"AD-A149 524  ON MOTION PLANNING WITH UNCERTARINTY REVISED(U) 1/3 -
MASSACHUSETTS INST OF TECH CAMBRIDGE ARTIFICIAL
. INTELLIGENCE LRB M R ERDMANN 1584 AI-TR-818-REY
UNCLASSIFIED N@0@14-81-K-8494 F/G 12/1

b -4
3

N
HEEEEN
HENENENN
HEEENNN
HEENNEN
HEEENEN
HENNN
HERENE.
HEEEN.
HENENN




“N 1.0 1M

==z
b 4

m" T =

= I

2 llLe ne

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS 1963 A




UNCLASSIFIED }

SECURITY CLASSIFICATION OF THIS PAGE (When Date Entered)

READ INSTRUCTIONS
REPORT DOCUMENTATION PAGE BEFORE COMPLETING FORM
1. REPORT NUMBER 2. GOVY ACCESSION NO.J 3. RECIPIENT'S CATALOG NUMBER
AI-TR-810 0_,/,7/1..{7"5)\ /
4. TITLE rend Subtitle) S. TYPE OF REPORT & PERIOD COVERED
On Motion Planning with Uncertainty memorandum

6. PERFORMING ORG. REPORT NUMBER

7. AUTHOR(®) 8. CONTRACT OR GRANT NUMBER(s)
N00014-81-K0494
Michael Andreas Erdmann N00014-80-C~-0505
N00O14-§2-K-0344
9. PERFORMING ORGANIZATION NAME AND ADDRESS 10. PROGRAM ELEMENT, PROJECT, TASK

Artificial Intelligence Laboratory AREA & WORK UNIT NUMBERS

545 Technology Square
Cambridge, Massachusetts 02139

. CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Advanced Research Projects Agency memorandum

1400 Wilson Blvd 13. NUMBER OF PAGES

Arlington, Virginia 22209 261

14. MONITORING AGENCY NAME & ADDRESS(I{ different from Controlliing Office) 18. SECURITY CLASS. (of this report)
Office of Naval Research UNCLASSIFIED
Information Systems
. - » - ‘s . ; R
Arl lngton, Vlrglnla 222]7 e chSIE.DAStlEﬂCATION/ DOWNGRADING

&

DISTRIBUTION STATEMENT (of this Report)

Distribution of this document is unlimited.

17.

DISTRIBUTION STATEMENT (of the abstract entered In Block 20, i different from Report)

Distribution is unlimited

SUPPLEMENTARY NOTES

None

. KEY WORDS (Continue on reverse aide If necessary and identify dy block number)

Motion planning Configuration space

Mechanical assembly Friction
Parts mating Compliance
Robotics Uncertainty

20.

ABSTRACT (Continue on reverase eide If necessary and Identify by block number)

Robots must successfully poan and execut tasks in the presence of uncertainty
Uncertainty arises from errors in modelling, sensing, and control. Plannning
in the presence of uncertainty constitutes one facet of the general motion
planning problem in robotics. This problem is concerned with the auto-
matic rythesis of motion strategies from high level task specifications
and ge »w~tric models of environments.

(OVER)

DD , jf:"n 1473 EDITION OF t NOV 68 1S OBSOLETE UNCLASSIFLED

S/N 0:102-014-6601

SECURITY CLASSIFICATION OF THIS PAGE (When Data Entered)

8 - . . . . . I
[..ej.a\_‘r_‘. P S WPOD S SR S SIS G LN SUNEUNY SN A SV S U . UL 4 G S A LAl o ah o,

LY |

.

a4




LA IR Bl B 2T T T A M B i Y e " S ARl hn i it i A e A S ghade® A S0t dhbeinh
P N e S S 2 A DA A R A A AL AL A A A R T Cal N A A S A ate Ses S-S 1 e du e o .|

v .'-i
P
-

A2 2 e oo

Block 20 cont.

v .

lﬁr'rr‘w!vv/
. LT o

In order to develop successful motion strategies, it is necessary to understand the effect i
of uncertainty on the geometry of object interactions. Object interactions, both static
and dvnamic, may be represented in geometrical terms. This thesis investigates geometrical
tools for modelling and overcoming uncertainty.

-y
f]

The thesis describes and algorithm for computing backprojections of desired task confi-
gurations. Task goals and motion states are specified in terms of a moving object's con-
figuration space. Backprojections specify regions in configuration space from which par-
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avoiding surfaces on which motions may prematurely halt.

In executing a motion from a backprojection region, a plan executor must be able to re-
cognize that a desired task has been accomplished. Since sensors are subject to uncer-
tainty, recognition of task success is not always possible. The thesis considers the

structure of backprojection regions and of task goals that ensures goal recognizability.

The thesis also develops a representation of friction in configuration space, in terms
of a friction cone analogous to the real space friction cone. The friction cone pro-
vides the backprojection algorithm with a geometrical tool for determining points at
which motions may halt.
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by
Michael Andreas Erdmann

Abstract

" Robots must successfully plan and execute tasks in the presence of uncertainty.
Uncertainty arises from errors in modelling, sensing, and control. Planning in the
presence of uncertainty constitutes one facet of the general motion planning problem
in robotics. This problem is concerned with the automatic synthesis of motion
strategies from high level task specifications and geometric models of environments.

In order to develop successful motion strategies, it is necessary to understand
the effect of uncertainty on the geometry of object interactions. Object interactions,
both static and dynamic, may be represented in geometrical terms. This thesis
investigates geometrical tools for modelling and overcoming uncertainty.

The thesis describes an algorithm for computing backprojections of desired
task configurations. Task goals and motion states are specified in terms of a moving
object’s configuration space. Backprojections specify regions in configuration space
from which particular motions are guaranteed to accomplish a desired task. The
backprojection algorithm considers surfaces in configuration space that facilitate
sliding towards the goal, while avoiding surfaces on which motions may prematurely
halt. - -

In executing a motion from a backprojection region, a plan executor must
be able to recognize that a desired task has been accomplished. Since sensors are
subject to uncertainty, recognition of task success is not always possible. The thesis
considers the structure of backprojection regions and of task goals that ensures
goal recognizability.

The thesis also develops a representation of friction in configuration space,
in terms of a friction cone analogous to the real space friction cone. The friction
cone provides the backprojection algorithm with a geometrical tool for determining
points at which motions may halt.
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Raison d'Etre

In dreaming about robotics, one envisions sitting in the backyard on a hot
Saturday afternoon, while one’s home robot is mowing the lawn. One asks the
robot to take a break and fetch oneself a cold glass of iced tea. Upon returning to
his primary task, the robot discovers that the mower won’t start, so he pulls out
the spark plug, cleans it, then carefully replaces it.

This scene is one of the simplest one can imagine, yet it is still mainly a
dream. Solving the problems suggested by this dream demands the resources of
numerous fields, including Mechanical Engineering, Electrical Engineering, Physics,
Linguistics, Mathematics, Computer Science, Psychology, and Artificial Intelligence.
In order to move about, the robot must be structurally and dynamically sound. His
various o::board computers must function in isolation and in cooperation. The task
of pushing the lawn mower requires the ability to exert forces, and to predict the
effect of exerting such forces. In order to understand the request for iced tea, the
robot must be capable of accepting verbal human commands, and of translating
those often vague commands into actions that successfully achieve the desires of
the commanders. In particular, the robot must plan his actions in a manner that
gracefully deals with failure and uncertainty. He should not trip while bringing the
glass of tea, even while moving over irregular terrain, nor should he pour the tea
into one’s lap, even though one’s hand may be wavering as one prepares to accept
the drink. Cleaning and replacing the spark plug requires a delicate touch, in order
to avoid changing the plug’s gap size, and in order to avoid breaking the plug with
excessive torque while screwing it back in. Consequently, the robot must be capable
of planning motions that sense contact forces and that deal with friction.

All the robot’s actions involve interactions of objects. The robot is pushing a
lawn mower. The lawn mower is in contact with the ground. The robot is holding a
glass of tea. The robot is manipulating a spark plug. The spark plug is in contact
with the lawn mower. In each case, at least one object is interacting with another.

All the robot’s tasks involve either direct interaction, or the planning of such
interaction. For example, planning to bring the tea entails, in part, planning to
move the tea from the kitchen to the backyard while avoiding collisions with walls
and chairs. The robot must understand the kinematic interaction of objects in
order to avoid such collisions. As another example, in order to replace the spark
plug, the robot must plan, among other things, to slide the plug into its socket. In
this case, the robot must understand the dynamical and frictional interactions of
the mower and the plug.

The study of object interactions constitutes a central theme in realizing the
dream expressed earlier. This study draws heavily on techniques in fields ranging
from high school physics to abstract algebraic geometry. It is the merging of these
fields, and the concomitant understanding of the world, which makes the task of
fulfilling the dream enjoyable.

s
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Figure 1.1. The task is to move a point to the edge at the bottom of the trough.

The commanded velocity uncertainty is a cone about the desired velocity.

1. Introduction

1.1. Statement of the Problem

Robots must successfully plan and execute tasks in the presence of uncertainty.
Uncertainty arises from errors in modelling, sensing, and control. Planning in the
presence of uncertainty constitutes one facet of the general motion planning problem
in robotics. This problem is concerned with the automatic synthesis of motion
strategies from high level task specifications and geometric models of environments.

In order to develop successful motion strategies, it is necessary to understand
the effect of uncertainty on the geometry of object interactions. Object interactions,
both static and dynamic, may be represented in geometrical terms. This thesis

investigates geometrical tools for modelling and overcoming uncertainty.
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Figure 1.2. Region from which all motions are guaranteed to achieve the goal edge.
The velocity uncertainty cone is shown. Motions either directly hit the goal edge, or
slide along intervening edges before hitting the desired goal edge.

1.2. Brief Outline of the Approach

The basic approach models assembly tasks as a set of geometrical relations.
These geometrical relations specify the desired configuration of objects upon task
completion. The planning portion of the approach involves determining all possible
initial configurations from which a motion is guaranteed to achieve the desired task
configuration in the presence of uncertainty.

In the example of Fig. 1.1 the objective is to move a point to the edge at
the bottom of the trough. Moving a point is not an artificial problem, since tasks
involving object motions can be reduced to tasks involving point motions in the
object’s configuration space. This reduction will be explained in more detail later.

The nominal commanded velocity is down and to the right. The effective
commanded velocity lies in some uncertainty cone about the desired velocity, as
shown in Fig. 1.1. Assume that none of the effective commanded velocities cause
a motion to stick on any of the trough’s edges. In particular, assume that the
effective commanded velocities all lie outside each of the edges’ friction cones.
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Figure 1.8. A peg-in-hole task.

Fig. 1.2 displays a region from which any point is guaranteed to achieve the
goal edge, given the commanded velocity uncertainty cone. The region is bounded
by the dashed lines drawn in the figure, and by edges from the environment. A
point in the region is guaranteed either to directly attain the goal edge with a
motion through free space, or to indirectly attain the goal edge by sliding along
intervening edges.

A planning scheme should construct regions of the type shown in Fig. 1.2.
At issue in forming these regions is the determination of sliding surfaces and
termination conditions. The planner must take advantage of surfaces that guide a

i motion towards the desired goal. Additionally, the plan executor must be able to
¢ recognize success once a goal has been achieved.

;\ This thesis presents a backprojection algorithm for computing regions from
! which particular motions are guaranteed to accomplish a geometrically specified

¢ task in the presence of uncertainty. The thesis considers the type of termination
conditions and the structure of goal sets that permit successful recognition of
task completion. Finally, the thesis investigates the representation of friction. An |
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Figure 1.4. Velocity uncertainty cone about the commanded velocity.
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Position

Figure 1.5. Position uncertainty about the sensed position.

understanding of friction is necessary in order to select surfaces along which motions
are guaranteed to slide to the goal.

1.3. Issues and Goals

1.3.1. An Example

Consider the classical planar peg-in-hole problem of Fig. 1.3 The task is to
move the peg from its initial position and orientation down into the hole until the
bottom of the peg is resting in the bottom of the hole. Given perfect sensing and
control, this task can be accomplished simply by commanding a motion of the peg
straight down. The motion is terminated once the position sensor indicates that
the peg is in the bottom of the hole.
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Figure 1.6.

The peg is stuck at the top right corner of the hole.

Figure 1.7.

The peg is stuck in two-point contact resulting from angular misalignment.
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Now suppose that the assumption of perfect sensing and control is relaxed. In
particular, suppose that the actual direction of motion lies in some cone about the
desired direction, as indicated in Fig. 1.4. The precise direction is unpredictable and
may vary during the motion. In addition, the orientation of the peg is not guaranteed
to remain constant throughout the motion. Thus the peg may tilt slightly as it
moves. Furthermore, the position sensor is subject to error. A particular sensor
reading serves merely to indicate that the actual position of the peg lies in some
circle centered at the given sensor value (see Fig. 1.5). With a large enough position
error, it is impossible to distinguish the left side of the hole from the right side, on
the basis of position information alone. It may even be impossible to distinguish
the bottom of the hole from the top.

Given these uncertainties in sensing and control, it is clear that the original
solution to the peg in hole problem may fail. The peg may drift to the left as it
moves downward, thereby getting stuck on the left corner at the top of the hole.
Or it may drift to the right, sticking at the right corner. See Fig. 1.6. Given the
uncertainty in the position sensor, it is impossible to execute corrective action once
sticking is detected. This is because the corrective action depends on knowing the
side at which sticking occurred.

Worse than being unable to correct errors should they occur, is the inability to
detect success. In the given example, it is possible that the peg may move smoothly
into the hole, as desired by the original plan. Unfortunately, given a large error in
the position sensor, the plan executor cannot be certain that the peg is actually
resting at the bottom of the hole, and not stuck at one of the corners.

Finally, it is also possible that the peg may jam while entering the hole. In the
presence of friction, a slight angular misalignment of the peg may cause it to stick
as it makes contact with both walls of the hole. See Fig. 1.7. Thus there are several
potential states of the assembly in which the peg has stopped moving. Only one of
these is the desired goal state, yet all are indistinguishable from each other.
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Figure 1.8. From this starting position, all velocities in the commanded uncertainty
range indicated by the dashed lines, are guaranteed to move the peg onto a surface
from which it can slide towards the hole.
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1 Figure 1.9. Simulation of a peg moving into a hole. The commanded velocity is down '
P and to the right throughout the entire motion. !
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One solution to this problem (see Inoue (1974)) deliberately introduces an offset
of the peg from the hole, such as moving the peg slightly to the left of the hole.
Then a motion is commanded which points downward and to the right. By choosing
the offset and commanded motion properly, this strategy guarantees that the peg
will hit the surface above and to the left of the hole, regardless of where, within

the error cone about the desired motion direction, the actual motion direction lies.
See Fig. 1.8.

Upon hitting the surface above the hole, the peg slides along the surface until
it encounters the hole, then tumbles down towards the goal. See Fig. 1.9. Recall
that the position sensors may not be accurate enough to distinguish the bottom of
the hole from its sides, hence are useless in signalling success. Instead, termination
is detected by introducing force sensors. These sensors can be used both to detect
collisions as well as to sense direction of motion. In particular, the force sensors
can detect that the peg’s motion has stopped once it hits the bottom of the hole.
Assuming that the commanded motion has been so chosen that the peg does not
jam while entering the hole, this condition signals success.

1.3.2. Compliant Motion and Force Sensing
The previous example demonstrates the following points:

e Surfaces may be used to guide motions. This technique is known as compliant
motion (see Whitney (1977) and Mason (1981, 1983)).

e Force sensors may be used to detect collisions and to sense motion. This
technique is known as guarded moves (see Will and Grossman (1975)).

The method of commanding directions and sensing forces stands in sharp
contrast to the method of commanding and sensing positions. An object which has
been commanded to move in a certain direction will move in that direction unless
obstructed by a surface. When obstructed by a surface the object complies to that
surface by moving tangentially to the surface, using the tangential component of
the commanded direction. Friction may influence the direction and magnitude of
this tangential motion. By commanding motions, a strategy takes advantage of the
constraints in the environment to naturally guide the object to its goal.

Pure position control strategies are particularly subject to failure in the
presence of uncertainty. Force sensing can improve performance, thereby enlarging
the class of solvable tasks. For example, suppose a position control system tries to
place an object onto a surface. If the actual surface lies above the position at which
the system believes the surface to lie, then the system will try to push the object
throngh the surface. Such action can generate excessive forces, and cause jamming
or breakage. If the surface lies below the position believed by the position control
system, then the object will be placed slightly above the surface. In this case the
system does not achieve the desired assembly state.

In contrast, a system employing force sensing would accomplish the previous
task by executing a guarded move. It would command a motion direction towards
the surface, terminating the motion upon detecting a collision with the desired
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surface. The precise location of the surface is irrelevant to the success of the motion.
Thus force sensing strategies can accomplish tasks at accuracies that exceed the
inherent resolution of the position controller and the position sensors.

1.3.3. Automatic Strategy Synthesis

A task planner must automatically synthesize strategies from high level task
specifications and geometrical models, in the presence of uncertainty. Thus the
planner must exploit surfaces along which compliant motions will guide the task to
successful completion. It must recognize surfaces on which sticking or jamming can
occur, so that it can choose motions that avoid premature termination. Finally, the
planner must employ termination predicates, such as force and position sensors,
to signal successful task completion. Although the previous examples have treated
position and force sensors in isolation, it is clear that the two types of sensors
should interact.

The requirements of the planner may be summarized by:
e The planner should exploit surfaces that facilitate sliding towards the goal.
e The planner should avoid surfaces on which sticking may occur.

e The planner should choose termination conditions that use both force and
position sensors.

1.4. Research Contributions and Qutline of the Thesis

This thesis develops tools that provide a planner with the capabilities needed
to construct motion strategies that avoid sticking surfaces, while exploiting surfaces
that cause si.ding to the desired goal state. The contributions in particular are:

e The thesis presents an algorithm for computing motion strategies. The strategies
are guaranteed to succeed in the presence of uncertainty.

e The thesis investigates the theoretical framework which forms the basis for
the motion synthesis algorithm.

e Finally, the thesis develops a geometrical representation of friction in
configuration space which constitutes an integral component of the planner’s
ability to avoid sticking surfaces.

Chapter 2 provides a fairly detailed but non-technical view of the thesis. This
chapter should be read before considering the more formal material of Chapters 3
and 4. Chapter 2 describes tools used for the automatic synthesis of motion strategies
in the presence of uncertainty. The chapter provides a review of configuration space
and generalized damper dynamics. The details of the backprojection algorithm
are presented. Finally, the chapter introduces a representation of friction in
configuration space.

Chapter 3 investigates the formal foundation of the backprojection algorithm.

The relationship of backprojections to the pre-images proposed by Lozano-Pérez,
Mason, and Taylor (1983) is discussed. It is shown that backprojections can serve as
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basic building blocks for pre-images, under restricted assumptions on termination
predicates. Finally, a method for selecting good goal sets is presented.

Chapter 4 develops a representation of friction in configuration space. The
representation is analogous to the classical friction cone in real space. Using this
representation, the chapter considers the prediction of motions, both in single and
multiple point contact. Examples demonstrating motion ambiguity under certain
conditions are also discussed.

The remainder of the current chapter is devoted to reviewing previous work
relevant to the thesis. Additionally, the chapter places the thesis within the context
of other research in robotics, in particular, motion planning.

1.5. Previous Work

The limitations on position tolerances imposed by pure position control systems
stimulated research into techniques for overcoming uncertainty in position sensors.
Inoue (1974) used force feedback to successfully accomplish peg-in-hole operations
at tolerances exceeding the inherent positional accuracy of his manipulator.
Specifically, he used force control to accurately align parts by sliding on contact
surfaces. Force exertion may also be used during trajectory execution to maintain
contact with surfaces whose exact locations are unknown.

Force control is one form of a technique known as compliant motion. The
principle underlying compliance consists of utilizing task constraints to guide
assembly operations, although the constraints themselves may not be known
precisely. Whitney (1977) described generalized dampers as one means of achieving
compliance. Raibert and Craig (1981) described a combination of position and
force control, known as hybrid control. Salisbury (1980) has considered generalized
stiffness control for six degrees of freedom. In particular, he considered transforming
into joint coordinates stiffness specifications made in arbitrary cartesian hand
coordinates. Mason (1981, 1983) provided a complete exposition of compliance,
including damping, stiffness, and hybrid control. See Mason (1983) for a thorough
review of work in the area of compliance.

Force control strategies must account for friction, in order to avoid assembly
states which cause premature termination of planned motions. Much work has
been done in modelling friction. Simunovic (1975, 1979) and Whitney (1982) have
determined conditions under which jamming or wedging can occur for peg-in-hole
insertions. In particular, Whitney (1982) has derived constraints on forces during
two-point contact that ensure smooth entry of the peg into the hole. Ohwovoriole
and Roth (1981), and Ohwovoriole, Hill, and Roth (1980) have also analyzed the
possible states in which an assembly may jam or wedge. They derive both kinematic
and force constraints that must be satisfied. Burridge, Rajan, and Schwartz (1983)
have considered various classes of motions possible during frictional contact. Mason
(1982) has considered pushing and grasping operations in the presence of friction.
He derives conditions for successful task completion in the presence of uncertainty.
The methods of these authors apply generally to the real space analysis of assembly
operations.
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It is often possible for one sensor to disambiguate the readings provided by
another sensor. The guarded moves of Will and Grossman (1975) constitute one
technique for achieving accurate positioning. By moving one object towards another
object until a collision is detected, for instance, by a force or velocity sensor, the two
objects can be brought into contact, even though the position of neither is known
accurately. Guarded moves and compliant motions are complementary techniques.
Guarded moves attain contact, while compliant motions maintain contact, both in
the presence of position (and control) uncertainty.

Compliant and guarded motion strategies attempt to account for uncertainty
implicitly by using constraints in the environment as silent guides. These techniques
do not, however, address the question of recognizing the explicit effect of different
errors on the uncertainty of object interactions. This explicit recognition is necessary
in order to determine the conditions under which specific strategies, such as
compliant or guarded move strategies, are applicable.

The skeleton strategies advanced by Lozano-Pérez (1976) and by Taylor (1976)
offered a means of relating error estimates to strategy specifications in detail. By
considering constraints on error ranges, it is possible to determine the values of
parameters required in a skeleton strategy to insure success. Brooks (1982) also
considered symbolic constraints in computing errors. His constraints can be used
both to provide error estimates, as well as to identify plan variables whose values
must be constrained for successful task completion.

Dufay and Latombe (1984) have considered a system that develops strategies
for dealing with uncertainty by considering multiple traces of executed plans.
The system consists of a training phase that generates execution traces, and an
induction phase that transforms the traces into a program capable of dealing with
uncertainty. During the training phase, the system may augment the original plan
with error recovery steps as unexpected events occur. By examining the different
types of modifications introduced into the original plan, the induction phase can
determine the range of possible outcomes of a desired motion. The induction phase
can therefore generate a program able to deal with uncertainty by explicitly testing
for the different motion outcomes resulting from uncertainty.

Recently Lozano-Pérez, Mason, and Taylor (1983) proposed a formal solution
to the problem of automatically synthesizing fine motion strategies. Given a set
of goals, they constructed regions from which, in the presence of uncertainty, it
was always possible to reach one of the goals using a single control command.
By recursively backchaining from the initial goal set, they were able to define a
sequence of motion commands that was guaranteed to move an object from its
initial position into one of the desired goals. Mason (October 1983) has shown this
method to be both correct and bounded-complete. However, at present there does
not exist an effective procedure for computing these motion commands. Chapter 3
discusses this work in more detail.
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1.6. Rclation to other Work in Robotics

1.6.1. A Research Agenda

In his Master’s thesis, Lozano-Pérez (1976) provided an outline for research in
robotics. The outline appeared in his description of the conceptual phases which are
involved in task planning. There are three such phases. In the first phase, known as
the Assembly Planning Phase, a general plan is developed. This plan specifies the
classes of operations which are to be performed. For example, it may specify that
object A is to be placed on top of object B, without specifying precisely how to
accomplish this operation. In the second phase, known as the Pick And Place Phase,
the grasp positions and collision free motions of objects are determined. Continuing
the previous example, this phase determines a path which permits placing A on B
without colliding with any objects while moving A. Finally, the third phase, known
as the Feedback Planning Phase, incorporates sensing into the previous plans, in
order to deal with uncertainty and error. For example, this phase might employ
position and force sensing to ensure that A is stably placed on top of B.

1.6.1.1. Assembly Planning

Brooks (1982), Lozano-Pérez (1976), and Taylor (1976) have considered the
Assembly Planning Phase. Brooks (1982) has developed a symbolic error analysis
system to be used in a plan checker. The system may be used to modify a plan to
ensure that it will succeed.

Lozano-Pérez (1976) and Taylor (1976) have investigated planning systems
that expand partial task specifications into complete sequences of operations. Each
operation possesses certain preconditions and achieves certain postconditions. The
planner attempts to generate a sequence of operations that accomplishes a task
subject to the constraints imposed on the operations by the geometry of the world.
The plan checker of Brooks (1982) is a means of verifying satisfaction of these
constraints, and of introducing new operations so as to guarantee satisfaction.

See also Lozano-Pérez (1983) for a thorough review of work in the area of task
planning.

1.6.1.2. Motion Planning

Much work has been done in connection with the Pick and Place Phase
outlined in Lozano-Pérez’s thesis, in particular with regard to the motion planning
problem. The motion planning problem is that of moving an object from an
initial configuration through a collection of obstacles to a goal configuration, while
avoiding collisions with the obstacles. The problem is to discover whether a path
between the initial and goal configurations exists, and if so, to find such a path.
The objects are generally assumed to be either polyhedral or algebraic.

Investigation of this problem finds its roots in the works of Brooks (1983),
Lozano-Pérez (1981, 1983), Lozano-Pérez and Wesley (1979), Reif (1979), Schwartz
and Sharir (1981, 1982, 1983), and Udupa (1977). Udupa (1977) first transformed
the obstacle avoidance problem from a task involving the motion of an object to
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the task of moving a point. The basic principle was to shrink the moving object to
a point, while growing obstacles to account for this shrinking.

Lozano-Pérez introduced into robotics the notion of configuration space. This
representation of the moticn planning problem reduces the problem of moving an
object through an obstacle filled environment to the problem of moving a point
through a higher dimensional space, namely the configuration space of the moving
'ﬁ object. The configuration space of an object is the parameter space representing

the degrees of freedom of the object. Obstacles in real space constitute constraints
on the object’s degrees of freedom. These constraints can be represented as obstacle
surfaces in the object’s configuration space.

(D

Reif (1979) showed that the motion planning problem, for a robot with an

F‘ arbitrary number of degrees of freedom in the form of linkages, is P-Space-hard.
o Schwartz and Sharir (1982) have exhibited an algorithm for the motion planning
r problem which is exponential in the number of degrees of freedom, but, for fixed

degrees of freedom, runs in polynomial-time in the number of obstacle faces.

! Hopcroft, Joseph, and Whitesides (1982) have considered the motion of planar

linkages. Their investigation showed that deciding whether an arm with an arbitrary
5 number of links can be moved from one configuration to another while remaining
inside a given region is NP-hard. For circular regions they showed this problem to
be solvable in polynomial time. ‘

. Brooks and Lozano-Pérez (1983) have implemented a path planning algorithm
d for the problem of a planar polygonal object with two translational and one
rotational degrees of freedom. The configuration space for this problem is a three
{ dimensional space. A general rigid object in the real world has three translational
and three rotational degrees of freedom. Thus the configuration space is a six
dimensional space. Lozano-Pérez (1981) has also suggested a method for planning

[ collision free paths for the full six dimensional motion planning problem, using )
4 three dimensional slice projections. )
5 In his Master’s thesis, Donald (1984) described a complete algorithm, which _?
F: he also implemented, for the full six dimensional motion planning problem. The ]
5 algorithm explicitly uses the coherence of configuration space obstacles to plan -
- paths, by using operators that slide parallel to five dimensional surfaces! and to ]
Y the intersection of such surfaces in configuration space. Donald also described the o
b

form of the surface and intersected surface equations, as well as the applicability ':
regions in rotation space for these surfaces. ]

O’Dinlaing and Yap (1982), and O’Dinlaing, Sharir and Yap (1982) have
- considered planar motion problems using retraction to Generalized Voronoi
diagrams. Brooks (1983) has implemented a planar path planner which models
the free space between obstacles as Generalized Cones. Donald (1984) has also
defined and considered Generalized Voronoi Manifolds in configuration space for
path planning with six degrees of freedom.

"Throughout this thesis ‘surface’ refers to any submanifold. No particular dimension should be
attributed a priori to the word ‘surface’.
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Figure 1.10. The task is to move object A one meter above object B, in the presence
of position sensing uncertainty. A single motijon cannot solve this problem. A strategy
that first bumps into B, then moves up one meter, can successfully accomplish the
task.

Hopcroft and Wilfong (1984) have investigated the motion of objects in contact.
They have shown that if two objects in contact at one configuration can be moved
to another configuration in which the two objects are again in contact, then there
exists a motion between the two configurations during which the objects are always
in contact.

1.6.1.3. Uncertainty

Some work has been done within the area of Lozano-Pérez’s third conceptual
planning phase, the Feedback Planning Phase. This phase accounts for uncertainty
and error in the plan steps found by the Assembly Planning and Pick And Place
Phases. Lozano-Pérez’s LAMA system (1976) uses geometric simulation of plan
steps to decide on possible motion outcomes. The simulation makes explicit the
possible errors that might occur. By introducing sensing at the error points and by
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restricting the values of parameters in the skeleton plans, it is possible to recover
from or explicitly avoid errors during the execution of planned motions.

Taylor (1976) provided an algebra system which considered constraints on error
ranges to restrict the values of parameters in skeleton strategies, in order to ensure
successful motions. Brooks (1982) has considered symbolic constraints in computing
errors. By manipulating the constraint dependencies between successive plan steps,
his system can be used both to provide error estimates, as well as to identify plan
variables whose values must be constrained for successful task completion.

Dufay and Latombe (1984) developed a system that induces the possible effects
of uncertainty from execution traces of a proposed plan. The system generates a
modified plan that accounts for uncertainty. This plan uses conditional motions
which explicitly test for the error states learned from the execution traces.

Recently Lozano-Pérez, Mason, and Taylor (1983), and Mason (October 1983)
proposed a formal system which directly incorporates uncertainty information into
the planning process. Their work forms the foundation of this thesis, and will be
presented in more detail later.

1.6.2. Relation of this Thesis to the Research Agenda

Previous work has tended to view the three conceptual phases of planning as
distinct and consecutive phases, primarily because of the difficulty of understanding
the problems within these phases even in isolation. Thus work on motion planning
generally assumed perfect knowledge and perfect control. Incorporation of error
handling has occurred as an afterthought. Having first developed a plan under
the assumption of a perfect world, the plan was only secondarily augmented with
sensing steps and constraints on plan variables to ensure the plan’s success. For
example, the error analysis system of Brooks (1982) was intended as a plan checker.
In other words, the system expected a given plan along with error information.
The system then either augmented the plan with sensing steps to account for the
error information, or, if it was unable to guarantee the plan’s success, it labelled
the plan as infeasible.

In effect, within the planning process, information has tended to flow from the
sccond conceptual phase, the Pick And Place Phase, to the third conceptual phase,
the Feedback Planning Phase. While this approach can solve many problems, it
ultimately limits the class of tasks that a robot can be expected to perform. In
general, a planning scheme must explicitly take account of error and uncertainty
while deciding on the motions to be performed, as this information may affect the
structure of the plan.

For example, consider the problem in Fig. 1.10. The object A is to be moved
from its initial position to a point one meter above object B. Given perfect sensing
and control, this is a trivial task, requiring a single direct motion from the initial
to the desired goal configuration. If, however, the assumption of perfect sensing
is relaxed, so that the initial position is not known precisely, then the plan fails.
Furthermore, it is impossible to spruce up the given motion with additional sensing,
so as to insure success. However, if the structure of the plan is altered, then a
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two step motion, which first bumps object A into object B, and then moves to
the desired goal, will succeed. A similar example, in which the goal is a region
rather than a point, can be used to show that a plan which succeeds under perfect
control must be restructured in order to succeed under error tainted control. More
complicated examples abound.

This thesis proposes to take explicit account of error and uncertainty during
the planning process. The thesis develops geometrical tools which allow a planner
to construct motions that are guaranteed to succeed in the presence of uncertainty.

1.6.3. Future Research

Additional work is required in the Assembly Planning Phase. Lozano-Pérez,
Mason, and Taylor (1983) note that small changes in geometry can effect large
changes in strategy. This effect is compounded by the presence of uncertainty. Once
again, it is necessary to take explicit account of error and uncertainty while deciding
on the classes of operations to be performed for a given task. In particular, the
order of operations may be affected by uncertainty. Additionally, aids such as jigs
or scaffolds may be required to insure success of operations subject to uncertainty.
See also Chapter 5.
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Figure 2.1. The task is to move the triangle from the start to the goal configuration.
The rectangle is a stationary obstacle.

2. Basic Problems in Planning Motions with Uncertainty

Briefly recall the requirements of a motion planner (see Sec. 1.3.3). It should
exploit surfaces that cause sliding to the goal. It should avoid surfaces on which
sticking may occur, and it should employ both force and position sensors in choosing
termination conditions for the plan executor. This thesis develops tools required by
the planner. This chapter is devoted to an overview of the ideas behind the tools.
It serves both as a refresher of several established concepts in robotics as well as
a primer on new research presented in this thesis. Later chapters discuss the tools
in more detail. In particular, the later chapters build the mathematical foundation
for the research presented in the third and fourth sections of the current chapter.

The first two sections review the notions of configuration space and generalized
damper. Configuration space abstracts the essential geometric constraints of
object interactions. The generalized damper is a dynamical model that defines an
equivalence between velocities and forces.

The third section defines backprojection regions and presents an algorithm
for computing these regions. The planner can use backprojection regions in a
backchaining process to develop motion strategies that are guaranteed to succeed
in the presence of uncertainty. This section also discusses the relationship of
backprojections to the LMT (Lozano-Pérez, Mason, and Taylor (1983)) planning
system.
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Figure 2.2. Construction of the configuration space obstacle for the task of Fig. 2.1.
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Start

Figure 2.3. Path in configuration space between start and goal configurations.

Finally, the fourth section develops a representation of friction for configuration
space. This representation is seen to be a friction cone with properties analogous
to those of a real space friction cone. The friction cone permits the planner to use
geometrical techniques in deciding whether sticking can occur at a point. This is
invaluable to the planner’s search for sliding surfaces.
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Figure 2.4. Peg-in-hole task. The reference point is at the bottom of the peg.

2.1. Configuration Space

The list of requirements indicates that the surfaces in the moving object’s
environment are critically important, as they represent constraints on the object’s
motion. It is therefore desirable to employ a geometric representation which makes
these constraints explicit. The configuration space of a moving object provides
a representation which highlights the relevant constraints on motion (see Arnold
(1978), Lozano-Pérez (1981, 1983)).

The configuration space of an object is the parameter space representing
the object’s degrees of freedom. Obstacle surfaces in real space define constraints
on the object’s degrees of freedom. These constraints may be represented by
hyper-surfaces in the object’s parameter or configuration space. Thus the task of
moving a complicated object in a world filled with other complicated objects is
transformed into the simpler problem of moving a point in a higher dimensional
space, namely the object’s configuration space.

The next few subsections describe several common configuration spaces. The
treatment is of intuitive nature. The precise mathematical definitions are not
needed for the current exposition, but will be stated and used in later chapters.

2.1.1. The Two Dimensional Configuration Space of a Planar Object

Consider the environment of Fig. 2.1. The moving object is the triangle. It is
allowed to translate in the plane, but is not permitted to rotate. Thus the triangle
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Figure 2.5. Several slices of the peg-in-hole configuration space, corresponding to
different orientations of the peg. The real space is on the left, while the associated
configuration space is on the right.
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Figure 2.6. A portion of the configuration space surface corresponding to the
peg-in-hole problem. The surface is shown as a collection of slices.

has two degrees of freedom. The task is to move the triangle from its given position
to the indicated goal position.

In order to transform the problem into its configuration space representation,
it is necessary to choose a reference point relative to which the object’s parameters
are measured. This is indicated in Fig. 2.1. Since the object can only translate, the
configuration space is two dimensional. The configuration space is itself a plane,
consisting of (z,y) configurations.

The constraints on the object’s motion are represented in its configuration space
by the configurations of the reference point that would cause collisions between the
object and obstacles in the plane. The resulting constraints are depicted in Fig.
2.2.

The initial and goal positions of the triangle correspond to two points in
the triangle’s configuration space. One path between these two configurations is
shown in Fig. 2.3. Since the path lies either in free space or on the boundary
of configuration space obstacles, the motion of the triangle occurs either as free
motion between real space obstacles or as sliding motion along the edges of real
space obstacles.
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Figure 2.7. Configuration space of the peg-in-hole problem with a chamfered hole.

o

2.1.2. The Three Dimensional Configuration Space of a Rotating Planar
Object

Consider now the planar peg-in-hole problem previously mentioned in Chapter
1. Assuming that the peg is allowed only to translate, but not to rotate, the
configuration space is a two dimensional planar space, as in the previous example.
Choose the reference point at the bottom of the peg, as in Fig. 2.4. For each fixed
orientation of the peg, the resulting configuration space of the translating peg is a
two dimensional (z,y) space. This space is depicted for several orientations in Fig.
2.5.
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If now the peg is permitted to rotate as well as translate, then the peg has
three degrees of freedom. Hence the peg’s configuration space is a three dimensional
space, consisting of (z,y, 8) configurations. For each fixed value of 6, the associated
(z,y) cross section of this three dimensional space is just the two dimensional
‘ configuration space of the translating but not rotating peg. A few of these cross :
sections are shown in Fig. 2.6. Fig. 2.7 shows the change in the configuration space
for the peg-in-hole problem if the hole is chamfered.
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2.1.3. Other Configuration Spaces

] A rigid object in real space has three translational degrees of freedom and three
rotational degrees of freedom. Hence the configuration space is a six dimensional
space.
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A robot arm with six prismatic or revolute joints has six degrees of freedom.
Thus its configuration may be specified by six parameters in a six dimensional
configuration space.

As an aside, one should note that the configuration subspaces of rotational
degrees of freedom are slightly different than the configuration subspaces of
translational degrees of freedom. This is because rotations must wrap around.
Furthermore, rotations need not commute.

2.1.4. Forces in Configuration Space

In real space, if one pushes on an object, it pushes back. Objects generate
reaction forces that are parallel to the normal vectors of the objects’ faces.
Configuration space objects behave identically. Forces exist in configuration space
as generalized forces. In real space a force vector pointing in a particular direction
causes acceleration in that direction. The same statement applies in configuration
space, except that the coordinates along which the acceleration is occurring,
are parameters such as translation and orientation, rather than the usual three
dimensional coordinates of everyday life. Conceptually, there is no difference.

Configuration space surfaces are similar to real space surfaces. They represent
inviolable constraints. Thus they are as solid as real space surfaces. Additionally,
they generate reaction forces in a fashion similar to the manner in which real space
surfaces generate reaction forces. These reaction forces lie along the normals to the
surfaces, just as for real space surfaces. Much of the reasoning and intuition known
from everyday litc carries over to configuration space surfaces.

The advantage of configuration space lies in its simplification of constraints.
Configuration space makes explicit the geometrical constraints imposed on the
motion of an object by obstacles in the object’s environment. In real space, it is
necessary to explicitly examine the interaction of every edge, vertex, and face of
the moving object with its environment. In configuration space, it is sufficient to
consider the interaction of a single point with a configuration space surface. Thus
configuration space simplifies the analysis of motion.

The similarity between real and configuration space surfaces has led to
formulations of slidi- g strategies in configuration space, in particular, of compliant
mnotions and guarded moves. See (Mason (1981)) for seminal work in this area. This
realization demonstrates the usefulness of configuration space as a conceptual tool
in robotics. Not only does configuration space capture the geometrical constraints
of obstacles in the real world, but it also offers a representation of the dynamics of
object interactions which preserves real world intuition.

The previous paragraphs have naturally ignored a few minor details. For
example, in order for the acceleration ol gencralized coordinates to correspond to
the application of generalized forces, it is necessary to choose the reference point at
the center of mass or at the center of compliance of the moving object. Additionally,
the representation of real space friction in configuration space requires a bit of
work. Some of these details are investigated more thoroughly in later sections and
chapters.
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Figure 2.8. Velocity/Force computation under generalised damper dynamics,
assuming no friction.

2.2. Generalized Damper

2.2.1. The Generalized Damper Models Sliding

As noted above, a planner should synthesize strategies that take advantage of
intervening surfaces, planning motions that slide along the surfaces towards the
goal. Furthermore, the control commands given should be motion directions rather
than positions.

A convenient model for implementing sliding motions, while commanding
velocities, is the generalized damper (Whitney (1977)). The model is specified by
the following relationship between forces and velocities:

F = B(v —vy), (2.1)

where F is the vector of forces and torques acting on the moving object relative to
its reference point, vg is the commanded velocity vector, v is the actual velocity,
and B is a damping matriz. It is generally convenient to take B as a diagonal or
even identity matrix. One may view the vector F as the net force acting on the
moving object due to other objects in the moving object’s environment.

Equation (2.1) should be regarued as a control law specifying the ideal behavior
of the world. The implementation of this ideal law is the responsibility of the
underlying control system. Errors in approximating reality! to this control law
are captured by the velocity error cone about the desired velocity vg. Recall how
this cone represents the control error. The possible motion directions that an
unobstructed object may follow when commanded to move in the direction vg lie
within the cone (see also Fig. 1.4). The effect of uncertainty on Eq. (2.1) is therefore
to substitute for vy any of the velocities in the error cone about vy.

' Reality is governed at a certain resolution by Newton.
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In order to understand the manner in which a generalized damnper relates
sliding velocities and forces, consider Fig. 2.8. The commanded velocity is pointing
into the surface and slightly to the right. Since motion into the surface is impossible,
the actual velocity must be tangential to the surface. In the absence of friction, the
reaction force formed by the surface is normal to the surface. Assuming an identity
damping matrix, Eq. (2.1) indicates that the reaction force cancels the normal
component of the commanded velocity. In general, given a commanded velocity,
and a normal vector to a surface of contact, the resulting motion is tangential to
the surface of contact, since the reaction force cancels the normal component of
the commanded velocity.

It is possible to rewrite Eq. (2.1) in a fashion which clarifies the claim of the
previous paragraph:

Freactioﬂ + Fapplicd = By, (2'2)

where, using previous terms, F, qion = F, and Fyppied = Bvo. In other words,
one may think of the commanded velocity as specifying an applied force which is
related to the reaction force by a first order differential equation.

2.2.2. Other Dynamics

The generalized damper is a special case of a system of dynamics described by
the equation

F = M(a — ag) + B(v — vq) + K(p — po), (2.3)

This system consists of an inertial term, a damping term and a stiffness term.
Choice of the parameters M, B and K determines the behavior of the system. With
M = K = 0, the system reduces to a generalized damper. With B = K = 0, the
system reduces to Newton’s world. With M = B = 0, the system reduces to a
generalized spring. See also Salisbury (1980).

The general system, and in particular, Newton’s world is represented by a
second order differential equation. The system of a generalized damper is described
by a first order differential equation, while that of a generalized spring is described
by a zeroth order equation.

2.2.3. Comparison of Generalized Damper to other Dynamics

The model of a generalized spring serves many useful purposes. For example,
this model is often used in the implementation of hybrid controllers (see Mason
(1983), and Raibert and Craig (1981)). Directions that are being force controlled
are given small spring constants in the stiffness matriz K, while directions that are
being position controlled are given large spring constants. One of the difficulties
with this model, however, is that it only indirectly captures motion dircctions. It
is necessary to move the desired position pg in order to create motion. Such a
method is not completely satisfactory, as the underlying system is governed by
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However, the geometrical tools required to model these orbits in the presence
of uncertainty would require a phase space representation, rather than a simple
configuration space. Such a representation would double the dimension of the
underlying space. At least during a first pass, while investigating the basic problems
of motion planning and uncertainty, it is desirable to avoid the complications of
phase space.

The generalized damper model offers an attractive mean between the extremes
of position discontinuities and phase space representations. The model is simple,
hence serves as a convenient tool both for a human as well as a motion planner.
The simplicity of the model manifests itself in three related areas.

o First, the generalized damper equation relates forces and velocities. Thus,
thinking about directions is equivalent to thinking about forces.

e Second, the first order equation allows one to ignore second order terms such
as inertial forces, centripetal forces and coriolis forces. Naturally, the control
system which implements the gencralized damper dynamics must account
for second order terms. However, within the ideal world seen by the motion
planner such forces may be ignored. The ability to ignore these forces is of
particular interest within the context of modelling friction. The planner must
avoid surfaces on which sticking can occur. A simple representation of friction
is of benefit in recognizing such surfaces. Thus, being able to ignore second
order terms considerably simplifies the planning process, without removing the
central issues raised by motion planning in the presence of uncertainty.

e Third, the orbits of points in frce space under generalized daizper dynamics
are straight lines. This also simplifies the planning process. In particular, it
facilitates the determination of constraints during the backprojection phase of
the planning process. This phase will be described in greater detail later.
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2.3. Backprojections

T‘ The previous two sections have described two well established tools in robotics.
The configuration space representation allows a formulation of tasks as motion
planning problems involving a point, while the generalized damper dynamics treats
these motions as straight lines through free space and tangential movements along
) obstacle surfaces. The rest of the chapter assumes the configuration space and
h generalized damper dynamics as tools. This section discusses an algorithm for
determining regions from which certain motions are guaranteed to arrive at the
task’s goal region. The next section discusses a representation of friction assumed
by the algorithm of this section.

2.3.1. The Planner’s Plan of Pre-Images

Recall the objective of a planner. It should synthesize strategies specified
by motions that exploit surfaces along which sliding can occur while avoiding
1 surfaces on which sticking can occur. Additionally, the motions should terminate
in unambiguous states, so that the plan executor can recognize the successful
completion of a task.

—'!I Ty

-

Within the motion planning context, a task is specified by a desired set of
geometrical relations. The input to the planner is a geometrical description of the
world. Included in this description are the relationships of objects to one another,
in particular, the initial and desired relationships of objects (see also Lozano-Pérez
- (1976)). The planner must determine a means of changing the relationship of objects
4 from the initial to the goal state. For a single subtask, this entails moving one
object. Thus, in terms of configuration space, the goal of the subtask is specified
by a region in configuration space into which the point representing the moving
object must move. The initial state is represented similarly, either by a region or
by a point, depending on the accuracy with which the initial state is known or
needed.

Clearly, the goal state is of primary concern. The initial state may be changed
into intermediate steps, if required, but the goal state embodies the purpose of the
task.

Therefore, the question to be asked is:

Aaasanas e

(1) “If I want to go there, where must I be, and how must [ move, to get there?”
Of course, given the earlier discussion, two other questions follow immediately:

(2) “If 'm not where I should be to get where I'm goir~. how do I get to where I
should be?”

e
F (3) “lHow do I know when I've gotten to where I'm going?”

These questions are classical questions that arise in a number of artificial
& intelligence problems (see Nilsson (1980)). Their structure indicates an answer
] involving some form of subgoaling or chaining. In fact, Lozano-Pérez, Mason, and
L Taylor (1983) have proposed a formal system that uses backchaining to answer
{ these questions and develop a methodology for planning motions in the presence of
{ uncertainty.
° 41
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Figure 2.10. The task is to determine regions, and motion directions from those
regions that will move a point to the goal edge.

The formal system envisioned by Lozano-Pérez, Mason, and Taylor answers
question (1) by defining for any desired state the pre-image of that state. The
pre-image is precisely the set of locations from which one can get to where one
wants to go. In fact, the pre-image of a desired state is so defined that it also
answers question (3). In other words, if one starts off in a pre-image location one
will not only get to where one is going (question (1)), but also recognize that one
has arrived (question (3)). The technical details of pre-images are not of importance
to this discussion, but will be mentioned in later chapters.

Having answered the first and third questions, it remains to answer the
second question. This answer is provided by backchaining. The scheme proposed by
Lozano-Pérez, Mason, and Taylor may be visualized abstractly by the diagram of
Fig. 2.9. In words, given a desired state, the planner constructs that desired state’s
pre-image. The pre-image is a collection of states, from which movement into the
desired state is guaranteed. All motion directions are considered. Of course, one
can view the pre-image itself as a collection of desired states. It is then possible
to construct the pre-image of this collection, that is, it is possible to construct the
pre-image of the pre-image. Proceeding in this fashion, the planner backchains from
the first desired state, repeatedly creating new levels of pre-images until eventually
one pre-image contains the initial state of the world.

Backchaining answers question (2), for it produces a sequence of pre-images,
hence a sequence of motions, that leads to the goal. Thus the p.e-images form a
list of intermediate locations and motion directions that comprises the answer to

question (2).

2.3.2. Approximating Pre-Images with Backprojections

The definition of pre-images does not provide an algorithm for their
computation. In fact, it is not known whether it is possible to construct such
an algorithm. In Chapter 3 of this thesis it will be shown that the general form of
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Figure 2.11. The goal is the edge. Given the commanded velocity uncertainty, the
triangular region is the maximal region from which points are guaranteed to move to
the edge.

Figure 2.12. A point in the triangle is guaranteed to hit the edge. A point outside
the triangle may miss the edge.
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Figure 2.13. Walls that cause sliding towards the goal edge increase the backprojection
region.

pre-images is uncomputable. Fortunately, this uncomputability is not a fundamental
problem, as it applies to environments and tasks that do not generally arise in
practice.

This thesis presents an algorithm for computing regions in space, called
backprojections, from which motions in certain directions are guaranteed to enter the
goal. The properties of backprojections are similar to those of pre-images. In fact it
is possible to approximate certain classes of pre-images using backprojections. Thus
backprojections form the primitive elements from which a planner can construct
more complicated pre-images. The following subsections present an intuitive
treatment of backprojections, while later chapters provide formal definitions and
explore the detailed relationship of backprojections to pre-images.

2.3.3. A Two Dimensional Algorithm

Consider the case of a planner which is faced with the task of moving a point
in the plane amongst polygonal obstacles. Given the tool of configuration space,
this is not an artificial problem, as it corresponds to the problem of moving in the
plane an object which is allowed to translate but not to rotate.

4




Figure 2.14. If sticking is possible on the walls, then the backprojection region must
avoid the walls.

Figure 2.15. Frictionless edges may also cause sticking. This occurs if the edge
normal points into the velocity cone.

In particular, consider the example of Fig. 2.10. The goal region is the edge
indicated. The objective of the planner is to choose motion directions and regions in
space from which those motion directions are guaranteed to enter the goal region.
For every possible motion direction, the planner can construct a (possibly empty)
region from which, using the given motion direction, the moving point is guaranteed
to enter the goal.

2.3.3.1. Backprojection from an Edge

It is useful to consider a simpler example before attempting a solution of the
original problem. Consider Fig. 2.11, which consists of a single edge in space. That
edge is also the desired goal region. Suppose that the given motion direction is
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straight down. Also suppose that the error cone about the desired velocity is as
shown in the figure.

Recall that a backprojection region should bLe a region from which any motion
commanded along the desired direction is guaranteed to enter the goal. However,
the actual motion associated with a commanded velocity is known only to lie within
the error cone about the desired velocity. Thus in order to guarantee entry into the
goal region, it must be the case that all motion directions within the error cone are
guaranteed to enter the goal region.

With this realization in hand, the planner can easily backproject from the goal
edge, determining the triangular backprojection region shown in Fig. 2.11. It is
clear that this region is correct. To verify the correctness, pick any point within
the region, such as the point of Fig. 2.12. Now attach the velocity error cone to
the chosen point. The resulting cone represents the possible locations of the point,
having been commanded to move straight down. Since ultimately every trajectory
within theé cone enters the goal region, the original point is a valid backprojection
point.

Also consider a point outside of the triangular region. Attaching the velocity
cone to such a point shows that there are some trajectories that emanate from
the chosen point that do not enter the goal region. Hence the point is not a valid
backprojection point.

This is an extremely simple example. Nonetheless, it provides a clue
regarding the structure of backprojection regions. Note that the boundary of
the backprojection region consists of, other than the goal edge, two line segments
that are parallel to the extreme rays of the velocity error cone. This observation will
later be used to devise an algorithm for computing backprojections. The algorithm
outlines the boundary of a backprojection region by erecting constraint rays that
are parallel to the extreme rays of the velocity error cone about the desired direction
of motion.

2.3.3.2. Backprojection Involving Sliding

The previous example did not consider the use of sliding surfaces. Consider the
augmented example of Fig. 2.13. In this example the edge of the previous example
has been surrounded by two vertical walls. The desired velocity is straight down, as
in the previous example. Assume that the walls are frictionless, so that all velocities
within the velocity error cone about the desired velocity cause sliding. In other
words, if the moving point hits one of these walls, then the point will slide along
the wall towards the goal edge.

The backprojection region for the new example is the region above the goal
between the vertical walls and the dashed lines of Fig. 2.13. Notice how the
walls have pushed the triangular region back from the goal, thereby enlarging the
backprojection region. This example demonstrates the utility of sliding surfaces as
guides to the goal.
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Figure 2.16. Backprojection region that is obstructed by an obstacle.

As a word of caution, recall that the planner should exploit surfaces that cause
sliding towards the goal, while avoiding surfaces on which sticking might occur.
Should the coeflicient of friction on the walls be large enough to cause sticking for
some velocity in the velocity error cone, then the planner can no longer guarantee
that all motions within the error cone lead to the goal. Thus the planner would
avoid the walls, producing instead the smaller backprojection region of Fig. 2.14.

Similarly, suppose the walls are not vertical, but tilted at an angle, as in Fig.
2.15. Recalling the generalized damper model of Sec. 2.2.1, it is clear that sticking
can occur, even if the walls are frictionless. This is because for each of the walls,
one of the velocities within the error cone is anti-parallel to the wall’s normal (see
Eq. (2.1)). Consequently, the wall can generate a reaction force that cancels the
applied velocity. Should this happen, the point would cease to move. Thus the
planner again could not guarantee entry into the goal, and so would avoid the
walls.

Once again, it is noteworthy that the boundary of the backprojection region
consists of, other than the goal edge, the surfaces along which sliding to the goal is
guaranteed, plus line segments that are parallel to the extreme rays of the velocity
cone. Notice also that the line segments emanate from the vertices of the offending
walls. In essence, these boundary segments act as constraints, insuring that the
moving point won't stray into forbidden territory.

2.3.3.3. Backprojection Obstructed by an Obstacle

Now consider the original edge example, but suppose that there is a rectangular
obstacle above the edge, which would lie within the triangular backprojection region
previously constructed. Clearly that triangular region is no longer appropriate, as
it is possible to stick on the obstructing obstacle.

The planner must construct a region which avoids the top edge of the obstacle.
Assuming that the vertical edges of the obstacle are frictionless, the backprojection
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Figure 2.18. Erecting constraints at both vertices of an edge that is to be avoided.

of the goal edge is the region shown in Fig. 2.16. Once again, the boundary of the
region consists of the goal edge, of obstacle edges along which sliding is possible,
and of line segments parallel to the extreme rays of the velocity error cone. These
line segments bound the edge on which sticking can occur, constraining the moving
point away from the edge.

2.3.3.4. An Algorithm

The previous three simple examples have demonstrated three aspects of the
backprojection algorithm. Specifically, the examples have shown how (1) the extreme
rays of the velocity error cone outline portions of the backprojection regions, how
(2) sliding surfaces extend the backprojection regions, and how (3) sticking surfaces,
in particular, obstacles within the backprojection. can be avoided.
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Figure 2.19. The goal is the bottom edge in the hole.

Observation (1) is of particular importance. In order to systematically make
use of this observation, it is convenient to define the negative velocity cone as the
cone which is formed from the velocity error cone by inverting all the velocity
vectors. The negative velocity cone of the error cone used in the previous examples
is shown in Fig. 2.17.

The velocity error cone represents the possible directions of motion. The
trajectories in this cone are solutions to the first order differential equation of the
generalized damper, with time increasing. In other words, the velocity error cone
consists of the possible locations of a point in time, given that it starts at the apex
of the cone. Inversely, the negative velocity cone represents the possible solutions
to the generalized damper equation with time decreasing. Thus, the negative cone
consists of all those points which could move to the apex of the cone. In other
words, a point in the negative velocity cone could move to the apex of that cone
given an appropriate effective velocity (or sequence of velocities) from the original
velocity cone.

The negative velocity cone may be used to backproject constraints from surfaces
that are to be avoided. Suppose that sticking might occur at a vertex. The planner
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Figure 2.20. Constraints erected while backprojecting from the bottom edge.

should avoid that vertex. Since the negative velocity cone explicitly defines those
points which could possibly hit and stick at the vertex, the planner need only erect
the negative velocity cone at the offending vertex. Points in the resulting cone are
to be avoided, while points outside the cone cannot possibly hit the vertex.

Similarly, suppose that sticking might occur on an edge. The planner can avoid
the edge by erecting the negative velocity cone at both of the edge's vertices, as
shown in Fig. 2.18. The cones and the regions between them consist of points that
might move to the edge and stick, while the region to the left or right of both cones
consists of points that cannot possibly hit the edge.

A backprojection algorithm is now evident:

(1) Consider every vertex in the environment. Mark every vertex at which sticking
can occur, or which abuts a non-goal edge at which sticking can occur. Also
mark a vertex if it abuts a goal edge and a non-goal edge, and if it is possible
to slide away from the vertex on the non-goal edge.

(2) At every marked vertex erect the negative velocity cone. This involves erecting
the extreme rays of the negative velocity cone at the marked vertex. Each ray
is attached to the vertex at one end, and intersected with the nearest edge or
ray in the environment to form the other end. Thus the rays create constraint
edges.
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Figure 2.21. The goal is the top of the trapezoid. Since sliding is possible away from

this edge at its vertices, the backprojection algorithm must erect constraints at the
vertices. :
(3) Beginning at the goal edge(s) trace out the backprojection region. This is ]
accomplished by regarding both obstacle and constraint edges as edges with \
an interior and an exterior side. The interior side of a constraint edge is the ]

side which lies interior to the negative velocity cone from which the edge was
originally constructed. Tracing out the region entails tracing along an edge
until encountering a vertex. Assume that all edges incident at this vertex are
ordered by angle. The current edge in the trace has an exterior and an interior
side. Choose the edge which is adjacent to the current edge on its exterior
side. This adjacent edge is used to continue the trace.

ok

In deciding whether sticking can occur on a vertex, assume that the vertex
can produce reaction forces which are linear combinations of the reaction forces )
that cach of the abutting edges can produce. A vertex is the intersection of two 1
one dimensional surfaces. Thus this definition is consistent with the notions of
superposition of forces and intersection of constraints. 1

In order to gain a complexity estimate, note that cach vertex in the environment
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Figure 2.22. Three different commanded velocities, along with their uncertainty
cones. These velocities are used in Fig. 2.23 to backproject from the goal edge
of Fig. 2.10. The threce velocity uncertainty cones are shown in the left column.
For comparison, the friction cones associated with vertical and horizontal edges are
shown in the right column (only one orientation is indicated). The first commanded
uncertainty cone partially points into the friction cone associated with vertical edges.
The third uncertainty cone points into the friction cone associated with horizontal
edges. The second uncertainty cone does not point into either of the friction cones.

can contribute two constraint rays. Thus the algorithm erects O(n) constraint rays,
where n is the number of vertices. Given that the obstacles are polygons, the number
of edges is also O(n). Consequently, the intersection of rays with the environment
can be computed in O(n?) time. Finally, the trace can be performed in O(n) time.
The overall complexity of the algorithm is therefore O(n?). Given that the ray
intersection portion of the algorithm can be speeded up to O((n +c) log n) time, the
final complexity of the algorithm is actually O((n + ¢) logn). Here ¢ is the number
of intersections.

As an example, consider how the algorithm would determine the backprojection
region for the example of Fig. 2.19. The velocity error cone is the same as for the
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previous examples. The edges are assumed frictionless. Note, however, that sticking
can occur on any horizontal edge, since the velocity uncertainty cone contains a
velocity vector anti-parallel to the edge normal.

Sticking can occur at the top edge of the obstacle and at the top edges of the
walls surrounding the goal edge, since the normals for these edges point straight
up, opposing the commanded velocity. Therefore, the algorithm erects the negative
velocity cone along each of these edges (see Fig. 2.20).

Beginning at the goal edge, the algorithm traces out the backprojection region.
First it traces up the left wall, whereupon it encounters the constraint erected at
the top of the wall. The algorithm then traces along this constraint edge, until it
encounters the constraint edge arising from the left vertex of the top edge of the
obstacle. It traces down this constraint, encounters the left edge of the obstacle,
traces down that edge, encounters the bottom edge of the obstacle, and so forth.

In order to understand the second part of step (1), recall that the planner
should exploit surfaces that cause sliding towards the goal. Edges which might
cause sliding away from the goal naturally should be avoided in much the same
way that edges which cause sticking are avoided.

Consider the example of Fig. 2.21. The goal edge is the top edge of the
trapezoid. Notice that it is possible to slide away from the goal edge when in
contact with one of the edges abutting the goal edge. The desired velocity is straight
down, with the usual type of error cone. Under the velocities given by this error
cone, sticking can only occur at the goal. Thus there are no vertices that need to
be marked on the basis of sticking. Nonetheless, clearly the backprojection of the
goal edge should be the indicated triangular region of Fig. 2.21. The second part
of step (1) insures that the constraints defining this region are erected.
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Figure 2.24. Sticking is possible on part of the parabolic arc for the velocity
uncertainty shown.

It is now a simple matter to determine, for any desired motion direction, the
backprojection of the goal edge in the example of Fig. 2.10. The coefficient of
friction on each of the edges in this example is assumed to be one fourth. Fig. 2.22
shows three different commanded velocities, along with their uncertainty cones.
Also shown in Fig. 2.22 are the friction cones for horizontal and vertical edges. 2.23
shows the constraints and regions determined by the backprojection algorithm, for
each of the commanded velocities and uncertainty ranges shown in Fig. 2.22. The
left column in Fig. 2.23 displays the constraints erected for each of the commanded
velocity uncertainty cones. The right column displays the resulting backprojection
regions.

As is indicated in Fig. 2.22, the first commanded velocity uncertainty cone
partially points into the friction cone associated with vertical edges. The third
commanded velocity uncertainty cone points into the friction cone associated with
horizontal edges. The second uncertainty cone points into neither of these friction
cones. The consequences of these intersections is evident in the backprojection
regions of Fig. 2.23.

For the first commanded velocity, sliding cannot occur on vertical edges with
outward normals pointing to the left. Consequently, the hole’s right wall at the goal
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Figure 2.25. Edges can cause sliding to non-goal vertices at which motions may
become trapped.

edge does not aid in forming a backprojection region. For the third commanded
velocity, sliding cannot occur on horizontal edges with outward normals pointing
up. Consequently, the horizontal edges at the top of the hole surrounding the goal
edge do not aid in forming a backprojection region. In contrast, for the second
comr: 1 ded velocity, sliding is possible both on vertical and horizontal edges. This
is evident from the backprojection region formed for this commanded velocity. The
backprojection region includes both vertical and horizontal edges that facilitate
sliding towards the goal edge.

2.3.3.5. Comments

The algorithm presented above tacitly assumes that obstacles in the environment
are polygons. The advantage of assuming a polygonal environment lies in the
discreteness and finiteness of motion states. Given a constant coefficient of friction
over an edge, if sticking can occur anywhere on the edge, then it can occur
everywhere. In other words, the property of sticking is invariant over the edge.
Similarly, the directions of sliding determined from the generalized damper equation
are invariant over the edge. Thus, it is sufficient to consider an edge’s vertices
both when deciding whether sticking can occur on the edge, and when deciding in
which directions sliding is possible. Furthermore, having decided that an edge is to
be avoided, it is sufficient to erect constraints at both endpoints. Since there are
only a finite number of vertices and edges in the environment, construction of the
constraints is a simple discrete and finite process.

Suppose that the surfaces of concern are not edges, but arbitrary continuous
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Figure 2.26. Edges that can lead to traps are automatically avoided by the
backprojection algorithm.

(or perhaps smooth or analytic) curve segments in the plane. Additionally, perhaps
the coefficient of friction varies in a continuous fashion ‘along these curves. It is no
longer possible to restrict the algorithm’s concern to the endpoints of these curves.
Instead it is necessary to explicitly examine the curves, determining subportions
on which sticking can occur. The resulting examination may still lead to a finite
number of points at which constraints should be erected. In fact, for any practical
application, the number of constraints should be finite. However, the location of
these constraints is not known a priori.

For example, for the frictionless parabolic surface of Fig. 2.24, with the specified
velocity error cone, sticking can occur throughout the subsegment at the bottom
of the arc, as indicated in the figure. Sticking cannot occur anywhere else on the
arc.

A surface which yields an infinite number of pairwise disjoint sections at which
sticking can occur is the classical curve z — sin(l). In practice the planner need
not worry about such surfaces, since they do not represent actual objects.

It is worthwhile to mention another subtle point that hides under the the
benevolent protection of the simplicity of two dimensions, but will be forced out of
hiding by the more stringent demands of higher dimensions. Suppose that sticking
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Figure 2.27. The task is to avoid the top right edge, given the specified velocity
uncertainty cone.

can occur at a non-goal vertex, although it does not occur on the edges abutting the
vertex. Such a situation could arise in the example of Fig. 2.25. Clearly, the edges
abutting the vertex are to be avoided, as it is possible to slide on them towards the
vertex and stick.

No explicit steps are taken in the 2D algorithm to avoid these edges. Instead,
the algorithm operates indirectly. In order to believe this, consider the other vertex
of one of the edges. The algorithm may erect a constraint at this vertex, if sticking
is possible there. Fig. 2.26 demonstrates a case in which such a constraint would be
erected. If a constraint is erected, then the edge is automatically avoided. Suppose
no constraint is erected at the other vertex. In order for one of the edges to be
included in the backprojection region, it would be necessary for the edge to appear
in a trace of edges beginning at a goal edge. This is impossible, since one of the
following conditions must hold:

(1) At some point there is a shared vertex between two edges, such that sticking
occurs at the vertex. In other words, either sticking occurs on some edge, or
sticking occurs at a vertex because the orientation of the edges is changing
enough to cause sticking, as in Fig. 2.26.

(2) Sliding away from the goal edge can occur at an abutting edge.
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Figure 2.28. Constraints erected in free space in order to avoid the top right edge.

In either case, a trace would never reach the edge which is to be avoided.
Thus the algorithm indirectly avoids edges on which sliding can lead to a vertex at
which sticking can occur, although no sticking can occur on the edge itself. This
fortune appears by virtue of the simplicity of surfaces in the plane. For surfaces in
higher dimensional spaces it will be necessary to devise a slightly more elaborate
algorithm.

2.3.4. A Three Dimensional Algorithm

The objective of a planner is to automatically derive motions that use sliding
surfaces as guides, thereby circumventing uncertainty. Fig. 1.9 displayed one such
strategy for inserting a peg in a hole. The commanded motion was the same
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Figure 2.29. Projection of the velocity cone onto the top face of the cube.

throughout, namely down and towards the right. Thus the plan executor could
command the motion once, then let the peg move until it achieved its goal. The
peg started in free space, moving down and to the right until it hit the edge at
the top left part of the hole. Upon hitting the edge, the peg began to slide towards
the hole, then tumbled down to the goal edge at the bottom of the hole. The plan
executor did not need to worry about the precise location of the guiding edge, or
consider the accuracy of the peg-in-hole clearance ratio, or examine the effect of
friction on the motion. The planner had already considered all these issues, then
produced a strategy that was guaranteed to succeed.

The previous subsection outlined an algorithm for determining one step motion
strategies. Recall that these one step motions form the building blocks of a larger
strategy which is constructed from the single step motions via backchaining.
The algorithm assumed a two dimensional space. This subsection extends the
algorithm to higher dimensions. The algorithm will be stated for three dimensions,
in particular, for the three dimensional configuration space corresponding to the
parameter space of a planar object with two translational and one rotational degrees
of freedom. The underlying principles of the algorithm are applicable to higher
dimensional spaces. Thus the algorithm applies to the six dimensional motion
planning problem arising from the task of moving in real space a rigid object with
three translational and three rotational degrees of freedom.
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Figure 2.30. Sliding constraints erected in order to avoid sliding to the top right
edge on the top face.

2.3.4.1. Basic Tenets

The guiding principle for the 2D algorithm was to backproject constraints from
locations in the environment that were to be avoided. Because of the simplicity
of two dimensions, the algorithm could easily backproject the constraints. It had
merely to erect the negative velocity cone at the undesirable locations. This could
be done by intersecting the extreme rays of the negative velocity cone with the
edges in the environment.

In higher dimensions the underlying principle is exactly the same. Specifically,
the algorithm should use the negative velocity cone to describe regions of space
from which it is possible to move into regions where sticking is possible. Regions not
so constrained, that are connected to the goal, comprise the desired backprojection.
Motions from these backprojection regions are guaranteed to lead to the goal.

This principle effectively says, “Don’t go somewhere, if it is possible to get
fromn there to somewhere bad.” The reason for using the negative velocity cone in
determining what regions to avoid, is its usefulness in representing geometrically
the solutions of the generalized damper differential equation.

Solutions to the generalized damper differential equation are trajectories. Given
that the commanded velocity in this equation is subject to uncertainty, the solutions
are actually classes of trajectories. Trajectories that encounter points at which
sticking might occur, or which are offensive in some other fashion, define regions
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Figure 2.31. Backprojection of sliding constraints between slices. The horizontal
surface is represented by the three slices shown. Assume that the right portion of the
middle slice should be avoided. Also assume that when in contact with the surface,
the range of sliding velocities is given by the indicated cone. Erecting the negative of
this velocity cone along the portion of the slice that is to be avoided, shows that the
regions outlined by the dashed lines should also be avoided.

of space that are to be avoided. The negative velocity cone captures the geometry
of these regions, thereby providing natural constraints for use by the planner.

The negative velocity cone, however, only provides solutions to the generalized
damper equation for free motion, that is, motion not in contact with obstacles. As
noted in the comments to the 2D algorithm, it is in general also necessary to avoid
surface regions from which it is possible to slide into undesirable regions. Thus,
the planner must solve the differential equation of the generalized damper when in
contact with surfaces of obstacles. In short, it is necessary to perform backprojections
along surfaces as well as through free space. This surface backprojection occurred
indirectly within the 2D algorithm, but must be handled explicitly for higher
dimensional spaces.

2.3.4.2. Backprojection Along Surfaces — An Example

An example should clarify the last point of the previous subsection. In this
example, the problem is one of moving a point in a three dimensional frictionless
space. Consider the rectangloid in Fig. 2.27. Assume that the the velocity error
cone is the cone shown. Assume further that the planner has decided that the
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Figure 2.32. A peg-in-hole task. This task is considered in the following figures.

edge indicated is to be avoided. Erecting the negative velocity cone along the edge
generates the constraints shown in Fig. 2.28.

This alone, however, is not sufficient to avoid the edge. It is still possible for
the point to encounter the edge by sliding along the top face of the cube. Suppose
that the point is in contact with this face. Then, given the commanded motions
possible from the velocity error cone, the resulting motions along this surface, using
the generalized damper equation, are those shown in Fig. 2.29. It is now a simple
matter to backproject constraints along the surface. Given the effective velocity
cone along the surface, the algorithm need merely construct the negative of this
cone and backproject from the edge in the usual fashion. The resulting constraints
on the surface are shown in Fig. 2.30. Finally, in order to avoid the region thus
constructed, the algorithm must perform a 3D backprojection of these constraints.

2.3.1.3. Backprojection Along Surfaces — Non-linear Equations

The previous example was very simple, for it involved a linear frictionless
surface. Even adding a constant coefficient of friction to the surface would only
slightly complicate matters. Unfortunately, allowing more general surfaces, and
varying the friction along the surfaces, can drastically alter the form of the damper
cquation. The orbits of points on the surface are no longer easily invertible straight
lines.

This problem becomes cvident even when corsidering the configuration space
of a planar object with two translational and one rotational degrees of freedom.
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The configuration space surfaces in this three dimensional space are non-planar
ruled surfaces. Furthermore, as will become evident in later sections and chapters,
the description of friction is complicated. Friction varies in a non-linear fashion
over the surfaces. Thus the damper equation during contact is non-linear. The
computation of constraints is correspondingly difficult.

2.3.4.4. A Formal Procedure

In principle, the previous discussion has provided a formal procedure for
computing backprojections in spaces of arbitrary dimension. The procedure is:

(1) Determine regions of space which are to be avoided. Specifically, mark all
locations at which sticking can occur. Also, mark all locations abutting the
goal region from which it is possible to slide away from the goal.

(2) Select a marked region. Backproject from this region the constraints determined
by the negative velocity cone. This step entails erecting constraints in free
space and along surfaces. The constraints for the free space backprojection
are simply those of the negative velocity cone, while the constraints for the
backprojection along surfaces are those of a projected velocity cone. The
projected velocity cone is formed by solving the damper equation with contact
for the surface in question. Note that the projected velocity cone may vary
over the surface. The constraints are erected by intersecting the appropriate
cone with the environment. The region between the intersection points and
the anchor points of the cone determines a new region which is to be avoided.
Mark this region.

(3) Repeat Step (2) until there are no more marked regions.

(4) Trace out a volume beginning at the goal region. The trace is a multi-
dimensional trace along the surfaces and constraints in the transitive closure
of those abutting the goal region.
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_ Commanded
Veloctty

Figure 2.34. Commanded velocity and associated uncertainty cone for the peg-in-hole
backprojection example. The cone is three dimensional. The commanded velocity is
down and to the right, with a slight error in all three dimensions.

2.3.5. A Three Dimensional Slice Algorithm

While the previous section has presented a formal procedure for computing
backprojections, that procedure is subject to the difficulties of solving a non-
linear differential equation in order to compute the constraints that need to be
backprojected along surfaces. The damper equation may become non-linear once
the effect of friction while in contact with a configuration space surface is included.
[t is desirable to consider approximate algorithms that compute backprojections by
locally linearizing the damper equation. Local linearization entails linearizing both
the surfaces on which contact can occur, a= well as linearizing the description of
friction over these surfaces.

The following subsection presents an algorithm for computing backprojections
in the three dimensional configuration space of a rigid polygonal object moving
in the plane with two translational and one rotational degrees of freedom. The
obstacles in the plane are also assumed to be polygons. The algorithm uses two
dimensional slice approximations corresponding to fixed orientations of the moving
object. Backprojection is performed both within a given slice as well as across slices.
The algorithm genecralizes immediately to the six dimensional configuration space
of a translating and rotating rigid object, using three dimensional slices.

2.3.5.1. Statement of the Algorithm

The algorithm expects as input a series of slices corresponding to the (z,y)
configuration spaces of the moving object for given discrete orientations. As the
object and the obstacles are all polygons, each of the slices is also a collection
of polygons. Since it is necessary to erect constraints across slices, it is useful to
indicate the connectivity between slices. In other words, an edge or vertex should
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: Figure 2.35. Constraints erected by backprojecting from the goal at the bottom of
« the hole. The commanrded velocity uncertainty is shown (- Fig. 2.34
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Figure 2.36. The resulting backprojection regions determined from Fig. 2.35.
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Figure 2.37. In this orientation the peg may stick in the hole. The commanded
velocity is down and to the left, pushing into the corner of the hole,

contain pointers to edges and vertices in adjacent slices which are on the same
configuration space surface as the given edge or vertex.

The algorithm assumes that configuration space surface normals and friction
do not change between neighboring edges in adjacent slices. Additionally, since
configuration space normals and friction may vary even over an edge in a given slice,
the algorithm should cut such edges into smaller edges over which the change in
friction is fairly small. Thus the algorithm can assume that friction is constant both
between slices and over a given edge. This assumption comprises the linearization

of the damper equation.
The algorithm is:

(1) For each slice, compute the sliding directions for the edges and vertices in
the slice. In other words, solve the damper equation for contact at the edges
and vertices, using the velocity error cone to specify the range of commanded
velocities. The negative of the sliding directions thus computed corresponds to
the projected negative velacity cones mentioned in Sec. 2.3.4.2. By assumption
of local linearity, these may be used to perform the surface backprojections

discussed earlier.

(2) For each slice, determine the (non-goal) vertices and edges at which sticking
can occur. Mark these. Also mark any vertices and edges abutting the goal at
which it is possible to slide away from the goal.

69




‘=

T.v'_.'—‘"‘t"'

Y

-
"

(C ommanded
Veloci£3

Figure 2.38. Commanded velocity and uncertainty cone for the backprojection of
Figs. 2.39 and 2.40. The cone is three dimensional. The commanded velocity is straight
down, with a slight error in all three dimensions.

(3) Select a marked vertex or edge. Perform a 3D backprojection from the vertex
or edge, using the negative velocity cone. Mark the region interior to the
cone portion thus constructed. Perform a 2D backprojection using the sliding
information calculated in Step (1). The 2D backprojection entails determining
whether it is possible to slide to the given vertex or edge from regions in both
the given slice as well as the two adjacent slices. This information is readily
available from the sliding information of Step (1) and the connectivity pointers
of the input. Any such regions should be marked.

(4) Repeat Step (3) until there are no more marked regions.

(5) Trace out two dimensional regions in each of the slices that contains a goal edge.
This trace is identical to the trace used in the 2D backprojection algorithm
(Sec. 2.3.3.4). Using the connectivity information, determine edges in adjacent
slices from which sliding is possible to edges in the regions already traced out.
Trace out regions containing these edges. Repeat this process of tracing out
across slices, until the regions traced out within a slice shrink to a point, or
all slices have been considered.

In order to understand the 2D backprojection of Step (2), consider Fig.
2.31, which depicts portions of three adjacent slices. Imagine performing a 2D
backprojection from the edge in the middle slice, and suppose that the range of
sliding directions possible on the edge is given by the cone indicated. The algorithm
would mark the slice regions delineated by the dashed lines, as regions from which
sliding onto the given edge is possible.
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2.3.5.2. An Example

Fig. 2.33 depicts several configuration space slices of the peg-in-hole task of
Fig. 2.32. The large clearance ratio in this example was chosen for display reasons,
in order to make the configuration space hole and the backprojection constraints
clearly visible.

The desired velocity is down and to the right, with a velocity error cone
as indicated in Fig. 2.34. The real space coefficient of friction is assumed to be
one-fourth. See Sec. 2.4 and Chapter 4, for an analysis of friction in configuration
space.

Fig. 2.35 shows the constraints erected by the slice algorithm, while Fig. 2.36
shiows the resulting backprojection regions. Note how tracing out across slices (Step
(5)) can generate regions that slowly shrink to a point.

The resolution of orientations considered by the backprojection algorithm was
four times that indicated by the figures. Specifically, slices were constructed for
orientations ranging between —m/4 and +7/4, in increments of x/60.

In configuration space, friction may vary over a surface. In other words,
friction need not be constant over a particular edge in a configuration space slice.
Consequently, for each edge in a configuration space slice, friction cones were
computed at both the edge’s endpoints and at the edge’s midpoint. The composite
of these three friction cones was used to decide whether sticking could occur on the
edge. In computing sliding directions over the configuration spac- surface patch
represented by the edge, the edge’s midpoint was considered. The configuration
space normal and friction cone at the midpoint were used to project the velocity
uncertainty cone onto the configuration space surface. These computations were
fairly crude approximations to the actual sticking regions and sliding directions.

For each vertex in a configuration space slice, the friction cone at the vertex
was computed by considering all the endpoint friction cones arising from the edges
meeting at the vertex. Similarly, the sliding directions at the vertex were computed
. by considering the intersection of all the configuration space surfaces associated
:’. with the edges meeting at the vertex. These friction cones and sliding directions
o were fairly exact.
B The goal region was the bottom of the hole for orientations that were nearly
g vertical. The constraints crected take advantage of edges in the environment that
facilitate sliding towards the goal edge and cause rotation to a vertical orientation.
These edges are the vertical edges surrounding the hole and the horizontal edge at
Ps the top left part of the hole.
[
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Figure 2.39. Constraints erected by backprojecting from the goal at the bottom of
the hole. The commanded velocity uncertainty is shown in Fig. 2.38 1
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Figure 2.40. The resulting backprojection regions determined from Fig. 2.39.
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'__. the horizontal edge at the top left of the hole, the peg is forced into a vertical
orientation, then slides towards the hole. The basic motion is similar to the one
shown previously in Fig. 1.9.
[ ° Notice that the slices of the backprojecticn region are larger for orientations
» in which the peg is tilted to the right, than for orientations in which the peg is
tilted to the left. An understanding of this shape may be found be examining the
corners of the hole at which the peg’s motion may be halted. Tilting the peg to
the left may cause it to stick on the top or bottom right corners of the hole, as
o shown in Fig. 2.37. When the peg makes contact with the right wall of the hole,
the choice of reference point and commanded velocity cause it to rotate towards
the left, away from a vertical orientation. Depending on the initial contact height
- 74
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Figure 2.41. Several backprojections of the edge, for different commanded velocities.
The velocity error cone has the same error angle for each commanded velocity.

G

Figure 2.42. The union of all the backprojection regions of the edge is a portion of
a circle.

The constraints erected suggest that the peg either be in the hole or be offset
to the left of the hole. Regardless of orientation, when the peg makes contact with
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’_e Figure 2.43. Partition of commanded directions.

on the wall, the peg may be able to rotate to an orientation from which it can slide
to and stick in the bottom right corner of the hole. For this reason portions of the
right wall must be avoided for particular orientations in which the peg is tilted to
the left. Backprojecting constraints from these portions of the wall constricts the
backprojection region for orientations in which the peg is tilted to the left.

The fairly crude resolution employed in backprojecting constraints from edges
is evident in some of the discontinuous jumps between backprojection constraints.
These resulted from the decision to identify the behavior of a point on a slice edge
by the behavior of a point at the edge’s midpoint. If the midpoint was deemed as
point to be avoided, either because sticking was directly possible at the midpoint,
or because it was possible to move from the midpoint to some other point to be
avoided, then the whole edge was labelled as a region to be avoided.

As another example, assume that the commanded velocity and uncertainty
cone are as in Fig. 2.38. The nominal commanded velocity is straight down. Then
the constraints erected by the backprojection algorithm are those of Fig. 2.39, with
resulting backprojection regions as in Fig. 2.40. These backprojection regions take
advantage of the hole walls to slide the peg to the goal edge, while orienting it
[ vertically.

2.3.6. Relation of Backprojection to Backchaining

Recall that the planner uses backprojections as building blocks in a backchaining
process. The problem is that at each level of the backchaining process all the regions
generated in the previous level for all possible motion directions should be used as
goal regions. Since the number of moticn directions is infinite, there are infinitely
many backprojection regions to consider at each level of the backchaining.

o .

Fortunately, in many cases it is possible to replace an infinite collection of
sets by a single set. For example, consider the old example of backprojecting from
an edge. Fig. 2.41 shows the constraints that are erected for a number of desired
velocities. The resulting backprojection regions are always triangles. The union
of all the backprojections is a portion of a circle, similar to the region shown in
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Figure 2.44. Smaller backprojection region resulting from a larger effective velocity
cone.

o 'k

Fig. 2.42. The size of the circle depends on the length of the edge and the angle
subtended by the velocity error cone.

In some cases the analytic description of the region formed by the union
of component regions may be elusive. Consequently, a planning algorithm might
consider discretely and finitely partitioning the space of velocity directions. The
planner could then construct a finite number of backprojection regions. This would
enable a geometric union algorithm to construct the region needed by the next
backchaining phase. In constructing the backprojection regions, the algorithm could
use either a single representative velocity error cone for each partition region, or
use a larger velocity error cone formed from the union of several individual error
cones.
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Figure 2.45. Backprojection region of Fig. 2.44 superimposed on the backprojection
region of Fig. 2.41, for a commanded velocity pointing straight down. The smaller
region is the region from Fig. 2.44.

As an example, for the edge backprojection, the planner could partition
the range of velocity directions as in Fig. 2.43. If it chose to use the middle
velocity direction as a representative for each partition region, then the resulting
backprojection regions would be those of Fig. 2.41. On the other hand, if the
planner chose to use all velocities in a partition region, then a typical augmented
error cone would be of the form shown in Fig. 2.44. The resulting backprojection
region is shown in Fig. 2.44. Fig. 2.45 shows this region superimposed on the
backprojection region of Fig. 2.41, for a commanded velocity pointing straight
down. Note how the region has shrunk.

Clearly an analytic solution is preferable. The approximate solutions suffer
from the usual resolution problems. In the case of single representatives, possibly
successful trajectories are ignored because not all motion directions are considered.
In the case of augmented velocity cones, all velocity directions are considered.
However, the backprojection regions are constructed so as to guarantee success
for every motion direction in the augmented cone. This is an excessively harsh
requircment. Consequently, the regions constructed are smaller than desired, and
again successful trajectories may be ignored.

2.3.7. Relation of Backprojection to Pre-Images

The formal relationship of pre-images and backprojections is explored in
Chapter 3. That chapter derives a structure equation which characterizes the use
of backprojections as building blocks for pre-images. In Sec. 2.3.1 it was noted
that pre-images also capture the ability to recognize that a motion has achieved
its goal. In other words, pre-images incorporate the termination conditions that
a plan executor must employ to decide that a motion should be terminated.
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Figure 2.46. Deflection caused by hitting a surface is not discernible due to velocity
sensing error.

Backprojections do not consider termination conditions. That is the difference
between pre-images and backprojections.

The planner, in constructing pre-image regions with associated motion
directions, must decide how a plan executor can decide that a motion has successfully
arrived at the goal. It is of no use to plan and execute a motion which is guaranteed
to reach the goal, if the plan executor cannot recognize entry into the goal.

The ability to recognize proper termination conditions for a motion depends
directly on the sensors available. For example, consider again the example of a
goal consisting of a single edge. As noted earlier, there are two basic sensors for
detecting entry into the goal, namely position and force sensors. With a perfect
position sensor it is an easy matter to detect entry into the goal edge. On the other
hand, if there is some uncertainty ball associated with the position sensor’s value,
then that sensor is useless for terminating the motion. Instead a force sensor must

be used.

A force sensor can detect a reaction force from the contact surface, thereby
indicating entry into the goal. Effectively, given the generalized damper relationship
between forces and velocities, a force sensor may be converted into a velocity sensor.?
Thus the velocity sensor detects collisions by indicating a deflection in the actual
velocity from the commanded velocity. When the motion hits the edge, the vertical
component of motion becomes zero. The velocity sensor detects pure horizontal
motion (or no motion), indicating success.

Unfortunately, even this method is not failsafe. Suppose that an error ball is
associated with the velocity sensor, as with the position sensor. If the commanded

2A force sensor may be turned into a velocity scnsor, and a velocity sensor may be turned into
a force sensor.

78




O

-

A4

ORe o' r i
» T

— e e W R LR T T A I Sl aadn gty R A e i AR AT S W S

Consistent .
Sensor ReaJm}

(onso‘s‘hu{ Iu‘l'erprd'e{bn

Figure 2.47. In order to decide that the point corresponding to a measured position
is inside the larger rectangle, the point must actually be inside the smaller rectangle.

velocity is almost horizontal, then, even with perfect control, the deflection caused
by hitting the edge may be too small for the velocity sensor to reliably detect. This
situation is diagrammed in Fig. 2.46. As a result, only certain motion directions
generate backprojection regions from which the motion is guaranteed to both hit
the goal as well as hit the goal in a recognizably successful condition.

In deciding whether a planned motion will yield a recognizably successful
termination, the planner must consider both the position and velocity at the time
of entry into the goal. All interpretations of all possible measured position and
velocity values must be clearly distinguishable from the¢ position and velocity values
that could hold if the point were not in the goal.

It follows from this, that to decide whether a point is inside a region using
position information alone, it must be the case that the actual position lie at least
2 eposition Within the region, where epgsition i1s the radius of the position sensor’s
error ball (see Fig. 2.47). Otherwise, there is some measured value possible which
is consistent with the actual position, such that an interpretation of the measured
value lies outside of the region.

A similar argument applies to termination conditions involving velocity sensors
only. A slightly more complicated argument along the same lines holds for
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Figure 2.48. Smaller subregion of the circle of Fig. 2.42. Backprojection regions have
been eliminated that correspond to velocities for which a c>llision with the goal edge
cannot be reliably detected.

Figure 2.49. The given point is known to be in the circular region. It is impossible
to decide in which of the three triangles the point lies, due to position uncertainty.

termination conditions involving both position and velocity sensors.

The planner’s task in constructing backprojection regions thus involves not }
only computing the backprojection, but also restricting the set of commanded
motions to those that can be terminated. In this fashion, backprojections can
usefully approximate pre-images. For further details regarding the dependency of !
pre-images on termination predicates see Lozano-Pérez, Mason, and Taylor (1983),
and Mason (October 1983).

¢ As a final example, it is instructive to re-examine the construction of the single
[ circular region from the infinite collection of backprojections determined in Sec.
2.3.6. This circular region supposedly represents the goal region of the planner
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Figure 2.50. Points in the shrunken triangle are easily recognizable as being in the
original triangle. The position uncertainty ball is assumed to have a radius ¢po,ition-

at the second level of backchaining. Given that a point has attained the circular
region, it can then choose a motion to the goal edge, since the circular region is
the union of all possible backprojection regions from the edge goal.

Two comments are in order. First, not all of the first level backprojection
regions are valid, as not all result in motions that are recognizably successful. This

comment was the gist of Fig. 2.46. Thus, the circular region should be trimmed
slightly, as indicated by Fig. 2.48.

The secord comment is more subtle. It is true that the circular region is the
union of all possible backprojections, and it is therefore true that every point in the
circular region lies on a trajectory that is guaranteed to hit the goal. Unfortunately,
it is not true that the plan executor can necessarily decide which trajectory is the
correct trajectory. Suppose the plan executor knows that a point is in the circular
region. Given that only position information is of use in free space, it may be
impossible for the plan executor to decide in which particular backprojection region
the poirt lies (see Fig. 2.49).

By earlier observations, in order to decide that a point lies in a region, it
must be the case that the point is completely distinguishable from points outside
of the region. Thus, in order to decide that a point lies in one of the backprojection
regions, it must be the case that it cannot possibly be confused with a point outside
of the region. This is only possible, on the basis of position information alone, if
the point lies within the 2 ep,ition barrier. It follows that the effective goal regions
passed to the second level of backchaining are the original triangular backprojection
regions shrunk by 2ep,sition, as shown in Fig. 2.50. The union of these regions is a
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portion of a limagon.3

The second level of backchaining uses this limacon rather than the circle as its
desired goal region. Given that a point is in the limagon, not only is the point in
a first level backprojection region, but the plan executor can also decide precisely
in which backprojection region the point lies. Thus the plan executor can choose a
r motion direction which successfully reaches the goal edge.

(]

T v v

In fact, the shrinking of the backprojection regions is a safe method which
is stronger than necessary. The definition of pre-images uses the local history of
a motion to disambiguate sensor readings. Doing so permits constructing larger
goal and pre-image regions than is possible with position and velocity sensors
alone. Backprojections do not generally make full use of this local history. The

b
.e details of the difference are beyond the scope of this chapter’s discussion, but
see Lozano-Pérez, Mason, and Taylor (1983), and the next chapter for further
information.
®

]
@

y

F :- ' 3A limagon is given in polar coordinates by cquations of the form r(0) = a — b cos 0.
® : 82
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F Figure 2.51. Pure rotation about the contact point doer not generate frictional
- reaction forces.
E 2.4. Friction
t‘ The planner must construct motions that avoid surfaces on which sticking can
3 occur. Sticking occurs if an applied force is balanced by an equal and opposite
- reaction force. In the absence of friction, the reaction forces generated by a surface
‘ lie along the normal to the surface. In the presence of friction, reaction forces

contain both tangential and normal components. The presence of friction increases
the range of reaction forces that a surface can produce, thereby increasing the range
of applied forces under which sticking can occur. In order to effectively synthesize
strategies that avoid sticking surfaces, the planner must possess an understanding
of friction.

Recall from Sec. 2.1.4 that configuration space surfaces possess the same
properties as real space surfaces, with respect to the application of and reaction to
forces. In particular, a configuration space surface produces a reaction force in the
generalized force space! of configuration space that lies along the normal to the
surface. In this sense, pushing on a configuration space surface is exactly the same
as pushing on a real space surface. ]

A SPATY |

The representatioa of friction in configuration space is not immediate. This is
because only some of the degrees of freedom represented by the configuration space
may be subject to friction. For example, suppose a moving object that can both
translate and rotate is in point contact with another object. The moving object
experiences friction only in sliding directions. Pure rotation about the contact point
does not create frictional reaction forces (see Fig. 2.51).

A g g "’.‘|

o4

‘Forces and torques.

83 4

<
St e At R . . . . ST .,
P L ottt P ot deinttandl .l Py L PO a 3 TP PN A N W WUy Wy T W W W R ‘




K

ik R8N0

PR SRR e Sun e e can Jam g
- - i

Figure 2.52. Real space friction cone. The coefficient of friction is u.

Figure 2.53. Computation of net force in the presence of friction.

2.4.1. A Real Space Friction Cone

A convenient representation of friction in real space is the friction cone. This
cone specifies the range of reaction forces that a surface can generate. The cone’s
axis is parallel to the surface’s normal, and its sides make an angle ¢ = tan™lpu
with this axis, where u is the coefficient of friction (see Fig. 2.52). An applied force
that points into the cone is cancelled completely by a reaction force from within
the cone, whereas a force that lies outside of the cone, is only partially cancelled
by a reaction force from the sides of the cone. In the latter case, the resulting net
force is tangent to the surface (see Fig. 2.53).

Given a generalized damper model with identity damping matrix, the planner
can easily use the friction cone to geometrically decide whether sticking is possible.
By the equivalence of forces and velocities, the planner need merely decide whether
a desired velocity points into the friction cone. If so, then sticking is possible. Thus,
given a commanded velocity, should the velocity error cone point into the friction
cone, then sticking is possible. Equivalently, should the negative velocity cone
overlap the friction cone, then sticking is possible. The statics decision regarding
sticking has been reduced to a purely geometrica’ question involving the intersection
of two cones.

A slight word about damper dynamics is in order here. Suppose that Newton's
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Figure 2.54. The configuration space friction cone is a two dimensional subset of the
three dimensional force space.

law F = ma formed the underlying conceptual dynamics. Now suppose that a
force is applied to an object in contact with another object, so that the force lies
on the edge of the friction cone. The friction cone will generate a reaction force
resulting in a zero net force. If the objects are in relative motion, then they remain
in relative motion. If they are stationary relative to each other, then they remain
stationary.

In contrast, under generalized damper dynamics, the objects must be stationary
relative to each other, if the applied force is on the edge of the friction cone. To see
this, suppose that the objects are .. relative motion. Then, by Coulomb’s law, the
reaction force is on the edge of the friction cone, and the net force is zero. Using
Eq. (2.2), this says that the relative velocity of the two objects must be zero.

The other two cases, the first, in which the applied force lies outside of the
friction cone, and the second, in which .ne applied force lies inside the friction cone,
are fairly similar for Newton’s world and the damper’s world. When the applied
force lies outside of the friction cone in .Jewton’s world, the object accelerates
with constant acceleration, whereas, in the damper’s world, it slides with constant
velocity. When the force lies inside the friction cone, the object decelerates and
stops in Newton’s world, whereas it instantly stops in the damper’s world.
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L__ Figure 2.55. Relationship of real space and conflguration space friction cones.
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®
Figure 2.56. An object in contact with an horizontal edge in the presence of friction.
o
;T.
2.4.2. A Configuration Space Friction Cone
L The friction cone of real space is a simple representation useful in predicting
o reaction forces and therefore in deciding whether sticking is possible. Under the
r damper model, the decision is purely geometric. It is desirable to extend this
¥ . . . . rqe
1 geometrical representation to configuration space, in the hopes of availing oneself

! of its simplicity during the backprojection process.
[

For the two dimensional configuration space of a translating planar object,
o the friction cone is identical to the one employed in real space. Similarly, the
friction cone for the three dimensional configuration space of a translating three
dimensional object is identical to the real space friction cone. These claims are
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Figure 2.57. The configuration space normal is formed from the real space normal
by the addition of a reaction torque induced by the real space normal reaction force.
(The configuration space normal has not been scaled to unit length.)

clear, since the only object interactions are sliding ones.

Permitting an object to rotate changes the friction cone. As noted previously,
pure rotations about point contacts do not generate frictional reaction forces. The
friction cone represents the possible range of reaction forces. Thus, for configuration
spaces involving rotations, the friction cones cannot possibly be symmetric like
their real space counterparts.

Recognizing that the friction cone should represent the possible range of
reaction forces, it is clear that the cone must include the surface’s normal vector.
Furthermore, the dimensionality of the cone must be exactly the same as the
number of degrees of freedom subject to friction. Thus, for a real space object with
three translational and three rotational degrees of freedom, the friction cone must
form a three dimensional region in the six dimensional generalized force space.
Similarly, for a planar object with two translational and one rotational degrees
of freedom, the friction cone must form a two dimensional region in the three
dimensional generalized force space. Fig. 2.54 depicts the latter situation.

The configuration space friction cone should embody the real space frictional
constraints. In fact, it is possible to derive the configuration space cone from the
real space constraints, once the effects of moments are included. The details of this
derivation may be found in Chapter 4. Thus the projection of the configuration space
cone into real space should yield the real space cone. Conversely, the configuration
space cone may be viewed as a tilting and twisting of the real space cone. The
relationship between the two cones is depicted in Fig. 2.55.

Before exploring the relationship between real and configuration space friction
cones, it i1s useful to examine the relationship between the real space normal
to a real space object, and the configuration space norma! to the corresponding
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Figure 2.58. The configuration space friction cone is related to the real space friction
cone by a twisting of the frictional reaction torque. The twisting occurs because of
the sign change present in the range of frictional reaction forces,

configuration space surface. Fig. 2.55 also indicates this relationship. Recall that
the normals, both to real and coniiguration space surfaces, may be viewed as the
directions of reaction forces generated by these surfaces. The real space normal only
embodies translational directions, while the configuration space normal includes
both translations and rotations. Consequently, the projection of a configuration
space normal into real space yields the real space normal.

The difference between the two normals is due to the moment component
of the reaction force. For example, for the contact of Fig. 2.56 the translational
normal reaction force also induces a reaction torque about the center of mass. The
magnitude of this normal torque is captured by the configuration space normal (see
Fig. 2.57).

The derivation of the configuration space friction cone is now a simple matter.
One need merely add to the real space friction cone the effect of induced torques.
The real space reaction force contains both a normal and tangential component.
The normal component is the usual real space normal reaction force. This induces
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Figure 2.59. A conflguration space friction cone depicted in the plane that contains
it.

the usual reaction torque, as captured by the configuration space normal. Adding
this torque to the real space friction cone tilts the cone, as in Fig. 2.57.

Now consider the effect of the tangential component of the real space reaction
force due to friction. It too induces a torque, call it a frictional torque. The real
frictional reaction force varies in sign and magnitude. The extremes of this variance
define the boundary of the real space cone. Commensurately, the frictional torque
varies in sign and magnitude. The extremes of this variance define the boundary
of the configuration space cone. The resultant effect is a twisting of the real space
cone by the frictional torque, as shown in Fig. 2.58.

2.4.3. Properties of the Configuration Space Friction Cone

2.4.3.1. General Comments

The properties of the configuration space friction cone are fairly similar to
those of the real space friction cone. In particular, the planner can perform a
geometric intersection of the friction cone with the negative velocity error cone, in
order to decide whether sticking is possible on a configuration space surface.

In the damper world, velocities and forces are equivalent, since the damper
equation is a first order equation. In Newton’s worid, second order effects arising
from the introduction of moments, such as coriolis and centripetal forces, affect the
range of reaction forces. This lessens the utility of a geometrical representation,
althoush standard tricks, such as the introduction of fictitious forces, may be
used to accurately predict reaction forces using the friction cone. A more complete
representation would probably require deriving constraints in phase space. For a
first order system, such as the damper's world, this extra work is not needed. The
simplicity of the friction representation in the damper’s world provides another
argument for using a damper as the underlying ideal world dynamics.
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Figure 2.60. An objeet in two-point contaet with other obstacles.

2.4.3.2. Motion Ambiguities

The introduction of friction and moments creates a bizarre effect that leads
to motion ambiguities. It is well known that the behavior of a system with friction
in classical mechanics is not always deterministic. Generally, this ambiguity arises
with multiple contacts, where the distribution of reaction forces among the points is
not sufficiently constrained to be uniquely determined. However, the configuration
space representation shows that ambiguities can arise even for one-point contact.

Consider a friction cone for the standard three dimensional configuration space
of a planar object. Fig. 2.59 depicts such a cone in its own plane. The vertical
axis corresponds to the configuration space normal, while the horizontal axis is
tangential to the surface. The cone need not be symmetrical about the configuration
space normal. This is because in one direction the frictional torque adds to the
. tilting caused by the normal torque, while in the other direction it subtracts from
the tilting. Only if the normal torque is zero, that is, if the real and configuration
space normals are identical, is the friction cone symmetric.

[ Interestingly, it is possible for one side of the friction cone to dip below the
| tangent plane to the surface. An applied force pointing intc this region of the cone

is actually pointing away from the configuration space surface. In the absence of
PY friction, the surface could provide no reaction force to balance the applied force,
as it peinig away from the surface. Any resulting motion would move away from
the surface. In the presence of friction, however, the surface can provide a reaction
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Figure 2.61. Two constraints are satisfled in conflguration space by moving along
the intersection of two surfaces.

force, arising primarily from the frictional torque, that can cancel the applied force.

The projection into real space of the applied force still points into the real space
obstacle. In configuration space the applied force points away from the surface,
because the applied torque component of the force is large enough to rotate the
moving object away from the contact surface. Since the real space portion of the
applied force points into the real space surface, it is still possible for that surface to
exert a reaction force. in order to so, however, contact must be maintained. This
means that the frictional torque induced by the frictional reaction force must be
large enough to overcome the effect of applied torque. This is possible since the
friction cone dips below the tangent plane. Dipping below the tangent plane implies
that the twisting of the frictional torque is greater than the tilting of the normal
force and torque, which is precisely the desired condition.

The previous paragraph shows that sticking is possible for an applied force
that lies in the friction cone below the tangent plane. However, suppose that the
surface offers no reaction force. Then, as in the case of a frictionless surface, the
resulting motion will leave the surface. Both sticking and breaking of contact are
legitimate solutions. It is impossible to predict which will occur, based solely on
the equations of classical mechanics and Coulomb’s description of friction.

Sec. 4.4.5 derives the exact conditions under which the previous motion
ambiguity can arise. As far as the planner is concerned, however, since sticking is
possible under the previous conditions, it should plan motions that avoid a contact
which generates those conditions. As before, the recognition of potential sticking
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is accomplished by intersecting the friction cone with the negative velocity cone,
Thus the potential ambiguity does not affect the structure of the planner.

2.4.3.3. Multiple Points of Contact

Suppose that a moving object is in multiple contact with obstacles in its
environment, as in Fig. 2.60. Each point of contact defines a constraint. In
configuration space, the point representing the moving object lies on the intersection
of muitiple surfaces, one surface for each point of contact, as in Fig. 2.61. The
object can move tangentially but not normally to these surfaces, unless it breaks
contact with one or more of the surfaces. This is equivalent to saying that the
range of reaction forces is spanned by the reaction forces possible at each point of
contact. In fact, the complete range of reaction forces is just the vector sum of the
ranges of reaction forces arising from the various single points of contact.

The previous statement is just an affirmation of the superposition principle.
Specifically, the effect of a collection of forces acting in unison is just the sum
of the effects of the forces acting individually. This principle applies both to the
frictionless normal reaction forces, as well as to the frictional reaction forces.
Thus the effective friction cone for multiple contacts is just the vector sum of the
individual friction cones. Hence, for multiple contact situations, the planner can
again simply intersect the negative velocity cone with the composite friction cone
to determine whether sticking is possible.

A word of caution. During multiple contact, the prediction of reaction forces
is complicated. For one-point contact, a reaction force may be found merely by
projecting the applied force normally onto the friction cone associated with the
point of contact. For multiple contact this is no longer possible. In fact, motion
ambiguities may arise. This is because the distribution of reaction forces among
multiple contacts need not be uniquely determined. In fact, some points of contact
may provide no reaction force. In effect, for multiple contacts, it is necessary to
consider a.l subcollections of contacts. For example, a two-point contact should be
treated both as a single two-point contact and as two separate one-point contacts.
The last two views are equivalent to breaking one of the points of contact, while
maintaining the other. For each of the three views, it is possible to determine
a resulting motion. Some motions may violate the surface constraints, hence be
invalid. It is possible, however, that there exist several valid motions. In this fashion
multiple point contact may give rise to ambiguity. See Chapter 4 for details.
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, 2.5. Summary

L' Th:x chapter has outlined an algorithm for computing backprojections and has
developed a representation of friction in configuration space. Both the algorithm
and the friction representation are geometric tools that should be used by a motion
planner to compute motions in the presence of uncertainty.

in configuration space. Thus the specified control commands were velocities. Given
a desired commanded velocity, the actual commanded velocity was assumed to lie
in some uncertainty cone about the desired velocity. Consequently, the range of
trajectories emanating from a given point formed a cone with apex at the point.

t The underlying dynamics were assumed to be generalized damper dynamics
{

| The backprojection of a desired goal consists of all those points that are
}‘ guaranteed to reach the goal. In order to compute the backprojection of a goal,
the algorithm considered all points that might not reach the goal. In particular,
all points which could cause motions away from the goal, or at which motions
could prematurely terminate, were marked as undesirable points. In addition,
all points from which a trajectory could reach an undesirable point were also

p ' marked as undesirable. Effectively, the backprojection algorithm computed the
! transitive closure of all undesirable points. This was accomplished by erecting at
g any undesirable point the negative velocity cone in order to determine all trajectories

that might encounter that point.

;‘ In deciding whether a motion could stick at a point, it was necessary to develop
a representation of friction in configuration space. This representation modelled
both the reaction force and induced reaction torque generated by the normal and
frictional forces at a point of contact. The range of these forces formed a cone
about the normal to the configuration space surface corresponding to the point of
- contact. For multiple points of contact the composite friction cone was seen to be
¢ S S

the vector sum of the individual one-point friction cones.

Within the generalized damper framework, particularly with an identity
damping matrix, velocities are equivalent to forces. This equivalence facilitates
the determination of points at which sticking might occur. In order to decide

q whether a nominal commanded velocity might cause sticking at a particular point,
it is sufficient to intersect the negative commanded velocity uncertainty cone with
the friction cone corresponding to the point. Sticking is possible whenever this
intersection is not empty.

This chapter has developed geometrical tools for planning motions in the
presence of uncertainty. The friction cone model provided a geometric test for
determining points at which sticking could occur. The backprojection algorithm
used this test to construct regions from which motions were guaranteed to achieve
desired goal states. The algorithm operated by geometrically solving the generalized
damper equation.

The next two chapters consider the analytical details and theoretical framework
that underlie these tools. In particular, the role and power of backprojections within
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friction cone representation is established. :
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{Ha}
Pp({Ga})

PO,R(( Ga })

S(po, R, {Ga})

sv(Pr {Ga })

By({ Ga })
Fy(R)
#Fs(R)
(Ts(¢), To(t))
T(vo)

T(po, R, vg)

A(R)

E(R)

(110)
(110)
(110)
(110)
(110)

(110)

(132)

(121)

(102)

(104)

(102)

(122)

(114)
(127)
(129)
(118)
(117)

(117)

(143)

(141)
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Symbol Table

The following is a list of sywmbols that appear frequently in the current chapter. Each symbol is
followed by a very brief description. The numbers in parentheses refer to the pages on which the
symbols are first defined.

Position.

Measured position.

Velocity.

Measured velocity.

Commanded velocity in the direction 6.
Ball of radius r about z.

Collection of position goal sets.

Collection of goals that might be returned
by the termination predicate.

Collection of position and velocity goal sets.

Pre-image of the goals { G, }, with starting position

* known to be in the set R.

Directional pre-image of the goals { G, },
given a commanded velocity v,.

Sect of velocities guaranteed to move a point recognizably
into one of the goals { G, }. The point is known to be
in the set R, with measured position py.

Set of velocities guaranteed to move the point p
into one of the goals { G, }.

Backprojection of the goals { G, }, given a commanded velocity v,.
Forward projection of the set R, given a commanded velocity u;.
The position component of the forward projection of R.

Position and velocity of the trajectory T at time ¢t.

Collection of trajectories with commanded velocity vq.

Trajcctories with commanded velocity vg whose initial points
lic in R and have mcasured value pg.

The alinost simple pre-image containing the pre-image R.

The first entey sct of the pre-image R.
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3. Backprojections

In order to gain a perspective on the issues that confront this thesis, consider the
motion planning problem in some generality. The domain of interest is an abstract
manifold corresponding to the configuration space of some real (or imaginary)
object. Associated with the manifold is a system of dynamics and a system of
constraints. Built on top of the dynamics is a control system. The control system
permits specification of parameters appearing in the dynamics. Given a specification
of these parameters, the evolution of object coordinates occurs subject to the
dynamics and the system of constraints. Uncertainty adds spice to this mixture.
‘The control parameters which the control system transmits to the manifold are
not necessarily the same as those which are presented to the control system. The
relationship between the suggested and actual specifications is governed by some
probability distribution. Thus the actual evolution of coordinates is subject to
uncertainty, as determined by the probability distribution. Further spice is added
by the unreliability of information obtained from the manifold. Sensors which
interrogate the state of the system are also subject to error, as determined by some
set of probability distributions.

The motion planning problem consists of automatically generating a sequence
of control specifications which will cause the system’s state to evolve from a given
initial state into one of a desired set of recognizable goal states, when such a
sequence exists, and to accurately recognize situations in which such a sequence
does not exist. This chapter begins with a brief review of a formal planning
system suggested by Lozano-Pérez, Mason, and Taylor (1983). Next the chapter
addresses the question of effectively computing the pre-image mapping Pp proposed
by this formal system. A means of computing approximations to pre-images with
backprojections (see also Ch. 2) is presented.

Interleaved with the computation of the mapping Pg is the nature of the
termination predicate used by the planner. Thus the form of the termination
predicate must be investigated in paralle] with the problem of computing Pg.
Recall from Chapter 2, that pre-images implicitly take account of the termination
predicate, whereas backprojections ignore termination conditions. In other words,
motions from pre-images are not only guaranteed to reach the desired goal, but
also are guaranteed to recognizably reach the goal. In contrast, motions from
backprojections are only guaranteed to reach the goal, without necessarily doing
so in a manner that allows the termination predicate to signal success. In order to
insure recognizability, the planner must explicitly refine the goals from which it
wishes to backproject.

It is desirable to establish precisely the power of backprojections relative to
the power of pre-images. Since the difference between the two lies in the use
of termination predicates, this chapter considers the restrictions on termination
predicates that permit a good approximation of pre-images by backprojections.
This investigation leads to a structure equation which defines pre-images that use
the restricted form of termination predicate, as backprojections of certain special
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sets. The planner should therefore refine its goal sets into these special sets before
backprojecting.

3.1. Chapter Goal and Overview

The main goal of this chapter is to characterize the nature of backprojections
relative to pre-images. The motivation behind seeking such a characterization lies
in the hope that pre-images may be computed by backprojecting from particular
types of goal sets.

To this end, the chapter considers a termination predicate that does not
possess a clock. Pre-images that are defined using this termination predicate are
structurally simple. In particular, the property that a trajectory may be recognized
as being in a goal at a given point, is independent of the path by which the
trajectory reaches that point. Goal recognizability is a local property independent
of time.

The chapter shows that pre-images may be computed by backprojections from
distinguished sets. These sets are the first entry sets of trajectories into goals.
Every trajectory passes through a point at which it is recognizably in a goal for
the first time. The collection of all trajectories’ first entry points forms a first entry
set. By the time restriction on the termination predicate, goal recognizability at a
first entry point is independent of the trajectory that generated that point. Any
trajectory beginning at a first entry point is guaranteed to recognizably enter a
goal. Thus, any trajectory beginning in the backprojection of a first entry set is
also guaranteed to recognizably enter a goal.

Finally, the chapter considers the internal structure that goal sets must possess
in order to be used as bases from which to backproject. The issue is whether
a trajectory that enters such a goal set is guaranteed to be recognized by the
termination predicate as being in the goal. Certainly, if the termination predicate
can decide that a trajectory is in a goal at a given point, independent of the
trajectory’s velocity at that point, then the point may be used as a backprojection
base. The difficulty lies with points for which the termination predicate can
recognize entry into a goal only for some velocities. Intuitively, one would expect
that trajectories, which pass through points with velocities for which the termination
predicate cannot recognize entry into a goal, must eventually pass through a point
for which the termination predicate can recognize entry into a goal for all velocities.
The chapter formally validates this intuition.

These results provide a means for computing pre-images. Given a goal set
whose pre-image is to be computed, the planner restructures the goal set so that
all trajectories beginning in the goal set are guaranteed eventually to be recognized
by the termination predicate as being in the goal set. A pre-image can then be
computed by backprojecting from the restructured goal set.

3.2. Pre-Images

Lozano-Pérez, Mason, and Taylor (1983) proposed a formal system for
automatically synthesizing fine motion strategics. Given a goal state, the system
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Figure 3.1. The position uncertainty is greater than the goal.
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i determines regions from which certain motions are guaranteed to successfully attain
the goal in the presence of sensing and control errors. A planner employs this
construction as the basic step in a backchaining process, which yields a sequence
of motion commands guaranteed to achieve the goal. The introductory chapters
have already presented an overview of this system and its role in planning motions.
The current section provides a short review of this work, as it forms the point of
departure for this thesis.

The LMT (Lozano-Pérez, Mason, and Taylor) approach is formulated in terms
of the configuration space of the moving object. The configuration space of an object
is the parameter space representing the degrees of freedom of the object. Obstacles
in real space constitute constraints on the object’s degrees of freedom. Hence,
they may be represented as surfaces in the configuration space. LMT assumes a
generalized damper dynamics for the moving object. In other words, in terms of
configuration space parameters, the dynamics are described by F = B(v — vp).!
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The desired velocity vy is a control parameter. In general, there are errors
between the effective control parameter vy and the commanded control parameter
v(',, between the actual velocity v and the measured velocity v, and between the
actual position p and the measured position p'.

A termination predicate is employed during a motion to a collection of goal
sets, which signals success once one of the goal sets is known to have been attained.
When signalling success, the termination predicate rcturns the identity of the
goal attained. During the motion, the predicate monitors the available sensors. In
particular, the termination predicate is aware of the measured position, velocity

LanRA

v—r

,. "This chapter drops the vector notation employed in Ch. 2. This is done to avoid the impression
that the results of this chapter are conlined to vector spaces. The results apply to more general
man‘folds, and to more general motion specifications.
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Figure 3.2. The goal is a subportion of the edge. The commanded velocity uncertainty
is the cone shown.

and time. Additionally, the predicate is given the commanded control velocity va,
and a set R, containing the actual position of the moving object at the beginning
of the motion. The predicate may also have state, that is, it may be able to record
sensor data for later use. See Mason {October 1983) for details. Depending on the
available sensors and the desired goal, a predicate may not be able to signal success
even when the actual position is inside a goal. Such a situation occurs, for example,
with a predicate whose only sensor is a position sensor with an error ball greater
than the extent of the desired goals (see Fig. 3.1).

By including the set R in the list of items available to a termination predicate,
the predicate is given some local history. Knowing where a motion began allows the
predicate to restrict the possible targets of a motion. The termination predicate
can thus rule out entry into certain regions in space that it might otherwise confuse
with the goal. Consider the example of Fig. 3.2. The goal is the indicated subregion
of the edge. The desired velocity and error cone are as shown. Entry into the
goal is detected by observing force and position sensors. The force sensors detect
a collision with the edge, while the position sensors decide that the collision has
occurred in the goal portion of the edge.

Now suppose that entry into the goal of an actual motion occurs close to the
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be confused with points on the edge that are outside of the goal.
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Figure 3.4. Knowing that all trajectories must lie to the left of the dashed line, 1
allows the termination predicate to decide that a point is in the goal. The termination 3

predicate first uses force sensors to recognize that the point is on the edge. Then it
uses the trajectory history to decide that the point is on the goal portion of the edge.

boundary between the goal and the rest of the edge, so that the position sensors
cannot determine that the collision is actually within the goal, due to position
uncertainty (see Fig. 3.3). If the termination predicate had no further information,
then the planner would have to restrict the starting positions of motions in order
to avoid hitting the edge so close to the goal boundary.

However, suppose that the termination predicate knows that the starting point ]
of the motion lies in the triangle formed from the velocity cone, 2s shown in Fig.
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Figure 3.6. G = G; |J G2. Assume perfect velocity control, perfect velocity sensing,
and perfect vertical position scnsing. Assume that the horizontal position sensor has
an error radius ep,,ition- Termination is detected by vertical position sensing. The
commanded control velocity is v; = (0, — 1). Then a maximal pre-image of G under v,
is formed by any pair of vertical eylinders which are separated by distance 2 eys4itions
such that there is one cylinder over each of the line segments G, and G;.

3.2. (This is just a backprojection of the goal as described in Chapter 2). The
motion can never stray out of this triangle, since all motion directions must lie
within the bounds of the velocity error cone. Thus the termination predicate can
signal success upon detecting a collision with the edge even if that collision is close
to the goal’s boundary. In effect, the termination predicate intersects the possible
interpretations of the force sensors, with the possible interpretations of the position
sensors, with the restriction imposed by knowing the starting set R, to determine
the effective set of interpretations of the sensors. If this set lies inside a goal, then
the termination predicate can signal success. Fig. 3.4 shows this process for a point
close to the goal’s boundary.

3.2.1. Basic Definitions

Given a measured position p;,, a set R, and a collection of goal sets { G, },
LMT defines S(py, R, { Ga }) to be the set of all commanded control velocities
A v{,, such that the termination predicate, knowing that the initial measured position
py corresponds to an actual position p in R, is guaranteed to signal success. A
pre-image of a collection of goals { G, } relative to a set R is the set

Pel{Ga)) = {p € |V € Bp(p) S(i R {Ga)) # 0}, (31)
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Figure 3.6. Another type of maximal pre-image of G under v, (see Fig. 3.5).

that is, the set of all positions p, such that, for all measured positions p(‘) consistent
with p, there is some commanded control velocity v;, such that the termination
predicate 1s guaranteed to signal success. The inclusion of the initial measured
posmon po is another means of retaining local history. The termination predicate
uses Po much as it uses the set R. Allowing the predicate to have state, as suggested
by Mason (October 1983), further increases the local history available to the
termination predicate .

In order that Pr({ G, }) be a suitable subgoal for the next level of backchaining,
Lozano-Pérez, Mason and Taylor (1983) showed that the equation

= Pp({Ga}) (3.2)

must hold. The definition of Pg({ Ga }) insures that Pr({ Go }) C R. Thisinclusion
is necessary, as otherwise a point p € Pp({ G4 }) might be a good pre-image point
only if the termination predicate thinks that the point is elsewhere, namely in R.
Such a definition would be absurd. Lozano-Pérez, Mason and Taylor established the
reverse inclusion R C Pp({ Gq }). In order for the termination predicate to know
that a motion begins in R, it must be the case that the previous motion terminated
in R. The previous motion can be successfully continued only if it terminated in
the pre-image of the current goal, by definition of pre-image. In other words, the
previous motion must have terminated in Pp({ Gqo }). The desired inclusion follows.

Thus the collection of suitable pre-images { Rg } of a collection of goals { G, }
is the collection of all sets R that satisfy R = P;({Ga })-

The planner envisioned by LMT is given an initial goal set G and an initial
position set I. The planner recursively constructs pre-image collections, beginning
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Figure 3.7. This example is a generalization of the examples in Figs. 3.5 and 3.8.
The maximal pre-images in this case are vertical lines with lower endpoint in G.

with the collection consisting of G and all of its subsets, until at some stage
I C Ry for some B. The sets S(pg, R, { Go }) can then be used to collapse the
recursion and actually move the object. As previously indicated, Mason (October
1983) has shown that the planner, employing a termination predicate with state, is
guaranteed to find a solution if a solution using a bounded number of steps exists.

3.2.2. Directional Pre-Images

Consider the set

Por({Ga}) = {p € R|Vr; € Bulp), vi € S(poy R {Ga )} (33)

Here v; is a velocity vector that, for instance, in the planar case, makes
angle 6 with the z-axis. Mason (October 1983) states that it is sufficient for the
planner to consider subgoal sets of the form R, with R = Py p({ G4 })- In other
words, the performance of the planner is not diminished by considering only the
mappings Py g. This result is fortunate, for it allows one to consider fewer and
simpler pre-images. Specifically, it is sufficient to consider pre-images relative to
particular commanded velocities. Happily, the result does not depend on whether
the termination predicate has state.

This completes the summary of LMT .
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3.3. Comments on Computability

In the appendix to this chapter (Sec. 3.12) it is shown that pre-images
in arbitrary environments are uncomputable. The result applies as well to the
computability of backprojections. The proof proceeds by a reduction from the
halting problem. Specifically, given an instance of a Turing machine, the reduction
transformation creates a maze of constraints and goal edges. The maze corresponds
to the Turing machine’s transitions, while the goal edges correspond to the Turing
machine’s halt configurations.

The scenario of that section is somewhat artificial, in that the surfaces an”
goal edges recursively defined in the reduction do not arise in practice. Nonethel
the result is suggestive of the difficulty involved in computing the mapping Pp
restricting oneself to polygonal environments, it is possible to reduce this difficulty
For example, if the goal G4 in the construction of Claim 3.35 is taken to be a
single horizontal edge, then the problem is easily solvable. This corresponds, in the
language of Turing machines, to the question of deciding whether a machine will
halt in a particular configuration after a specified number of steps. That problem
is clearly computable.

At present the complexity of computing pre-images and backprojections in
the simplified polygonal environment is unknown. A reasonable conjecture is that
backprojections are computable in algebraic environments with generalized damper
dynamics and algebraic descriptions of friction. Specifically, given a finite number
of algebraic constraints, one expects the backprojection problem to be computable.
The intuition behind this expectation lies in the finiteness of the constraints. See
also Sec. 3.10 and the work by Schwartz and Sharir (1982). By the results of this
chapter, which relate backprojections to pre-images, it is therefore also reasonable
to expect that the pre-image problem is computable. More theoretical work in the
area of pre-image computability is required.

3.4. Solving the Pre-Image Equation

Recall that one of the issues in computing pre-images lies in solving the
equation R = Pp(G). This section investigates two properties which could be of
use in describing solutions to the pre-image equation. In particular, idempotency
and maximality are considered. The pre-image mapping is idempotent. This fact
simplifies the construction of pre-images. In search of further simplicity, it is natural
to ask whether pre-images may be described by a class of maximal pre-images.
The hope is that consideration of a particular class of solutions to the pre-image
equation is sufficient to fully describe all pre-images. Maximal pre-images form a
natural candidate for this class of sets. Unfortunately, arbitrary pre-images need
not be contained in unique maximal pre-images. In fact, maximal pre-images may
not even exist. Consequently, the pre-image problem cannot be reduced to solving
the pre-image cquation for maximal sets. Nonetheless, the notion of maximality
provides a guideline to follow in the the later definition of backprojections.
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Figure 3.8. A ecountable collection of goals and pre-image regions. The pre-image
regions R, are all on the y-axis.

3.4.1. Idempotency

Note that the mapping Pp is idempotent, when viewed as a function of R, for
a fixed collection of { G, }. In other words,

If R' = Pp({Ga}) then R = Pr({Ga}). (3.4)

The claim is intuitively clear, and its formal proof is straightforward. This
result does not permit solution of the pre-image equation, but it does describe the
recursive structure of Pj; in a fashion that, in principle, allows one to “list” all
suitable pre-images (the list is, however, highly uncountable). Furthermore, this
observation permits one to deal with suitable pre-images whenever convenient, as
one can always generate a suitable pre-image R’ from a set R by a single application
of the mapping Pg. The idempotency also holds for the mapping Py p({ Gq }) when
viewed as a function of R, for fixed ¢ and { G, }.
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3.4.2. Maximal Pre-Images

It is instructive to note that there exist in general an infinite number of sets

R satisfying R = Pp(G), for a fixed set G. The truth of the last statement is
obvious since any subset of a suitable pre-image is itself a suitable pre-image. More
important is the realization that there may exist an infinite number of maximal
suitable pre-images for a specified goal G. See Fig. 3.5, Fig. 3.6, and Fig. 3.7, for
three examples. These examples do not assume a termination predicate with state, y
although clearly the values of p(; and R must be remembered by the termination S |
1

predicate in all three cases.

An infinite collection of maximal suitable pre-images does not a priori exclude 1
the possibility of a finite representation of the collection itself. For example, in Fig. .
3.6 the collection of maximal pre-images, expressed in English, consists of all pairs
of sets S and S separated by a distance 2 ego4ition, Such that S; is a subset of the
cylinder erected over Gy (¢ = 1, 2), differing from the cylinder only at the right (for
1 = 1) or left (for 1 = 2) boundary segment. The search for finite representations
of infinite collections of pre-images is a motivating factor for this thesis. §

——vww.-v-ﬁwv- vr'_'-_"‘—v-'—"d'

P——

As a final comment, maximal pre-images may not even exist. Mason’s (October
1983) point on a hill example describes one problem for which maximal pre-images
need not exist. The failure of maximality in his example stems from the termination

predicate’s ability to monitor time. As another example, consider Fig. 3.8. The R
failure of maximality in this case stems from the non-compactness of the union of
goals.

The example of Fig. 3.8 consists of moving a point in the plane under generalized
damper dynamics. There are no obstacles in the environment. The velocity sensors
have no associated uncertainty, and the velocity control is perfect. The position
sensors have perfect horizontal position sensing, but are subject to infinite vertical
position uncertainty. In other words, a point can tell where it is horizontally, but
not vertically. The example could easily be modified, so that all sensing and control
errors are nonzero and finite. For simplicity of presentation, this was not done.

b e a4 &

i ot

The commanded velocity vg is directed along the positive z-axis. The goal sets
in the example are the vertical lines

watn tmciaa asil fmama

Gn={(z,y)~z=1—;1;, and OSySI—%}, n=1,2... (3.5)

The sets R; which satisfy the pre-image equation are given by

R,-:{(O,y)‘OSyS_l—%}, i=12 ... (3.6)

It is clear that each of the R; satisfies the pre-image equation relative to the
commanded velocity vg, that is, Ry = Py r,({ Gn}). Also, since R; is properly
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contained in R;,, no finite union of the R, is maximal. So, consider the infinite
union R = U2, R,. Note that R = {(0,y)]0<y <1}

R does not satisfy the pre-image equation, that is, R # Py g({ Gn}). To
see this, suppose that a motion is known to start in the set R. The termination
predicate cannot decide where the motion starts vertically within 2. Therefore, the
termination predicate cannot predict when the motion will enter one of the goal
sets G, since no goal set contains all possible trajectories emanating from R.

Furthermore, if R’ is any set containing R, then R’ cannot satisfy the pre-image
equation. This is because any subset of a pre-image is itself a pre-image. Thus there
does not exist any maximal pre-image which contains any of the sets R,.

It is unfortunate that maximal pre-images do not always exist, and it is
unfortunate that, even when they do exist, they may exist in abundance. The hope,
generally, in seeking out maximality conditions, is to make an otherwise infinite
problem tractable. In the current case, maximal pre-images would have served as
basic building blocks from which all other pre-images could have been constructed
by subsetting. This section shattered that hope. The next section partially rebuilds
the hope, by defining an approximation to pre-images that does exhibit maximality.

3.5. Formal Definition of Backprojection

This section formalizes the intuitive description of backprojections presented
thus far. The motivation for introducing backprojections lies in their simplicity. The
basic difference between pre-images and backprojections is the use of termination
predicates. By removing knowledge of termination predicates from backprojections,
the construction of backprojections is simplified. Additionally, backprojections
possess a maximality property. This property simplifies their effective computation.
Of course, by simplifying backprojections relative to pre-images, the power of
backprojections has been commensurately diminished. The extent of this power
loss is the focus of later sections.
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Figure 3.9. The velocity error ball may be described by a cone, if directions are of
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3.5.1. Preliminary Definitions

This subsection defines the type of uncertainty assumed throughout the
remainder of this chapter.

Definition 3.1

vo

Bcc(”(.))

Actual position.

Measured position.

The measured position lies in the position error
ball about the actual position.

Position error ball about the position p.

Initial measured position.

Actual velocity.

Measured velocity.

The measured velocity lies in the velocity error
ball about the actual velocity.

Velocity error ball about the velocity v.
Commanded velocity.

Effective commanded velocity.

This term appears in the damper equation.

It lies within the error ball about the commanded velocity.

Error ball about the commanded velocity v:,.

Commanded velocity in a particular direction specified by
the parameter 8 (this may be multi-dimensional).

The error balls are all assumed to be open balls.

The two measurement balls B, and B,, are assumed to satisfy the symmetry

condition

z € Bmo'(y) iff ye Bcrrar(z)» (3'7)

which is motivated by the desire to have
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Figure 3.11. The size of the error ball is directly proportional to the magnitude of
the commanded velocity_. This preserves direction, and the shape of the error cone.

For every z, Bcrror(z) = {y | T € Berror(!/) } (3'8)

The error ball about the commanded velocity is merely assumed to be open.
No particular structure is assumed. It is often convenient to describe the error
between the effective commanded velocity and the actual commanded velocity by
a cone about the commanded velocity, as in Fig. 3.9. The cone’s extreme rays are
given by the velocities in the error ball that have the greatest angular misalignment
with the actual commanded velocity. Note that there are many error balls that
could give rise to the same cone, as indicated by Fig. 3.10.

The error cone view effectively considers only direction, ignoring magnitude.
Alternatively, one can imagine an error ball which depends on the magnitude of
the actual commanded velocity. Specifically, the diameter of the ball varies directly
with the magnitude of its center, so that direction about the actual commanded
velocity is always preserved (see Fig. 3.11).

For the most part, the sequel will ignore the precise shape of the error cone or
ball. The terms ‘error’ and ‘uncertainty’ are used interchangeably. Note that the
current definitions ignore any probabilistic distribution of effective values about
nominal values.
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3.5.2. Ignoring Termination Predicates

In the definition of pre-images, in particular, in the definition of S (py, R, { G, }),
consider dropping the requirement that motions recognizably enter goal regions.
In other words, ignore the influence of termination predicates. This modification
would define S(pg, R, { Gq }) to be the set of all commanded control velocities v,
such that, given an initial measured position p(‘, corresponding to some unknown
actual position p in R, the actual position is guaranteed to enter one of the goal
sets Go. One could then define a new version of pre-images, analogous to Eqs. (3.1)
and (3.3), using the new definition of S(pg, R, { G4 }). For the moment, refer to
these sets as simple backprojections.

The new definition says essentially that, in order for a point p to be in a
simple backprojection, it must be the case that all points, which are consistent
interpretations of any initial sensor reading p(‘, corresponding to p, are guaranteed
to move to a goal. This definition seems too complicated. Neither the set R, nor
the fact that py is a sensor reading, are needed in deciding whether a motion will
eventually enter a goal.

z Asimpler definition is possible. The class of simple backprojection sets generated

! o _ by the simpler definition is the same as the class of simple backprojections generated
by the previous definition. This follows from a bit of symbol juggling. Thus the
simpler definition about to be presented should be preferred.

The simpler definition throws away the initial measured position and the local
history. Specifically, define S(p, { G, }) to be the set of all commanded control
velocities v(; that are guaranteed to move the point p into one of the goal sets G,.
The difference between the set S and the set S defined by LMT lies in the use of
predicates. The set S consists of all commanded velocities guaranteed to move the
point p into one of the goals, although it may be impossible for the termination
predicate to recognize entry into the goal. One can then define Pgr as the set of
all points in R which are guaranteed to move into the goal regions under some
commanded velocity, and Py g as the set of points which are guaranteed to move
into the goal regions under a particular commanded velocity. Specifically,

-'Yl) r_rYYv'r—_Yﬁ—f
. . o ' L

Definition 3.2 The simple non-directional backprojection of a collection of
goal sets { G, } is given by

Pal{Ga)) = {p€ R[S (r {Ga)) 0 } (39)

The simple backprojection of a collection of goal sets { Ga } under the commanded
velocity v; is given by

Pou({Ga}) = {peR| v €3(p (Ga)) }. (3.10)

These definitions capture the notion that a backprojection should consist of
those points which are guaranteed to hit a goal region. Sensor values, local history,
and termination predicates do not play a role.
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It is fairly clear, and will be proved in Sec. 3.5.4, that, with p € R,

S(p R, {Ga}) C S(p, {Ga}) (3-11)
Pr({Ga}) C Pr({G.}) (3.12)
Pyr({Ga}) C Por({Ga}) (3.13)

These relations are interesting, for they state that every pre-image is a
backprojection. This makes sense, since a pre-image point must fulfill stronger
conditions than a backprojection point. The former must recognizably enter a
goal, the latter need only enter, without being necessarily recognizable. While
the result is not surprising, it is certainly a necessary condition for investigating
backprojections as approximations to pre-images. By considering the class of all
backprojections, one can consider the class of all pre-images. Later sections address
the question of how to narrow down the class of backprojections that need to be
considered.

With these definitions in hand, consider the union

My = LRJ Py r({ Ga }). (3.14)

(by idempotency one need not worry about considering only those R for which
R = Pyr({Ga}))

Whether a point is in a simple backprojection, depends in some sense solely on
properties of that point, not on properties of neighboring points. Clearly therefore,
the union of any collection of simple backprojections is itself a simple backprojection.
In particular, the union of all simple backprojections is a backprojection.

My = Py37,({Ga )
(3.15)
= {p]v5€3(p, {G.}) }

In other words, in the absence of predicates that can recognize entry into goals,
it is possible to define a unique maximal set My, such that commanding the velocity
vg guarantees that every point in My will enter some goal G,. Unfortunately, it
may not always be possible to detect entry into the goal G, or even predict which
goal will be entered. Nonetheless, by Egs. (3.13) and (3.14), any suitable pre-image
R must be a subset of M,. Thus the set M, provides a constraint on the possible
collections of suitable pre-images.

The mapping & X {G,} — M, will be called a maximal backprojection,
denoted by My = By({ G, }). Formally,
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Figure 3.12. The future path of a point is more easily predicted if the commanded
velocity error is constant. If the error can vary over time, then the future is determined
only up to a cone of uncertainty.

Definition 3.3 The mazimal backprojection of a collection of goal sets { G4 }
under a commanded velocity v; is just the union of the simple backprojections. It
is given by

By({Ga}) = y Pyr({Ga }) (3.16)

The constraint defined by backprojections is simply stated as
For every Rand 8, Pyop({Ga}) C Psr({Ga}) C Bs({Ga}) (3.17)

3.5.3. Basic Assumptions and Decfinitions

In the definitions of pre-images and backprojections above, the successful
velocity sets S(pg, R, {Ga}) and S(p, { Ga}) were only intuitively defined.
This subsection provides a formal characterization of S(pg, R, {Ga}). The
characterization may be thought of as an axiom, if so desired. If fact, an analogous
axiom is then presented to define S(p, { G, }). Most of the subsection consists of
building tools needed for the characterization. The tools are used in the scquel.
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Additionally, the subsection provides some intuition about the nature of pre-images
and termination predicates while constructing the tools.

3.5.3.1. History

Throughout, the termination predicate is assumed to have knowledge only of
the current sensors, plus the local history provided by the initial measured position
po and the set R, which contains the actual initial position. In particular, the
termination predicate does not possess continuous past state information.

3.5.3.2. Errors

The sensor and control errors are assumed given. They do not explicitly appear
as parameters in what follows, although their precise values clearly affect the success
of motion strategies.

3.5.3.3. Trajectories

A few notational definitions are in order. Recall that under a damper model,
trajectories are continuous, but velocities may vary discontinuously. Define a
trajectory, relative to a commanded velocity vy to be a continuous mapping from
positive time into free space which satisfies the generalized damper equation (Eq.
(2.1)) with commanded velocity vg.

More generally, one can define a collection of trajectories relative to a velocity
error ball. The only difficulty with such a definition lies in deciding how the effective
commanded velocity vg varies over time relative to a constant commanded velocity
vg. There are several possibilities. The simplest is to assume that the effective
commanded velocity vy remains constant. At the other extreme, one can assume
that vg can vary arbitrarily within the error ball about the actual commanded
velocity vg.

The difference between these two world views manifests itself in the regions
reachable from a given trajectory point. In the first case, once motion is in progress,
the effective commanded velocity remains constant, so the reachable region lies
along a trajectory. In the second case, the direction of motion can vary, so the
reachable region is a cone. The difference is shown in Fig. 3.12. Said in another
way, for constant error, the set of possible places at which a moving point may find
itself is more constrained, hence more predictable, than for varying error.

Constant error is too simple a model. Arbitrarily varying error is probably
physically unrealistic. Nonetheless, it provides a model that more closely ap-
proximates uncertainties arising from uncontrolled and unpredictable disturbances
in a first order system.

‘- The rest of the chapter assumes that the effective commanded velocity can
. vary discontinuously and fairly arbitrarily. The only restriction imposed on the
) effective commanded velocity is that the damper equation be integrable. In other

words, it should be that case that
to
to) = p(0) + [ w(t)s, (3.18)
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Figure 3.13. The goal region is a subportion of the edge. A point starting at “Start”
is guaranteed to hit the edge.

where u(t) is obtained from the damper equation.

It is probably more realistic to assume that changes in the effective commanded
velocity be at least piecewise continuous. For simple environments, such as those
containing a finite number of algebraic constraints, such a continuity restriction
y does not change the results obtained below, although it changes some of the proofs.
: In particular, all proofs that assume a discontinuous change of commanded velocity
X should be modified so that the commanded velocity change occurs continuously
over an arbitrarily small region about the trajectory.

:
:_; Given the integrability condition (3.18), it is more appropriate to view a
i trajectory as a mapping from time into velocity space. Position can then be
determined by integrating velocity. For simplicity, the following definition combines
s both position and velocity.

& g Definition 3.4 A trajectory that satisfies the damper equation with uncertainty
3 relative to a commanded velocity vy is a mapping

( T: [0, 0] — Free-space X Velocity-space
° (3.19)

T(t) — (T(t), To(t)),
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Figure 3.14. Sensed position and velocity values corresponding to actual position
and velocity values. Also shown are the uncertainty balls about each of the sensed
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such that at all times ¢, T,(t) satisfies the damper equation (Eq. (2.1)) with effective
commanded velocity vg(t) € Bec(vg). Furthermore, Tp is related to T, by the
integral equation (3.18).

Definition 3.5 Let T(vo) be the set of all trajectories that satisfy the
damper equation with uncertainty relative to vo

! It is often useful to speak of a trajectory as being consistent with a sensor value, 3
t‘ or of a sensor value as being consistent with a trajectory. Formally, a trajectory 1
T is sensor conszstent at time t with a sensor reading (p’, v") if and only if ]
(T,(t), To(t)) € Bep(p") X B.o(v"). Similarly, a sensor reading (p", v°) is consistent 1
with a trajectory T at time t if and only if (p',v") € Bey(Tp(t)) X Bew(Tu(t)).

The terminology makes sense because of the symmetry conditions on error balls. ]
Effectively, the definition states the intuitive belief that two things are consistent y
if they lie within the uncertainty range of each other. R

Definition 3.6 The set of trajectories consistent with an initial measured )
position py which is known to correspond to an actual position p € R is !

MIEAPLIA A ST | v

Tro Rovy) = { T € T(p) | T00) € Bulw) R} (3:20)

PP YT

[ ] . . . . .
The set T(py, R, vy) represents all trajectories whose starting points are
consistent with a given initial measured position. This set is useful for it allows the

1n?
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Figure 3.15. The circular region comprises the range of velocities possible in free
space. The horizontal region comprises the velocities possible while in contact with
the edge of Fig. 3.13.

planner and therefore the termination predicate to predict the possible locations
that a point could attain. The information is used below to restrict the possible
interpretations of sensor values.

3.5.3.4. Termination Predicates and Forward Projections

This subsection describes the process by which a termination predicate decides
that it has attained a goal. The basic process was described by Lozano-Péresz,
Mason, and Taylor (1983), and has been intimated at numerous times.

In essence, the termination predicate considers the current sensor values,
determining all position and velocity interpretations consistent with the sensor
values. The termination predicate then uses any local history or state which it
possesses, and knowledge of its environment, to further restrict the set of position
and velocity interpretations. If the restricted set is wholly included in a goal set,
then the termination predicate signals success.

Consider the example of Fig. 3.13. The commanded velocity is straight down,
the velocity error cone is as shown, and the goal is the subportion of the ~dge
indicated. Suppose that the actual motion started at the point indicated Tl -3,
the termination predicate knows that the possible positions of the motion must -
within the cone of Fig. 3.13. Suppose that the actual motion has collided with the
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e the current motion cannot be in free space. Instead, a collision must have occurred.

E This allows the termination predicate to restrict the position interpretations to the S
[ edge. Finally, using the cone of possible positions defined by the starting position, 1
! the termination predicate can actually recognize entry into the goal region (see also E
S Faig. 3.4).

. 4
} The process just outlined is easily described by an intersection of sets in the -
: tangent bundle. This intersection is the essence of the characterization of the set S. '
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Figure 3.16. The measured velocity and its uncertainty ball. Note that the uncertainty .
ball overlaps the edge velocities, but not the free space velocities.

edge inside the goal. The position and velocity sensor values at the time of collision
are shown in Fig. 3.14, along with their uncertainty balls.

ey A‘J_.‘; A et gt

Also shown in Fig. 3.15 is the commanded velocity and its uncertainty ball.
This ball represents the range of velocities that are possible in free space. The
sccond “ball” in Fig. 3.15 corresponds to the velocities that are possible when in
contact with the edge. This ball is one dimensional, as it represents the range
of velocities found by solving the damper equation for all possible commanded
velocities in the commanded velocity uncertainty ball.

fo

Assume that the measured velocity ball does not intersect the free space
velocity ball, but that it does intersect the contact velocity ball. This is shown in

Fig. 3.16.
Using the position and velocity sensors alone, the termination predicate cannot

decide that the actual position lies inside the goal. Taking the commanded velocity
and its uncertainty ball into account, the termination predicate can decide that
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The rest of this subsection presents a formal description of the intuition presented

above.
T The following definition involving positions and velocities parallels that given
[ for trajectories at the end Sec. 3.5.3.3. The goal collection { G, } is assumed given.
b
s

Definition 3.7 The forward projection at time t of a measured position P(;
known to correspond to an actual position in the set R, under the commanded
L] velocity vy, is given by

Far® = { @t T) | T € Tioo, R, 0)) (3:21)
e Definition 3.8 The timeless forward projection is just the union of the
forward projections with time, over all values of time,

Foor = U Pord, &(t)- (3.22)

The forward projection at time t lists the positions and velocities that are
possibly reachable at time ¢t from the initial measured position p:,, while the timeless
forward projection lists the positions and velocities that are possibly reachable at
_ some time from p('). Both types of forward projection assume that P(; corresponds
q to an actual position in the set R. Thus the forward projections capture the local

history available to the termination predicate.

Referring to the earlier example, note that the position component of the timeless
forward projection spans the cone of possibly reachable positions. Additionally, the
velocity component of the forward projection expresses the difference between the
uncertainty ball of velocities in free space, and the uncertainty ball of velocities
when in contact with the edge. For each position p that is in free space, the forward
projection includes points of the form (p, v), where v spans all of the free space
velocity uncertainty ball. Similarly, for each position p in contact with the edge,
the forward projection includes points (p, v), with v spanning the contact velocity
ball.

In short, the forward projection at time t captures the information available
to the termination predicate from its local history, and from the environment.
The timeless forward projection captures less of the local history, as it ignores the
relationship between time and the positions of a moving point. This difference will
be of interest later.

Recall, that in the earlier example, the termination predicate intersected its
local history with its interpretation of the sensor values, in order to obtain an
effective interpretation of the possible states of the motion. In terms of the tools
Just developed, this intersection is given by

p 0/( n pr X Bcv( ) (323)
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3.5.3.5. Goals in Velocity Space

The following definition is made solely for notational convenience.

Definition 3.9 Given a subset G of position space, define its cylinder to be
the set G X Velocity-space.

More generally, given a collection of goal sets { G, } define the collection
{ Hy } to be the set of cylinders constructed from { G, }.

Thus the collection { Hq } is just a way of representing the goals { G4 } in phase
space. In general, instead of constructing cylinders, one can imagine constructing
complex goal sets in phase space. Such goals would not only specify desired position,
but also desired velocity. Such a scheme would require a second order system as the
underlying motion description. It would be interesting to investigate this problem,
but it is not of direct concern here.

3.5.3.6. Characterization of S(pg, R, { Ge })

The discussion in the previous pages has provided a framework for the formal
characterization of the set S (pg, R, { G4 }). Intuitively, a commanded velocity vy is
in the set S(p:), R, { G, }) exactly when the termination predicate can eventually
signal success of any motion whose initial position is measured to be P(.)- The
termination predicate knows that the actual position corresponding to pa must be
in the set R. In deciding whether the motion has attained a goal, the termination
predicate considers this local history, plus the position and velocity sensor readings
(p", v°). It does not remember the sensor readings.

The key to the characterization lies in realizing that the termination predicate
must be able to signal success for every trajectory that is initially consistent with
pg- Furthermore, since the termination predicate can’t predict the sensor readings
at the time of success, it must be the case that every trajectory eventually enters
a goal region in a fashion that allows the termination predicate to signal success
for every possible sensor reading that is consistent with the trajectory. Conversely,
if for every trajectory initially consistent with p(;, there is some time at which all
sensor readings consistent with the trajectory only have interpretations inside of
goal regions, then the termination predicate can signal success for every trajectory.

These observations prove the following

Claim 3.10 v, € S(pg R, {Ga}) if and only if for every trajectory
T € T(pg, R, vg), there is some time ¢ > 0, such that, for any sensor value (", v")
consistent with T at time ¢, there is some goal set H € { H, } which contains the
sct of sensor interpretations, that is, Fp“,,o,R(t) N B.(p’) X B(v') C H.

In words, the commanded velocity v:, is a good velocity if, and only if, for every
trajectory consistent with the initial information, there is some time at which,
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given any sensor readings, there is some goal which contains all interpretations of
the given sensor readings. The sensor readings must, of course, be consistent with

S

b

:r the trajectory.
E | 3.5.3.7. Definition of 5(p, { Ga })
3

L

The claim of the previous section provides a guideline for defining the

A successful velocity set S(p, { Ga }). Recall that the difference between pre-images

r. and backprojections is that the latter do not use termination predicates. The only

: issue is whether a motion is guaranteed to reach a goal, not whether a termination

[ predicate can recognize that it has reached the goal. Sensor values are not relevant.
This leads to

:e Definition 3.11 v, € S(p, {Ga }) if and only if for every trajectory
T € T(vg), with Tp(0) = p, there is some time t > 0, and there is some goal set
H € { H, }, such that the trajectory is in the goal, that is, T(t) € H.

3.5.4. Simple Comparison of Pre-Images and Backprojections

[

T This subsection establishes Eqs. (3.11), (3.12), and (3.13). Recall, that these
' equations essentially state that any pre-image is also a simple backprojection. The

first result establishes the relationship of the successful velocity sets S and S. The

second two results establish the inclusion of pre-images in backprojections. Since

any subset of a simple backprojection is itself a simple backprojection, this says

that every pre-image is a simple backprojection.

Claim 3.12 Assume p € R. Then S(p, R, {Ga }) C S(p, {Ga }).

Proof: Let v € S(p, R, { Ga }). Then for every trajectory T € T(p, R, v),
there is some time ¢ > 0, such that, for every sensor value (p°, v°) consistent with
T at time t, there is some goal set H € { H, }, such that the set of interpretations
Fpor(t) N Bep(P ) X Be(v') C H.

In particular, for every trajectory T € T (v) with Tp(0) = p, there is some time
t > 0 and some goal set H € { H, }, such that T(t) € H. So v € S(p, {Ga }).

Claim 3.13 Pp({G.}) C Pr({G. ).

Proof: Let p € P,g({G }). Then p € R, and for every initial measured 1
{ position py € Bey(p), S (pg, R, {Ga }) £ 0.
{ In particular, S(p, R, { Ga }) # 0. So, by Claim 3.12, S(p, { Ga }) # 0. This
{ . says that p€ Pp({Ga })- @ !
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Figure 3.17. Pointa in the triangles are guaranteed to pass through at least one of
the two horizontal lines. Some points may pass through both lines, but there is no
guarantee.

Claim 3.14 PB,R({ Ga }) - pﬂ,R({ Ga })

Proof: Similar to that of Claim 3.13. 1§

- 3.6. The Property of Being Self-Contained

The most striking property of backprojections, which in fact gives them their
maximality, is that they are self-contained. Specifically, suppose that p is in the ]
maximal backprojection of some collection of sets §. Then every point that is on any i
feasible trajectory emanating from p must also be in the maximal backprojection.
q Thus there are no gaps between a backprojection point p and its target in §. )
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Actually, to be precise, one should note that only those points that lie on
a trajectory beginning at p before the trajectory’s first entry into S are in the
backprojection. To see this, consider Fig. 3.17. The backprojection of the two lines,
under the given velocity uncertainty, yields two triangles. Consider any trajectory
that begins inside one of these triangles. The trajectory eventually hits one of the
two lines. Additionally, any point on the trajectory before it hits the line, is also in
the backprojection. Note, however, that there are trajectories that hit both lines.
Points on the portion of these trajectories between the two lines are not in the
backprojection, because these points cannot be guaranteed to hit one of the two
lines.

Finally, since a goal set may be open, there need not be a first time at which
a trajectory enters a target set in §. However, there is a time after which the
trajectory is in the open set. In general, for arbitrary sets, the time to consider is
the infimum? of the set of all times at which the trajectory is in a target set in §.

This notion is worthy of a definition.

Definition 3.15 A set R is semi self-contained relative to a collection of
sets $ and a commanded velocity v, if and only if for any trajectory T € T(v;)
with T,(0) € R it is true that Ty(1) € R for all values of time 0 < t < to, where ¢
is the infimum of the set {t > 0| Tp(t) € A for some A€ § }.

In particular, if a trajectory never enters a set in §, then it must always remain
in R.

The following three claims follow from the definition. The commanded velocity’s
uncertainty cone is the same throughout the claims.

Claim 3.16 A maximal backprojection By(S) of a collection of sets § is
semi self-contained relative to that collection.

Claim 3.17  Suppose R is semi self-contained relative to S. Suppose further
that $' is a collection of sets that subsumes S, that is, for every A € § there is a
set A’ € §' such that A C A’. Then R is semi self-contained relative to §'.

Claim 3.18 Suppose that R; and R; are both semi self-contained relative
to a collection of sets S. Then RN R; is also semi self-contained relative to §.

The first claim merely reiterates the motivation for defining the property of
being semi self-contained. The sccond claim says that increasing the target sets,
while holding R fixed, only makes it easier for R to be semi self-contained. The third
claim says that a trajectory which starts in the overlap of two semi self-contained
sets, remains in the overlap of those two sets at least until hitting a target set. The
proofs of these claims are purely definitional. The results will be used later.

2 The infimum snf(A) is the greatest lower bound for A. If A consists of non-negative numbers
then inf(A) exists. It is taken to be 400 if A = 0.
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Figure 3.18. The goals and the starting points lie within the position uncertainty.
The trajectories may be distinguished as they temporarily leave the uncertainty range.
This observation is useful to a termination predicate that can remember sennsor values.

3.7. The Power of Termination Predicates

The appendix to this chapter (Sec. 3.12) shows that pre-images are uncom-
putable in full generality. The uncomputability proof of that section applies as easily
to backprojections as it does to pre-images. Both types of regions are uncomputable,
given complex surfaces and goal regions. Backprojections do not therefore derive
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their computational desirability from an increase in the class of solvable problems.
The motivation for defining backprojections lies in their simplicity. It is hoped that
backprojections can usefully approximate pre-images.

In order to understand the quality of this approximation it is necessary to
examine the relative power of the two methods. The difference between pre-images
and backprojections lies in their use of termination predicates. This section begins
examining the relationship between pre-images and backprojections by considering
the power of termination predicates within the definition of pre-images. A hierarchy
of termination predicates is developed, which later will be used to relate pre-images
and backprojections. The hierarchy makes explicit the power that is lost from
pre-images by backprojection approximations.

3.7.1. The Standard Termination Predicate

Throughout the previous development the termination predicate employed is
best described by the characterization of the successful velocity set S (pg, R, { Ga }).
In other words, the termination predicate can monitor the position and velocity
sensors, it has a sense of time, and it remembers the measured initial position p:,
and the set R known to contain the actual initial position.3

3.7.2. The Termination Predicate with State

Mason (October 1983) described a termination predicate that remembers
not only the measured initial position py and the set R, but also the sensor
readings (p', v") for all previous values of time ¢. The advantage of this approach
over the standard termination predicate is that the predicate can disambiguate
interpretations of sensors using past sensor values, in addition to current sensor
values and the forward projection.

Consider the example in Fig. 3.18, which is a variant of an example due to
Mason (October 1983). The set R consists of the two points indicated, while the
goal set G consists of the two regions indicated. The commanded velocity is straight
down.

Assume that the position sensing error is a ball, as shown. The velocity control
error is zero, and the velocity sensing error is irrelevant. Since the two points that
comprise R lie within the position sensing uncertainty, a termination predicate
cannot decide where the actual position starts. Thus the forward projection includes
at all times points from both trajectories that emanate from R.

Each trajectory eventually passes through a goal region. Unfortunately, every
point in the goal region of one trajectory can be confused with non-goal points
either on the same or on the other trajectory, because of the position uncertainty.
Thus the standard termination predicate cannot sigral success. However, Mason’s
termination predicate can signal success, since there is a point in time at which the
two trajectories are far enough apart to be distinguishable. Remembering the sensor
values, the termination predicate can decide on which trajectory a particular motion
lies. The termination predicate can therefore rule out non-goal interpretations when
in the middle of the trajectory’s goal region.

3The set R is a previous subgoal that was attained by a previous motion.
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Figure 3.19. With infinite position uncertainty and perfect control, entry into the
goal region is detected by observing the time sensor.

3.7.3. The Termination Predicate with no Sense of Time

The termination predicate with no sense of time is a standard termination predi-
cate which cannot consider time in making decisions. Thus, in disambiguating sensor
interpretations, the termination predicate must use the timeless forward projection.
In other words, the set of interpretations is given by Fp;'o’ r N Bey(p) X Beo(v'),

rather than by Fp;,o,n(t) N Bep(p) X Beo(v'), as with the standard termination
predicate.

Consider the example of Fig. 3.19. The region R is a single point, as shown. The
commanded velocity is towards the right. Assume zero control error, but infinite
position sensing error. The standard termination predicate can detect entry into
the goal, by keeping track of the distance covered. The termination predicate with
no sense of time cannot detect entry into the goal, since it requires knowledge of
the elapsed time in order to calculate the distance travelled. A similar example
applies for non-zero finite error in both control and sensing.

3.7.4. The Termination Predicate without History or Time

The termination predicate without history is a termination predicate with no
sense of time that does not remember the initial measured position p(‘,. Intuitively,
a termination predicate with no history is one that bases all its decisions on
current data, with no clock or recollection of the past, other than the previously
accomplished subgoal. Consequently, in disambiguating sensor values, a termination
predicate without history can only use knowledge of the previously attained subgoal
R. Thus the set of interpretations is given by Fy(R) N B.p(p’) X Beo(v'), where
Fy(R) is given by

Definition 3.19 The forward projection (without history) of a set R under
the commanded velocity v; is given by

A(R) = U { (Ty{t), Tu(t)) | T € T(vp) and TH(0) € R }

This forward projection defines all positions and velocities reachable by a
trajectory that starts ir R subject to the given velocity uncertainty.
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It is useful also to deline the position component of the forward projection. Let
7 denote the projection function into the first coordinate. Specifically, n(p, v) = p.
Now let wFy represent the position component of the forward projection Fy.

3.7.5. No Sense of Time vs. No llistory

The difference between the termination predicate with no sense of time and
the termination predicate without history is fairly clear. Consider Fig. 3.20, with
the specified position uncertainty. The initial set R and the goal regions G are
shown. The commanded motion is straight down. Assume perfect velocity control.
Thus the forward projection of the set R consists of two trajectories emanating
from R. Notice that the two points comprising R are distinguishable, based on
position sensing, while each trajectory’s goal region may be confused with non-goal
points either on the same or on the other trajectory.

The termination predicate with no sense of time remembers the initial measured
position py, so it can decide on which trajectory emanating from R an actual
motion lies. Thus it knows which goal region to expect. The termination predicate
without history, on the other hand, cannot signal success. It cannot distinguish the
two trajectories, as it is only permitted to remember starting in R.

In order to formally characterize the difference between the two termination
predicates, let Syme and Shistory be the successful velocity sets defined for the
two termination predicates. These sets are defined analogously to the standard
termination predicate’s successful velocity set S(pg, R, { Ga }) (see Claim 3.10).
The only real difference lies in the disambiguating sets. In place of F oR(t) there

appears F s O.R for the termination predicate with no sense of time, a.nd Fy(R) for
the termmatlon predicate without history. Of course, po does not appear in the
definition of Shistory-

For convenience, the precise definitions of these two successful velocity sets are
given here.

Definition 3.20 vy € Siime(Po» Ry { Ga })if and only if for every trajectory
T E T(po, R, vg), there is some time ¢ > 0, such that, for any sensor value
(p", v) consistent with T at time t, there is some goal set H € { H, } for which
Fror N Bep(p') X Bew(v) € H. The corresponding definition of pre-image is

as before

Por({Ga}) = {p € R|Vp; € By(p), v5 € Sume (s B {Ga}) |- (3:24

Definition 3.21 v, € Shistory (R, { Ga }) if and only if for every trajectory
T € T(v,), with T,(0) € R, there is some time ¢ > 0, such that, for any sensor value
(", v°) consistent with T at time ¢, there is some goal set H € { H, } for which
Fo(R) N B,,p(p ) X Bew(v ) C H. The corresponding definition of pre-image is
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slightly changed, specifically

R, if U; € Shiatory ( R, { Ga })

(3.25)
0, otherwise

Pyr({Ga}) = {

Given these observations, the following claim follows immediately. Recall that a
suitable pre-image is a set R that satisfies the pre-image equation R = Py r({ Ga }).

Claim 3.22 R is a suitable pre-image with respect to the termination
predicate that has no sense of time, if and only if, for every py € Bep(R), the set
B,p(pa) N R is a suitable pre-image with respect to the termination predicate that
has no history.

The claim says simply, that the only advantage that history gives the
termination predicate with no sense of time over the termination predicate without
history, is in narrowing down the starting set from R to B,p(p(',) n R.

3.7.6. Comments on the Loss of Power

Both the standard termination predicate and Mason’s termination predicate
with continuous state are very powerful. In computing pre-images using these
termination predicates, it appears necessary to precompute forward projections
indexed by time. The current definition of backprojections does not incorporate
time. In fact, it is clear that backprojections are just timeless forward projections in
reverse. Consequently, by studying pre-images that employ termination predicates
with no sense of time, it should be possible to ascertain the relationship of
backprojections to pre-images.

These remarks make clear the loss of power taken by approximating pre-images
with backprojections. Tasks whose plans involve motions that must monitor time
cannot be solved using backprojections.

Finally, the relationship expressed by Claim 3.22 suggests that one study
pre-images generated by the termination predicate without history. One can always
patch together distinguishable collections of such pre-images to create a pre-image
generated by the termination predicate with no sense of time. Conversely, any
pre-image with respect to the termination predicate with no sense of time must be
separable into a distinguishable collection of simpler pre-images.

By a distinguishable collection of sets is meant a collection of sets from which
it is always possible to select a set containing the actual, albeit unknown, position
p corresponding to a measured value p;). The example of Sec. 2.3.7 and Fig. 2.50
created a distinguishable collection of triangles interior to the triangles generated
by backprojection.
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Figure 3.21. A goal region consisting of two rectangular areas, along with two
pre-images.

3.8. The Relationship Between Backprojections and Pre-Images
Basic Issues

The search for maximal pre-images tried to discover a collection of simple
pre-images from which all other pre-images could be easily constructed. That search
failed. In its place, backprojections were developed. Given any collection of sets, it
was possible to define a unique maximal backprojection of those sets. Furthermore,
it was observed in the last section, that, having removed time from the termination
predicate used in defining pre-images, the decision to signal success during a
motion is based on a forward projection that is essentially just the inverse of a
backprojection. This suggests a relationship between maximal backprojections and
pre-images computed using the termination predicate without history or time. This
section examines that relationship. It is assumed throughout that the termination
predicate is without history or time.
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3.8.1. Reachable Goals

By way of introduction, recall that all pre-images of a collection of sets
i_‘ {Go} are subsets of the maximal backprojection of the same collection, that
3 is, Poit({Ga}) C Bo({Ga}) (sce Eq. (3.17)). Thus the maximal backprojection
By({ Ga }) is itself not a very useful tool. Consider, however, all subcollections
of the given collection of goals, that is, all {Gg} C {Ga,}. It is convenient,
though not necessary, to assume that { Gq } is closed under subsets, specifically,
that G € {Go} whenever G C G, for some G; € {Ga}. By considering all
subcollections { G} and their maximal backprojections By({ G }), one hopes
that it should be possible to determine a relationship between backprojections and
pre-images.

Suppose that the initial set R and the commanded velocity v; are given. There
is a distinguished subcollection of the goal sets { G4 } which appears to be a good
candidate for approximating Py x({ Ga })- Specifically, let § = G(R, vg, {Ga })
be the collection of all goals that might be returned by the termination predicate.
Recall the definition of Skistory. If T is a trajectory starting in R, then there exists
at least one po.int in tim‘e, t, at which the set of a.ll c?nsistent interpretations j
Fo(R) N Bep(p') X Bey(v') of any sensor reading (p , v ) is the subset of some
cylindrical goal set H € { H, }. H depends on (p’, v"). Assuming that {Gqa} is
closed under subsets, the position component of the set of interpretations, that is,

———— var_,;.?‘—,-
-l -

-

L

7 (Fo(R) N Bep(p") X Bew(v")) is equal to some goal G € { G, }. The termination
predicate returns this set G as the attained subgoal. ‘
;‘ Note that for each possible sensor reading (p°, v") that is consistent with T
g at time t, there is some goal set G which the termination predicate returns. Also,
{ there may be several points in time at which the termination predicate could signal
- success for the given trajectory T. The collection § is simply the union of all such
' goal sets. The union is taken over all possible trajectories starting in R, over all 1
t‘ possible points in time at which the termination predicate could signal success for 1

these trajectories, and over all possible consistent sensor readings at these times. ]

The collection § is a subcollection of { G4 }. It comprises all the goals that
could possibly ever be returned by the termination predicate. The goal sets that
are in { G, } but not in G play no role in the termination predicate’s decisions. 1

Y.

- In other words, Py p({ Ga }) = Psr(§)- Thus G consists of precisely those goals ;
{ needed to define the pre-image R. |
- ]
t. g
3.8.2. Backprojecting from the Reachable Goals
3.8.2.1. Straight Backprojection R
{ Now consider By(§), the maximal backprojection of the collection of goals
{ reachable from R. The question is whether By(§) can be used to approximate Py p(§).
{ Suppose in fact that R is a suitable pre-image, that is, that R = Py p({ Ga }).

Then it follows that R C Hy(G). The inclusion may be a proper inclusion. This is
not surprising, since different scts can give rise to the same collection of reachable

P

142

i

| !

JUSTRF SR SR VY WO, SUR R S U Sea A LRSI s . - — — It Y e




v

AAIACA ) ATy Sn e pn one

[

Mhadh T‘

p—y

-j-r-. s

vvvvv

LYl St St Vil Ml e i Pl i S SO Ml Sl AL N M i S S E T AR TR T A TR

/ oy \
/ i \
L__ i\

G AN
/ ombtﬂuda \

Figure 3.22. Backprojection of the reachable goals of Fig. 3.21. This backprojection
introduces extra non-goal interpretations for the top left goal region.

goals. However, perhaps By(§) can serve as a useful pre-image building block, from
which other pre-images can be constructed by subsetting. The discovery of such
building blocks is precisely the relationship being sought.

While it is certainly true that every pre-image whose reachable goal set is G,
must be a subset of Dy(G), this is not a very useful relationship, since By(gG) may
itself not be a pre-image. Basically, there are two properties that prevent By(§)
from being a suitable pre-image. First, note that the termination predicate consults
the set of interpretations given by the forward projection Fp(R) in deciding to
halt a motion. There is absolutely no reason to believe that By(§) is a subset of
this forward projection. Thus the termination predicate might not be able to halt
previously successful motions, because its set of interpretations has grown from
Fy(R) to Fyp(By(G)). The point is that By(G) might include points outside of all
suitable pre-images, that is, points that can reach G, but can’t do so in a manner
that the termination predicate can recognize.

For a specific example, consider Fig. 3.21. The goal region consists of the
two rectangles specified. Attached to these are a triangle and a trapezoid, which
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Figure 3.23. The center circle depicts the possible sensor interpretations corresponding
to an actual point in the inner rectangle. The interpretations all lie within the goal,
but are not themselves valid pre-image points. This is because sensor interpretations
of points in the center circle may lie outside of the goal region. This is indicated by
the bottom cirele.

constitute the set R. The commanded velocity is straight down with the indicated
error cone. Motion success is detected by position sensing alone. Now suppose
that the backprojection of the reachable goals is considered in place of the set
R. The backprojection is sketched in Fig. 3.22. It is no longer possible for the
termination predicate to successfully terminate all motions. This is because some
of the trajectories that used to terminate in the upper left goal region, now have
interpretations that lie outside of that goal region, namely in the backprojection
of the lower right goal region.

3.8.2.2. Backprojection Intersected with the Forward Projection

This first problem is easily solved by considering Fy(R) N By(G) instead of
the larger By(G). By intersecting with the forward projection, the backprojection
is guaranteed to remain inside the set of interpretations known to be recognizably
successful. Now the set Fy(R) N By(G) would appear to be a good pre-image
building block. It contains the set R, and appears to be a suitable nre-image.
Certainly any point in Fy(R) N By(G) is guaranteed to move to one of the goal sets
which are known to be recognizable by the termination predicate.

Unfortunately, Fy(R) N By(G) is not a suitable pre-image either. To sce this,
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Figure 3.24. The goal is the entire region except for the right edge of the obstacle.
The pre-image It is the triangle. The commanded velocity is straight down with the
usual error cone. All points in the triangle are recognizably in the goal.

consider the second reason that prevents By(G) from being a suitable pre-image.
The difficulty is the inclusion of the goal sets §. This may seem peculiar, since
these goals are precisely those which the termination predicate might return as
successfully attained goals. However, merely because a set constitutes the successful
interpretations of a terminated motion, does not imply that every point in that set
is itself on a successful trajectory.

This point is clarified by the example of Fig. 3.23. The commanded velocity
is straight down, with the usual cone. The goal region is dclineated by the solid
line rectangle. Velocity sensing does not enter into the picture. Instead, success is
achieved by entering the rectangular region indicated by the dashed line. Inside
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Figure 3.25. The small cone corresponds to free space velocity directions that are
confusable with sliding velocities on the edge, due to velocity sensing uncertainty.

this region, the position sensors unambiguously indicate that the actual position is
inside the goal. All interpretations of any position sensor reading consistent with
an actual position inside the dashed line region lies inside the goal. Now c.nsider
one possible set of interpretations of a sensor value, as shown in Fig. 3.23. Such a
set would be part of the goal sets described by G. Note, however, that a portion of
this set lies outside of the dotted line region. These points are not starting points
of any successful trajectory, as all trajectories starting at these points always have
interpretations of consistent sensor readings that lie outside of the goal. Thus the
set of interpretations contains points that cannot be in any pre-image which also
contains R.

3.8.2.3. Backprojection from Successful Termination Points

The second problem described above apparently arises because there are points
in the reachable goals which are simply interpretations of termination positions
without themselves being valid termination points. This is only half the story. Were
it all, then one might consider backprojecting from a distinguished subset of the
points in §. Specifically, recall that the collection § is constructed from the set of
interpretations of trajectories at successful termination times. Instead of considering
all possible consistent interpretations of a trajectory T at time t, suppose one only
considered the actual trajectory position Tp(t). Backprojecting from the set of all
such actual trajectory positions at times of success avoids the problem of including
in the backprojection points that arise merely as interpretations. Any point in the
backprojection is guaranteed to move to a point that is actually the successful
termination point of some trajectory at some time.

Once again, this optimism quickly gives way to reality. Backprojecting from
the set of successful termination positions is fine if the termination predicate only
employs position sensors. With velocity sensors, the story is different. A point may
be a successful termination point for one trajectory with a particular velocity at

136

- o . LU I IS P Saans . ST B P Wy P U W Sy o s sy ta sl




TN

rTweoreY vy

>

M A 2 amn 2 o ma o o

b A e e ra i o

———y

ey

that point, yet not be a successful termination point for another trajectory with a
different velocity.

Consider the example of Fig. 3.24. The goal set is the entire region outlined
by the solid line, except for the right edge of the obstacle. The initial set R is the
top triangular portion of the region. The commanded velocity is straight down,
with the usual error cone. The position uncertainty is chosen so that all points
in R are automatically decidable to be in G, using the forward projection of R
and position sensors alone. Thus R is a suitable pre-image. Since the edge causes
sliding it is possible to decide that a point is not on the edge by observing the
velocity sensors. This is possible for some effective commanded velocities, but not
for all, because of the uncertainty in the velocity sensors (see Fig. 3.25). In fact,
given the indicated velocity sensing error, if the effective commanded velocity lies
in the range indicated by the cone of Fig. 3.25, then it is impossible to distinguish
between sliding on the edge and moving in free space (see also Fig. 3.38).

Thus, if a point is within the position uncertainty of the edge, then for some
effective commanded velocities it is impossible to decide that the point is not on
the edge, while for others it is possible to decide that the point is not on the edge.
The bad velocity can be so chosen, that the point remains close enough to the edge
to be undecidable all the while it is in the goal region G — R. In short, there are
points that are successful termination points of trajectories, but are not themselves
pre-image points.

The basis for this counterexample stems from the inclusion of points that are
recognizable as being in a goal only for certain velocities. Notice, however, that
these points are preceded by other successful termination points. Were they not so
preceded, then it would be possible to find trajectories emanating from R which
never terminated successfully. This would contradict the observation that R is a
suitable pre-image.

137

‘ ‘
AU T Y U

A




v
@)

T

-
AlD el

Tox PR/ N N LR e i Vi =Ty Ty T W T T W T ey =Y A i - W NTw W W YT

3.8.3. Backprojection in Phase Space

The form of the set of interpretations suggests, and the counterexample of the
last subsection underscores the point that goal sets are both position and velocity
goal sets. Goal sets lie in the tangent bundle of a manifold, not just in the manifold
itself. Consequently, what is needed is a means of performing backprojections in
phase space. Given a goal in the form of a set of desired positions and velocities,
the phase space backprojection computes all positions and velocities from which
motions are guaranteed to reach the goal.

Phase space backprojection provides the tool necessary to relate backprojections
to pre-images. Specifically, the phase space backprojection of a set of successful
termination points in phase space must be a pre-image relative to a termination
predicate without history, much in the same way that a regular backprojection
of a set of successful termination points is a pre-image relative to a termination
predicate that only consults position sensors.

Lest one become drunk with success, one should note that phase space
backprojections do not make much sense for a first order system. For a first order
system one cannot specify velocities at resolutions better than the uncertainty in the
commanded velocity. One can certainly insure that velocity uncertainties shrink in
dimension by forcing sliding on some surface or on the intersection of some surfaces.
However, one cannot specify the tangential sliding velocity at accuracies better
than the tangential uncertainty arising from the uncertainty in the commanded
velocity. This is similar to being unable to specify, in a pure position control system,
position accuracies on surfaces of any given dimension at resolutions better than
the inherent positioning uncertainty for motions of that dimension.

The only subgoals that can reliably be achieved are goals that are subsets of
position space, although, of course, both position and velocity information should
be used in achieving these goals. This is apparent from the definition of pre-image,
which only considers previously attained position subgoals R. Assuming previously
attained velocity subgoals would be absurd if those subgoals constrained velocity
more than was inherently possible.* On the other hand, backprojections in phase
space that never overconstrain velocity are equivalent to regular backprojections in
position space.

The only method by which one could perform true phase space backprojection
would be to consider an underlying second order model. However, in such a model
accelerations would presumably be both control commands and sensed qualities,
both subject to uncertainty. Consequently, any system that used position, velocity,
and acceleration sensing in making motion termination decisions, while commanding
acce'rrations, would be faced with the desire but inability to backproject in
position X velocity X acceleration space. Thus the problem of overconstraining a
control command subject to uncertainty would not be solved, but only pushed back
a level.

"This is precisely why the velocity subgonls that are used are just cylinders. Note that the set
of interpretations defined by the forward projection Fg(/) never overconstrains velocity.
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The simplicity of backprojections from a computational viewpoint, both in
position and in phase space, is their historical insensitivity. Whether a point reaches
a goal is independent of knowing whether any neighboring or preceding point
reaches a goal. However, in order to compute pre-images, some local history is
required. Ultimately, in constructing good goal sets, one must take this local history
into account. This amounts to computing backprojections that consider the velocity
dependencies between motions. For example, knowing that a motion cannot be
recognized for some velocity in a certain goal may imply that the motion must
next enter a different goal, in which it will be recognized. A later section addresses
this issue briefly. For the time being however, the main task is to find a direct
relationship between regular maximal backprojections and pre-images.

3.8.4. Almost Simple Pre-Images

The difficulty with Fy(R) N By(§) and its variant consisting only of successful
termination points, is that they include extra points arising from goal portions that
are not themselves pre-images. Nonetheless, these sets appear attractive due to
their simplicity. Furthermore, they differ only slightly from what is really required,
as the previous pages have shown. The problem therefore, is to prune the set from
which backprojection is being performed. The set G and its variant consisting only
of successful termination points, are simply too large. The next section investigates
a replacement set for §. This subsection considers the properties that should be
retained while trimming the set Fp(R) N By(g).

Recall that the maximal backprojection By($) of any collection of sets § is semi
self-contained relative to that collection (see Sec. 3.6). Also note that the forward
projection wFy(R) of any set R is semi self-contained relative to the collection
{0} consisting solely of the empty set. This is because any motion that starts in
7Fy(R) remains in wFy(R), by definition. Therefore, by Claim 3.17, 7Fy(R) is semi
self-contained relative to any collection of sets §. Furthermore, the intersection
mFy(R) N By(S) is also semi self-contained relative to §, by Claim 3.18.

The property of being semi self-contained is analogous to the property of being
maximal. In a sense, a semi self-contained set is a complete set. It contains all points
it can possibly contain within a certain range. Specifically, one can add no points
that lie on trajectories between points in the set and points in some distinguished
collection of sets. Being semi self-contained is not quite like being maximal. It is
still possible to add points before the set, or after the targets §, but being semi
self-contained is the best that is achievable for backprojections that are also to be
pre-images.

Under the belief that pre-image building blocks should be pre-images that are
also semi self-contained backprojections, the following definition is made.
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Definition 3.23 A pre-image R, with respect to a collection of goals { G, }
and a commanded velocity vy is said to be almost simple if and only if there is
some set Ep such that the following four conditions hold.®

() R=Pyr({Ga})

() Er C R
(1'“) Ep C []Ga
a

(iv) R = =Fy(R) () Bs({Er})

The first condition simply says that R has to be a suitable pre-image. The
fourth condition says that R can be written as a semi self-contained backprojection.
The choice of the form of this backprojection, namely as the intersection of a
forward projection and a maximal backprojection, stems from the intuition gained
in the previous subsections on reachable goals. The second condition simply says
that the generating set should itself be part of the pre-image. This requirement
avoids cluttering the set Er with unnecessary points that lie outside of 7Fy(R). The
third condition insures that the set from which the backprojection is constructed
is contained in the closure of the union of all the goals. It should be clear, given
the previous discussion of reachable goals, that { G, } could be replaced by . The
reason for choosing the closure of the goals, rather than just the goals themselves,
is due to a technical point. This will become clear later. Essentially, the issue is
that, as in the definition of semi self-contained, for open sets there may not exist
distinguished points or times, only limits and infima.

The next sections are concerned with showing that almost simple pre-images
actually exist. Additionally, these sections show that almost simple pre-images form
the basic building blocks from which all other pre-images may be constructed as
subsets. Thus almost simple pre-images provide the desired relationship between
backprojections and pre-images.

3.9. First Entry Sets and the Structure Equation

The previous discussion has shown that the set of all reachable goals and its
variant, the set of all successful termination points, are too large to serve as the
generating sets of an almost simple pre-image. Both sets contain points that need
not themselves be pre-image points. One can, of course, insist that these points also
be pre-image points. In fact, this is precisely what any practical application should
require. Later, in discussing good goal sets, this assumnption will be made. However,
in order to understand the relationship between backprojections and pre-images,
one must seek a general type of set that acts as a generating sct for almost simple

"The closure of a set A relative to some topology ia denoted by A.
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pre-images. This section exhibits such a type of set, thereby also demonstrating
the existence of almost simple pre-images.

3.9.1. First Entry Points

One wonders precisely in what sense reachable goals and sets of termination
points are too large. The examples of the previous section provide a clue. Recall, in
the example of Fig. 3.24, the successful termination points that were not themselves
pre-image points. It was noted that these points had to lie on trajectories that
passed through preceding successful termination points. In short, the fact that these 1
non-pre-image points were successful termination points was almost coincidental and
b certainly irrelevant. Trajectories passing through these points could be recognized
as being in the goal at earlier times.

-

\ G et eer et
s

)

2.

PR
. PR
Ad A L € 8 o

The previous observation suggests that perhaps there are points in a goal that
3 are distinguished termination points. Specifically, there should be points that are
the fir-v points at which a trajectory could successfully terminate. Whether there
are any points after these first termination points is irrelevant, as the trajectory
] has at least passed through one termination point. 1
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It is clear that there need not, in general, exist such first termination points. :
i For example, if the goal is an open set, then, even with perfect sensing and control,
there is never a first point at which a trajectory can be terminated.

Furthermore, notice that knowledge of whether a trajectory can be terminated
at a single point is not very informative. One can always change a trajectory’s
velocity at a single point® without affecting the path of the trajectory. Consequently,
unless successful termination can be signalled for all possible effective commanded
velocities within the velocity uncertainty cone, knowing that the trajectory can be
terminated for some effective commanded velocity says absolutely nothing about
- whether the termination point is itself a pre-image point. -
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A notion closely allied to first termination points is suggested by the open
set counterexample. Rather than consider first termination points, consider earliest
times of termination. Specifically, consider the time which is the infimum of all
possible termination times of a trajectory. Denote the position of the trajectory at
that time as the first entry point of the trajectory. It may or may not be possible
to successfully terminate the trajectory at the first entry point, but it certainly
is not possible to terminate the trajectory at any point preceding the first entry
point. Thus first entry points provide the proper generalization of first termination
points. This leads to the following definition.
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‘ Definition 3.24 Suppose that R is a pre-image satisfying the pre-image
equation relative to a commanded velocity v, and a collection of goals { G, }. Define
the first entry set E(R) of R to be the set of all first entry points of trajectories

-’ s s a

» that start in R. Specifically,
y E(R) = { Ty(to) | T € T(v5), TH0) € R, and to = inf(Sr) } (3.26)
. ®1ln fact, onc can do so on any sct of measure scro, given the integrability condition (3.18).
.
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where St is the set of all successful termination times of the trajectory T, that is

= { t |t satisfies the condition of Def. 3.21. for the trajectory T }. (3.27)

The first entry set is well defined, since R is a suitable pre-image. In other
words, when R is not void, the first entry times are non-negative and finite, since
the sets of successful times Sr are not empty. When R is void, so is E(R).

3.9.2. Properties of First Entry Sets

The following subsection establishes the simple properties of first entry sets
that are the basis for using these sets to generate almost simple pre-images.

The first claim proves that first entry points possess the property which
motivated their definition. Specifically, the claim implies that first entry points
are themselves valid pre-image points. Any trajectory that begins at a first entry
point is guaranteed to terminate recognizably in a goal. Recall that the lack of this
property for reachable goals and successful termination points prompted the search
for almost simple pre-images.

The claim actually says that any trajectory which passes through any first entry
point is guaranteed to recognizably enter a goal some time after passing through
the first entry point. The statement of the previous paragraph follows immediately
from this claim. Note that the claim does not assume that the trajectory passes
through its own first entry point, merely any point in the first entry set.

Claim 3.25 Suppose that R satisfies the pre-image equation R =
Py p({ Ga }) with respect to the termination predicate without history. Let T be a
trajectory in T(vy) with initial point in R. Suppose that at time to, Tp(to) € E(R),
that is, at time tg the trajectory is in the first entry set of R. Then there is some
time t > tg at which the condition of Def. 3.21 is satisfied.

Proof: First, one can assume without loss of generality that {g > 0, as
otherwise the claim follows by definition of suitable pre-image. Let pg = Ty(to).
Since pg is a first entry point, there is some trajectory T € T (vg), with T,,(O) €R,
such that pg = 7‘,,(2), where t = inf(S'T), as in Def. 3.24.

Now suppose the claim is false. Then for every ¢ > to there is some sensor
reading (p", v") consistent with T at time t, such that the set of consistent
interpretations Fy(R) N Bey(p') X Bey(v") is not the subset of any goal cylinder
H € { Hy }. Define the trajectory T by

i 1, 0<t<t
M = {T(t+to—£), i (3:28)

In other words, up to, but not including, pg, T is same as the trajectory T
which gives rise to the first entry point pg, after which T is the same as the original
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trajectory T. Note that
T'o(i) Tp(to) = T(t)

T.(f) = Tu(to).

(3.29)

By definition of T and T', T € T(v;) and T,(0) € R. Furthermore, T cannot
be terminated successfully at any time t with 0 < t < ¢, by definition of t as the
first entry time for T. Additionally, by the assumption that the claim is false, T
cannot be terminated for any time ¢ with ¢t > f. But this contradicts the fact that
R is a suitable pre-image. 1

Note how the fact that the termination predicate has no history was used in
the proof. The fact that the termination predicate has no sense of time was used
to glue the trajectories T and T together. This, in combination with the fact that
the termination predicate has no history, was used to retain the same forward
projection Fy(R) throughout.

The second claim of this subsection states the obvious fact, that a suitable
pre-image lies inside the backprojection of its first entry set. In other words, any
motion emanating from a pre-image is guaranteed to pass through a first entry
point. Were this not the case, then the first entry set would be of little use.

Claim 3.26 Suppose that R is a suitable pre-image relative to some
commanded velocity v, and some collection of goals { G, }. Then R C By({E(R)}).

Proof: Definitional. g

3.9.3. A Structure Equation

This section shows that every suitable pre-image is the subset of an almost
simple pre-image. Thus the class of almost simple pre-images constitutes a collection
of basic building blocks from which all other pre-images can be constructed as
subsets. The almost simple pre-images are the natural analogues of the maximal
backprojections.

Denote by A(R) the desired, almost simple pre-image which contains R, R being
some suitable pre-image. The relationship between backprojections and pre-images
is contained in the following structure equation, proved by the claim below.

A(R) = nFy(R) (| Bo({E(R)}) (3.30)

Claim 3.27 Suppose that R is a suitable pre-image. Then R may be
extended to an almost simple pre-image A(R), given by equation (3.30).
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Proof: By Claim 3.26, R is a subset of A(R). Therefore, one need only show
that A(R) is almost siraple relative to E(R).

Applying the forward projection twice to a set gains nothing over applying it
just once. It follows that

A(R) = nFy( A(R)) | Bo({E(R)}). (3.31)

This shows that A(R) satisfies condition (7v) of the definition for almost simple
(Def. 3.23). Since a first entry point is either in a goal set, or is the limit of points
in goal sets, A(R) satisfies condition (777} with respect to E(R). Again, using claim
3.26, it follows that E(R) C A(R), so A(R) satisfies condition (i7). It remains
therefore only to show condition (z), namely that A(R) is itself a suitable pre-image.
To see this, note that any trajectory which starts in A(R) must eventually enter a
first entry point, by construction. Claim 3.25 then guarantees that the trajectory
recognizably enters a goal some time later. g

3.9.4. Maximality of the Extension A(R)

This subsection shows that the extension A(R) of R is maximal in the sense
that repeating the extension gains nothing. While this result is not needed to
show that almost simple pre-images form a class of basic building blocks in the
construction of pre-images, it further underscores the naturality of this class.

Before the actual claim, there are a few lemmas that are needed in the

_ proof of the claim. The first lemma says that the backprojection of a subset of a

backprojection cannot leave the original backprojection.

Lemma 3.28  Let § be a collection of sets, and suppose that A C By(S).
Then Bo({4}) C Ba(S).

Proof: Defhnitional. g

[ ]
o
The second lemma says that the forward projection of a forward projection is
Jjust the original forward projection. As a corollary to this lemma it follows that j
he forward projection of A(R) is the same as the forward projection of R. This 1
P result was used in the proof of the structure equation. 4
; .~
’ Lemma 3.29  Fy(nFy(R)) = Fy(R).
4 .
: Proof: Definitional. g .
o 4
5
Corollary 3.30  Fy(A(R)) = Fy(R).
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Proof:
Certainly R C A(R) C nFy(R).
Therefore Fyp(R) C Fy(A(R)) C Fy(nFy(R)) = Fo(R). 1

The third lemma says that the first entry set of the extension A(R) of R must

be in the backprojection of the first entry set of R itself. Note, by the way, that
E(R) C E(A(R)).

Lemma 3.31  E(A(R) C By({E(R)}).

Proof: Suppose p € E(A(R)). Then there is a trajectory T beginning in
A(R) whose first entry point is p. There are two cases.

First, suppose that the trajectory T passes through a point p € E(R) before
or while passing through p. Then there is a second trajectory T beginning in R
whose first entry point is p. One can therefore construct a third trajectory which is
simply T up to, but not including, p, and which, beginning with p, is the original
trajectory T. The key to the third trajectory is that its velocity at p is the same as
the velocity of T at p. By construction this third trajectory has p as a first entry
point. In other words, p € E(R), so p € By({E(R)}).

In the second case, the trajectory T does not pass through E(R) before passing
through its first entry point p. Suppose that p & By({E(R)}). Then there is some
trajectory T which begins at p, but never passes through E(R). Clearly, therefore,
the concatenation of T, up to p, with T, as of p, never passes through E(R). This
contradicts the fact that the starting point of this trajectory is in A(R), which is a
subset of By({E(R)}). 1

Finally, the main claim of this subsection is almost immediate.

Claim 3.32 A? = A
That is, for any suitable pre-image R, A(A(R)) = A(R).

Proof: Note that

A(R) = nFy(R) (| By({E(R)})

(3.32)
A(A(R)) = nFy(A(R)) N Bo({E(A(R))}).

By Cor. 3.30, the first two terms in each of the two intersections are the same.
By Lemmas 3.28 and 3.31, and the comments preceding the second of these lemmas,
the second terms in cach of the two intersections are the same. g
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Figure 3.26. The dashed lines represent points that are unambiguously contained in
the goal regions, relative to their forward projection and the indicated uncertainties.

3.10. Selection of Goal Sets

The previous section established a relationship between backprojections and
pre-images, based on first entry sets. The task now is to use this equation in order
to approximate pre-images by backprojections. This section briefly attacks this
task.

3.10.1. Review of the Grand Scheme

Chapter 2 described a planning scheme (Lozano-Pérez, Mason, and Taylor
(1983)) which used backchaining of pre-images to generate a sequence of motion
commands guaranteed to achieve some desired task. The task was specified as a
geometrical goal in configuration space. The planner formed all possible pre-images
of this goal. Motions from these pre-images to the goal comprised the possible
last motions in any sequence of motions ultimately decided on by the planner. All
motion directions were considered. The planner then gathered all the pre-images
thus determined into a new collection of goals. A second level of pre-images was
formed. Motions from these pre-images constituted the possible next to last motions

146

e .

| PP



b
e
. el

————
>

p—
S~
o
s

@

r
madhnacin

Figure 3.27. Partial backprojection of the dashed lines of Fig. 3.26 that avoids the
ambiguity demonstrated in Fig. 3.22.

P

of any sequence of motions found by the planner. The planner then considered
all second level pre-images as goals for another level of backchaining. This process
continued until one of the levels generated a pre-image containing the initial
configuration of the task.

Backprojections are a means of approximating pre-images. Chapter 2 also ;
intuitively described an algorithm for computing backprojections in certain
configuration spaces. Backprojections do not take explicit account of termination
L conditions. This implies that the regions generated by one level of backchaining
t may not be suitable goals for the next level of backchaining. The goals are certainly :
¢ suitable goals for computing pre-images. However, since backprojection is being

used as an approximation to computing pre-imagcs, it may be necessary to modify

the regions generated by one level of backchaining before passing them as goals to ]
| the next level. The reason for this is simply that backprojection from unmodified '
{ goals may result in trajectories that do not recognizably enter the goal regions.

The issue therefore is one of understanding the nature of good goal sets.
By characterizing that nature it should be possible to mold goals into regions

——oa & K 4 o4
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Figure 3.28. Backprojection from a smaller subset of the dashed goal lines of Fig.
3.26.

from which backprojection is guaranteed to yield motions that successfully and
recognizably attain the desired goals.

3.10.2. The Burden on First Entry Sets and Forward Projections

The structure equation provides a relationship between backprojections and
pre-images through first entry sets and forward projections. Thus the key to
choosing good goal sets lies in forward projections and first entry sets.

The role of first entry sets is simple. Recall that every first entry point is itself
a valid pre-image point. In other words, any motion that starts at a first entry point
is guaranteed to terminate successfully. That is the reason that backprojecting
from first entry points is guaranteed to yield a pre-image, since all points in the
backprojection must pass through a first entry point, hence are guaranteed to
terminate successfully.

It appears then, that any set which possesses properties similar to those of
first entry sets is an appropriate set from which to backproject. This is not quite
correct. The problem is that the decision whether a point is a good pre-image point
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Figure 3.29. All points inside the dashed region are recognizably in the goal. The
dashed region is so chosen that the possible sensor interpretations of all points lie
within the larger goal region.

depends on whether the termination predicate can restrict the set of interpretations
Fs(R) N Bep(p") X Bew(v") to lie within a goal. This set of interpretations depends
on the forward projection Fy(R). Although a set may be a good pre-image set, its
backprojection may not be a pre-image. That is why the structure equation was
formulated in terms of an intersection with = Fy(R).

Therefore, in selecting good first entry sets, the planner has two parameters
to play with, namely the set itself, and the forward projection used in the set of
interpretations. Rather than backproject completely from the selected first entry
srt, the planner only backprojects within the selected forward projection.

The example of Fig. 3.26 should clarify these remarks. The example is a variant
of that presented earlier in Fig. 3.21. There are two goal regions, as indicated.
The commanded velocity is straight down. Both the velocity error cone and the
position sensing uncertainty are shown. Velocity sensing does not play a role in
recognizing entry into the goals. A very conservative modified goal collection is
indicated by the dashed lines. Any point in the regions delincated by these lines is
unambiguously contained in the goal sets, relative to their forward projection and
the given position uncertainty. Thus these regions possess the properties shared by
first entry sets.

However, not every backprojection of the two dashed-line regions is itself a
suitable pre-image. In particular, the maximal backprojection is not a suitable
pre-image, as was noted previously for Fig. 3.22. There are many ways to shrink
the backprojections so that they become suitable pre-images. Two such solutions
are shown in Fig. 3.27 and Fig. 3.28.

The trouble spot lies in the ambiguity introduced between points in the upper
left goal and points in the backprojection of the lower right goal. If the goal points
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Figure 3.30. Knowing that all positions must lie within the forward projection of
the cone, permits a larger region of immediately recognizable goal points.

are to be retained as suitable pre-image points, then the backprojection must be
constrained. If, on the other hand, the backprojection points are to be retained,
then the goal region must be constrained. Both solutions considered the interplay of
forward projection interpretations and suitable goal points, removing the ambiguity
present in the interplay.

As another example, consider the region of Fig. 3.29, under the same
assumptions as for the previous example. Not constraining the set of interpretations,

forces one to use the conservative goal region indicated by the dashed line as a
base for backprojection. Knowing that the set of interpretations is contained in the
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Figure 3.31. Pre-image R of a goal edge. i does not satisfy the condition A(R) = R.
Trajectories from R to the goal must be contained in R in order that A(R) = R. In this
example a!’ trajectories emanating from R leave R before hitting the goal edge. See
also Fig. 3.32.

forward projection of the cone of Fig. 3.30 allows one to use a larger goal set as a
backprojection base. This phenomenon is, of course, just the effect of local history,
as discussed previously and by Lozano-Pérez, Mason, and Taylor (1983).

The current subsection may be summarized by the following claim.

Claim 3.33 Let X be a subset of position space and let F be a subset
of phase space. Assume the commanded velocity v; is given. Suppose that every
point in X satisfies the termination condition for Shisory With respect to a set of
interpretations given by F (1 Bep(p') X Bey(v') (see Def. 3.21). Now let R be any
subset of By(X) such that Fy(R) C F. Then R is a suitable pre-image.

Proof: Definitional. 1§

Claim 3.33 provides a partial converse to the structure equation. In constructing
goal sets, the planner must choose the sets X and F so as to satisfy the conditions
of the claim. Suitable pre-images are then easily generated by subsetting. Note, of
course, that any reasonable set F' should satisfy Fy(F) C F.
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Figure 3.32. The region on the left is the extension A(R) of the pre-image R from
Fig. 3.31. The region on the right is the backprojection of the goal edge. Notice that
A(R) is a backprojection of a subset of the goal edge, intersected with the forward
projection of the set . Also notice that A(I?) is a subset of the backprojection By({G}).
This backprojection is a basic pre-image building block.

3.10.3. Moral

The moral to the story is simple. All suitable pre-images are subsets of
pre-images R that satisfy the maximality condition A(R) = R. It may be difficult
to generate all sets that satisfy this maximality condition. However, any such
pre-image is the backprojection of a first entry set, restricted to lie inside a forward
projection. Fortunately, given any set which is a suitable pre-image relative to
a forward projection, it is possible to construct another pre-image by forming
the backprojection of the given set, while restricting it to lie inside the forward
projection. Thus the basic pre-image building blocks are pre-images which are
restricted backprojections of faiciy simple sets. These sets are subsets of the closure
of the union of all goals.

Fig. 3.31 depicts a pre-image R of a goal edge. Entry into the goal edge is
detected by a collision with the edge. The pre-image R is not almost simple, and
does not satisfy the relationship A(R) = R. This is because there are trajectories
that leave R before hitting the goal. Fig. 3.32 shows the extension A(R) of R, as
well as the backprojection of the goal edge. The backprojection is itself an almost
simple pre-image, and forms a basic building block for constructing pre-images. In
particular, the set A(R) is a subset of this backprojection. Fig. 3.32 also indicates
that A(R) may be formed by intersecting the forward projection of R with the
backprojection of a subset of the goal edge.
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Figure 3.33. The sensor value p* has interpretations outside of the goal. A forward
projection that includes actual points consistent with p° must avoid this circular region.

3.10.4. Compatible Goals and Interpretations

The previous subsections demonstrated the relationship between the first entry
set of a pre-image, and the set of interpretations, as determined by the forward
projection. The difficulty with this relationship lies in the mutual dependency of
first entry sets and forward projections. Whether a set is a suitable first entry
set depends on the forward projection, but the forward projection depends on the
set. Dissecting this recursive dependency is, of course, just the old problem of
solving the pre-image equation R = Pp({ G4 }). The structure equation and its
partial converse have changed this problem from listing all suitable pre-images R,
to finding all pairs of compatible goal subsets and forward projections.

3.10.4.1. Constraints on the Forward Projection

The task then is to remove the dependency between the goal subsets and
the forward projections. This may be done fairly easily. Suppose p € U, Ga, and
assume that it should be possible to recognize entry into some goal at p. Specifically,
suppose that any trajectory T with velocity v at point p can be recognized to have
entered a goal relative to some forward projection F. The objective is to derive the
constraints imposed on the forward projection by this assumption.

In order for (p,v) to be a recognizable point, it must be the case that the
condition defining Skistory be true, relative to the assumed forward projection F. In
other words, given any sensor value (p°, v") consistent with (p, v) it must be true that
there is some goal cylinder H € { H, } such that F N B,(p’) X Bw(v') C H.In
general there may be several such satisfying cylinders. Given a point and velocity
(p,v), a consistent sensor reading (p., v') and a desired goal H, the constraint on
the forward projection F is’

"The complement of a sct A in its ambient space is denoted by A,
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Figure 3.34. The forward projection of the point does not overlap the set of position
interpretations that lie outside of the goal. The point can be moved closer to the goal
boundary.

F () C(p, v, p,vu, H) = 0, (3.33)
where
Clp,v,p,v,H) = H N Bq,(p.) X B,,(v.). (3.34)
From this it follows that a useful constraint on the shape of F is
F C C(p,v,p,v,H), (3.35)
where
C'lp, v, 70", H) = H U (Bolp") X Bulv)Y- (3.36)

In other words, the forward projection lies either inside the goal, or outside
the set of possible interpretations.
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Figure 3.35. The forward projection of the point overlaps the set of position
interpretations that lie outside of the goal. The point is too close to the goal boundary.

Therefore, suppose that one is constructing the set X, so that every point in
X is recognizably in the collection of goals. For each point in X, one selects one or
more desired velocities, all possible sensor values, and a host of goal cylinders H.
The result is a collection of constraints of the form of Eq. (3.36). Taken together
this collection yields a complete specification of the conditions on the forward
projection F as

Fo(F) C F C N C'lp,v,p, v, H). (3.37)
{(pv.p"v" 1)|pEX }

The first part of the constraint merely insures that the forward projection is
being considered in full. The second part of the constraint states that the forward
projection should not contain any points that both are possible interpretations and
lie outside of the desired goals.

3.10.4.2. A Practical Note

The constraint given by Eq. (3.37) is, in general, the intersection of an infinite
number of sets. Even for finite sets X, the number of velocities v, and the possible
sensor readings (p’, v°), are infinite. Additionally, the collection { G, }, even before
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Figure 3.36. The point is horizontally as close to the goal boundary as possible.

being closed under subsets, may contain an infinite number of goals. Generally, the
number of regions generated at any level of backchaining will be infinite.

A practical planner must deal with finite representations of sets. The collection
of goal sets should be taken to be finite. This involves some type of reduction
operation, such as the one described in the triangle example of Sec. 2.3.7. The gist
of that example was to replace an infinite collection of sets with another infinite
collection of mutated sets, then take the union over the collection of mutated sets.
The mutated sets were so chosen as to be distinguishable relative to each other.
In other words, knowing that a point was in the union, it was always possible to
identify at least one of the mutated sets containing the point. The reduction of the
termination predicate with no sense of time to the termination predicate without
history was another application of the method of distinguishable sets.

Also, rather than deal with individual points in the set X, a practical planner
must deal with a finite collection of regions that are subsets of X. While it
cannot consider all subsets of X, it can parameterize a few selected types of
subsets. Similarly, instead of being recognizable for single velocities, points should
be recognizable for a range of velocities. Finally, instead of considering all sensor
values individually, the range of sensor values should be split into a finite number
of subranges.
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For example, in finite polyhedral environments, there exist but a finite number
of constraints. Thus it is possible to split space into a finite number of regions, Y
over each of which recognizability is constant. For finite algebraic environments, it
is possible to split space into a finite numb.r of regions over which recognizability
varies in a continuous fashion. Thus, the sets {C'(p, v, p’, v, H)} can be reduced
either to a finite collection of constant sets, or to a finite collection of sets that
vary piecewise smoothly over a finite number of regions.

Consider, as a simple example, the old problem of recognizing entry into a
region based solely on position information, as in Fig. 3.29. The position uncertainty
is as indicated. For points within the dotted line region, the sets C'(p, v, p,v, H)
are simply all of Position-space X Velocity-space. This is because the possible
sensor interpretations all lie inside the goal, so that the union of the goal and
the complement of the interpretations is all of phase space. As one moves towards
the boundaries of the goal, the sets C'(p, v, p , v, H) become pockmarked with
holes. For example, for the sensor point in Fig. 3.33, the position component of the
constraint region is all of the plane except for the circular portion indicated. The
size and shape of this circular portion varies continuously as a point moves from
the dotted lines towards the goal boundary.

The circular holes below the goal indicate clearly that points below the dotted
region cannot be pre-image points. This is because any forward projection of these
points must pass through the forbidden holes, thereby violating the constraint of
Eq. (3.37). Points above the dotted line region may be pre-image points, but only
if the forward projection does not reach above the goal. This therefore constrains
any backprojection, which insists that points above the dotted line be recognizable
points, to lie below the top of the goal.

Note that one can increase the dotted line region to a larger region of
recognizable points in the horizontal directions. Consider moving the top left corner
of the dotted line region to the left. Construct the constraint set that is the
intersection of the C'(p, v, p’, v', H), taken over all values p’ consistent with the
point. Initially, the hole in the constraint set is guaranteed to be disjoint from the
forward projection, as shown in Fig. 3.34. As one continues to move the point left,
the hole eventually does overlap the forward projection, as shown in Fig. 3.35. The
happy medium is to be found when the left part of the forward projection just
intersects the boundary of the hole, as in Fig. 3.36. Repeating this process on the
right side of the dotted line region, yields a larger set of recognizable points, as in
Fig. 3.30. Any backprojection from this set is guaranteed to be a pre-image.
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Figure 3.37. Obstacle and commanded velocity uncertainty cone. The top right edge
is of primary interest in the following figures.

3.10.4.3. Constraints on the Goal Sets

The previous development indicates a means of generating recognizable goal
points. Limits of these may be taken to form the more general form of first
entry points. There remains a final problem to consider. While Eq. (3.37) places
constraints on the relationship between forward projections and goal points, this
is not sufficient to ensure that the set of goal points form a pre-image. Certainly
each of the points is recognizable for some velocity, but it need not be the case
that trajectories emanating from these points are always guaranteed to terminate
successfully. This issue was first raised in Sec. 3.8.2.3. Further constraints are
needed that deal with the rclationship between goal points, in order to satisfy the
hypotheses of Claim 3.33.

Suppose X is a set consisting of recognizable goal points and limits of
recognizable points, relative to some forward projection F. Recall that goal points
may be recognizably in a goal for some but not all effective commanded velocities
in the velocity uncertainty cone. The current objective is to find conditions on the
points of X that ensure that these points are also pre-image points. Given these
conditions, X will behave much like a first entry set. For simplicity, assume that
only points in X are permitted as recognizable termination points of trajectories
beginning in X. In other words, using the terminology of Sec. 3.8.2.3, X contains
all of its successful termination points.

Consider a variant of the forward projection, call it Fy,4 ¢ (X)), which consists of
all points and velocities that are reachable from the set X using only unrecognizable
velocities. In other words, every point p € mFy,q4 9 (X) is reachable from a point
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Figure 3.38. The circle comprises the range of free space veloc.ties. The tilted line
comprises the range of sliding velocities possible on the edge of Fig. 3.37. The dashed
line region represents the possible set of interpretations of the sliding velocities.

in X along a trajectory that does not recognizably enter a goal before or at p.
Now consider points on the boundary of X that are reachable from X using only
unrecognizable trajectories, that is, consider the set X (M 7Fyeq ¢ (X).8 Consider
a trajectory that begins at a point p of dX () 7TFpaq,¢ (X). If the trajectory is not
recognizable as being in a goal at p, then the trajectory must eventually re-enter
X . Furthermore, unless it leaves X forever after a finite time, the trajectory must
repeatedly be recognizable as being in a goal. Formally,

Claim 3.34 Let X be a set consisting of recognizable goal points and limits
of recognizable goal points (relative to some fixed forward projection F'). Assume
X contains all of its successful termination points.

Then X is a suitable pre-image (relative to F) if and only if the following two
conditions hold:
(i) lf p€ 38X N nFyq(X) and T is a trajectory beginning at p, then either T
sticks at p and is recognizably in a goal for all effective commanded velocities
that cause sticking, or T eventually enters a point in X — {p}.

(ii) If T is a trajectory beginning in X, then either T forever leaves the set X
after a finite amount of time, or the set of times at which T is recognizably in
a goal is unbounded.

Proof: 1. Suppose that X is asuitable pre-image. Let p € 0X N 7 Fyqq, ¢ (X),
and let T be a trajectory with initial point p. If T sticks at p, then p is recognizably

*The boundary of a sct is just the intersection of its closure and the closure of its complement,

that is, X = X ) X°.
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Figure 3.39. Assume that the top vertex of the triangular obstacle lies within the
position uncertainty of the obstacle edge. The vertex and the edge are not parts of the
goal. The cone corresponds to velocities for which the termination predicate cannot
recognize that a point is not on the edge. For velocities in this range, a point can move
to and stick on the vertex without being recognized as not being on the edge. In order
to avoid this state, any pre-image must avoid the region defined by the cone.

in a goal for all commanded velocities that cause sticking. Otherwise there would
be a trajectory beginning in X which terminated at p without ever recognizably
entering a goal.

Suppose that T does not stick at p. Since p € nFyq 9 (X) we can assume
without loss of generality that T is not recognizably in a goal whenever T is at p.
Consequently, T must return to X, as X contains all of its successful termination
points. If T returns to p without first entering a point in X — {p}, then there is
a trajectory beginning in X that eventually cycles from p to p, and that is never
recognizably in a goal. Since X is a suitable pre-image this can’t happen, so T
must enter a point in X — {p}. This establishes condition (i).

Now let T be any trajectory starting in X. Suppose there is some time after
which T is never recognizably in a goal. Then T remains outside the set X, for
otherwise there is a trajectory beginning in X which never recognizably enters a
goal. This establishes condition (ii).

I1. Suppose that the two conditions are satisfied. Let p, € X, but suppose that
there is a trajectory beginning at p, which never recognizably enters a a goal. By
condition (ii), there is some time after which the trajectory never re-enters the set
X . Thus the trajectory must eventually pass through a boundary point p of X,
after which it never returns to X. Clearly p € 8X ) 7Fpqq,0 (X), which violates
condition (i). 8
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Figure 3.40. The nominal goal is the rectangle. The velocity uncertainty cone is the
cone shown. The objective is to modify the goal so that the backprojection of the
modified goal is a pre-image.

As an immediate corollary, note that any point in X from which there exists
a trajectory that never re-enters X, must recognizably be in a goal for all possible
effective commanded velocities, if X is to be a suitable pre-image. Thus these
boundary points of X form a simple foundation for X. Any trajectory that passes
through one of these points is recognizably in a goal, independent of its velocity.
Furthcrmore, all trajectories that are otherwise unrecognizable, must eventually
pass through one of the special, fully recognizable, boundary points.

3.10.4.4. Another Practical Note

First, a brief intuitive comment on how velocities influence the recognizability
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Figure 3.41. The rectangle is split into a line segment and four regions over which
the range of separating velocities is constant. The line segment in the lower middle of
the rectangle is assumed to be recognizable as being in the goal for all velocities in
the velocity uncertainty cone. The ranges of velocities for which each of the regions is
recognizably in the goal are shown above the regions.

of termination conditions. Consider Fig. 3.37. Assume there is no friction. The
commanded velocity is straight down, with the indicated error cone. This range
of commanded velocities causes sliding on the specified edge, with an uncertainty
range in the tangential component. The relation between free space and sliding
velocities is shown in Fig. 3.38.

Suppose that the termination predicate wishes to decide that a point is in
free space, rather than on the edge, based on velocity measurement alone. Such
is the decision faced by a termination predicate whenever a point lies within the
position uncertainty of the edge. The velocity sensing uncertainty is also shown
in Fig. 3.38. The problem is identical to position sensing with uncertainty. The
velocity component of the forward projection is simply the union of the possible
free or sliding velocities. In order to decide that a particular free space velocity is
actually a free space velocity it must be the case that twice the error ball about
that velocity does not overlap the range of sliding velocities. This is possible for
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Figure 3.42. Backprojection of the line segment.

some, but not all of the free space velocities, as shown in Fig. 3.38.

Thus, if a point is close to the edge, then it is recognizably away from the edge
only for a subset of the free space velocities. Of course, if it is far enough away,
then it is impossible to confuse the edge with free space.

Now, suppose that one can partition a set X as described in Claim 3.34 into
A finite number of regions over which velocity separability varies continuously.
Thi~ is possible, for instance, if the surfaces and goals are described by a fnite
number of algebraic constraints. Let this decomposition be given by the collection
Xy, .., X} For expositional simplicity suppose that the velocity ranges which
permit the termination predicate to recognize entry into a goal are constant over
the X,. Let the separating velocity range for X; be V.

In the previous example, the edge and free space are uninuely separable for
all effective comnmanded velocities in one region, while they are ~parable only for
4 proper subset of the effective commanded velocities in another region. Thus free
-piace can be divided into two regions over which the separating velocities vary
continuously. In fact, they are constant over each of these regions.

The essence of Claim 3.34 says that any trajectory beginning at a point
of X rmust either encounter some other point of X, or be recognizably in a
goal independent of velocity at the beginning of the motion. Furthermore, if the
trajectory is effectively commanded by a velocity that lies outside the scparating
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Figure 3.43. The two triangular regions are valid goal regions from which to
_ backproject. This is because any trajectory beginning in these regions is either
La recognizably in the goal or eventually enters the backprojection of Fig. 3.42.
[.
range V; of X;, then the trajectory must eventually c...v a subregion of X other
than X;.
"V“ The corollary to the claim says that any point of X, from which there is

a trajectory that never re-enters X, must have a separating velocity range that
consists of all possible effective commanded velocities. Thus the associated subregion
has a separating velocity range which is the entire commanded uncertainty ball.

As an extension of the edge identification example, consider Fig. 3.39. Added

° to the region near the edge is a vertex on which sticking can occur. The termination
predicate cannot distinguish the vertex from the edge, based on pure position

information. It can therefore distinguish the vertex from the edge only for a subset

of the possible commanded velocities, as discussed earlier. Consider backprojecting

from the offending vertex, using the velocity range that does not separate the

L vertex from the edge. The resulting cone is also shown in Fig. 3.39. Now let the
goal be the entire space, except for the edge and the vertex. Let R be the entire

space, except for the vertex and its attached cone. Then R is a pre-image. To see

this, note that any velocity which cannot separate a point of the goal from the

non-goal edge, must cause the point to eventually move far away from the edge.

r—

-y

Ty

L @ No point can move and get stuck on the non-goal vertex, without first having a
; velocity that recognizably separates the point from the edge. In short, if a point
f is recognizably in the goal for some proper subset of the commanded velocities,
|
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Figure 3.44. The triangular regions are also valid goal regions from which to
backproject. This is because any trajectory beginning in these regions is either
recognizably in the goal or eventually enters one of the triangular regions of Fig. 3.43.

then the non-recognizable velocities must move the point into a region that is
recognizably in the goal independent of velocity.

3.10.4.5. An Example Illustrating Separating Velocities

Consider the example of Figs. 3.40 - 3.45, which demonstrates the method
by which a planner might generate a goal set from which to backproject. Fig.
3.40 displays the nominal goal and the commanded velocity uncertainty cone. The
goal is the solid rectangle. Backprojection from this rectangle will not generate a
pre-image, since not all points in the rectangle can actually be recognized as being
in the goal for all velocities in the uncertainty cone.

Fig. 3.41 indicates the velocity ranges for which different subregions of the
goal are recognizably in the goal. The example does not necessarily correspond
to any realistic situation. The point is merely to demonstrate goal construction.
Assume that the short line segment at the bottom of the rectangle is recognizably
in the goal for all velocities in the uncertainty cone. The rest of the rectangle is
divided into four regions. The recognizable velocities for each of these regions are
indicated above the regions. Basically, the middle two regions each are recognizable
for velocities in half of the velocity uncertainty cone, while each of the outer
two regions is recognizable for three-fourths of the velocity uncertainty cone. For
simplicity, ignore the recognizability of points on the boundaries between the four
regions.
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Figure 3.45. The final modifled goal region which serves as a base for backprojection.

The short line segment forms the foundation of the goal. The planner should
backproject from the foundation to determine all points which are guaranteed to
fall onto the foundation. This backprojection is shown in Fig. 3.42. The planner
can then extend the goal region by adding all regions in the nominal goal for which
unrecognizable trajectories are guaranteed to fall onto the foundation.

A first pass adds to the goal the two triangular regions shown in Fig. 3.43. Any
trajectory that starts in either of these regions either uses velocities that allow the
termination predicate to recognize presence in the nominal goal, or uses velocities
by which the trajectory enters the backprojection of the foundation. Thus these
triangular regions are valid goal regions from which to backproject.

A second pass adds the two regions of Fig. 3.44. Any trajectory starting in
these regions is either recognizably in the goal, or must move to the triangular
regions of Fig. 3.43. Thus these regions are also valid goal regions from which to
backproject. The final goal region from which the planner should backproject is
shown in Fig. 3.45.

These examples show that a planner can, at least in a polyhedral environment,
verifly the intra-goal constraints using simple variations on backprojection and
forward projection. More import~ntly, the planner can construct suitable first entry
sets, by first constructing a foundation of goal points that are recognizable for
all effective commanded velocities, then erecting higher levels of points which are
guaranteed to fall onto the foundation for effective commanded velocities that are
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3.11. Cosi:iclusion

This chapter has shown that a special subclass of pre-images may be described
by backprojections. This class of pre-images is formed relative to a termination
predicate that may only consult current sensor values and forward projections. The
first entry set of a pre-image is defined as the set of points at which trajectories
originating in the pre-image first recognizably enter a goal. The structural equation
relating pre-images and backprojections states that the backprojection of a pre-
image’s first entry set, when intersected with the pre-image’s forward projection, is
itself a pre-image. The original pre-image is contained in the backprojection of its
first entry set. Thus, in computing pre-images, it is sufficient to backproject from
sets with properties analogous to those of first entry sets. All pre-images may be
obtained by taking subsets of these backprojections.

In pursuit of base sets similar to first entry sets, this chapter explored the
relationship between forward projections and goal recognizability. This relationship
provides a method for deciding whether a particular point can be included in
the base from which to backproject. Specifically, at any point, a trajectory is
recognizably in a goal exactly when the sensor interpretations of the trajectory’s
position and velocity lie inside the union of the the goal and the complement of the
forward projection. This observation constrains the size of the forward projection
relative to the size of the goal set. Whenever a given point’s contribution to the
forward projection overlaps another point’s set of non-goal interpretations, conflict
arises. One of the two points must be removed from the goal set in order to
guarantee recognizability.

Continuing the pursuit, the chapter also examined the constraints imposed on
the internal structure of goal sets. Of interest was the goal recognizability of points
for different subsets of the commanded velocity uncertainty range. At some points,
entry into a goal may be recognizable only for trajectories with particular velocities.
Trajectories which pass through these points with different velocities cannot be
recognized as being in the goal. However, in order for the goal set to itself be a valid
pre-image, these trajectories must eventually pass through a point with a velocity
for which they are recognizable as being in the goal. This suggests that the goal
set must contain some points for which the termination predicate can decide entry
into the goal independent of the velocity with which a trajectory passes through
the points. All trajectories which do not otherwise recognizably enter a goal, must
pass through these fully recognizable points.
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In constructing goal sets, a planner should therefore first consider points
which are recognizable as being in the goal for all possible effective commanded
velocities. These points form a foundation for the goal. The goal may be extended
to other points which are only recognizable as being in the goal for some velocities,
by backprojecting from the foundation. Specifically, the region of the goal in
which points are recognizably in the goal only for some velocities must border the
backprojection of the foundation in a constrained fashion. All trajectories whose
velocities prevent the termination predicate from recognizing entry into the goal
throughout this region must eventually enter the backprojection of the foundation.

These results may be used to compute pre-images using backprojections. Given
a desired goal, a planner should modify the goal so as to satisfy the forward projection
and structural constraints. All possible modifications that satisfy these constraints
may be used as bases from which to backproject. The resulting backprojections
form pre-images relative to the termination predicate with no sense of time. Any
motion beginning in these backprojection regions is guaranteed to reach the original
goal in a manner recognizable by the termination predicate.
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Figure 3.46. A square.

72

Figure 3.47. An edge is represented by the directed pair [p), p2]. The interior of the
edge is on one’s left, as one traverses the edge from p, to p;.
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Figure 3.48. A countable collection of rectangles. The rectangles shrink in width as
they approach the y-axis.

3.12. Appendix to Chapter 3 Computability

This section shows that the pre-image question, in full generality, is
uncomputable. This result is not at all surprising, as general goal sets can be
quite complex. In particular, there exist an uncountable number of sets, but only a
countable number of solvable problems. Additionally, the pre-image question is a
second order question. The arguments to the question are themselves complicated
recursive sets. Thus, non-computability is expected.

This section may be omitted at a first reading, and its result accepted on faith.
The result is fairly clear. It is not explicitly used in the thesis, but serves primarily
as motivation for exploring computable subclasses of pre-images.

Consider the problem of moving a point in the plane. The constraints in the
environment are restricted to be expressible by recursive functions. For further
simplicity, assume that the constraints in the environment form a countable
collection of line segments, whose interior portions are pairwise disjoint. The
line segments may intersect at their endpoints. However, only a finite number of
segments should intersect at any point. The collection of line segments should be
expressible by a recursive function. Specifically, there should be a recursive function
f, mapping encodings of points in the plane to encodings of lists of edges. Given
a point in the plane, f returns the list of line segments that intersect at that
point. The list is empty if the point is in free space. An edge is oriented, so that
it possesses an outward normal. No particular significance is attached to the edges
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Figure 3.49. A channel between an encoding point at one level and an encoding
point at the next level. The channel represents the transition of the Turing machine
between the conflgurations encoded by the points.

or their normals, other than to define the direction of a reaction force felt when in
contact with the edge. There is no friction.

The dynamics are assumed to be generalized damper dynamics with identity
damping matrix. In other words, given a commanded velocity, a point will try to
move in the commanded direction, unless obstructed by an edge. If obstructed, the
point will move tangentially to the edge, using the tangential component of the
commanded velocity (see Fig. 2.8). At edge intersection points, the range of reaction
forces is taken to be the vector sum of the individual edge reaction forces. Sliding
is possible only if the applied force lies outside of this cone. If so, the reaction force
is computed by projecting normally onto the edge of the cone.

Given that the pre-image problem is unsolvable using these simplified
constraints, it is certainly unsolvable using more complex constraints. The claim at
the end of this section establishes unsolvability under the simplified constraints.

In order to gain some intuition about the representation of recursive constraints,
consider the constraints defined by the square of Fig. 3.46. Assume that an edge
is represented by an ordered pair of points [p;,ps]. The direction of the edge is
so chosen that the edge’s interior is on the left, that is, the edge’s normal points
towards the right (see Fig. 3.47).

For this example, the recursive function f which maps points in the plane to
lists of edges is easily seen to be:
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Figure 3.50. A horisontal stop in a channel corresponds to a halted configuration.

({es, &1}, i (z,9) = (0,0)
{er,e2}, if (z,9) = (1,0)
if (

t o {32153}’ z, y) ( )
[ {63’ 34}’ if (I» y) = (0; 1)
a fiz,y) = { {a}, f0<z<landy=0 (3.38)

{e2}, fz=1and0<y<1
{es}, f0<z<landy=1
“{eq}, fz=0and0<y<1

[0, otherwise

where

e is the edge [(0,0), (1,

1,0), (1, 1)]
1,1), (0, 1)},
0,1), (0,0)].

0)],

(3.39) )

(
ez is the edge |(
e3 is the edge |(

(

e4 is the edge [(0,

Now consider the example of Fig. 3 48. It consists of a countable collection of
rectangles. All are of the same height, but their widths shrink as they approach
the the y-axis. In order to define a recursive function expressing the rectangles’
constraints, it is first necessary to define two helping functions. The first helping
function is essentially the same as the function defined by Egs. (3.38) and (3.39).
The difference is that the following function also adjusts the lower left-hand vertex y
and the width of the rectangles. 1

o al A PO S T
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Figure 3.51. Three levels of encodings, with connecting channels.

( {eq(n), e1(n)}, if (z,y) = (2"2""1,0)
)}, if (z,9) =(27,0)
{ea(n), ea(n)}, if (z,y) = (272",1)
{es(n),eq(n)}, if (z,y) = (272" L,1)

g(z,y,n) = | {a(n)}, if272" ' <«z<2?andy=0 (3.40)
{ea(n)}, ifz=22"and0<y<1
{es(n)}, if2 2" lcz<2andy=1
{ed(n)}, fz=2"2"land0<y<1
{ 9, otherwise
where

C](‘n) is t,he edge [(2_2“‘1,0)’ (2—271,0)}’

eg(n) is the edge [(2_2"’0), (2—2n, 1)],
63(71) is the edge [(2—2"' 1)’ (2—2n—1, 1)]’ (341) b
e4(n) is the edge [(2'2"—1, 1), (2721, 0)]. .i

The second helping function docs most of the work. It recursively determines
which rectangle is closest to the point (z,y), then calls the helping function g.

A e g o
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Figure 3.52. A collection of channels represented abstractly between encoding points.
There are a countable number of levels. Each branch point corresponds to an entire
encoding of a Turing machine. Thus there are a countable number of channels emerging
from each branch point.

( 0, ifn<oO
0, ifz<0
0, ifz>1 3

(3.42) .

i

h(z,y,n 4
(z.v.m) h(z,y,n+1), if z <2721

h(z,y,n—1), ifz > 272!

g(z, v, n), otherwise

The first three conditions insure that h actually converges. The function f is
now simply 1

f(zvy) = h(z,y,O). 1

If the rectangles were moved, so that they touched, the previous function f
would be similarly constructed. Some of the lists returned by f would, of course,
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contain more edges. Having established some intuition, it is now possible to abandon
formally writing out the descriptive functions f. The remainder of the section
describes countable collections of edges by suggestive diagrams, rather than by
recursive functions. It should be clear that one can write out a recursive function
for these diagrams much in the same way that one could, in the previous example,
write out a recursive function for the sequence of squares in terms of the trivially
recursive function for the single square.

Before turning to the claim it is necessary to consider an encoding of Turing
machines by points in the plane. It is well known® that a Turing machine is
equivalent to a finite state machine with two unsigned unbounded counters. The
operations permitted on the counters are “INCREMENT,” “DECREMENT,” and
“TEST FOR ZERO.” The configuration of the machine is given byq,n, m, where
q is a state, and n and m are two non-negative integers corresponding to the two
counter values. There are thus only countably many configurations.

It is clear that the configurations of the counter machine can be uniquely
encoded over the integers by the mapping (g, m,n) — 293" 5™. Here q is taken
to be an integer representing the state of the machine. In a similar fashion, the
configuration of the counter machine can be encoded over the interval [0, 1] by
(g,m,n) — 27937" 5™, and hence, over the section [a, b] X {y} of the plane by

—-gq—ng-m
(g, m,n) (a + 2—%——5——, y) (3.43)
—a

Now consider an encoding of the counter machine over the section [a, 8] X {y},
as in the last paragraph. For each point p ., 5) in the encoding, it is possible to
erect a conceptual cylinder about the point which does not include any other point
of the encoding. Suppose that the left and right vertical lines of this cylinder are
given by z = ayy 1 ny and big m n), respectively. Clearly it is possible to encode the
counter machine again, this time over the section [ag m ny b(gmn)] X {y — Ay}, as
shown in Fig. 3.49.

Suppose that when the counter machine is in configuration (g, m,n} it next
moves to configuration (¢’,n',m'). Let qu’,n’.m') be the point in the encoding below
P(g.mny Which represents the configuration (¢/,n’,m'). The action of the counter
machine may be graphically represented by two edges which form a channel from
Plg,m,n) tO pzq',n’.m’) as in Fig. 3.49. If (¢, m, n) is a halted configuration, {¢’,n’', m')
is the same configuration at the next level of encoding. In addition to forming a
channel between these two configurations, it is convenient to explicitly indicate the
halt state by a horizontal stop in the channel, as shown in Fig. 3.50. This stop
reflects the intuition that computation cannot proceed through the channel from

the halt state.

Now imagine constructing, in the same fashion, a second level encoding and
channel for every point in the first level encoding. The result is partially indicated

9Sce, c.g., Lewis and Papadimitriou, Ex. 6.4.2.
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in Fig. 3.0i. Now repeat this whole procedure for every second level encoding (there
will be a countable number of these), then for every third level encoding, and so
on. Adjacent channels may be connected, so that the interiors of the channel edges
are actually interior. This is a minor point.

By choosing the n'* level of encodings at y = 2 "*!, and by taking the single
first level encoding to be along the section [0, 1] X {1}, it is possible to encode all
possible computation paths of the counter machine in a tree-like fashion within the
square [0, 1] X [0, 1], as shown in Fig. 3.52. The encoding consists of a countable
collection of oriented line segments. There are an infinite number of levels and an
infinite number of branches at each level. It is clear from the construction process
that there exists a recursive function f which describes this collection in the manner
outlined previously. In other words, there exists a recursive function ~ which maps
a point (z,y) in the piane to a list of edges that pass through that point. This is
true because f has much the same {orm as the function in the sequence of squares
example.

Specifically, f uses recursion to narrow in on a particular channel. Given an
argument (z,y), f uses the value of y to recursively determine between what two
levels the point (z,y) lies. This process is identical to the recursion used in the
sequence of squares example. Similarly, f can find the nearest encoding points at
any given level, using the value of z. f then interrogates the counter machine’s
transition function to determine the channel which is closest to (z,y). Having
established the channel's identity, it is an easy matter to decide whether the given
point (z,y) lies on the edges of the channel.

As a slight modification to the function f, it is possible to predict collisions of
a point moving along a trajectory specified by the ray

Po + tv, with ¢t > 0. (3.44)

Specifically, f returns the closest point (and associated constraint edges) to po
which lies on the specified ray and which lies in the topological closure of the
collection of channels. In order to make sense of such an intersection, it is necessary
to define what is meant by a point colliding with the limit of a a sequence of edges.
Such a definition is not needed to establish the claim below, so for the purposes
of this exposition, it is sufficient to rule out such collisions by explicitly placing
constraints in the environment at the limit points of edge sequences. Thus, it is in
principle possible to predict damper motions.

Finally, it is important to note that the function which maps counter machines
to their encoding functions is itself computable. Specifically, let CM be a counter
machine, and let feas be constructed as above. Then the mapping CM +— foum
is recursive, that is, computable. The process involved is only slightly more
complicated than that involved in writing out f in the sequence of squares example.

In much the same way that the collection of channels is representable by a
recursive function, so too is the the collection of horizontal edges inserted as stops
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inside the channels at halted configurations. Determination of this function is itself
also a computable process.

Suppose that the sensor and control errors are zero, and that there is no friction.
[.et the commanded velocity be straight down. Given these assumptions, a point
moving in the maze of channels moves in free space or slides along the channels,
unless obstructed by a horizontal strip. If the point starts at a configuration point
in the top level encoding, then the only horizontal edges that it can encounter are
the channel stops at the halted configurations.

With the previous definitions and discussion in hand, the uncomputability
claim is immediate.

Claim 3.35 Let p be a point in the plane, and let G; be recursive subset
of the plane consisting of a countable collection of line segments described by a
recursive function g, as defined above. Suppose the constraints in the environment
form a countable collection of line segments described by a recursive function f.

The PRE-IMAGE problem is unsolvable, where

PRE-IMAGE = {(5, /,5) | {p} = P ({Gs})} (3.45)

Proof: The proof is a reduction from the halting problem. Specifically let

BLANK = {{(M) | M is a Turing machine that halts on blank tape.}. (3.46)

The strategy of the proof is to show that BLANK can be reduced to
PRE-IMAGE. Since BLANK is uncomputable, this proves that PRE-IMAGE
is also uncomputable.

To exhibit the reduction, suppose that (M) is given. For simplicity, assume
that M is represented by a counter machine. The discussion prior to the statement
of the claim shows how to effectively compute an encoding of M, in terms of a
sequence of channels. Let f be the recursive function describing that encoding,
and let g be the recursive function describing the collection of horizontal edges at
halted encodings. These edges form the goal set Gy. Finally, let p be the starting
configuration at the top encoding level.

This shows how to compute (p, f,g) from (M). Clearly {p} = P,y ({G,}) if
and only if M halts on blank tape. g
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It can also be shown that the PRE-IMAGE problem is not even recursively
enumerable. By letting the goal state in the above construction be the interval [0, 1]
on the z-axis, it is possible to reduce the problem of whether a Turing machine
does not halt on blank tape to the pre-image question. This is because a point is
in the pre-image of the goal if and only if there is a computation path which does
not pass through any halt state. Since the problem of deciding whether a Turing
machine does not halt on blank tape is not recursively enumerable, neither is the

pre-image question.!?

""This stronger version of the uncomputability result was pointed out to me by B. Donald
(August 1984).
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4. Friction

The previous chapters have described a motion planning scheme that employs
sliding on surfaces to overcome uncertainty. The motions and their starting positions
are computed by backprojecting from the desired goal regions. A backprojection
region for a specified motion direction consists of precisely all those points which
are guaranteed to eventually reach the goal under the commanded velocity. In order
to compute backprojections it is necessary for the planner to recognize all points
at which a motion could prematurely terminate by sticking on a configuration
space surface. The planner must therefore employ a representation of friction in
configuration space that makes explicit points at which the commanded velocity
could result in sticking.

4.1. Introduction

Chapter 2 described a representation of friction by a configuration space
friction cone, with properties analogous to those of a real space friction cone. The
representation was motivated by the fact that configuration space surfaces share
many characteristics with their real space counterparts. In particular, they push
back when pushed upon. Configuration space reaction forces lie along configuration
space surface normals, just as real space reaction forces lie along real space surface
normals.

This chapter provides the mathematical underpinnings for the intuitive
treatment given in Ch. 2. The task is to provide a representation of translational
real space friction in configuration space. Beyond its application to the motion
planing problem, this representation is useful in simplifying the understanding of
friction for tasks involving rotations and moments. Previous work modelling the
effect of friction during parts mating has provided general methods for analyzing
assembly tasks in real space. In particular, see the work by Simunovic (1975, 1979),
Whitney (1982), Ohwovoriole and Roth (1981), and Ohwovoriole, Hill, and Roth
(1980). These aucthors have considered assembly operations, such as the peg-in-hole
problem, involving both single and multiple points of contact. Burridge, Rajan, and
Schwartz (1983) have also examined the statics and dynamics of the peg-in-hole
problem. In particular, they have considered the classes of motions possible for
multiple points of contact, and have described possible motion ambiguities. Mason
(1982) has considered friction in robot pushing and grasping operations. His work
provides a method for planning grasping operations in the presence of uncertainty.

P

The kinematic and force analyses comprising these methods require explicit
L @ investigation of the geometric constraints on the assembly task. In other words, all
{ possible points of contact must be explicitly considered. Such geometric constraints
are directly manifest as submanifolds of configuration space. Multiple points of
contact are as easily analyzed in configuration space as single points of contact. In
e both cases, the analysis must only deal with the motion of a point, instead of an
o entire object. The type of contact is evident from the dimension of the surface on )
which the point is moving. Thus it is desirable to develop a configuration space

generalization of the classical friction cone.
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The first part of the chapter restricts itself to the three dimensional configuration
space arising from two translational and one rotational degrees of freedom. The
ideas are developed by examining the planar version of peg-in-hole insertion.
Multiple point contact is considered in the middle of the chapter, while extensions
to higher dimensions are discussed in the last part of the chapter.

4.2. Planning and Simulation

The motivation for studying friction is twofold. A representation of friction
is required both for planning and for simulating motion strategies. A planner uses
the representation of friction to avoid surfaces on which a motion could stick and
thereby fail to achieve the desired task’s goal. A simulator uses the representation
of friction to predict reaction forces that arise in response to control commands.

The planner throughout this thesis assumes generalized damper dynamics. In
reality, Newton’s laws govern the behavior of objects (at least within a resolution).
A control system must try to give the appearance of a generalized damper world.
Some of the control uncertainty arises as a consequences of the control system’s
inability to perfectly create a damper world. Simulation is useful in modelling this
uncertainty.

The planner may assume the generalized damper world, with the specified
control uncertainty. The simulator may then be used to verify plans computed
by the planner. The simulator operates in Newton’s world. It simulates both the
control system’s approximate implementation of the damper dynamics, as well
as the motion of objects in response to a plan’s suggested control commands.
The simulator thus requires a representation of friction obeying Newton’s laws.
In particular, the simulator must be able tc predict reaction forces and effective
motions resulting from arbitrary applied forces and initial motions.

The analysis of this chapter assumes Newton’s laws. The friction cone developed
from this analysis provides a geometrical tool for predicting reaction forces under
arbitrary initial conditions, subject to the laws of classical mechanics. The friction
cone is useful therefore in simulating motions.

Additionally, this friction cone may be used as a geometrical tool for planning
motions within the generalized damper framework. The friction cone specifies the
range of reaction forces that can be generated at a point of contact. Therefore,
by the equivalence of forces and velocities for a generalized damper with identity
damping matrix, the negative friction cone describes the range of commanded
velocities that can cause a motion to stick at a point of contact. The planner can use
the friction cone to avoid surfaces on which motions could terminate prematurely.
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Figure 4.1. The peg-in-hole task consists of moving the peg into the hole. The

coordinate system (z, y, 0) is showa.
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Figure 4.2. Two one-point contacts and one two-point contact. These are the typical

contacts that occur for the peg-in-hole taskas.
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Figure 4.3. Conflguration space surface that represents the constraints on the peg's
reference point. A section of the surface for a single orientation of the peg is shown.

4.3. One-Point Contact of a Planar Peg-In-Hole Problem

This section develops a representation of friction for rigid objects translating
and rotating in the plane. The representation is developed by analyzing one-point
contact for the classical peg-in-hole problem.

4.3.1. Review, Assumptions, and Notation

The configuration space of an object with two translational and one rotational
degrees of freedom is the manifold R®? X S},, where S}, is the one dimensional sphere
of radius p. By placing the usual inner product on S},, configuration space becomes
a Riemannian manifold. Varying p allows one to adjust the metric on this manifold.
The physical significance of p will become apparent later.

Following a traditional abuse of notation, one may think of the representation
of this configuration space as R%. A point in this space is specified by the vector
(z,y,q), where g is identified with a point & on the sphere S}, by the relation ¢ = p#8.
It is convenient to write 8, rather than q/p. In a similar fashion force is represented
by the vector (Fy, Fy, Fy), where Fy = 7/p, that is, Fy is torque divided by p.

Finally, for the sake of simplicity, it is convenient to ignore the difference
between static friction and kinetic friction, assuming instead a constant coellicient
of friction u.
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Figure 4.4. Two possible choices for the reference point are points A and B.

4.3.2. Peg-In-Hole Insertion

This section examines friction in the setting of planar peg-in-hole insertion,
as indicated in Fig. 4.1.a. The hole has width 2R, while the peg has width 2r. A
global reference frame is centered in the middle of the top of the hole, as indicated
by Fig. 4.1.b. The configuration space of the peg is described with respect to a
reference point in the middle of the bottom of the peg, as indicated by Fig. 4.1.c.

There are three particularly interesting types of configurations which the peg
may assume. They are the two one-point contact configurations arising from either
the interaction of an edge of the peg with a vertex of the hole or the interaction
of a vertex of the peg with an edge of the hole, plus the one two-point contact
configuration which results from the simultaneous occurrence of the one-point
contacts. See Figs. 4.2.a-4.2.c. For each of the contacts shown there exists a
symmetrical contact with the peg tilted in the opposite direction.

This ex.:aination will focus on the first of the one-point contacts. The legal
positions of the peg in this type of a configuration give rise to a surface in ]
configuration space. A cross section of this surface for 1 given value of 6 is depicted
in Fig. 4.3. The equation of a portion of this surface is given by

ysin@ + zcos@ = r — Rcos¥,

or (4.1)

ysin%-{-zcosg:r—Rcosg. 4
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The outward pointing normal at any point on this surface is

n= o (cos 0, sin g, —E), (4.2
1 0?2 p
t
where R 0
¢ = T+ H —rcos (4.3)

sinf
is the depth of the peg insertion.
4.3.3. Choice of Reference Point

Suppose one had chosen the peg’s reference point to be the left vertex at the
bottom of the peg, rather than the point in the middle of the base. It is interesting to
see how this would change the corresponding configuration space surface. The two
reference points are separated by a distance r (see Fig. 4.4). However, the surface
normal does not depend on r, but merely on the depth and angle of insertion. The
depth of insertion appears to depend on 7, but this is illusory. To recognize the
independence, parameterize the surface in terms of § and £ -

z(0,8) =  £€sinf + rcos@—R
y(0,8) = —Lcos® + rsin (4.4)
q(0,8) = po

Theu che surface normal is given by n, as above, where £ is now an independent
variable (see Eq. (4.2)).

In other words, the normal and tangent spaces of the configuration space
surface are independent of the choice of the reference point along the bottom of
the peg, depending solely on the insertion depth and orientation. The difference
between surfaces generated from different reference points lies in their curvatures.
Consider Fig. 4.4. A portion of the configuration space surface corresponding to
the choice of A as the reference point is generated by the line segment OA as
the peg rotates about the point O. Specifically, this portion of the configuration
space surface is a helicoid corresponding to a helix of radius . In comparison, the
configuration space surface generated by the choice of B as a reference point is
determined by the movement of the line segment CB as the peg rotates about
the contact point O. The portion of the configuration space surface thus generated
corresponds to a particular surface lying between two helices, one of radius r, the

other of radius €2 + r2,

The normal and tangent spaces are independent of the choice of reference
point along the bottom of the peg because the change in reference point along the
bottom of the peg is parallel to the real space normal. Thus moving the reference
point does not change the moment arm through which a reaction force at the point
¢’ contact induces a reaction torque about the reference point. Recall from Sec.
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. 2.4.2, that the configuration space normal is just the real space normal with an
! additional component corresponding to the torque induced by a real space reaction
'1 force at the point of contact. Since moving the reference point along the bottom of

[Py W e

. the peg does not change the induced reaction torque, it also does not change the )
configuration space normal.

[ A change of reference point along the length of the peg does change the
direction of the configuration space normal and the configuration space tangent ]
space. The effective moment arm about the reference point, through which a -

reaction force at the point of contact acts, changes. The parameter £ describes the
length of this moment arm. Thus the torque induced by a reaction force at the
point of contact changes relative to the reference point, implying a change in the
configuration space normal. The dependence of the configuration space normal on ]
¢ is explicit in Eq. (4.2).

An arbitrary choice of reference point can be described by £ and r. £ is the
moment arm through which a reaction force at the point of contact induces a
reaction torque about the reference point. r is the perpendicular distance of the
reference point from the point of contact, measured in terms of distance parallel to
the real space normal. The configuration space normal depends only on the value
of L

4.3.4. Tangents

There exist two fundamental modes of movement along the configuration space
surface. One corresponds to sliding of the peg, that is, a change in insertion depth,
while the other corresponds to rotation of the peg about the contact point, that
is, a change in orientation. One would expect the tangents associated with each of
these movements to provide useful information.

Regardless of the choice of reference point, it is clear that the tangent arising
from sliding movement is given by

t; = (sind, —cos 8, 0). (4.5)

In order to determine the tangents arising from rotational movement, one need
merely calculate the tangents to the helices which represent the movement of the
| reference point during rotation, as previously described.

® For the reference point A, the helix is given by

z(0) = {€sinf-R

’ y(0) = — €cos@ (4.6) _

o q(0) = pb <
which has a tangent given by ]

[ ;

b
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1 4 £
ty = ———— (- cosf, —siné, l). (4.7)
1 12 p p
T

For the reference point B, using the notation of Fig. 4.4, the helix is given by

z(0) = V& +r2sin(0+n)—-R
y(8) = — /€ + 12 cos(6 + 1) (4.8)

q(9) pb

Noting that cosn = €/vV€ + 2, and sinn = r/V€2 + 2, it is seen that the

tangent to the helix is

1
t3 = ———— (E cosf ~ zsin0, fsin0-}- Z‘-coso, 1) (4.9)
A \P p p p
1+ +P

All this information may be obtained directly from the surface parameterization
given earlier in Eq. (4.4).

Notice that for the reference point A, the tangent vectors arising from sliding
and rotation are orthogonal, whereas for the reference point B this is not the case.
The tangent vector crthogonal to t3 is

1] e 1 1

ty = % r_2 cos @ + sin 0, % ; sin @ — cos 8, r il [ (4.10)

1+ 5 iy b P1+4

P 4

where
k r

= /1 4+ 5—s 4.11
* p? + £2 (411)

is the appropriate normalizing factor.

In general, for any given reference point, it is possible to construct two pairs
of orthogonal tangent vectors. One pair is constructed from the tangent vector
for sliding, the other from .he tangent vector for rotation. The pairs need not
be distinct, as the reference point A shows. Each pair is useful for answering
questions concerning its associated mode of movement. This will become clear while
constructing the analogue to the friction cone.
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Figure 4.5. Force diagram without friction.

4.3.5. EEquations of Motion without Friction

This section examines the configuration space formulation of the equations
of motion of the peg during frictionless one-point contact with the hole at O.
Reference point B is used throughout the analysis (see Fig. 4.4).

The configuration space surface generated by the reference point is the locus
of possible positions of the reference point while in one-point contact with the
hole. In particular, it provides geometric constraints on the possible movements of
the reference point, restricting it to movements tangential to the surface. In other
words, tangential movements are legal, whereas normal movements are prohibited,
if contact is to be maintained. In fact, normal movements are only physically
possible in one direction, namely away from the surface. This suggests that, (1) in
order to perform a static analysis of the peg, one need merely restrict applied forces
to lie in the normal space of the configuration space surface. Furthermore, (2) for
any applied force, one would expect the configuration space surface to provide a
reaction force equal and opposite to the normal component of the applied force
(see Mason (1981) for a more detailed development of these ideas). The remainder
of the section is a verification of these two remarks.
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4.3.5.1. Statics

T o d

This subsection verifies remark (1), concerning the static analysis of the peg
in one-point contact with the hole, as shown in Fig. 4.5. Restricting applied forces P
to the normal space of the configuration space surface is equivalent to constraining '
their tangential components to be zero. If F = (F;, Fy, F;), then this means that

F-t;=0 :
! (4.12)
F-t3=0 3
By Sec. 4.3.3, the tangent spaces for reference point A and reference point B 3

are identical for a given insertion depth £. In particular, span {t;, t2} is the same
as span {ty, t3}. Therefore, Eq. (4.12) is equivalent to

F-t;=0

4.13
Fty=0 (4.13)

Substituting for t; and tg, it follows that ]

F;sin@ — Fycos6 =0

¢ 14
F,;c050+Fy£sin9+Fq=0 (4.14)
o

Referring to Fig. 4.5, the standard static analysis yields

fao+ Frcosf+ Fysinf =0
Fysinf ~ F,cos0 =0 (4.15)
'—fnl-i"T =0)

where 7 = p F,.

Substituting for f,, and 7 in the third equation reveals the equivalence of this
system of constraints with the configuration space surface formulation (Eq. (4.14)).
This verifies the first remark.

4.3.5.2. Normal Reaction Force ]

This subsection verifies remark (2), con‘erning the computation of reaction
forces given arbitrary applied forces. It is claimed that, given an arbitrary applied
force pointing into the configuration space surface, the configuration space reaction ]
force lies along the configuration space normal, cancelling the normai component
of the applied force.

In order that this claim be true, it is necessary to make the following two
assumptions:

1. The peg's center of mass is coincident with the reference point. j

2. The radius of gyration about the center of mass is p.
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The first assumption is required to decouple the effects of forces and torques
about the reference point. This assumption ensures that the acceleration of a point
in configuration space in response to a net configuration space force is along the
direction of the force. More generally, the reference point may be taken to be the
center of compliance of the moving object. A pure force through the reference point
should cause pure translation of the object, while a pure torque about the reference
point should cause pure rotation of the object around the reference point.

The second assumption is motivated by the realization that rotation in
configuration space corresponds to movement of a point around a circle of radius p.
If the point has mass m, then the moment of inertia about the center of the circle
H 2
is mp®.

The normal component of an arbitrary applied force is given by (F - n)n, in
terms of configuration space notation.

Now
1 . ]
F-n=——|F:cos0+ Fysinf — Fg— (4.16)
J1+ 4 g
ot
So,

(F-n)n = (F, cos?d + Fysind cosf — F’,,-f; cosd,

1+;§

F,sin?0 + F,sin 6 cosf — F,,-f; sin 0, (4.17)

2
—F,EcOSO—F,,Esin0+ Fql—z)
p p p

Thus the configuration space reaction force should be the negative of this vector.

In order to verify this prediction in terms of standard force analysis, assume
the notation of Fig. 4.5. Additionally, introduce the following symbols:
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an = acceleration of the center of mass in the direction
(cos 8,sin 8).

a; = acceleration of the center of mass in the direction

(sin 8, — cos §).

a = angular acceleration in counterclockwise direction
about the center of mass.

m = mass of peg.

I = moment of inertia about the center of mass.

The reaction force consists of a pure force and a torque. The pure force
has magnitude f,, pointing in the direction (cos8,sin@). The torque has signed
magnitude — f, £. Therefore, in terms of configuration space notation, the reaction
force is (fncos®, fosin 8, — f,.f). Comparing this vector to the predicted reaction
force, one sees that it is only necessary to verify the identity

1

fn= 1+S

(—Fz cosd — F, sin 0 + Fy ;) (4.18)

The equations of motion are:
ma, = fn + Fzcosf + Fysiné
may = F,sin@ — F, cos§ (4.19)
Ta=71—-f,t

In order to maintain contact at point O, under quasi-static assumptions, the
following constraint must hold:

an="1La. (4.20)
Therefore,
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fn = ma, — F;cos8 — Fsind

= mla — F; cosd — F; siné

g (4.21)
.~ = Tif(r—f"t)—F,COSO—Fysina
ml .
= m_p2(r — fal) — Fzcos@ — F; sin @
Hence,
£ L :
1+ o) fa = ?r — F;cos6 ~ Fysin 6, (4.22)
1 . L
fa = - (—F, cosf — F,sinf + —21')
1+5 P
(4.23)
= ! (—F, cosd — F,sin 0 + F,f)
1+ 5 P

This proves the second remark, and completes the analysis of this subsection.

4.3.6. A Configuration Space Friction Cone

This subsection develops the configuration space analogue of the classical
friction cone. One-point contact is assumed throughout. As in the frictionless
case previously discussed, the analysis will yield a method for computing static
constraints and reaction forces in configuration space. This subsection continues to
assume one-point contact.

In real space the friction cone is a method of geometrically capturing equilibrium
constraints on forces. Furthermore, the friction cone may be viewed as a specification
of the range of reaction forces that can arise in response to applied forces. The
generalized configuration space friction cone should possess these same properties.

Consider the general case of a configuration space surface generated by the
reference point of an object in one-point contact with another object. Recall that
there exist two pairs of fundamental tangent vectors at each point on the surface.
{ Let t, denote the tangent vector corresponding to sliding movement, and t, denote
the tangent vector corresponding to rotation about the contact point. Also, let t}
be orthogonal to t,, and t} be orthogonal to t,. Then the two fundamental pairs
t. are (ty,t}) and (t,,t}). For later convenience assume that t* - t, > 0. As usual,
let n be the normal vector to the configuration space surface. Notice that in the
case of one-point contact, the tangent t, lies in the z-y plane, that is, has a zero ¢
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component. Let ng be another vector lying in the z-y plane, such that np-n > 0
and ng - t, = 0. Then ng is the outward pointing normal of the real space obstacle
from which the configuration space surface is constructed. To be precise, in the
case of one-point contact of the form depicted in Fig. 4.2.b, ng is the outward
pointing normal of the real space object, whereas in the case of one-point contact
of the form depicted in Fig. 4.2.a, ng is the inward pointing normal of the peg. All
vectors are of unit length.

One may now construct the generalized friction cone by examining the
constraints required on applied forces in order to maintain static equilibrium.
Notice that for one-point contact frictional forces arise in response to applied forces
that act in directions of movement involving sliding, whereas no such forces arise
in response to purely rotationally directed forces. This observation suggests the
following constraints:

(i) No restriction on the normal component of an applied force, except
perhaps for a sign restriction. This restriction is made solely to maintain
contact.

(ii) The tangential component of an applied force in the direction of pure
rotation must be zero.

(iti) The tangential component of an applied force in the direction of pure
sliding must be constrained in terms of the normal component.

Conditions (i) and (ii) specify constraints on applied forces in the orthogonal
directions n and t,, respectively. Condition (iii) specifies a constraint in terms of
the direction t,, which is not necessarily orthogonal to the other two directions.
It is desirable to modify the third condition so that it constrains force in the t}
direction.

Notice that the second constraint may be formulated as

(i) F-t, =0, (4.24)

which specifies a plane in configuration space. One would expect that the modified
third constraint should be of the form

(i) aF-n<F-t: <caF.n, withF.-n<0, (4.25)

which selects a convex subset from this plane. This subset represents the generalized
friction cone. It remains merely to determine the constants ¢; and ¢3.

One can use the classical friction cone constraints to derive values for the two
constants. Notice that one can assume without loss of generality that F-ng < 0
in static equilibrium. This assumption is required in order to physically maintain
the one-point contact in static equilibrium. Note, however that F - ng < 0 does
not imply that F-n < 0. In formulating the modified third constraint it was
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tacitly assumed that applied forces could only point in the opposite direction

i of the outward pointing surface normal. While this is true for real space forces,

3 it will become apparent that in some situations configuration space forces may P
s actually point away from the configuration space surface, and yet maintain static

) equilibrium. For the moment, however, assume that F-n < 0.

- Given these assumptions, Coulomb’s law states that

F \
| uF.ng < F.¢t, < —uF -no (4.26) g
b q
é Now, using F-t, =0and n-t, =0,

>

i] F-ng (F-n)n-np + (F-t,)t,-ng + (F-t})t} -no

(F-n)n-ng + (F-t})t} -ng (4.27)

-ty (F-n)n-t, + (F-t,)t, -t, + (F-t})tH-t,
- (F-tf)tt-t, (4.28)

g
Il il

i

Therefore

(3) (F-t2)tr-t, < —p[(F-mn-no + (F-t)td ng)

(4.29) :
(b) (F-t})t:-t, 2> #[(F-n)n-ng + (F-t})t}: - ng J
Equivalently, )
(a) (F-t#)[t¢-t, + pt}-ng] < —p(F-n)n-ng
(4.30)
(b) (F-t}) [ttty — ptr-ng] 2> 4 (F - n)n - ng :
So, let ' ]
{ i -tE. ?;‘ntg' — if t-t, — utt-ng >0 _,
q cp = :
+o0 otherwise ]
. ]
(4.31) ]
‘ t.,I-t:,P—%_:::, e Mttt ptH-ng >0
. ¢ =

h A Y

—00 otherwise
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Applied forces that satisfy the constraints are of the form

F=c(n+sct}), (4.32)
where
c<0
i €{cy, 2} (4.33)
sE[0,1]

The configuration space surface may be viewed as providing reaction forces
which lie within the range specified by the friction cone. The description of the
possible reaction forces is identical to the definition of F given above, except that
c>0.

In general, under quasi-static assumptions, given any applied force F4 with
F4-n < 0, the configuration space surface will respond with a reaction force Fp
given by

Fgp = —(F4-n)n—-ht}, (4.34)

where h is chosen such that one of the following conditions (Egs. (4.35) and (4.36))
holds:

¢citFa'n < h < c2F4q-n,and Fp-t}+F, -t =0 (4.35)

or

r. h=¢Fsq-n,t=10r2 and 0 < -(FR-t;L)(FA't;L) < (FA-tﬁ‘)2 (4.36)
For the condition specified by Eq. (4.35), the reaction force lies inside the
{ friction cone, while for the condition specified by Eq. (4.36), the reaction force lies
° on an edge of the friction cone.
In other words, given an applied force F 4, one constructs the reaction force
& F; by projecting —F 4 along t, into the plane containing the friction cone. If this !
b projection lies inside the friction cone, then the projection is the reaction force. If
' the projection lies outside of the friction cone, then one must proceed by projecting K
° along t} until encountering the edge of the friction cone. 1
{ 1
° 196 |
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Figure 4.6. Two different types of contact between a moving object and an obstacle.
Both examples are described by the same vectors at the point of contact. (The manner
in which these vectors change, as the object moves, is different for the two types of
contact.)

. Reference Point
'
"
\0"‘"
v A

ce

Figure 4.7. The local real space normal, sliding tangent, and radius vectors of the
contacts shown in Fig. 4.6.

4.3.7. Comments

The infinite values of ¢; and ¢y correspond to friction cones with no edge
constraints for applied forces that have negative normal components. This means
that the configuration space friction cone actually dips below the tangent plane
of the configuration space surface. In other words, it is possible to maintain static
equilibrium with F4 - n > 0, assuming that F, . t} is chosen properly.

The analysis in this case is similar to the one presented above, so it will not be
discussed here. Suffice it to mention that the inequality constraints become lower
bounds on the magnitude of F - t} relative to that of F - n, rather than containing
upper bounds. The description of the reaction forces changes accordingly.

Finally, note that by construction only one of t!-t, — ut*-ng and
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Figure 4.8. Applied forces at the reference point and reaction forces at the contact
point for the contacts of Fig. 4.6.

t:-t, + ptt -ng can be negative. Thus the friction cone always lies at least
partially above the configuration space surface tangent plane.

At this point it should be clear that the most general formulation of constraint
(iil) above, replacing Eq. (4.25), should be:

(ma) F-n <kF-t} (4.37)
(iii.b) F.n <kF-t},
where
kl — t#- -ty — “t;L ‘Mo
4n-np
(4.38)
k2 —_ t;L * tJ + ,‘t'L ) nO

—4n-ng

This formulation of the constraints follows directly from Eq. (4.30). It does
not assume that F-n < 0.

4.4. General Form of Planar One-Point Contact

The previous section on the peg-in-hole problem provided an overview of
the issues involved in computing a configuration space friction cone. This section
summarizes and generalizes the results of that section. It assumes that the reference
point is at the center of mass, and that p is the radius of gyration about the
reference point.
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4.4.1. Vector Decomposition

Consider a planar object in one-point contact with some surface. Two contacts
of different type that give rise to the same vector decomposition are shown in Fig.
4.6. Let the vector from the point of contact to the reference point of the object
be given by r = (r;, r), as in Fig. 4.7. Assume that the real space normal at the
point of contact is given by ng = (nz, n,). Since the torque induced about the
reference point by a force f at the point of contact is just f X r,! the configuration
space normal must be parallel to n = (ng, n,, %nq), where ng is the § component
of ng X r. Letting, t, be the sliding tangent, t, the pure rotation tangent, and
t> the perpendicular tangent, as in the previous section, the general form for the
vectors of interest is given by

r =(rg 1y, 0)
ng = (nz, nv, 0)

n = '—PJ%-n—z(nz, nv, “l"nq)
1

ty = W(—fw rz, P)

1 =41 —&85. &
tr i Jm (611 62! 3)
tl = :i:(ny’ —Ngz, 0),

(4.39)

where
ﬂq = nzrv _nyrz
(4.40)
b2 =pPn;+nyr,

63 = prynv +prznz.

It is convenient to take the signs of t} and t, so that t} -ng > 0 and t} - t, > 0.

Also note that the radius vector r can be recovered directly from the
configuration space surface, since r is uniquely determined by t,, which can be
recovered from the surface by a directional derivative in the positive g (or 6)
direction.

4.4.2. Equations of Motion

It is interesting to see how the vector decomposition relates to the equations of
motion. Let F4 = (Faz, Fay, Faq) be a generalized applied force. In other words,
the applied force is (Fa,, Fay) and the applied torque is 74 = p Fyy. This force is
applied at the reference point. Let the reaction force at the point of contact have
magnitude f,. See Fig. 4.8. Then the equations of motion, in the absence of friction
are

! Since the vector r is dirceted from the point of contact to the reference point, the torque
about the reference point i (—r) X f, which is £ X e.
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fan:+F; = ma,
fany+F, = ma, (4.41)
fang+1 =mpla.

In the presence of friction, there is also a tangential reaction force f;, subject
to the restriction 0 < |fy| < u fn. Letting vy = nzr; + n,r,, the equations of
motion become

fn'nz+ftny+Fz = ma;
fany—finz +Fy = may (4.42)
fang+ fivg+1 =mpla.

The last set of equations makes explicit one description of the friction cone.
Specifically, its edges are given by the two vectors A,n + v, where v/ is parallel
to the vector t, + ;‘,t, X r, that is, vy = %(n,, —n,, %(nz rz + nyry)), and

214
A, = (l + :—;1} is the normalizing factor used in the definition of n (see Eq.

(4.39)).

Notice the mathematical substantiation of the intuitive description of the
friction cone in Ch. 2. The configuration space normal models the direction of
a real space normal reaction force and its induced reaction torque. This is clear
from the cross product term in the angular component n, of the normal (see Eq.
(4.40)). Similarly, the edges of the friction cone model the direction of a real space
tangential reaction force and its associated induced torque. This is apparent from
the cross product in the angular component of the vector vy.

4.4.3. Relative Motions of the Reference Point and the Point of Contact

This subsection reviews some of the equations of motion that relate the
motion of a point of contact to the motion of an object’s reference point. The
motion of the contact point determines the real space interaction of the moving
object with constraints in its environment, while the motion of the reference
point and orientation of the object represent this same interaction in configuration
space. Studying the relationship between the two representations of motions builds
intuition about configuration space. Additionally, the results of this subsection will
be used later in computing reaction forces.

Denote by v, the real space velocity of the reference point, and by w the
angular velocity of the object about its reference point. Let vg be the velocity of the
contact point. Let a.,, @, and ag have similar meanings for acceleration. Note that
the configuration space representation of velocity is just v = (v;, vy, pw), where
v:y = (v,, vy). Similarly for acceleration. Let the vector from the contact point to
the reference point be r, as usual.
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It is convenient to think of all the 2-vectors above as vectors in 3-space, with
zero third components. The angular quantities w and a can then be thought of as :
3-vectors, with first two components zero. When considered as vectors, w and a -
will be written as w and a, respectively. This is basically the configuration space
representation. Note that the velocity at the contact point is just the velocity of
the reference point with an adjustment for rotation. Thus

Vzy = Vo +(w Xr) (4.43) )

Differentiating, while keeping in mind that the radius vector r need not be i

;' constant, the relationship between accelerations is simply “

!

g 8z = a0+ (aXr)+wX (wXr) vy ;1

» .

E The third term is a centripetal term that appears because of the accele »t'

F' that occurs along r as a result of angular velocity. The previous analysis on the

peg-in-hole problem ignored this term by assuming static or quasi-static behavior.

4.4.3.1. Sliding and Normal Contact Velocities and Accelerations

. Contact sliding and normal velocities relate very simply to configuration space 4
,' tangential and normal velocities. Specifically, using Eq. (4.43), )
[ ,
b vO . t‘ =V- V,’ (4-45) ‘4
vo:-ng =A,v-n, (4.46) 4
]
2 1
where A, = (1 + 3}) is the normalizing factor used in the definition of n (see .

Eq. (4.39)).

Thus the contact interaction is immediate from the configuration space 4
velocities. Unfortunately, a similar relationship does not hold for accelerations, §
unless the angular velocity w is zero, due to the centripetal term. One can, however, :

‘- add a fictitious acceleration ~w X (w X r) to the configuration space acceleration. :
»L Having done so, the contact accelerations may be recovered analogously to the ]
:. contact velocities. Namely, 1
! ag-t, =(a+w2r)-v,, (4.47)

3
"o ag - ng =An(a+w2r)-n, (4.48) 1
: 1
o 1
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Figure 4.9. Without acceleration normal to the circle, the point will simply move in
a straight line.

4.4.3.2. Contact Conditions

In order to maintain contact with a surface, it is necessary to restrict the range
of velocities and accelerations. In particular, in order to remain on a surface of
contact it must be the case that the object’s velocity is tangential to the surface.
This statement of constraint applies equally to real space and configuration space.
In real space the contact velocity must be tangential to the real space surface, that
is, the velocity normal to the surface must be zero. Similarly, in configuration space
the reference point must be moving tangentially to the configuration space surface.
Its normal velocity must be zero. The real and configuration space conditions are,
of course, equivalent by Eqgs. (4.45) and (4.46). Thus, in order to maintain contact
with a surface, the following condition must hold.

v.n=20 (4.49)

The same condition does not apply to accelerations. It is not the case that cither
the normal contact acceleration or the normal configuration space acceleration must
be constrained to be zero. The peg-in-hole analysis of the previous section did in
fact assume that the contact acceleration was zero. This was possible only because
of the quasi-static assumption of that analysis.

The difficulty with assuming that the normal acceleration is zero does not lie
with the centripetal term mentioned above. Rather, it is fundamentally inaccurate
to assume that the normal acceleration is zero. To see this, suppose that a point
is moving on a circle, and suppose that it has a non-zero velocity tangential to the
circle, as in Fig. 4.9. If the normal acceleration were zero, then the point would not
change its velocity. Thus it would move in a straight line, rather than in a circle.

The correct acceleration constraint is derived by differentiating Eq. (4.49). If
the configuration space normal is constant, then the condition reduces to assuming
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that the normal configuration space acceleration be zero. Otherwise, an extra term
appears. Note, by Eq. (4.44), even when the norinal configuration space acceleration
is zero, it is not necessary that the real space normal acceleration be zero. The next
subsection derives the correct constraints.

4.4.3.3. General Second Variation Constraint
In general, suppose that a surface in some configuration space of n parameters

Zy,...,Zn is represented by the implicit equation?

F(z;,...,zn) = 0. (450)

Then the first and second variation constraints are given by

dF d’F
—(it— =0 and W = 0. (4.51)

Intuitively, these constraints say that any curve on the surface given by F
cannot leave that surface.

The first variation constraint reduces to

n 9F dz;
2 omdt

=1

= 0. (4.52)

This is of course just the same as the velocity constraint Eq. (4.49), where the
configuration space normal n is parallel to (8F/9z;,...,dF [/3z,).

The second variation constraint is the derivative of the first variation constraint.

So
9%F dzj_c_iﬂ n oF izﬁ

n
,§ ng dz;0z; dt dt + ‘.; dz; dt?

= 0. (4.53)

n

The last term in the sum on the left is the dot product of a vector parailel
to the configuration space normal, with the configuration space acceleration. For
further details see Jellet (1872).

4.4.3.4. Second Variation Constraint For Type B Surfaces

The next two subsections derive the acceleration constraints for surfaces that
appear in the three dimensional configuration space arising from the interaction
of a polygonal object with polygonal obstacles. The derivation is formulated in
terms of the parameters z, y, and 6. The conversion to z, y, and q parameters is
straightforward (recall that ¢ = p9).

There are two basic types of surfaces that arise. One arises from the interaction
of an edge of the moving object and a vertex of a stationary obstacle, while the

2For multiple contact there would be several such surlace constraints, corresponding to the
intersection of surfaces in conliguration space,
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Figure 4.10. Type B contact. A vertex of the moving object is in contact with an
edge of an obsatacle.

R

o

////

Figure 4.11. Type A contact. An edge of the moving object is in contact with a
vertex of an obstacle.

other arises from the interaction of a vertex of the moving object and an edge of a
stationary obstacle (see Fig. 4.6). In the terminology of Lozano-Pérez (1983), these
- are, respectively, Type A and Type B configuration space surfaces.

(] This subsection considers the simpler Type B surfaces. Consider Fig. 4.10.
| Assume, for convenience, a suitably chosen coordinate system, in which the point
of contact is initially at the origin, the reference point is initially at the point (z, y),
and the angle between the edge and the vector r is 8. The real space normal is given
by (nz, ny), and the length of the radius vector r by the constant scalar r. Since
¢ it is constant, one would expect the second variation constraint to be equivalent to
B the condition that the normal contact acceleration be zero. This will in fact be the
case.

PP RN U & S e

f VA

WS LY Y PR Gr

-'] ‘l

et ATl g

PRI ArET Gl VI

|

|




The configuration space surface is given by

F(z,y,0) = 0, (4.54)
where
F(z,y,0) = n,z+nyy—rsind. (4.55)
The second variation partial derivatives are
‘3—‘: =n, % =n, % = —r cos @
.- %i—f =0 ‘?,,Tf =0 %’1 = rsinf (4.56)
: =0 Eh=0 &= o

! 829y

A bit of fiddling shows that the second variation constraint reduces to

n- (a. + w? r) = 0, (4.57)
; where a is the configuration space acceleration.
, @ Note that this is indeed equivalent to ng-ag = 0, by Eq. (4.48).
f 4.4.3.5. Second Variation Constraint For Type A Surfaces
- This subsection derives the second variation constraint for Type A surfaces.
- Consider Fig. 4.11, which depicts an edge in contact with a vertex. Again, assume
;I a suitably chosen coordinate system, as shown. The complications with this type

of surface are that the real space normal is no longer constant, and that the vector
from the point of contact to the reference point can change in length. As a result,
one expects that the second variation constraint is not equivalent to assuming zero
F ) normal contact velocity.

e Let r, be the perpendicular distance of the reference point from the contact
p .
point, relative to the contact edge. This scalar does not change. As a result, the

4 configuration space surface is given by
F(z,v,6) = 0, (4.58)
:——. where
: F(z,y,0) = —zsin0+ycosf —r,. (4.59)
g Taking derivatives, one gets
° ‘Z—f = —siné %% = cosf %‘- = —zcosf —y sinf
‘;—5 = 0 %v—f = 0 ‘%@ = zsinf —y cosf (4.60)
59:;" = 0 5’:‘,’; = —cosf ‘%’—’— = —sinf
° Again, a bit of fiddling shows that the second variation constraint reduces to
E n-(a—wzr—2wXV,,) = 0. (4.61)
° 205
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4.4.4. Reaction Forces

The section on peg-in-hole assembly discussed the computation of reaction
forces under static or quasi-static assumptions. This subscction generalizes the
results to the computation of reaction forces under dynamic conditions. For
simplicity it is assumed that the configuration space friction cone lies wholly above
its tangent plane. A later subsection deals with the ambiguities that arise when the
friction cone dips below the tangent plane.

4.4.4.1. Fictitious Accelerations and Forces

In the quasi-static case the second variation constraint reduces to the constraint
that the normal acceleration be zero. Thus, in order to compute a reaction force,
one merely projects the negative applied force normally onto the friction cone. The
net force is guaranteed to yield an acceleration with zero normal component. In
the dynamic case the second variation constraint is of the form

n-(a+h) =0, (4.62)

where h is some appropriate vector function of z, y, 8, and their time derivatives.

Now define (h - n)n to be a fictitious configuration space acceleration. This of
course also defines a fictitious force. One can add the fictitious force to the actual
applied force, thinking of the resulting sum as the effective applied force. Relative
to this effective applied force, acceleration is given by a’ = a + (h-n)n.

In other words, one has transformed the equations of motion from

Fapplied + Freactin = Ma (4'63)
into
F ;pplied + Foeaction = Ma’; (4.64)
where
applicd = Fapptied + M(h - n)n, a = a+(h-n)n. (4.65)

In the previous equations, all forces are generalized (configuration space) forces,
and all accelerations are generalized accelerations. Additionally, M is a generalized
mass matrix, combining both the mass and moment of inertia of the moving object.
For the (z, y, q) configuration space of a planar object with two translational and
one rotational degrees of freedom, M is in fact just m I, where m is the usual mass
of the moving object, and I is the 3 X 3 identity matrix. This is because ¢ = p#8
already models the object’s moment of inertia. For more general configuration
spaces M need not have such a simple structure. See, for example, Sec. 4.6.1,
which describes the six dimensional configuration space of a rigid object with three
translational and three rotational degrees of frcedom.
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The constraint on the primed acceleration is simply

n-a’ = 0. (4.66)

Thus, relative to the fictitious applied force, the constraint on acceleration is
equivalent to the quasi-static constraint of zero normal acceleration. In order to §
compute a reaction force, it is therefore sufficient to project the negative of the R
effective applied force, found by adding the fictitious force to the actual applied :
force, normally onto the friction cone.

T

.
Abeh ho s

1

4.4.4.2. Sliding at the Contact Point

The normal projection onto the friction cone is a valid technique when the
sliding contact velocity is zero. In general, one must project the effective applied
force normally into the plane of the cone, and then decide whether the reaction
force lies in the interior or on the edges of the friction cone. By Coulomb’s law, if
the sliding contact velocity is non-zero, then the reaction force must lie on one or ]
the other of the friction cone edges.

Additionally, one may wish to consider the sliding contact acceleration, should
the sliding contact velocity be zero. Only if the sliding contact acceleration that 1
would result from a particular reaction force is zero, does one actually choose
a reaction force from the friction cone’s interior. The use of the sliding contact
acceleration is similar to the assumption of impending motion in quasi-static -
situations.

4.4.4.3. Explicit Computation of Reaction Forces

The computation of the reaction force given an applied force, based on the
techniques outlined above, is presented here. Only the interesting case in which the
tangential sliding velocity is zero, is considered. The other cases follow easily. It is 5
assumed that M is a diagonal matrix with positive entries on the diagonal.

Assume that the reaction force is of the form F,.action = fon + fit}, and
[ . that the vector v; is given by vy = van + v t}+, with v¢ > 0. The reaction force
[ is constrained by
g 1 1
y ~fa < fe < fny (4.67)
ko ki

with f, > 0. Also, k; > 0, and k; < 0 by the assumption that the friction cone
lies above the tangent plane. By the remarks of Sec. 4.4.3.1,

JONIENeS |

¢ ag-t, = (a + uzr)-v,. (4.47)

L' R

L *Similar results apply when the friction cone dips below the tangent plane. ]
. h

} ) 4
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Figure 4.12. The conliguration space friction cone is formed from the normal n by
adding and subtracting the vector uvy. This vector describes the frictional reaction

force and torque.
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Figure 4.13. The configuration space friction cone ¢an dip below the tangent plane.

° This is determined by the sign of the parameter &;.
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Figure 4.14. Real space friction cone. 3

Writing the net force as

‘\H.' PR

Faee = F applied -+ F reactton (4'68)

Y

T,
2

and noting that the second variation constraint (Eq. (4.62)) says that N

Fﬂgt ‘n = M‘ ‘N b
(4.69) -
= —-Mh:.n,

it follows that
Mag-t, = fiv, +C, (470)

e

where o
C =1y (Fapp[,'cd . t,J,') —v,(Mh-n)+ w? Mr- V/). (4.71)

K3 PR Eians o

e

DA

Now, if ft > —C/v,, then the sliding contact acceleration is positive, which
= means that the reaction force should be on the “negative” friction cone edge, given
K by Ann — pvy (see Fig. 4.12). On the other hand, if f; < ~C/v, then the sliding
: contact acceleration is negative, so the reaction force should be on the “positive”
friction cone edge, given by Ann + uv;. Otherwise, the reaction force is in the g
interior of the friction cone.

sl

3 In summary, the normal component of the reaction force, f,, is determined by 1
. ¢ projecting the negative effective applied force normally onto the plane of the friction

cone. The tangential component of the reaction force, f;, is then determined from

the value C above, using the following table. The table is ordered hierarchically.
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Positive normal componen{

e

I

. Projec‘:ioh falls below
real space friction cone

N Figure 4.15. A reaction force projection that lies below the real space friction cone.
E_a A positive normal component must be added in order to reach the friction cone edge.
b

E Projocﬂon falls into
real space friction cone

Nesa{ ive normal Companen{

Liae

Figure 4.16. A reaction force projection that lies within the real space friction cone.
A negative normal component must be added in order to reach the friction cone edge.

(B far if vo-t, >0

;l;fm if vo-t, <0

Efn f —E£<Lfa (4.72)
Ay f -E241a

| =S, fLfm<-E<}sn

Je

P
b

b
s
’e

4.4.5. Motion Ambiguities ]

The previous discussion has assumed that the configuration space friction cone
does not dip below the configuration space tangent plane. This subsection relaxes
that assumption.

b Suppose that the friction cone dips below the tangent plane, as in Fig. 4.13.
E An applied force which points into the portion of friction cone below the tangent

v v ¥ vow vy
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plane can have two effects. Since the friction cone can provide a reaction force that
balances the applied force, it is possible for static equilibrium to occur. On the
other hand, it is also possible for the friction cone to offer no resistance, since the
applied force has a positive normal component. The resulting motion would move
away from the surface.

Both motions are valid solutions of the equations of motion. The first solution
arises under the assumption that the second variation constraint must hold, while
the second solution is a result of assuming zero reaction force.

4.4.5.1. Condition under which the Friction Cone Dips below the Tangent
Plane

The shape of the friction cone is characterized by the two parameters k; and
ko (see Eqs. (4.37) and (4.38)). By the assumption on the signs of the dot products
of the vectors ng, t;+, and t, (see Sec. 4.4.1), the parameter k3 is always negative.
Thus only one side of the friction cone can ever dip below the tangent plane. This
occurs for negative values of k; (see Fig. 4.13).

Consequently, whether the friction cone dips below the tangent plane is
determined by the sign of the quantity

t} -t, — ut} - ng, (4.73)

which is

ti - (ts — pno) (4.74)

Each of the individual terms in the difference (4.73) is assumed to be positive.
If the quantity is positive, then the configuration space friction cone lies above the
tangent plane. If the quantity is negative, then the configuration space friction cone
dips below the tangent plane.

Intuitively, consider what the quantity (4.74) measures. Recall that the real
space component of any reaction force must lie within the real space friction cone. If
the force has a positive component along the sliding axis, that is, F,.qction - ts = 0,
then, in terms of Fig. 4.14, the normal component must lie above the line defined
by

Freaction * ts = 1 Freaction * No. (475)

Now suppose that a configuration space reaction force is positively parallel to
the tangent t} which defines the configuration space friction cone. The sign of the
quantity (4.74) specifies whether the real space component of this force lies interior
or exterior to the real space friction cone. If the sign of this quantity is negative,
then the real space component of the force lies above the line defined by (4.75). If
the sign is positive, then the force lies below the line.

Now consider a reaction force on the configuration space friction cone’s
“positive” edge (see Fig. 4.12), that is, the force has a positive t} component. Such
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Figure 4.17. Contact normal, contact reaction forces, and radius vector, of some
moving object in contact with an horizontal edge.

a reaction force has both a tangential component parallel to t}+, and a normal
component paralle] to the configuration space normal n. Since the configuration
space reaction force is on an edge of the configuration space friction cone, its real
space component must be on an edge of the real space friction cone, by construction.
This fact allows one to deduce the sign of the normal component from the sign of
quantity (4.74).

If quantity (4.74) is positive, then the tangential component of the reaction force
projects below the real space friction cone. Consequently, the normal component
of the configuration space reaction force must be positive, in order for the reaction
force to lie on the real space friction cone’s edge (see Fig. 4.15). This observation
is equivalent to saying that the configuration space friction cone lies above the
tangent plane. Similarly, if quantity (4.74) is negative, then the normal component
must be negative, which says that the configuration space friction cone dips below
the tangent plane (see Fig. 4.16).

The difference between t, and t/ is essentially the addition of a reaction torque.
Thus the quantity (4.74) basically measures the difference between the configuration
space normal reaction force and torque, on the one hand, and the induced reaction
torque arising from the tangential real space frictional reaction force, on the other
hand. If the component of the frictional torque along the configuration space normal
is large enough, then the friction cone will dip below the tangent plane.

4.4.5.2. An Example

Consider the example of Fig. 4.17, which depicts some moving object in contact
with an horizontal edge. The vector from the point of contact to the reference point
is given by r = (r;, r;). Throughout this example both r; and r, are assumed to
be positive. A simple calculation shows that the sign of quantity (4.74) is the same
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as the sign of
pr4ri—pur,r, (4.76)

To see that this quantity really just measures the difference between the normal
reaction force and torque, and the induced frictional reaction torque, consider the
real space reaction forces. Let the normal real space reaction force be f,, and the
tangential reaction force be f;. These are scalar magnitudes associated with the
vectors shown in Fig. 4.17. The configuration space normal is parallel to the vector

1
(0, 1, -—-r,,). (4.77)
P
In fact, the configuration space normal reaction force is simply

fn (0, 1, “‘% "z)- (4.78)

The configuration space frictional reaction force is

fi (1, 0, %r,). (4.79)

So the net normal component of the reaction force is found by taking a dot product
of the normal with the vector

(ft, fns % (fery = fn r,)). (4.80)

The sign of this dot product is the same as the sign of the dot product of the
vectors (4.77) and (4.80). In other words the sign is given by the sign of

fa+ %(fn ri - firz r,). (4.81)

At the positive cone extreme f; = u fy, with fs > 0. Therefore, letting f, = 1,
and f; = u, the quantity (4.81) is immediately seen to be equivalent to the quantity
(4.76).

4.4.5.3. A Numerical Example

The previous example yielded a friction cone that dipped below the tangeat
plane whenever the quantity (4.76) was negative. That quantity is negative when
r. 7, is large in comparison to r2 and p?. Thus the friction cone dips below the
tangent plane when the object’s reference point is far away from the contact point,
and is almost directly, but not quite, above the contact point.

For a numerical example, let u = 1/4, p =1, r; = 1/8, and r, = 35. Then
pPP+ri—pur.r, <.
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Figure 4.18. An applied force pointing into a configuration space surface and into a
friction cone that dips below the surface tangent plane.

4.4.5.4. Inadequacy of Motion Equations with Friction

The following subsection demonstrates the inadequacy of classical mechanics in
the presence of friction. Specifically, when the configuration space friction cone dips
below the tangent plane, it is possible that the equations of motion are inconsistent
under the standard assumptions about friction. See also Jellet (1872).

Suppose the configuration space friction cone dips below the tangent plane. Now
apply a force which points into the friction cone and points into the configuration
space surface, as in Fig. 4.18. Under static conditions, there is no difficulty in
predicting a reaction force that completely cancels the applied force. However,
suppose that the object is actually sliding in the negative t} and t, directions.
According to the classical view of friction, the reaction force must lie on the friction
cone edge opposing the direction of motion.

In real space, it appears that one can always tangentially project a reaction
force onto the appropriate edge of the friction cone, while keeping the normal
component of the reaction force fixed. It is apparent from the figure, that this is not
possible in configuration space. In fact, it turns out that the equations of motion
‘, in real space may be inconsistent when the configuration space friction cone dips
° below the tangent plane. Thus, the assumption that the reaction force must lie on
L the edge of the real space friction cone is incorrect.

To see that, the equations of motion may be inconsistent, consider the example
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of the previous section. Assume that the object is not rotating, but is sliding
towards the left. The assumption that the object is not rotating means that the
following relationship holds between the acceleration (a,, a,) of the reference point,
the acceleration (ag;, agy) of the contact point, and the angular acceleration a
about the reference point (see Sec. 4.4.3 and Eq. (4.44)).

Gy = Qapz — ar,, ( )
4.82
ay = aoy +arg

Let the applied force at the reference point be given by (F;, F,), and the
applied torque around the reference point by r. The normal reaction force is f,, as
in Fig. 4.17. Then the equations of motion are

F:+ufn = mag; —mar, (4.83)
Fy+fon = magy +mar; (4.84)
T+ pfary—Jfar: = mpla (4.85)

Rearranging produces the relation:

In (p2 + rz —ury r,) = ~(F,, pl—r r,) +mp? agy. (4.86)

Since the applied force is assumed to be pointing into the configuration space
surface, and since the surface normal is parallel to the vector (4.77), the quantity
F, p? — 77, is negative. The second variation constraint says that agy must be zero
in order to maintain contact, and non-negative in order not to violate the surface
constraint. Thus the right hand side of Eq. (4.86) is positive.

The rcal space reaction force f, must also be non-negative. By assumption
the quantity p? + r2 — ur, r, is negative. Thus the left hand side of Eq. (4.86) is
negative. This is a contradiction, showing that the equations are inconsistent.

It is unclear how to resolve this situation. There are two promising possibilities.
One is to assume that the sliding velocity instantaneously goes to zero, should
the above scenario arise. This amounts to assuming some kind of collision-like
interaction in which all energy is transferred to rotation. The second possibility
is simply to dispense with the assumption that the reaction force must lie on
the edge of the friction cone. It was this assumption that generated the previous
contradiction.
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Figure 4.19. Three-point contact. Two principal motions involve sliding on the -
surface and rotating at the extreme contact points.

4.5. Multiple Points.of Contact

During assembly operations an object is seldom in contact with only one )
other object. Assembly operations in the plane ultimately involve a minimum of |
two contact points. The classical peg-in-hole example quickly encounters two-point
contact, as small angular misalignments cause it to make contact with both sides
of the hole. In higher dimensions, the number of independent contacts increases J
directly with the dimension of the space. Furthermore, since the contacts are
usually only one-sided constraints, it is possible to have more contacts than the
dimension of the space, while still retaining mobility. Finally, it is possible to model
the contacts of pairs of surfaces, such as the contact of a face of one object with
the face of another object, as the intersection of several one-point contacts.

PP

During multiple point contact the object is more constrained. Additionally,
the range of possible frictional reaction forces increases. In the plane, for example,
the configuration space friction cone of a translating and rotating object is a two
dimensional subset of force space. Thus it is fairly easy to avoid sticking. As the
number of contacts increases, the frictional reaction forces quickly form a three 1
dimensional subset of force space. Thus the avoidance of sticking surfaces is more
difficult. In order to predict the possible range of reaction forces, it is necessary to
extend the model of the configuration space friction cone to include multiple points
of contact.

A

L.
Pe

ik

4.5.1. Equations of Motion on the Intersection of Surfaces

Multiple contact in real space corresponds to the intersection of surfaces in )
configuration space. For each point of contact in real space, there is an associated ]
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Figure 4.20. Friction cones for the example of Fig. 4.19. The three individual friction 4
cones are described by the triangular sheets. The composite friction cone comprises -
the volume between the individual friction cones, as indicated by the dashed lines. 3
1
3

hyper-surface in the moving object’s configuration space. The surface represents
the constraint on the object’'s degrees of freedom imposed by the point of contact.
Several points of contact impose several constraints on the degrees of freedom. The
constraints are satisfied along the surface that corresponds to the intersection of
all the individual hyper-surfaces.

Each surface has associated configuration space normal and tangent spaces.
These permit definition of the usual one-point friction cones. Suppose that there are
k points of contact. Define for each the usual vector decomposition. In particular,

217




o

vrTT vq"i 3

T

i

(NN A SR S s I e g

Y Y
- AN

v . v v L A PP
o &

——r
R

vew v ey™
.

e
r

DR R S N Y MR i R A S Sul b A S S A S A W Y Al A T R Tt SN R

let ng; = (n.i, nyi) be the real space normal at contact point 7, and let r; be the
radius vector from the 7** point of contact to the reference point. Let ngi be formed
from the cross product ng; X r;, as in the definition of the configuration space
normal n;, and let v, be formed from the cross product t,; X r;, as in the definition
of the vector vy; which is used to define the edges of the itk friction cone.

Finally, let the real space reaction force at point ¢ be given by f,; in the
normal direction, and by f,; in the tangential direction. The equations of motion
are then simply

k k
Fr + ) foinzi + ) funy = mag
=1 =1
k k
Fy + Y fuing = ) funa = may (4.87)
k k )
T+ ani"qi+ tha’”qi = mp‘a,
=1 s=1
where
0 < |fui|l < s fni, foreveryi=1,...,k. (4.88)

From the form of the equations it is apparent that the possible range of reaction
forces is the vector sum of the range of reaction fo ces due to each individual point
of contact. This is just the principle of superposition.

Given a collection of contact points, one can define a composite friction cone
to be the vector sum of the individual friction cones. Any force within this cone
is a potential reaction force. Thus, from a planning viewpoint, motions should be
avoided which require applied forces that fall within the composite friction cone.

As an aside, note that it may not always be possible to predict the decomposition
of a reaction force over the individual points of contact. This is true both in the
static case and the dynamic case. For the static case, the equations of motion (4.87)
have zero accelerations on the right side. Suppose that the applied configuration
space force (F; Fy, 7/p) is known to be pointing into the composite friction cone.
One wishes to predict the reaction forces fn1,..., fak and fu,..., fir. Thus there
are 2k unknowns and only three equations (for the planar case).

Consequently, as soon as there is more than one point of contact, the resolution
of forces among the contact points is indeterminate. In some cases, one may know
that the reaction forces lie on the individual friction cone edges. This reduces the
number of unknowns. However, clearly as the number of contact points increases,
the static indeterminacy will also increase.
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4.5.2. Three-Point Contact Example

Consider the example of Fig. 4.19. The object shown is in three-point contact
with an horizontal edge. All contacts are Type B contacts. Since the configuration
space normal space is two dimensional, the object is not overconstrained. It can
clearly slide horizontally, while maintaining all points of contact. Additionally, by
breaking contact at the other points, the object can rotate about either of the
extreme contact points. This subsection derives the composite friction cone for this
example.

4.5.2.1. The Vector Decomposition

All vectors will be subscripted by the number of the contact point. The left
point is number 1; the right, number 2; and the middle, number 3.

All three points have the same real space normal, namely ng = (0, 1, 0). Given
the conventions of Sec. 4.4.1, the sliding tangents are

ta = (1,0, 0)
6 = (<1, 0,0) (4.89)
tss = (1,0, 0)

The radius vectors are r = (1,1, 0)
e = (=1, 1, 0) (4.90)
r3 = (0, 1, 0)

Consequently, the configuration space normal and friction cone defining vectors

are
Ajng = (0, 1, —1)
p

9
Apng = (0’ 1 %) (4.91)

Aznz = (0, 1, 0)

vig = (—1, 0, -1) (4.92)
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4.5.2.2, The Friction Cones

Recall that the edges of the friction cone at some point of contact are given
by the two vectors A,n + uvy. Thus the three friction cones for the above points
of contact are given by.

Point Number 1: (g, 1, %(y -1} (-um1, —-,1, (s +1)).
Point Number 2: (1, 1, ';(u +1)) (—n 1, —% (- 1)). (4.93)
Point Number 3: (m, 1, %p) (—mn, 1, —% B).

The friction cones are drawn in Fig. 4.20, using p = 1. The composite friction
cone is simply the volume between these three friction cones. In this case, the
middle cone is contained in the vector sum of the two outside cones. Furthermore,
the edges of the middle friction cone lie in the planes formed by the edges of the
exterior friction cones. In general, this need not be the case, as demonstrated in
Sec. 4.5.7.1.

4.5.3. Classes of Contacts

A multiple contact state defines more than a single set of interactions. A point
moving on the intersection of a number of configuration space surfaces can certainly
remain on that intersection. It can, however, also move to a higher dimensional
intersection, by leaving one or more of the surfaces. In the previous example, the
object could either slide, thereby maintaining all three points of contact, or it could
rotate, thereby breaking two of the points of contact.

This observation suggests that in analyzing a multiple point contact, it is also
necessary to analyze all smaller subclasses of contacts. In particular, the application
of forces must be studied in the context of all possible contact classes. In the
previous three-point example, applying a force along the horizontal sliding direction
must cause sliding. This is clear from the composite friction cone. A force with no
torque component will simply project onto a face of the composite friction cone.
All three friction cones, or at least, the two exterior ones, are involved in this
projection.

. In contrast, the application of a force with a large torque component will
[ cause rotation about one of the extreme contact points. This also is clear from the
composite friction cone. The applied force projects onto one of the exterior friction
F cones. Neither of the other two friction cones are involved in the computation of the
¢ reaction force, indicative of the single point interaction that occurs. In summary,
for the three-point example, it is necessary to consider motions resulting both from
three-point contact and from one-point contact.

Consider also the two-point contact of a peg-in-hole problem, as in Fig. 4.2.c.
The types of interactions possible are

YT YYY

q
1. Maintain contact at both points, while moving parallel to the common
configuration space tangent. This movement entails rotating and sliding.
220
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2. Break contact at both points, moving into free space.

3. Break contact at one of the contact points, while rotating about and/or sliding
at the other contact point.

4. No motion.

The task is to predict the behavior that will occur given an arbitrary applied
force.

4.5.4. Predicting Reaction Forces

Suppose that one is given a k-point contact, and an applied géneralized force.
In configuration space this means that the moving point is on the intersection of
k hyper-surfaces. This subsection develops a method for predicting the behavior of
the point in configuration space. The development continues to assume Newton’s
laws as the underlying motion dynamics. For generalized damper dynamics the
prediction of behavior is slightly simpler. In particular, in order to decide whether
sticking can occur at a k-point contact, it is sufficient to intersect the negative
velocity cone with the composite friction cone (see Ch. 2). Since the composite
friction cone represents the range of possible reaction forces, sticking is possible if
and only if this intersection is not empty.

All possible contact classes must be considered in predicting behavior. The
motion resulting from each class considered is a possible response to the applied
force, if the motion does not violate any constraints. For example, in the three-point
contact example of Fig. 4.19, one of the contact subclasses to consider is the
one-point contact at the leftmost point. Clearly, while counterclockwise rotations
about this point are legal, clockwise rotations are not.

Different contact classes can give rise to different resulting motions. The last
subsection of this section presents an example in which the motion resulting from
a particular force is indeterminate within a certain range. This realization makes
evident once again the inherent ambiguity of classical mechanics in the presence
of Coulomb friction. See also Jellet (1872) for comments on static and dynamic
indeterminacy.

4.5.4.1. Consistency of Second Variation Constraints

The constraints on reaction forces are simple. They must satisfy the equations
of motion subject to the second variation constraints for each of the configuration
space surfaces with which there is contact. Of course, the first variation constraint
must also be satisfied. In other words, the contact velocity must be tangential to
the surface of contact. It is tacitly assumed that this condition holds for every point
in the set of contact points.

The equations of motion were given by Eq. (4.87). The second variation
constraints are of the form

a;-n; 2> —h;-n;, 1=1,...,k, (4.94)
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where h; is some appropriate function of position and velocity, determined by Eq.
(1.53) (see also Eq. (4.62)). In fact, for polygonal environments, the constraints can
always be written as (using previous notation)

Ng Gz +Nyay +ng;a 2 —h;-ng;, t=1,...,k (4.95)

Notice that the constraints were written as inequality constraints. This is
because not all of the points of contact need be maintained. For those contacts that
are maintained, the associated constraints are of course equality constraints, but
for those contacts that are broken, the constraints are inequalities. In order not to
violate the surface, the inequalities must be “greater than.”

All contact sets, for which a consistent set of equality constraints may be
found whose solutions do not violate the inequality constraints, yield valid motion
solutions. The consistency of the equality constraints insures that all contacts in the
contact set can actually be maintained. The satisfaction of the remaining inequality
constraints implies that the resulting motion is a legal one, as no surfaces are being
violated.

4.5.4.2. Fictitious Forces and Perpendicular Projections

Once a consistent set of contact points has been found, a reaction force may
be calculated in much the same fashion as was done for single point contact. The
normal space of the contact set has some dimension, which is equal to the number
of independent second variation constraints that are equality constraints. Suppose
that the dimension of the normal space is m (m < min{3, k} for the planar case).
Then the second variation equality constraints can be written as

Nzl Nyl N .
z1 Tyl Tq1 a, h) -npy
N2 Ny2 Ng2 h3 - ngg
. . . av —_ - : (4.96)
a
Nzm Nym Ngm hy - ngm

Now consider the system of equations

Tz1 Myt Mg h h; ‘ngy
z
Nnz2 Ny2 Ng2 h2 * Ngy
. . : hv = . (4'97)
Nzm Nym Ngm 9 hm - nom

Denote by h' a solution to this system. By consistency there is at least one
such solution. Different solutions differ from each other by components that are
perpendicular to all the configuration space normals n;, t =1,...,m.

The solution h' is a fictitious acceleration, with a corresponding fictitious force
Mh'. Relative to an effective applied force that is formed from the actual applied
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Figure 4.21. Three-point contact example. If the object is rotating, then effectively
the contact state is reduced to two-point contact at points 1 and 3.
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force by adding the fictitious force, the constraints on the acceleration are simply
n;-a, =0, t = 1,...,m. This is equivalent to the old trick for computing reaction
forces during one-point contact (see Eqs. (4.63)-(4.66)).

Having added the fictitious force, a reaction force may be computed by
projecting the negative effective applied force perpendicular to the normal space
of the contact set. This shows that the particular choice of h' from the set of all
possible solutions is irrelevant.

If the projection of the negative effective applied force falls into the composite
friction cone, then the reaction force is simply this projection. In particular, if the
object is at rest, and the applied force lies inside the friction cone, then there exists
a reaction force that completely cancels the applied force.

If the projection falls outside of the composite friction cone, then there does
not exist a reaction force. Thus the equations of motion and the second variation
constraints are satisfied with zero reaction force. Of course, there may be other
contact classes, in particular, contact classes of lower normal space dimension, for
which there does exist a reaction force.
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Secs. 4.5.6.2 and 4.5.6.3 discuss an algorithm for computing reaction forces in
more detail. Note that motion ambiguities may arise when the projection is not
uniquely determined. This will become clear in Sec. 4.5.6.2. Sec. 4.5.7 provides an
explicit example demonstrating motion ambiguity.

4.5.5. An Example Demonstrating Constraint Inconsistency

The following subsection considers an example in which not all points of contact
can be consistently maintained. Specifically, consider the three-point example of
Fig. 4.21. Assume that the surfaces are frictionless, for simplicity.

The radius vectors are given by

rp = (":n Ty 0)’
rp = (‘r,,, 2ry, 0), (4.98)
r3 = (—Tz; Ty, 0),

with both r; and r, positive.

The three configuration space normals are parallel to the vectors
1
Ainy = (0,1, —-r;,
p

1
Agnpy = (0, 1, —;r,), (4.99)

1
-1,0, ——ry |.
( P ")

Assume that the object is rotating about contact point 1 without sliding. In
other words, the configuration space velocity of the reference point is parallel to
(=ry, 2, p). In particular, the angular velocity w is non-zero. It is a straightforward
matter to verify that the contact velocities are all tangential to the contact surfaces.
This is also clear from the drawing.

Ajnj

The second variation constraints form the system of equations

0 1 —7‘3 az 1',
0 1 -rz]lay| > —w?|2ry (4.100)

This system of equation shows that the only consistent equality constraints are
formed by assuming contact either at the pair consisting of points 1 and 3, or at
the pair consisting of points 2 and 3. It is clear that the equations of motion have
the same form for both of these contact sets. However, the constraints, hence also
the fictitious forces, are different. Note that three-point contact is effectively not
possible for non-zero rotational velocity w.
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Figure 4.22. Computation of a reaction force. The negative applied force is projected

perpendicular to the conflguration space normal space, and parallel to the commoa
tangent.

Finally, note that for the contact pair 1,3, the second variation constraint
for point 2 is satisfied as an inequality. In other words, ay —r; o = —w? r, which
is greater than —2w? ry. Thus the contact pair 1,3 does not violate the surface
constraint at contact 2.

In contrast, if contact is satisfied for the pair 2,3, then ay —r; a = —2 w? Ty
which is less than —w?r,. Thus the contact pair 2, 3 violates the surface constraint
at point 1. It follows that one cannot assume contact at point 2.

The legal contact classes for this three-point example are therefore simply,
single point contact at point 1, single point contact at point 3, and two-point
contact at points 1 and 3.

4.5.6. Reaction Force Computation for a Two Dimensional Contact Set

This subsection outlines a method for computing reaction forces based on
the previous analysis. The scenario is a contact set whose normal space is two
dimensional. In the three dimensional configuration space of a planar moving
object, a two dimensional contact set is fairly easy to analyze. This is because
the projection dimension is one. The technique outlined below generalizes to more
complicated contact sets, such as those in higher dimensional configuration spaces,
or those whose normal spaces are of lower dimension.

4.5.6.1. Form of the Reaction Force

Suppose there are k points of contact, which satisfy the second variation
constraints with equality. Assume that the normal space dimension is two, and
let tcommon be the vector that is perpendicular to this normal space. Note that
t.ommon 1S 2 common configuration space tangent for all points of contact. Let
F fictitious = M h' be the fictitious force calculated as in Sec. 4.5.4.2.
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Relative to the effective applied force Ff,pp,,-cd = Fappltica + F fictitious, the

reaction force F,.54i0n is calculated by a normal projection. In this manner the
fictitious force automatically insures that the second variation constraints are

satisfied. Thus,

Freaction = _Fapplicd + ¢ teommon, (4-101)

for some appropriate value of the parameter c.* See also Fig. 4.22.

The issue is to determine what values of ¢ are legal values. This is most easily
done by noting that any reaction force must be a combination of friction cone
edges. Depending on the values of tangential contact velocities and accelerations, a
given friction cone edge may not be able to participate in forming a reaction force.
For example, knowing that the contact velocity in Fig. 4.12 is to the left implies
that the reaction force at that contact point must be on the right friction cone
edge. Thus the left friction cone edge cannot be used in forming a reaction force.
This constrains the possible values of the parameter c.

4.5.6.2. Legal Friction Cone Edges

Let r; be the radius vector from the contact point number 7 to the reference
point. Recall, that the contact velocity and acceleration are related to the reference
point velocity and acceleration by Eqs. (4.43) and (4.44). Recall, therefore, that the
tangential contact velocity and acceleration are available as

Voi *tsg =V vy, (4.102)
ag, tyy = (a + w? l'.') Vi (4.103)

where t,; is the sliding tangent, and v ; is the vector defining the friction cone
edges, at point number . Also, v and a are the configuration space velocity and
acceleration, while vy, and ag, are the contact velocity and acceleration at point 1.

By analogy to the one-point analysis, a reaction force at a contact point must
be on one or the other of the friction cone edges if the sliding contact velocity
is non-zero. When the sliding contact velocity is zero, then the sliding contact
acceleration is considered. Only if this also is zero, can the reaction force be in the
interior of the friction cone.

Now suppose the reaction force is F,.qction- In order to consider the tangential
acceleration at the point 7, it is necessary to consider the net force plus the term
w? Mr,. This follows from Eq. (4.47). Consequently, define a variant of net force

F;, = FaPPlied + Freaction + wM r¢ (4 104)
= ‘Flictitiam + wM r; + ¢ teommon,

by Eq. (4.101). F, effectively determines the acceleration of the contact point.

*As always, these forces are generalized forces in conliguration space.
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Figure 4.23. Three-point contact example demonstrating motion ambiguities. The
associated three one-point friction cones do not possess three coplanar edges (see Fig.
4.24)

When the contact velocity is zero, then the sign of F; - v;; determines on which
edge of the friction cone the reaction force must lie. F; is a function of ¢. Thus to
each friction cone edge one can assign a validity tnterval in c space. If ¢ lies in this
interval, then the edge can take part in forming the reaction force determined by
c. Otherwise, it cannot. A reaction force that is interior to a friction cone may be
viewed as the sum of two forces lying on the two friction cone edges.

Let I be the interval corresponding to the “positive” friction cone edge, that
is, to the edge A;n, + vy;. To say that ¢ € I}, means that the edge A;n; + v; may
be used in computing the reaction force F,e4ction, as in Eq. (4.101). Similarly, let
I be the interval corresponding to the “negative” friction cone edge, that is, to
the edge A,;n; — vy;.

Let v be the configuration space velocity of the reference point. Then the
intervals are given by the following table.

The table specifies a column of conditions followed by two columns of intervals.
The conditions are ordered hicrarchically. If a condition is not met, then the
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condition below it should be considered. A condition assumes that all conditions
above it are false.

Whenever a condition is met, the intervals in the adjacent columns specify the
values of ¢ for which the friction cone edges can take part in forming a reaction

force. Also

(F fictitious — W2 M P.‘) Vi
¢y = ’ (4.105)

teommon * \# L

where defined.

vV-vy >0 0 [0, +o0]
v-vy <0 [—o0, +00] 0
teommon * Vi > 0 [—o0, €] [ei, +00)
(4.106)
teommon * Vsi < 0 [eis +o0] [=o0, ]
Fi-vi>0 0 [—o0, +00]
Fi-vsi <0 (00, +o0] 0
Fi-vy=0 [—o0, +00] [—o0, +00]

4.5.6.3. An Algorithm for Projecting onto the Composite Friction Cone

The previous analysis provides an algorithm for computing reaction forces. The
reaction force Feaction(¢) = —Fiypptieq + ¢ tcommon is a function of the parameter
c. Associate with every friction cone edge e in the contact set its validity interval
I.. Then F,c4ction(c) is a valid reaction force if and only if it can be written as the
positive sum of friction cone edges e;,...,e,, such that ¢ is in the intersection of
all the validity intervals I, ,..., I, . For a three dimensional configuration space, as
in this case, it is sufficient to consider only values of n less than or equal to three.

The algorithm generalizes to higher dimensional configuration spaces, and to
other-dimensional contact sets. However, in general, the one dimensional parameter
¢ must be replaced by a multi-dimensional parameter.

4.5.7. Indeterminate Accelerations

This subsection presents an example that demonstrates the indeterminacy of
the equations of motion. This is not surprising, given that the number of variables
in these equations is greater than the number of constraints. The example exhibits
an applied force for which there exist several legal reaction forces.
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Figure 4.24. The three one-point contact friction cones for the example of Fig. 4.23.

The composite friction cone is indicated by the dashed lines. Notice that the middle
friction cone juts out of the planar faces formed by the two exterior friction cones.
This gives rise to motion ambiguities. (The figure is not drawn to scale, but serves to
describe the general relationship of the three friction cones.)
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4.5.7.1. An Example

Consider Fig. 4.23 which depicts a three-point configuration. Assume that the 4
object is stationary. For simplicity assume that the radius of gyration p is 1, and .
that the coefficient of friction u is uon-zero and less than 1/4.

The three radius vectors are

rp = (1, -1, 0)
(0, 1, 0) (4.107)
r3 = (2,1,0).

r2
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Figure 4.26. Force diagram for the example of Fig. 4.23.

The sliding tangent vectors are
tgl = (0, _1, 0)
= (1,0, 0)

s = (_, L o)
V2 V2

s
[ -]
I

(4.108)
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From this it follows that the configuration space normals and edge defining
vectors are given by the following vectors.

A,nl = (1, 0, —-l)

y Agnz = (0, l, 0)

‘ 1 1 1

' Agng = | —, —, ——

¥ . (w:» va ﬂ) w106
] vy = (0, -1, 1) (4109)
| vi2 = (1,0, 1)

0 (1 1 3)
vf3 Ty T T Ty T
* Vi ViV

Consequently, the friction cone edges are specified by

\ [t SN O SO |
.

—
—

1

; Point Number 1: (1, —p, —1 + p) (1, g, =1 — p).

f Point Number 2: (1, 1, p) (—u, 1, —p).

»‘ Point Number 3: ~ (1 +pu, 1 —p, =1 +34) (1—p, 1+, —1—-3u).

3 (4.110)
- Notice that no three edges of the friction cones are coplanar (see Fig. 4.24).
- This is precisely the reason that there exists a continuum of solutions to the
g . A

- equations of motion. In the three-point example of Sec. 4.5.2 the friction cone edges
I‘ were coplanar. Thus, the solution to the equations of motion was independent of

the contact points assumed to be providing reaction forces.

Given a contact set with a certain normal space dimension, one might imagine
that any motion that maintained all contacts was uniquely determined by any
subset of those contacts, so long as that subset preserved the normal dimension. In
general, as this example shows, that supposition is false.

-

|

4.5.7.2. Common Tangent "

Since the object is assumed to be stationary, the second variation constraints

reduce to the constraint that the net acceleration must be perpendicular to the

‘ normal space of the contact set. In other words, the net acceleration must be
parallel to the common tangent t.ommon, Which is easily seen to be

teommon = (1,0, 1). (4.111)

The fact that the friction cone edges are not coplanar means that it is possible
to project an applied force along the common tangent onto two faces formed from
two distinct one-point contact friction cones. Thus, the resulting motion depends
on which two-point coutact one wishes to consider.
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4.5.7.3. Explicit Equations of Motion

The previous argument, based on configuration space information, shows that
there exist motion indeterminacies for the current example. It is instructive to
verify this claim using the standard motion equations (see Fig. 4.25).

Assume that one is projecting applied forces onto planar sheets formed from
edges of the individual friction cones. The applied forces and torque are Fy, Fy,
and 7. Then the equations of motion, in terms of the notation of Fig. 4.25, are

g 1 1
& Fo+fit —fatufot+r—pfs = mas ;
V2 V2 \
}e Fy+ fa+ - fa—uf luf (4.112) |
- vyttt —Js—pj1——pjzs = may .
t V2 V2
1 3 )
r—h—-—fi+uh+tufo+—pfs = ma ;
9 \/_2_ \/5 q
. a
§ Now let F; = —1, F;, = —1, and r = —u. For simplicity take m = 1. By the .
& constraint on acceleration, ay = 0 and ¢; = a = a.
j Projecting along the common tangent onto the faces between the edges of
5 friction cone 1 and friction cone 2 is equivalent to assuming that the effective points 1
‘ of contact are at points 1 and 2. The resulting equations of motion are. ]
o -1+ fitufe =a ;
T {
% ~l—pfi+fp =0 (4.113) ]
? —u—-fi+phH+ufa = a. ]
;
It is easily seen that the solutions to this system are given by ]
[ _
1 £ = 1—-p 1
o 1= 3, 4
! = 4.114
fr =5, (4.114) '
—142u—ud E
° g = —2Feu—mw
- 2 —u.
t Note that both f; and f; are positive, hence valid. Also, a is negative.
b
; Now consider projecting along the common tangent onto a face formed by the
P edges from friction cone 2 and friction cone 3. This is equivalent to assuming that
IL the cffective points of contact are at points 2 and 3. The resulting equations of
L motion are
L
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1 1
-1+—fit+tpufo+—upnf
\/53 w12 /2 3

l
[~

1 1
“1+fo+—fa——ufs =0
V2

—#—éf3+#fz+73_2-ﬂfs

The solutions to this system are

f3

I

a

Again, both f3 and f; are positive, hence valid. Also, for the given restrictions

on u, a is negative.
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4.5.7.4. A Continuum of Reaction Forces

(4.115)

(4.116)

The previous analysis shows that the three-point contact of Fig. 4.23 has two
different motion solutions for the applied force (—1, —1, —u), depending on whether
points 1 and 2, or points 2 and 3, are taken as the defining points of contact.

From this it is clear that any convex combination of the solutions found above
is also a solution when all three points are considered. Thus there is a continuum
of possible reaction forces. Along with this continuum there is a continuum of
possible motions. All are directed along the common tangent t.ommon. In fact, the
accelerations are all in the negative direction, but they vary in magnitude. This
completes the demonstration of motion indeterminacy.
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- 4.6. Friction in Six Dimensional Configuration Space

gr This section examines the representation of friction in the full six dimensional
4 configuration space of a general moving body. The section concentrates on one-point
contact. For simplicity, it is assumed that that there are exactly two translational
and three rotational degrees of freedom at the point of contact. For example,
for polyhedral objects, the contacts considered are vertex-face, face-vertex, and
edge-edge. The ideas presented are generalizations of those discussed in previous
sections for planar motions. Multiple contact may be treated in much the same
fashion as outlined in the previous section for the three dimensional configuration
space.

4.6.1. Configuration Space

The configuration space C of a three dimensional object is given by the
six dimensional manifold R3 X SO(3). SO(3) is the special orthogonal group,
! comprising the group of rotations possible in R3. The object’s moment of inertia

operator defines a field of inrer products on SO(3), which may be combined in a
f natural fashion with the standard inner product on R to define a field of inner

, ® products on C. For convenience, normalize the inner product with respect to mass,
1 that is, treat mass separately. Thus C is a Riemannian manifold (see Arnold (1978),
Appendix 2).
Let p € C and let T, be the six-dimensional tangent space to C at p. Let
>a P1,P2,P3 € R3 be unit vectors corresponding to three orthogonal principal axes
of the object in configuration p. Suppose one chooses a basis for T, in terms of
translation along and rotation about these vectors. Relative to this basis the inner
product &, at p is given by a diagonal matrix with entries 1, 1, 1, pf, pg, p% , where
: p; is the radius of gyration about p;. Specifically, if v = (v;, v2, v3, v4, vs, vg) and
.“ w = (w;, wg, w3, w4, ws, we) are two vectors in T, with respect to principal axes
- coordinates, then their inner product is given by
b
} (100000}(101\
L‘ 010 0 O O w2
2 : 001 0 O O w3
d,(v, w) = (v1, v, v3, v4, Vs, vg) 000 2 0 0 we (4.117)
000 0 p3 0 ws |
000 0 0 o) \uws i
f ®
L
f ]
! ]
: 1
}
)
F: d 1
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Throughout, the convention holds that the first three coordinates of a tangent
vector arise from R%, while the second three coordinates arise from SO(3).

The relationship of the moment of inertia operator to kinetic energy permits
a natural imbedding of forces in the tangent spaces of C. Suppose p: [0, 1] — C
is a curve in C, and F is a force field along this curve. If W is the work done by F
along the curve p, then the representation of F should satisfy

1
dp
W= / q>,,(,,(F,,(,,, &?) dt (4.118)
0

Consequently, if fi, f2, f3 are the forces along, and r, 7,73 are the torques
about the principal axes pj, p2, p3 at some point p € C, then the representation of
this force in T}, relative to principal axes coordinates is

(fl; f2, f3l ;?’Tlv ;‘;7'2. ;‘g‘ﬁi) (4119)

4.6.2. One-Point Contact

Consider now the case of a three dimensional object in one-point contact with
some real space obstacle. The geometric constraint of the one-point contact defines
(within some region of 'C) a five dimensional submanifold M of C. At every point
q € M there is a five dimensional tangent space T:’. One may of course, viewing
q as a point in C, identify T;w with a subspace of T;. The inner product on C
discussed above is inherited by M, permitting definition of a normal space N, for
every ¢ € M. One may write Ty, = N, D T:". Here @ denotes the direct sum of
orthogonal subspaces.

For every point ¢ € M, T,),V is spanned by three vectors corresponding to
pure rotation of the object about the contact point and two vectors corresponding
to pure sliding of the object. The latter two vectors are simply those defining
the real space tangent plane for a fixed object configuration. As with the planar
configuration space discussed previously, one is primarily interested in the three
tangents arising from pure rotation. Let R, denote the subspace of T:" spanned by
these three vectors, and let R} denote its orthogonal complement. One may then
write

TM = R O R,
(4.120)

T, = N;OR; DR,
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In order to examine the spanning tangents of these spaces, it is convenient
to formulate the representation in terms of principal axes coordinates. Let r =
b-C (rz,7y,72) be the real space vector from the point of contact to the reference point,
and let ng = (n;,ny, n3) be the real space normal. For example, in the case of
polyhedral objects, the real space normal is one of the following: the outward normal
of the real space surface in the case of vertex-surface contact; the inward normal of
the object under consideration in the case of surface-vertex contact; the outward
t- normal to the plane formed by the two edges in the case of edge-edge contact. As
noted previously, Té“ is spanned by three rotational and two translational tangent
vectors, namely by

——— T
WA A
Ry .

tz ( 0, Tz, Ty ll 0) 0)
( Tz, 0; —Tz, 01 1: 0)

. t: ( —Ty, Tz, 0O, 0, O, 1) (4.121)
[ ts1 = ( m23, M3, m12, 0, 0, 0)
tye = ( my, mg, m3, 0 0, 0)

where

Py
. . 4

) (n23, ni3,m1g) = no X r (4.122)
. (ml,m2)m3) = (no X l') X ng .

Consequently N, is spanned by

o

hiring

n= (m, n2, N3, ;l{ﬂzs, "l?nl.'h ;‘gmz) (4.123)

F.‘ Ry is spanned by t;, ty,t;.
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Finally, Ry is spanned by

t, = (A3’ 0, —AI; ;lg"yAly —';lg‘ (rz A3 + r, A[), p—‘irv Aa)
! : 3 (4.124)
o= (0, As —Ba F(uBa+ry B —kriAs —kriA)
where
A =n 4+ ;lz-r,nlg —Lr;ng
3 4]
Ay =ng—hrznp+ 4rangyg (4.125)
3 ’1

Ay =n3—Lryngg+ Lreng
41 ]

These vectors may easily be derived by solving four linear equations representing
the orthogonality conditions on t; and ts.

4.6.3. Friction

Fix ¢ € M. Henceforth, the standard dot notation is used for the inner product
¢, on Tj,.
Let ng € T; be a unit vector corresponding to the “outward pointing” real

space normal. Let t;,t, € Ty be two orthogonal unit vectors spanning the real
space tangent plane for configuration g.

‘i Define
4
1 7I'7- . Tq b d Tq
|
¢
-
L 7|’~ . Tq b d Tq
- v +— (v -ng)ng (4.127)
P So 7, ny are the orthogonal projections onto the real space tangent plane and the
9 real space normal space, respectively, viewing these as subspaces of T,. Note that
i lre(v)l = VIV &) + (v - £,)%, and that [lry(v)l| = [v - nol.
¢ Finally, choose n € N such that n-ng > 0, and |[n|| = 1. In other words, n is
o the outward pointing normal of the configuration space surface.
*Alternatively, as in the previous scctions, one could have first defined n, and then defined ng
' in terms of this vector. For the sake of intuitive development this section chose the other route.
|
t
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Given an arbitrary force F € T, decompose F into F = F, + F_, + F,, where
Fn € Ny, Fy € R}, F, € R;. Assuming a coefficient of friction u, the static
equilibrium conditions are

F, =0 (4.128)
In(F)| € pliea(F)l,  Fong < 0 (4.129)

These conditions follow, as in the planar case, from the realization that
frictional forces arise in response to applied forces acting in directions of movement
involving sliding, but not in response to forces acting in directions of pure rotation.

Given condition (4.128), one can, for some unit vector t, € R}, with t,-ng > 0,
write
F=F,+F,
Fp, =(F -t,)t, (4.130)
Fon=(F-n)n

Therefore

7(F) = (F-tg) ”r(tp) + (F-n)mr(n)
(F - tp) mx(ty) (4.131)

u(F) = (F-tp)mu(t,) + (F-n)my(n) (4.132)

Since F:ng < 0, t,-ng > 0,and n-ng > 0, it follows that

Ira(FYl = ~7u(F) - mo
: (4.133)
= ~(F - to)lmatp )l + (F -n)lmao)l)
So
(F-t)lme(toll > w((F ) Imato)ll + (F-m)llnu()l) (4134
(F-tp)limeltolll < = ((F - to) lima(en)ll+ (F -m) [ma(m)l)  (4135)
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Figure 4.26. The conflguration space friction cone for different values of the parameter .
° k,. Note that k; must always be non-positive. {
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Thus
(F-n) < ki (F-ty) (4.136)
(F-n) < ko(F-ty), (4.137)
where
b — [l (t)l] = & llmn ()]
pl|ma(n)l|
(4.138)

_ (el + m flma(tp)l
# || (m )

ky =

The frictional constraints of the three dimensional configuration space analysis
discussed in Sec. 4.3.6 are easily seen to be a special case of Egs. (4.136) and (4.137).
For a given t, € R}, Eqs. (4.136) and (4.137) define a two dimensional cone in Tj.
Thus t, acts as a parameter for a one-parameter family of such cones, the union
of which comprises the complete six dimensional configuration space friction cone.
The cone is therefore a three dimensional subset of Tj.

It is interesting to examine the meaning of these two constraints. In particular,
note that k; is never positive, and in practice is always negative. Now if k; > 0,
then the constraints become

1

o (F-n) < (F-t) < L (F.n), with Fon<o. (4.139)
1

ko
On the other hand, if &y < 0, then the constraints become

1

(F - n), for F-n <0,
ko

(F ’ tp) S
(4.140)

(F-n) < ki (F-t,), for F-n > 0.
In other words, for positive k;, the t, slice of the generalized friction cone lies

wholly above the tangent plane, whereas for negative k; it lies partially below the
tangent plane. See Fig. 4.26.
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4.6.4. Reaction Force

Assume zero translational velocity at the point of contact. Given an arbitrary
applicd force F, = F, + F, + F,, with F,.n < 0, one would expect a reaction
force of the form Fy = —F, —tF,, where t € [0, 1]is the maximum value which
permits — F . to satisfy the frictional constraints of Egs. (4.136) and (4.137).5 If these
constraints cannot be satisfied for any appropriate value of t, then I', == 0. The
only issue is whether the decomposition of forces into Fy, Fy, and F, components
is a sound one, that is, whether the choice of inner product on C is a physically
valid choice. This subsection shall investigate this issue by considering the extreme
case of an object hinged at the point of contact. This problem is equivalent to
the friction problem with respect to the orthogonal decomposition of forces. The
difference between the two problems lies primarily in the constraints imposed on
the relative maximum magnitudes of reaction force components in the frictional
case. In addition, for non-zero contact velocities, the fictitious applied forces in the
frictional case include terms that depend on the shape of the contact surface.

In order to analyze the problem it is convenient to translate between a
configuration space formulation and a Newton-Euler formulation. The following
assumptions are made:

For a given configuration, the representation of all vectors will be in terms of
the principal axes coordinates of the associated tangent space.

The configuration space reference point is the object’s center of mass. This
assumption may be modified to permit arbitrary centers of compliance.

®The case F, 'm > 0is more complicated. In particular, motion indeterminacies may arise. If the
non-rotational component of the applicd force, that is, Fo + F,, lics insid » the [riction cone, then
the object may either stick to the contact surface or accelerate away [rom the contact surface.
The previous scetions have discussed indeterminacy in the three dimensional configuration space.
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The following notation is employed:

r = (r;,r,,r;)is the real space vector

from the hinge point to the reference point.

F, = (F,z, F.y, F..) is the real space force applied

at the reference point.

Ta == (Taz) Tay, Taz) is the real space torque applied

b
‘ -
"e at the reference point.

Fy = (Fpz, Fay, Fr;) is the real space reaction force

at the contact point.

} Th = (Trz) Try) Trz) is the real space reaction torque

about the reference point.

a = (az, ay,a;) is the real space acceleration

of the reference point.

a = (az, ay,a;) is the real space angular acceleration

about the reference point.

O
X F,. is the configuration space representation of the applied force.
.
r. F: is the configuration space representation of the reaction force.
tk K w is the real space angular velocity about the reference point.
|
s
r o m is the total mass of the object.
I is the moment of inertia tensor.

4 p; is the radius of gyration about the t axis (1 = z,y,2).
‘,
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The Newton-Euler equations say (See Symon (1971))

4.141
%(Iw) = 1, +Tx ( )
The hinge constraint gives
a=aXr +wX(wXr) (4.142)
Now
TR = (—I')XFR = anr
) (4.143)
—(lw) = Ta + w X lw
dt
So
mlaXr) + mwX(wXr) = F,+F,
(4.144)

Iaa + w X1Iw = 1,4+ 15

If one regards —m(w X (w X r)) as a fictitious applied force, and —w X Iw
as a fictitious applied torque, then one can assume without loss of generality that
w = 0. Therefore Newton-Euler reduces to

m(aXr) = F,+F,

_ (4.145)
Ia=TA+TR, WIthTR=F,¢Xl'

For a hinged object the difference between N, and R} is meaningless. One has
in effect defined a new three dimensional submanifold NV of C. One can thus lump
the two spaces together and decompose Ty as T, = R (D Ry, where Ry is as before
the space of rotational tangents.

In terms of principal axes coordinates, R, is spanned by

t; = ( 0, —r,, Ty 1, 0, 0)
ty=( r:, 0,—rz, 0, 1, 0) (4.146)
t; = (_rV' r., 0, 0, 0, 1)

The orthogonal complement R} is spanned by

213

T YT Ty

a4 aa _1_"4_.. .A.;mf._‘LJ

L ¢
PYRT e Y UL

Cid liaca

O

PRI S

A ddd




T

-y v
]

v

Y

T

FV‘" o LTy ™ " PSRN S st S Mt ekt 3 R A S Aa Aeriach ACh/nma i S MRl e an e s o L'l'l'ﬂ
. )
b <
E L
4
¢
g 1
'\
_4
9
-
P
r -
1
4
i s
4

» X
Figure 4.27. Spherical coordinates.

t 1 0 Te T, 1L rzTy’s N l+f'2 N

= —_—, S, -t — r
: P 1+':2+fy2’ ok 1+712+'v2, ’3 z l+f:2+fv2’ 2 v

2
TyTa 1+r, TefyTa
t2=| 01, —5—, br:—— 4y 4.147
( C 1‘”*2"%2’ 37 1+r;2+-r,,2’ ol 1+f:2+7v2’ K27 ( )
ty = (o, 0,1, —1r, r, o)
Pz Py

The choice of inner product in terms of the moment of inertia operator is
justified by the following

Proposition Let F, be an applied force at some point g € N C C.
Write F, = F,, + F,,, where F, € R}, F, € R,. Then F,=-F,,.

Proof

[t 1s sufficient to show

(4.148)

These statements are furrly evident from the definitions of Ry, Ry, and the
Newton-Fuler equatior.. However, the proof is presented here for the sake of
completeness.

I.  Relative to principal axes coordinates, since 7, = Fgz X r,
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So

FR ‘t: == —FRyrz+FRzrv+Ferz—FRzrv
= 0

FR -ty == Frery — Fpatz + Fparz — Fpars

= 0
F—R'tz = —FR:TV+ngrz+FR:Ty—FRvT;
= 0

So Fp-t =0, for every t € R,.

II. The Newton-Euler equations

m(a X r)=F,+Fg

IQ=TA+TR

yield the following linear equations

m(ayr; — azry) = Faz + Fpz
m(azrz - azrl) = FAV + FRV
m(azry — ayrz) = Faz+ Fps
2 _—
mpzQz = Taz + Trz
2 _—
mpyQy = Tay + Try
2 —
mp;0; = Taz + Trz

i s et A

Fp= (FRz: FRy, Fgz, ;l-z(FRyrz - Fnzry); ’_%(szrz - Fnzrz)y ﬁ(FRzry - FRy"'z))

(4.149)

(4.150)

(4.151)

14.152)
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Therefore R
b
y
= rz7s p
(Fa+Fg) -ty = m(ayr: —a.ry) + 3 m(ezry — ayrz) 9
1+rs +ry A
rsTyfs ma l+r|,2 + :
- — . may + mryo
1+r,2+r,2 * z H—r.z‘f-r‘,2 v L ’
=0 (4.153)
4 :
Ty, Ty
S (F.+Fp)-t2 = ma.r; —azr;) + ——!2——2 m(agry — ayrsz) p
1+fz +f' N
L + l+r.2 m + rafyTs 1
r, ——— ma —_— ma, — Mra
: l+':2+fy2 * l+'az+fy2 v o
¢ =0 (4.154) )
8
,‘ (Fo+ Fp)-t3 = m(azry — ayrs) —mazry + moyrs
g — 0 (4.155) :
?- ;
2 :
E‘ So (Fs+Fg)-t =0, for every t € R}. g
3 This completes the proof. 1§ R
r ‘
! 4
¢ 4
F 1
- ‘ .4
(|
1
|
3
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Figure 4.28. An object whose principal axes are aligned with the z, y, z axes.

4.6.5. Application

This subsection briefly address the issue of representing C, M, T,, Ny, R,, and
R: in a global fashion. It is naturally desirable to represent C as a six dimensional
vector space, so that the tangent spaces T, may be directly identified with C itself.
Since C is a six dimensional manifold this is always possible locally. Unfortunately
it iz not strictly possible globally. If, however, one is willing to tolerate singularities
in the representation, then one can approximate C by a vector space fairly well.

The representation employs six parameters (z,y, z, 0, ¢, ¥), where z,y, z are the
usual translational coordinates of R3, and 0, ¢, are three angles which represent
orientation. See Fig. 4.27. The angular coordinates are exactly the “joint angles”
employed in the representation of a spherical wrist. They are also referred to as
Cardan suspension coordinates (see Kane and Levinson (1978)). Singularities occur
for 8 values that are multiples of #. Furthermore, note that without restriction
on the range of the joint angles, there are multiple representations of any given
orientation.” The (z, v, 2,0, ¢, ) parameterization approximates C as a vector space.
In particular, rotations about the three different axes of rotation commute. The
parameterization is desirable on this basis.

Now consider an object, such as the block in Fig. 4.28, whose principal axes
are aligned with the z,y,z axes when 8,4,y are all zero. Suppose the object is
in contact with a real space surface given by the z-y plane (see Fig. 4.29). Let

"For cxample, the two representations (8o, éo, ¥o), and ( — Og, ™ + ¢o, ™ + o) correspond to the
same physical orientation. This is to be cxpected, given the singularitics. Also note that there are
multiple representations of the same physical rotation.
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Figure 4.29. An object in one-point contact with the z-y plane

r = (ry,72,73) be the vector in the zero position from the vertex of contact to the
reference point.?

Let Rggy be the standard rotation matrix?

CHCOCy — 3¢Sy —CyCoSy —34Cy Cy 3¢

Rogy = |5gCocy +Cp3y —34Co8y+cycy 8489 (4.156)
—8gcCy 89 3y co
and let
r(0,¢,9) = (rz, 7y, 7:) = Rogy rt (4.157)

Then the configuration space surface M associated with the reference point r(8, ¢, ¥)
is given by

*Assumed to be the center of mass or compliance.

%l.et ¢, and a; denote cos(t) and sin(i), respectively (s = 6, ¢, ¥).
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2(2,9,0,6,%) = rz +Z

y(if, 78 01 ¢: 1/)) =1y +9y

z(fl Y, 0, ¢1 'sb) =Tr;

0(32, 7, 01 ¢s ¢) = 0 (4158)
#(z,9,0,6,9) = ¢

¢(f; Y, 0; ¢; ¢) = ¢

where %, § are the z-y coordinates of the contact point.

Now suppose that ¢ = ¢q(%, 7,0, ¢,9) is a point in M. One wishes to examine
Ng, Ry, and R}. Clearly one can determine R, without resorting to principal axes
coordinates. One need merely differentiate the expression for ¢ with respect to 6,
#, and 3. Therefore, R, is spanned by

dr, Odr, ar, )
(aa’ a8’ ae’ 1,0,0
(8r. or, 3r,

3¢’ 8¢’ a¢
(8_r: 9ry, dr,

) y o) o’ 1)
oY Y Iy

0, 1, o) (4.159)

These derivatives are easily calculable.

Now let
sy cy O
Bogy =| — 3 % 0 (4.160)
we _ue

The columns of Byy, are the principal axes of the object for some configuration ¢
expressed in (6, ¢, 1) coordinates.

This matrix may be derived by noting that rotations in the 8, ¢, and 9 directions
correspond to rotations about the three vectors (— sin @, cos ¢, 0), (0, 0, 1), and
(cos ¢ sin @, sin ¢ sin 8, cosf), respectively, where these vectors are expressed in
terms of standard z, y, and 2z coordinates.

Rygy maps principal axes coordinates to z,y,z coordinates, while Byyy maps
principal axes coordinates to 8, ¢, 1 coordinates.

So, if

v €Ty, (4.161)

and

219

RS

P
Ta vy N




’\

b

% » v = (vy,va) ' (4.162)
1

when expressed in principal axes coordinates, then

v = (Rogy v1, Bogy v2) (4.163)

F when expressed in z,y, 2,0, ¢, ¥ coordinates.

This permits calculation of N; and R} in terms of z,y, 2,68, ¢,% coordinates,
given the earlier derivations relative to principal axes coordinates. Of course, for
any given object, such as one with a uniform mass distribution, simpler methods

E

S

L‘ may exist.
r Finally, note that the sliding tangent space is spanned by
{

t; = (1,0, 0,0, 0, 0)

q 4.164

i t, = (0,1,0,0,0,0) ( )
{

E‘, while the real space normal is given by

L.

5 no = (0,0, 1,0, 0, 0) (4.165)

This shows that the projections m, and r, are easy to calculate.
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4.7. Summary

This chapter has developed a generalization of the real space friction cone
for representing friction in configuration space. The configuration space friction
cone models both the reaction forces and the reaction torques generated by a point
of contact. The friction cone thus represents the range of generalized reaction
forces that can be generated by a point of contact. For multiple points of contact,
the composite configuration space friction cone is simply the vector sum of the
individual one-point contact friction cones.

The friction cone is a useful geometric tool. In the case of generalized damper
dynamics, the friction cone offers a simple geometric test for sticking. A commanded
velocity will cause sticking precisely when it points into the friction cone. More
generally, a range of velocities, such as those in the velocity uncertainty cone, can
cause sticking exactly when the intersection of the negative velocity range with the
friction cone is not empty.

A planning scheme can use this geometric sticking test to determine surfaces in
configuration space on which a motion might stick. In particular, the backprojection
algorithm can use the sticking test to mark regions which should be avoided. The
remaining regions are sliding regions.

The friction cone also makes geometrically explicit points at which motion
ambiguities might occur. For example, if a one-point friction cone dips below the
tangent plane, then a'motion may or may not stick at that point. Additionally,
when the edges of the individual friction cones which comprise a composite friction
cone are not coplanar, then a variety of reaction forces can arise in response to an
applied force. Effectively, the distribution of reaction forces among the points of
contact is indeterminate. Consequently, the resulting motion is ambiguous.

The chapter also considered a method for computing reaction forces within
Newton’s world, under arbitrary initial conditions. This method takes account of
second order terms arising from non-zero rotational velocity. Computing reaction
forces is useful to a planner that operates in Newton’s world. Additionally, this
capability is required of any simulator that wishes to model or verify the results of
a planning scheme.

Finally, while most of the chapter considered the three dimensional configuration
space corresponding to a rigid object translating and rotating in the plane, the
end of the chapter presented an analysis of friction in the full six dimensional
configuration space of a three dimensional rigid object.
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Chapter Five
Conclusion
5.1. Summary
B This thesis has developed geometrical tools for planning motions in the presence

of uncertainty. An algorithm was presented for backprojecting from goal states.
The backprojection algorithm computed regions from which certain motions were
guaranteed to successfully accomplish a desired task. The connection between these
backprojection regions and the structure of goal sets and termination conditions
was investigated. Finally, a representation of friction in configuration space was

k
.
- developed.

The thesis employed a configuration space representation in order to reduce
o motions of objects to motions of points. The configuration space of a moving object
tu is the parameter space corresponding to the object’s degrees of freedom. Tasks are
[ specified in configuration space by desired goal regions. These regions correspond
to sets of configurations that the moving object should attain in order that the
task be successfully accomplished.

Uncertainty appeared both in the sensors that interrogated the state of a system,
as well as in the control commands that changed the state of the system. The
sensors assumed throughout this thesis were position and force sensors. Uncertainty
was represented by a ball of possible interpretations of measured sensor values.
The dynamics of the underlying system were modelled by the generalized damper.
This is a first order system which permits identification of velocities and forces.
Thus, the force sensors were equivalent to velocity sensors. Additionally, with
generalized damper dynamics, the control commands were desired velocities. The
effective velocity commands were assumed to lie in some uncertainty cone about

- the desired velocity command.

" The backprojection algorithm operated by erecting the negative commanded
. ® velocity cone at undesirable regions in configuration space. In essence, the algorithm
' geometrically solved the generalized damper differential equation, in order to
determine all regions from which a point could possibly move to a region in which
the point could stick on a non-goal surface. From the remaining regions all points
were guaranteed to reach the goal. They would do so either by moving through
o free space, or by sliding on configuration space surfaces.

The thesis considered the power of termination predicates in relation to the
structure of backprojection regions. In order to accomplish a task, it is not sufficient
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for a point to merely reach its goal. Additionally, it is necessary for the plan executor
to recognize entry of the j:oint into the goal. Termination predicates that use sensors
to interrogate the state of the moving point must be employed. These termination
predicates halt a motion once they are certain that all interpretations of the sensor
values are included in a goal (see Lozano-Pérez, Mason, and Taylor (1983)).

A structure equation was presented which showed that all regions from which
motions are guaranteed to recognizably enter a goal are backprojections of particular
subsets of the goal. These subsets are the first entry sets of trajectories, that is, the
first possible positions at which a trajectory is about to enter a goal region. The
termination predicate assumed in formulating this structure equation was allowed
only to consider current sensor values and remember the initial starting region. It
was not permitted to remember previous sensor values, or to possess a clock with
which to measure time.

The basis of the backprojection algorithm lay in exploiting surfaces that could
guide motions to the goal, while avoiding surfaces on which motions could stick.
In order to devise a systematic method for deciding whether a motion may stick
on a given surface, it was necessary to develop a representation of friction in
configuration space. Friction was represented by a friction cone analogous to the
real space friction cone. The configuration space friction cone differs from its real
space counterpart by the addition of torques. These torques are the induced torques
generated by the normal and tangential components of force contained in the real
space friction cone.

One point contact in real space corresponds to movement along a hyper-surface
in configuration space, while multiple point contact in real space corresponds to
movement along the intersection of multiple hyper-surfaces in configuration space.
The friction cone for multiple point contact was found to be the vector sum of the
individual one-point contact friction cones.

Within the generalized damper framework, the configuration space friction cone
permitted a simple geometrical test for sticking. Sticking could occur exactly when
a commanded velocity pointed into the friction cone. Thus sticking was possible
whenever the negative commanded velocity cone intersected the configuration space
friction cone.

The thesis also considered the friction cone representation within the framework
of Newton’s world. In particular, the thesis investigated the computation of reaction
forces given arbitrary applied forces and arbitrary initial velocities. The computation
amounted to a normal projection of an effective applied force. The effective applied
force took into account the effect of second order terms, such as centripetal and
coriolis forces.

Finally, the configuration space representation made explicit in geometrical
terms conditions under which motion ambiguities could arise. These could occur
for multiple contact whenever the edges of the individual friction cones were non-
planar. Additionally, for single point contact, ambiguities were found to be possible
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whenever the configuration space friction cone dipped below the configuration space
tangent plane.

5.2. Suggestions for Future Work

5.2.1. Model Uncertainty

The thesis assumed that uncertainty was concentrated in sensors and control.
The basic shape of the environment was assumed to be modelled perfectly. Future
work should consider relaxing this assumption. Undoubtedly some model error can
be incorporated into the position and velocity sensors’ uncertainties. For example,
an error in the relative positions of two objects may be represented by uncertainty
in the position sensor, while an error in the incline of a surface may be represented
by uncertainty in the velocity sensor. Furthermore, all errors in modelling are easily
accounted for by the formal framework of pre-images.

At issue is the problem of computing pre-images or backprojections. Backprojec-
tions reflect the possible trajectories that a point may follow, subject to the
uncertainty in commanded velocities. Uncertainty in the basic shape of environment
models implies an extra degree of uncertainty in the trajectories that emanate
from a given point. Clearly, if arbitrary model uncertainty is allowed, then very
little can be said about these trajectories. Thus the question is twofold. First, one
should decide on the type of model uncertainty that one is willing to tolerate.
Second, one should represent this uncertainty in a fashion that permits pre-image
or backprojection computation. In particular, one must worry about the meaning
of backprojections in the presence of model uncertainty.

5.2.2. Implementation of Backprojections for Full Six Dimensions

The thesis outlined an algorithm for computing backprojections in two and three
dimensional configuration spaces. Future work should consider implementations
for the full six dimensional configuration space arising from a rigid body with
three translational and three rotational degrees of freedom. A slice algorithm
employing three dimensional slices, much as the algorithm of this thesis employed
two dimensional slices, seems attractive,

Additional work might focus on a replacement for the slice algorithm that avoids
linearization approximations. Specifically, a method for computing backprojections,
using the exact generalized damper differential equation while in frictional contact
with surfaces, is desirable. Such a method might consider alternate means to
computing backprojections in six dimensions, while retaining the notions of goal
reachability and recognizability.

5.2.3. Termination Predicates with Time

The thesis showed that backprojections are related via the structure equation
to pre-images that use termination predicates without history or time. More
powerful termination predicates remember previous sensor values and have a sense
of time. Future work should consider re-introducing time and state. The task that
arises, within the framework of this thesis, is the definition and computation of
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backprojections and forward projections. Definitions of these projections should
incorporate some dependence on time. The computation of backprojections indexed
by time, and a description of their relationship to pre-images that employ
termination predicates with a sense of time, are open problems whose solutions
would considerably increase the power of motion planners.

5.2.4. Reprcsentation of Infinite Sets

The thesis briefly outlined a method for reducing infinite collections of sets to
finite collections using the notion of distinguishability. Future work should consider
more general reduction operations. For example, although it may not be possible
to reduce an infinite collection of sets to a finite number of sets, it may be possible
to characterize the types of sets in the collection in a finite fashion. Examples of
this reduction were presented earlier in Chapter 3. More general work in this area
is needed.

5.2.5. Constraints Between Forward Projections and Goal Sets

The end of Chapter 3 developed constraints that must exist between goal sets
and forward projections, in order that the goals be good bases for backprojections.
It was noted that in practical applications these infinite constraints must be
approximated by finite representations. Further investigation of the dependencies
between forward projections and good goal sets is necessary in order to improve
this approximation. Additionally, there is considerable room for work on intra-
goal dependencies. The computation of all goal sets that satisfy the intra-goal
dependencies is still an open problem. A better understanding of the shape of
good goal sets would increase the range of pre-images that are calculable using
backprojections.

5.2.6. Frictional Ambiguities

It would be interesting to better understand the situations in which frictional
ambiguities can arise. This entails abandoning the models of Coulomb friction and
classical mechanics. A better prediction of possible motions in ambiguous conditions
would permit more accurate planning.

5.2.7. Second Order Systems

This thesis assumed a generalized damper as the underlying model of dynamics.
Much work remains to be done in extending the results of this thesis to general
second order systems. Planning in a second order system might contract the position
and velocity uncertainty balls. It would certainly add another type of interpretation
restriction on the set of sensor values, thereby possibly increasing the power of
termination predicates. Furthermore, using second order systems, it would become
possible to specify both position and velocity goals, thereby enlarging the class
of tasks solvable by a planner. At issue is the computation of pre-images and
backprojections in phase space. Both a theoretical investigation and a practical
implementation of a planner for a second order system deserve focused attention.
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5.2.8. Probabilistic Uncertainty

This thesis assumed a very simple model of uncertainty. In particular, errors in
sensing and control were conservatively bounded by a ball or cone about the nominal
sensor value or control command. Pre-images and backprojections define regions
from which particular motions are guaranteed to succeed for all possible sensor and
command errors. In general, one would expect sensor and control uncertainties to
underlie some set of probability distributions. Consequently, one should consider
constructing regions from which motions are guaranteed to reach goal regions with
particular probabilities.

Within the pre-image framework, motions are guaranteed to attain goals,
although the particular goals attained may not be predictable at the beginning of a
motion. Placing probability distributions on the shape of uncertainty extends this
model. A continuum of goals is attainable, subject to some probability distribution.
Failure to achieve a particular goal is recognized with the aid of sensors, much as a
termination predicate decides which goal has been achieved in the pre-image model
of planning.

The precise consequences of permitting more general types of uncertainty
warrant further study.

5.2.9. Computability

Further work is needed in the area of computability. A characterization
of the types of constraints in which the pre-image problem is computable is of
considerable interest. For example, this thesis conjectured that backprojections may
be computed in environments with a finite number of algebraic constraints. Future
research should either substantiate this conjecture, or suggest further restrictions
on the environment required to solve the backprojection problem.
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