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1.0 Introduction

* This repcrt describes a stochastic radiowave propagation

model useful for assessing the effects of forests upon wide-

bandwidth digital radio communication systems operating in the

200-2000 MHz band. It represents an extension of the model

Cfirst reported in CyberCom Technical Report CTR-108-01 [421.

The theoretical basis for this model was first developed by

Foldy [231 and later extended by Lax [45], Twersky [681 and others.

According to this model, the forest is represented as 4

* time-invariant, stratified configuration of randomly-positioned

and randomly-oriented discrete canonical scatterers. Tree trunks

are modeled as infinitely-long circular dielectric cylinders;

branches as finitely-long circular dielectric cylinders; and.

leaves as flat dielectric discs. The propagating, radiowave

is considered to consist of two parts: a mean (coherent)

component derived by averaging statistically over an ensemble

of forest configurations, and a residual random (non-coherent,
i diffuse, or fluctuant) component uniquely determined by a

specific forest configuration.

1.1 The Coherent Radiowave

Initially, the emphasis in model development was directed

toward characterization of the mean (coherent) component of

the propagating radiowave. A physically appealing representation

for the mean component was obtained by postulating that the

mean field components satisfy Maxwell's equations "in the mean"

and that the' ensemble of discrete scatterers can be replaced

by' an equivalent continuous medium 'described by an effective

dyadic permittivity c. However, in contradistinction to earlier

models wherein the effective permittivity -was either postulated

or deduced * from measurement, the' CyberCom model- directly

related E to such salient biophysical forest parameters. as the

tree trunk number density, the tree trunk diameter probability

density function, and leaf area index.

1-1
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The forest model was refine? by assuming the trees to be

"bounded below by a smooth fore.t floor and bounded above by

air. Earlier efforts [15,62,64] had suggested, however, that the

introduction of the ground complicates the model significantly.

In the earlier model [42], these complications were avoided by

allowing the forest floor to recede to infinity thereby reducing

the stratified forest model to a half-space representaticn;

the newer, more general model described in this report, however,

incorporates a forest floor of arbitrary permittivity. Tihe

electromagnetic boundary value problems involved in both models

were solved using the classical approach first described by

Sommerfeld and later extended by Brekhovskikh [5].

TheThe stratified forest models described above are

time-harmonic models in the sense that the signal radiated by

the transmitting antenna is a sinusoidal waveform of angular

frequency wa . However, because the equivalent forest continuum

characterized by the effective dyadic permittivity g is linear,

Fourier transform techniques have been employed to generalize

the model so that it accommodates arbitrarily modulated waveforms.

Using this approach . has been possible to determine the mean

pulse distortion and differential pulse delay associated with

radiowave propagation through a stratified forest.

1.2 The Incoherent Radiowave

As the propagating radiowave penetrates deeper and deeper

into the forest, the relative contribution of the random

(incoherent) component becomes progressively more important.,

This trend, anticipated from experiments [51,52J, was-first-
predicted theoretically using a two-dimensional, unbounded forest

consisting solely of tree trunks [421. The application of'this

early model, however, is limited to tree trunk diameters that

scatter in the low-frequency (Rayleigh) regime; for the 200-2000.

MHz band the model proves valid only for tree trunks less than

1 centimeter in diameter.

The early low-frequency, Rayleigh-scattering model [42,

Section 71 has been improved and is now no. longer restricted to

N %-2
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small-diameter trees. Further, the model, in addition to

describing the intensity (power) of both the coherent and

non-coherent components, can also be used to determine the space

correlation function and frequency correlation function of the

propagating radiowave. Fourier transformation of the former

describes the angular spectrum of radiowaves arriving at a point;

Fourier transformation cf the latter describes the delay spread

of the forest scatter path.

1.3 Scope

This report describes a stochastic radiowave propagation

model useful for assessinq the effects of forests on wide-

band digital communication Systemns. In Section 2 the forest

is characterized, first as to the permittivity of Constituent

woody material, then as to the geometries of trunks, branches

and leaves. Finally it is recognized that forests, in general,

have canopies supported by trunks, and some overall models are

Sproposed. Section 3 presents, the susceptibilities and

attenuations for an unbounded forest of tree trunks having uniform

ot exponentially-distributed diameter d.,Istributions. Section 4

considers a more realistic forest, bounded not only above by

the air interface but also below by the ground. The theory

is developed; intra-forest multipath propagation is evaluated;

the concept of basic transmission loss is introduced; anr4 Doppler

shift is considered. Section 5 presents detailed basic

transmission losses and pulse responses for direct, reflected,

direct-plus-reflected, lateral and total waves in semi-infinite

leaf and trunk forests. Section 6 uses an, integro-differential

equation for the space-frequency correlation function to evaluate

the properties of the incoherent field, which becomes important

at *the higher frequencies of interest here. A two-dimensional

forest of circular, fixed-diameter, - randomly-positioned trunks

is studied. From the general space-frequency correlation function

are derived the frequency correlation function for thin trunks

(yielding coherence bandwidth) and the space correlation function

1-3



for arbitrary diameters. The coherent and incoherent intensities

are also found for this general case, removing the size

limitations of the earlier report [421.
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* 2.0 Biophysical Forest Characterization

The characterization of a forest will be undertaken at

several levels. It is first found in. Section 2.1 to be supported
N. by many sources that the basic materials of green wocd and leaves

(consisting largely of water) have similar dielectric properties.

A CyberCom mcdel is established for current work, although it

may be refined after further study. The second level of

consideration is basically geometrical, but quite complex in

its specification, and even more so in its electromagnetic

implications. This level involves the detailed description

of trunks, branches, and leaves. The required parameters include

densities, sizes, and orientations, considered in Section 2.2.

The third level requires standing back from the parts of trees,

- and even from the trees themselves, to see the forest, not as

a whole it turns out, but as a canopy, consisting mostly of

"branches and leaves, supported above the ground by the trunrs.

This view is considered in Section 2.3. Finally, forest models

> are synthesized by quantifying the above concepts in practical

cases. Section 2.4 .indicates sources of numerical data and

* proposes several CyberCom forest models.

2.1 Electrical Properties of Green Wood and Leaves

The electrical properties of green wood and leaves can

be specified in terms of their relative permittivity e and
permeability p£. As with most biological materials, the relative

tZ permeability p£ is close to unity. The relative permittivity

C is complex and, for the compiex exponential' time dependence

"exp[jwt], can be written in the form

?= - j (2-1-1)

where £ and c"' represent, respectively, the real and imaginary
parts of the permittivity C£. The imaginary part is proportional,

Sof course, to the conductivity a through the relation

"41 . C• = 0/WE: (2-1-2)

2-1
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where c. is the permittivity of free space. The real part C•

iE. often called the dielectric constant; the imaginary part

c•, the loss factor.

Although the electrical properties of wood have been the

subject of numerous studies [10,30, 37], relatively few measured

data pertain to, green wood and leaves, and fewer still to fre-

quencies above 100 MHz [38,66]. The most appropriate appear

to be those of Broadhurst [6 1. These studies suggest that,

firstly, the permittivity of green wood is not strongly species-

dependent, although, taken as a class, coniferous (needle-bearing,

tree wood and needles appear, to have somewhat smaller

permittivities than those of deciduous (leaf-bearing) tree wood

and, leaves. Secondly, although the importance of intrinsic

water 'content for the relative permittivity of wood has been

substantiated by many studies, because green wood nearly always

has a high intrinsic water content (Approximately 75% by volume),

the permittivity of green wood is relatively independent of

water content. Thirdly, Broadhurst's measurements on Tulip trees

(Ll, D3 of Fig. 2-1) and Bamboo (his Fig. 3) suggest very little

difference between the permittivity of.green wood and leaves.

Broadhurst's data for Tulip tree and Maple (L2 of Fig. 2-1) sug-

gest that above 10 MHz the dielectric constant Ei is only weakly

dependent upon frequency and that over the band 200-2000 MHz

F-' is approximately equal to 40. For frequencies below 1000

MHz, the imaginary part E. appears to be dominated by conduction

losses and so decreases linearly with increasing frequency.

Above 1000 MHz, however, relaxation losses associated with

molecular polarization begin to dominate and, in this frequency

region, E: begins to increase with increasing frequency..

Accordingly, in this study of UHF radiowave propagation through

forests, the relative comp]ex permittivity of green 'wood and

leaves has been modeled using the relation

i ~2.0fG~40.0 1.5 + 1. . (2-1-3)

0 [1 + (fGHz/20.0)2

where fGHz is the radioWave frequency expressed in GHz.

2-2
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Table 2-1 summarizes the sources used to determine the di-

electric properties of the forest constituents, that is, green

wood and leaves, at 50 MHz and above. Most of the data are in

the form of dielectric constant F and loss, tangent 6. From

theses the real and imaginary parts of susceptibility (X' ndi

X", respectively) have been found using the relations X =E

- 1 and X= cjtan 6 . The results are plotted in Figures 2-1

and 2-2. The CyberCom model is seen to be a reasonable approxima-

tion, but it may be noted that, in general, the deciduous and

leaf (D&L) curves lie above those for coniferous and needles

(C&N). It seems likely, therefore, that there may be a requirement

for specializing the CyberCom mod, 1 to deciduous and coniferous

trees. These newer, improved models may turn out to be continuous

functions of wood density, moisture content, and/or other

parameters.

2.2 Physical Properties of Trunks, Branches, and Leaves

The electromagnetic properties of the forest constituents

(trunks, branches, and leaves) depend not only on the electrical

properties of the damp, woody material considered above, but

also on the geometrical factors of size, shape, and orientation.

The tree trunks are the largest forest scatterers and so, are

considered in greatest detail. In the 1983 CyberCom Report [421,

a forest of uniform trunk diameter was studied. Here, two major

forest types of non-uniform trunk diameter are considered: the

homogeneous, forest, characterized by an even-aged stand with

a normal (gaussian) distribution of trunk diameters, and the

inhomogeneous forest, characterized by an uneven-aged stand with

an exponential (inverse J-shaped) diameter distribution. The

-latter is 'characterized by a slope defined by a diameter Day

which may not be the true average diameter necause of tree trunk

thinning by" man or natural causes. Branch orientation statistics

for conifers have' been found and are presented. Branci diameter

[ and length will be considered in a subsequent report. Leaves

are discussed in some detail because they may be of interest

at-the higher frequencies.

L 2-3
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2.2.1 Trunk Diameter Distributions

The equations presented in Sections 4.1 and 4.2 of CyberCom

Technical Report CTR-108-01 [421 for the effective dyadic

susceptibility (X) and specific attenuation (a) of tree trunks

are predicated upon a fixed tree trunk diameter and are,

therefore, applicable only to homogeneous forests. To calculate

a weighted average of X *and a tor a non-homogeneous forest the

tree trunk diameter probability density function (or stand

structure)'must be known.

p ,In general, the trunk diameter probability density function

of an even-aged stand or plantation is nominally normal (gaussian)

[28,54,761. Expressed mathematically as

p(D) (/2iro)-'exp{-(D-D)2i/22} (2-2-1)

the normal probability density function is uniquely specified

by two parameters - the mean tree trunk diameter (5) and the

standard deviation (0). The mean trunk diameter of an even-aged

stand depends upon the age of the stand - oldePr stands having

larger diameters, and the species composition - certain species

grow faster than others. The projected average trunk diameters

at 30, 60, and 90 years for several upland deciduous species

are shown in Table 2-2 [281. The standard deviation of the

trunk diameters about the mean also depends upon the age and
composition -of the stand, although composition appears to be

the more important parameter. Trunk diameter data taken from

87 half-acre plots used by the USDA Forest Service in Ohio,
Kentucky, Missouri and Iowa suggest 'that the coefficient of

variation (the' ratio of o/9) ranges from about 0.7 (young,

irregular stands) to about 0.1 (old, uniform stands) [refer
to'Table 6 of Gingrich 12811.

The similarity Of nearly-normal empirical probability' density

functions of trunk diameter to the normal' probability density
function can be measured in terms of "skewness" and rkurtosis."

Skewness is a measure of lack of symmetry; a density function

with a longer tail 'to the right of the mean has positive skewness.

Kurtosis is a measure of the extent to which the height of the

2-7
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S Table 2-2: Projected Average Trunk Diameter (inches)

Species 30 years 60 years 90 years

Yellow poplar 6.9 14.3 21.9
Black walnut 6.1 12.6 18.8
Scarlet oak 5.0 11.0 17.9
Red oak 4.6 10.1 16.8
White ash 4.7 10.0 16.1
Black oak 4.8 10.1 15.9
Sugar maple 3.9 8.4 13.5
Beech 3.4 7.4 12.1

SWhite oak 3.6 7.5 11.8
Hickory 3.5 7.1 11.0
Chestnut oak 2.8 5.8 9.7

Table 2-3: Trunk Diameter Distributions [Uneven-Aqed Stands]
Author Region Trees Diameter D r2

Frank et al [24] Northeast US Spruce-Fir 1-12" 2.44" 1.00

Roach [54] ' Allegheny hardwoods 1-12" 2.27" 0.99

Wiant [76] Appalachian hardwoods 4-15" 2.44" 0.99

2-8
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empirical density function exceeds that of the normal density

function; an empirical density function with a sharper, higher

peak than the normal has positive kurtosis. All even-aged stands

have some positive skewness, although skewness decreases with

age [2 ,28]. Kurtosis, usually positive for very young stands,

becomes negative as the stand ages. Nevertheless, both Gingrich

.128] and Roach 1541 have concluded that the coefficients of

variation, skewness, and kurtosis are more closely related to

tree average diameter than to stand site or age. This conclusion

could prove especially helpful in developing forest models

* suitable for radiowave propagation prediction from forest stand

data. Nearly-normal probability density' functions for three

even-aged stands.are shown in Figure 2-3.

The Weibull probability density function has also been

suggested as a probabilistic model for tree trunk diameters.

In (151 an example is given for a 20-year old shortleaf pine

(Pinus echinata) plantation having 800 trees per acre (1980

trees per hectare). The approximating Weibull probability density

function, however, corresponds closely to a normal probability

density function having a mean trunk diameter of 15.3 centimeters

and a standard deviation of 3.8 centimeters.

The probability density function of an uneven-aged stand

is nominally exponential (sometimes called inverse J-shaped

in forestry). Expressed mathematically as

p(D) = (/1i)exp[-D/f1 (2-2-2)

the exponential probability density function is uniquely specified
by a single parameter - the mean tree trunk diameter (D). In

contradistinction to an even-aged forest, the mean trunk diameter

of a mature uneven-aged stand 'does not depend upon its age -

only upon its species composition. Table 2-3 shows several

sources of uneven-aged forest data ( one of which is plotted

in Figure 2-4) from the northeastern United States, and the

mean trunk diameters derived by fitting exponential probability

density functions to the data, using, a least-squares method.

The mean trunk diameters are all close to 2.5 inches (6.35 cm);

2-9
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the corresponding correlation coefficients of the least-squares

fit are all near unity and suqgest a very good fit.

It should be realized, however, that the parameter, mean

tree trunk diameter (5), as used above in Equation (2-2-2) is

strictly a mathematical measure for the slope of the exponential

probability density function and that the mean tree trunk diameter

as measured in the field may be considerably larger, especially

if the smaller trees are not well represented because of thinning

and/or competition by the larger trees.

The previous paragraphs underscore the importance of mean

trunk diameter in characterizing the trunk, diameter probability

density function. Other factors bearing on the density function,

while not so important as mean trunk- diameter, are the type

of stand (even-aged or uneven-aged) and, if even-aged, its age

and species composition (especially the latter) . In addition

to the trunk diameter probability density function, the trunk

number density is also required to estimate the mean effective

dyadic susceptibility and specific attenuation of non-homogeneous

forests. A potentially useful aid in characterizing forests

for radiowave propagation prediction may be the forester's
"stocking guide." These guides relate trunk, (stem) number'

density, trunk basal area, mean trunk diamet-er in the manner

* -exemplified by Figure 2-5. Silviculturists use these guides

to manage forest yield. -As noted by Roach [541, "the guide

has a rational biological basis; it, is generally independent

of the influence of site, age, or. stand structure; and the

measurements that are needed for its application can be easily

*and quickly obtained in the f ield. The trunk number' density

and basal area have been ,sammarized by Cannell [9 1 for many

forests, of -the world; the corresponding mean trunk diameter

and, perhaps, species composition can be inferred f rom stocking

% ~ guides;ý and from these data the trunk probability density function

can be estimated.

2.2.2 'Branch Orientation

The, equations presented in Sections 4.1 and 4.2 of CyberCom,

Technical Report CTR-108-01 -for the effective dyadic
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susceptibility and specific attenuation of branches and leaves

involve the probability density functions of their inclination

angles. Probability density functions for the branch inclination

angles of 80-year old Lodgepole pine in Wyoming were measured

by Gary [27] and are presented 'here, in Figure 2-6(a). It is

* apparent from. this figure that the inclination angles of the

younger branches in the upper crown are steeper than those of

the older branches in the lower crown. This trend is confirmed

by Ford j 241 'an'd by Kimes et dl [ 391. The negative angles

indicate that some branches pointed downward. Gary [271 also

reported that there was no significant departure from azimuthal

symmetry. Linear fits to these data have been made by CyberCom

and are presented in Figure 2-6(b). These linear models for

the probability density' function of the branch' inclination. angle

will be employed by CyberCom in subsequent numerical evaluations

of the -effective dyadic susceptibility and specific attenuation

of coniferous forests. Analogous data for the branch inclination

angles of deciduous trees have not yet been located.

2.2.3 Leaf Prop2erties

Because leaf sizes approach the wavelength only at the

higher frequencies of' interest (X at 2000 MHz = 6"), it appears

that the only leaf parameter of real importance in the present

model is the fractional volume occupied. This is 'considered'

in the overall forest characterization 'of Section 2.4. However

because of the previous concentration on leaf parameters in

*C~yberCom Technical 'Report CTR-108-01 and because of possible

* ' future' interest (at higher -frequencies. for -the applications),

the results of a study of leaf parameters is included below.

*2.2.3.1 Leaf Diameter and Thickness

Two good sources for the area and thickness of leaves

of southeastern dec~iduous trees were iound. The data from

Rotiacher [561 are summarized in Table 2-4. The composition

by specie's for the Tennessee Valley shows, in the *weight column

and in the numbers of trees larger than 11 inches diameter at

2-14
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breast height (dbh), the predominance of oaks. The numerous

small sourwoods form an understory following a heavy cut 15
i years before data acquisition. Dividing the total leaf areas

by the numbers of leaves according to species, the area per

leaf column is obtained with areas ranging from 2.5 cm2  for

pine needles to 159 cm2 for hickory leaves. Catalpa leaf areas

up to 7 .0 cm2 have been repo.ted [ 1 1, but the more representative

values of about 55 for Scarlet Oak and Yellow Poplar give a

typical equivalent circular diameter of about 8 cm. The average

leaf thicknesses, from Carpenter and Smith [111, are for shade

. leaves in Lexington, Kentucky. They range from 0.15 mm to 0.30

rrm, with a typical value of 0.2 mm. The volumes per leaf range

from 0.2 to 2.9 cc. The specific gravities are derived by

dividing the total leaf weights in grams by the total volumes

* in cubic centimeters. The values range from 0.14 g/cc to 0.57

g/cc with a typical figure of about 0.35 g/cc.

The data for conifers provided in Table 2-5 are from the

Biological Handbook [ 1 J except the first two items from Rothacher

[561. Needle lengths have been added from Little (46]. An

effective cylinder diameter for the short-leaf pine needle may

be obtained as 0.5 mm using a length of 20 cm to account for
two-leaf fascicles per Rothacher.

2.2.3.2 Foliage Inclination Angles

Probability'density functions for the needle inclination,

angles of Lodgepole pine were measured by Kimes et al (391 and

found to be relatively invariant with height. CyberCom has

found that these density functions can be approximated by

1/60, (0*<0<30*)
p(0) = (2-2-3-2-1)

(90-0)/3600, (300<0<90°)

Subsequent measurements on Douglas fir by Smith et al [601

substantiate these results. Smith et al also considered the

* leaf inclination angles in a deciduous oak-hickory canopy. Here,

only the lower-third of the canopy agreed with the coniferous

probability density; the two upper-thirds had probability density
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functions that were essentially uniform for inclination angles

between 0 and 33 deqrees from the horizontal.

i
2.3 Forest Canopy Structure

The most obvious structural feature of a forest is not

just that it consists of trunks, branches and leaves, but that

these are formed into a canopy of branches and leaves, supported

by the trunks. (For iso-lated or widely-spaced trees, the

continuous canopy reduces to an ensemble of crowns). This simple

concept, with importance for electromagnetic modelling, is not

well covered in the literature. The lumberman pays for wood

without regard to its source and the business expert cares no

more about the growing heights of leaves or branches. Only

academic sources, sometimes in support of the above

economically-oriented workers, were' found for canopy structure,

"largely coniferous. Some items considered below include foliage

distribution and canopy thickness.

The distribution of foliage weight with height in the canopy

of an even-aged stand (e.g., a plantation of trees planted at

the same time) can be reasonably well described by a normal

(gaussian) probability density function [24,27,63,731.

Nevertheless, as might be expected, not all even-aged stands

show good agreement. For example, although' Waring et al 1671
showed this model to be valid for Ponderosa pine, they found

Douglas fir and Grand fir had modal peaks well below mid-canopy

height. Further, although Stephens 1631 found this model suitable

for Red pine and Japanese cedar, he also' found the weight

distributions for three species of deciduous trees from Japan

to have modal peaks well above mid-canopy. This upward skew

of the weight distribution for deciduous trees is also supported

by Figure .65 of Assmann 1 2 ] and by Table 2-6 from Smith et

al f 601.*

" ' Although canopy thickness data are scarce, Ford's curve

.[241 for a stand of Sit'.a spruce sugqestsa ratio of canopy thick-

ness to forest height of about 0.'6. Gary 1271, too, suggests

a ratio close to 0.6 for Lodgepole pine; Kinerso:i and Fritschen
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Table 2-6: Canopy Layer Heights and Leaf Area Index (LAI)

Douglas Fir Oak-Hickory
Canopy Median Median
Layer Height (W) LAI Height (W) LAI

Upper 23.2 1.5 18.3 3.4

Middle 14.0 5.3 11.0 0.8

Lower 4.7 1.0 3.7 0.4

Noto-: LAI Total one-sided leaf area / projected area under canopy

Table 2-7: Total Green Weight of Above-Ground Tree Biomass
(millions of metric tons) ( Gcluding foliage) [481

Softwoods (Coniferous) Hardwoods (Deciduous)

Southern Pines 2175 35.0% 0 s 1543 25%
Loblolly 923 15.0% S ft Hardwoods 1542 25%
Slash 461 7.5%
Other Pines 791 12.5%

Other Softwoods 281 4.0% Ot er Hardwoods 717 11%

Total Softwoods 2455 39.0% Total Hardwoods 3803 61%
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[40] about 0.5 for Douglas fir; and Assmann [2. about 0.4 for

Norway 3pruce and 0.3 for Scots pine. All are, obviously,

conifers. For deciduous trees, Hutchinson and Matt [331 give

a relative canopy thickness of 0.5 for Yellow Poplar at Oak

Ridge, Tennessee, and Assmann [ 2 ] gives a value of 0.5 for

Common beech. In view of these data, CyberCom will employ a

value of 0.5 for the ratio of canopy, thickness to forest height

for all forest models, coniferous and deciduous.

2.4 Forest Models

Although models of all forests of the world may ultimately

be of 'interest, it seems best to start with a region of high

interest and hiqh data availability, such as the southeastern

United States. Recently empirical test data were acquired in

Florida and Tennessee in areas dominated by oaks and pines.

Table 2-7, which refers to commercial forest land in the seaboard

states from Virginia to Florida shows that pines comprise 35%

and oaks 25% of the above ground forest biomass.

The best forest data base available - broadest in both

geographical coverage and in parameters considered- appears

to be a 1982 compilation of "World Forest Biomass and Primary

Production Data" by M.G.R. Cannell ['9 1. The first half of

Table 2-8 summarizes 12 pages of this book, including most of

the relatively complete data from the southeastern United States,

largely from the Great Smoky Mountains. From these data are

derived 'the fractional volumes in the right hand columns and

several representative parameters.'

The first -numerical column of Table 2-8 gives the number

of trees generally larger than 2 cm in diameter at breast height

(dbh) per hectare (104m 2 ). of forest. A typical figure of 2500

corresponds to an average, trunk density Pt of 0.25 trunks/m 2

or an average spacing between trunks of about 2 meters. The

average tree heights presented in the second column are used

in establishing the height of the forest and estimating leaf

and brhnch fractional volumes. In the third column, basal area

gives the total of the cross-sectional areas of all the trees

2-22

S. . ... . ................. "" "'i"



x

ý4'

0 -4 r-f N' ('4 C14 00 06L
> 0 0 o 0 0. 0

0 )
>4 r-A 4 - N '
1-4 (' 4 N- ' -4 0 -4 0

--I
4.)L &a-4 '. + +

ru 0 0 al

uJ u
ul w- r- 0' W. IA ('4 0%CD

W U) t

)U) ('4 a%4 0 -4

M 0

U) 8 .~+ T
>,r4 m . U)('

04 4 0) 0) -4 0 ('4 CD
0 r4 N' r- I ( LA 0 Go P4

.4. E OD r. r~,4 'U qT v %

--4

M 4 4, N v0 P-4 %.0 0 -4 0'

to) ('4 N ,4 %. (it IA %0 f" i

0

w -.4

4) 4

.4U3

0 u 1k 4 .
tw 4) to t 0

r$4C C) 14 4) .1 1- 14
to ~ ~ ~ ~ ~ ~ ~ ~ C :5 :. ,%U a'1 AU o U . 44$ 4 4 4

to, 40 14 0 a0 f A k U

140 >-3 -0 >0' 40 *,01 4.4

an i~- 00 oo o~ ~-2-23 A- )4 0



(d22cm) per hectare. A typical basal area of 45 m2 /ha with

1500 trees/ha gives a cross-sectional area per tree of 0.03 m2 ,

corresponding to an average tree diameter of about 20 cm. The

fourth column, stem volume, is the total' of all trunk volumes

independent of clbh.

Dry masses are shown next in columns five, six and seven

for stem wood and *bark combined, branches, and leaves. An arrow

indicates that a figure includes that for the adjacent column.

It is of interest to note that the maximum/minimum tatio for

trunks and branches runs near 11, but for leaves only 1.5. This

may reflect a basic require'ient for efficient capture of radiation

by the canopy. Specific gravities (green vol./dry wt.) from

the Wood Handbook [701 are listed next in column eight. These

are used to estimate fractional volumes for use in equations

for specific attenuation. Several of these values, notably

those, for maple and the oaks, differ significantly fron, those

calculated in Table 2-4 for dry leaves. The difference may

arise from the use of green leaf thicknesses 4n the calculations,

but it is not understood in that case why the Values for Yellow

Poplar are not equally far off.

The weights per hectare divided by the specific gravities

give the volume per hectare, but to convert this to fractional

volume requires the "canopy volume", that is, its effective

thickness over the hectare. Although illustrations in tree

manuals suggest that the leaves are confined to about eight-tenths

of the average tree height, pictures taken within forests reveal

that leaves or needles may be confined to much smaller fractional

height and so one-half was used. These results are expressed

in percent for compactness, and show high variability.

The leaf area index is the total'one-sided.'leaf area divided

by the projected area under the leaves. Thus, the total number

of leaves per hectare is the product of the leaf area index

and the projected area, 104m2 , divided by the one-sided area

of a single leaf, The leaf number iensity P£ can be obtained

by dividing the numbecr of leaves ,,er. hectare by the "canopy

volume", which is projected area times effective canopy thickness.

2-24



For example, for a forest with aleaf area index of 6, an

effective canopy thickness of 16 meters and- a per-leaf area

of .50 cm2 , p is about 75 leaves per cubic meter.

2-25



[This page intentionally left blank]

2-:26



3.0 Unbounded Forest Susceptibility and Specific Attenuation

* This section of this report will investigate the effects

of changing forest parameters on the effective susceptibility

and specific attenuation of the forest considered as a uniform

dielectric medium. Three main types of forest are considered.

Homogeneous (even-aged) forests of tree trunks of different

diameters from 1 to 16 inches diameter are covered in Section

3.1. Non-homogeneous (uneven-aged) forests of trunks with

diameters following the exponential distribution are covered

in Section 3.2. Finally, forests of leaves are covered in Section

3.3.

3.1 Homogeneous Forest of Tree Trunks

The sensitivity to tree trunk diameter of the effective

dyadic susceptibility (X) and the specific attenuation (a) of

an unbounded, homogeneous forest of parallel trees is shown

in Figures 3A-1 to 3A-18. These results, which encompass a

range of trunk radii extending from 0.0125 meter to 0.20 meter,

have been calculated using Equation (41-1-1-1) and (4-2-1-3)

of CyberCom Technical Report CTR-108-01. Because of the

relatively weak dependence of Ek on frequency, both X and a are

sensitive to frequency and trunk radius primarily through the

parameter koa. As a consequence, the curves presented in these

figures are very nearly frequency-shifted replicas of each other,

although they are displaced in magnitude by an amount proportional

to a power of a. In the case of X, the displacement is

proportional to a 2 ; in the case of a, the displacement is

proportional to a 2 in the low-frequency (Rayleigh) region and

Sto a 3/'in the resonant region. At the higher resonant
frequencies, the resonant maxima of (Xt,xz) decrease roughly

as the square of the frequency; conversely, the resonant mini.ma

of (X",X") decrease roughly linearly with increasing frequency.

The first null in Xj is due to a change in sign of Xz occurring

as a consequence of resonance when the circumference of the

tree equals the wavelength within it'(300/fMHz4D). This resonant

behavior may be attributed to circumferential surface waves
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that reinforce themselves after successive trips around the

perimeter [49,50]. it is apparent from Figures 3B-3 through

3B-5 that the specific attenuations for both horizontally and

vertically polarized radiowaves have nearly the same

high-frequency asymptote.

3.2 Non-homogeneous Forest of Tree Trunks

In order to determine the effective dyadic susceptibility
and specific attenuation in a non-homogeneous forest, wherein

the tree trunk radius a is a random variable described only

statistically by some probability density function p(a), it

is necessary to effect a weighted average of the X and a attri-

butable to some particular radius a. In a non-homogeneous forest

the mean effective dyadic susceptibility X and the mean specific

* attenuation a can be determined from the following relations:

X = (a)p(a)da (3-1-1)

CL = afc(a)p(a)da (3-1-2)

where,

X(a) = effective dyadic susceptibility for trunk of radius a

ala) = specific attenuation for trunk of radius a

p(a) = probability density function of trunk radii.

The probability density function of the trunk radii (dia-
meters) has been discussed and described in Subsection 2.2.1

arid fou d to be nearly normal (gaussian) for even-aged forests

and ex onential for uneven-aged forests. However, in t1

remainde of this subsection, only uneven-aged, non-homogeneous

forests will be considered. In consonance with Section 2.2.1
Sand Tabl 2-4 it will be assumed that

p(a) = (i/3)exp[-a/3] (3-1-3)

where = 3.2 cm is the mean tree trunk radius.

The mean effective dyadic susceptibility and mean specific

attenuation in an unbounded, uneven-aged, non-homogeneous, trunk-

"3-2
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dominated forest, wherein tree trunk radii are described statis-

tically by the exponential probability density function of

Equation (3-1-3), has been evaluated using the approximations

N
X = (ai)p(ai),Aai (3-1-4)

S~i
N

ot •c(ai)Pp(ai)Aai (3-1-5)
i

and plotted in Figures 3-1 and 3-2. In effecting these calcula-
4 tions N was set equal to 12 and the ai assumed the values from

1 to 12 inches. For convenience, these results have been

normalized to a tree trunk number density of p = 0.1 tree trunk

per square meter. The usual smoothing effect of integration

is very apparent.

In any real forest, the exponential -probability density

function proves valid only over a range of a bounded by, say,

amin to amax. Outside of this range, the exponential probability

density function usually over-estimates the relative number
of tree trunks. Recognizing this, the 'validity of Equations

(3-1-4) and (3-1-5) if the limits of integration are restricted

to the range famin,amax] can be assessed by considering the

normalized distribution function

arx

F(amax) =1 f(a)p(a)da/f f(a)p(a)da (3-1-6)

0 0
where f(a), assumes the role of either X or a. More specifically,,

if f(a) = X or if f(a) = a and attention is restricted to the

low-frequency (Rayleigh) region, then f(a) a 2 and

F(aa) f [i- (l+a' /a+a 2 a/2 2 )exp{-a /ail (3-1-7)

max max maxmax

If f(a) = a and attention is restricted to the resonant region,

then f(a) = a•/' and

4 .F(amax) Y Y(l.75,amax/a)/r(l. 7 5) (3-1-8)

where y(x,y) is the incomplete gamma-function defined by

4 3-3
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y

Y(x,y) = ftX-exp{-t~dt (3-1-9)
0

and P(x) is the complete gamma-function defined by

r(x) = tx-exp{-t}dt (3-1-10)

NJ 0

The normalized distribution function F(amax) has been evaluated

in both the Rayleigh and resonant regions using Equations (3-1-7)

and (3-1-8), respectively, and plotted in Figure 3-3. It is
W apparent from this figure that in an uneven-aged forest typical

of the northeastern United States about 80% of the mean effective

dyadic susceptibility or the mean specific attenuation in the

Rayleigh region can be attributed to trees having trunk radii

in the range 4-16 centimeters (diameter at breast height in

the range 3-13 inches). About 80% of the specific attenuation

in the resonant region can be attributed to trees having trunk

radii in the range 1-11 centimeters (diameter at breast height

in the range 1-9 inches). In the frequency range 200-2000 MHz

where all trees having trunk radii greater than about 1 centimeter

(2 inch diameter at breast height) are resonant, the mean specific

attenuation is primarily attributable to tree trunk radii *in

the range 1-11 centimeters (1-9 inches at breas~t height).'

3.3 Forest of Leaves

Figures 3-4 and 3-5 show similar X and a plots for the

leaf forest considered in CyberCom Technical Report CTR-108-01

in order to make this, report complete in itself and to present

comparisons between leaf and trunk forest characteristics*.

Because the leaves 'are small compared to the wavelength (Rayleigh

or hen-resonant) the plots are relatively smooth. -The plots

for large diameter trees are fairly smooth due to averaging,

resulting from the large number of wavelengths on a circumference.

Because the trunks are all vertical and the leaves are largely

horizontal (00 to 30* tilt), Xt>Xt for leaves and vice versa

*Figures 4-1, 2, 4, 6, and 9 of CyberCom Technical Report CTR-I08-Oi are
shown as Figures 3A-4, 3-4, 38-4, and 3-5.
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for trunks. It may be seen, of course, that the a curves are

closely related to those for X" (imaginary plot of

susceptibility).

The sensitivity of X" for a non-homogeneous forest (1-12-1)

to addition of leaves was briefly investigated. For the most
n

interesting case with vertical antennas, X 7 showed only a small

change at highest frequencies upon addition of 0.1% fractional

volume of leaves, as in CyberCom Technical Report CTR-108-01.
i,

In the other case, Xt. showed small changes at low frequencies

with a leaf fractional volume of 0.003%.
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ANNEX 3A

Effective Dyadic Susceptibility

of Homogeneous'Trunk Forests

Radius Diameter Figure

(meters) (inches) Number

0.0125 1 3A-1

0.025 2 3A-2

0.05 4 3A-3

0.10 8 3A-4

0.15 12 3A-5

0.20 16 3A-6

ANNEX 3B

Specific Attenuation

( of Homogeneous Trunk Forests

Radius Diameter Figure

(meters) (inches) Number

0.0125 1 3B-1

0.025 2

0.05 4 3B-3

0.10 8 3B-4
S0.15 12 38-5

0.20 16 3B-6
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4.0 Anisotropic Forest Slab Model

In this section the medium will be bounded to represent

* the forest. In 1421 the upper air-forest interface was introduced

to produce the half-space model, shown in Figure 4-1(a). Although

relatively simple, it gives rise to the lateral-wave which is

essential to long-range transmission. The slab model to be

considered' here adds the lower ground interface as in Figure

4-1(b). Further possible model refinements are the multi-slab

model, representing the canopy as in Figure 4-1(c), and the

inclusion of height-dependent properties as in Figure 4-1(d).

0 Section 4.1 formulates the problem, introducing the

reflection coefficient at the ground as well 'as at the air

interface. Section 4.2 performs the asymptotic (approximate)

evaluation of the equation just developed using methods of [421,

but these are complicated by multiple reflection of both space

and lateral waves at the upper and lower forest boundaries.

This multipath nature is treated in detail .in Section 4.3. Curves

of reflection coefficient versus distance for the media of

interest are shown. Interference of 'direct and reflected waves

is expanded to include the many possible cases of multiple

reflection above and below the forest. Then the lateral wave

is included. This may be excited after, or received after,

multiple reflections. Section 4.4 'introduces the concept of

basic transmission loss, the normal tool of radio link design.

It is useful in the broad-band application to spread-spectrum

transmission of interest here. Finally Section 4-5 finds that

terminal motion produces negligible Doppler shifts.

4.1 Model Formulation

The anisotropic slab model for UHF radiowave propagation

through forests is shown in Figure 4-2. The electrically ani-

sotropic forest slab, sandwiched between the electrically iso-

tropic air and 'ground, is characterized 'by the effective dyadic

permittivity CE 0 (at least so far as the mean fields are con-

cerned): The scalar permittivities of the air and the -ground

are denoted by c. and EgC0 , respectively. All three media are

4-1
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"assumed to be magnetically isotropic and characterized by the

"-7 free-space permeability jo. The transmitting antenna is repre-

"sented as a vertical electric (Hertzian) dipole having a time-

harmonic current moment Id2-exp{jwt} located at height zo above

the ground.

In an unbounded, anisotropic forest characterized by a

uniaxial effective dyadic permittivity

"= + + Cz (4-1-1)

"* the mean electromagnetic fields associated with ' z-directed

"- (vertical) Hertzian dipole can be derived from a Hertz vector

potential A that has only a z-directed component, viz.

Ar) -Id exp{-j(Ot.E+Trjz-z.j)}
A (rz) - f- dt (4-1-2)-- 8w2 we£O~z T -

where

T =.T1 ijT"l t X C _e (4-1-3)jIT t = /,z • Z 8t

The electromagnetic fields can be derived from the vector

potential A using the relations

E,= V(V-A) + ktA (4-1-4)

H= jwc.Et(V xA) (4-1-5)

"F'or the anisotropic forest slab model, the tangential com-

ponents of the electromagnetic fields must be continuous across

the air-forest and the forest-ground interfaces. If-the source

of these fields is a z-directed (vertical), Hertzian dipole,

" the boundary conditions can be succinctly summarized in terms

"" of a Hertz vector poten'cial having only a z-directed component

by writing

A I(r,H) = t' Az (r,H) (4-1-6)

CtA(,) = £gz C A (r,O) (4-1-7)
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_ °AII
D[AI(rH)/•az = [A (r,H)]/3z (4-1-8)

Z -

AIIz ( ,0 ] z

[A (r,0)1/3z = D[A II(r, 0)]/Dz (4-1-9)

where the superscripts I, II, III identify, respectively, the

Hertz potentials intrinsic to the air, forest, and ground.

'As a consequence of these 'boundary conditions, the radiation

condition and Equation (4-1-2), CyberCom has, found the Hertz

potential within the anisotropic forest slab to be*

II -IdX r[l+R exp{-J2t 2 z2}] [l+Raexp{-j2T2 (H-z) }]
I z(r,z) = ____

-- 87 2€ o •z f [l-RaRgexp{-j2T 20}
exp{-j (8_t.r+T2 Iz-zo 1) }

x (T 2 d.Et (4-1-10)

where,

T2 2 t (4-1-11)
Ra(t) T2 + CtTT

C 9T2 - CtT3
Rg(8t) - g T2 + CtT3 (4-1-12)

are, respectively, the Fresnel reflection coefficients associated

with the. air-forest and forest-ground interfaces, ane where

T = Tj)ITjl I ,•k•- (4-1-13)

T= T2jIT" I= 4  C-g kE -8t2 (4-1-14)

1 3 -J I - t (4-1-15)

are the dispersion relations. The electromagnetic fields within

the anisotropic forest slab can -be derived by substituting,

Equation (4-1-10) into.Equations (4-1-4) and (4-1-5).

Equations (4-1-5), (4-1-6) and (4-1-10) constitute the

formal solution for 'the electromagnetic fields of a vertical

electric (Hertzian) dipole in an anisotropic forest slab.

'Strictly. speaking, Equation (4-1-10) is valid oniLy when z>z.. If Z<Z,
then z and z, must be interchanged.

*4-5-
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4.2 Asymptotic Evaluation

The integral representation afforded by Equation (4-1-10)

for the Hertz potential within the anisotropic forest slab is

not amenable to exact analytic evaluation. However, analytic

asymptotic approximations have been derived based upon CyberCom's

earlier development of an anisotropic forest half-space model

[421 and the pioneering efforts of Sachs and Wyatt [571,, Tamir

[65,64,19], and others on the isotropic forest slab model.

Before proceeding with the development of these asymptotic

approximations, it will prove expedient to recast the expression

for the Hertz potential within an anisotropic forest half-space

[42, Equation (5-2-39)] in geometric terms consistent with Fig.

4-1. Thus, introducing the following correspondences apparent

by comparison of Fig. 4-2 and Fig. 5-2 of [42],

Ad (H - z,) (4-2-1)

Z -(H z) (4-2-2)

into the equation previously cited, the Hertz potential within

the anisotropic forest slab A / may be written in the form*

Sz - •/2 •2•8~zL '2''4(r, - -Ide ~ exp{-)T2 zzI
AI -(z)J 1~s~

+R'-..) exp{-jT2 (2H-z-z.)]• [•-." Ra(•.) 2 . exp {-j 8t •r- dSt 1( 4-2--3 )

wa'-

. The first integral corresponds -to the Hertz potential of a

Hertz ian dipole within an unbounded, anisotropic medium, the

second integral represents the effect of the air-forest 'interface.

"These integrals were evaluated in [421: the first integral

describes a direct wave propagating through the forest to the

receiving location; the second integral describes a wave reflected

"from the air-forest interface and, possibly, a lateral wave

"propagating along the air-forest interface.

Valid for arbitrary z and zo within the slab.

* 4-6



Consider, now, the Hertz potential within the anisotropic
forest slab [Equation (4-1-10)]. If the denominator of the
integrand is expanded in a power series using the relation

( - z)- = 1 + z + z' + (IzI<l) (4-2-4)
Equation (4-1-10) may, upon interchanging the order of integra-
tion and summation, be recast into the form

A (rz) d S. (4-2-5)Z 8a 2 WE£oz j=l

where

Si = Im (4-2-6),

M=O J,
•. and. a n exp{-jT2 [2mH++z-z.1 I]

I i m = Rm ( at)Rm ( at) -

exp{-j t'r}dS-t (4-2-7)

m . R÷ Rm^m+ ). exp{-jT2 [2(m+l)H-(z+zo)]}I =2m a (t)Rgt) -t2

* exp{-j8t.8d8t (4-2-8)

%" 1'3m =/ a( t m+i 'exp{-jr 2[ p• ( + o
=*fR ~e(p{)Rg [ 2;InH+(z+z,.)]}

M T2

f (9 t ... 2

* expf-jBt'r)d$t (4-2-9)

| expf-j8t'rEd$ t (4-2-10),

* ' *4 - 7
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It can be inferred by analogy with Equation (4-2-31) that the

integral

'ex{l-jT 2Z-z

describes a direct wave propagating through the forest slab;

the integral

f exp{-jT (2H-z-z.))
I1 2~a-t exp'{-j~.rt-Ed.Et (4-2-12)

202

3describes a wave reflected froir. the air-forest. interface and,

possibly, a lateral-wave propagating above the air-forest inter-

f ace as well. Further analogy with Equation (4-2-12) suggests

that the. integral

3 exp{-jT (ztz.)1
I Ja- 2 exp{-j8. r~da, (4-2-13),
30 f a T2t

describes a wave reflected from the forest-ground interface;

any lateral wave that might be propagated below this interface,

however, would be highly attenuated by ground losses- and so

may be neglected.

More generally, the integrals Ijm can be evaluated asymp-

totically using the method of steepest descents, just as Equation

(4-72-12) was evaluated in (1, Section 5.31. This method leads

to a saddle-point result for each integral as' well. as a branch-

cut contribution' if a branch-cut is crossed by the steepest

descent path. The saddle-point results for the 'Im integrals

are

-exp{-jk./c- R
I() -tm )R m z Im

1 Mra l2 ~m(O ('m aR (4-2-14)
lm a lm gm

0 exp{-jk./'F- RI
Ir ~2TrRm+ (0 )Rm'(0 ) z m(4-2-15)
2.m a 2m g 2m aRm

P (r) - 2wR m(0 )Rm~' exp(-JkR/cz R 3mI (--6

3m a 3m g 3m aRm

'I. 4-8



F P

+1 ( + exp{-jk°R/Ez R4mIr ~ _2 ,Rm+ a ).RR+ ( Z) (4-2-17)4m a 4m g 4m aR4 m

where

Cosa - /c-t(1-czsin2 0) a

Ra6) 29=5 (4-2-18)
cosa + ct(1 - czsinz8)½

C. Cosa - c sin 20 6
R (0) = g, , (4-2-19)

g , Cosa + /F•tl•-k sin28) I
g t z

are the Fresnel reflection coefficients at the air-forest and

ground-forest interfaces, respectively, and

e1m = Arctan{r/a[2mH+Iz-z.l]} (4-2-20)

02m = Arctan{r/a[2(m+l)H-(z+z.)]} (4-2-21)

03m 7 Arctan{r/a[2mH+(z+z.)]) (4-2-22)

64m = Arctan{r/a[2(m+l)H-Iz-z.I}.,, (4-2-23)

and
0

Rim = {r 2 + a2[2mH+tIz'zol]}½ (4-2-24)

R2m = {r2 + a2(m+l)H-(z+z.)]}½ (4-2-25)

R3 = {r2 + a2[2mH+(z+z.) ]} (4-2-26)

R4 m= {r2+ az[2(m+l)H-lz-zz.]}½ (4-2-27)

Branch-cut contributions to the Ijm integrals must also

be included whenever the Ojm exceed the so-called critical angle

0 Arcsin(i//") , (4-2-28)C z
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* The branch-cut contributions to the I integrals are

I (b) ~ -47re mRg (c
lm z g c

Sexp {- jko [r+a (E:z-l)h½[2mH+lz-z.11 ]
* ~ (4-2-29)

"k. (E -ZI)r 2

I (b) . 4nEz (m+l)Rm(c
2m Z g c

"exp{-jko[rr+a(E z1) ½[2(m+])H-(z+zo1l (4-}},- • (4-2-30)

I (b) 4 -47E mRm+1 (
3m z g c

exp{-jko [r+a (c z-l)½ [2mH+ (z+zo) ](]-3

z
*. (4-2-31)

SI (b)' -47r (m+i) _m+l (0c
4m z g c

exp{-jko[r+a( E ( 1• )½[2(m+l)H-Iz- zzo1 (4-]-}* . ( 4-2-32 )

k" ko(Ez-l) r

SMore accurate representations for the branch-cut contributions

Ijm can be. inferred by analogy from Equations (5-3-37) and

(5-3-4,0) 'of [421. Constraints bearing upor the' validity of

these results can also be inferred from [421.

Because branch-cut Contributions are i cluded only when

@jm > Oc (4-2-33),

" the number' of branch-cut contributions is fri ite. As a conse-

quence, Equation (4-2-6) can be re-written in the form

S" • r) + (b)h
.S= • Ijm E + • (4-2-34)

m=0 m=0 m

-. The electromagnetic fields (E and H) within the anisot'ropic

Sforest slab can be derived from the Hertz ve tor potential AII.
z
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[Equation (4-2-5)] by using Equations (4-1-4) and (4-1-5). For

example, the vertically-polarized electric field -vector E is

E E (d) + E(r) + E() (4-2-35)

where

E(d) /P exp{-jk° /z RI0 (4-2-36)

Sz (r,z) = /a Idt sin2 10 RZ 10

E(r) (rz)I

I.

M 2e ~exp{-jk,0 /F R 1M
".V [Rm(O l)Rm si21z Rim}a I ,9 1M) l R.1m

q& exp{-jk°V Cz R2 m}
+ [Rm+( )R0(0 )sin2e 2 Im= a (2m)g 2m) 2m] Rm

0. exp{-jko 'z R m
[Rm(0 Rm+) (0 )sin e3m=0 3m 3m 3m R3m

0[Rm+i ( +O exp{-jk/ •z R4m}
+ aR (04m4 (4m) sin24m] . __

(4-2-37)

E a exp{-jk~r}

E (r,z) =I60 Id-. . 2

SM

+ E [(m+l)R(0c )Iexp{-jk 0 a(cz-1)h[2(m+l)H-(Z+Zo)]}
m=0 g

M h
4.: + T__, [mRg+ (0C)]exp{-jkoa( z-1) [2mH+(z+z,)II
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J..

M M+ iI 1)[2(m+l)H-I1oI}
+ E [(m+l)R (e )]exp{-jkoal(Ez [m -z- I f

m=O g c z

(4-2-38)

- In Equation .(4-2-35), E(d) represents a direct wave propagating
z

through the anisotropic forest slab from the transmitter to

"the receiver; E(r) represents multiply-reflected waves also
z

propagating through the anisotropic forest slab from the trans-

mitter to the receiver [refer to Figure 4-3a]; and E!,) represents

multiply-reflected lateral waves associated with the air-forest

interfacs [refer to Figure 4-3b]. The first summation in Equation

(4-2-37) corresponds to waves which experience an even number

of reflections in propagating from the transmitter to the receiver

and for which the first. reflection is from the ground; the second

- summation corresponds' to an odd number of reflections, the first

*.'" of which is from the air; the third corresponds to an odd number

* of reflections, the first of which is from the' ground; and the

fourth summation corresponds to an even number of reflections,

, the first of which is from the air.

4.3 Intra-Forest Multipath

'The anisotropic - forest slab model differs from the

anisotropic forest half-space model by accounting for ground

reflections. The principal consequence of ground reflections

is the appearance of intra-forest' multipath. Two types of

- intra-forest multipath can be identified: multiply-reflected

space waves, described 'by Equation (4-2-37) and illustrated

* in Figure 4-3(a); and multiply-reflected lateral 'waves, described

by Equation (4-2-38)and illustrated in Figure 4-3(b).

Intra-forest multipath can either enhance or degrade' the received

- signal level according to whether the concomitant phasor

* interference is constructive or destructive; in addition,

intra-forest multipath can, lead to pulse distortion and

inter-symbol interference.

S, 4-12
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It is apparent from Equation (4-2-37) and (4-2-38) that
the Fresnel reflection coefficients at the air-forest and forest-
ground interfaces [denoted by R a(8) and by Rg (), respectively]
play an important role in determining the relative contributions
of the contributing multipath. Th• behavior of these reflection
"coefficients is examined in the following sub-section. Successive
sub-sections address the intra-forest multipath associated with
multiply-reflected space waves and multiply-reflected lateral

waves.

4,3.1 Fresnel Reflection Coefficients

The Fresnel reflection coefficients associated with the
air-forest and forest-ground interfaces are given, respectively,

by

coso - vtt(l - czsin2E)i
a cosO + IEt(l - czSina0)½ (4-3-1)

Scoso - /Ut(-EzSin6)%
R 0 9t .(4-n3-2)

g" E cose + Vt/(41- C sin28)½ (4-3-2)
g t

where ct and £ are, respectively, the transverse and longitudinal
components of the uniaxial effective dyadic permittivity of
"the forest;, E is the permittivity of' the ground;, and 8 is the
incidence angle measured relative to the normal.

The magnitude I R I and the phase I Arg I of the Fresnel
. reflection coefficient for the foresz-ground interface R (e)

gis shown in Figure 4-4.(a) as' a function of the glancing angle
[complement of the incidence angle) for the case of moist ground
" ( 30, ag = 0.05 S/m) and a frequency of 300 MHz. At the

gBrewster angle, I RI exhibits a pronounced minimum and the phase

IArgj changes by nearly 180 degrees. At grazing incidence
(glancing angle equal to zero) R (900) = -1. Analogous results

g
are shown in Figure 4-4(b) for the case of' dry ground (Eg

4 15, ag = 0.005 S/m),. Although Equation (4-3-2) reveals that
that R (0) also depends upon the effective dyadic permittivity

g
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Figure 4-4(a): R flection Coefficients (Moist Ground)
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of the forest, because Et and Ez differ from unity by only a

few tenths of one percent, R (8) is virtually independent of
g

0 the biophysical forest parameters.

The magnitude JR1 and the phase [Argi of the Fresnel reflec-
tion coefficient for the air-forest interface R (e) is shown

a

in Figure 4-5(a) for the case of lossless leaves (Es = 40,

0£= 0) and a frequency of 300 MHz. Note that the corresponding

effective dyadic permittivity is purely real (" = £" 0)
zFor glancing angles less than the critical glancing angle,

40 80c = Arcsin(l/Vz (

IRI is unity and the incident radiowave experiences total internal

reflection. However, whereas at grazing incidence (glancing

angle equal to zero) Ra (900) = -1, at the critical glancing

angle Ra( a ) = +1. For glancing angles greater than critical,

IRI is nearly zero. At the Brewster angle JR1 exhibits a barely

discernible minimum and the phase lArgj changes abruptly by

180 degrees. Analogous results are shown in Figure 4-5(b) for

the case of lossy leaves. Note, however, that as a consequence

of ohmic losses within the leaves, the incident radiowave no

longer experiences total internal reflection for glancing angles

less than critical; further. the phase change associated with

W the Brewster angle is no longer abrupt.

4.3.2 Multiply-Reflected Space Waves

The intra-forest multipath associated with multiply-

reflected space waves is described by Equation (4-2-37) and

illustrated in Figure 4-3(a). It is apparent from Equation

(4-2-37) that the relative strength of the intra-forest multipath

can be estimated by considering the relative magnitudes, of the

composite forest reflection coefficients [e.g., Ra R , R R g,

RgRa, RaRgRa, RgPaRg (refer to Figure 4-3(a))fl gnitudes

of the composite Fresnel reflection coL -;.-its at 300 MHz

for a forest of leaves (FV = 0.1%) above a moist earth (c' -
g

30, ag 0.05'S/m) have been plotted in Figure 4-6 as a function
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Figure 4-5(b): Reflection Coefficients (Lossy Leaves)
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"of path length using the expression

- =Arctan r (4-3-4)

"t (n-l)H + IH-Z0 j + IH- zI Zo. IT I z ýR

where, H = height of forest

za = height of transmitter above forest floor

"z = height of receiver above forest floor

r = distance between transmitter and receiver

o = incidence angle of reflected radiowave

n = number of reflections experienced by radiowave

to relate the path length to the incidence angle. Yt is apparent

from this figure that for these biophysical forest parameters

and a frequency of 300 MHz the ray reflected only once from

the air-forest interface [the only ray accounted for in the

anisotropic half-space model) is important at all distances

in excess of about 300 meters. The ray reflected once from

the ground is important not only atdistances in excess of 300

meters, but .1so at very short distances as well. The R R' ag

and RgRa contributions be'come important only at ranges exceeding

about 300 meters; and the R R R and R R R contributions cana g a g a g
probably be neglected for ranges less than 1000 meters. It should

be noted that Figure 4-6 does not account for antenna pattern

discrimination, differential geometric spreading losses, or

differential absorptive losses.

4.3.3 Multiply-Reflected Lateral Waves

The 'intra-forest multipath associated with multiply-

* reflected lateral waves is described by Equation (4-2-38) and

illustrated in Figure 4-3(b). The correspondence between the

multiply-reflected lateral waves of Figure 1-3(b) and the summa-

tions of Equations (4-2-38) is summarized in Table 4-1'. The

*The upper (lower) qut.ntity within IT is to, be used if tnie radiowave
reflection nearest the transmitter (recv2ive4!rj is from the air (ground).

"* ' 4-22
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* Table 4-1: -Multiply--Reflected Lateral Wave Ray Paths

mj r=O0 m=l m =2 m 3

ZIM None '"akLR TaBckIR TaBcDekLR

ZMTaZR TaBcIR TaBcDeiR TaBcDeFhZ~R

Z3M None TabkLR Thb-dkZR TAbCdEfkkR

z4'TAbIR TAbCdtR TAbCdEfZrý TAbCdEfGhZR

Tablc 4-2: Transmitter/Refceiver Irnaces for Lateral Waves

m G m= m =2 m=3

Hh-hi 3H-hT 5H-hT
ZIM N/A

h .H+hR H+hR

H-hT 3H-h-, 511-hT 7H-hT

*ZmH-1bR H-hR H-hR H-hR

H~h. -3H+hT 5H+hT,
Z3m N/A

H+h ~ H+hR

H+hT 3H+hT 5H.+hT ?H+hT
z M

H-hR H-hR H-hR H-hR
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multipath geometry illustrated in Figure 4-3(b) can be easily

constructed by locating the appropriate transmitter/receiver
C• images arising witn successive radiowave reflections from the

air and ground interfaces at the critical angle 8 c. The location

of these images relative to the air-forest interface can be

"inferred from the exponents appearing in the summations of Equa-

tion (4-2-38); those corresponding to Table 4-1 are shown in

Table 4-2.

Equation (4-2-33) can be used in consonance with Equations

(4-2-20) through (4-2-27) to show that associated with each

(j,m) component lateral wave is a minimum excitation distance

rj/JE - 1I (4-3-5)rmin Ia Iz IVE'
jm Z

where Zjm, the so-called [65J separation distance is given by

Z = 2mH + Iz- ,. (4-3-6)

"= 2(m+l)H - (ztzo) (4-3-7)

"" = 2mH + (7ýZZ) (4-3-8)

S= 2(m+l)H - Iz-zof (4-3-9)-- Z4m

The separation distance 'fZ.Jm, the minimum excitation, distance
jm

[r min, and the relative strength of the multiply-reflected
min

"lateral waves have been calculated for several 1000-metex, 300-MHz

radio links situated within a' forest of leaves (FV = 0.01%)

"and above a moist ground (c = 30, a g = 0.05 S/m) and presented

in Table 4-3. -Note that the non-ground-reflected lat ral wave

[the only lateral wave accounted for in the anisotropic half-space

model) is dominant. The phasor sum of all contributing lateral

wave components has' been calculated and its relative strength

* denoted in the Table by LDBT. As expected, it difters only

slightly 'from that of the non-ground-reflected lateral wave.

"When the number of contributing lateral waves is large, the'

"phasor sum is well approximated by

402
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* Table 4-3

LATERAL WAVE MULTIPATH

PATH: Forest Ht. = 25.m Ht-xmtr = 22.5m Ht-rcvr = 22.5m
Critical Angle = 3.83 Deg. Reflection Coef = .4644

Minimum Excitation Distances (m)

Zm 0 1 2 3 4

5.00 743.79 1487.58 2231.37 2975.15
74.38 818.17 1561.96 2305.74 3049.53

.00 1413.20 2156.99 2900.78 3644.56
743.79 1487.58 2231.37 2975.15 3718.94

Separation Distances (m)

Zm 0 1 2 3 4

.00 50.00 100.00 150.00 200.00
w 5.00 55.00 105.00 155.00 205.00

.00 95.00 145.00 195.00 245.00
50.00 100.00 150.00 200.00 250.00

Relative Field Strength
S

Zm 0 1 2 3

-16.58 ******* ******* ******
.00 -11,66 ******* ******* *******

-16.58 ******* ******* ******* *******

LDBT = -. 16338 dB LDBTT = -4.32773.dB.
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K zH [1 + R (ec)exp{jKzo}I[l + R (6c)exp{j<z} 4K~z z c g c 4-3-10)
C, ,~zo# [1 + R (6 )exp{" j K.1

g c

where

K = 2ko/a/ 1). (4-3-11)
z

This too has been calculated and is denoted by LDBTT in the

Table. It is apparent from this calculation that when only

a few lateral wave components contribute significantly, Equation

(4-3-10) is inappropriate.

4.4 Transmission Loss

The most important parameter characterizing radiowave

propagation channels is transmission loss. Loosely defined,

transmission loss is the ratio of received power to transmitted

power (or its inverse). Basic transmission loss, however, is

specifically defined [for unmodulated r-f carriers] as the ratio
of the power transmitted to the power received as measured at

the terminals of isotropic, loss'less, co-polarized antennas.

-.The concept of basic transmission loss may be extended to

wideband, modulated r-f carriers by appropriately weighting

~ the basic transmission loss by the transmitted power spectral

density.

_ 4.4.1 Basic Transmission Loss

• For radiowaves propagating through f reespace, the basic

F. transmission loss (in decibels) can be calculated from the well-

known expression

Lfs 32.4 + 2 0oglodkm + 2 0£og1OfM~z (4-4-1)

where dkm is the distance between the antennas in kilometers

and fMHz is the radiowave frequency in Megahertz. This equation

"has been used to plot in Figure 4-7 the frequency dependence

Sof basic transmission -loss in free space over a 1000-meter path.
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In calculating the basic transmission loss associated with

the stratified forest models described previously, it is important.

to recognize that postulated for those models was a

vertically-polarized electric dipole antenna. Such an antenna

is not isotropic. Nevertheless, the basic transmission loss

can still be determined by noting that: (1) in free-space,

the vertically-polarized electric field can be determined from

Equation (4-2-36) by setting Et = Ez = 1 so that

Efs = (wP./4n)IdX sih 2e expf-jk0 Rj0} (4-4-2)RI

and (2) the power received is directly proportional to the field

intensity

I(k) = E(x)-E*(x) (4-4-3)

Thus, for the stratified forest models, the basic transmission

loss can be expressed by

Lb(d,r,£) = Lfs + 20ogj 1oEfs/Ed,r,fl (4-4-4)

where Ed,r,k is defined in Equations (4-2-36), (4-2-37), and
(4-2-38). Equation (4-4-4) has been used in Section 5.2 to
assess the sensitivity of the basic transmission loss to the

biophysical forest parameters.

4.4.2 Wideband Basic Transmission Loss

Consider a modulated radiowave having a transmitted power
spectral density S(M). The total power transmitted is then

PT =S(w)dw (4-4-5)

If the basic transmission loss associated with an unmodulated

r-f carrier of angular frequency w is denoted by L(w) then the

total power received is

PR =fS(w)L(w),dw (4-4-6)
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The wideband basic transmission loss can then be defined as

PR rS(w)L(w)dwLwb = P= S(w)dw (4-4-7)

or, expressed* in decibels,

LdB = -10og,0Lwb (4-4-8)

4.5 Doppler Frequency Shift

The stratified forest model for the coherent field components

* of the propagating radiowave has 'been extended to account for

Doppler shift induced by terminal motion. This development

is described below. Doppler shift of the coherent component

induced by motion of the forest biomass (primarily leaves and

branches) is anticipated to be relatively small by comparison.

The effects of terminal motion and the Doppler shift induced

thereby can be addressed most simply by first considering only

the direct field component
,- o ' exp{-jko /VEz Rd}

Ez(d) =a Idt'sin 2 d (4-5Rd

As a consequence of terminal motion, Rd (the distance between

the tratsmitter and receiver) becomes time-variant. If the

terminal motion is uniform (no 'acceleration), Rd' may be

represented by the first two terms of its Taylor series expansion

"so that

Rd = .Rt (4-5-2)

Rd d d

Over reia'ivel-' short time intervals where

'6t « a = Atmax. (4-5-3)
[dRd/dt]

* The negative sign has been inserted for consistency with Equation (4-4-4).
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Equation (4-5-1) can be well approximated by

Ed)oI expf -ji /e (Ra + Rt)}

Ez(d) Va /• •-•-Id£.sin 2
0d" zRd

Remembering that the instantaneous frequency of a waveform
proportional to exp{4(t)} is defined as

f 1 do (4-5-6)

2,rdt

where 0" represents the imaginary part of *, and remembering,
too, that the factor exp{j271fot} is assumed but suppressed in
Equations (4-5-1) and (4-5-4), the instantaneous Doppler shift
in frequency of the direct field component Ez(d) relative to
the carrier frequency fo is given by

Afd= -,oRe{/zEz}R'/c (4-5-6)

Since

Rd = Jr 2 + a 2 (z -Zo)21] (4-5-7)

then

ýRd Lr 3Rd Xz -zo)
a~ r+~ (4-5-8)d t (z - Zo) at

or

R= VrsinOd + Vzcosed (4-5-9)

where,

Vr = radial component of receiving terminal velocity
relative to transmitting terminal velocity
[= 3r/at].

v = vertical component of receiving terminal velocity
relative to transmitting terminal velocity

.= (z- zo)/at].

Note from Equation (4-5-6) and (4-5-9) that the Doppler shift
is directly proportional to the carrier frequency fo and to
that component of the differential terminal velocity directed
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between the terminals. The negative sign in Equation (4-5-6)

signifies that relative terminal motion tending to increase

Rd will shift the received frequency downward relative to the

carrier.

In a similar manner, the instantaneous Doppler shift of

any reflected field component Ez(r) relative to the carrier

frequency fo can be found to be

Af = -f Re{ z}Rr'/c' (4-5-10)

where

R'= Vrsiner - VzcOser (4-511)r

and, in addition to the previously defined variables,

Vz =vertical component of receiving terminal velocity
relative to the transmitting terminal image
velocity [= M(z+zo)/3t].

The instantaneous Doppler shift of any lateral wave field

component Ez(9.) relative to the carrier frequency fo is given

by

f£= -(fo/c)[Vr - Re{a(Ez'- I)h}-Vz] (4-5-12)

The order of magnitude' of the Doppler shift may be estimated

by considering two vehicles moving apart along the forest floor

at speeds of 100 kilometers per hour and utilizing a carrier

frequency of 600 megahertz. The Doppler shift of the direct

field component will dominate and will be approximately equal

.to

• fd (600xi0') 200x10 3  /fd -. 0xl (3xlO3)
3600

(4"5-13)

1-00 Hertz.

SFor a broadband communication system utilizing bandwidths in

excess of l00MHz, Doppler shifts of this magnitude can be expected

to have negligible effect on performance.
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5.0 Sensitivity of the Stratified Forest Model

Under this task, the stratified forest model has been used

to investigate the sensitivity of the basic transmission loss,

the (mean) forest pulse response, and the differential pulse

delay to variations in the salient biophysical parameters of

the forest [refer to Section 21 and to the frequency,

polarization, and path length of the radio link. Three forest

types have been considered to illustrate the sensitivity of

the stratified forest model: an uneven-aged, trunk-dominated

forest characterized by a trunk number density (pt) of 1000
trunks per hectare and by an exponential trunk-diameter

probability density function* having a mean trunk diameter of

6.35 centimeters (2.5 inches); an all-leaf forest characterized

by a fractional volume (FV) of 0.1 percent [5 centimeter leaf

radius, 1 millimeter leaf thickness, and 133 leaves per cubic

meter]; and a mixed-forest of trunks and leaves derived from
the other two. Branches have not yet been incorporated into

the stratified forest model.

Although all-leaf forests will be studied systematically

for later comparison with uneven-aged, trunk-dominated forests,
it seems advisable to start this sensitivity analysis of the

stratified forest model with the one all-leaf forest considered

previously in Reference [42]. This will permit those previous

results to be discussed in a manner not possible at that time

and to support an evolutionary development of the formats to

be used in the systematic sequel. Figures 6-2 and 6;3 of Re-

ference i421 have been reproduced here in a newer and more
complete form as Figures 5-1 and 5-2. As before, the number

*Although, as noted in Section 2.2.1, the upper and lower limits on the trunk

diameters of real forests must, in practice, be reconciled with the semi-
infinite limits available to the exponential probability density function,
for present purposes the exponential probability density function was defined
only over a 1 to12 inch diameter range at discrete 1-inch intervals. The
area under the density function was, of course, normalized to unity.
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density of the leaves has been taken as 133* leaves per cubic

.•,eter [corresponding to a fractional volume of 0.1 percent].

The transmitter and receiver antennas have been situated 3.5+

meters below the forest top and the range has been taken as

1000 meters. The forest pulse response shown in Figure 5-2

has been determined for a 5-nanosecornd rectangular pulse having

an r-f carrier frequency of 600 MHz.

The forest transfer functions shown in Figure 5-1 have

been normalized to 0 dB for the direct wave at 600 MHz. The

direct wave is reduced by interference, with the reflected wave

at all frequencies, with nearly complete cancellation occurring

near 400 MHz; their resultant is less than the lateral wdve

at all frequencies. Thus, the forest transfer function of the

total wave follows roughly that of the lateral wave with

interference lobes arising, as a consequence of further

interference between the lateral wave and the direct-plus-

ref lected wave. The forest pulse response of Figure 5-2 shows

the same partial cancellation. The lateral wave arrives earlier

than the direct wave because it travels faster in free space

above the forest than the other waves travel through the forest.

The corresponding pulse envelopes aie shown in Figure 5-3.

The subsequent presentation of the sensitivity analysis

involves two significant changes in format as well as variations

in forest type and path qeometry. The first is the inclusion

of basic transmission loss. This is discussed in Section 4-4

and in Section 5-1 below. The second is the insertion of an

ideal (rectangular) bandpass filter centered on the carrier

frequency of 600 MHz to improve the simulation of the radio

equipment. For an ideal rectangular pulse with its sinc-shaped

*All curves presente! in Reference [42J citing a leaf number density of 200

leaves per cubic meter were, in fact, based upon a leaf number dnsity of
j2/3)(200) = 133 leaves per cubic meter.

+The radio path geometry is slightly different from that actually used in
Reference [42]. There, the transmitter and receiver antennas were situated
3' and 4 meters, respectively, below the forest top (not 4 and 6 meters,
respectively, as stated); here, both transmitter and receiver antennas are
situated 3.5. meters below the forest top.
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9
amplitude spectrum, the high- and low-frequency spectral skirts

led to intolerable pulse distortion. Therefore, in the sequel

only the cential lobe of the pulse spectrum is passed by/ideal

filter. The corresponding transmitted pulse shape, no longer

rectangular, is shown in Figure 5-4.

5.1 Basic Transmission Loss

The basic transmission loss experienced within an all-leaf

forest characterized by a fractional volume (FV) of 0.1 percent

is presented in Figures 5-5 and 5A-1 to 5A-8. The vertically-polarized

transmitter and receiver antennas are situated 2.5 meters below

the forest top anw separated, successively, by 200, 500, and

1000 meters.* The basic transmission losses associated with the

direct and reflected waves are virtually indistinguishable and

for frequencies less than about 500 MHz increase' about 6 dB/octave
of' frequency. The direct and reflected waves destructively

interfere so that their resultant is nearly 20 decibels below

either of them at R = 1000 m. Particularly strong destructive

interference is apparent near 500 MlIz. The basic transmission

loss of the total at 1000 m is clearly dominated by that of

the lateral wave which decreases about 12 dB/octave of frequency.

Note that, in general, a leaf-dominated forest behaves as a

"low-pass filter for vertically-polarized radiowaves.

The losses for the same ranges with S/2 = m m are shown.

in Fiqures 5A-4 to 5A-6, and, for S/2 = 10 m in Figures 5A-7 to

5A-9. The chief points to notice are the absence of the lateral

* waves as the angle of incidence exceeds the critical angle (see

Section 4.2.6).'

The basic transmission los,ý for the trunk-dominated forest

is shown in Figures 5A-10 to 5A-18. As :or the leaf-dominated' forest,

* the basic transmission losses associated with the direct and re-

flected waves are virtually indistinguishabP'? and they destruc-
*-."tively interfere so that their resultant lies 10-15 dB below

them. The basic transmission loss of the total is clearly

* dominated by that of the lateral' wave (they are indistinguishable)

which increases approximately 6 dB/octave of frequency.

except for Figure 5-5, for which S/2 - 3.5m and R - 1000m as in Figure 5-i.
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5.2 Forest Pulse Response

The mean forest pulse response has been determined fot

a wideband digital radio system having a 600 MHz carrier frequency

and a 300 MHz r-f bandwidth as above. The pseudo-noise chips

are derived by passing 5-nanosecond rectangular pulses through

an ideal bandpass filter. The forest pulse response for the

leaf-dominated forest is shown in Figures 5B-1 to 5B-3 for

S/2 = 2.5 m, 5B-4 to 5B-6 for S/2 = 5 m and 5B-7 to 5B-9 for

S/2 = 10 m. The forest pulse responses associated with radiowave

propagation along the direct path are shown uppermost in these

figures. The propagation delay along the direct path Td, observed

to be about 3340 nanoseconds for R = 1000 m, can also be estimated

from the approximation

d d z (5-2-1)
C

where ez is the real part of the longitudinal component of the

effective' 'dyadic susceptibility [refer to Figure 3-1(b)]. For

this example, Rd =1000 m, cz = 1.004265, and c = 3xl0 m/sec.

The companion pulse response for the reflected pulse also shown

in Figure 5B-3 exhibits essentially the same delay., The rather

shallow glancing angle at the air-forest interface associated

with this particular geometric configuration (about 0.14 degrees)

ensures a relatively strong reflected pulse (at 600 MHz the ref lec-

tion coefficient' is 0.9942), although essentially in, antiphase

with the direct pulse. As shown in the figure, the direct and

reflected pulses virtually cancel each other and, as a

consequence, the contribution of the lateral 'wave dominates

the resultant. The propagation delay associated with the lateral

wave is essentially that of free space.

The forest pulse responses for the trunk-dominated forest are

shown in Figures 5B-10 to 5B-18. In Figure 5B-12, the pulse response

associated with the direct wave arrives prior to the pulse

response associated with the lateral wave. This is a consequence

of the fact that the longitudinal component of the effective

dyadic susceptibility is negative. Equation (5-2-1) can still

5-9
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be used to estimate the arrival time of the direct pulse, although

for this example, because z = 0.99903 the velocity of pulse

I propagation appears to exceed that of light in vacuum. A more

exact expression for pulse delay time and the Kramers-Konig

relation can *be employed to refute this contention in general;

the apparent paradox that Figure 5B-12 supports this contention

can be resolved by noting that the strictly band-limited trans-

mitted pulse cannot be localized in time. The small, rapid

oscillations may be the so-called Sommerfeld precursor, (361.

in any case, the high specific attenuation associated with the

propagation of a vertically-polarized wave through a trunk-

- dominated forest [refer to Figure 3-2(a)] severely attenuates

all but. the lateral wave which, as is apparent from Figure 5B-12

dominates the resultant pulse response.
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ANNEX 5A: nasic Transmission Loss

S/2 = 2.5 5.0 10.0

SLeaf Forest: Range (m) Figure Numbers

200 5A-1. 5A-4 5A-7

500 5A-2 5A-5 5A-8

1000 5A-3 5A-6 5A-9

IW S/2 = 2.5 5.0 10.0
Inhomogeneous
Trunk Forest: Range (m) Figure Numbers

200 5A-10 5A-13 5A-16

500 5A--Il 5A-14 5A-17

1000 5A-12 5A-14 5A-18

ANNEX 5B: Forest Pulse Response

S s/2 = 2.5 5.0 10.0

Leaf Forest: Range (m) Figure Numbers

200 5B-I 5B-4 5B-7

500 5B-2 5B-5 5B-8

1000 5B-3. 5B-6 5B-9
p

S/2 = 2.5 5.0 10.0

*L Inhomogeneous
" Trunk Forest: Range (m) Figure Numbers

200 5B-10 5B-13 5B-16

500 5B-i1 5B-14 5B-17

1000 5B-12 5B-15 5B-18
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6.0 Incoherent Forest Scattering

The electromagnetic fields of radiowaves propagating through

a forest can be decomposed 4n.r mean (coherent) and diffuse

(incoherent) components. At low frequencies (HF and below)

the diffuse component is relatively small and only mean fields

need be considered. As the frequency becomes higher, spatial

fluctuations in the field become more important, and the diffuse

component of the field must be taken into account. In this

section, the behavior of the diffuse component at VHF and UHF

frequencies is examined for a trunk-dominated forest.

SThe trunk-dominated forest consists solely of tree trunks

which are parallel to each other but randomly placed perpendicular

to the forest floor. It is a useful model since trunks are

the largest forest component and the first to give rise to sub-

stantial random or diffuse component of the fields as the

frequency is increased. In addition, if the trunks are assumed

to be circular, and propagation is parallel to the forest floor,

Maxwell's equations can be replaced by a scalar wave equation;

* this represents a substantial simplification in the mathematical

analysis required.

To characterize propagation in the forest when the diffuse

component of the field is significant, the space-frequency corre-

lation function of the field is required. This is the correlation

function between the field component at space point x and fre-

quency , with the conjugate of the field component at space point

x and frequency W. An approximate equation for this correlation

function can be obtained for the two-dimensional trunk forest.

This equation is the starting point for most of the calculations

of this sectio

Once the correlation equation has been obtained and the

scattering pr perties of the trunks discussed two problems are

addressed. The first is the solution of the correlation equation

for trunks thin compared to a wavelength with x - x but w # p.
06 With this frequency correlation function the coherence bandwidth

of the channe can be determined. Following this calculation,

6-1
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the intensity and space correlation function are evaluated

for the general case ofa forest of resonant trunks, i.e., trunks

that are not necessarily small compared to a wavelength. The

"intensity calculation represents a generalization of that for

thin trunks that appears in 1421. The results of both

calculations yield essential physical information on channcl

behavior which will be discussed subsequently.

6.1 Mean and Correlation.Equations

In this section, the equation for the mean field and the

equation for the space- frequency correlation function are

developed. Before this can be done, the two-dimensional forest

problem must be formulated. Although some of the material in

this section has already appeared in 1421, it is repeated here

6 for completeness and convenience.

6.1.1 Formulation of Two-Dimensional Tr-ank Problem

Consider a trunk-dominated -forest represented by a col-

"* lection of parallel circular dielectric cylinders having radius

a and complex relative dielectric constant E . The collection
of 'trunks 'is confined to stand within an area S as is shown

'in Figure 6.1. If only an electric current source having no

variation in the, direction parallel to the cylinders is

considered, the electric field obeys the following, scalar wave

equation

Sv2 + t Ez(ýt,)=(xtw) (6-Ji-1)[t z to~

Here Ez(xt,w) is the only component of the electric field excited;

it depends only on the transverse position, vector xt = xxv+Y 04

0 In the above formulation, the z coordinate is parallel to the

cylinders.

The current source Jz(xt,w) can be within the forest region

S or outside of it. In some cases the source is allowed to

Srecede to infinity in such a way that it generates plane waves

normally incident on the forest. The two-dimensional source

distribution is not as reali3tic as a 'three-dimensional point

6 6-2



-6-

S0 0 0
, 0

0 0

0" 0
• ~0

Figure 6-1 CrOSs-Sectional View 'of Forest Trunk Model

•.-



"source, but the scalar formulation of Equation (6-1-1) lead,

to a much more tractable problem. Since a point source can

be represented aS a superposition of phased line sources, the

results can be generalized to the three-dimensional source case

by employing superposition. This, however, will not be done

*- at this time.

The dielectric characteristics of the forest are specified

by the relative dielectric permittivity, (xtj). This

permittivity can be expressed as a' sum of the susceptibilities

of the individual scatterers as follows:

N
E. (xt,W) = + I " xj(xt,w) (6-1-2)

j=l

where Xj is the susceptibility of the jth scatterer. It is

convenient to express the Xj as a 'translation of the suscepti-

bility, X , of an identical scatterer located at the origin.

If Xtj is the vector from the origin to the center of the jth

scatterer then

Xj(xtW) X(xtE-XtW) (6-1-3)

where

X (x t ' ) = t ) = 1

Here X (I) is the susceptibility of the bulk tree trunk material.

* It is assumed to be isotropic.

Following the methodology of Section 2.1.1, 142], Equation

(6-1-1) is expressed in operator notation. If the following
quantities are defined:,,

SL = -(V 2 + k2) V. = klXj (6-1-4)

I-. = Ez g = -jkj.J (6-1-5)
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then Equation (6-1-1) can be written as

* ~= (6-1-6)
j=j

This notation has been used in Section 2.2.3, (421 to derive

the mean equation. It will be used in this report to derive

the space-frequency correlation equation (Appendix A). It

provides a concise mechanism for writing defining equations

for the mean and correlation in the main body of the text.

The formulaticn of the scattering problem thus far is in

terms of the susceptibility of individual scatterers translated

'from the origin. Past experience has shown that it is more

useful to express the characteristics of a scatterer by its

response to an incident field. For this purpose, the transition

operator T is introduced. If Pi is the field incident on a

scatterer having susceptibility X(jt,w) which is located at

the origin, then the induced sources geq generated within the

scatterer are

geq= Tti =ft(•',•'••li(x',W)dx' (6-1-7)

* Here the transition operator has been represented in terms of

an integral operator having kernel t(x,x',w). From a knowledge

of t(x,x',w) all properties of the scatterer can be determined.

It has been shown in Section 2.2.2, [421 that the transition

operator, T(Xtj), for scatterers located at itj can be simply

expressed in terms of the transition operator of the scatter

located at the origin. This relationship is given by

T(X tj) = Jt(x-Xtj, "tx' -1tEw)*(x',W)dx' (6-1-8)

Using 'Eq'iation (6-1-8) the properties of all particles can be

expressed solely in terms of t(x,x',w).



The scatterer can be characterized in an alternative manner

by specifying it's far-field response to a unit amplitude incident

plane wave. If the. incident plane wave is given by

r. (xE) = exp{-jki.x-t} (6-1-9)

then the scattered field in the radiation zone of the tree trunk

has the form

(X = - xW = f04 (6-1-10)

t
where i and o (= xt/xt) are unit vectors in the direction of

the incident wave and observation point, respectively. Equation

(6-1-10) serves, as the defining equation for the scattering

amplitude, f(o,i). The scattering amplitude is directly related

to the Fourier transform of the transition operator. The rela-

tionship has been derived in Appendix B of [421 and is given

by

f(o,i) = yt(k~o,koi,w) = e (6-1-11)

where t is:
(I at - t- at )(--2

t(kt',k ,w) = (2) f tdtlt(xtx,w)e(tt (6-1-12)

"Although the transition kernel t(X,x',,) enters into the defining

equations for the mean intensity and the correlation function,

it is the scattering amplitude that ippears in the final results.

Throughout this subsection, the w dependence of quantities

* has been explicitly exhibited. This has been done since the

calculation of the space-frequency correlation function to follow

requires explicit knowledge of the frequency dependence..

* 6.1.2 Mean Equation

An approximate equation for the'mean field <*> was obtained

i. in Section 2.2.3, [421 by employing the Foldy-Lax method [19,351.

* 6-6
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The method is valid for collections of two-dimensional discrete

scatterers having small fractional area. This criterion is

usually satisfied inasmuch as most forests have fractional areas

ranging from .05 to .2.

The approximate equation that the mean field satisfies

is

(27 +k 2)<XtW)>+jdsadx'p(st) t(Et-st'x_ - W)<ý(XW)>

= _g(xt.,) (6-1-13)

where the density P(s2t) is zero for st outside of S, i.e.,

P(ýt) tinside S
* P(st) (6-1-14)

0 st outside S

This equation is an integro-differential equation inside the

forest but when st is outside S, the mean equation reduces to

the free space scalar wave equation.

The operator notation previously introduced can be used

to simplify the appearance of the mean equation. By using the

mean operator £ the mean equation becomes

= g (6-1-15)

where

£ = L f-fdstP(st)T(st) (6-1-16)

Note that no average bar appears over T as in [421; because.

for cylindrical scatterers, T = T.

The mean operator £ has been introduced since it is important

to the formulation of the correlation equation. In this context

its inverse will often be required. The inverse of £ is defined

in terms of the mean Green's function G(xt,xt,w) as

*6-1?
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S G(x ',) (xW) (6-1-17)

where

I- G =6 (6-1-18)

or more explicitly

S-(q~t2 +k 0) G (xt,,Xit_ w ,) _sdýtdxE p(st)tQxt_ --st,x st•)Etýto•

6(Xt - xto) (6-1-19)
,--to

Thus from the solution of Equation (6-1-19) the inverse of

f- !can be found from Equation (6-1-17).

In the low-frequency limit, the transition kernel t (xt,,w)

can be represented as Section 2.2.2, [421

t(xt,x ,w) = k 0L(M)6(xt)6(x ) (6-1-20)

where a is the two-dimensional polarizability of the cylindrical

"scatterer. For a circular cylinder of susceptibility X it

"is given by
2 2

a (W) = -X(W)•ira 2  (6-1-21)

where a is the radius of the trunk. If the low-frequency form

of the transition kernel as it appears in Equation (6-1-2.0)

is used in Equation (6-1-19), the equation for the Green's func-
tion simplifies substantially. It is given by

S{vt+ k(l +p(xt)c(w))G(xt.,xtk ,C) + -6(xt -x ) (6w-122)
tE -'* '~0 -ito

* This equation will be employed in Section 6.3.

6.1.3 Space-Frequency Correlation Equation

The basic quantity needed" to characterize communications,

channel is the space-frequency correlation function; i.e.,

* 6-8



<02(.1t,w)*(jt,)>. This represents the correlation between

a field component of frequency w at position ?t and a field

component of frequency w at position Et. From this function,

the frequency correlation and delay spread for the channel can

be obtained at a fixed point .t = t, and the spatial correlation

can be found at a fixed frequency w = W.

The correlation of the field can be decomposed into a co-

herent and incoherent part. Consider the field *(xt,w) to be

represented as a sum of its mean <P(xAt,w)> plus its fluctuating

component P(xt,w) so that

=(t,w) <p(xt,W)> + p(xt,w) (6-1-23)

where < (xt,a) > = 0 by definition. By using this equation, the

Scorrelation can be decomposed as follows

S<0(xEt,w)ý (X W)>. .

+ <÷(Eew)* (Et,w)> (6-1-24)

The first term <><4"*> is 'the mean intensity. It represents

the complete correlation function when there are no fluctuations.

The second term <•*> represents the effects ot fluctuations.

Thus, the representation afforded by Equation (6-1-23) permits

the channel to be divided into two parallel components each

with its own distinctive channel characterization. This is

shown pictorially in Figure 6.2.

The equation that the space-frequency correlation function

satisfies has been derived in Appendix A. The -methodology' is

the same as the derivation appearing in Appendix C of [421 where

the space correlation equation is derived. The 'inclusion of

two different frequencies only changes the equaticn slightly.

The equation is then given by

it -~* fds pQst)T(st)T*(!Et)<*pi*> gg* (6-1-2'5)

6-9
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where t.ie notational device has been used that unstarred

quantities are functions of ýt and w while starred or conjugated

quantities are functions of it and ýi. The integral term is

the scattering or diffusion term and when small

it gg* (6-1-26)

or

<O*>= s-.f*-1gg (6-1-27)

= £-lgj*-g* (6-1-28)

= <(6-1-29)

Thus when the scattering term is small, the random component

of the channel can be neglected.

In the following subsections, the space-frequency correlation

equation is presented fcr the two special cases mentioned earlier.

First in Subsection 6.3, the frequency correlation function

(xt = xt) is given for an infinite forest having a line source

excitation. The low-frequency approximation will be used to

make the equation tractable. In Subsection 6.4 the spatial

correlation function ( = - ) is given for a half-space forest

with a normally incident plane wave. The low-frequency

approximation is not employed here, so the results are valid

for all frequencies of interest.

6.2 Single-Scatterer Characteristics

"The properties of the scatterer ensembles to be treated

in the next two subsections will be closely related to the char-

acteristics of the individual scattering elements. In this

subsection, the differential scattering crosa-section and total

cross-section of an isolated tree trunk '(circular cylinder)

are plotteds for typical tree 'trunk diameters. The curves obtained

are used in latter subsections -to' help interpret multiple scat-

tering results.
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Consider a circular lossy dielectric cylinder of radius

a whose axis coincides with the z-axis. The cylinder has the

complex permittivity Xc = Xj - jXj. The fundamental quantity

characterizing the scattering properties of the cylinder is

the scattering amplitude as defined in Equation (6-1-10). The

scattering amplitude f(o,i) measures the response of the scat-

terer in the direction o to a plane-wave incident upon the

scatterer in the direction i. These unit vectors are shown

in Figure 6.3 along with the angle. of incidence Oi and the scat-

tering angle Os.

The dyadic scattering amplitude for a cylinder has been

computed in Section 3.1, [421. The scalar scattering amplitude

can be obtained from it by using the h°h' component of the dyadic

at Gi = Tr/2. The' result is
I

f(o,i) = hh(0,i) ~0 _ _- _ i=7r/2

7J /4 (ln hh jn( i 0s)

4:2:k7nT- Cn e (6-2-1)

hhThe expressions for the Cn are given in Section 3.1, [421 and
hh

will not be repeated here. The Cn are functions of the cylinder

radius, the frequency, and the complex permittivity XZ.

* The scattering characteristics of the-cylinder are described

by the differential scattering cross-section cd, the scattering

cross-section as, the total cross-section at, and the, scattering

albedeo W. These are addressed separately in the subsections

which follow.

6.2.1 Scattering Formulas

6.2.1.1 Differential Scattering Cross-Section

The differential scattering cross-section is, defined'

di 3• 2

U d( ,l) " f(o,i)l (6-2-2)
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Using Equation (6-2-1) in the above equation gives

a d(Oi,) = d(V)

2 + n+m hh * "(n-ml(2rk° E E - n C n e3 (6-2-3
n=-• m=-=

where = i - Os. Thus od can be computed from a knowledg
of the Cn and it is only a function of the difference betwee
the incidence angle *i and the scattering angle *s. The differ
ential scattering cross-section also has the following tw
properties:

a = Od( ' + 2n) (6-2-4

= d( (6-2-5

Thus it is seen that d(V') is an even periodic function o

. A quantity closely related to ad is the bistatic scatterin
cross-section, Obi, which is given by

Obi(o,i) = 4 710d( O,) (6-2-6

It is often used in radar applications. The differential scat
tering cross-section gives the gain pattern or angular distri
bution of scattered power of the scatterer. It is usually

*• function of incident angle bat since the cylinder is rotationall
invariant, od depends only on the difference between *d an

*e 6.2.1.2 Scattering Cross-Section

The. next quantity of interest is the total power scat
teredat all angles surrounding the cylinder. The cross-sectio
of a particle which would produce this amcunt of scatterin
is called the scattering cross-section cs and is given by.
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2 T 271
s a d(oi)ds = a d(')dO' (6-2-7)

If Equation (6-2-3) is used in the above equation; the result

is

+ chh 2
-s 4 -n (6-2-8)

6.2.1.3 Total Cross-Section

The total cross-section, ot, is the sum of the scattering

cross-section 0o and the absorption cross-section aa. It measures

the amount of power the scatterer extracts from the incident
wave in scattering and dbsorption. Since aa is not directly

related to the scattering amplitude, the calculation of at in
hh jfikt

terms of the Chn can most easily be done by using/optical theorem.

According to Appendix F of [421, the uptical theorem for two-

dimensional media states,

a= 2 2 Relf(i,i)e J4 (6-2-9)

* Now using*Equation (6-2-1) in the above equation yields

4 [chhl
at = - n Re (6- -10)

6.2.1.4 Albedo

The final quantity of interest is the albedo W hich

is the ratio of as to at, i.e.

,_W - 0s/at (6- :-11)

The albedo always lies between zero and unity and measures the

ratio of power scattered to power absorbed. Scatterers having

albedos close to zero are very absorptive while scatterers with

albedos close to one scatter much more power than they absorb
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6.2.2 Single-Scatterer Properties

The parameters that affect the cross-sections are the

trunk radius, a, the frequency, f, and the complex

" susceptibility, X£. The scattering cross-sections will be

computed for trunk *radii of 1, 5 and 10 centimeters since these

represent typical trunk radii found in forests. The frequency

range will be chosen from 200 MHz to 2000 MHz and three models

. for the susceptibility will be used. These three models have

* .been called CyberCom Model I, II and III. They have been defined

"and discussed in Appendix A, [42). All three models have a

constant real susceptibility independent of frequency. The

imaginary part of the susceptibility X" differs in the models.

For Model I, Xi is constant; for Model II, the conductivity

of the medium is constant, while for Model III relaxation losses

Shave been added to Model II. The variation of Xi for each model

is shown in Figure 6.4. Model III most closely depicts the

* actual trunk medium. The Other models are used to show the

sensitivity of the results to variations in the trunk

susceptibility.

6.2.2.1 Differential Scattering Cross-Section

The first curves to be discussed are the plots of 0 d

versus ,' shown in Figures 6.5, 6.6 and 6.7. Each figure presents

*",• Od curves (scattering patterns) at frequencies of 200, 300,

and 600 MHz at a fixed 'tree radius. The curves have been

normalized but the same normalization constant is used for all

plots having the same tree radius, i.e., curves on the same

figure have, the same normalization. CyberCom Model III has

been used in the computations. Scattering patterns have not

been plotted for CyberCom Model I and II.

An examination of the curves shows that at low frequencies,

i.e. 200 and 300 MHz, the trunks of radii 1 and 5 cm are

"almost perfect isotropic radiators. As expected, as the frequency

. increases for a fixed trunk radius,, the scattering pattern becomes

more directed toward the forward direction. This trend becomes

more pronounced as the trunk radius is increased.

* 6-16
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6.2.2.2 Albedo and Total Cross-Section

In Figures 6.8 through 6.13 the albedos and the total

NP cross-sections are plotted as functions of frequency for CyberCom

Models I, II and III. This is done for trunk radii of 1, 5

and 10 centimeters. The albedo curves indicate the importance

of scattering compated to absorption while the at curves are

directly related to the mean wave since the mean wa-,e decays

at a rate exp[-patz). Values for c. have not been plotted since

they can be computed by inspection from the albedo and at curves

by using Equation (6-2-11).

* An examination of the albedo graphs shows similar curves

for all permittivity models and that as the trunk radius becomes

larger, the curves oscillate more rapidly with smaller amplitudes.
This is because large trunks reach resonance at lower frequencies.

C It is interesting to compare the at curves for 1 and 5'

centimeters. The one centimeter curves increase with increasing

frequency up to 600 MHz. This indicates the attenuation of

the mean wave is becoming greater with increasing frequency.
i For the 5 centimeter trunks, however, the at curves are decreasing

with increasing frequency and thus the mean wave propagates

farther as the frequency increases.

It is also interesting to compare Models I, II and III

to. see the effects of loss on the albedo curves. Examining

Figure 6.10, it is seen at the high frequency part of the band

(1 GHz < f < 2 GHz) that the more lossy the trunk medium, the

smaller are the oscillations or resonances that. occur. It should

be' pointed out however, that these oscillations will be averaged

out when a distribution of trunk sizes is used to represent

a realistic forest.

The curves of the albedo for trunk radii of 5 and 10 centi-

meters are. very high, indicating that the scattered component

of field will be important. Only for trunk radii of 1 centimeter

and for frequencies of less than 400 MHz does the albedo drop

to lower values. Thus even though the mean wave may have

decreasing attenuation for increasing frequencies in large tree
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radii, the scattered component may 'be much larger than the mean,

making the behavior of the mean unimportant.

6.3 Frequency Correlation Function for a Thin-Trunk Forest

Propagation of wideband signals through a forested environ-

mentL requires a knowledge of the frequency correlation function

of the medium. With the channel characterized in this manner,

the delý_terious effects of .ultiple scattering between forest

components can be properly assessed. The frequency correlation

function can be found by solvinq the correlation Equation (6-1-25)

Swith xt = xt. The equation is difficult to solve unless special

assumptions are made. In the present case, trunks whose radiit

are small compared to a wavelength will be assumed.

In the past, 'several investigators have found approximate

expressions for the frequency correlation function. This calcu-

lation has been made for channels having fluctuating media such

as those channels involving ionospheric F41,53,77,781 or tropo-

spheric 134,35,69) turbulence, as well as channels involving

hydrometeors 1351. In all of these applications, the forward

scattering assumption has, been made because wavelengths of

interest were large compared to medium correlation lengths or

particle sizes. In the present case of forest propagation,
W ''the forward scattering assumption is not valid over the frequency

.band 'of interest for most scatterers. Thus, the correlation

equation must be solved diractly.

In this subsection, an infinite forest is considered having

constant density p. The waves ihi 'the forest are excited by

an infinite line source located at the orig.n.; thus Jz(xt) x

6(xt). The space-frequency correlation equation, (6-1-25) with
At xt will be solved for trunks with diameters small compared

to a wavelength. Using this low-frequency assumption, the

correlation equation can be substantially simplified. To see

this, multiply Equatior, (6-1-25') from the left by £-*- and.

use Equation (6-1-20). The resulting equation for the frequency

correlation function is:
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_t ~ rw (xtl W~ 12

_fdst G (xtGt - )G*(xt -S t,W 2 )F(St,WW 2 ) (6-3-1)

where i" (xt,wlW,,) = <ý- )(xt,w 2)> is the frequency cor-

wher ~'~.t~i~w) = <y O1  )> istth2
relation function; Fo(Xt,•,w 2 ) = <'(xtw )><•P*(xt•2 )> is the
coherent portion of the correlation function,

• 12 k 2k L 1 (6-3-2)
1 21 1 2

.k ki = j i /c ° a i = t(( i) i=1, 2 (6-3-3)

and co = (Poi0 o)-½ is the free-space velocity of light.

SThe Green's function G(xt,w) appearing in Equation (6-3-1)

satisfies Equation (6-1-9) with the low-frequency assumption

and Xt = 0. The equation is

V 2 + k 2 (1 +pct)]G(xtW) =5(xt) (6-3-4)- •t

The solution to this two-dimensional mean Green's function

* equation is given by

G(x ) ,H -- IH _t (6-3-5)

where

K = k/1 + pa , k = w/co (6-3-6)

ard HM(r)) is the Hankel function of zero order and second

* kind. The mean wave <44xt,w)> can easily be found by multiplying

Equation (6-3-4) by jwp.i. Referring to Equation (6-1-13) it

is seen that

=<(xt,w)> G(xt,w)/jwIo. 10 "7

'The frequency correlation equation, (6-3-1) can be recast

by employing the Fourier transform since the integral term is
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a convolutio-n of GG* and F. Rather than proceeding this way,

the Green's functicns and r. will be replaced by their far-field

Sapproximations. This simplifies the calculation substantially

and only restricts the observation point to be in the far-field

of the source. Tree trunks that are in the near field of each

other are not correctly accounted for. This does not represent

a large error, however, since the fractional area occupied by

tree trunks is small.

Now using the asymptotic approximation for the Hankel

function in Equation (6-3-5), the Green's function becomes

S-jCkxt - pa I
G(xt, ) - L e (6-3-8)

t

where

c z k(l + p a/2) (6-3-9)

has been used. The latter is a good approximation for K since

pa<<l for sparse forests.

If this far-field approximation is used in the frequency

correlation equation, for the Green's function and for r., the

result is the following approximate correlation equation:

uJ

F(•xt Ww2 =Ko(xtw.,W2 )

- 12 fdstK(xt -tW2r, 2 )r(xtwI,'W 2 ) (6-3-10)

where

K(xt,w,,w 2) X e (6-3-11)
t

with

y= Ak-p(k a, -k 2 a2)/2 , Ak = -k 2  (6-3-12)

-C= [(87T,)2kk2" (6-3-13)
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and

K.(Xt, 'W) = K(x w,•w)/(& ) 2  (6-3-14

This approximate frequency correlation equation is easier t

transform since the Fourier transform of K(xtw,Iw2 ) can b

calculated explicitly.

Taking the Fourier transform

•"-' jkt "x

f(ktwII,) = 1 2Idx r(xt, I,.z)te (6-3-15
°°:" - t-(2 ) 2  -- 2

of the correlation Equation (6-3-10) and solving for r(kt,w),,w 2

yields

S~Ko(ktFWIW

-(ktwik ) = - 2 k812 =(2r) 22 12 (6-3-16! tl2 -- •(kt, ,,2 ) " 12
12 - i W2

i! where

K(kt,, ) = c = jktk (6-3-17

Ko (kt ,) = K(ktw,)/'W 2  o (6-3-180-t'1'2 0IW

and

Y= jy (6-3-19

The solution for the frequency correlation function is noi

obtained by transforming Equation ('6-3-16). This calculatioi

yields

""dktkt j. (ktxt)
r(xtw,, = (6-3-20:

t

where

ti c 2( k 3/2 /

b 2 TT = k 1 k 2 2 (6-3-21;
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In obtaining Equation (6-3-20) the integration over the angular

variable ý has been performed giving the Bessel function Jo(ktxt).

The calculations of this subsection are similar to those appearing

in Chapter 7, [421; in fact, this calculation reduces to that

one for W1 = W2 = W-

The integral representation for r(xt,Wi,W2 ) is very slowly

convergent and thus difficult to numerically evaluate. Following

a parallel development to that performed in Appendix G, [421,

an alternate representation for r(xt,w1,,2 can be obtained.

It is

0 r(xt,•,•2) - jJcbH (_j/.2 - b 2 xt)

Jcj0p dpp 2 H 2) (j/ +2 Xt) (6-3-22)
f - 2 +b 2

Before proceeding to evaluate numerically the above

expression it is useful to represent the correlation function

as a sum of a coherent part r0 and an incoherent part rI, i.e.

2(xt,w,,') = .o(xt,w,,w2) + % xt 1 I,,W2 ) (6-3-23)

It is the incoherent portion of the correlation function rj

Sthat should tend to zero as jiw-w 2 1 becomes large.

The incoherent correlation r, can be obtained by subtracting

ro from r. An expression for ro' can be obtained from Equation

(6-3-22) by setting 812 = 0, which implies that b = 0. The

result is

=-icJ dp ) (-ip2 +i2 xt) (6-3-24)
"0

Now subtracting ro from r as given in Equation (6-3-22) yields

the desired expression for r,
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I' 1(Xt,,w1 2 ) = _ jircbH) (_jA2- b2 xt)

.- jc dpp 2 p (6-3-25
0 p +b

A normalized form of FI has been plotted in Figures 6.1.

and 6.15 for center frequencies of 200 and 300 MHz respectively

" For each frequency a plot is shown for distances of 200 ant

500 meters. Only frequencies close to the lower edge of th,

band of interest and trunks of small radius are considered becausi

of the Rayleigh assumption implicit in the derivation of Equatiol

(6-3-1). The normalized correlation function I represent:
F1 divided by its value at W, = W21 i.e.

-W I W I(xt',w 2)/rI(xt 1 1 W1 ) (6-3-26

This has been plotted versus the frequency difference W1 -W2

Both the real and imaginary parts of r, have been plotted ii

each case. The upper and lower envelopes represent graphs ol
the magnitude of TI and its negative respectively. The curves

"are plotted until the value of liTIJ reaches 0.1 and then thel

"are terminated. The correlation bandwidth Bc measures tht

frequency difference, w, -W 2 for which TI is negligible. It

will be assumed that Bc is the value at which rFI is equal

to 0.1.

The curves will now be discussed wholly in terms of the

correlation bandwidth, Bc. Examining Figure 6.14 for 200 MHz,

it is seen that the correlation bandwidth decreases from 6 MH2

to 4 MHz as the distance increases from 200 to 500 meters.

Increasing the frequency by 50% to 300 MHz lowers the correlatior

bandwidth to 2 MHz at 200 meters and 1 MHz at 500 meters. The

trends appear to be that the correlation bandwidth decreases

with increasing distance and increasing frequency. It should

be recalled,. however, that this is just a low-frequency result,

and the trends should not be interpreted too broadly.
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6.4 Intensity Fluctuations and Space Correlation Function

for a Forest of Resonant Tree Trunks

Propagation through a random medium of discrete scatterers

such as a forest is characterized by a two-component channel

model. This model is illustrated in Figure 6.2 and consists

of mean and random or fluctuating components. In this subsection,

the. properties of these components will be studied in a trunk-

dominated forest of resonant trees. Emphasis will be placed
on obtaining the two-point correlation function <ý(x)ip*(O)>

at one frequency w. Two properties of major interest are: the

relationship of coherent to incoherent intensity fluctuations

as: a function of distance and frequency; and the behavior of

the space correlation function, <P(xh)(x)>, as the distance

between x and x increases.

SThe work of this subsection in part represents a continuation

of the material in Chapter 7, [42]. There the relationship

between the coherent and incoherent intensity has been examined

for an infinite forest of thin tree trunks. The thin tree trunk
- assumption, although valid for only the lower portion of the

frequency band of interest, allowed the correlation Equation

(6-1-25) with x = x and w = w to be solved exactly. The results

showed that for frequencies as low as 300 MHz intensity fluctua-

tions ere quite important and that they increase with distance.
These findings will now be extended to the case of resonant

trunks.

For the resonant trunk case, solution of the correlation

equatidn by a transform technique does not seem possible, instead,
a two-variable perturbation procedure is used to derive a gener-

alized transport equation from the correlation equation. The

fractional area is the small perturbation parameter used in

the above analysis. The derivation of the transport equation

from the correlation equation is presented in Appendix C. The

analysis of the transport equation •will be qiven in this
subsection. Transport theory has been applied extensively to
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.j discrete scatter problems [25,34,54,581, however, CyberCom

has found nc application to tree trunk-dominated forests.

6.4.1 Problem Formulation

Consider a trunk-dominated forest that occupies the half

space, z > 0, as is shown in Figure 6.16. The forest is composed

of parallel circular dielectric cylinders having radius a. They

are. distributed with constant density p. A plane wave of unit

intensity is normally incident on the half space and the space

correlation function <i(x)h(^)> is evaluated at x and X as shown

in Figure 6-16. To allow for certain simplifications due to

symmetry, the two points will be assumed to be in the same

transverse plane, i.e., their z coordinates will be the same.

This restriction will limit the investigation to transverse

correlations, however, this is the case of most practical interest

for diversity antenna sitir'g.

Because of the assumed location of the observation points

x and xZ and the uniformity of the problem in the transverse

direction, the correlation function r(x,^) = <,(x)p*(^)> only

depends on the difference of the transverse coordinates x-R

and the normal distance into the half space z, thus

r = F (z, r) r x - x (6-4-1)

"This correlation function can be written in terms of a

- generalized specific intensity function,. J(z,rx.,O), as. follows:
--- •~ Tr'f: ik~rxSino

r(z,rx) = doJ (z,rx,,)e (6-4-2)

When rx = 0 the generalized specific intensity reduces to the

G specific intensity I(z,O), i.e.

J(z,0,0) = I(z,*) (6-4-3)

From Appendix C, it is seen that J(zrx, )'satisfies the following

* transport equation:
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/ ,

Cs ddJ (z, rx, +)
COS • dz +PatJ(Z'rx')

(6-4-4)

=pA(rx Sino)f dol' bi(0,0')I(z,').

E: [0,21]

where

A(;) = exp{i2n 2 pf(o,o)C/yk.} (6-4-5)

Here A(U) is the slowly varying part of the Mean Green's function
discussed in Appendix B. The forward scattering amplitude f(o,o)

appears in Equation (6-4-5). It is in the direction o, a unit
vector making an angle 0 with the z-axis as in Figure 6-17.

The solution of Equation (6-4-4) for the generalized specific
4 intensity when used in Equation (6-4-2) will give the desired

space correlation function. This equation will be solved in
two stages. First, rx will be set equal to zero and the equation
will be solved for the specific intensity I(z,4); second, the
solution for J(z,rx,o) will be found in terms of I(z,O). It
should be pointed out that the transport equation for J(z,'rx,o)

. is the stauidard radiative transfer equation that has been
considered by many other research workers when. rx is set equal

to zero.

6.4.2 Intensity Fluctuations

In this subsection,' the transport' equation for the specific'
intensity will be solved numerically and the results discussed.

SThe transport equation for the specific intensity is given by

dI (z,:) PC I')dý' (6-4-6)

where the rotational symmetry of the cylindrical scatterers
has been utilized by replacing Cbi(0,0')' by abi(4-0') (see
Equation (6-2-3). To solve the transport equation, the boundary
conditions at z 0 and z = • will be needed. These boundary

- conditions. are:
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,i

" I(0,€) =6(4) (6-4-7)

= 0 , E [0,27] (6-4-8)

where •+ is the set of angles * corresponding to propagation
in the forward direction. The first boundary condition as given
by Equation (6-4-7) states that the incident energy on the half
space is in the * = 0 direction only. The second condition

bays that all 'energy will be absorbed as z approaches infinity.

The specific intensity is now decomposed into two parts
called the *reduced specific intensity Ir(z,O), and the diffuse

"specific intensity Id(z,O). Thus

I(z,O) = I (zO) + Id(z,O) (6-4-9)

where Ir is the solution of the transport equation without the,
scattering term. It satisfies the equation

• adir (z, ,)

cost dz + Pa I (Z;O) = 0 (6-4-10)

with boundary conditions as given in Equations (b-4-7) and
(6-4-8). The equation Zor the diffuse intensity is obtaineQ
by subtracting Equation (6-4-10) from Equation (6-4-6). The
result is

Cos dId(zO) po2aScos • dz + Ptd(• f °bi(- 'IdZ')'

2 Tr
+,f P0f ab 0)Ir(z')dO' (6-4-11)

with boundary conditions
S, +

Sd(0, 0 ) = 0 0 (P (6-4-12)

1= 0 e [0,2t1 (6-4-13)
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It should be pointed out that the reduced and diffuse specific

intensities are exactly the same as the mean or coherent and

Sthe incoherent specific intensities respectively. These quanti-

ties when substituted in Equation (6-4-2) yield the coherent

and incoherent intensities.

The solution of the reduced equation is obtained by inspec-

tion. It is

I r(z,q) = 6(f)eT , T = POtz (6-4-14)

where T 'is the optical depth. Next, the reduced intensity is

substituted into the right-hand side of the diffuse Equation

(6-4-11). Before solving this equation, the symmetry of I(z,o)

about 4 = it, i.e.,

I(z, ) = I(z,27r-•) E [0,7r] (6-4-15)

is used to reduce Equation (6-4-11) from the angular range

4E[0,27T] to the angular range E[.cf,7r]. The diffuse equation

* becomes

d dT +1dT• J (••)I(')•
dT, d T- ' P) f Id(T, P')d p (6-4-16)

G bi W• -T
+ e , [

0t
and

Sd(0, 1) = 0 , e [0,1] (6-4-17)

(0,P) 0 , E [-1,+1] (6-4-18)

The above equation has been written in terms of the dependent

variable IA (IA = cos •) and T instead of -and z. The phase

function p(P,'i') is given by

Obi(+i + a.bi (0 ) (6-4-19)

The integro-differential equation for IdU(-,p) cannot -be

solved analytically unless Cbi is independent of angle (isotropic
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scatterer) [201 which is not the present case as evidenced by

the radiation patterns shown in Figures 6.5 thru 6.7. Numerical

"methods must be used to obtain quantitative results. The method

of discrete ordinates [201 will be employed. The integral term

is represented by a discrete sum using the Chebyshev-Gauss quad-

rature formula

+1 N
(+1 f( di = - f ':) (6-4-20)

2=Nf j2O

where the jIj's 'correspond to discrete angles Oj (4j = cos- 1 1j)

which are defined by

.sin(2j -i)71/4N j=l,...,N
j-l,.j =N(6-4-21)

11 _j j= - I ,. . . . ., -N

Using the quadrature formula in the transport equation,

(6-4-16) to approximate the integral, and evaluating the equation

at p = pj, j = +I,...,+N, results in a system of 2N ordinary

differential equations with constant coefficients. These

equations are:

dld (t1 ' + Id(T'i) pN (Ili, d().

dT P4 d 2N.-ELi
*, j•O

U..

S÷ bi(l i) -

+ a °t e , i=+',...,+N (6-4-22)

with boundary conditions

(0i)= 0 il,...,N (6-4-23)

1 ~j~. 0 , i=+1,....,+N (6-4-24)
d 1

The equations can be solved for the Id(T-,'i), i = +,...,+N,

Sby standard numerical techniques. The larger the value of N

chosen, the closer the computed values come to the actual solution
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*I

of Equation (6-4-22), and the more points are available' to approx-

imate Id(T,P) over the complete angular range.

* The calculation of Id(T,p) has been carried out for N = 20.

All calculations in this subsection have been done using CyberCom

Model III for the trunk permittivity, a tree radius of 5 centi-

meters and a density of 1000 trees per hectare. Curves of the

Onormalized diffuse specific intensity, Id, versus the azimuthal

scattering angle, ý, have been plottpd for frequencies of 200,

300, and 600 MHz and optical depths of 0.5, 1 and 5. This i3

a total of nine graphs which have been included in the Annex

* with figure numbers 6A-l 'through 6A-9. In addition, three curves

have been plotted at a constant distance of 200 meters for fre-

quencies of 200, 300, and 600 MHz. These are included in the

Annex with figure numbers 6A-10 through 6A-12. 'The curves have'

been presented in a polar format. A spline routine has been

used to connect the discrete output results of the computation

by a smooth curve.

An examination of the complete set of curves shows several

trends. The first trend is an increase in the amount of, forward

scattering as the optical depth increases for fixed frequency.

This effect. is illustrated in Figures 6-18 and 6-19. The first

figure is for an optical depth of 0.5 and it shows a relatively

large, amount of backscatter. The second figure is for an 'optical

depth of 5 and it shows that the radiation is almost all' in

the forward direction.'

This effect has been observed, by Whitman et al. [75] in

their examination of millimeter wave scattering from a half

space of three-dimensional scalar .isotropic spheres. To aid

in making a comparison with their work, Figures 6A-1, 6'A-2 and

6A-3 have been redrawn in rectangular format and presented in

Figure 6-20. A comparison of this figure with several of

Schwering et al. (58] shows quite good qualitative agreement.

The second trend can be observed by examining Figures 6A-10'

through 6A-12. There, for a constant distance 'of 200 meters,S~'/
the amuunt of fotrward scattering increases as the frequency :1

increases. This increase in forward scattering 'can be explained
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by examining the radiation pattern of the scatterer (Figure

6.6). There it is observed that the radiation pattern becomes

more forward-directed as frequency increases.-

The specific intensity at a point represents the amount

of energy passing through that point at a specific angle. When
this specific intensity is summed over all angles, the total

intensity at a point is obtained. To see this, rewrite Equation

(6-4-2) for rx = 0. The result is

2 02iT
<jp(x) I = I(z) do I (z,o) (6-4-25)

where the correlation function r(z,o) has been set equal to

I(z), i.e., F(z,0) = i(z)..

The intensity can be broken up into a mean or coherent

component Io(z) and a random or incoherent component Ii(z).

These components correspond to angular integrals over the reduced

and diffuse specific intensities respectively. From Equations

(6-4-25) and (6-4-9), it is found that

2 7r
10 (Z) dOI(zO) (6-4-26)

and

2 Tr

IzI) (Z) dOId(Z'O) (6-4-27)

The coherent intensity can be obtained directly by using result'

(6-4-14) in (6-4-26); thus

I.(z) = e- , = z (6-4-28)

The angular symmetry of the diffuse specific intensity about * T
can be used to reduce the integral given in Equation (6-4-27) 'to

the interval [0,n); then, a transform to p = cos *, results

in the following expression for If(z):
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+11T )* (+ Id (T,1•)

11 (z) 22 d (6-4-29)

Now employing the Chebyshev--Gauss quadrature formula given
in Equation (6-4-20), an approximate expression for the incoherent

intensity is found in terms of the numerical results previously

obtained. The incoherent intensity is expressed as

N
I (z) 1T6 4-1IIZ N • Id(T,1j) (6'-4-30)

j=-N

jY'0

The results of the computer calculations will be plotted

in three formats. These formats are: normalized intensity
versus distance; incoherent-to-coherent intensity ratio versus

distance; and finally, normalized coherent and normalized

incoherent versus distance. The intensity has been normalized

to the Value of the incident intensity. Curves will be drawn
for frequencies of 200, 300, and 600 MHz and radii of 1, 5,

and 10 centimeters. All curves have been included in the Annex

under figure numbers 6A-13 through 6A-21. Sample curves have

been placed in the text bearing figure numbers 6.21 and 6.22

for illustrative purposes.

An examination of the normalized coherent intensity as

shown in Figures 6A-15, 6A-18 and 6A-21 shows, that 'all curves

decrease with increasing distances. The rate of decrease is

directly related to ot since the normalized coherent intensity

varies as exp(-potz). This can be verified by referring to

the total scattering cross-section curves shcwn in Figures 6.9,

6.11 and 6.13. (Note tick marks have been included at 300 and

600 MHz.) It can be seen that both the coherent intensity values

and, the ot 'values increase with frequency for a trunk radius

of' 1 centimeter, while they both decrease with frequency for

trunk radii of 5 and 10 centimeters.

In Figures 6A-14, 6A-17 and 6A-20 the ratios of the incoherent

to coherent intensities, have been plotted. The basic trend
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these curves show is that the incoherent wave becomes increasingly

important as frequency and distance increase. Since the amount

of scattering directly affects the importance of the diffuse

term, it is interesting to compare the albedo curves presented

in Figures 6.8, 6.10 and 6.12, to the curves for the intensity

ratio under consideration. The comparison shows that in almost

all cases an increase or decrease of albedo corresponds to an

increase or decrease in the incoherent -to-coherent intensity

ratio. This is not the case for curves having a trunk radius

of 10 centimeters where the 200 and 600 MHz curves are inter-

changed. It should be noted, however, that the albedo values

and the curves are close to each other in this case.

6.4.3 Space Correlation Function

* The space correlation function F (z,rx) can be found by

solving the generalized transport Equation (6-4-4) for J(z,rx,o)

and then using this quantity in Equation (6-4-2) for r(z,rx).

Because of the transverse placement of the observation points

x and i, thr* generalized specific intensity J(z,rx,o) can be

found directly in terms of I(z,O). It can be verified by direct

substitution that

J(z,rxx 0) = A(rx sin)I(z,4) (6-4-31)

and thus J can be obtained by using the intensity values already

computed.

Substituting Equation (6-4-31) into the expression for

the intensity gives

- .2iT ik or sin(
F (z'-r x) = dOA(rx sinO) I (z',) e (6-4-32)

4- 2Tr iKr xsin
dOI(z,.)e (6-4-33)

where

K= ko + 6& (6-4'-34)-
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6K 6K' - j6K" = 2 2pf(o,o)/yk. (6-4-35)

Here •. is the mean wave propagation constant given in Equation

(4-2-30) of [421 with 8i = 0.

Before proceeding further, the correlation function is

broken up into coherent and incoherent components as follows:

r(z,r x) =.Fo(z,rx) x 1 (z,r ) (6-4-36)

where

r,(z,rx) = e (6-4-37)

and

r (zr 2Ir iKr (6-4-38)

Here ro(z,rx) is the coherent portion of the correlation

function. It should be noted that it does not depend on rx;

thus the mean fields at x and ' remain completely correlated

for all values of rx. This is not surprising since the mean

field is a deterministic quantity.

The incoherent portion of the correlation function is

Si(z,rx). Using the symmetry of 'Id(Z,O) about 0 =I , Equation

(6-4-38) can be rewritten as

Tr• -6K"rx sino ,
r (z,rx) =2 dId(z, 0)cos[(ko +6 K)r Sino]e

0

"(6-4-39)

It can be seen from Equation (6-4-39) that the correlation

function, f1 , i-- real. This is not a general property of rI
but results from the transverse location of the observation

* points x and x.

The numerical analysis of the integral for rI must be treated

with care. The function Id(Z,O) and exp(-6ec"rxsin 0) are slowly
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varying functions of angle, while the cosine function becomes

a rapidly varying function of angle as korx becomes large.

To see the behavior for large korx, the integral can be

asymptotically evaluated by the method of stationary phase.

The stationary point occurs at r = i/2 and the resulting asymp-

totic evaluation yield3

F I(z,rx) -" 2 __- _ Id(z,7/2)e

* cos[(k° + S-")rx +7/2] (6-4-40)

This approximate expression shows that for large korx the

correlation function falls off at the decay rate of the mean

wave. The validity of the above asymptotic expansion requires

the Id(z,4) be a slowly varying function of •. As z becomes

large, Id(Z,') varies more rapidly with 0. Thus as z becomes

large, the correctness of the above result falls into question.

The correlation function has been plotted for frequency

values of 200, 300 and 600 MHz in Figures 6.23, 6.24 and 6'.25

for distances of 100 and 500 meters. A spline curve fit to'

Id(z,0) has been used to numerically evaluate the * integral.

The computed correlation function in the figures is shown by'

the thin solid line. The thick solid line is the envelope,

atad the dashed line is the asymptotic expression given in Equation

(6-4-40).

An- examination of' the correlation curve -shows that for

'200 and 300 MHz the correlation function does not change sub-

stantially *as the distance varies from 100 to 500 meters.' It

should also be noted that at these frequencies,. the asymptotic

expansion is quite close to the. computed curve for most of the

plotted range. Referring to the approximate correlation func-

tion given in Equation '(6-4-40), it is seen that the correlation

distance does not depend on rx. This explains the invariance

C,. th• correlation length with distance observed, in Figures

6.23 and 6.24.
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The situation is different in Figure 6.25'at 600 MHz. Here

the Id(z,P) becomes more rapidly varying for large z and the

&symptotic expansion is not valid for a large portion of thL

z = 500 meter curve. Thus it is seen for this case that the

space correlation function appears to decrease with distance.

As a final observation, it should be noted that the space

correlation length decreases with increasing frequency. This

is the expected result.
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ANNEX 6A

Normalized Specific Intensity versus Scattering Angle

a = 0.5 m Optical Distance (Tau) Range (W)

Frequency 0.5 1.0 5.0 200

200 6A-1 6A-2 6A-3 6A-10

30C 6A-4 6A-5 6A-6 6A-11

600 6A-7 6A-8 6A-9 6A-12

Normalized Intensities versus Distance

Trunk Radius (W)

Intensities 0.01 0.05' 0.10

Total 6A-13 6A-16 6A-19

Incoherent/Coherent 6A-1'4 6A-17 6A-20.

Coherent & Incoherent 6A-15 6'A-18 6A-21

h
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APPENDIX A

Space-Frequency Correlation Equation

In this Append.i.x the approximate equation for the space-

frequency correlation function will be derived. The methodology

employed in the derivation will parallel the Foldy development
for the mean equation.

Consider two fields • (2t,w) and **(xtW). The field * (xt,w)

is observed at point xt, at frequency w, while the field *(•t,•)

is the conjugate of the field observed at point xt, at frequency

W. In the remainder of the Appendix, the dependence of * on

xt and w, and of ý on t and W will be suppressed for conven-
ience. All quantiCies without the conjujate sign will be assumed

to be functions of unhatted variables, while conjugated quantities

will be functions, of hatted variables.

The total field p can be decomposed into two parts: the

incident field,, Pi, and the various scattered fields from the

individual particles, i.e.

(J+ F () A L = g (A-1)
j=l

where ij) is the scattered field from the jth particle which

is related to the transition operator Tj of the jth particle

as

Lj)= ge = T.jJý (A-2)
s eq. I

The. quantity •(J) in (A-2) is the field at the location

of the jth particle with the jth particle removed. Substituting

(A-2) into (A-1) gives the following equation

Nffi + -I (J)
'. L Tjp Lip. g (A-3)

j=l

Similarly, the equation for the conjugate field * - t)

is obtained as

A-i



N
. * * *L(J)* -i l L T L1 * g (A-4)

j=l

Now, forming the product •,b* and averaging yields

N N (N -1 (k)L- + *. E L <Tjk(> + L<T
j=l j=k

N N (-)-W*
+ L L <T.T ~~IPJ> (A-5)

j=1 k=l j

The double sum appearing in the above equation can be broken

into like terms (j=k) and unlike terms (jyk) as follows
N N. ! *

+* L <T*J)*> + N TL-'<Tj,(J)> +-IL L

- 1 j=l j=l 1j1

N N -1_1* *(j) (k)* -6)<Tj-T*()•j)> + _ L- L <T Tk 0 *> (A-6

Sj k=l

To obtain an equation for the correlation function a closure

approximation is employed. The approximation to be used is

•(J) ( <)

*> (A-7)

This is a generalization of Foldy's closure approximation

used to derive the mean equation. Using this approximation

in (A-6) gives

N N

+ L <TT >+ E -L <Tj><ý>L. <T ><* > (A-8)
j=l =lk== .

j jpk
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Since the particles are identically distributed, the sta-

tistics for all particles are the same, i.e.,

* N
""' <T > = N<T> (A-9)

j=l

N
F <T.T>= N<TT*> (A-10)

j=l I I

Employing these simplifications in (A-8) yields

<W*> -ii + N *iL <T*><*> +NL <T><p>ýi

(A-i1)
+ NLL-*<TT*><ýb*> + (N2 -N)L- <T><>L- I*<T*><**>

Notice that for N>>l, N2 - N = N 2 (1 1) N2 . Using this
N.

fact, Equation (A-il) can be put into the following form

< >= (•i. + NL <T><j>).(4! + NL-**<T*><ý*>)

+ NL- L-* <TT*><4*> (A-12)

Equation (A-12) can be simplified substantially by making use

of the mean-wave equation.

The mean-wave equation is given in the text by Equation

(2 -2-48) as

£ <•g> = g , £ = L - N<T> (A-13)

Multiply (A-13) by L'1 from the left. This yields

<J> = •i+ NL <T><4> (A-14)

A si.nilar result for 'the conjugate field is also obtained

.,by inspection

W> + NL- <T*><p*>, (A-15)
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Substituting Equations (A-14) and (A-15) into Equation

(A-12) gives the desired equation for the space-frequency cor-

relation function <p*>

= + NL-IL-I*<TT*><*ý*> (A-16)

Multiplying Equation (A-16) by £? from the left, using

the' fact that £f<i> g, £*<W*> = g* and ff*L- L-* 1 yields

- N<TT*><ý,*> = gg* (A-17)

The above steps can be justified by scaling the problems

with respect to the characteristic size of the particle, then

N is replaced by the'fractional volume which is small.

The final form of the correlation equation as it appears

in Equation (2-2-44) is obtained by writing the spatial average

of TT* out explicitly and by using Equation (2-2-38).
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APPENDIX B

Radon Transform of the Mean Green's Function

The two-dimensional mean Green's equation. is given in

explicit form as follows

= -6(x- X) (B-l)

Employing the two-variables perturbation method, the mean Green's

function G(x,xo) is expanded as

G(x-x 0 ;x,x 0 ;c) = • C(n) (X-5x;X,X 0 )."n (B-2)

n=O

where the slow variables are defined as

x= cx , 0 = cxo , s = cs , p(s) = EP(s) , <<l (B-3)

Here E is the fractional area and can be introduced -into the

Green's function equation by scaling variables. Setting p = p

is a more direct but less physical way of obtaining the

correct e dependence.

The Radon transform [ ] of G(n) (denoted by G (n) with

respect to x - x. is defined as

G(n) -(n) ( ; ,o

=dsn (x- o;F,•o) (,-o'(X-x,)) (B-4)

Thus the Radon transform of the mean Green's function is

found to be

RG G(Co;xRo) = O C(n ,o;x,•o).£n (B-5)

n= 0

In this Appendix the Radon transform of the mean Green's

function is approximated to the first order only as

RG G (B-6)
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After inserting Equation (B-2) int,ýo (B-1) and equating

coefficients of c* and Ec', the following two equations inG(0

and G ()are obtained respectively

V2+k2 )G ()(x-x 0 ;x,x,) =-ti(x -x,) (B-7a),

t 0 _ _0

where

h(x-,x,x0 ) =-2Vt.VtG (x -x0 ;X,,x)

-PX)dsxl~x(al- )G-

Vt a x + ay Vt a -i + a~- (B-9%
t y

The Radon transform of Equation (B-7a) with respect to

x -X. is found to be

(32+k 2)()(oxx)= () -CO< <00B'

Since G _-,o5,o G (4,o;R,3i.), the solution of (B-10)

has. the following form

A ~;o)e jk. , for 4> 0.

(a) x = (B-li)

A (x;-0) efor 4<0'

where A(R,o) is to be determined. Noti ce that the, dependence

of A(3F;o) upon xo is suppressed for convenience and the solutions

e-j ko for' 4 > 0, e jk ,, f or c < 0 have been' excluded"since there

are no boundaries in free space.

* ~(0)
The continuity of G at r,= 0 together with the jump

condition of D (r tc 0ipyta

A(x0 ;o) A -o) - (B-12)
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The Radon transform of Eqult-ion (B-7b) with respect to

"x -'x. is foundto be

j+ kG (CO;X,'X) = h(C,o;x,x ) (B-13)

where h(C,o;x,ixo) is the Radon transform of h given in Equation

*. (B-8). The Radon transform h is computed for C > 0 as
A- jk.C
h(c,o;x,x0 ) A(x;o)e

--'2tj P(xi) fdst (so, so) f (x-;o,s)ejs (B-14)

where

A(x;o) = 2jkoo.VtA(x-;o)

- (2r) 2.•(x-) t(k o,k o)A(x;o) (B-15)

In Equations (B-14) and (B-15), t is the Fourier transform

of the transition kernal t of the scatterer, and the function

f(_E;o,s) is defined as

A(x;o) A(x;-o)
f(x;o,s) - s-k0  + s +k 0  (B-16)

To eliminate secular terms from the pertubation expansion
of Equation (B-5), the following secular condition is required

•: lira G(• (ý,£;x_-io)
a= 0 (B-17)

x is fixed

This secular condition implies that

f(x,o) = 0 (B-18)

Inserting Equations (B-14), (B-16) and (B-18) into (B-13,)

and defining o-x = , o._xo = Co, the following differential
equation in A(Z;o) for '> '0 is obtained
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!'] ~dA (C-; 0)"" - = T• -C(-(;o))i(koOko0~ go (B-19)
p X. dC ko.. . -- --i!k.

Solving Equation (B-19) with condition (B-12) yields the

following

A(C;o) = 2 e (B-20)
2jk0

where

goC dp_(-';o) i(koo,koO) '2-)

Inserting Equation (B-20) into (B-11i) and by Equation (B-6),

the Radon transform -of the' mean Green's function is found as

:- 12jk exp[jko> + jAO(,T.e;o)] . • > 0

RG zG(o)(.o;Xxo) = (B-22)

:'), • exp jko•C'-jAO(T, Zo;-o- C < <0

1 1

0 'B-4



APPENDIX C

Two-Dimensional Transport Equation

Starting from the, correlation equation, the two-dimensional

transport equation can be derived using the two-variable pertur-

bation method and the Radon transform technique.

An approximate equation of the Bethe-Salpeter type for the

correlation function,,

r(x~tit) = <t(x)p(x)> (C-i)

is given by

it * r -fdstP (St)T(st)T (st)r = 0 (C-2)

. where £ is the mean field operator defined in Equation (6-1-16)

and T(st) is the transition operator defined in Equation (6-1-7).

- Equation (C-2) can be rewritten as

(£- )f-(£ ) -£)fdstP(St)T(st)T (t) = 0 (C-3)
Vf

where
•-1

•> ~~(f-, (xt) dx G_ (x tx')Wx1)_t (C-4)

*0 Here G(xt,xý) is the mean Green's function. It satisfies

£G(x2t,x) = (xt-x) (C-5)

"- Equation (C-3) is now written in a more explicit form as

(V 2 - V)2(x,xr.M(xt,)-M ( ?t,x)-N(xt,x )+N (x2,xt) = 0 .(C6)

where

. M(X t 2Et) f dX t1 dStp (.Et) t (Ht I, S EtXt - It) I (XEtlXEt) (c-7)

and
,.N (?t,xt^ d2Etl idxt d~tdt p (It-) G (xEt, Stl1)

Sf - (C-81

4A

't(tl s-t'--t2- sJt),- (Xtl" St, '2E" St:)r (It2,St)

,• LC,1 ,



For small fractional volume E, the solution of Equation
(C-6) has two scales of variation in both t and •t A problem

of this type can be treated by the two-variable perturbation

technique. The small parameter e is introduced. into Equation

(C-6) by letting

S0(ýt) cp(at) ' gt Ci£t. (C-9)

where it has been assumed that P is a function of the slow vari-

able t only. This assumption implies that r, G, M and N are

functions of not only Et, it and's but also the slow variablesZA
Kt and Rt;'thus

•.•a(?t,^t;c) A(2Et,2it;2t,3Ft;E:) ,(C-10)

A •" r,G,M,N]

The function A is now expnnded in a power series in C:

* - (n) - n!2". ~A(xt'xt -' ;c) =W•An)(tt;,t) , (C-11)
S~n=0

A E {r,G,M,N]

Employing the chain rule the t and Vt operators become

V 2'. 2 +2cV * C 2--V2  (C-12)
t t Vtt t

V 2 V2 + 2c(t • t + 2 V (C-13)

where Vt and Vt are the del operators with 'respect to the slow

variables xt and t respectively.

Proceeding with the perturbation analysis, the expansion.

given in Equatio (C-ll) is used in Equation (C-6). Equating

equal powers of c and using the fact that M(O) = N()= 0 gives

"equations for the r(l). The first two of these are:

oV• - V2)r(°1) (t,xt;xtt) = o (C-14)

C-2
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W, A P) (0) A"

* V t E'E;tE + 2(V t Vt-Vi7t)r (Et it;Etit)

+ ( -M * (_toxt;_t,2t) -N2E) (Et,_x,_

+= j't;E'j) 0 (C-i5).+c*(xt,x~t;x,xt) :oc-s

Equations, (C-14) and (C-15) are solved using the double

Radon transformation defined as

RA-- A(C,C;o,o;x3t,Xt)

(C-16)
A c {r,M,N}

Here o and o are unit vectors. The solution of Equation (C-14)

in terms of the Radon transform is given as

i r(O) R•, ,olo;- x)=[J(-tt;o)e ik( - C)
S-- -- 'ta" Et

(C-17)

+ J (Et,xt;o)e-ik(, 1)] 6 (o-o)

where 'J+' and J- are still to be determined. The Radon Transform

of Equation (C-15) is

/2 a2 \II-A

r = _2ik(o.Vt +o.V)(r

+MO - " (1) N (1) (C -l8()

where M(1), NO() are the Radon transforms of M(M) and NO1 ).

To insure that ^r 0) is a bounded function of C and , the

right hand side of Equation (C-18) must be orthogonal to the

homogeneous solutions of r0 ). Applying this so-called secular%

condition results in the desired transport equation for the two

point specific intensity J(Xt,Xt,o) where

c-3.



SJ(tt ) RE _ , 0< O<r

J(xt ,xt ;o) ^1(C-19)
i J- (txto) , r < 0 <_21T

Here J+ and J- are the unknown slowly varying coefficients

appearing in Equation (C-17). The transport equation for

J CRtOit;o) is:

2iko.(V t+ V )J(iR _;o) + (2n)2I( t)i(ko,ko)J(xt,xt;o) - (27•) 2(t)

A a 27r -A. A-"(ko, ko) J (-x 0~)-, i• 3-(_ Et) d t(ko, ko.) 2 J12-t, 2-t;o.
0

"-A(x, O_)U[o -- t) -4i P (xt)fdO'It(ko,ko')I2

*A -t [oo)Uto _ xt)

"Jlxtixt;~o')A *(xEt; x) )U ]it ?E = 0 (C-20)

Here t(k,k') is the Fourier transform of t(x,x') as defined in

Equation (6-1-12) and

-- + •_iA-+(-t, r_
SA (xt,x;o) = e, (C-21)

with

SA2( 0 d'ý(Y' ;o)t(±ko;±ko) (C-22)

o.x
- at

The unit step function is defined by U(C).

The correlation function r(O)(x,_x;K,x) is' found by taking

- the inverse Radon transform which is given by'

(O) - E f(°1 ;ooxt ) (C-23)

0 0

where

O x , " (C-24)
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and

(KK r o) (i,4;0o,;xE)=
(C-25)

(ip d1

with Pf being the principal value integral. Substituting Equation
(C-17) into Equation (C-25), the correlation function can be
obtained in terms of J(xt,xt;o) as

2 2T ikO- (xEt-xt)
r (e) Et -t -ý 2 doJ , ;o)e -(C-26)

0

In summary, the correlation function is approximated by
the first term' in a two variable expansion

r (xt,xt) = r( (xt, ;Et, 4 )Eo + 0(c) (C-27)

where P(°)(xt,xt;xt,xt) is given in terms of the two-point specific
intensity, J(xt,xt;o), as expressed in Equation (C-26) and the'-0 --- -'. A

two point specific intensity J(xt,it;o) in turn satisfies the
generalized transport Equation (C-20).

C--

-- C-5



lip

[This page intentionally left blank)

C-6



Distribution List

Defense Technical Information Center 12 copies
S Cameron Station

Alexandria, VA 22314

US Dept of Commerce
Institute for Telecommunications Sciences/NTIA
Boulder, CO 80303a

Attn: Dr. G. Hufford 2 copies
Mr. E. Violette 1 copy

SRI International
333 Ravenswood Avenue

* Menlo Park, CA 94025

ATTN: Dr. M. Frankel 1 copy
Dr. R. Nelson 1 copy
Dr. A. Spiridon 1 copy

VProf. T. Tamir 1 copy
Dept of EE/Electrophysics
Polytechnic Institute of New York
333 Jay Street
Brooklyn, NY 11201

W Mr. George Hagn 1 copy
SRI International
1611 N. Kent Street
Arlington, VA 22209

Prof. A. H. LaGrone 1 copy
* Dept of EE

University of Texas
Austin, TX 78712

Dr. K. Chamberlin 1 copy
Dept of EE
Ohio University
Athens, OH 45701

Dr. R. Luebbers 1 copy
Lockheed Palo Alto Research Labs
3251 Hanover Street
Palo Alto, CA 94304

Dr. G. S. Brown 1 copy
Applied Science Assoc., Inc.
105 East Chatham
Apex, NC 27502

Commander 1 copy
USA ERADCOM
EW Laboratory
ATTN., DELEW-V (W. Barr)
Fort Monmcuth, NJ 07763



Distribution List (cont.)

Commander 1 copy
USA CECOM
CENSEI
ATTN: DRSEL-SEI-A (P. Major)

Fort Monmouth, NJ 07703

Commander 2 copies
USA CECOM
CENCOMS
ATTN: DRSEL-COM-RM-4 (F. Schwering)
Fort Monmouth, NJ 07703

Commander 1 copy
USA CECOM

CENCOMS
ATTN: DRSEL-COM-RM-4 (G. Whitman)
Fort Monmouth, NJ 07703

IIT Research Institute 1 copy
ATTN: Mark Weissberger
c/o DOD ECAC
Annapolis, MD 21402

Commander 1copy
USA CECOM
CENCOMS
ATTN: DRSEL-COM-RM-4 (R. Johnson)
Fort Monmouth, NJ 07703

Commander 64 copies
USA CECOM
CENCOMS
ATTN: DRSEL-COM-RF-2 (P. Sass)
Fort Monmouth, NJ 07703

Dr. J. Olsen 1 copy
Hughes Aircraft Company
Ground Systems GroupFullerton, CA 92634

Dr. F. Amoroso 1 copy
Hughes Aircraft Company
Ground Systems Group
Fullerton, CA 92634

Mr. Richard Robertson 1 copy
Atlantic Research Corp.
5390 Cherokee Avenue
Alexandria, VA 22314

i6

I


