium carbonitrides, acting as grain growth and

recrystallization inhibitors only at lower temperatures.

The effects of low levels of niobium (<0.02%) and

I
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vanadium (<0.05%) have been summarized by Dolby (59). The

effects of niobium and vanadium on weld metal microstructure

and properties can differ if the cooling rate differs or if

there are changes in alloy additions. In particular, at

these low niobium and vanadium levels, observations show

that:

1) an increase in Charpy V-Notch transition

temperature occurs when t 500 < 50

seconds, Mn < 1.1%, and there are no other

deliberate alloy additions.

2) little change or some improvement in Charpy

V-Notch transition temperature occurs when

St 500 < 50 seconds, Mn > 1.1%, or

a'loying with Mo, Ni, or Ti-B is present.

3) an increase in Charpy V-Notch transition

temperature occurs when L t800_500 > 50

seconds, Mn < 1.4%, and there are no other

deliberate alloy additions.

4) an increase in Charpy V-Notch transition

temperature occurs when Nb and V are added to

multipass deposits from the wire, electrode

coating, or the flux.

0-.. .
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Titanium is an important element for improving weld

metal toughness. Titanium can combine with oxygen to form

titanium oxides (TiO) which promote intragranular nucleation

of acicular ferrite (14,42). This has been reported to be

related to a favorable crystallographic orientation between

the nucleating agent and the nucleated ferrite. Titanium

nitride particles (TiN) have also been shown to promote the

formation of acicular ferrite (39).

Titanium is commonly added with boron. The rationale

for the dual benefit is that the titanium nitride

precipitates reduce the amount of free nitrogen in the weld

metal, thus preventing boron nitride (BN) formation and

allowing boron to segregate easily into prior austenite

grain boundaries (14,42,60-61). The solute boron segregated

at the austenite boundaries seems to suppress the nucleation

of primary ferrite by a mechanism not yet clearly

understood. Relatively low amounts of titanium (<0.02

weight percent) and boron (<0.005 weight percent), are

typically added to microalloyed steel weld metal. The

optimal values determined by other researchers are

summarized in Table II (57,62-67). Titanium and boron

contents depend on both other alloying elements and on the

welding parameters of the submerged arc welding process.

ol
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The optimal ranges for titanium and boron within limits of

other elements were determined by Masumoto (68) as follows:

Ti = 0.01 - 0.05% (< 0.03% preferred)

B = 0.001 - 0.003%

Mo = 0.15 - 0.35%

Nb < 0.025%
0

V < 0.035%

Al < 0.026% (< 0.015% preferred)

0

The amount of weld metal oxygen content seems to play

an important role in determining the proper titanium and

boron values. It has been shown by Terashima (61) that the

optimal titanium content shifts to lower levels with

c ecreasjng weld metal oxygen content. Figures 10 and 11,

wi.ich were taken from this paper, show that a decrease in

o-,,en or an addition of aluminum leads to a decrease in

insoluble titanium and an increase in insoluble nitrogen.

This suggests that, with decreasing oxygen in the weld

metal, titanium fixes nitrogen more effectively because the

insoluble titanium mainly exists as an oxide or nitride.

Aluminum was shown to combine with oxygen in preference to

titanium, allowing the free titanium to combine with

nitrogen (61). Watanabe (69) showed that, in MIG welding,

S

S
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insoluble boron as well as insoluble titanium increased with

increasing weld metal oxygen. Koukabi (70) showed that, in

low oxygen (<200ppm) submerged arc weldments, the toughness

of the titanium bearing weldments was superior to the

toughness of titanium-boron bearing weldments. The

austenite to ferrite transformation temperature was shown to

increase in titanium-boron weldments with increases in weld

metal oxygen (71).

1.4.3. Weld Metal Inclusion Effects

Cochrane and Kirkwood (72), in dilatometric CCT

studies, have shown oxygen to have a major effect on the

transformation behavior of low-carbon austenite. High-

oxygen weld metals began transforming at temperatures

considerably above those of lower oxygen deposits, and they

also proceeded to completion more rapidly as compared to the

low oxygen weld metals. In low-carbon (0.08 %), high-

manganese (1.8 %) weld deposits, Garland and Kirkwood (73)

observed the formation of acicular ferrite using basic

submerged are welding fluxes with weld metal oxygen levels

below 0.03 weight percent. However, a bainitic

mierostructure was obtained by using acidic fluxes which

gave oxygen levels of 0.07 to 0.1 weight percent. The weld

metal transformation behavior was explained (1,73-74) to be
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influenced not by the effect of oxygen in solution but by

the oxygen as it affects the number of small inclusions

available as potential nucleation sites for transformation

products during continous cooling.

Researchers (75-76) have found that the inclusion shape

and composition changes with the flux, and that different

inclusions may nucleate different microstructures. This

could be attributed to the inclusion/matrix interfacial

energy, which would change with differences in composition

of the inclusion. Pargeter (76) showed an association

between inclusion type and microstructural constituents.

Specifically, he found that inclusions containing manganese

and silicon, with or without sulfur, were associated with

coarse grain boundary ferrite and ferrite with aligned

carbide, as indicated in Figure 12a. Aluminum-bearing

inclusions seemed to be associated with acicular ferrite,

Figure 12b. Thus it seems that weld metal oxygen is only

indirectly related to the formation of a specific ferrite

microstructure, but the density and size distribution of the

inclusions appears to play an important role in the

nucleation process of ferrite.

j0
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I. MATERIALS AND EXPERIMENTAL PROCEDURE

II.1. FLUX PREPARATION

The four fluxes used in this study included one

agglomerated commercial flux and three experimental fused

fluxes. Compositions of these fluxes are given in Table

Ill. The commercial flux, OP121TT, is a high MgO-CaF2 - low

SiO 2  flux made by Oerlikon. This flux will be designated

"OP" throughout this report. The experimental fluxes

include a 15%SiO 2-50%NlgO-35%CaF 2  flux designated "MgO", a

20SiO 2-50CaO-30%CaF 2  flux designated "CaO
t , and a 40SiO 2-

4CCaO-20% CaF flux designated "SiO The "MgO" and "CaO"
22

fluxes are essentially equivalent, except that one contained

50* MgO while the other contained 50k CaO. These fluxes

were designed to evaluate the potential differences between

CaO and YgO additions. The fused fluxes were made using

reagent grade chemicals which were mixed, then melted in a

graphite crucible heated by a induction furnace and

protected by a nitrogen cover gas. The furnace temperature

was raised to at least 1550 C, then the crucible was

removed, and the molten flux was poured into water at

ambient temperature. The rapid quench caused the flux to

break up into fine, very brittle sponge-like pieces. The

flux was then dried under a heat lamp, and baked in a air-

* I
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0

blowing furnace at approximately 800 C to remove water and

excess carbon (introduced from the graphite crucibles during

melting). The flux was crushed to a size that screened in

the range from 14 to 100 mesh. The flux was introduced to -

the weld during the welding operation by means of a standard

flux bin.

11.2. WIRE PREPARATION

Two 3/32-in. diameter filler wires were used in this

study. These wires were: 1) TiBor 22, a commercial .1
microalloyed steel wire made by Oerlikon and containing

additions of boron anJ titanium (herein designated "TB"),

and 2) a research heat with the same base composition as

TiBor 22, but without boron, titanium, or molybdenum. This

experimental wire, designated "CSM", was produced by

shearing strips from a 1/8-in. thick plate, which were then

swaged to final dimensions and cleaned in a 60% hydrochloric

acid solution. The wire compositions are found in Table IV.

The other two filler metal compositions mentioned in Table

IV resulted when a pure molybdenum strip was added to a weld

made with "CSM" wire (designated "CSM + Mo"), or when a pure

molybdenum strip and a pure titanium strip were added to a

weld made with "CSM" wire (designated "CSM + (Ti/Mo)").

.!.I
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11.3. WELDING OPERATION

At the beginning of this investigation, welds were made

of Lukens Steel Company's quenched and tempered 3/4-in.-

thick C-Mn-Mo-Nb steel plate using a commercial wire (Tibor-

22), and flux (OP-121TT). The composition of the baseplate

is shown in Table V. The welding consumables are well known

to produce fine acicular ferrite weld metal and thus,

optimal weld metal properties. By using the commercial

product weld as the basis for this investigation, and by

keeping the heat input at 75 kJ/in (3.0 kJ/nmm), and the 0

deposition ratio of wire speed to travel speed constant at

13, a systematic variation of submerged arc welds were

produced to investigate the influence of certain

microalloying elements and flux variations in determining

the quality of microalloyed steel weld metal. The welding

parameters are given in Table VI, and their resulting

compositions are given in Table V. Note that welds TB-OP

and CSM-OP are duplications of welds TB-OP and CSM-OP

respectively.

II .4. METALLOGRAPHY

The welds were sectioned transverse to the welding

direction in at least three different areas. These areas

were then examined both macroscopically and microscopically.

-. ' " . . i -" i ".. - . . " - .. - - - .

- . .' - . . . . . . . . " . , " , - . , . . . - ' , ,, ! . .. . . - " -, .! .. " _ . . ""-'
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For macroscopic examination, the welds were ground,

polished, and etched with a solution of 85 volume percent

water, 15 volume percent nitric acid, and 5 volume percent

methanol. The samples were then photographed at the same

magnification, 4X, in order to easily calculate the bead

area, depth of penetration, and dilution of each weld.

These data are summarized in Appendix A.

The weld samples were then repolished and etched with a

2 volume percent nital solution and analyzed on the

metallograph. Since the microstructure of each weld was

relatively constant throughout, the micrographs shown in

this study were taken from the centerline of each weld bead

as viewed parallel to the welding direction. Standard

quantative metallographic techniques were used to evaluate

the volume fraction of the various microconstituents and the

acicular ferrite lath size (77). The volume fraction of the

microconstituents was calculated from over 800 point counts

at 500X and IOOOX using the guidelines for classification by

Abson and Dolby (30). The accuracy of point counting was

determined using the technique described by Gladman and

Woodhead (78). The mean lath size was determined using the

linear intercept technique on micrographs taken at 100OX.

For the purpose of determining prior austenite grain

size, the welds were sectioned perpendicular to the columnar

02
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growth direction (shown schematically in Figure 13). Prior

austenite grain diameters were then measured and averaged

using the linear intercept technique. To etch out the grain

boundaries, several etchants were tried, with the most S

successful being a 5 volume percent nital solution. The

prior austenite grain size values are summarized in Appendix

B. The accuracy of the prior austenite grain diameter

calculations were determined by following ASTM standards

(77).

11.5. CHEMICAL OOMPOSITION

The carbon,sulfur,oxygen, and nitrogen content of the

weld metal were analyzed using Leco interstitial analyzers.

All of thA remaining elements were analyzed using an ARL

34,000 Emission Spectrometer. The wire and the weld metal

were analyzed at least three different times in three

different areas and then averaged to give the compositions

listed in Tables IV and V respectively.

Compositional differences, were calculated by

subtracting the nominal value from the analytical value.

Figure 14 shows a schematic of how the nominal composition

was calculated. The nominal composition is equal to the "

wire composition multiplied by the weight of the deposited

metal, plus the base plate composition multiplied by the

'N

.S

S
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weight of the parent metal melted, all divided by the total

weight of the fused metal. A negative compositional

difference for a given element implies that a portion of

that element was removed by the slag. In contrast, a

positive compositional difference implies that the flux has

rejected that element into the weld pool. The compositional

differences for each weldment are summarized in Table VII.

11.6. KRDNESS

Weld metal hardness values were measured by using a

Rockwell hardness tester. Measurements were taken from at

least five different areas of the weld bead and then

averaged. The values were then converted to the diamond

pyramid hardness scale and are recorded in Appendix C.

Microhardness values were also taken across the center of

the weld bead. The average micro-hardness values are also

given in Appendix C.

IL 11.7. MECHANICAL TESTING

ASTV subsize (5.0 x 10.0 x 55.0 mm) Charpy specimens

(79) were machined from welds TB-OP and CSM-OP as shown in

Figure 15. Their impact energy results were measured at

various temperatures using the Tinius Olsen

4I

4 I



0T-2942 49

1 C! C C! C! C!

III C . cU-

C C

OJ C a C C C;

o 0 0 0 0 0

0 C;

Q C C> 0

t., , fnNy P
C C C C Cm0

0 C 0 0 C C

0.0

> e C C C 0

0 4 4 4

.- C ,. o - I
C ~ ~ a A. ~



0T-2942 50

0 MM Thickness
10mm A mm 5 5MM

55 mm

ASTM Subsize Chorpy Impact Tests

0 Specimen Orientation

Figure 15. Schematic of a submerged arc weld showing
* the dimensions and orientation of subsize Charpy

V-Notch specimens.
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testing machine. Subsize (7.6 x 7.6 x 55.0 mm) Izod

specimens were machined from all the weldments as shown in

Figure 16. All these specimens were broken at -40°C with

the Tinius Olsen testing machine. After both the Charpy and

Izod bars had been broken, they were washed with methanol

and stored in a dessicator. The fractured surface area was

then examined by the naked eye to measure the percent shear

fracture.

ASThI subsize (5.0 x 9.5 x 101.6 mm) tensile specimens

(80), an example of which is shown in Figure 17, were also

machined from welds TB-OP and CSM-OP . Tiny strain gauges

were placed on the weld metal area of the specimen to record

the weld metal yield strength.

J1.8. ELECTRON MICROSCOPY

Weld metal fractographs of the Izod specimens were

taken using the AYR scanning electron microscope. Since

they were used to compare with the optical micrographs, the

centerline fractographs were taken at 50OX, 100OX and 2000X.

5

I
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7.5mmThickness
75m 2mm 7.5 mm

55 mm

Subs'ze Izod Impact Test

Specimen Orientation

Fig-ure 16. Schematic of a submerged arc weld showing
tre dimensions and orientation of subs'ze Izod specimens.
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III. RESULTS AND DISCUSSION

111.1. WELDING OPERATION

Table V displays the systematic changes in the weld

metal composition that were produced using the various wires

and fluxes. Weld CSM-OP of course did not contain titanium

or boron in the weld metal. The molybdenum content also

dropped considerably (to 0.13 weight percent as compared to

weld TB-OP which contained 0.25 weight percent) due to lack

of molybdenum in the CSNM filler metal. By adding molybdenum

to the CSM wire to produce weld (CSM + Mo)-OP, then

molybdenum plus titanium to produce weld (CSM + Ti/Mo)-OP,

the effects of lone microalloying additions on weld metal

microstructure and properties could be investigated.

By changing from the OP flux to the low oxygen

potential CaO or MgO flux, the amount ec oxygen in the weld

metal was reduced considerably. Weld TB-SiO 2 , which was

produced by using a high oxygen potential silica flux,

contained a weld metal oxygen content almost double that of

the commercial weld TB-OP. Weld TB-SiO 2, when compared to

weld TB-OP, also contained losses in carbon and manganese,

as well as an increase in silicon. The compositional

differences which are given in Table VII show a gain of 0.21

weight percent silicon and a loss of 0.39 weight percent

I .I::i ., : : i , .. . . ; . .: . ° I" .: . :
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manganese in weld TB-SiO 2. Figure 18 displays a plot of the i
compositional changes of silicon and manganese versus the

basicity index (given by Equation 4 on page 8). This graph

shows that by increasing the basicity of the flux, the

amount of silicon gained or manganese lossed will become

nil. One of the most important terms in the basicity index

is the concentration of SiO 2. As already discussed on page

6, oxygen will be introduced into the weld pool during the

high temperature stage due to a reduction of silica

(Equation 1). Consequently upon cooling, the following

competitive reactions between the various deoxidation

elements present will take place:

Mn + 0 = (MnO) (6)

Si + 20 = (SiO 2 ) (7)

2A1 + 30 = (Al 20 3 ) (8)

Ti + 20 = (TiO 2) (9)

This will lead, in the case of the high SiO 2  flux system, to

an increase in the weld metal silicon content and a decrease

in the manganese content, as indicated in Figure 18.

However, when welding is performed with fluxes containing

lower amounts of silica, the oxygen picked up during welding

will be low and hence, the oxidation loss of manganese will

Ki

L
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also be small.
!S

111.2. WELD METAL MICROSTRUCTURAL ANALYSIS

The resulting microstructures of the seven experimental

-eldments are presented at 50OX in Figures 19a and 19b. The

micrographs present the centerline microstructures of each

weld bead as viewed parallel to the welding direction. The

microstructures shown were found to be representative of the

remainder of the bead. As shown in Figure 19a, a large

volume fraction of fine acicular ferrite was produced in all

of the experimental welds using the TiBor wire. In each of

these four welds the remainder of the weld metal

microstructure mainly consisted of primary ferrite (ranging .

from 11 percent in weld TB-OP to 29 percent in weld TB-

SiO 2 ). The majority of the primary ferrite in these welds

consisted of grain boundary ferrite, which ranged from 7

percent in weld TB-OP to 18 percent in weld TB-SiO 2.

Figure 19b shows the different weld metal

microstructures produced by changing the wire. The

micrographs show that by changing the wire from TB to CSM +

Ti/Mo to CSM + Mo to CSM, the microstructure changes from

almost entirely acicular ferrite to a structure consisting
I

mainly of "AC" (which in more specific terms is bainite in

these cases), with the remainder being made up of primary

L
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and acicular ferrite.

The volume percent of the microconstituents and the

acicular ferrite lath spacing are summarized for each weld

in Figures 20 and 21 respectively. These figures

substantiate the observations made from the micrographs in

Figures 19a and 19b. The commercial product weld TB-OP

contained the highest amount of acicular ferrite,

approximately 85 percent, and the finest lath spacing of 1.4

microns. Weld TB-CaO produced 79 percent acicular ferrite,

which was the second highest amount, and approximately the

same acicular ferrite lath size as weld TB-OP. Weld TB-MgO

contained 68 percent acicular ferrite followed by weld TB-

SiO 2  with 63 percent. Their acicular ferrite lath sizes of

1.8 and 1.9 microns respectively were coarser than the two

previous welds TB-OP and TB-CaO. The primary ferrite was

found to increase in the weld as the flux changed from OP to

CaO to MgO to SiO 2 .

Weld CSM-OP, which was welded with a wire that did not

contain molybdenum, titanium, or boron, exhibited the lowest

amount of acicular ferrite, approximately 26 percent, and

the coarsest microstructure. By adding molybdenum to the

wire, weld (CSM + Mo)-OP produced little change to the

volume percent of the microconstituents compared to weld

CSM-OP, but did refine the acicular ferrite lath spacing
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from 2.4 to 2.1 microns. Weld (CSM + Ti/Mo)-OP showed a

large change in microstructure which came from the addition

of titanium and molybdenum to the weld pool from the wire.

This weld produced about 50 percent acicular ferrite and

contained an acicular ferrite lath spacing of 2.0 microns.

The only compositional difference between weld (CSM +

Ti/Mo)-OP and the commercial weld TB-OP , which produced the

best microstructure, was that weld TB-OP contained boron in

the weld metal. The change in transformation behavior due

to this boron addition from the wire caused the volume

percent acicular ferrite to increase from 50 to 85 percent,

and refined the lath size from 2.0 to 1.4 microns. A

comparison of Figures 2u and 21 show that there is a

systematic correlation between the volume fraction of

acicular ferrite and acicular ferrite lath spacing. An

increase in the volume fraction from 26 percent to 85

percent, directly correlates with a decrease in mean lath

size from approximately 2.4 microns to 1.4 microns.

Figure 22 shows the acicular ferrite lath spacing

plotted against the hardness values that were recorded in

Table VIII. This plot is analogous to a Hall-Petch (81)

type expression of:

C = o + kd -I 2  (10)

* ]

*'
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where a is the yield strength, Co is the base level of

strength, k is a constant, and d is the average grain

diameter. Equation 10 shows the dependence of grain size on

strength, which can be directly related to hardness of the

material by the following expression:

H C(c) (11)

hiere H is the hardness, and C is a constant. Figure 22

exLt bits a trend of decreasing hardness in the weld metal as

the acicular ferrite lath size increases.

IgI.3. ELEMIENT EFFECTS

An approach often taken to quantify the effect of alloy

elements in weld metal is to relate the transformation

products to a combined hardenability index such as an

effective carbon equivalent. A carbon equivalent as

formulated by Ito and Bessyo (82), which was initially used

as a cold cracking parameter, has been used successfully to

determine the relative hardenability of various microalloyed

steels (83-84). This empirical expression is:

Pcm = C + (Mn Cu + Cr) + Si + Ni + Mo + V + 5B (12)

20 30 60 15 10

6 p

4P



T-2942 66

where ompositions are in weight percent. Figure 23 shows

the Pcm carbon equivalent plotted against the volume percent

acicular ferrite for each weldment. As the weld metal

carbon equivalent is increased from 0.18 to 0.21, the I

acicular ferrite content in the microstructure increases

from 26 to 85 percent. The volume percent grain boundary

ferrite as well as the total amount of primary ferrite was

plotted against the Pcm carbon equivalent and is shown in

Figures 24 and 25 respectively. Both exhibit a decreasing

trend in either grain 6oundary ferrite or primary ferrite

witn increasing carbon equivalent.

Grong (85) has reviewed the current literature, and

shcwn that the Ito-Bessyo carbon equivalent is an indicator

of the microstructure developed in weld metal only if the

titanium level is greater than approximately 0.0045 weight

percent, as shown in Figure 26. The titanium contents in

the weld metals of the current study were plotted against

t; percent acicular ferrite in Figure 27. These data show

the same trend as that presented in the previous figure.

The two solid squares in Figure 27 represent welds (CSM +

Mo)-OP and (CSM + Ti/N1o)-OP. For these welds, one of the

differences between their respective weld metal compositions

was that weld (CSM + Mo)-OP did not contain titanium.

Although titanium can not be assumed to be the only
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important microalloying element, Figure 27 suggests that it

is indeed important to the promotion of acicular ferrite.

Since titanium and boron have been shown by researchers

(14,39-40,42,57,60-67) to have a favorable effect on the

production of acicular ferrite, the calculation of the

amount of boron per grain boundary area was made (see

Appendix D) using the assumption that all the boron was at

the grain boundaries. This is a reasonable assumption based

on the result of Hondros and Seah (86) who showed that only

one in ten thousand boron atoms would remain in solution in

the lattice and not at the grain boundaries. Weld metal

boron content per grain boundary area was plotted against

the volume percent acicular ferrite, as shown in Figure 28.

An increase in the amount of acicular ferrite (from 26 to 85

volume percent) with a corresponding increase in grain

boundary concentration indicates that boron helps in the

production of acicular ferrite, probably by suppressing the

grain boundary ferrite transformation (39-40,42,60-61).

Figure 29 shows the weld metal boron content per grain

boundary area plotted against the percent grain boundary

ferrite. A increase in grain boundary concentration was

shown to decrease the amount of grain boundary ferrite in

the weld metal from 18 to 5 percent. The two dark squares

in this plot represent welds TB-OP and (CSM + Ti/Mo)-OP,

I

q S



T-2942 73

0

0

L r z a.'

00

- -

z o
a)0

Q)t

cr zo
E -

M z =

_IleU- - 0 0 .

01 (I) 03 > E

G) L

CY >- Z

0 0 >

0 0 0 0
ao (D Q

C. tn

3.L~~~~~~~ 1883J0.noo N03



T-2942 74

t- 0

- n

oE
Lo E

z 0 re) 0

o~ z'E

ul)

z E
oo

.

00

U-fl

UU 0

0 >

4 3 V
bD

3116 3- 6V(]noe IV60 iN3''O3



T-2942 75

with the main difference between their respective weld metal

concentrations being a change of 0.0010 weight percent

boron. This extra amount of boron changes the

transformation behavior of the weld metal enough to decrease

the volume percent grain boundary ferrite from 18 to 7 -

percent. Thus, the amount of grain boundary ferrite lossed,

corresponds to the gain of acicular ferrite that was shown

in Figure 28. Although boron can not be assumed to be the

only important microalloying element, Figures 28 and 29

agrees with other researchers (39-40,60-61) in showing that

boron is indeed important in suppressing the nucleation of

allotriomorphic ferrite.

Recent literature has shown (87) that excessive amounts

of boron or titanium will be detrimental to the weld metal

properties; thus, a specific amount of titanium and boron

are required to produce the desired microstructure. The

optimal values of these two elements are affected by other

elements such as oxygen, nitrogen, aluminum, manganese,

molybdenum, and nickel, as well as the welding parameters

(87). Comparing the experimental weld metal compositions in

Table V with data from researchers in Table I (57,62-67),

shows that the optimal values of titanium and boron have not

been exceeded.

S
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111.4. MECHANICAL TESTING

Subsize Charpy specimens were tested from welds TB-OP

and CSM-OP at various temperatures and these results are

presented in Figure 30. Weld TB-OP, which is the best weld

microstructurally, exhibited a transition temperature of

about -100 0 C, while weld CSM-OP, the worst weld in terms of

microstructure, showed a transition temperature of -400 C.

The fracture surfaces of these impact specimens are shown in

Figure 31, showing the percent shear fracture at their

respective test temperatures. Subsize tensile bars were

tested from welds TB-OP and CSM-OP and they exhibited the

folloywing weld metal yield strengths:

WELD YIELD STRENGTH

TB-OP 80 ksi

CSM-OP 70 ksi

Co~iparing these results with the data in Figure 30, a fine

interlocking acicular ferrite microstructure was shown to

enhance the toughness of the weld as well as improving the

weld metal yield strength, while welds that contain a large

amount of primary ferrite and bainite will exhibit poorer
0

weld metal properties.

Recorded impact values of subsize Izod specimens that

0
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were tested from all seven experimental welds at -40°C, were

plotted against the volume percent of acicular ferrite, as

shown in Figure 32. These data exhibit an increase in

energy absorbed from 9 to 38 ft-lbs as the volume of 4

acicular ferrite increases from 26 to 85 percent in the weld

metal. These results correlate well with Figure 33, which

shows the same .acrease in energy absorbed as the primary

ferrite content decreases from 37 to ll percent. The two

solid squares in Figure 33 represent welds TB-CaO and TB-

%IgO, with the only difference between them being the flux

compositions. Figure 33 shows that the weld made with the

NIM.O flux produced more primary ferrite in the weld metal

microstructure and thus exhibited poorer toughness than the

weld made with the CaO flux. These results indicate that

MgO does not simply substitute for CaO as a submerged arc

flux ingredient.

Figure 34 shows the fracture surfaces of the subsize

Izod specimens. The percent shear fracture was measured

from the Izod specimens and these results are plotted

against the volume percent acicular ferrite in Figure 35.

As indicated in Figure 35, an increase in percent shear from

It) to l00 percent was observed as the acicular ferrite

volume fraction increased from 26 to 85 percent. Figure 36,

which is a plot of the energy absorbed at -40°C versus the

... . .. .
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mean acicular ferrite lath size, exhibits a decrease in the

energy absorbed from 38 to 9 ft-lbs as the lath size

increases from 1.4 to 2.4 microns. Figures 35 and 36

support other previous work (1) in showing that by

increasing the percent acicular ferrite in the weld metal,

and decreasing the acicular ferrite lath size, improved weld

metal properties will be obtained. I

Weld metal fractographs of the Izod specimens were

taken it 1000X. The centerline fractographs, which are

presented in Figures 37a 37b, 37c, and 37d, were taken at

the root of the notch and 0.6 mm in from the notch. A

schematic diagram showing where the fractographs were taken

is located in the bottom left hand corner of the photographs

in Figures 37a, 37b, 37c, and 37d (the crack propagates from

left to right). The surfaces in Figures 37a and 37b show

the different fracture appearances produced by changes in

the flux during the welding operation. Weld TB-OP features

a microvoid coalescence fracture mechanism with some tearing

both at the notch and at 0.6 mm from the notch. Welds TB-

CaO and TB-MgO also exhibit microvoid coalescence, but weld

TB-CaO contains more elongated tearing dimples at the notch,

which become equiaxed dimples as the crack front propagates.

In contrast, weld TB-MgO exhibited elongated dimples

throughout. A correlation can be made between the fracture

1

4 I-

* -S. .
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surfaces of the welds and their respective weld metal

microstructures, presented in Figure 19a. As the percent of

acicular ferrite decreased in the weld metal (going from

weld TB-OP to TB-CaO to TB-MgO), the fracture surface

changed from upper shelf microvoid coalescence to elongated

tearing dimples, indicative of being in the transition range

of the impact curve. Although weld TB-SiO 2 contained more

equiaxed dimples on the fracture surface compared to welds

TB-CaO and TB-MgO, large inclusions and other second phase

particles were found on the surface which could explain the

lower impact energy exhibited.

Figures 37c and 37d show the different fracture

surfaces produced by changing the wire composition during

the welding procedure. Weld (CSM + Ti/Mo)-OP, which does

not contain boron in the weld metal as compared to weld TB-

OP, exhibited an elongated dimple, tearing-type fracture

mechanism at the notch, which reverted to equiaxed microvoid

coalescence as the crack propagated onward. Both welds (CSM

+ Mo)-OP and CSM-OP show a small amount of microvoid

coalesence at the notch center which then immediately

transformed into a cleavage fracture mode as the crack

propagated onward. Cleavage type fracture is a brittle type

failure mode which will occur on the lower shelf of the

transition curve and explains why both welds exhibited poor
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impact toughness values. Weld (CSM + Mo)-OP, which does not

contain titanium, shows a drastic difference in the fracture

appearance when compared to weld (CSM + Ti/Mo)-OP. The

fracture mechanism changes from a microvoid coalescence mode

to a cleavage mode when titanium is not present in the weld

metal. On the other hand, adding molybdenum to the weld

metal, as in weld (CSM + Mo)-OP, does not seem to have much

effect on the fracture appearance or the impact properties

as compared to weld CSM-OP. The same correlati- be

made between the fracture surfaces of these w s and their

respective weld metal microstructures presented Figure

19b. As the amount of AC (in this case bainite) in the weld

metal increases [going from TB-OP to (CSM + Ti/Mo)-OP to

(CS' + Mo)-OP to CSM-OP], the fracture surface changes from

upper shelf microvoid coalescence to lower shelf cleavage.

S

111.5. EFFECT OF PRIOR AUSTENITE GRAIN SIZE

Weld metal oxygen content was plotted against the

volume percent grain boundary ferrite for each weldment and

these results are shown in Figure 38. As the weld metal

oxygen increased from 0.011 to 0.051 weight percent, the

grain boundary ferrite increased almost linearly from 5 to

18 percent. Figure 39 exhibits a virtually linear

correlation between the weld metal oxygen content and the

, . . . , "
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prior austenite grain size. As the weld metal oxygen

increased from 0.011 to 0.051 weight percent, the prior

austenite grain size decreased from 100 to 70 microns. This

can be explained by the work of Liu (88), which showed that

increasing weld metal oxygen content increased the inclusion

volume fraction, as shown in Figure 40. Futhermore, Liu

also showed (see Figure 41) that the inclusion size

decreased with increasing weld metal oxygen, if all the

particles having a diameter greater than 0.08 microns are

counted. This result is in contrast to the results of

others (89-90), who have reported that average oxide

particle size increased with increasing oxygen content.

Fine second phase particles are known to increasingly

inhibit grain growth as the particles get smaller and more

abundant in the weld metal (91-92). This explains why

increasing the weld metal oxygen content will decrease the

prior austenite grain size. Figure 42 relates the prior

austenite grain size to the amount of grain boundary

ferrite, and shows that increasing amounts of grain boundary

ferrite will be formed as the prior austenite grain size

decreases. These results indicate that if the austenite

grain size (which is dependent on the amount of oxygen)

decreases, more austenite grain boundary surface will be

available to provide nucleation sites for grain boundary
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ferrite.

An approximate measure of the fraction of grain

boundary ferrite created from a certain austenite grain size

can be obtained from a specific form of the Avrami equation:

X I - exp(-2SGt) (13)

where X is the volume fraction of allotriomorphic ferrite, S

is the grain boundary area per unit volume, G is the growth

rate of the ferrite/austenite boundary, and t is the

reaction time. Figure 43 shows a schematic comparing low

oxygen weld metal to high oxygen oxygen weld metal. The

prior austenite grain size will be smaller for high oxygen

weld metal contents, thus allowing more grain boundary

ferrite to be nucleated which will be detrimental to weld

metal properties. But for lower oxygen contents, a increase

in austenite grain size will result, producing fewer

nucleation sites for grain boundary ferrite. Thus, more

acicular ferrite will be created, resulting in improved weld

metal properties. Liu (88) modified Equation 13 by

assuming: 1) that all the potential nucleation sites are

consumed in the process (i.e. site saturation), 2) that

diffusion-controlled growth occurs in both directions

perpendicular to the boundary, and 3) that the grain shape

6]

6]
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AVRAMI KINETICS:

X I - exp (kt )

X I- exp (-4w )r
d
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d

Figure 43. Schematic comparing low oxygen weld metal to
high oxygen weld metal showing the Avrami relationship
between the volume fraction of grain boundary ferrite
and the prior austenite grain diameter.
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is cylindrical. By using these assumptions he showed the

growth rate to be:

G = dr/dt 1/2at-1 / 2  (14) I

where a is a parabolic rate constant that has been measured

by Kinsman and Aaronson (93) for various alloyed steels. D

Assuming that each grain is sharing with another, the

surface area per unit volume can be shown to be:

S = 4rdl 1 2 (15)

dl 2 d

where d is the average diameter of the austenite grains.

Putting these values into Equation 13, the following

equation can be obtained:

X = 1 - exp(-2a t1/2 )  (16)

d

Taking the natural logarithm of both sides gives the

following:

In (I -X) (-2c t I /2) I/d (17)

4

4j <~ 7~>ji < . *~
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Equation 17 indicates that the natural logarithm of the

volume fraction of grain boundary ferrite transformed should

be proportional to the reciprocal of the austenite grain

diameter. Figure 44 shows the correlation between the

average austenite grain diameter and the volume fraction of

weld metal grain boundary ferrite. Christensen (94) showed

that the reaction time (L t8 0 0 _5 0 0 ) for submerged arc welds

can be estimated if the plate thickness and heat input are

known. By using a 3/4-in-plate thickness and a 3.0 KJ/mrn

heat input, a reaction time of 21 seconds was calculated for

the experimental welds. Aaronson and Kinsman (93) measured

the grain boundary ferrite thickness and plotted it against

the growth time for iron-carbon alloys so that the parabolic

rate constants could be calculated. Their maximum and

minimum values of the rate constant for a 0.11 weight

percent carbon alloy was calculated to be 3.0 and 2.0

1/2um/sec respectively. By using 21 seconds for the

reaction time and the maximum and minimum values for the

parabolic rate constant, theoretical lines were calculated

using Equation 17 and plotted on Figure 44 to see if the

experimental data compared to the theoretical data. As

Figure 44 shows, the experimental data fits in between the

theoretical lines. Using a regression analysis on the

experimental data, a value for a was calculated to be

6"

* -- - 1
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1/2
2.4 um/sec 2 , which falls between the theoretical range of

Aaronson and Kinsman (93). These data imply, by increasing

the prior austenite grain size, the percent grain boundary

ferrite will decrease in the weld metal, thus providing a

better microstructure in terms of weld metal toughness.

Although the austenite grain size is probably the most

important parameter affecting the transformation of grain

boundary ferrite, other factors such as weld metal boron

content can also have an effect, as shown previously in

Figures 28 and 29.

Transforming Equation 16 and assuming a constant for X

and a, one can show that the square of the austenite grain

diameter is directly proportional to the reaction time:

2  2 2 t (18)

In I-X

In the case of the seven experimental weldments, the largest

prior austenite grain size (given in the Appendix) was

approximately 100 microns, while the smallest grain size was

approximately 70 microns. Therefore the ratio of the

largest prior austenite grain size versus the smallest

squared is:

16
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(100) 2 = 2 (19)

70

This result shows that no matter what constants are

appropriate for a and X, the observed change in prior

austenite grain size should effect the transformation time

for alltriomorphic ferrite by a factor of 2. This idea is

schematically displayed in Figure 45. Increasing the prior

austenite grain size from approximately 70 microns to

approximately 100 microns decreases the transformation time

for grain boundary ferrite by a factor of 2, thus producing

a finer acicular ferrite microstructure.

. . . . ..
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Figure 45. Schematic of a continuous cooling
transformation diagram of a microalloyed HSLA steel

1 weldment showing the effect of prior eustenite grain
size on weld metal microstructural transformnation.
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IV. ONCLUSIONS

1. The largest amount of weld metal acicular ferrite

was produced in a quenched and tempered C-Mn-Mo-Nb

base plate by using the commercially available

OP121TT welding flux and the TiBor-22 welding wire.

Weld metal made from these consumables also

exhibited the best mechanical properties.

2. High SiO 2  fluxes produce weld metal which is

high in oxygen and silicon and low in manganese

and carbon. High oxygen welds contain relatively

large volume fractions of grain boundary ferrite.

3. Replacing MgO with CaO in the flux produced a

slightly coarser microstructure which exhibited

poorer weld metal properties. This result

implies that in welding fluxes, MgO does not

simply and equivalently substitute for CaO as

has been previously reported.

II
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4. Increasing amounts of acicular ferrite, and thus

decreasing amounts of primary ferrite, correspond

with increasing Ito Bessyo carbon equivalent

numbers (in the range of 0.18 - 0.22) for submerged

arc welds performed on quenched and tempered

C-Mn-Mo-Nb plate.

5. Microalloy additions of titanium and boron,

together with low oxygen activity, are effective

in producing weld metal with large fractions ofII

fine acicular ferrite.

6. Increasing weld metal oxygen content will create

many fine oxides which pin the austenite grain

boundaries and decrease the prior austenite

grain size, thus producing more surface area for

grain boundary ferrite nucleation.

* S

LS

-, . . . ". . . - . . .- - •*. ' " .. .-. ,
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7. A predominant effect of high weld metal oxygen

content is to increase the volume fractions of

grain boundary ferrite through a reduction in

austenite grain size. Fractions of grain

boundary ferrite can be adequately predicted by

means of well-established overall transformation

kinetics theory.

P
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Appendix E. Submerged arc welding machine used for
bead on plate weld tests.
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Appendix G. Chemical Composition of the Inclusions
Extracted From Weld TB-OP (88).

Mn Si Al Fe Ti S.(U) (I) (I) () (U) (U)

42.7 7.3 21.0 0 9.9 19.1
46.2 1.0 29.9 0 2.1 20.9
48.7 5.2 17.9 0 2.3 26.0
19.0 17.1 19.3 29.3 0 15.4
27.3 9.2 47.3 5.2 2.8 8.3
24.1 7.7 55.7 4.0 6.2 2.4
25.7 18.7 40.4 0 8.8 6.4
4D.5 0.9 36.8 5.3 1.8 14.7
22.0 7.2 45.9 6.1 15.6 3.2
27.5 3.9 56.0 3.9 6.7 2.0
50.5 3.5 12.5 8.4 0 25.0
25.8 11.7 49.1 5.6 4.5 3.3
25.4 1.0 61.7 3.8 7.4 0.8 5
28.0 10.8 44.3 4.4 9.4 3.1
34.4 5.1 37.1 5.4 5.1 13.0
54.0 1.8 5.6 7.4 0 31.4

0 19.8 66.6 10.2 0 3.5
21.8 15.5 38.9 8.4 11.5 4.0
27.0 4.6 56.6 4.4 5.2 2.3
25.9 8.0 44.4 6.3 13.1 2.4
34.9 6.0 36.8 5.7 10.4 6.2

0 72.3 0 27.8 0 0
16.6 38.0 23.2 0 17.9 4.5

*20.3 29.5 34.9 0 10.5 4.9
25.4 14.0 45.0 5.1 0 10.5
10.5 43.5 39.2 6.9 0 0
29.8 4.4 58.8 0 3.9 3.1
24.6 4.2 59.0 4.3 6.3 1.7
29.5 8.3 36.8 6.7 6.4 12.5
0 63.9 7.9 28.2 0 0

45.2 4.3 27.3 0 2.5 20.8
27.6 6.4 55.9 4.6 3.3 2.2
30.5 5.0 48.9 9.0 5.2 1.5
29.5 8.2 27.6 12.5 5.4 17.0
17.5 11.1 60.7 7.8 3.0 0
42.0 3.8 30.5 0 6.4 17.3
26.3 13.7 36.0i 0 23.7 0
35.7 4.0 36.4 5.1 1.8 17.1
28.4 4.8 54.5 0 4.6 7.7

0 38.5 42.9 18.6 0 0
31.1 69.0 0 0 0 0
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