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1.0 Introduction

This stochastic radiowave propagation

model useful for assessing the effects of

repcrt describes a
wide-
the

forests upon

200-2000 MHz band. an extension of the model

first reported ia CyberCom Technical Report CTR-108-01 [42].
The theoretical basis for this first .developed by
Foldy [23] and later extended by Lax ([45], Twersky [68] and others.
this model, the represented as 3

stratifiéd cohfiguration of randomly-positioned
Tree trunks

It represents
model was

According to forest is

time-invariant,
and randomly-oriented discrete canonical scatterers.
circular dielectric cylinders;

are modeled as infinitely—long

branches as finitely-long circular dielectric cylinders;
leaves as flat dielectric discs. The propagating radiowave
is considered to consist of two parts: a mean (coherent)

ccmponent derived by averaging stétistically over an ensemble
and a residual random (non-coherent,
fluctuant)

specific forest configuration.

component

diffuse, or uniquely determined by a

1.1 The Coherent Radiowave

Initially, the emphasis in model development was directed
. the
A physically appealing representation

toward mean (coherent) component of

characterization of
the propagating radiowéve.

for the mean component was obtained by postulating ‘that the
mean field componentélsatisfy Maxwell's equations ”iﬂ the mean”
'and that the ensemble of discrete scattefers can be ‘réplaced
by an equivalent continuous medium described by an effective
dyadic permittivity €.
models wherein the effective permittivity was either postulated
or .deduced = from the CyberCom model directly
related g to such salient biophysical' forest ‘parametets vas .the
tree trunk number density, the <tree trunk diameter probability

However, in contradistinction to earlier

measurement,

"density function, and leaf area index.

1-1
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The forest model was refineFISy assuming the trees to be
bounded below by a smooth forezt floor and bounded abocve bY
air. Earlier efforts [15,62,64 had suggested, however, that tiae
introduction of the grcund complicates the model significantly.

In the earlier model [42], these compliéations were avoided by

allowing the forest floor to recede to infinity thereby reducing

the stratified forest model to a half-space representaticn;
the newér, more general model described in this report, however,
incorporates a forest floor of arbitrary permittivity. The
electromagnetic boundary value problems involved in both modeis
were solved using the classical approach first described by
Sommerfeld and later extended by Brekhovskikh [5].

The . stratified forest models described  above are

time-harmonic models in the sense that the signal radiated by

"the transmitting antenna is a sinusoidal waveform of angular

frequency w . However, because the equivalent forest continuum
characterized by the effective dyadic permittivity g'is linear,
Fourier transform techriques have been employed to generaliie
thg model so that it accommddatesarbitrarily modulated waveforms.
Using this approach .- has beenApossible to determine the mean
pulse distortion and Jdifferential pulse delay aééociated with

radiowave propagation through a stratified forest.

1.2 The Inéoherent Radiowave

As the propagating radiowave penetrates deeper and deéper
into the forest, the relative contribution of the random

(incohecrent) component becomes progressively more importaﬁtu

This trénd, anticipated from 9xperiments [51,52], Iwasgifirstw

predicted ﬁheoretically using a two-dimensional, unbounded forest
consisting solely of tree trunks [42]. The application of ' this
early model, however, 1is limited to tree trunk diameters that

scatter in the low-frequency (Rayleigh) regime; for the 200-2000.

MHz band the model proves valid only for tree trunks less than

1 centimeter in diameter.

The - early low-frequency, Rayleigh-scattering model [42,

Section 7] has been. improved and is now no. longer restricted to

-----
..........
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small-diameter trees. Further, the model, in addition to
describing the intensity (power) of both the coherent and
non-coherent components, can also be used to determine the space

correlation function and frequency correlation function of the

.propagating radiowave. Fourier transformation of the former

describes the angular spectrum of radiowaves arriving at a point;
Fourier transformation cf the latter describes the delay spread

of the forest scatter path.

1.3 Scope

This report describes a stechastic radiowave propagation
model wuseful for assegsinq the effects of forests on wide-
band digital communication syshteas. In Section 2 the forest
is characterized, first as to the permittivity of constituent
woody material, then as to the geometries of trunks, branches
and leaves. Finally it is recognized that forests, in general,
have canopies supported by trunks, and some overall models are
proposed. Section 3 presents. the susceptibilities and

.attenuations for an unbounded forest of tree trunks having uniform

or exporentially-distributed diameter d:stributions. Section 4
considers a more realistic forest, bourdea not only above by
the air interface but also below by the ground. The theory
is developed; bintpa—forest multipath propagation is evaluated;
the concépt of basic transmission loss is introduced; and Dopﬁler
shift is considered. . Section 5 presents detailed Dbasic
transmission losses ' and pulse responses for direct, reflecteq,
dixect—pLus—feflected, lateral ahd total waves in semi-infinite

leaf and trunk forests. Section 6 uses an integro-differential

" equation for the space-frequency correlation function to evaluate

the properties of the incoherent field, which becomes important

at ‘the higher frequencies of interest here. A two-~dimensional .

forest of circulari fixed-diameter, ' randomly-positioned trunks
is studied. From the general space-fréquencylcorrelation function

are derived the frequency correlation function for thin trunks
,(yielding coherence bandwidth) and the space correlation function
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for arbitrary diameters. The coherent and incoherent intensities
are also found for this general case, removing the size

limitations of the earlier report T42].
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2.0 Biophysical Forest Characterization

. The charactarization of a forest will be undertaken at
several levels. It is first found in Section 2.1 to be suppcrted
by many sources that the basic materials of green wocd and.leaves
{(consisting largely of water) have similar dielectric properties.
A CyberCom mcdel is established for current work, although it
may be refined after further study. The second level of
consideration 1is basically- geometricel, but quite complex in
its specification, andl even more so 1in its electromagnetic
implications. '.This level involves the detailed description
of trunks,vbranches, and leaves. The required parameters include
densities, sizes, and 'orientatlons, considered in Sectlon 2.2,
The third level requires standing back from the parts of trees,
and even from the trees themselves, to see the forest, not as
a whole it turns out, but as a canopy, consisting mostly of
branches and leaves, supported above the ground by the trunls.
This view is considered in Section 2.3; Finally, forest models
are synthesized by quantifying the above concepts in practical
‘cases. Section 2.4 -indicates sources of numerical data and

proposes several CzberCom forest models.

2.1 Electrical Properties of Green Wcod and. Leaves

The electrical pfopertiee of green wood and leaves can
'be specified in terms of their relative permittivity € and

permeability u As with most biological materials, the relative

¢-
permeability My is close to unity. 'The relative permittivity

€, is complex and, for the compiex exponenL1a1 tlme dependence

2
exp[jwt], can be written in the form

é . o= €! - jgz . . B (42'1‘_1)

where‘ei and Cz‘represent, respectively, the real and imaginary
parts of the permittivity €g The imaginary part is proportional,

of course, to the conductivity © through the relation

e;' = o/fwe, . C(2-1-2)

2-1




where €_, 1s the permittivity of free space. The real part Ei

ie often called the dielectric constant; the imaginary part

2, the loss factor.

Although the electrical properties of wood have been the:

' subject of numerous studies [10,30,37], relatively few measured

data pertain to,K green wood and leaves, and fewer still to fre-
quencies above 100 MHz [38,66]. The most appropriate appear
to be those of Broadhurst [6 ]. These studies suggest that,
firstly, the permittivity of green wood is not strongly species-

dependent, although, taken as a class, coniferous (needle-bearing,

.tree wood and needles appear. to have somewhat smaller

permittivities than those of deciduous (leaf-bearing) tree wood
and. leaves. Secondly, although  the importance of intrinsic

' water content for the relative 'permittivity of wood has been

substantiated by many studies, because green wood nearly alwayé
has a high intrinsic water content (adpproximately 75% by volume),
the permittivity of green wood is relatively independent of

‘water content. Thirdly, Broadhurst's measurements on Tulip trees

(L1, D3 of Fig. 2-1) and Bamboo (his Fig. 3) suggest very little
difference between the permittivity of . green wcod and leaves. '

' Broadhurst's data for Tulip tree and Maple (L2 of Fig. 2-1) sug-
gest that'above 10 MHz the dielactric constant si is only weakly

dependent upon frequency and that over the band 200-2000 MHz

£ is approximately equal to 40. For ffequencies bglow‘ 1000

MHz, the imaginary part ez appears to be dominated by conduction

losses and so decreases linearly with increasing frequency.

-Above 1000 MHz, however, relaxation losses associated with

molecular polarization begin to dominate and, in this frequency

region, g; begins to increase with increasing frequency..

Accordingly, in this study of UHF radiowave prdpagation through

forests, the. relative comp]ex perm1tt1v1ty of green ‘wood and

leaves has been modeled using the reldtlon

2.0fy - '
+ ' . (2-1-3)
A GHz -
where fgyz 1is the radiowave frequency expressed in GHz.

1.5

fenz (1 4+ (f

€, = 40.0v- j [

/20 0)?1]
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Table 2-1 summarizes the sources used to determine the di-
electric properties of the forest constituents, that is, green
wood and lcaves, at 50 MHz and above. Most of the data are in
the form of dielectric constant 95 and loss, tangent §. From
these, the real and imaqinary parts of susceptibility (Xh nd

: E, respectively) have been found using the relations Xi = ‘ei
-1 and'XE = eitané . The results arzs plotted in Figqures 2-1

and 2-2. The CyberCom model is seen to be a reasonable approxima-
tion, but it may be noted that, in general, the deciduocus and

‘leaf (D&L) curves lie above those for coniferous and needles

(C&N). It seems likcly,ytherefore, that thére may be a requirement
for specializing the CyberCom mod.1 to deciduous and coniferous
trees. These newer, improved models may turn out to be continuous
functions of wood dencity, moiéture content, and/or other

parameters.

2.2 Physical Properties of Trunks, Branches, and Leaves

v The electromagnetic properties of the forest constituents
(trunks, branches, and leaves) depéﬁd not only on the electrical
properties of the damp, woody material considered above, but
also on the geomefrical factors of size, shape, and oriénta;ion.
The tree trunks are the largest forest scatterers and -so, are
considered in greatest detail. In the 1983 CyberCom Report [42],
a forest of uniform trunk diameter was studied. Here, two major °

forest types of non-uniform trunk diameter are considered: the

“homOgeneous, forest, characterized by an even-aged stand with

a normal (gaussian) distribution of trunk diameters, and  the
inhomogeneous forest, characteriied by an uneven-aged stand with

an exponential (inverse J-shaped) diameter distribution. The .

latter is charactérized by a slope defined by a diameter D,, -

which may not be the true average diameter because of tree trunk

" thinning by man or natural causes. Branch orientation statistics

for conifers have been found and are presented. Brancih diameter

"and length will be considered in a subsequent report. Leaves

are discussed in some detail because they may. be of interest

at the higher frequencies.
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2.2.1 Trunk Diameter Distributions

The equations presented in Sections 4.1 and 4.2 of CyberCom

Technical Report CTR-108-01 [42] for the effective dyadic

susceptibility (yx) and specific attenuation Ihx) of tree trunks
are predicated ‘upon a fixed tree trunk diameter ahd are,
therefore, applicable only to homogeneous forests. To calculate
a weightéd average of x and a tor a non-homogeneous forest the
tree trunk diameter brobability density function (or stand

structure) must be known.

In general, the +trunk diameter probability density function
of an even-aged stand or plantation is nominally normal (gaussian)

[28,54,75]. Expressed matheﬁatically as

p(D) = (/—2no)"exp{-(n-5)2)'202}' . (2-2-1)

the normal probability density function is uniquely specified.

by two parameters - the mean tree trunk diameter (D) and the
standard deviation (o). The mean trunk diameter of an even-aged
stand depends upon the age of the stand - olcer stands having
larger diameters, and the species composition - certain species
grow faster than others. The projected average trunk diameters
at 30, 60, and 90 years for several upland deciduous species

are shown in Table 2-2 [28]. The standard deviation of the

trunk diameters about the mean also depends upon the age and
composition of the stand, although composition appears to be
the more important parameter. Trunk diameter data taken from

87 half-acre plots used by the USDA Forest Service in Ohio,

Kentucky, Missouri. and 1Iowa suggest 'that the coefficient of
variation (the ratio of g¢/D) -ranges. from about 0.7 (young,

irreqular stands) to ‘about 0.1 (old, uniform stands)' [refer

to Tablc 6 of Gingrich [28]].

The ' s1m11ar1ty of nearly normal empirical, probabxllty density
functions of trunk diameter to the normal’ probability density
function can be measured in terms of "skewness" and "kurtosis."

Skewness is a measure of lack of symmetry; .a density fuﬁctiqn

‘with a longer tail to the right of the mean has positive skewness.
_Kurtosis is a measure of the extent to which the height of the
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R} Table 2-2: Projected Average Trunk Diameter (inches)
< Species 30 years ., 60 years 90 years
™ —

N . Yellow poplar 6.9 14.3 21.9

= - Black walnut 6.1 12.6 18.8
l Scarlet oak 5.0 11.0 17.9

o Red oak 4.6 10.1 "~ 16.8

: White ash 4.7 10.0 16.1

R Black oak 4.8 10.1 15.9

< ‘Sugar maple 3.9 8.4 13.5
- Beech ' 3.4 7.4 12.1
4 White oak 3.6 7.5 11.8

N Hickory 3.5 7.1 11.0

. Chestnut oak 2.8 5.8 9.7
]

'-‘H— '.- "- '- "-

) Table 2-3: Trunk Diameter Distributions . [Uneven-Aged Stands])

gy

% Author Region Trees Diameter D r?
Frank et al [24] Northeast US  Spruce-Fir 1-12"  2.44"  1.00
Roach [54] - Allegheny " hardwoods 1-12" 2.27" 0.99
Wiant [76] Appalachian hardwoods 4-15" 2.44" 0.99
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1

empirical density function exceeds that of the normal density
function; an empirical density function with a sharper, higher
peak than the normal has positive kurtosis. All even-aged stands
have some positive skewness, although skewness decreases with
age [2 ,28]. Kurtosis, usually positive for very young stands,
becomes negative as the stand ages. Nevertheless, both Gingrich

.[28]1 and Roach [54] have concluded that the coefficients of

variation, si.ewness, and kurtosis are more closely related to
tree average diameter than to stand site or age. This conclusion
could prove. especially heipful in developing forest mcdels
suitable for'radionave propagation prediction from forest stand
data. Nearly-normal probability density  functions for three

cven-aged stands.are shown in Figure 2-3.

" The Weibull probability density function has also been
suggested as a prbbabilistic model for tree trunk - diameters.
In [15] an example is given for a 20-year old shortleaf pine
(Pinus cchinata) plantation having 800 trees per acre (1980
trees per'hectare). The approximating Weibull probability density
function, however, corresponds closely to a normal probability
density function having a.mean trunk diameter of 15.3 centimeters

and a standard deviation of 3.8 centimeters.

The probability den51ty functlon of an uneven—aged stand
is nominally exponential (sometimes called inverse J-shaped
in forestry). Expressed matnematically as '

p(D) = (1/D)exp{-D/D} (2-2-2)

the éxponential probability density functicn is uniquely specified
by a' single parameter - the mean tree trunk diameter (D). In

contradistinction to an even-aged forest, the mean trunk diameter

., of a mature uneven-aged stand 'does not depend upon its age -

only .upon its species comp051t10n. Tabie 2-3. shows several
sources of uneven-aged forest data (one of which 'is plotted
in Figure 2- -4.) 'from the northeastern 'United  States, and  the
mean trunk diameters derlved by fitting exponent1al probability

density functlons to the data -using a least-squares method.

The mean trunk diameters are all dlose-to 2.5 inches (6.35 cm);
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the corresponding correlation coefficients of the least-squares

fit are all near unity and suggest a very good fit.

It should be realizéd, however, that the parameter, mean
tree trunk diameter (D), as used above in Equation (2-2-2) is
strictly a mathematical measure for the slope of the exponential
probability density function and that the mean tree trunk diameter
as measured in the field may be considerably larger, especially
if the smaller trees are not well represented because of thinning

and/or competition by the larger trees.

The previous paragraphs underscore the importance of mean
trunk diameter in characterizing the trunk diameter probability

density function. Other factors bearing on the density function,

rwhile not so important as mean trunk diameter, are the type

of stand (even-aged or uneven—aged) and, if even-aged, its age
and species composition (especially the latter). In addition
to the trunk diameter probability density function, the trunk
number density is also required to estimate the mean effective
dyadic susceptibility and specific attenuation of non-homogeneous
forests. A potentially useful aid in characterizing' forests
for radiowave propagation prediction may be the forester's
"stocking gquide." These guides relate trunk  (stem) number
density, trunk basal area, mean trunk diameter in the manner
exemplified by Figure 2-5. Silviculturists use these guides
to manage forest vield. - As noted by Roach [54], "the guide

has a rational biological basis; it is generally independent

of the influence of site, age, or' stand structure; and the
measurements that dre needed for its application'can be easily
and-quickly‘obtainéd in the field." The trunk number density
and basal area have been summarized by Cannell [9 ] for many
forests of the world; the cbrresponding mean trunk diameter
and, perhaps, species composiﬁion can be inferred from stocking
guides; and from these data the trunk probability density function

can be estimated.

2.2.2 'Branch Orientation

The equations presented in Sections ﬁ.l'and 4.2 of CyberCom

' Technical . Report CTR-108-01 ~for the effective - dyadic
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susceptibility and specific attenuation of branches and leaVés

involve the probability density functions of their inclination
angles. Probability density functions for the branch inclination
angles of 80-year old Lodgepole pine in Wyoming were measured'
by Gary [27] and are presented 'here. in Figure 2-6(a). It is

apparent from this figure that the inclination angles of the

younger branches in the upper crown are steeper than those of
the older branches in the lower crown. This trend is confirmed
by Ford {24] and by Kimes et al [39]. The negative angles»
indicate that some branches .pointed downward. Gary [27] aléo

reported that there was no signifigaht departure from azihuthal

- symmetry. Linear fits to these data have been made by CyberCom

and are presented in Figure 2-6(b). These linear modéls for
the probability density function of the branch'inclinatiohiangle
will be employed by CyberCom in subsequent numerical evaluations
of the effective dyadic susceptibility and specific attenuation
of coniferous forests. Anaiogous data for the branch inclination

angles of deciduous trees have not yet been located.

2.2.3 Leaf Properties

Because leaf sizes approach fhé wavelength onlyA at the
higher frequencies of interest (A at 2000 MHz = 6"), it appears
that the only leaf parameter of real importance in the present
model 1is the 'fractional' volume occupied. This 1is 'considéred'
in the overall forest characterization of Section 2.4. However
because of the previous concentration on  leaf parameters in
CyberCom Technical 'Report CTR-108-01 and because of possible
future interest (ét higher  frequencies. fér -the applications),

‘the results of a study of .leaf parametefs is included below.

2.2.3.1 Leaf Diameter and Thickness

Two good sources for the area and thickness of leaves
of southeastern deciduous trees were found. The data erm
Rothacher' [56] are summarized in Table 2-4. . The composition
by specieé for the Tennessee Valley shows, in the weight column
and in the numbers of'trges larger than 11 incheS-diametéf_at
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breast height (dbh), the predominance of oaks. The numerous
small sourwoods form an understory following a heavy cut 15
years before data acquisition. Dividing the total 1leaf areas
by the numbers of leaves‘ according to species, the area per
leaf column 1is obtained with areas ranging from 2.5 cm? for
pine necedles to 159 cm? for hickory leaves; Catalpa leaf areas
up to 750 cm’ have been repo.sted [ 1], but the more representative
values of about 55 for Scarlet Oak and Yellow Poplar giVe a
typical equiQalent circular’diamefer of about 8 cm. The average
leaf thicknesses, from Carpenter and Smith [11], are 'for shade
lecaves in Lexington, Kentucky. They range from 0.15 mm to 0.30
mm, with a typical value of 0.2 mm. The volumes per leaf range
from 0.2 to 2.9 cc. The specific gravities are derived by
dividing the total leaf weights in grams by the total volumes
in cubic centimeters. The values rgnge from 0714 g/cc to 0.57

g/cc with a typical figure of about 0.35 g/cc.

The data for conifers provided in Table 2-5 are from the
Biological Handbook [1l ] except the first two items from Rothacher
[56]. Needle lengths have been added from Little {d461]. _An
effective cylinder diameter for the short-leaf pine needle may:
be obtalned as 0.5 mm using a 1length of 20 cm to account for
two-leaf fasc1cles per Rothacher.

2.2.3.2 Foliage Inclination Angles

Probablllty density functlons fot the needle inclination .

7ang1es of Lodgepole pine were measured by Kimes et al [39] and

found to be relatively invariant with height. CyberCom has
found that these density functions can be approximated by '
| 1/60, (0°<0<30°)
p(6) = - ' , (2-2-3-2~1)
- (90-90) /3600, (30°<0<90°)
Subsequent - measurements on Douglas fir by Smith et él [60]
substantiate these results. Smith et al also considered the
leaf inclination angles in a deciduous oak-hickory canopy. Here,
only the lower-third of fhe canopy agreed with the coniferous
probabilityvdensity{ the two ﬁpper-thirds had probability density

- 2-18
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functions that werc essentially uniform for inclination angles

batween 0 and 33 degrees from the horizontal.

2.3 Forest Canopy Structure'

The most obvious structural feature of a forest is not

just that it consists of trunks, branches and 1eavés, but that
these are formed into a canopy of branches and leaves, supported
or widely-spaced trees, the

by the trunks. (For isolated
This simple

continuous canopy reduces to an ensemble of crowns).
with importance for electromagnetic modelling, is not

concept;
The lumberman pays for wood

well covered in the literature.
without regard to its source and the business expert cares no
of leaves. or branches. Only

in support of the above

economically-oriented workers, were found for canopy structure,
Some items considered below include foliage

more about the growing heights

academic sources, sometimes

largely coniferous.
distribution and canopy thickness.

The distribution of foliage weight with height in thé canopy
of an even-aged stand (e.g., a plantation of trees planted at
the same time) can be Treasonably well described by a normal

(gaussian) probability density function [24,27,63,73].

Nevertheless, as might be expected, not all even-aged stands

show good agreement.  For example, although’ Waring et al [67]
showed this model to be valid for Ponderosa pine, they found
Douglas fir and Grand fir had modal peaks well below mid-canooy

height. Further, although Stephens [63] found this model suitable

for Red pine and Japanesé
distributions for three species of deciduous trees from Japan

have .modal peaks well above mid-capopy. This upward skew
the weight distribution for deciduous trees is also supported

to

of
by Figurc 65 of Assmann [2 ] and by Table 2-6 from Smith et

al (60].

Although canopy thickness data are scarce, Ford's_ curve
[24] for a stand of Sitia spruce suggestsa ratio of canopy thick-
ness to forest height of about 0.6. Gary [27], too, suggests
a ratio close to 0.6 for Lodgepole pine; Kinersou and Fritschen
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Table 2-6: Canopy Layer Heights and Leaf Area Index (LAI)

Douglas Fir Oak-Hickory
Canopy Median Median
Layer Height (m) LAI Height (m) LAI
Upper 23.2° 1.5 18.3 3.4
Middle '14.0 5.3 11.0 .0'8
Lower 4.7 1.0 3.7 0.4

Note: LAI = Total one-sided leaf area / projected area under canopy

!

Tabie 2-7: Total Green Weight of Above-Ground Tree Biomass
‘ (millions of metric tons) (excluding foliage) [48]

Softwoods (Coniferous) -~ Hardwoods (Decidudus)

. Southern Pines 2175  35.08 Oz*ks 1543 25%
‘Loblolly 923 15.0% - Soft dardwoods 1542 25%
Slash 461 7.5% : o _
Other Pines 791 12.5%

Other Softwoods 281 4.0% Other Hardwoqu 717 1lls

~Total Softwoods 2455 39.0% - Total Hardwoods 3803 61%

. 2=21




[40] about 0.5 for Douglas fir; and Assmann [ 2] about 0.4 for

Norway aspruce and 0.3 for Scots pine. All Aare, obviously,

conifers. For deciduous trees, Hutchinson and Matt {[33] give
a relative canopy thickness of 0.5 for Yellow Poplar at Oak
Ridge, Tennessece, and Assmann [2 ] gives a value of 0.5 for

Common beech. In view of these data, CyberCom will empldy a

‘value of 0.5 for the ratio of canopy thickness to forest height

for all forest models, coniferous and deciduous.

2.4 Forest Models

Although models of all forests of the world may ultimately
be of rinterest, it scems best to .start with a region of high
interest and high data availability, such as the southeastern
United States. Recently empirical test data were acquired in
Florida and Tennessee 1in areas dominated by oaks and pines.
Table 2-7, which refers to commercial forest land in the seaboard
states from Virginia to Florida shows that pines comprlse 35%
and oaks 25% of the above ground forest biomass.

The best forest data base available - broadest in both

geographical coverage and in parameters considered - appears

to be a 1982 compilation of "World Forest Biomass and Primary
Production Data™ by M.G.R. Cannell [9]. The first half of
Table 2-8 summarizes 12 pages of this book, including most of
the relatlvcly complete data from the southeastern Unlted States,
largely from the Great Smoky Mountains. From these data are
derived ‘the. fraetional volumes in the right- hand columns and

scveral ropresentat1vo parameters.

The , first . numerical column of Table 2-8 gives the number

of trces generally. larger than 2 cm in diameter at breast height

~ (dbh) per hectare (10“m?) of forest. A typical figure of 2500

corresponds to  an average trunk dcﬁsity P¢ of 0.25 trunks/h’

or 'an average spacing between trunks of about 2 meters. The

average tree heights presented in the second column are used
in cstablishing the height of the forest and estimating leaf
and branch fractional volumes. In the third column, basal area

gives the totar of the cross-scctional areas of all the trees
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(A>2cm) per hectare. A typical basal area of 45 m’/ha with
1500 trees/ha gives a cross-sectional area per tree of 0.03 m?

correspondling to an average tree diameter of about 20 cm. The
fourth column, stem volume, is the total of all trunk volumes

independent of :1bh.

Dry masses are shown next in columns five, six and seven
for stem wood and bark combined, branches, and leaves. An arrow
indicates that a figure includes that for the adjacent column.
It is of interest to note that the maximum/minimum ratio for
trunks and branches runs near 11, but for leaves only 1.5. This
may reflect a basic requirement for efficient capture of radiation
by the canopv. Specific gravities (green vol./dry wt.) from
the Wood Handbook [70] are 1listed next in column eight. These
are used to estimate fractional volumes for use in equations
for specific attenuation. Several -of these values, notably
those, for maple and the oaks, differ significantly from those
calculated in Table 2-4 for dry leaves. The difference may
arise from the use of green leaf thicknesses in the calculations,
but it is not understood in that casé why the values for Yellow

Poplar arc not cqually far off.

The weights per hectare'dividcd.by the specific gravities
give the volume per hcectare, but t0‘c6nvert this to fractional
volume requires the “canopy volume", that is, its effective
thickness over the hectare. Although illustrations in tree
manuals suggest that the leaves are confined to about eight-tenths

of the average trce height, pictures taken witkin forests reveal

that lcaves or néqdlcs may be confined to much smaller fractional

“height and so onc-half was used. mhese results are expressed

in porccnt for compactness, and- show hlnh varlablllty.

' The leaf area index is the total'one-51dedv1eaf area divided
by the projected arca under the leaves: Thus, the total number
of lcaves per hectare is the product of the 1leaf area index
and the projected -area, IO“m’, divided by the one-sided area
of a single lecaf, The leaf number iensity Py can be obtained
by dividing the number of leaves er. hectare by the "canopy

volume", which is projected area times effectivé,canopy thickness.
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For example,

for a forest with a leaf area index of 6, an

effective canopy thickness of 16 meters and' a per-leaf area

of 50 cm?,

Py

is about 75 leaves per cubic meter.
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3.0 Unbounded Forest Susceptibility and Specific Attenuation

This section of this report will investigate the effects
of changing forest parameters on the effective susceptibility
and specific attenuation of the forest considered as a uniform
dielectric medium. Three main ty?es of forest are considered.
Hombgeneous (even-aged) forests of tree trunks of different
diameters from 1 to 16 inches diameter a;elcovered in Section
3.1. Non-homogeneous (un&ven—agéd) forests of trunks with
diameters following the exponential distribution are covered
in Section 3.2. Finally, forestsof leaves are covered in Section

3.3.

3.1 Homogeneoué Forest of Tree Trunks

The sensitivity to tree trﬁnk diameter of the effective
dyadic susceptibility (x) and the specific attenuation (a) of
an unbounded, homogeneéﬁs forest of parallel trees is shown
in Figures 3A-1 to 3A-18. These results, which encompass a
range of trunk radii extending from 0.0125 meter to 0.20 meter,
have been calculated using Equation (441-1—1) and (4-2-1-3)
of 'Czbercdm Technical Report CTR-108-01. ‘Because of the

-relatively weak dependence of €, on frequency, both x and a are
sensitive to frequency and trunk radius primarily through the

parameter koa. As a consequence; the curves presented 1n these

flgures are very nearly. frequency~sh1fted repllcas of each other,
although they are displaced in magnltude by an amount proportional

"to a power of a. . In the case of Xs the displacement is

. proportional to ‘a?; in the case of a, the . displacement is
proportiénal- to' a? in the low-frequency (ﬁayleighf region and
_to a'/* in the »resdnant> region; . At the vhigher resonant
frequencies, the resonant maxima of (xé,x;)‘ decrease roughly

as the square of the frequency; conversely, the resqnaht minima
of (Xg,Xz) decrease roughly linearly with increésing frequency.
The first null in Xz is due to a change in sign of X; occurring
as a consequence of resonance when the',circumfetehce of the
tree equals the wavelength within it (300/fmyz/c). This resonant
behavior may be ‘attribhtgdl to circumferential surface waves

3-1




that reinforce themselves after successive trips around the
perimeter [49,50]. it is apparent from Figures 3B-3 through
3B-5 that the specific attenuations fér both horizontally and
vertically polarized radiowaves have nearly the same

high-frequency asymptote.

3.2 Non-homogeneous Forest of Tree Trunks

In order to determine the effective dyadic susceptibility
and specific attenuation in a non-homogeneous forest, wherein
the tree trunk radius a' is a random variable described only
statistically by some probability density function p(a), it
is necessary to effect a weighted average of the é and o attri-
butable to some particular radius a. In a non-homogeneous forest

the mean effective dyadic susceptibility X and the mean specific

T -
A P Yl "R Tl N Rk Yl -1-"“-1.\‘-'1"“ CHLHLTLE LW TS TS OYTY ™S ‘\‘.T.'Ej.\“. e LN - R R T T e Ty e e I T Ty T r Iy Ivey g

attenuation a can be determined from. the following ‘relations:

Y =/l(a)'p(a)da | (3-1-1)
o =fa(a)p(a)d'a (3-1-2)
where,
x(a) = effective dyadic susceptibility for trunk of radius a
ala) =‘specific attenuation for trunk of radius a
pla)) = probability density function of trunk radii.

- The probability'density function of the trunk radii (dia-
meters) |has been discussed and described in Subsection 2.2.1
and found to be nearly normal (géussian) for even-aged forests
and‘ exponential for uneven4aged fdrésts. However, in t}
~remainder of this subsection, only uneveh—aged; non-homogeneous
forests |will be considered, In consonance with Section 2.2.1
and Table 2-4 it will be assumed that

pla) = (1/3)expl-a/7] oo (3-1-3)
fwhere’E = 5.2 cm is the mean tree trunk radius.

The| mean effective dyadic susceptibility and meannspécific
attenuation in an unbounded, uneven-aged, non~homogeneous, trunk-

.3-2




1

fmmma - e mimin:mm @ x. e e e ca e e m @ A m m o,

= v @ ® mem memane s m oe.m .t et . w m- @ e =

dominated forest, wherein tree trunk radii are described statis-
tically by the . exponential probability density function of
Equation (3-1-3), has been evaluated using the approximations

N
X = Zé(ai)p(ai)'Aai - (3-1-4)
T |
N
T = Y ala;)pla;)bay | (3-1-5)

and plotted in Figures 3-1 and 3-2. In effecting these calcula-
tions N was set equal to 12 and the aj assumed the values from
1 to 12 linches.' For convenience, these results have been
normalized to a tree trunk number density of p = .1 tree trunk
per square"meter.‘ The usual smoothing effect of integration

is very apparent.

In any real foreét, the exponential 'probability density

function proves valid only over a range of a bounded by, say.

anpin to a@ax. Outside of this range, the exponential probability

density function wusually over-estimates the relative number

‘of tree trunks. Recognizing this, -the 'validity of Equations

(3-1-4) and (3-1-5) if the limits of integration are restricted
to the range lapjnramax] can be assessed by considering the
normalized distribution function

a

) max © . : .
Flag,) =f  f@p@ada/f faplada (3-1-6)
' 0

max
0

where f(a) assumes the role of either X or a. More specifically,.

if fla) x or if f(a) = a and attention is restricted to the

low-frequency (Rayleigh) region, then f(a) « a? and’
Fla_ ) = [l-(1-+a /a-+a x/2a )exp{~a /5}] (3-1-7)

If f(a) = a and atrentlon is restrlcted'to the resonant reglon,

then f(a) « a’/“

Flamax) = Y(1.75,apax/3)/I(1.75). ' (3-1-8)

where Y(x,y) is the incomplete qamma-func;ion defined by
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Y (x,¥) =f t* exp{-t}dt ©(3-1-9)
0

and I'(x) is the complete gamma-function defined by

o

I (x) =f t* lexp{-t}at (3-1-10)
The normalized distribution function F(apayx) has been evaluated
in both the kafleigh and resonant ra2gions using Equations (3-1-7)
and (3-1-8), respectively, and plotted‘ in Figure 3-3. It 1is
appérent from this figure that in an uneven-aged forest typical
of the northeastern United States about 80% of the mean effective
dyadic susceptibility or the mean specific attenuation in the
Rayleigh region can be attributed to trees ﬁaving trunk radii
in the range 4-16 centimeters (diameter at breast height in
the range 3-13 inches). About 80% of the specific attenuation
in the resonant region can be attributed to trees having trunk
radii in the range 1-11 centimeters (diameter at breast héight
in the range 1-9 inches). In the frequency range 200-2000 MHz
where all trees having trunk radii greater than about 1 centieter
(2 inch diameter at breast height) are resonant, the mean specific
attenuation is primarily attributable to tree trunk radii ‘in
the range 1-11 centimeters (1-9 inches at breast height).’

3.3 Forest of Leaves

Figures 3-4 and 3-5 show similar X and a'plots for the
leaf forest considered iﬂ CyberCom Technical Report CTR-108-01
in order to make thislreport'complete in itself and to present
comparisons .Between‘ leaf and trunk forest characteristics®*.

Because the leaves are small compared to ;he'wavelength (Rayleigh

or ncn-resonant) the plots are relatively smooth. K The plots

for large diameter trees are fairly smooth  due to averaging.

resulting from the large number of wavelengths on a circumference.
Because the trunks are a}l vertical and the'leaves are largely

horizontal (0° to 30° tilt), X¢>Xy for leaves and vice versa .

 *Pigures 4-1, 2, 4, 6, and 9 of CyberCom Technical Report CTR-108-01 are |
shown as Pigures 3A-4, 3-4, 3B-4, and 3-S5,
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for trunks. It may be seen, of course, that the a curves are
closely related to those for X" (imaginary plot of

susceptibility).

The sensitivity of X" for a non-homogeneoﬁs forest (1-12-1)
‘to addition of leaves was briefly investigated. For the most

interesting case with vertical antennas, X';, showed only a small
change at highest frequencies upon addition of 0.1% fractional
volume of leaves, as in CyberCom Technical Report CTR-108-01.
In the other case, XE- showed small changes at 1low frequencies

with a leaf fractional volume of 0.003%.
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ANNEX 3A

. Effective Dyadic Susceptibility
' of Homogeneous Trunk Forests
R < . ~
B Radius Diameter Figure
(meters) (inches) Number
0.0125 1 3a-1
. 0.025 2 3A-2
. &
0.05 4 3a-3
, 0.10 8 3A-4
* ‘ : 0.15 12 3A-5
: 0.20 16 3A-6
B«
ANNEX 3B
Specific Attenuatién
N o ‘ of Homogeneous Trunk Forests
'Radius Diameter ‘Figure
_ (meters) (inches) . Number
¢ | « . © 0.0125 1 3B~1
0.025 2 3R-2
0.05 .4 3B-3
. 0.10 ‘ 8 3B-4
< 0.15 Co12 3B-5.
0.20 o ‘16 3B-6
<
?”
G

2.11
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4.0 Anisotropic Forest Slab Model

In this section the medium will be bounded to represent
the forest. In [42] the upper air-forest interface was introduced
to produce the half-space model, shown in Figure 4-1(a). Although
relatively simple, it gives rise to the lateral-wave which is
essential to long-range transmission. The slab model to be
considered here adds the lower ground interface as in Figure
4-1(b). Further possible model fefinementsA are the multi-slab
model, representing the canopy as in Figure 4-1(c), and. the
inclusion of height-dependent properties as in Figure 4-1(d).

Section 4.1 formulates the 'probléh, ‘introducing the
reflection coefficient at the ground as well 'as at the air
interface. Section 4.2 performs the asymptotic (approximate)'
evaluation of the equation just developed uvsing methods of [42],
but these are compliéated by multiple reflection of both space
and lateral waves at the upper and lower forest boundaries.
This multipath nature is treated in detail .in Section 4.3. Curves
of reflection coefficient versus distance for the media of
‘interest are shown. Interference of direct and reflected waves
is expanded to inciude the many possible cases of multiple
reflection above and below the forest. Then the lateral wave
is included; This may be excited after, or received after,
multiple reflections. Section 4.4 introduces the concept of
basic transmission loss, the normal tool of radio link design.
It is useful in the broad-band application to spread-spectrum
transmission of interest here. Finaliy Section 4-5'finds that

terminal motion produces negligible Doppler shifts.

4.1 Model Formulation

The anisotropic glgg model for UHF radiowave propagatioﬁ
through forests is shown in Figure'4-2. Theleléctriﬁally ‘ani-
- sotropic forest slab, sandwiched between the electrically iso-
tropic air and ground, is characterizéd’bylthe effective dyadic
‘permittivity ge, (at least so far as the mean fields} are con-
cerned): ' The scalar pgrmittivities of the air and the ground
are denoted by ¢, andteged, ;espect;vely. All thréé'media'are‘
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assumed to be magnetically isotropic and  characterized by the
free-space permeability u,. The transmitting antenna is repre-
sénted as a vertical electric (Hertzian) dipole having a time-
harmonic current moment Idf-exp{jwt} located at height z, above
the ground. ‘

In an wunbounded, anisotropic fbrest characterized by a
uniaxial effective dyadic permittivity

_ o_o0 0.0 o, 0 -1 -
€ = €.X°%x° + e, y'Y" te,z'z (4-1-1)
the mean electromagnetic fields associated with a z-directed
(vertical) Hertzian dipole can be derived from a Hertz vector

potential A that has only a z-directed component, viz.

, _ exp(-j (B, -x+1|2-2,])}
A (r,z) = 1ds jf =t = dB, (4-1-2)
z " B. .
8n WESE, T
where
T =Tt - j|t"] = /@t/ez /ﬁi'sz-sé © (4-1-3)

The electromagnetic fields can be derived from the vector
potential A using the relations '

E.= V(V-A) + kic,A | (4-1-4)

H = jue.e, (VxA) ', (4-1-5)

For the anisotropic forest slab model, the tangential com-
ponents of the electromagnetic fields must be continuous across
the air-forest and the forest-ground interfaces. If . the source
of these fields 1is a z-directed (vgrticai). Hertzian‘ dipole,
the boundary conditions can be succinctly summarized in terms

of a Hertz vector potencial having only a 2z-directed component -

by writihg

I I 4 ¢ : - ey
AL(£H) = e AZT(z,H) (4-1-6)
oA (0 = e At (4-1-7)

4-4




a(al(x,Hy1/9z = a(all(z,w)1/02 | (4-1-8)

2(alt(r,001/02 = a[a] ¥ (r,0)1/32 | (4-1-9)

where the superscripts I, II, III identify, respectively, the

Hertz potentials intrinsic to the air, forest, and ground.

As a consequence of these'boundéry'conditions, the radiation
condition and Equation (4-1-2), CyberCom has found the Hertz
potential within the anisotropic forest slab to be*

2 SR -1d1 /[1+Rgexp{-—j21 z,}] [1+R exp{-JZ'rz(H-z)}]
L
z . 8n2we°ez [1-R Rgexp{ 321 F}]
exp{- (B ex+1,|2-2,)} : .
x - 2| | as (4-1-10)
T, 2
where, '
T, = €,1 . ,
R (B,) = et . (4-1-11)
a T2 ¥ &0y .
e T, = €,.1 '
R,(B,) = LE__E3 |  (4-1-12)
g €gT2 * €473

are, respectivély, the Fresnel reflection coefficients associated
with the air-forest and forest--ground interfaces, an@ where

-

T = Ti-leII = /E‘z,—ﬁé . ) (4-1-13)

T, =ty -3yl = /%t/egl/kiez-8t2 , (4-1-14)

1, = 14 -3t =',§35g..3é', 7 (4-1-15)

are the dispersion relations. The electromagnetic fields within

the .anisotropic forest slab can be derived by substituting .
-Equatlon (4-1-10) into Equat1ons (4 -1-4) and (4 -1-5). |

Equations (4-1-5), (4-1-6) and (4-1-10) constituté the
formal solution for ‘the electromagnetic fields of a vertical
electric (Hertzian) dipole in an anisotropic forest slab.

'Sttictly, speaking, Equation (4-1-10) is valid or.y when 2z>z,. If 2z2<2, ,
then 2z and z, must be interchanged. ‘ - . ' .
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" 4,2 ‘Asymptotic Evaluation

The integral representation afforded by Equation (4-1-10)

for the Hertz potential within the anisotropic forest slab is

not amenable to exact analytic evaluation. However, analytic
asymptotic approximations have been derived based upon CyberCom's

earlier development of an anisotropic forest half-space model

[42] and the pioneering ‘efforts of Sachs and Wyatt [57 ], Tamir
(65,64,19], and others on the isotropic forest slab model.

Before proceeding with the development of these asymptotic
approximations, it will prove expedient to recast the expression
for the Hertz po;ehtial within an anisotropic forest half-space
(42, Equation (5-2-39)] in geometric terms consistent with Fig.
4-1. Thus, introducing the following correspondences apparent

by compa}ison of Fig. 4-2 and Fig. 5-2 of [42],
a+(H - z,) | | (4-2-1)
z+-(H - 2) - (4-2-2)

into the equation previously cited, the Hertz potential within

the anisotropic forest slab AIII may be written in the form*
oo/z
- exp{-jt, lz-z.l}
A I(E'Z) = —-1dt _=1dg j[
/2 8n2we, €, T,
exp{~31, (2H-2-2.) } .
o - .y D
+ Ra‘;t) T exp{ Jgt r dgt | (4 2--3)

The first integral corresponds to the Hertz potential of a
Hertzian dipole within an unbounded, anlsotroplc medium, the
second .integral represents the effect of the air-forest ‘interface.
These 1ntegrals were evaluated in’ [42]: the first integral

. descrlbes a direct wave propagating throuqh the forest to the

receiving location; the second. integral describes a wave reflected

" from the air-forest interface and, possibly, a lateral wave

propagating along the air-forest interface.

*valid for arbitrary z and z, within the. slab.




Cbnsider, now, the Hertz potential within the anisotropic
forest slab ([Equation (4-1-10)]. If the denominator of the
integrand is expanded in a power series using the relation

(1-2)"" =14+2+2%4+ .., (jz]<1) (4-2-4)
Equation (4-1-10) may, upon interchanging the order of integra-
tion and summation, be recast into the form
L
11 -I1dg 3 '
A, " (r,z) = 3. s. (4-2-5)
‘ 81r2me°e:z j=1
P where
S. = I. ' (4-2-6)
57 2 Tin | ‘
and .
g : m m exp{-j12[2mﬂ+|z-—z.!]}
I =[RP800’ (6,
Im a "t'"g'rt Tz
- . exp{ij‘_t‘E}dgt . (4-2-7)
i - Rm“(B VR (8.) exp{-j1, (2 (m+1)H~(2+2,) ] }
2m a t" gt T2
e : o g
. exp{—Jgt-_B_}dgt (4-2-8)
= W R e ) LIty [2mkt(z4za)))}
C 3m a'‘"t’g t T, o
» exp{-jg, -r}ag, | (4-2-9)
¢ | o ex {;‘r [2.(m+l)ﬂ-]z-z |1} |
; : 1, = [ R R0 g ) Pi-JT, olls
' - T4m a ‘Pt'%g e T,
. ¢ exp(-3g, -riag, . (4-2-10)
\. N - - ' .|
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It can be inferred by analogy with Equation (4-2-2) that the
integral ‘

TR A Al

exp{-jrzlz-z,l} ' ;- - -‘ 1)
I, =/ > expl-jf,-rlag, (4-2-11

« v
PR

describes a direct wave propagating through the fbrest slab;
the integral '

exp{-jrz(za-z-z.)} ; ;'-’ . o '
Iy =v/ﬂgaQ§t) T exp{-Jgt-g}dgt (4-2-12)

A A A RSN | SN

describes a wave reflected from the air-forest interface and,’

possibly,‘a lateral wave propagating above the air-forest inter-

-. f. *

face as well. Further analogy with Equat10n_(4 -2-12) suggests
that the integral '

‘ exp{-jrz(zfz,)} o |
I =fR~a(_Bti exp{-jg, -r}dg, (4-2-13) -

» v
e

iaf.

T2

describes a wave reflected from the forest-ground interface;

any lateral wave that might be propagated below this interface,

.y v e
NSl LFRTRTRERINN

however, would be highly attenuated by ground losses and so

may be neglected.

-

More generally, the,integréls Ijm can be evaluated asymp-
totically using the method of steepest descents, just as Equation
(4-2-12) was evaluated in [1l, Section 5.3]. This method leads

P
.

g to a saddle-point result for each integral as wéll-as a branch-
o cut contributior if a branch-cut is cfossed by " the steepest
ﬂ descent path. The saddle-point results . for the Iim integrals
i are ’ ‘ _ .

-3' (r) v —9pl | m,. 'exp{-jk..ez le} ‘ - o

* 1m Z"Ra(elm)Rg(elm)- 3R (4-2-14)
4 . ‘im :

o : ’ _ : v

. , . o

. (r) mel, . . .m exp{-jk./c, Rom!

- ~ - - ) -

- I2m 2nRa (OZm)Rg(BZm) —3R . . | (4-2-15)
:. . 2m .

F! (t) _‘_ m m+1 exP{'jkoR"E; 33“-‘}'- _
3 IJm ZnRa(e )R (BJm 3R (4-2-16)
> S T im
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Iér) ~ ~2rr™
m a

where

R, (6)

Rg(e)

elm

e2m

e3m

4m

and

1m
Rom
R3m

Rim

1

(0

m+1

exp{-jk,R/ez R, n

m
cosf - /E;(l-e sinzfi)!'i
z r (4-2-18)
cosf + /E:(l-ezsinze) ' .
' r DPPNe *
€ 46086 = /e—t(f- e,sin’e)

' ty . 2.4y
egcose-+/et(l-czsxn.e)

ground-forest interfaces, respectively, and

Arctan{r/a{2mH+|z-z,]1}
Arctan{r/alz(m+1)H-(z+z.)]}

Arctan{r/a[2mH+(2+2,) ]}

Arctan{r/a[Z(m+l{H-|z-z°|]}.

{r? + a2[2mH+|z#z,|]}%

(r? + a?[2(m+1)H-(z+2,) 11"
{r?2 + a\'zlzmﬂ+(z+z.,)1}’i :
{r?2 + a2[2(m+1)H-|z-z.|]}%

ch= Arcsin(l//E;)

4-9

(4-2-19)

are the Fresnel reflection coefficients at the air-forest and

(4-2-20)
(4-2-21)
(4-2-22)

(4-2-23)

 (4-2-24)
(4-2-25)
(4-2~26)

- (4-2-27)

Branch-cut contributions to the Ijm integrals must also:
be included whenever the 8ym exceed the so-called critical angle

(4-2-28)
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The branch-cut contributions to the Ijm integrals are

(b) _ _ m
Ilm 4neszg(ec)
. . ! %
exp{-jk, [r+a(e_=-1) *[2mH+|z-2,|1]}
. Prl% 2 | | (4-2-29)
ko(e'z'-l)r2 '
(b) . _, . m,
I2m 4nez(m+l)Rg(6c)
expl-jkq [r+a(e,~1) F[2(m+]) H-(z+2,) 1]}
. (4-2-30)
2
ko(ez-l{r
(b) m+1
I3m ~ -4neszg (ec)
exp{-jko [r+a(e-1)  [2mH+(2+2,) 11} ~
. . . (4-2‘31)
k,(ez-l)r-
I,fz" - —4nez(m+l)RI(;+-l (8,).
' : .
exp{-jk,[r+a(e_=-1)*[2(m+1)H~|2~2,]|1]} '
. xp{-j ale, [2(m |z=2z, (1] (4-2-32)

ko(ez-l)r

More accurate representations for the branch
Iim can be inferred by analogy from Equat]

(5-3-40) ©of [42]. Constraints bearing upos

these resglts can aléo be inferred from {42].

Because branch-cut contributions are i1

ejm > 08¢

—-cut . contributions
ions (5-3-37) and
) the' validity of

ncluded only when

(4-2-33),

- the number of branch-cut contributions is finite. As a conse-

quence, Equation (4-2-6) can be re-written in the form

) . M
- (r) v 1 (b)
sj go Ijm + §=:0 Ijm .

The electromagnetic fields (E and g);with
forest slab can be derived from the Hertz ve

4-10

' (4-2-34)

in'the anisdtropic
ctor potentiéllA;I-~




........

[Equation (4-2-5}]

example, the vertically-polarized electric field 'vector E is

where

Eéd)(g,Z)

E(r)(g,z)

Eéz)(g,z)

..................

E, = {3 + glF)

by using Equations

exp{-jkofez Rio}_

(4-1-4) and (4-1-5). For

+ g8Y)  (4-2-35)

(4-2-36)

()
= Ya\-——= e Id2 sin e 10

W
= /'( )Id2

47

-{ 2 [R§<e )Rg(elm)sinze

a

e m+1 m, .. .2
+ 2; [R (GZm)Rg(GZm)s;n ]

g+
)R

+ ¥ [RI(6

- m+1 m+1
+m2=30[Ra (8,m)R g

a . expl-jker}

s
(63m)51n 0

. s 2
(64m)51n 3]

60 Ide 2 .

z r?

m=1

M

+

m=0

+

m=1 g
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R0

exp{-jk, /e, le}

lm] R

1m

exp{—jko/E; R2m}
2m] R

2m

1exp{fjk°/ez Ry
3m? :R

3m

]
4m ' Rém

exp(-jk,/E; RAm} }

(4-2-37)

M
{ 2:[mR (0_) Jexp{-jk,a(e -l)&[2mH+|z-z |1}
3 [(me1)RD(6 ) lexp(-3koale,=1) * (2 (m+1)H- (z+2,) ]}

2: (mRT" (8,) Jexp{-~jk.a(e ~1)*[2mn+(z+z )1}
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e
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" | ,
+ éé%[(m+l)§2+l(ec)]exp{—jkoé(ez-l)%[Z(m+1)H-|z-z°|]}}

(4-2-38)

In Equation - (4-2-35), E;d) represents a direct wave propagating
through the anisotropic forest slab from the transmitter to
the receiver; E;r) represents multiply-reflected waves also
propagating through the anisotropic'forest slab from the trans-
mitter to the receiver [refer to‘Figure4-3a]; and Egl) represents
xnultiply—reflected lateral waves associated with the air-forest
interface [refer to Figure 4-3b]. The first summation in Equation
(4-2-37) corresponds to waves which experience an éven number
of reflections in'propagating from the transmitter to the receiver
and for which the first reflection is from the ground; the second
summation correspondé to an odd number of reflections, the first
of which is from the air; the third corresponds to an odd numper
of reflections, the first of which is from the ground; and the
fcurth summation corresponds'to an even nﬁmber of reflections,

the first of which is from the air.

4.3 1Intra-Forest Mpltipath

The anisotropic . forest slab model differs from the

anisotropic forest half-space model by accounting for ground

reflections. The principal conseqhence of ground reflections
. is "the appea;ance' of intra-forest multipath. Two types of
intra-forest multipath‘ can be identified: multiply-reflected
'épace waves, described ' by Equation ~(4-2-37) and illustrated

in‘Figufe 4-3(a); and multiply-reflected lateral waves, described
by Equation - (4-2-38)and illustrated in Figure 4-3(b).
Intra-forest multipath can either enhance or deérade-the received
siqnal level according to whether - the concomitant phasor
interference “is _constructive or destructive; -in addition,
iﬁtra-forest‘ muitipath can' lead to - pulse distortion and

.inter-symbol interference.

4-12
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It is apparent from Equation (4-2-37) and (4-2-38) that
the Fresnel reflection coefficients at the air- -forest and forest-
ground interfaces [denoted by R (6) and by R (6), respectively]
play an important role in determlnlng the relatlve contributions
of the contributing multipath. The behavior of these reflectlon
coefficients is examined in the following sub- -section. Successive
sub-sections address the intra-forest multipath associated with
multiply-reflected space waves and multiply~reflected lateral

waves.

4,3.1 Fresnel Reflection Coefficients

The Fresnel reflection coefficients associated with the
air-forest and forest-ground interfaces are given, respectively,
by -

cosd - /e (1 - ezsinze)%

R () —= (4-3-1)
a cosf + /ét(l - szsinze)% :

£ c080 - /E;(fﬂ- n&:zsin’e)!E

R_(0) — (84-3-2)
K € cosf + V& (fj- € sinze);i
g : t .z

where €4 and €, are, respectively, the transverse and longitudinal
components of the wuniaxial effective dyadic permittivity of
the forest; eg is the permitt;vity of ‘the ground; and 6 is the

incidence angle measured relative to the normal.

The .magnitude |R| and the phase |Arg| of  the Fresnel
reflection coefficient for the fores:c-ground 'intefface R (6)
is shown in Figqure 44(a) as ' a functlon of the glanc1ng angle
[complement of the 1ﬂc1dence angle] for the case of moist ground
(g =30, og = 0.05 S/m) and a frequency of 300 MHz. ‘At the
Brewster angle, | R| exhibits a pronounced minimum and the phase
|Arg| changes by nearly 180 degrees. At grazing incidence
(glancing angle gqual‘to zero) R_(90°) = ~-1. Analogous results
are shbwn in Figgre 4-4(b), for the case of dry ground (eé =
15,- o = 0.005 sS/m). Although Equation (4-3-?) -reveals that
that Rg(Q) also dgpgnds upcn the effecgive dyadic pgrmittivity

4-14
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of the forest, because € and €, differ from unity by only a
few tenths of one percent, Rg(ei is virtually independent of

the biophysical forest parameters.

The magnitude |R| and the phase |Arg| of the Fresnel reflec-

tion coefficient for the air-forest interface 'Ra(e) is shown

in Figure 4-5(a) for the case of lossless leaves (62' = 40,
e," = 0) and a freqhency of 300 MHz. Note that the corrssponding
effective dyadic permittivity is purely real (el = eé‘ = 0).

For glancing angles less than the critical glancing angle,

8 (4-3-3)
c g

Arcsin(l//E;)

" |R| is unity and the incident radiowave experiences tctal internal

reflection. However, whereas at grazing incidence (glancing
angle equal to zero) Ra(90°) = -1, at the critical glancing
angle Ra(ec) = +1. For glancing angles greater than critical,

[R| is nearly zero. At the Brewster angle |R| exhibits a barely
discernible minimum and the phase |Arg| changes abruptly by

180 degrees. Analogous results are shown in Figure 4-5(b) for

the case of lossy leaves. Note, however, that as a consequence
of ohmic losses within the leaves, . the incident radiowave no
longer experiences total internal reflection for glancing angles
less than critical; further. the phase change associated with

the Brewster angle is no longer abrupt.

4.3.2 Multiply-Reflected Space Waveé

The. intra-forest multipath  associated with multiply-
reflected space waves is described by Equation (4-2-37) and
illustrated in Figure 4-3(a). It is apparent from Equation
(4-2-37) that the relative strength of the intra-forest multipath
can be estimated by considering the relative magnitudes . of thé
composite forest reflection coefficients [e.gf, Ra" R ’ RaRgf
R R RRR , RRR_ (refer to Figure 4-3(a))! -~ Jnitudes

g ag , .
of the composite Fresnel reflection coc ~2uts at 300 MHz

for a forest of leaves (FV = 0.1%) above a moist earth (eé =

30, og = 0.05'S/m) have been plotted in Figure 4-6 as a function

~
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of path length using the expression

§ = Arctan - L (4-3-4)

(n-1)H + |H-Zo] 4 [H-2]
. l zo IT | z IR

where, H = height of forest

Zzo = height of transmitter above forest floor

z = height of receiver above forest floor

r = distance between transmitter and ‘recaiver

8 = incidence anglé of reflected radiowave

n = number of tefleétions experienced by radiowave

to relate the path length to the incidence angle. Tt is apparent
from this figure that for these biophysical forest parameters
and a frequency of 300 MHz the ray reflected ohly once from
the air-forest. interface [the only ray accounted for in the
anisotropic half-space model] is important at all distances
in excess of about 300 meters. The ray reflected once from
ihe.ground is impbrtant.not only at . distances in excess of 300
meters, but  :lso at 'very short distances as well. The R_R

ag
and RgRa contributions become important only at ranges exceeding

" about 300 meters; and the R_Kk R and R R R contributions can
' aga gag '

probably be neglected for ranges less than 1000 meters. It should
be noted that Figure 4-6 does not acccunt for antenna pattern

‘ discrimination, differential ~geometric spreading losses, or

differential absorptive losses.

4.3.3"Multiply—Reflected‘Lateral Waves .

The ‘intra-forest multipath associated with muitiply-

~illustrated in Fiqure 4-3(b). The correspondence between the

multiply-reflected lateral waves of Figure 1-3(b) and the summa=
tions of Equations (4-2-38) is summarized in Table 4-1. The

*The 'ubper (lower) quantity within | ' is to: be used {f tae radiowave
reflectioh nearest the transmitter lrec'\iverRl is from the air (ground).

4-22
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reflected lateral waves is described by Equation (4-2-38) and
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Zim

Z;m

Z:m

znm

Table 4-1:

0

3
]

Ncne

TafiR

None

TAbRR

‘Multiply-Reflected Lateral Wave Ray Paths

TakLPR
TaBCcLR
TabkLR

TAbCA LR

m= 2
TaBck &R

TaBcDelR
TAbZ4dk 2R

TAbCGEf il

m= 3

TaBcDekLR
TaBcDeFhiR
TAbCAEfk LR

TAbCAEfGh LR

Tablc 4-2: Transmitter/Receiver Images for Lateral Waves

m =0 m =1
H-h~+
N/A
Ii+hp
H-hyp 3H-he
H-bhq H-hg
 H4he.
N/A
I""‘P.?‘
H+hT 3H+hT
H-hgr ‘H-hR
4-23

3H+hp

H+hR

SHfﬁT

H-hp

7H-hqp
H-hgr
SH+hp
H+hg

7H+hp

H-hp




multipath geometry illustrated in Figure 4-3(b) can be easily

constructed by locating the appropriate transmitter/receiver
images arising witn successive radiowave reflections from the
air and ground interfaces -at the critical angle ec. The location
of these images relative to the air-forest interface can be
inferred from the exponents appearing in the summations of Equa-
tion (4-2-38); those corresponding to Table 4-1 are shown in
Table 4-2. | |

Equation (4-2-33) can be used in consonance with Equations
(4-2-20) through (4-2-27) to show that associated with each

(j,m) component lateral wave is 'a minimum excitation distance

roin = Ialzjm/]/sz -1 (4-3-5)

where Z3m the so-called [65] separation distance is given by

Zim = 2mH + |z-..' _' (4-3-6)
Zom = 2‘m+1)H - (z+zo) (4-3-7)
z, = 2mH + (7:z,) - (4-3-8)
 Zam = 2(m+l)H - |z—z°| (4-3-9)
The -Separation distance szm], the minimum excitgtion, disfance

[r ], and the relative strength of the multiply-+reflected

lagégal waves have been calculated for several Lboo-meter, 300-MHz
radfo links situated within a forest of leaves  (FV |= 0.01%)
aﬁd abovg a moisthround (eé = 30, oq = 0105 S/m) and |presented
in Table 4-3. 'Note that the non-ground-reflected lateral wave
[the onlyllateral wéve accounted for in the anisotropic half-space

model] is dominant. The phasor sum of all contributing lateral

_.wave components has been calculated and its relative| strength

denoted in the Table by LDBT. As expected, it differs only
sliéhtly from that of the non—grodnd-reflected lateral wave.
When the number of contributing lateral waves is large, the
phasor sum is well approximated by ’
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LY

LATERAL WAVE MULTIPATH

PATH: Forest Ht. = 25.m

Critical Angle

Table 4-2

Ht-xmtr
3.83 Deg.

= 22.5m Ht-rcvr
Reflection Coef

Minimum Excitation Distances (m)

Zm 0

1 2 3
5.00  743.79 1487.58 2231.37
74.38 818.17 1561.96 2305.74
.00 1413.20 2156.99 2900.78
743.79 1487.58 2231.37 2975.15
Separation Distances (m)
Zm 0 1 2 3
.00 50.00 100.00 150.00
5.00 55.00 105.00 155.00
.00 95.00 145.00 195.00
50.00 100.00 150.00 200.00
Relative Field Strength
am 0 1 2 3
ARARRRR -16.58 RARARAN L2222 2 2]
: ‘.00 _11.66 RARRRRN t‘ti**t*
AAERRER AERAANR (222222 B 122 22 2 2
-16.58 RERNARN RRRERRN RERRARR
"LDBT = -.16338 dB LDBTT =

4-25

22.5m
.4644

4

2975.15
3049.53
3644.56
3718.94

4

200.00
205.00
245.00
250.00

4

ARRRRAR
RARRRAR
RRRRRER
ARRRRRR

-4.32773 .dB.
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[1 + Rg(ec)exp{szo}lll + Rg}ec)exp{sz}]

K(ZIZO’H') = " N 2 N (4—3"10)
[1 + Rg(ec)exp{JxJe]

where .
K = szJE;KLZ - 1) . (4-3-11)

This too has been calculated and is denoted Ly LDBTT in the
Table. It 1is apparent from this calculation that when only
a few lateral wave components contrlbute 51gn1f1cantly, Equation

(4 3 10) is 1nappropr1ate.

4.4 Transmission Loss

The most  important parameter characterizing radiowave
propagation channels is"transmissioq loss. Loosely defined,
transmissica loss is the ratio.of received power to transmitted
power (or its inverse). Basic transmission loss, however, is
specifically defined [for unmodulated r-f carriers] as the ratio
of the power transmltted to the power received as measured at

the terminals of isotropic, lossless, co-polarlzed antennas.

- The concept of basic transmission 1loss may be extended to

wideband, modulated r-f carriers by appropriately ‘weighting
the basic transm1551on loss by the transmitted power spectral
densxty.

4.4.1 Basic Transmission Loss

For radiowaves propagating through freespace, the basic

transmission loss (in decibels) can be calculated from the. well
known expfession

Lfs = 32.4 + ZOQOglodkm + ZOIOq,o'fMHz (4-4-1)

where dyy, is the distance between the antennas in kilometers
and fMyz is the radiowave frequency in Megahertz. This equation
has been used to plot in Figure 4-7 the frequency dependence

of basic transmiésion loss in free space over a 1000-meter path.

- 4-26
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In calculating the basic transmission loss associated with
the stratified forest models described previouély, it is important.
! to recogrize that . postulated fer those models was a
- vertically-polarized electric dipole antenna. Such an antenna
is not isotropic. Nevertheless, the basic transmission 1loss

can still be determined by noting that: (1) in free-space,

« o .

the vertically-polarizad electric field can be determined from

Equation (4-2-36) by setting ey = €, = 1 so that

Efg = (who/4m)Ide sinZeloe"P{—}g“Rﬂi (4-4-2)
. 10

and (2) theé power received is diréctly proportional to cthe field
intensity '

/ I(x) = E(x)-E*(x) ‘ (4-4-3)

¢ ammm e

Thus, for the stratified forest models, the basic transmission

loss can'be expressed by

Lp(d,r,?) = Lgg + 20209;0iEfs/Eq,r, 2| (4-4-4)

where Eq,r,1 is defined in Equations (4-2-36), (4-2-37), ‘and
(4-2-38).  Equation (4-4-4) has been used in Section 5.2 to
assess the sensitivity of the basic transmission 1loss to the

.biophysical forest parameters.

A e .« sEEMY W o e W W P s 1 *

: : 4.4.2 Wideband Basic Transmission Loss

Consider a modulated radiowave having a transmitted power
! o spectral density S(w). The total power transmitted is then ' '

Prp =ﬁ(w)dw L (4-4-5)

If the basic transmission loss associated with an unmodulated
r-f carrier of angular frequency w is denoted by L(w) then the
‘total power received is

PR =_/é(w)i.(m).aw  (4-4-6)

4~28
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The wideband basic transmission loss can then be definaed as

PR JS(w)L(w)de

Lwb = B = ~ 7 '5(wlda (4-4-7)

or, expressed* in decibels,

Lag = -10%0qg, ¢Lyp (4-4-8)

4.5 Doppler Frequency Shift

The stratified forest model for the cohereht field components
of the propagating radiowave has 'been extended to account for
Doppler shift induced by terminal motion. This develonpment
1s described below. | Doppler shift of the coherent component
induced by motion of the forest biomass (primarily leaves and .

branches) is anticipated to be relatively small by comparison.

The effects of terminal motion and the Doppler shift induced
thereby can be addressed most simply by first considering only
the direct field ccmponent :
' exp{-jko Yez Rql

Rg

' = why : . ,
E,(d) = va (T") Id2-sin?6q
n

(4-5-1)

As a consequence of terminal motion, Rg (the distance between

the trausmitter and receiver) becomes time-variant. If the
terminal motion is uniform [(no - acceleration), 'Ry may be
representea by the first two terms of its Taylor series expansion

so that ’

= ° " . {8=5=’
.Bd $d+ Rdt (4 5'2)
0ver re1a:iQe1y short time intervals where

- . R? .
6t << = = Atpay. (4-5-3)
[dRg/dt]

* The negative sign has been inserted [for consistency with Equation (4-4-4).




Equation (4-5-1) can be well approximated by

: — {wu exp! -jx Ye_ (RZ + R't)}
Ez(d) = /a (jﬁg) Id%-sin?0g- 2 5; d__d  (4-5-4)

Remembering that the instantaneous frequency of a waveform
proportional to exp{#$(t)} is defined as

= 1 de* —E—g
f—ﬁdt | (4?6)
wheré ¢" represents the imaginary part of ¢{ and remembering,

too, that the factor exp{j2mf,t} is assumed but suppressed in
Equations (4-5-1) and (4-5-4), the instantaneous Doppler shift
in frequency of the direct field component E,(d) relative to

the carrier frequency fo is given by

Afgq = —-’oRe{/e—z'}Ré/c ' : (4-5-6)
Since
- . 2 2 2 !5 ' - _
Rg = [r? + a?(z - zg)?] , (4-5-7)
then
IR, " R Az - z,) .
d or at Az -zg) At .
or
"Ry = stined + Vycos8g . (4r5-9)
where,
Vr = radial component of receiving terminal velocity
' - relative  to . transmitting ' terminal velocity
[= 3r/a3t]. - ' s ' ’
Vz = vertical component of receiving terminal veloéity

relative to transmitting terminzl = velocity
[= 3(z-245)/0¢]. o

Note from Equation (4-5-6) and (4-5-9) that the Doppler shift
is directly proportional to the carrier frequency f, and to
that component of the differential términal velocity directed
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between the terminals. The negative sign in Equation (4-5-6)

signifies that relative terminal motion tending to increase

Rg will shift the received frequency downward relative to the.

carrier.
In a similar manner, the instantaneous Doppler shift of
any reflected field component E,(r) relative to the carrier

frequency f5 can be found to be
= - ' ' -5~
'Afr = -f Re{/ez}Rr/cv (4-5-10)

where

R. = Vpsin@y - Vjcosoy :  (4-5-11)

and, in addition to the previously defined variables,

Vz = vertical component of reeeiving terminal velocity
relative to the transmitting terminal image
velocity [= 3(z+zg)/3t].

The instantaneous Deppler shif* of any lateral wave field
component Ez(&) relative to the carrier frequency fo is given
by

Afg = -(fo/c)[Vy - Refalegz - 1)%}-V,] (4-5-12)

The order of magnitude of the boppler shift may be estimated
by considering two vehicles moving apart along the forest f;obr

~at speeds of 100 kilometers per hour and utilizing a carrier
. frequency of 600 megahertz. The Doppler shift of the direct

field component will dominate and will be approximately equal

.to

f4 = -(600x106) 200x107 //(3x103
| 3600

= =100 Hertz.

~For a broadband communication system utilizing bandwidfhs in

excess of lOOMH Doppler shifts of this magnitude can be expected
to have negxiglble effect on performance.
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5.0 Sensitivity of the Stratified Forest Model

Under this task, the stratified forest model has been used
to investigate the sensitivity of the basic transmission 1loss,
the (mean) forest pulse response, and the .differential pulse
delay to variations . in the salient biophysical parameters of
the forest [refer to Section v2] and to tha frequency,
polarization, and path 1length of the radio link. Three forest
types have been considered to illustrate the sensitivity of
the stratified forest model: an uneven-aged, trunk-dominated
forest characterized by a trunk number density (pg) .of 1000
trunks per hectare .and by an exponential trunk-diameter
probability ‘densify. function® haVing a mean trunk diameter of
6.35 centimeters (2.5 inches); an all-leaf forest characterized
by a fractional volume (FV) of 0.1 percent [5 centimeter‘leaf
radius, 1 millimeter leaf thickness, and 133 leaves per cubic
meter]; and a ‘mixed—foresf of trunks and leaves derived from
tﬁe other two. Branches have not yet been. 1ncorpordted into

the stratlfled forest model.

Althodgh all-leaf forests will be studied systematically
for later comparison with uneven-aged, trunk-dominated forests,
it seems advisable to start this sensitivity analysis of the
stratified forest model. with the one all-leaf forest considered
previously in Reference [42]. This will permit those previous
results to be dlscussed in a manner qot possible at that time
and to support an evolutlonary development of the formats to
be used in the systematlc sequel. Figures 6-2 and 6-3 of Re-
ference [42] have been reproduced here in a newer and more
complete . form as Figures 5-1 and 5-2. As. before, the number

'Althouqh, as noted in Section 2.2.1, the upper and lower limits on the trunk

diameters  of real forests must, in practice, be reconciled with the geni-
infinite 1limits available to the exponential probability density function,
for present purposes the exponential probability density function was defined
only over a 1 tol2 inch diameter range at discrete  l-inch intervals. The

area under the density function was, of coursSe, normalized to unity.

-1 . .




densiiy of thé leaves has been taken as 133* leaves per cubic
aeter [corresponding to a fractional vclume of 0.1 percent].
The transmitter and recéiver antennas have been situated 3.5%
meters below the forest top and the range has been taken as
lOCO meters. The forest pulse response shown in Figure 5-2
has beeh determined.for a S5-nanosecond rectangular pulse having

an r-f carrier frequency of 600 MHz.

‘The forest transfer functions shown in Figure 5-1 have
| been normalized to 0 dB for the direct wave at €00 MHz. The
_direct wave is reduced by interference. with the reflected wave
at all frequencies, with nearly complete cancellation occurring
near 400 MHz ; ‘their resultant is less than the lateral wave
at all frequencies. Thus, the forest ;trahsfer' function of the
total wave follows roughly that of the lateral wave with
interference lobes arising: as .a consequence of further
interference between the lateral wave and the direct-plus-
reflected wave. The forest .pulse response of Figure 5-2 shows
~the same partial cancellation.‘ The lateral wave arrives earlier
than the direcf .wave because it travels faster in free space
above thé forest than the other waves travel through the forest.

The corresponding pulse envelopes are shown in Figure 5-3.

The subsequent preséntation of the sensitivity analysis
involves two sigrificant changes in format as well as variations
in forest type and path geometry. The first is the inclusion
of basic tranémission loss. This is discussed in Section 4-4
and in Section 5-1 below. - The second is the insertion of an
ideal (rectangular) Ibanabass  filter centered on the carrier
frequency of 600 MHz to improve tﬁe simulation of the fadio
-equiphent.' For an ideal rectanguiér pulse with its sinc-shaped

*All curves presented in Reference [42] citing a leaf number density of 200
leaves per cubic meter were, in fact, based upon a leaf number density of
12/3)(200) = 133 leaves per cubic meter. ' '

*The radio path geometry is slightly different frem that actually used in
Reference [42]. . There, the transmitter and receiver antennas were situated
3 and 4 meters, respectively, below the forest top (not 4 and 6 meters,

- respectively, as stated):; here, both transmitter and receiver antennas are
situated 3.5 meters below the forest top. ‘ '

5=2
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amplitude spec"crum, the high- and low~frequency spectral skirts

led to intolerable pulse distortion. Therefore, in the sequel
only the cent:ral lobe of the pulse spectrum is passed- by/ldeal
filter. The corresponding transmltted pulse shape, no longer

rectangular, is ‘shown in Figure 5-4.

5.1 Basic Transmission Loss

The basic transmission loss experienced within an all-leaf
forest characterized by a fractional volume (FV) of 0.1 percent
is presented in Figures 5-5 and 5A-1 to 5A-8. The vertically-polarized
transmitter and. receiver antennas are situated 2.5'meters below
the forest top and separated, successively, by 200, 500, and
1000 meters.* The basic transmission losses associated with the
direct and reflected waves are viftuafly indistinguishable and
for frequencies less than about 500 Mﬁz increase about 6 dB/octave
of frequency. The direct and reflected waves destructively
interfere so that their resultant is nearly 20 decibels below
either of them at R = 1000 m. Particularly strong destructive

interference is apparent near 500 MHz. Thz basic transmission

loss of the .total at 1000 m is clearly dominated by that of
the lateral wave which decreases about 12 dB/octave of frequency.
Note that, in general,  a ‘leaf-dominated forest behaves as a

low -pass filter for vertxcally polar;zed radiowaves,

The losses for the same ranges thh S/2 . 5 m are shown

in Fiqures SA-4 to 5A-6, and for S/2 = 10 m in Fiqures 5A-7 to
5A-9. The chief points to notice are the absence of the 1atéra1
waves as the angle of incidence exceeds the critical angle (see
Section 4. 2 6).

The basic transmission  loss for ‘the trunk-dominated forest
is shown in Figures 5A-10 to 5A-18. A8 Jor the leaf-dominated forest,
the basiC’transmission'lossésassociatedywith the diréct and re-
flected waves are virtually indistinguishabla and they destruc-
tively interfere so that their resultant lies 110-15 d8 below
them, The basic transmission 1loss of the total is clearly
dominated by that of the lateral wave (they are 1ndistinguxshab1e)
"which increases approximately 6 dB/octave of frequency.

\
\,

‘cxcept for Figuxe 5-5, for which S/2 = 3. Sm and R = IOOOm as in Figure 5 1.
56" '
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5.2 Forest Pulse Response

The' mean forest pulse response has been determiﬁed for

a wideband digital radio system having a 600 MHz carrier frequency
and a 300 MHz r-f bandwidth as above. The pseudo-noise chips
are derived by passing 5-nanosecond rectangular pulses through
an 1ideal bandpass filter. .The forest pulse response for the
leaf-dominated forest is shown in Figures 5B-1 to 5B-3 for
S/2 = 2.5 m, 5B-4 to 5B-6 for S/2 = 5 m and 5B-7 to 5B-9 for
S/2 = 10 m. The forest pulss responses associated with radiowave
propagation  along the direct path are shown uppermost in these
figures. The propagation delay along the direct path 14, observed
to be about 3340 nanoseconds for R = 1400 m, can also be estimated
from the approximation ' '
LI Rd/sé

c

(5-2-1)
where e; is the real part of the longitudinal coﬁponent of the
effective 'dyadic susceptibility [refer to Figure 3-1(b)}. For
this ekample, Rg =.1000 m, e; = 1.004265, and c = 3x10°% m/sec.
The companion pulse response for the reflected pulse also shown
in Figure 5B=-3 exhibits essentially the same delay.  The rather
shallow glancing angle at the air-forest interface associated

.with this particular geometric configuration (about 0.14 degrees)

ensures a relatively strong reflected pulse (at 600 MHz the reflec-
tion coefficient is 0.9942), although essentially in antiphase
with the direct pulse. ' As shown in tﬁe'figure, the direct and
reflected pﬁlses virtually cancel each other and, as a
cohsequénce, the contribution of the lateral ‘wave dominates
the resultént. The propagation delay aﬁsociatéd with the lateral
wave is essentially that of free spéce. ‘ '

The forest pulse responses for the trunk-doﬁinated forest are
shown in Figures 5B-10 to 5B-18. In Figure 58-12, the pulse responsé
associated with the direct wave .arriVeé prior to the pulse
fesponse agsociated wifh the lateral wave. This is a consequence
of the fact that the .longitudinal component of the ,effeciiQe'_
dyadic susceptibility is negative. Equation (5-2-1) can still

. 5-9
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be used to estimate the arrival time of the direct pulse, although
for this example, because Eé = 0.99903 the velocity of pulsé
propagation appears to exceed thét of light in vacuum. A more
exact expression for pulse delay time and the Kramers-Konig
relation can be employed to refute this contention in general;

the apparent paradox that Figure 5B-12 supports this contenticn

' can be resolved by noting that the strictly band-limited trans-

mitted pulse cannot be localized in time. - The small, rapid

- oscillations may be the so-called Sommerfeld precursor [36].

In any case, the high specific attenuation associated with the
propagation of a vertically-polarized wave through a trunk-
dominated forest [refer to Fiqgure 3-2(a)] severely attenuates
all but. the lateral wave which, as is apparent from Figure '5B-12

dominates the resultant pulsé response.
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 ANNEX 5A: Basic Transmission Loss
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ANNEX 5B: Forest Pulse Response
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Figure 5B-1: Pulse Response (Leaf Forest)
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6.0 Incoherent Forest Scattering

The electromagnetic fields of radiowaves propagating through
a forest can be decomposed iriu mean (coherent) énd diffuse
(incoherent) components. At low frequencies (HF and below)
the diffuse component is relatively small and only mean fields
need be considered. As the frequency becomes higher, spatial
fluctuations in the field become more important; and the diffuse
component of the field must be taken into account. In this
section, the behavior of the diffuse component at VHF and UHPF

frequencies is examined for a trunk-dominated forest.

The trunk-dominated . forest consists solely of tree trunks
which are parallel to each other but randomly placed perpendicular
to the forest floor. It is a useful model since trunks are:
the largest forest componernt and the first to give.rise to sub-
stantial random or diffuse . component of the fields as the
frequency is increased. In addition, if the trunks are assumed
to be circular, and propagation is parallel to the forest floor,
Maxwell's equations can be replaéed by a scalar wave equation;
this represents a subs;antial simplification in the mathematical

analysis required.

' To characterize propagation in the forest when the diffuse
componenf of the field is significant, the space-frequency corre-
lation functidn of the field is required. This is the correlation
functinn betilén the fielq component at space point x and fre-
quency «» with| the conjugate of the field componént at space point
x and frequency w. An approximate equation for this corrélatibn’
function can be obtained for the two-dimensional trunk forest.
This equétion is the stafting'point'for.most'of the.calculations

of this section.

. Once the| correlation equation has been obtained énd the
scattering properties of the trunks discussed two probléms are
addressed. The first is the solution of the correlation equation
for trunks thin ‘comparéd to a wavelength with x = X but w # a.
With fhis,frequency correlation function the coherence bandwidth
of the channel can be détgrmined. Following this calculation,
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the intensity and space correlation function are evaluated
for the general case of a forest of resonant trunks, i.e., trunks
that are nct necessarily small compared to a wavelength. The
intensity calculation represents a generalization of that for
thin trunks that appears in [42]. The results of both
calculations yield essential physicai infprmation on channel

behavior which will be discussed subsequently.

6.1 Mean and Correlation.Equations

In this section, the equation for the mean field and the
equation for the spacé-frequency correlation function are
developed. Before this can be ddne, the two-dimensional forest
problem must be formulated. Although some of the material in
this section has already appeared in [42], it is repeated here

for completeness and convenience. :

6.1.1 Formulation of Two-Dimensional Trink Problem

Consider a trunk-dominafed forest represented by a col-
lection o©f parallel circular dielectric cylinders havipg radius .
'a and complex relative dielectric constant €+ The collection
of ‘trunks 'is confined to stand within an area S as is shown
-in Figqure 6.1. If only an electric current source having .no
' variation in ,the  direction parallel to the. cylinders is
considered, the electric field obeys the following scalar  wave

equation
[VE + koe(x, ,w) JE, (X ,w) = Jubed, (X, ,w) (6-1-1)

Here Ey(xt,w) is the only compunent of the electric field excited;
it depends only on the transverse position vector Xt = xx°+yy°.
In the above formulation, the z coordinate is parallel to the

cylinders.

The current source Jz(x¢,») can be within the forést region
S or outside of it. In some cases the source is allowed to
recede to infinity in such a way that it generates plane waves
normally incident on the forest. The two-dimensional source’
distribution is not as realistic. as a ‘three-dimensional point




« Figure €-1 Cross-Sectional View '0of Forest Trunk Model
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~source, but the scalar formulation of Equation (6-1-1) lead-
to a much more tractable problem. Since a point source can
be represented as a superposition of phased line sources, the
results can be generalized to the three-dimensional source case
by employing superposition. This, however, will not be done

at this time.

.The dielectric characteristics of the forest are specified
by the relative dielectric permittivity, € (Xpw). This
permittivity can be expressed as a ' sum of the susceptibilities
of the individual scatterers as follows:

N
elx ,w) = 1+ 2; X3 (X r0) (6-1-2)
. j=1 '
where X5 is the susceptibility of the jth scatterer. It is
convenient tc express the Xj as a 'translation of the suscepti-
bility, X, of an identical scatterer located at the origin.
1f Etj is the vector from the origin to the center of the jth

scatterer then

Xj(gt,w) ='X(5t"§t5'“) o (6-1-3)
where
X, (w) p |§tl_§a
XX, 0) =
| 0 v Ixe ] >a

Here Xz(w) is the susceptibility of the bulk‘treé trunk material.

‘"It is assumed to be isotropic.

Following the methodology-pf Section 2.1.1, L42], Equation
(6-1-1) is expressed in operator notation. If the following
quantities‘aré_defined:“ ‘ - '

L=-(VZ+kd) v, o= k23X, (6-1-4)

Y = E g = —jwu,Jz - (6-1-5)
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then Eqﬁation (6-1-1) can be written as
N '
(L -y v.)w =g (6-1-6)
3=1 ,

This notation has been used in Section 2.2.3, [42] to derive
the mean equation. It will be used in this report to derive
the space-frequency correlation equation (Appendix A). It

provides a concise mechanism for writing defining equations

‘for the meén and correlation in the main body of the text.

The formulaticn of the scattering problem thus far is in
terms of the susceptibility of individual scatterers translated
'"from the origin. Past experience has shown that it is more

useful to express the characteristics of a scatterer by its
response to an incident field. For this purpose, the transition
cperator T is introduced. If y; is the field incident on a
scatterer having susceptibility X{(xt,w) which is located at
the origin, then the induced sources (gegq generated within the
scatterer are

Jeq = Txpi = 'ft(if’_‘."“’)‘i’i(i"“’)di' (6-1.-7)

Here the transition operator has been represented in terms of

. an integral operator having kernel t(x,x',w). From a knowledgén

of t(x,x',w) all properties of the scatterer can be determined.

It has been shown in.Section 2.2.2, [42] that the transition

- operator, T(Etj)r for scatterars located at Xg. can be simply

expressed in terms ' of the transition operator of the scatter
located at the origin. This relationship is given by

T(itj)lb = ft(?_‘.." &;jn_(_' ‘Z(_tj.w)'ll(ﬁ_t;',m)di' ' (5-1-3)‘

Using ‘Equation (6-1-8) the properties of all particles can be
expressed solely in terms of t(x,x',w).




Vit m e Ry

The scatterer can be characterized in an alternative manner
by specifying its far-field response to a unit amplitude incident

plane wave. If the.incident plane wave is given by
by () = exp{-Jkoi-gt} (6-1~9)

then the scattered field in the radiation zone of the tree trunk
has the form '
, exp{-jkox_ }
= 3 t = .
ws(g_:_t,w) = flo,3) ___~ ¢t , X, [_)_tt] - (6-1-10)

e

where i and o (= X¢/x¢} are unit vectors in the direction of
the incident wave and observation point, respectively. Equation
(6-1-10) serves as the defining equation for the scattering

.amplitude, f(gni); The scattering amplitude is directly related

to the Fourier transform of the transition operator. The rela-
tionship has. been derived in Appendix B of [42] and is given
by

~ - 3 =Jx
£(0,i) = yE(koo,keiw) . y=Yi—e * (6-1-11)

where t is:

Bk, ) = | ‘j/' dx ! Jkeoxe - ke.xt) 1
( grw) = (2m) dx, dx/t(x, , _t,m)e (6-1-12)

Although the fransition_kernel t(x,x',w) enters into the defining
equations for the mean intensity and the correlation: function,
it is the scattéring amplitude that ippears in the final results.

Throughout this subsection, the w depehdence of quantities
has . been. explicitly exhibited. This 'has: been done since the
calculation of the space-frequency correlation function to follow
requires explicit knleedge of the frééuenqy dependence.

6.1.2 Mean Equation

An approximate eguation for the mean field <y> was obtalned
in Section 2.2.3, -[42] by employing_the Foldy-Lax method [19,35].
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The method is valid for collections of two-dimensional discrete
scatterers having small ‘fractional area. This c¢riterion is
usually setisfied inasmuch as most forests have fractional areas

ranging from .05 to .2.

The appfoximate -equation that the mean field satisfies

is

(72 +k3) <p(x,,0) > + fds dxln(s,) t (x, —_s_{,_,:_c;: =5, 1w <P(x! w)>

= '-g(z(_t’w) ) : (6"‘1"13)

where the density P(st) 'is zero for gg outside of 8, i.e.,

p(sy) ’ s, inside s
plsy) = ' ' ‘ (6-1-i4)

0 o, s, outside s

This equation is an integro-differential equation inside the
forest but when st is outside S, the mean equation reduces to

the free space scalar wave equation,

" The operator notation previously introduced can be used
to‘simplify'the appearance of the mean equation. By using the '

mean operator £ the mean equation becomes

EKy> =g (6-1-15)

. o where
t=1- [aso(s)is,) . (6-1-16)
o | ‘Note that no average'.bar appears over T as in [42]; because.

for cylindrical scatterers, T = T.

The mean operator £ has been introduced since it ié important

to .the formulation of the correlation equation. In this context"

¢ its inverse will often be required. The inverse of £ is defined
in terms of the mean Green's function G(xy,x{,w) as

: ' | ‘ .' o | 6
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£71¢ ="/.63£G(§t,§é,w)¢(§é,m) - (6-1-17)

where

£G (6-1-18)

"
‘©»

or more explicitly
2 2 s -

_éﬁ(gt - X

x, ) | ,. : g6-1-19)

Thus from the solution of Equation (6-1-19) the inverse of

£=! can be found from Equation (6-1-17).

In the low-fréquency limit, the transition kernel +(xy,X{,w)

can be represented as Section 2.2.2, [4Z]

t(xe xp,0) = ka(w)8(x,)8(x]) S (6-1-20)

where o is the two-dimensional polarizability of the c¢ylindrical
scatterer. For a circular cylinder of susceptibility X it

is given by
alw) = =X, (w)*ra® . (6-1-21)

where a is the radius of the trunk. If the low-frequency form
of the transition kernel as it appears in Equation (6-1-20)
1s used in'Equation (6-1-19), the eduation,for the Green's func-
tion simplifies substantially.. It is given by '
t ~ Z¢,

{vé+k§(1+p<_§t)azw))}c(§t,§£ Jw) = =8(x ) (6-1-22)

This equation will be employed in Section 6.3.

6.1.3 Space-Frequency Correlation Equation

The basic quantity needed’ to characterize communications.
.channel is the space-frequency correlation -function; i.e.,

6-8
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<P(xp, w0 P* (Xp,D)>. This represents the correlation between
a field component of frequency w at position x4 and a field
component of frequency ' w at position Xt. From this functioen,
the frequency correlation and delay spread for the channel can
be obtained at a fixad point x¢ = gt, and the spatial correlation

~

can be found at a fixed frequency w = w.

The correlation of the field can be decomposed into a co-
herent and incoherent part. Consider the field Y(x¢,w) to be
represented as a sum of its mean <Y(x¢,w)> plus its fluctuating

component §(x¢,w) so that

Y(x, ,0) = <w(£t,w)> + @(gt.w) (671-23)

where <¢(xy w) > = 0 by definition. By using this equation, the

correlation can be decomposed as follows
* ~ ~ _ *. A ~
PR T (R 0> = <Plx 0] ><PT (% 0) >
+ <Plx, 0 ¥ (2 0)> (6-1-24)

The first térm <Y><¥*> is 'the mean intensity. It represents
the complete correlation function when there are no fluctuations.
The second term <‘NJ*> represents the effects of fluctuations.
Thus, the representétion afforded by Eguation (6-1-23) permits
the channel to be  divided into two parallel components each
with its own distinctive channel characterization. This 1is
shown pictorially in Figure 6.2. '
The equation that the space-frequency correlation function

satisfies has been derived in Appendlx A. The 'methodology' is
the same as the derlvatlon appearing in Appendix C of [42] where

the space correlation equation is derived. The 'inclusion of

two different frequencies only changes the eéuaticn slightly.

The equation is then given by

££* <yy*> -J[dgtp(gt)T(gt)T*(gt)<¢¢*§ = gg* (6=1-25)
"
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where tie notational device has been used that unstarred
quantities are functions of x¢ and w while starred or conjugated
quantities are functions of Xy and w. = The integral term is

the scattering or diffusion term and when small

ce*<ppts = ggt (6-1-26)
or |

;¢¢*> = x“f*‘lgg* (6-1-27)

= g-lgg* gt | (€-1-28)

= <¢>g¢*> | , : (6-1-29)

Thus when the scattering term is small, the random component

of the channel can be neglected.

In the following subsections, the space-frequency correlation
equation is presented fcr the two special cases mentioned earlier.
First in Subsection 6.3, the frequency correlation function
(x¢ = X¢) is given for an infinite forest having a line source
excitation. The low-frequency approximation will be used to
make the equation tractable. In Subsection 6.4 the spatial
correlation function (w = @) is given for a half-space forest
with a normaily incident plane- wave. The low-frequency
approximation is not employed here, so the results are valid

for all frequencies of interest.

6.2 Single-Scatterer Characteristics

The properties of the scatterer ensembles to be treated

in the next tho:subsections will be closely related to the char-

acteristics of the individual scattering elements. In this

" subsection, the differential scattering crosa-section and total

cross-section of .an isolated tree trunk (circular cylinder)
are plotted for typical tree ‘trunk dfameters. The curves obtained

'arq used in latter subsections to  help ihterpret multiple scat-

tering results.

6-11




Consider a circular lossy dielectric - cylinder of radius
a whose axis coincides with the z-axis. fThe cylinder has the
complex permittivity x24= xi - 3x%- The fundamental quantity
characterizing the scattering properties of the cylinder is
the scattering amplitude as defined in Equation (6-1-10). The
scattering amplitude f(o,i) measures the‘response of the scat-
terer in the direction o to a plane-wave incident upon the
scatterer in the direction i. These unit vectors are shown
in Figure 6.3 along with the angle of incidence ¢; and the scat-

tering angle dg-

The dyadic scattering ampliiﬁde for ‘a cylinder has been

- computed in Section 3.1, [42]. The scalar scattering amplitude

can be obtained from it by using the h°h° component of the dyadic
at €4 n/2. The result is

Bi=n/2
n Jn(¢ -¢.) .
T 34 S yPe hh s (6-2-1)
2k, e
The expressions for the Chh are giVen in Section 3.1, [42]) and

hh

will not be repeated here. The Cn  are functions of the cylinder

radius, the frequency, and the complex permxttlvxty Xg-

The scattering character1st1cs of the cyllnder are descrlbed

'.by the d1ffetent1a1 scattering cross-section og4, the scatterlng

cross-section og, the total cross-section 0Oy, and the scattering
albedn W, These are addressed separately in the subsections

thch follow.

6.2.1 Scattering Formulas

. 6.2.1.1 Differential Scattering Cross-Secticn

The differential scattering cross-section is defined
as ' : 2' , '
oglo,i) = |f(o, )| . (6-2-2)

6-12




Figure 6-3 Cylinder Scatterer Geometry




R T N TV W TN T W N U T T N WL TR LT B L e L SRR L B B U LN L AN, B YL Y YNV TWS el wa W WL el Wt e v, mLwL L ey el ml we Wi

Using Equation (6-2-1) in the above equation gives

oq(0,i) = o4(¢")

400 +o

- Mz{ T OY (- -1)htm hhcgh j(n-m) ¢ (6-2-3
° N=-® m=-x .
where ¢' = ¢; - ¢g5. Thus O3 can be computed from a knowledg

of the Cgh and it is only a function of the difference betwee
the incidence angle ¢; and the scattering angle ¢5. The differ
ential scattering cross-section also has the following tw
properties:

I

0q(¢") = o4(¢' + 2m) - (6-2-4

0q(d") o4q(=9") ' (6-2-5
Thus it is seen that 03(¢') is an even periodic function o
¢'.

A quantity closely related to 04 is the bistatic scatterin
cross-section, Opj, which is given by

Opileri) = 4n04(0,1) (6-2-6

It is often used in radar applications. 7The differential scat
tering cross-section gives the gain pattern or angular distri
bution of scattered power of 'the scatgefer. It is usually

function of ihcident angle buat since the cylinder is rotationall
invariant, ogq depends only on the difference between ¢ ¢ an

¢;.

6.2.1.2 S$Scattering Cross-Section

The next quantity of interest is the total power scat
'tered at all angles surrounding the cy11nder. The cross-sectip
of a particle which would produce this amcunt of scatterin
is called the scattering cross-sec;ibn Og and is given by

6-14




2n ] 2n |
og = oateinias, =fo 0q(6*)as (6-2-7)

If Equation (6-2-3) is used in the above equation; the result

is -

o, = = X Ictf | (6-2-8)

6.2.1.3 Total Cross-Section

‘The total cross-section, O, is the sum of the scatterlng
cross-section 0Og and the absorption cross-section 0,. It measures
the amount of power the scatterer extracts from the incident
wave in scattering and absorption. Since 0, is not directly
related to the scattering amplitude, the calculation cf o4 in
terms of the.C}I;h can most easily be done by us1ng/5pt1ca1 theorem.
According to Appendix P of ([42], the ouptical theorem for two-

dimensional media states

.n' ‘ : '
o, = - 2/2n Re[f(1 1)e /4] (6-2-9)
ko .

Now using Equation (6-2-1) in the above =2quation yields

. 4 hh o : .
O = T ko 'z: Re[ ] | (6-2-10)

. n=-o . ,

6.2.1.4 Albedo

The Emal quantity of 1nterest is the albedo W \thch

is the ratio of Og to O¢, i. e.-

W= os/ot (6-2-11)

The albedo always lies between zero and unity and measures the
ratio of power scattered to power absorbed. Scatterers' having
" albedos close to zero aré,very absorptive while scatterers |with
albedos close to one scatter much more power than they absorb,

. 6-15




6.2.2 Single-Scatterer Properties

The parameters that affect the cross-sections are the
trunk radius, a, the freqnency, £, and the complex
susceptibility, ‘Xg. The scattering cross-sections will be
computed for trunk radii of 1, 5 and 10 centimeters since these
represent typical trunk radii found in forests. The frequency
range will be chosen from 200 MHz to 2000 MHz and three models
for the susceptibility will be used. These three models have
been called CyberCom Model I, II and III. They have been defined
and discussed in Appendix A, [42]. All three models have a
constant real susceptibility independent of frequency. The
imaginary part of the susceptibility x differs in the models.
For Model I, x£ is constant; for Model II, the conductivity
of the medium is constant, while for Model III relaxation losses
have been' added to Model II. The variation of Xy for each model
is shown in Figure 6.4. Model III most closely depicts the

actual trunk medium. The cther models are used to show the

sensitivity of the results to variations in the trunk
susceptibility." '

6.2.2.1 Differential Scattering Cross-Section

Tne first curves to be discussed are. the plots of o4
versus- ¢' shown in Figures 6.5, 6.6 and 6.7. ‘Each figure presents
0q curves (scattering pat*erns) at frequencies of 200, 300,
and 600 MHz at a fixed tree radxus. The curves have been:
normallzed but the same normallzatxon constant is used for .all
plots having the same tree radius, i.e., curves on the same
figure have, the same norﬁalization. CyberCom Medel IITI has
been used in the computations. ' Scattering patterns have not

been plotted for CzberCom Model I and II1.

An examlnatlon of the curves shows that at low frequencies,
i.e. 200 and 300 MHz, the trunks of radii 1 and 5 ocm are
almost perfect isotropic radiators. As expeeted, as the frequency

increases for a fixed trunk radius, the scattering pattern becomes

more directed toward the forwatd_direction. This trend becomes

.more pronounced as the,t:unk radius is increased. .
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6.2.2.2 Albedo'and Total Cross-Section

_ In Figures 6.8 through 6.13 the albedos and the total
cross-sections are plotted as functions of frequency for CyberCom
Models I, II and III. This is done for trunk radii of 1, 5
and 10 centimeters. The albedo curves indicate the importance
of scattering compared to absorption while the o curves are
directly related to the mean wave since the mean wave decays
at a rate expl-porz). Values for cg have not been plotted since
they can be computed bylinspection from the albedo and o¢ curves

by using Equation (6-2-11).

An examination of the albedo graphs shows ‘similar curves
for all permittivity models and that as the trunk radius becomes
larger, the curves oscillate more rapidly with smaller amplitudes.

This is because large trunks reach resonance at lower frequencies.

It- is interesting to compare the 6t curves for 1 and 5

centimeters. The one centimeter curves increase with increasing

. frequency up to- 600 MHz. This 1indicates the attenuation of

the mean wave is becoming greater with increasing frequency.
For the 5 centimeter trunks, however, the 0y curves are decreasing
with ‘increasing frequency and thus the mean wave propagates

farther as the frequency, increases.

It is also interesting to compare Models I, II and III
to. see the effects of loss on the albedo curves. Examining
figure 6.10, it is seen at the high frequéncy part of the band
(1 GHz < f <'2 GHz) that the more lossy the. trunk medium, the
smaller are:the oscillations or fesonancés'that.occurr It shoﬁld.
be pointed out howéver, that these oscillations will be a'veraged
out lwhen a distribution of trunk sizes is used to -represéﬁt

a realistic forest.

The curves of the albedo for trunk radii of S5 and 10 centi-

meters are. very high, indicating that the scattered component
- of field will be important. . Only for trunk radii of 1 centimeter

and for frequencies of less than 400 MHz does the albedo drop
to lower values. Thus even though the mean wave may have
decreasing ' attenuation for increasing frequencies inflarge tree
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radii, . the scattered component may be much larger than the mean,

making the behavior of the mean unimportant.

6.3 Frequency Correlation Punction for a Thin-Trunk Forest

Probagation of wideband signals througﬁ a forested environ-
ment requires a knowledge of the frequency correlation function
‘ df_the.medium. With the channel characterized in this manner, .
the deleterious effects of aultiple scattering between forest
components can be properly assessed. The frequency correlation
function can be found by solving the correlation Equation (6-1-25)
'Qifh‘it = gt. The equation is difficult tc solve unless special
bassumptions are made. In the present case, trunks whosé radii:

. are 'small compared to a wavelength wili be assumed.

In the . past, 'several investiqaiors have found approximate
:expréssions_for the frequency correlation function. This calcu-
"~ lation has been made for channels having fluctuating media such
as those channels involving ionospheric f41,53,77,78] or tropo-
spheric (34.35,69]' turbulence, as well as channels involving
hydrometeors [35]. In all of these applications, the forward
scattériﬁg assumption has , been made because 'wavelengths of
interest were large compared to medium correlatioﬁ lengths or
particle sizes, In the present case of forest propagation,
the forward scatterxng assumptlon is not valid over the frequency
';band ‘of ,1nterest for most sca;terers. Thus, the correlation

equation must be solved diractly.

In this subsectioh, an infinite forest is considered havihg
gonsﬁant density 'p. The waves in the forest are excited by
an infinite 1line source. located at the orig:n; thus Jz(xe) =
§(x¢). The space-freduencf»correiationxequaﬁion, (6-1-25) with
X¢ = Xp will be solved for trunks with diameters small compared
‘to - a . wavelength, Using this low- frequency assumotzon, the
correlation equation éan be substantially simplified. To see
this, multiply Equatibn (6-1-25) from the left by £-!'£*-! and.
Qse Equation (6-1-20). The resulting equation for the frequency
correlation function is: ’ | ' '
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Fxerenrw) = Tolxgiw,,0,)
ia - . * o - v ™ - -
=ty fas 0 txg 50w )6 Gy 5w, T s 0w,) (6-3-1)
where THAXpewyew,) = <¢(1t,ml)¢*(§t,wz)> is the frequency cor-
relation function: Tol(Xt,w,,w,) = <Y(Xew; )><y*(xrw,)> is the

coherent portion of the correlation function,

- 22 {6-3-
B,, = pklkzalaz ’ : (6-3-2)
' = = i= 6-3-3
,ki mi/c° , a; a(mi) oi=1,2 .( )
and c, = (uot:,o)';i is the free-space velocity of light.

The Green's function G(xt,w) appearihg in Equation (6-3-1)
satisfies Equation (6-1-9) with the low—frequency assumption

and X¢t, = 0. The equation is

[VE + k2(1 +pa) 1G(x, rw) = S(x,) - (6-3-4)
The solution to this twe-dimensional mean Green's functioﬁ
equation is éiven by

g(gt',m) = %Hi?)(xxt) L o x, = lx, | (6-3-5)

where
=k *pa , k= uw, (6-3-6)

ard ‘H(')(r) is the Hankel function of zero order and second
kind. The mean wave <y{xe,w)> can easily be found by multiplying
Equation (6-3-4) by Jjuuo. Referring to Equatinn (6-1-13) it
is seen that ' ' '

<‘l’(2‘_t"u)> = G(itvw)/jwuo- (v -3 -7}

'The frequency correlation equation, (6—3-1) can be recast

by employing the Fourier transform since the integral term is -
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a convolution of GG* and I'. Rather than proceeding this way,
the Green's functicns and T, will be replaced by their far-field
approximations. This simplifies the calculetion substantially
and only restricts the observation point to be in the far-field
of the source. Tree trunks that are in the near field of each
other are not correctly accounted for. This does not represent
a large error, however, since the EraCtlonal area occupled by

tree trunks is small.

Now using the asymptotic approximation for the - Hankel

function in Equation (6-3-5), the Green's function becomes

-3(kx, ko3 -7)

Glxy, ) - —L—e (6-3-8)
2/§nExt
where
Kk 2 k(l + p a/2) - (6-3-9)

has been used. The latter is a good approximation for « since

pak<l for sparse forests.

If this far-field . approximation is used in the frequency
correlation equation, for the Green's function and for T,, the
result is the following approximate correlation equation:.

PRy rw,rw,) =Ko (Xyiw, )

-312./ﬁdgtx(it-Et,@‘fwz)r(it,ml,wz) T (6-3-10)

where

’ o ~Jvx .
K(it'wl’wz) = fi e t o ‘ ' (6-3-11)
with

= - - * - - -l '
Yy = 8k-p(ka -ka})/2 , 8k=k -k, (6-3-12)
c = [(8n)2%k k,1" " © (6-3-13)
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and

Ko(ﬁt,wl,wg) = K(?g_t.wl.wz)/(muo)Z (6-3-14

This approximate frequency correlation .equation is easier t
transform since the Fourier transform of K(xt,w,,w,) can b

calculated explicitly.
Taking the Fourier transform

1 ke oXy
(2m) 2

(6-3-15

" of the correlation Equation (6-3-10) and solving for f(&t,wl,wz

yields

. RG“S.t'wl'wz) -~ .

Fkyyw,w ) = . , B..=(27)2%8 {6-3-16
—-t 1 2 ~ > 12 12

' l'.BlzK(ktﬁwx’wz) '

where
-~ CI -
Rk, 0, ,0,) = ——ee ke = |k.| (6-3-17
et Zﬂ/izi:$? .’ t £ .
Ko (kyrwy w,) = K(ky,0,,0,) /w2l (6-3-18
and
Y = 3y ' ' (6-3-19

The solution for the frequency correlation function is no
obtained by transforming Equation (6-3-16).  This 'calculatiOI

yields
: ' o dk k, I, (k_x,) : .
! £t e KXt .
Mx, ,w, ,w_) =-cj? = ' + (6-3-20
R 0. /kiI+3F:-r
where
8. .,¢ ' ; o ,
b = —— = p(k,k,) ? ajat/s (6-3-21!




..............

In obtaining Equation (6-3-20) the integration over the angular
variable ¢ has been performed giving the Bessel function Jo(kgxt).
The calculations of this subsection are simi1ar,to>those appearing
in Chapter 7, [42]; in fac;,vthis-calculétion reduces to that
one for w; = w, = w.
' The integral representation for T(x¢,w,,w,) is very slowly
convergent and thus difficult to numerically evaluate. Following
a parallel development to that performed in Appendix G, [42],
an alternate representation for I (x¢,s, ,s,) can be obtained.
It is '

P(xg,w,,w0,) = = jnch‘Sz)’(-j‘/YZ - b? x.)

o B (3BT HFE xy)
- jcf -dp p? . . (6-3-22)
0 ~ p? + b? '
Before proceeding to evaluate numeriéally the “above

expression it is useful to represent the correlation function

as a sum of a coherent part T, and an incoherent part Ty, i.e.

F(Xt,wl,('u'z) = ro(xt,wl,wz) + Fl(xt,wl'wz) . (6_3-23)

It is the ihcoherent portion of the correlation function Tg
that should tend to zéro as |w,-w,| becomes large.

The incoherent correlation 't can be obtained by subtracting
e from . An expression for To' can be obtained from Equation
(6-3-22) by setting 8,, = 0, which implies that b = 0. The

result is

. o0 ,' 'A . ‘ . '
Folxgsw, ,0) =.-ch apH!?) (=367 + 77 x,). (6-3-24)
Now subtracting . from [ as given in Equation (6-3-22) yields

the desired expression for Iy
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‘I‘I(xt,m!,mz) = - jnch'é”(—jJ%2 - b? X )

(6-3-25

® H(Sz) (-3/p% +72 Xy )
- jCI dp p?

0 _p?2+b?
. A normalized form of Iy ‘has been plotted in Figures 6.1
and. 6.15 for center  frequencies of 200 and 300 MHz respectively'
For each frequency a plot is shown for distances of 2‘00,an«
500 meters.. Only frequencies close to the lower edge of th
band of‘ interest and trunks of small radius are considered becaus
of the Rayleigh assumption implicit in the derivation of Equatio:
(6-3-1).. The normalized correlation function TI represent:

1 divided by its value at w, = W,, i.e.
FI(xt’wl'wz) = FI(xtlwlle)'/rI(xtlwlI(‘u]_) (6-3-26

This has been plotted versus the frequency difference w, -w,
Both the real and imaginary parts of TI have been plofted (i1
e.a.ch case. The ‘upper and lower envelopeés . represent graphs of
the< magnitude of Tp and its neéative respectively. The curves
are plotted until the value of |[Tr| reaches 0.1 and then they
'are,' terminated. The correlation bandwidth B; measures the

-frequency difference, w, -~w, for which FI is negligible. It

2
will be assumed that Bc is the value at which |[T1| is equal

to 0.1.

The curves will now be discussed wholly in terms' of the
correlation bandwidth, Bc. Examining F‘igureAG.H for 200 MHz,
"itl is seen that the correl»atioﬁ bandwidth decreases from 6 MHz
to 4 MHz as the distance increases from 200 to 500 meters.'
Increasing the frequency by 50% to 300 MHz lowers the correlatior
bandwidth to 2 MHz at 200 meters and 1 MHz at 500 meters. The'
trends appear to be .that the c¢orrelation bandwidth decreases
with increasing distance and increasing frequency. It shouldi
be recalled, however, that this is just a low-frequency result,
and the trends should not be intgrpre'ted too broadly. )
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6.4 Intensity Fluctuations and Space Correlation Function

for a Forest of Resonant Tree Truﬁks

Propagation through a random medium of discrete scatterers
such- as a forest is characterized by a two—eomponent channel
model. This. model is illustrated in Figure 6.2 and consists
of mean and random or fluctuating compohents. In this subsection,
the. properties of these components will be studied in a trunk-
dominated forest of resonant trees. Emphasis will be placed
on obtaining the two-point correlation fr:nction <w(§)w*(£)>
at one frequency w. Two properties of major interest are: the
relationship of coherent to incoherent intensity fluctuations
as. a function of distance and frequency; and the behavior of
the space correlation function, <w(§)w(£)>, as the distance

~
between x and x increases.

The work of this subsection in part represents a continuation
of the material in Chapter 7, [42]. There the relationship
between the coherent and incoherent intensity has been examined
for an infinite forest of thin tree trunks. The thin tree trunk
assumption, although valid for only the lower portion of the
frequency band of interest, aliowed the correlation Equation
(6-1-25) with x = x and w = § to be solved exactly. The results
showed that for frequencies as low as 300 MHz intensity fluctua-
tions are quite important and that they increase with distance.
These findings will ~now be extended to the case of resonant

trhnks.

For the resonant trunk case, solution of the correlation
equation by a transform technique doeé not seem possibie, instead,
a two-variable perturbatlon procedure is used to derive a gener-
alized transpnrt equation from the correlation equatlon. The
fractional area is the small perturbation parameter used in
_the’ abeve analysis. The derivation of the. tranéport- eguation
from the correlation'equation is presented in Appendix C. The
analysis of the . transport equation~_will be giﬁen in this
subsection. Transport theory has been applied extenSively to
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discrete scatter problems [25,34,54,58], however, CyberCom
has found nc application to tree trunk-dominated fqrests.

6.4.1 Problem Formulation

Consider a trunk—doﬁinated forest that occupies the half
space, z > 0, as is shown in Figure 6.16. The forest is composed
of parallel'circular dielectric cylinders having radius a. They
are. distributed with constant densify p. A plane wave of unit
intensity is normally incident on the half space and the space
correlation function_<w(5)w(2f>,is evalvated at x and X as shown
in Fiqure 6-16. To allow for certain simplifications due to
symmetry, the two points will be assumed to be in the same
transverse plane, i.e., their 2z coordinates will be the same.
This restriction will 1limit the investigation to transverse
correlationé, however, this is the case'of most practical interest

for diversity antenna sitirg.

Because of the assumed location of the observation points

x and X and the uniformity of the problem in the transverse

direction, the correlation function T(x,%) = <y(x)y*(X)> only

depends on the difference of the transverse coordinates x-X
and the normal distance into the half space z, thus

T = r(z,r,) -, T, =x - X (6-4-1)

This correlation function can be ‘written in terms of a

generalized specific intensity function, J(z,rx, %), as follows:

. 2 ikarxsin¢ - ,
F(z,rx) =.f d¢.J(z,rx,¢)e (6-4-2)
0 , S ,
When ry = 0 the géneraliZed spécific intensiﬁy reduces to the

specific intensity I(z,9), i.e.
J(z'ol¢) = I(Z,¢) (6‘4"3) :

From Appendix C, it is seen that J(z,fx, ) satisfies the following
transport equation: - '
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" Pigure 6-16:

Plane Wave Normally Incident
on a Trunk-Dominated Forest




di(z,r ,¢)

COS ¢ ——g=——+p0, J(2,r ,9)
(6-4-4)
2
‘ %DA(rxsin¢{£) d¢'obi(¢,¢')I(z,¢')
¢ e [0,27]
where
A(r) = exp{i2n®pf(0,0)t/vk,} (6-4-5)

Here A(r) is the slowly varying part of the mean Green's function
discussed in ‘Appendix B. The forward scattering amplitude f(o,0)
appears in Equation (6-4-5). It is in the direction o, a unit
vector making an angle ¢ with the z-axis as in Figure 6-17.

The solution of Equation (6-4-4) for the generalized specific
intensity when used in Equation (6-4-2) will give the desired
space correlation function. This equation will 'be solved in
two stages. First, ry will be set equal to zero and the equation
will be solved for the spécific intensity I(z,¢); second, the
solution for J(z,ryx,¢) will be found in terms of I(z,p). It
should be pointed out that the transport equation .for J(z,rg,¢)
is the standard radiative transfer equation that has been
considered by many other research workers when ry is set equal
to zero. _ ' .

6.4.2 Intensity Fluctuations

.

In this subsection, the transport equation for the specific’

intensity will be solved numerically and the results discussed.
The transport equation for the specific intensity is given by

' 2T o o , ‘
cos«#.d—lg—z'i’—'fpotx(z,wa-pfo 0p; (6=0")I(2,0%)d8'  (6-4-6)

ﬁhere the _rotational' éymmetrY' of the cylindrical scatterers
has been utilized by replacing opj(¢,¢') by opj(p=¢') (see
Equation (6-2-3). To solve the transport equation, the boundary

‘conditions at z = 0 and z = ® will be needed. These boundary

conditions are:

. - .
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1(0,¢) = 86(9) , o ¢ (6-4-7)

0
o

I(~,9) ’ ¢ e [0,27] . (6-4-8)
where ¢t is the set 6f angles ¢ corresponding to propagation
in the forward direction. The first boundary condition as given
by Equation (6-4-7) states that the incident energy on the half
space is in the ¢ = 0 direction only. The second condition

says that all energy will be absorted as z approaches infinity.

The specific intensity is now decomposed into two parts
called the reduced specific intensity I (z,¢), and the diffuse

specific intensity I4(z,¢). Thus
I(z,¢) = I_(2,4) + I4(z,9) - (6-4-9)

where I, is the solution of the traasport equation without the

scattering term. It satisfies the equation

di_(z,¢)

- cos ¢—_£H§—_‘ + potIr(2;¢) =0 "(6-4-10)

with boundary conditions as -given in Equations (6-4-7) and
(6-4-8). The equation for " the diffuse intensity is obtainea

by subtracting Equation (6-4-10) from Eqﬁétion . (6-4-6). The
result is f

‘ dId(z,¢) . 27 ' 8 B : .
cos‘¢-——EE—7—~+potId(z,¢)==pj; obi(¢'-¢,)1d(z’¢ ydé

27 L ‘ .
*Q/; 0 i (0-8I (2,4')d¢'  (6-4-11)

with boundary conditions

1,00,6) =0, e ¢ | (6-4-12)
Igl=,¢) =0 ~,  ¢elo0,2n] (6-4-13)
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It should be pointed out that the reduced and diffuse specific

_intensities are exactiy the same as the mean or coherent and

the inrcoherent specific intensities respectively.. These quanti-
ties when substituted in Equation (6-4-2) yield the céherent

and incoherent intensities.

The .solution of the reduced equation is obtained by inspec-

tion. It is

I(z,9) = 6(9)e’ ", T=o0,z (6-4-14)

where T 'is the optical depth. Next, the reduced intensity is

substituted into the right-hand side of the diffuse Equation

'(6-4-11). Before solving this equation, the symmetry of I(z,$)

about ¢ =17, i.e.,
I(z,9) = I(z,27 - 9) ¢e [0,T] ‘(6-4—15)

is wused to reduce Equation f6—4-11) from the angular range
¢c[0,27] to the angular range ¢e{0,7]. The diffuse equation

becomes
dI . (t,u) +1 . o
n %———'+ Ig(T/n) =f Ru u’) I (T,ut)au’
-1 /T-u'? (6-4-16)
Oy bn)
+ —bcl,—— et , uel-l,1]
and t ‘ '
I,0,m) =0 we (0,11 L. (6-4-17)
Ig(=,u) =0 , ue [-1,+1] (6-4-18)

The above equation has been written in terms of the dependent
variable u (u = cos ¢) and 1 instead of ¢ and z. The phasé
function p(u,u') is given by | ‘
o0+ 0) 4+ o (=) ‘
plu,u') = 24 —-pL__ (6-4-19)
' ‘ t S ‘ ' ,

. The integro—différéntial equation for  15(1.u{ cannot fbe
solved analytically unless op;j is independent of angle (isotropic
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scatterer) [20] which is not the present case as evidenced by

the radiation patterns shown in Figures 6.5 thru 6.7. Numerical
methods must be used to obtain gquantitative results. The method
of discrete ordinates [20] will be employed. The integral term
is represented by a discrete sum,using the Chebyshev-Gauss quad-

rature formula

+1 £ (u) - N
— 2 du = o ¥ £l , (6-4-20)
/| JI=77 n==N J .
i#0
where the uj's correspond to discrete angles ¢35 (¢4 = cos"uj)
which are defined by
sin(2j -1)n/4N j=1l,...,N _ »
b == | o | (6-4-21)
J u_j j=—l,o--'-N

Using the quadrature formula in the transport equation,
(6-4-16) to approximate the integral, and evaluating the equation
at u = Uy, j = #1,...,+N, results in a systém of 2N ordinary
differential equations with constant coefficients. ~These

equations are:

.

dI.(t,u,) ' N p(u;,sus) :
d it 1 = N v i J. T
dt * M 13 (T’ui) 2N "ﬁeN My Id(T’pj)
| j#0
o, . (u:) _: :
bi i o7, iesl,...,HN 0 (6-4-22)
] = L : /
oo t .
with boundary conditions
Id(O,ui) =0 i=l,...,N | (6-4-23)
\
Id(mrui) =0 ’ i=ilf-..,tN _ (6-4-24)

The equations can be solved for the Ig(t,uj), i = +1,...,+N,
' by standard numerical techniques. The larger the value of N
‘chosen, the closer the computed values come to the actual solution




N

of EqUation.(6-4—22L and the more points are available' to approx-

imate Ig(1,u) over the complete angular range.

The calculation of Ig(t,u) has'been carried out for N = 20.
Ail calculations in this subsection have been done using CyberCom
Model III for the trunk permittivity, a tree radius of 5 centi-
meters and a density of 1000 trees per hectare. Curves of the
normalized diffuse specific intensity, Ig, versus. the azimuthal
scattering angle, ¢, have been plotted for frequencies of 200,

300, and 600 MHz and optical depths of 0.5, 1 and 5. This is .

a total of nine graphs which have been included in the Annex
with figure numbers 6A-1 'through 6A-9. Inladdition, three curves
have been plotted at a constant distance of 200 meters for fre-
quencies of 200, 300, and 600 MHz. These are included in the
Annex with figure numbers 6A-10 through 6A-12. 'The curves have’
been presented in a polar format. A spline routine has been
used to cénnect the disérete output results of the compufétion

by a smooth curve.

An examination of the complete set bf curves shows several
trends. The first trend is an increase in the amount of forward
scattering as the optical depth. increases for fixed frequency.
This effect. is illustrated in Figures 6-18 and 6-19. The first
figure is for an optical depth of 0.5 and‘it shows a relatively

" large amount of backscatter. The second figure is for an optical

depth of 5 and it shows that the radiation is almost all' in
the forward direction. ' l

This effect has been observed by Whitman et al. [75) in
their examination of millimeter wave scattering from a half
space of three—dimensional scalar . isotropic spheres. To' aid '
in making a compérison with their work, Figqures 6A-1, 6A-2 and
6A-3 have been redrawn in rectanqular format and presented in
Figure 6-20. A comparison of this figure with severa} of

‘Schwering et al. [58] shows quite good qualitative agreement.

The second trend can‘be~obsérv¢d by examining Figures 6A-10"
through 6A-12;_ There, for a constant distance ‘of 200 meters,

" the amuunt of forward scattering  increases as the  frequency

increases. This increase in forward scattering can be explained
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by examining the radiation pattern of the scatterer (Figure
6.6). There it is observed that the radiation pattern becomes

more forward-directed as frequency increases.

The specific inteﬁsity at a point represents thé amount
of energy passing through that point at a spscific angle. When'
this specific intensity is summed vovef all angles, the total
ihtensity at a point is obtained. To see this, rewrite Equation
(6-4-2) for ry = 0. The result is

2 27 .
<Jux)| > = I(2) = de I (z,9¢) ' (6-4-25)
b | !

where the correlation  function I'(z,0) has been set equal to
I(z), i.e., T(z,0) = I(2)., ’ ‘

The intensity can be broken up into a 'mean or coherent
component I.(z) and a random or incoherent component 1I7(z).
These components correspond to angular integrals over fhe reduced
and diffuse specific intensities respectively. From Equations
(6-4-25) and (6-4-9), it is found that ‘

I.(z) =| QeI _(z,9) S (6-4-26)
o - |

and

2n o o
‘ II(Z) fj;,ld¢1d(2p¢) " : (6-4f?7)

The coherent intensity can be obtained directly by using result’
(6-4-14) in (6-4-26); thus

I(z) =e”' ', 1t=o0,z © (6-4-28)
The angular symmetry of. the diffuse specific intensity about ¢ =7
can be used to reduce the integral given in Equatipn (6-4-27) 'to
the interval [0,n]; then, a transform to u = cos ¢, results
in the following expression for I;(z):




I KEREERN Y4

TC R F TRy,

T

+1 Ig(T,u)
II(Z) = ZJ- ——— dy (6-4-29)
) vl - u? '

Now employing the Chebyshev-Gauss quadrature formula given
in Equation (6-4-20), an approximate expression for the incoherent
intensity is found in terms of the numerical results previously

obtained. The incoherent intensity is expressed as

N .
i
I(z) =g _Z Iq(Touy) (6-4-30)
j=-N
‘ j#o
The results of the computer calculations will be plotted
in three formats. These formats are: rormalized intensity'

versus distance; incoherent-to-coherent intensity ratio versus

‘distance; and finally, normalized ‘coherent and ncrmalized

'

incoherent versus distance. The intensity has been normalized
to the value of the incident intensity. Curves will be drawn
for frequencies of 200, 300, and 600 MHz and radii of 1, 5,
and 10 centimeters. All curves have been included in the Annex
under figure numbers ,éA-ls through 6A—21. Sample curves have
been placed 'in the text bearing figure numbers 6.21 and 6.22
for illustrative purposes}

'

An 'examinaéion of the normalized A coherent intensity as
shown in Figures 6A-15, 6A-13 and 6A-21 shows that 'all curves
decrease with increasing distances. V.The rate of decrease is '’
directly related to ot since the “normalized coherent intensity
varies 'as éxp(-potz). ~ This can be verified by referring to
the’;otal scattefing cross-sectinn curves shcwn in Figﬁres 6.9,
6.11 and 6.13. (Note tick marks have been included at 300 and
600 MHz.) It can be‘seen that both the coherent intensity values
and, the 0y values lincréase with frequency for a trunk vradius
of 1 éehtimeter, while they both decrease with frequency for
trunk radii of 5 and 10 centimeters. ' |

In Figures 6A-14, 6A-17 and 6A-20 the ratios of the incoherent

- to.'édherent intensities have been plotted. The basic trend
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these curves show is that the incoherent wave becomes increasingly
important as frequency and distance increase. €ince the amount
of scattering directly affects the importance of ‘the diffuse
term, it is interesting to compare the albedo curves presented
in Figﬁres 6.8, 6.10 and 6.12, to the curves for the intensity
ratio under consideration. The comparison shows.that in almost
all cases an increase or decrease of albedo corresponds to an
incfease or decrease in the incohereht -to - coherent intensity
ratio. This is not the case for curves having a trunk radius
of 10 centimeters where the 200 and 600 MHz curves are inter-
changed. It should be noted, however, that the albedo values

and the curves are ciose to each other in this case.

' 6.4.3 Space Correlation Function

- The space correlation function T (z,:x) can be found by

A solving the generalized transport Equation (6-4-4) for J(z,ry,9)
._': ‘ and then using this quantity in Ecuation (6-4-2) for T(z,ryg).
. 1 Because of the transverse placement of the observation points
x and X, the generalized specifié intensity J(z,rx,$) can be
found directly in terms of I(z,¢). It can be wverified by direct
3 : substitution that |

v | J(2,T,,9) = Alr,sin6)I(z,4) . (6-4-31)
;; | ' and thus J can be‘obtained by using the intehsity values already
o ‘computed.
. < L ' Substituting Equatioh (6-4-31) into the expression for
: the intenéity gives
X i - "ikor_sing
® . Ty =J£ d0A(r,sind)I(z,¢)e ~ * (6-4-32)
_°”: | , o 2m : ikr sing¢ R
‘s ' . ‘ =f d¢I(Z,¢),e ' . (6-4-33)
g where » |
,.lA B ‘. - ' . ' ‘ - . K = ko + S’K o | o (6'.4"34)“
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Sk = 6xk' - jék" = 2m2pf(o,0) /yk, (6-4-35)

Here « 1is the mean wave propagation constant given in Equation
(4-2-30) of [42] with 6; = 0.

- Before proceeding' further, the correlation function is
"broken up irto coherent and incoherent components as follcws:

F(Z,rx) =.F°(z,rx) + FI(z,rx) ' (6-4-36)

where

-po'
I‘,,(z,rx) = e ¢ (6-4-37)
and
2m iersinq) .

I‘,(z,rx) =f d¢Id(z,¢)e (6-4-38)
n 0 , . .

Here To(2z,ryx) is the coherent portion of the correlation
function. It should be noted that it does not depend on ry;
thus the mean fields at g_ and X remain ' completely correlated
for .all values of rx. This is not surprising since 'the mean
field is a deterministic quantity. '

The incoherent portion of the porrelation function is
i'1(z,rg). Using the symmetry of 'Ig(z,$) about ¢ =T, Equation
(6-4-38) can be rewritten as ' '

- n 3 I
33 rx51n¢,

' m
FI(z,rx)==Zj; d¢Ié(z,¢)cos[(k°:+GK')rx§in¢]e
(6-4-39)

It can be seen from Equation (6-4-39) that the correlation
function, Ty, iz real. This is not a general property of Ijp
but results from the transverse location of the observation

. A
points x and Xx.

The numerical analysis of the integral for Iy must be treated
with care. The function ;d(z,¢)'and exp(-&r”rgsinu¢) are slowly

AQfSO
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varying functions of angle, while the cosine function becomes

a rapidly varying function of angle as ko.ry becomes large.

To see the behavior for .large korgx, the integral can be
asymptotically evaluated by the method of stationary phase.
The stationary point occurs at ¢. = 7/2 and the resulting asymp-
totic evaluation yields

—— sk [z |
- TT x
PI(Z,I'X) ZVE—O?}; Id(Z,TT/Z)e )

cos[(k, + 5.<")rx +7n/2] ' (6-4-40)

This approximate expression shows that fo|r large. kory the
correlation function falls off at the decay rate ‘of the mean
wave. The validity of "the above asymptotic expansion requires
the ;I4(z,¢) be a slowly \)arying function of ¢. .As 2z becomes
large,‘ Id(z,d).)' varies more rapidly with ¢. 'Thus as 2z becomes
large, the correctness of the above result falls into question.

The .correlation functioﬁ has been plotted for frequency
values of 200, 300 and 600 MHz in Figures 6.23, 6.24 and 6.25

for distances of 100 and 500 'meters. A spline curve fit to

Ig(z,¢) has been used to numericaitly evaluate the ¢ integral.

The computed correlation function in the figures is shown by

the thin solid  line. The thick solid line is the envelope,

and the dashed line is the asymptotic expression g_i'ven in Equation .

(6-4-40).

An - examination of the correlation curve ‘'shows that for

‘200 and 300 MHz the correlation function does not change sub-

s.tan‘tiall'y'as the distance varies from 100 to 500 meters. It
should also be noted that at' these frequencies, the asymptotic
expansion is quite close to the. computed curve for most .of the
p‘lotted range. Referring to the _-approximate correlation func-

tion given in Equation (6-4-40), it is seen that the corfelation,

distance ‘does not depend on ry. This 'explains' 'the invariance
of tha correlation length with distance observed. in Figures

'6.23 and 6.24.
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Figure 6-23: .

Space-Correlation Function Versus Transverse Sepafatib:
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Frequéncy = 308. MHz
Radius = 3. cm .
- Rho = 18088./ha

b

S A /A e wa L
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Distance = 188. m
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Figure 6~24: 'Space Correlation Function Versus Transverse Separation
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Frequency = 6808. MHz
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Figure 6-25: Space correlation Functibn'versus Transverse Separation
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The ‘situation is different in Figure 6.25-at 600 MHz. Here
the I4(2z,¢) becomes more rapidly vérying for large z and the
zsymptotic expansion is not valid qu a iarge portion of the
2 = 500 meter curve. Thus it is seén for thiércase that the

space correlation function appears to decrease with distance.

As a final observation, it should ‘be noted that the space

correlation length decreases with increasing firequency. This

is the expected result.
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ANNEX 6A

Normalized Specific Intensity versus '‘Scattering Angle

a = d.S m Optical Distance (Tau) Range (m)

Frequency 0.5 1.0 5.0 |- 200
200 6A-1 6A-2 6A-3 6A-10
30C | eA-4 6A-5 6A-6 6A-11
600 6A-7 6A-8 6A-9 6A-12

Normalized Intensities versus Distance

Trunk Radius (m)
Intensities “0.01 0.05 0.10
Total | | ea-13 . 6a-16  6A-19
?: | Incoherent/Coﬁerent 6A-14 éAjl7 6A-20;
Eﬁ ' Coherent & Incoherené' 6A-15 5A-18 6A-21
3 ,
2
3
.
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APPENDIX A

Space-Frequency Corr«zlation Equation

In this Appendix the approximate equation for the space~
frequency correlation function will be derived. The methodoloqgy
employed in the derivation will parallel the Foldy development

for the mean equation.

Consider two fields y (x¢,w) and y (x ;@) . The field Y (x¢,w)
is observed at point x¢, at frequency w, whlle the field y"(xy,0)
is the conjugate of the field observed at point X+, at frequency
We In the remainder of the Appendix, the dependence of Yy on

"X¢ and w, and of y* on X¢ and @ will be suppressed for conven-

ience. All quanticies without the conjucate sign will be assumed
to be functions of unhatted variables, while conjugated quantities
will be functions.of hatted variables. ’

The total field ¢ can be decomposed into two parts: the
incident field, Vyj, and the various scattered fields from the

individual particles, i.e.

N . '
Y = wi + 2 ‘péj) ’ Lq-"_ =g ' (A-1)
i=1 ' :
where w(J) is the scattered field from the jth particle . which
is related to the transition operetor Ty of the ij particle
as.
Ly{d) = é?l’ = ) | (A-2)

. The. quantity ¢(J) in (A-2) is the field at the location
of the jth part;cle with the jth particle. removed.' Substituting
(A—Z) into (A-1) gives the follow1ng equation

' N . :
p = wi'+' > L"T.w(J) r Ly, =g : (A-3)
- 3=l - ' .
81m11ar1y, the equation for the conjugate field y* = w'(ﬁt,ﬁ)-
is obtained as ' ‘
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Now, forming the product yp* and averaging yields

N : N ,
PF> = opl o+ Yy 2‘1 L-l*<T§1p(J)*> + '21 L'1<Tjw(3)>¢;
g - | &

N N 1

-1 - (3) (k) »g , -

+ ;; z; L"L <TJTkw v (A-5)
j=1 k=1 , .

The double sum appearing in the above equation can be broken
into like terms (j=k) and unlike terms (3j#k) as follows

N -
<w*>=wiw;+wi T L et ; MR DL NN ZL <T. :p >lp + ZL LT
' j=1 : j=1 .
S, w(J) (3%, 4 5 ZN: - "“'<'r ory (3 (K * (a-6)
j "4 & k |

j#k
To obtain an equation for the correlation function a closure
approximation is employéd. The approximation to' be usedllis

(3)

a

b <ap>
w(j)w(j)* N <¢¢*> ' o “4 . (A-7)
p I eyt T, gk

This is a generalization of Foldy's closure approximation
used to derive the mean equationﬂ' Using this approximation’
in (A-6) gives - ‘

- N N
<W’ > =y up + Z <T’j'><w*> + X L-l<'1|‘j><:p>up;
: J=1 J=1 co T

N Lo
+ EL-lL- <r, 7" ><¢vtp > + E ZL 1<Tj><w>1, l"<'r‘.'><w"'> (A-8)
j=1 | 3 j=1 k=1 ° o3 ‘

i#k
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Since the particles are identically distributed, the sta-
tistics for all particles are the same, i.e.,

N
§:<T.> = N<T>
=] J

(A-9)
J

N *
Y <T.T> = N<TT*> {A-10)

S 33

Employing these simplifications in (A-8) yields
<py*> = wiw; + NwiL- *<T*><w*>-+NL-1<T><w>w;

(A-11)

-] - ' - - .
+ NLT LT T > <pp*> + (N2 - N) LT e <psL” HeT* > <yt

Notice that for N>>1, N* - N = N*(1l - %) = N?. Using this
fact, Eqnation (A-11) can be put into the following form

<pyp*> = (v, + NL-1<T><w>)-(¢I + NL-1*<T*><w*>)

+ NLTTLT R erT > cpyts (A-12)

Equation (A-12) can be 'simplified substantially by making use
of the mean-wave equation.

The mean-wave equatioh is given in the text by Equation
(2-2-48) as '

£ <Y> = g

’ £ =1L - N<> (A-13)
'Multiply (A-13) by L~ from the left. This yields
_ | ,
“p> = Y, + NLT <T><p> (A-14)

A sigpilar result for the conjugate field is also obtained
- by inspection ' '

<¢*§ = wz + NL™ ' *ertcyts (A-15) -
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Substitufing Equations (A-14) and (A-15) into Equation

(A-12) gives the desired equation for the space-frequency cor-
relation function <yyp*>

cpu*s = <ps<y*> + NLT LT *<rr><yppt> (A-16)
Multiplying Equation (A-16) by ££* from %he left, wusing

the' fact that £<y> = g, £*<y*> = g* and ¥ NS AL | yields
££*<w¢*> - N<TT*><ypyp*> = gg* | ‘ (A-17)

The above steps can be justified by scaling the problems
with respect to the characteristic size of the particle, then
N is replaced by the fractional volume which is small.

The final form of the correlation equation as it appears

in Equation (2-2-44) is obtained by writing the spatial average

of TT* out explicitly and by using Equation (2-2-38).
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APPENDIX B .

Radon Transform of the Mean Green's Function

The two-dimensional mean Green's equation. is given 1in

explicit form as follows
(92 +kDG(xx,) + fdsdx'o(s)t(x - 5,x" - )Glx’ ,%0)

= =68(x - %) ' (B-1)

Employing the two-variabies.perturbation method, the mean Green's

function G(x,x.) is expanded as
G(X - XoiX,Koi€) E ™ (x - x,:%,%,) € (B-2)

where the slow variables are defined as

X=€X , Xo = €X, + 8 =¢€8 , p(s) =ep(s) , e<<l (B-3)

Here € is the fractional area and can be introduced -into the

‘Green's function egquation by scaling variables. Setting p = )

is a more ' direct but less physical way of obtaining the

correct ¢ dependence.

(n)

" The Radon tranéform [ ] of G (denoted by G(n)) with

_respect to X - X, is defined as

RG(n), s.é“" (c -'- =

=./h§p(n)(§-§, X, %) 6(5 - o'(x X, )) (B4

Thus ﬁhé.Radon tran3form of the mean Green's function is

found to be

RG = a(C'o:zlgo) = I: a 27Zp£°)'€ ' o (B-5)
In this Appendix the Radon transform of the mean Green's
function. is approxxmated to the first order only as

{(Coé?xlxo) B - .‘ , (3-6)
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After inserting Equation (B-2) inco (B-1) and equating
coefficients of ¢° and €', the following two equations in c'?)
(1)

and G are obtained respectively
) - —
(V§+k§)G(°’(§->_go:§,§c) = =6 (x - Xo) (B~7a)
(92 +k2)6") (x - %0 5E,X) = h(x - %7K, Ko) ~ (B-7b)
where
h(x-io'g'go) = -2Vt‘VtG( )(X-EO;Z'E°)
-E(E)deidi't<§~§r§'-§>G‘°’(zrﬁoz§,£o> (B-8)
. - A ~ . — - —,\ . _ ~ ! B_g)
Ve 9 X + ayz i Ve 3}{5 f ay Y (

The Radon transform of Equation (B-7a) with respect to
X - Xo is found to be '

2 A - | ;
(aa z‘+k§)G(°) (£,0iK,X,) = =8(2) , = =~w<g<w {B-10°
¢?. .'

Since G(Q)(-—r,,-g:z,go) = G(o)(c,g;’_:_c'_,:'x_o), the solution of (B-10)
has the following form ' ‘ '
A(Z;95e3k°c- ,  forg >0

¢ (z,0:%.%,) = o (B-11)

A(xi-ole 3Kt ' forg <0

‘where . A(X,0) is to be determined. .Notiée that -the dependence

of A(x;0) upon xo is suppressed for convenience and the solutions
e" kel for r > 0, eIKol for £z < 0 have been excluded since there

are no boundaries in free space.

The continuity of @‘o) at ¢ = 0 together with the jump

condition of ac‘°'/ac at ¢ = 0 imply that

A(Zo:g) = A(gol;,-g) = - let— ' . (B-12)
Q@ .
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The Radon transform of Equation (B-7b) with respect to

X - Xo is found' to be

2 ‘~ — - A —_——
(Saz;+k§)c(l) (C:_o_;ﬁlz(_o) = h(;;g;_x_lﬁo) (B~13)

where h(z,0;X,Xo) is the Radon transform of h given in Equation

s

{B-8). . The Radon transform h is coinputed for z > 0 as

-‘2n-ja(g)fds£(sg,sg)f(g;g,s)ejsC - (B-14)

where .
Alx;0) = ~ 2jk,0°V A(X;0)

- (2m) *5(X) t(k,0,k,0)A(Xi0) | (B-15)

Iz Equations (B-14) and (B-15), t is the Fourier transform

of the transition kernal t of the scatterer, and the functiorn'

- f(X;0,s) is defined as

A(x;0) A{Xx;-0)

f(x;0,s) = 5 k. + STK, : | (B-16)

To eliminate secular terms from the pertubation expansion
of Equation (B-5), the following secular condition is required

lim . gt (£,9:X,X,) ' ' :
[ > o — =0 - : (B~17)
X is fixed ~ '

(2

This secular cohditi_on implies that
£(X,0) =0 | ~ (B-18)

Inserting Equations (B-14), (B-16) and (B-18) ‘into (B-13)
and defining o0+X =7, O+Xo = Lo, the following differential
equation in A(7;0) for > 0 is obtained '
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dA(Z;Q_) 2“2'. o - -
—— = 5 5(X(Z:0) )t (k,0,k,0)A(T;0) . (B-19)
0z :

Solving Equation (B-19) with condition (B-12) ~yields the

following
o 1 JAe(Titeio) -
A(C,‘Q) = - HE: e (B-20)
where -
e 2“".. z . ~
A¢(z,2,i0) = f dC'Q({(C'?Q))t(kdppkOO) (B-21)
o | . J : 21ReQ)
Lo ‘

Inserting Equation (B-20) into (B-11) and by Equation (B-6),
the Radon transform .of the mean Green's function is found as

- i"j;l:_ eXP[jkOC"’jAQ’)(E,Eo;_O_)] [4 ’;>o

o

RGI:é(O)(tlg7grg;) = (B-22)

: 1 " . P
L exp[-Jkoc-JM(c,co:-g)] r £ <0




APPENDIX C

Two-Dimensional Transport Equation

-Starting from the correlation eéuation, the two-dimensional
transport equation can be derived using the two-variable pertur-
bation method and the Radon transform techn*que.

An approximate equation of. tne Bethe-~ Salpeter type for the

correlation function ’
(X| ,x‘ ) = <W(X| )w (x| )>

is given by

where £ is' the mean field operator defined in Equatibn_(6—1416)
and T(s¢) is the transition operator defined in Equation (6-1-7).

Equation (C-2) can be rewritten as
* . *ey %* _ _
(£-£ ) -(£ -f)fditp(gt)T(st)T (gt)I‘ =0 (C-3)
where
=1 - ] ' ' ' -
(£ v) (§t) —fd_if_tG (5t,§_t)W(§_t) : (c-4)
_ Here G(xX¢,Xt) is the mean Green's function. It satisfies
£G(x, X1) = 6(x, -

x!) | - (c-5)

Equation (C-3) is now written in a more explicit form as

A . [N A . .* A A * . ‘ '
(Vé-—Vé)r(gt,it)+u(§t,§t)-M (Xp o X )=N(X X )*N (X ,X. ) = 0 . .(C-6)
where
and

N(xt,x ) .[dxtl t2dxtzdstp(s )G(xt,xtl; , (C-8)

By - t'xt2 s )t (Byy - 8¢ rRep - 80T (Xpprep)

C-1.

££'1 - fas,p (8 T(sT ()T = 0 (c-2)




For small fractional volume e, the solution of Equation
(C-6) has two scales of variation in both xt and X¢. A problem
of this type can be treated by the two-variable perturbation
technique. The small parameter £ is introduced  into Equatibn
(C-6) by letting

p(sy) = €p(8) , B = es, | (c-9)
where it has been assumed that p is a function of the slow vari-
able s; only. This assumption implies that [, G, M and N are
functions of not only Xt, Xt and € but also the slow variables

%t and Xg; thus

A(x, X 7€) = A(Xe X iX, 01X i€) | (c-10)
A e {I,G,M,N] .
The function A is now expanded in a power series in €:
A .— —A- . _ = (n) ~ .— 2 n .
Alxg Ry iy Xy ie) -rZ_:O.A (xgrBe 1% B )E (c-11)
A e {I',G,M,N]

Employing the chain rule the Vé and Vé operators become

where-vt and Vt ire the del operators with ‘respect to the slow

variables gt'and t respectively.

£

Proceeding
given in Equation (C-11) is used in Equation (C-6). Equating
equal powers of € and using the fact that M(°) = N(°) = ¢ gives

equations for the [T{!), The first two of thesée are:

t

Vé’+ Vé-+2evt -513+527é ' (C-12)
V§'+ 6;-+Zc§t -+ V +e?VE ‘ (C-13)

fith the perturbation analysis, the expansion 

(v2 = 921 (x, % 5K, X)) = 0 (C-14)




2_"2 (V) ,. = ,— = e (o)
1Y% A L - 1 A - &
+ut )(xt,xt,xt )-M( ) (§t.§t:§t:§t)"N( )(ft'ft;it’zt)

-+N( )* (xt,xt.x ) =0 . (C-15).

Equations' (C-14) and (C-15) are solved using  the double

Radon transformation defined as

RA = A(£,2;0,0:%,,X,)

=fd§td?.‘.t6 (C=0°%,)8(C-0X JA(X, /X, ;X)X )
| (C-16)
A c {I',M,N}
Here o and o are unit vectors. The solution of Equation (C-14)
in terms of the Radon transform is given as
= ik (g = 2)

A ‘A' ~ fal ) + —
: F(°)(c,c:g,9_:gc_t.§t) = [J (_:gt.x io)e

(C-17)

+ J'(gt,x jo)e -ik(g - C)ltS(g--é)
where 'J* and J~ are still to be dete:mined.' The Radon Tranoform
of Equation (C-15) is
2 2 Afll : b — A D A
(2= - %-)r‘ ) = -2ik(o-T, +5-DF (")
T - 14

FUSIET L L - TE

+

where H(!), §(1) are the Radon transforms of M(1) and N(‘);

To insure that T (!) is a bounded function of ¢ and Z, the
right hand side of Equation (C-18) must be orthogonal to the
homogeneous solutzons of f (1), Applying this so-called secular:
condition results 1n the desired transport ‘equation for the two | P

point specific 1ntenszty J(gt.gthg) where




J (x,.Xx.50) , O0<O<w :
J(X, X, 50) = - . c-19)
_t'_t;g) ’ . ﬂ'<e_<_2'ﬂ' I '

Here J* and J~ are the unknown slowly varying coefficients

appearing in Equation (C-17). The transport equation for

J(Xy Xe:0) is:

iko- (7. +7 XX 2T )t % %X :0) = (27) 20 (X
2iko- (V. +V )J(x, ,X, :0) + (27) "o (x, )t (ko,ko) I (x, ,X, ;0) (Zn) p(x,)

~% - s~ . S 2'“ - A A
t (kg,kg)J(ﬁt,gt;g)-4in°p(§t{f d9'|t(kg,kgf)lzJ(§t,x
: 0 o

ey !
4+ - 2 - A ] 3__' - 27 - .2
A (x,.x,70)Ufo(x, -~ x.)] - 4in p(§t)f de';lt(kg_.kg_')vl
. ' o : . ,
(3 (X, % 00AY (X, X, 10)Ulo(X, -X,)] = 0 - 20)
XeoXp 70 (xprx,70)Ulo(x, - %, )] = (C-20)

Here E(Elg‘) is the Fourier transform of t(x,x') as defined in
'Equation (6-1-12) and "

+ S 1A¢i(xtr§t72) |
AT (x,,X;0) = e T ' (c-21)
with
ZE=9'2£
t - = 272 : ——— ,
87 (xy /%X :0) =+ =— - dg'p(g';0)t(tkostko) (C-22)
E*Q'Et

‘The unit step function is defined by U(Z).

The correlation function [(°)(x,x;x,x) is found by
the inverse Radon transform which is given by ' ‘

o . LA " A AN A A :.
r(‘°)(§t.§t:5t.5t) = 4j dg_f do (K K r(°)(c.c;9_,o:§t,§t) (C-23)
: 0o 0 »

(C-24)
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.
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taking




-and
&) (z,850,8:%,% =
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with Pj' being the principal value integral. Substituting Equation
(C-17) into Equation (C-25), the correlation function can be

obtained in terms of J(Xi,Xt:0) as

iko- (x -gt)
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doJ (x, ,X, :0)e (C-26)
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In 'summary, the correlation function is approximated by

the first term in a two variable expansion

F(it:f‘_t) - r(°)(§t._it;it.§t)e° + O(e) - (c-27)
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where T'(°)(x¢,X¢:Xe,X¢) is given in terms of the two-point specific
iﬁtensity, J(gfhit;g), as expressed in Equation (C-26) and the
~two point specific intensity J(E&,ii;g) in turn satisfies the
generaiized transport Equation (C-20).
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