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CeAty]

An evaluation of the USNS HAYES as a towing platform REN

for the TTUMS or other towed array was performed as one of ..F;Q

three evaluations to determine HAYES' suitability as a re- :'_\,-.

placement for MONOB. Of primary concern was the possi- e

bility that HAYES' motion might impart unacceptably large .:-i'-:

motions to the TTUMS array. An experiment was performed RS

in which USNS HAYES towed the TARP array, configured to Y

simulate TTUMS. Both TARP and the USNS HAYES were in-
strumented to permit track and motion measurements on the
AUTEC Weapons Range. The array generally towed straight
and horizontally with a maximum deviation of 1.5 degrees
from a straight line. The typical maximum transverse

e
2 ok

o A

24 H"-'

, .
sy

velocity was 0.1 m/sec. Array handling was performed St

without difficulty. It was concluded that, from the as- e

pect of a towing platform, the USNS HAYES would be capable f‘-

of satisfactory performance in replacing MONOB for the b

TTUMS mission. t-‘-.}{‘
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ADMINISTRATIVE INFORMAT1ON [ ]
This work was funded by the Naval Sea Systems Command (NAVSEA 5042) under .Ii \
task area S51803555, David Taylor Naval Ship Research and Development Center Work :s 3
3 _\‘; B

Unit 1-1170-340 and 1-1170-441. Mr. Jesse S. Diggs is an employee of Applied “":’r_._;
Measurement Systems, Inc. 9
S

INTRODUCTION O J{
e AY-
The Ship Acoustics Department (Code 19) at the David Taylor Naval Ship R&D !'2:

Center (DTNSRDC) has the responsibility to measure and document the underwater

‘- 3

acoustical radiated noise of U.S. Navy submarines. The measurements are made by :: '
maneuvering the submarine to be measured near an array of moored or towed hydro- :Ct:-.
A

phones and recording the acoustical noise spectrum levels. This array of moored r~3.:$',

or towed hydrophones is usually deployed from MONOB (Mobile Noise Barge), a con-
verted yard auxiliary vessel (YAG-61) that was modified and adapted for this pur-
pose. Although MONOB has provided this radiated noise measurement service for
well over a decade, the increase in size of the U.S. Navy Fleet has placed a great

demand on MONOB as a vessel.

MONOB's capabilities are limited by its speed (8-knot maximum), deck and lab~ ',j :::;:
oratory space, age, and cost to maintain and operate. Therefore, consideration l-..:
recently has been given to USNS HAYES (T-AGOR 16) as a potential candidate to per- ‘ .'Efﬁ
form some or all of the MONOB functions. USNS HAYES is an oceanographic research :__.1

e
e L PR N W -




‘\ vessel built in 19711. The vessel is a catamaran design as shown in Figure 1 with
characteristics as described in Appendix A, Table A-1.
S’ Even though USNS HAYES is a larger vessel and capable of greater speeds than
;: MONOB, it must first demonstrate the capability to perform the MONOB measurement
- functions before further consideration can be given to it as replacement for
] MONOB. Specifically HAYES must be able to handle and tow the Transportable Towed
% Underwater Measurement System (TTUMS) in a stable manner.
b: The TTUMS is a towed hydrophone line array designed to measure radiated noise
‘3 from submarines. In practice, TTUMS is towed from MONOB at low speeds as the sub-
ject submarine maneuvers nearby to maintain constant relative position as depicted
_2 in Figure 2. TTUMS then measures and records the submarine's radiated noise, and
3 post-trial processing resolves the noise source.2 The accuracy of this measure-
- ment process requires that the TTUMS array remain straight and at a near constant
( depth over its acoustic aperture.
E TRIAL OBJECTIVE AND APPROACH
‘é The main concern motivating this experiment was that the unusual motion as-
‘ sociated with large catamaran vessels (i.e., snap roll, corkscrew motion, etc.)
2 would be transmitted to the TTUMS array and result in large radiated noise locali-
; zation errors. The objectives were as follows:
L 1. Assess USNS HAYES for speed and course maintainability and control.
2. Determine array motion (i.e., heading, depth and transverse velocity) as

a function of ship's speed and course and sea state.

3. Assess HAYES in terms of array launch, retrieval and shipboard handling
capabilities.

To determine the effect of HAYES motions on a towed array, full-scale in-situ
trials were conducted to measure the shape and motion of the array. The basic
approach was for HAYES to tow an instrumented array in a TTUMS-like configuration
through the Atlantic Undersea Test and Evaluation Center (AUTEC) Weapons Tracking
Range and to measure array motion as a function of ship motion. (The AUTEC Weap-

ons Tracking Range test area is shown in Appendix B.)

References are listed on page 46.
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Figure 1 - USNS HAYES (T-AGOR 16)
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: The Naval Underwater Systems Center in New London (NUSC/NLL) provided the ﬂtﬁ
nI

TARP array and associated shipboard instrumentation for these experiments. The *-;—‘

TARP array was developed specifically for a towed array n clon R&D program and i?x

thus was instrumented with very accurate depth and heading sensors. The array was ::f}

outfitted also with four acoustic pingers. A fifth pinger was installed aboard
HAYES to facilitate acoustical tracking of its position on the AUTEC range. In
addition, the array towcable forces were measured, as were the ship's motions
(i.e. roll, pitch, yaw and accelerations). A compilation of such data would pro-
vide sufficiént information to completely characterize the array motion and iden-
tify any coupling that may exist with HAYES motion.

The USNS HAYES Towed Array Performance Trial was one of three segments of the
USNS HAYES Ship Trials which were aimed at establishing the suitability of the

ship as a replacement for MONOB-1 (YAG-61), Mobile Noise Barge. The other two }gii
segments of the USNS HAYES Ship Trials were the Seakeeping and Maneuvering Ship L
TrialsB’a and the Acoustic Measurement Ship Trials. Sections of the Seakeeping e
and Maneuvering Ship Trials were conducted simultaneously with the Towed Array

Performance Trials. However, this report is concerred only with the results ob- ji:#

tained during the Towed Array Performance Trials.

EXPERIMENTAL EQUIPMENT AND PROCEDURES
This section describes equipment and procedures used in the USNS HAYES towing
evaluation. Details are presented of the towed array configuration, array and
shipboard instrumentation and the arrangement of the handling system. Data ac-

quisition and array launch and retrieval procedures also are presented.

ARRAY CONFIGURATION

F{ The TTUMS towed array system for which the TARP array was selected as & model
F. is shown in Figure 3. The TARP towed array system, illustrated in Figure 4, con-
fi sisted of the towcable, neutrally buoyant array spacer sections and four
!‘ environmental modules (EM). The towcable was a 1220-m (4000-ft) double-armored
- polyethelene-jacketed coax cable having the following physical characteristics:

g Diameter 1.42 cm (0.560 irnch)

%? Weight per unit length in air 0.417 kg/m (0.281 1b/ft)

;Q Weight per unit length in water 0.245 kg/m (0.105 1b/ft)

6
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Attached to the end of the towcable was 1000m (3280 ft) of neutrally buoyant
array made up of twenty 50-m (164-ft) lengths of 2.79-cm (l.l-ipnch) diameter
spacer modules. The function of these modules was to model the length of the
TTUMS array and to provide a drogue at the end of the array. Four EMs having
lengths of 3.35m (11.0 ft) each and a diameter of 8.26 cm (3.25 inch) were located
along the array as shown in Figure 4. Each EM contained depth and heading sensors
and an acoustic pinger. The forward EM, placed between the towcable and the first
neutrally buoyant spacer module, also monitored array tension. A fifth pinger was
installed on the starboard hull of HAYES, 5.8m (19 ft) off the ship's centerline.
The types, ranges and accuracies of the transducers used for measuring system

parameters are given in Table C-1 of Appendix C.

ARRAY INSTRUMENTATION

All in-water instrumentation was incorporated into the four environmental
modules. Each EM consisted of a sensor module containing a magnetic heading sen-
sor and a quartz oscillator depth gage, a hollow coupling section containing sen-
sor and pinger electronics, and a pinger module housing an acoustic transponder as
shown in Figure 5. The foremost EM included a tension module containing a tensi~
ometer. Each EM was filled with DB oil which provided both neutral buoyancy for
the module and acoustic impedance matching with seawater.

The environmental modules, spacer modules, coax cable and shipboard array
electronics used a time-division multiplexed telemetry system. This system pro-

vided two-way communication between the shipboard and array electronics. The
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telemetry system's purpose was to produce acoustic pulses at the four pingers in ,:ua
% the array and to receive and decode heading and depth data from the environmental %;;
p_° S
b modules once every two seconds (0.5 Hz sample rate). The timing pulses that kept iy
é! the system synchronous with the AUTEC shore-~based tracking equipment were supplied SR
% by an AUTEC Portable Timing Unit (PTU). e
v .-':-_‘
& LU
[ TOWPOINT GIMBAL S
;’ A gimbal towpoint mounted at the stern of the ship on centerline and imstru- Rourn
o mented to measure tcwcable tension, cable angle and skew angle was provided by ;qu
e [y
tf NUSC/NLL. Towcable tension was measured with a strain gage load-cell, Cable ¢Q;;
[~; angle was measured with a pendulum potentiometer and was a measure of the argle ?i;ﬁ

- {

;’ between the towcable and the horizontal 1in a vertical plane. Skew angle was A
4
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measured with a potentiometer and is a measure of the angle between the centerline
of the ship and a projection of the towcable onto a horizontal plane. The types,

ranges and accuracies of these transducers are included in Table C-1 of Appendix C.

SHIPBOARD MOTION AND SHIP-OPERATING-CONDITIONS SENSORS

The shipboard motions measured were the angles and linear accelerations rela-
tive to the three major ship axes (i.e., roll, pitch, yaw, longitudinal accelera-
tion, transverse acceleration and vertical acceleration). A stable table located
near the towpoint provided ship angle information. A triaxial accelerometer box,
also located near the towpoint, provided the three accelerations. These data were
acquired in the event a more detailed analysis would be necessary to interpret the
array EM data or AUTEC measurements. It was determined later that the array and
AUTEC data acquired were sufficient to evaluate array motion aboard HAYES. These
additional data will be retained, however, for future reference.

The ship speed and heading also were measured and recrrded. The speed sensor
used was the ship's electromagnetic log. The ship heading was acquired from the

ship's gyro.

DATA COLLECTION SYSTEMS
Data were collected for this evaluation through two main systems, the ship-
board data collection system and the AUTEC data collection system. Shipboard data
were obtained and stored from sensors on board the ship and in the EMs in the
towed array. AUTEC data were the position data obtained via ocean floormounted
hydrophone arrays in the AUTEC Weapons Tracking Range using acoustic tracking

techniques.

SHIPBOARD DATA COLLECTION SYSTEM

The signals from the array, the towpoint gimbal and the ship motion measure-
ment system were collected and stored using a HP2240A Measurement and Control
Processor controlled by a HP9835A Desktop Computer and an HPIB interface. The
data acquisition system is shown in Figure 6. The shipboard motion and operating
condition data were in the form of analog signals. The array data and towpoint
gimbal data were in the form of a digital BCD ASCII string containing five data
samples. Appendix C presents a block diagram of the NUSC/NLL data acquisition
system, For more detailed information of the NUSC/NLIL data scquisition system
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DISC DRIVE
| MASS
STORAGE
HP 9835A WINCHESTER
D NUTER H HARD DISC DRIVE
———-{ PRINTER
HPIB f BCD
(SYSTEM HPIB ASCI]
CONTROLLER) (NON-SYSTEM DATA STRING
CONTROLLER) NUSC/NLL
208 DIGITAL
MEASUREMENT AND MULTIPLEXER/ TAPE
| CONTROLLER PROCESSOR DEMULTIPLIER DRIVE

FILTER BOX

8 ANALOG SIGNALS
FROM DTNSRDC/CODE 1561

VERTICAL ACCELERATION
LONGITUDINAL

ACCELERATION AT
TRANSVERSE TOWPOINT
ACCELERATION

SHIP ROLL ANGLE
SHIP PITCH ANGLE

SHIP YAW ANGLE

SHIP SPEED
SHIP HEADING

ARRAY ELECTRONICS
NUSC/NLL CODE 3232

Figure 6 - Shipboard Data Acquisition and Storage System
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see References 5 and 6. The sample rate for the array data was 0.5 Hz. A BCD
ASCII string was sent to the HPIB interface/HP9835A every 10 seconds. During this
10-second waiting period the HP9835A/HP2240A was sampling ship motion data at a
sample rate of 0.91 Hz. The difference between the ship and array sampling rate
was due to the internal processing and the time required to display the data on
the cathod ray tube (CRT).

The HP9835A software had a two-fold purpose. Its primary purpose was that of
merging two sources of information on a single data record for post-trial analy-
sis. 1Its secondary purpose was to provide a means of monitoring all ship/array
parameters simultaneously. The Winchester hard disc was used as the mass storage
device., At the completion of a run the run file on the Winchester was transferred
to a floppy disc for post-trial analysis. The data acquisition set-up in the main
deck laboratory of the USNS HAYES is shown in Figure 7,

AUTEC DATA ACQUISITION

The AUTEC Weapons Tracking Range tracked the array and towship pinger posi-
tions as functions of time. From these data, the location of each pinger could be
defined in space and 1its rate of change calculated. AUTEC provided digital tapes
of the acquired data, which were then transferred to floppy discs for additional
post-trial processing and display on a HP9836/26 desktop computer. The vector
formed by the COMEX and FINEX position of the HAYES in the x-y plane was chosen as
the x axis in all AUTEC data as shown on Figure 8. The origin is ship position at
COMEX. Therefore, all displacements to starboard are in the -y direction.

DATA ACQUISITION PROCEDURES

The data acquisition runs were of two types: straight line and sinusoidal
runs. Straight line runs were performed at nominally steady speed and course for
a one hour duration. The speeds were 3, 5 and 10 knots on reciprocal headings
[i.e., 162°T (true magnetic north) and 342°T] with auto-pilot on and off. These
runs were similar to a typical TTUMS source localization measurement. The sinus-
oildal runs consisted of purposely deviating from a straight line course by de-
flecting the rudder by plus and minus 10, 15 or 20 degrees at regular intervgls.
thus simulating rough seas and poor helmsmanship conditions. Table 1 shows a list

of the runs completed.
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Figure 7 - Data Acquisition Set Up on USNS HAYES
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The data acquisition procedures were as follows for a typical run. The trial
director, located on the HAYES bridge, monitored ship activities and ship location
via audio communications with the AUTEC shore site. When AUTEC had tracking of

all five pingers (meaning the entire system was within the Weapons Range), the

trial director would inquire of personnel monitoring array data whether the array
appeared to be in a steady-state condition. Steady-state condition meant that the
array had apparently recovered from the effects of a change in ship heading or
speed at the end of a previous run. When the above conditions were met, the trial
director would declare COMEX to begin a data run. Both the shipboard and AUTEC
data acquisition systems then would commence acquiring data. The run time was
limited to one hour because of the length of the AUTEC Weapons Range and the mass
storage capability of the HP9835A,

TABLE 1 - COMPLETED DATA RUNS

Wind Speed Auto
(kt)/Direction Pilot
(deg) T Status

Heading Date,
degrees Local

162 °[10/28/83 17/175 off
342 10/28/83 17/178 off
162 10/28/83 19/55 On
342 10/28/83 13/55 On
162 10/28/83 20/72 of f
342 10/28/83 18/65 off
162 10/28/83 20/57-92 of f
162 10/28/83 21/82-92 On
342 10/28/83 20/60 On
342 10/28/83 20-25/32 Off
162 10/29/83 16-22/57-82 of f

[

—

—
VOoOOWMWMWOoOWVWwWw

—
w o

10° Rudder Variations
10°

20°

29

2° Long Period Varia-
tions; 10 min each
change

162 10/29/83 18-20/77 NA
342 10/29/83 21-27/22 NA
162 10/29/83 21/87 NA
342 10/29/83 26/10 NA
162 10/29/83 19/62 NA

I 2L N2 N 3

"

LAUNCH AND RETRIEVAL
The towed array was stored in a fiberglass tub on the deck as seen in Fig-
ure 9. The handling system for the towed array was comprised of a towcable winch

and a power sheave, The winch had a split drum to allow for the installation of a
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primary and backup cable. The winch and power sheave were installed on the star-

board side of the fantail as shown in Figure 10.

Figure 9 - Towed Array Retrieval and Storage

The array was launched with the ship on a steady course and at a speed of
approximately 3 knots. After the spacer modules and environmental modules were
deployed over the free-wheeling power sheave from their storage tub, the towcable
was deployed to the desired length of 1220m (4000 ft). At that point, the tow-
cable load was transferred from the winch to the gimbal towpoint located at the
centerline of the stern. To retrieve the system the reverse of this procedure was
performed with the exception that the power sheave pulled the array in after the
cable had been fully retreived as shown in Figure 1l1. Figure 12 shows the array

being towed from the gimbal towpoint at the stern of the ship.

RESULTS AND DISCUSSION

) It was assumed that the TTUMS mission would normally not be attempted in con-
: ditions of sea state greater than 3, which thus would represent the worst case.
; Fortunately, these conditions existed throughout most of the test period and all

of the data presented herein should represent the worst motion experienced by any

GJ 19
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Figure 12 - Array Towed from a Gimbal Towpoint
from the Stern of USNS HAYES
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array towed from USNS HAYES. It is worthwhile to note that the motions (i.e.,

XA
’¢
N

roll, pitch, etc.) of HAYES were quite tolerable to the trial personnel for the

sea state conditions encountered and did not interfere with the trial in any way.

.

AL

Due to time and cost constraints the TARP array was substituted and recon- e

‘s

figured to yield results approximating the TTUMS array. The center of the TTUMS
aperture normally tows about 122m (400 ft) deep and 2400m (7874 ft) aft of MONOB
for operational speeds of 3 to 6 knots. The TARP cable/array system was con-
figured such that the center of the aperture towed approximately 203m (672 ft)
deep at 3 knots and 87m (285 ft) deep at 10 knots and maintained a trail distance
aft of about 1900m (6234 ft) for both speeds. This required deploying 1220m
(4000 ft) of TARP towcable. The array motions induced by the ship were assumed

A .‘-.."’l‘
.','.. sl el

el

to be more dependent on trail distance aft rather than array depth. Therefore,

i ." ... l"':" l'
D)

oy

the TARP cable/array system length was modelled to approximate the TTUMS length as

T v ey
AT
.

close as possible.

The data presented herein are confined to those of the sensor outputs from
the ship (i.e., speed, heading and pitch), the TARP array (i.e., heading and depth
sensors) and AUTEC (i.e., transverse displacement and velocity of each EM). Al-
though considerably more data exist (i.e., shipboard acceleration levels, etc.),
the data described above were sufficient to describe the array motion. Further-
more, of the 16 data runs completed as presented previously in Table 1, specific
runs were selected as representative of the results and are presented in Appen-

dix D. The data runs are discussed in detail below.

ARRAY CURVATURE AS A FUNCTION OF SHIP'S HEADING

The array motion trials were constrained by range geometry. Runs were made
on reciprocal headings of 162°T and 342°T. The seas were driven by northeast
winds at 15 to 25 knots, thus acting on the bow or stern quarter of HAYES, depend-
ing on nominal heading. During the planning of the array motion tests it was as-
sumed that the array motion would be independent of ship heading. This assumption
was based on findings from previous array motion experiments which showed that
high frequency excitations at the towpoint are damped out in long towcables.7 1t
can be seen from Run S1060 and S1070 in Figure 13 with autopilot off that the ship
heading stability was less at a heading of 342°T than at 162°T at 5 knots. This
was due to the winds and seas acting on the starboard bow causing difficulty in

course maintenance, thus greater ship heading deviations.
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A definition of delta heading (H1-H3) as used in this report is shown in Fig-
ure 14, Delta heading represents the maximum heading deviation or curvature for

the array aperture. This is based on the assumption that the array aperture shape

- - -
LA ELL
A 4 SWLZLTN

will never have an inflection.

It is assumed that at lower speeds the ship motion would be most affected by
sea conditions. Therefore, two 5-knot data runs at reciprocal headings are com-
pared. Figure 15 presents delta heading (H1-H3) as a function of time during the
aforementioned 5-knot runms,

It can be seen in Figure 15 that the maximum curvature of the array for both
ship headings was usually between 3/4 and 1 degree. From these results, which
are typical of all data runs, the effects of the ship's heading on array curvature

are considered negligible.

ARRAY AND SHIP HEADING STABILITY

HAYES was equipped with a conventional autopilot for maintaining ship's head-
ing using a standard feedback loop between the ship's gyro and the rudder. 1t was
found that the autopilot could not be used effectively at 3 knots because of
steerage and control problems associated with operating the vessel at low speed in
heavy weather. However, the autopilot could be used at 5 and 10 knots. The ob-
jectives of these trials were to evaluate HAYES stability as a function of auto~
pilot usage and to establish whether such usage affected the array stability. The
5-knot trials represented a worst case and are detalled herein.

The ship's heading variation as a function of time during the autopilot eval-~
uations at 5 knots is presented in Figure 16. Heading variations of up to *5 de~
grees about the requested course were common for the manually maintained helm. It
also was observed that minimizing these heading variations required significant
helmsman concentration, and thus varied with each helmsman. However, the results
presented in Figure 16a were typical of a good helmsman. Figure 16b illustrates
the improvement in ship's heading stability when the ship was steered with the
autopilot. The heading variations were reduced to *2 degrees although it appeared
that the average measured heading was slightly offset from the requested heading.
The difference between the requested course and the average course steered with
the autopilot was about 1.5 degrees, and probably due to the helmsman not acti-

vating the autopilot when the ship heading was precisely on the requested heading.
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The resulting array heading variations as a function of time during the

aforementioned autopilot evaluations are presented in Figure 17. Note the dif-
ference in the data traces in the two figures. Most shipboard data presented in
this report are filtered using a six-pole Butterworth low-pass digital filter to
improve readability. 1In addition, both AUTEC and shipboard data are processed
with a data dropout removal routine which removes any data that exceed prescribed
bounds. The output shown in Figure 17a results from deleting dropouts and not
filtering the data. The data trace for each module has a width of about 0.3 de-
gree, which is the resolution of the module heading sensors. Figure 17b 1llus-
trates filtered data for a run with data dropout. For this run each data trace
has been filtered with a cutoff frequency of 0.05 Hz to reduce noise resulting
from the heading resolution. However, as seen in Figure 17b, whenever data with
dropouts were filtered, decaying noise spikes were added to the data traces at the
data dropout. Thus, only shipboard data with few data dropouts were filtered.

As shown by Figure 17a, for tests without the autopilot, the array heading
tended to meander about the average requested heading, with a maximum variation of
about 3.5 degrees. For the trial using the autopilot, Figure 17b, the array head-
ing also meandered about the average heading with a variation of 3 degrees. The
difference between the array headings that occurred during these test was insig-
nificant and the autopilot had no measureable effect on array stability. Further-
more, examination of the headings measured within the aperture section reveals the
aperture section was straight to within approximately 1.5 degrees regardless of
autopilot usage. The autopilot did decrease the ship's heading variation, but it

had no measureable effect on array stability.

ARRAY MOTION AS A FUNCTION OF TOWSPEED

After it was determined that neither ship's heading nor autopilot usape af-
fected array stability for these tests, the motion of the array itself could be
characterized as a function of speed. The delta heading as a function of time for
speeds of 3, 5 and 10 knots is shown in Figure 18, Figure 18c shows a mean offset
of about 0.5 degree. The reason for this offset is not known at this time. Tak-
ing this offset into account, the maximum delta heading was slightly dependent on
speed; however, it never exceeded approximately 1.5 degrees. In fact, if a smooth

line is drawn through the data, neglecting the spikes, a maximum delta heading of

less than 1 degree is seen.
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Generally, as speed increases, the 1lift on the towcable 1increases. This

increase of lift decreases the depth at which the array section tows as can be
seen in Figure 19. Each time series graph shows the depth of all array modules.
The three data lines shown grouped at the same depth are the data from the array
aperture modules. The data line shown well below these on each graph is the time
series for the nosecone module. These data show the effects of a slight neutral
buoyancy imbalance in the array. The separation between the nosecone module and
the array aperture modules decreases as speed increases and the array becomes more
horizontal. The spikes in Figure 19b are due to data transmission failures in the
array.

The rate of array depth excursion with time for the three trial speeds is
shown in Figure 20. The spikes, particularly in Figure 20a (Run S1030), should be
ignored for they represent AUTEC tracking losses. The trend in this data is that
the depth excursion rate increases as speed increases. However, the approximate

maximum rate is only 0.05 m/sec.

.
A trend similar to the depth rate data occurs in the transverse displacement ;at_
rate data. As speed increases, transverse displacement rates show a slight ;i:‘
increase as shown in Figure 21. The first half hour of the data in Figure 21b i'Q
(Run S1070) shows au aberration from this trend. This aberration can be at- ‘E;'
tributed to the transient response o©f the array after the towship performed a ;gl
{

Williamson turn. For most runs, etough time was allowed aiter the towship turn
for the array to reach a pseudo steaady-state condition. For Run SlllU, as shown
in Figure 2lc¢, at 10 knots the maximum transverse displacement rate was 0.l n/sec.
It appears that, in general, the transverse displacement rate is twice the depth
excursion rate. These results (i.e., array becomes more straight anc horizontal
as speed increases and transverse displacement rate increases as speed increases)
are completely consistent with the results of other towed arrvay hydromechanicai
studies.7 The local motion of a towed array generally is driven by the turbulent
boundary layer wall pressure spectra, which are functions of towspeed. It has
been cbserved that array transverse acceleration levels are significantly greater
than longitudinal acceleration levels and tend to increase with increasing tow-
speed, with an attendant decrease in amplitude. This would result in an increase

in transverse velocity, as measured and reported herein.
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. ARRAY RESPONSE TO SINUSOIDAL STEERING B
For straight line runs tﬁe array motion is primarily dependent on towspeed. -.1
. In order to investigate the transmission of ship motion to array motion more '
thoroughly, the HAYES' motion was purposely increased in an attempt to force the jfﬁ;A
R array to respond. This was done by performing a series of runs in which the helm

was purposely varied about a base course with a regular period. This approximated

2\ a sinusoidal ship's course, the amplitude and period of which became the inde-
ﬁ pendent variables. As shown previously in Table 1, the sinusoidal runs occurred
:: at 8 and 10 knots using rudder angles of *2, *10, and *+20 degrees. Examination of

results revealed that the high-frequency, short period sinusoidal rums using *10
and *20-degree rudder had no measurable effect on array motion or configuration.
However, the low frequency, longer period sinusoidal run using *2 degrees rudder
did result in some array motion.

The ship and array transverse displacements as a function of time for the
short period and long period runs are presented in Figure 22 and are compared with
a baseline straight line run. As indicated for the straight line run, the array
followed nearly directly in the ship's path with a minimal displacement to port of
only about 10m. The ship's transverse displacement during the *10 degree rudder
sinusoidal trials (Figure 22b) had a period of 96 seconds, yet the array track
indicated virtually no response to the ship motion. (Note that the array dis-
placement at the beginning of this run indicates that the array was still recover-
ing from the Williamson turn after the previous run.) However, the array did
X respond to the low frequency *2 degrees sinusoidal tests having a 1200-second
period (Figure 22c). In general, the ship's sinusoidal amplitude was greater than

the array's response amplitude, had the same period, and had a time lag approxi-

mately equal to the spatial separation between pingers divided by the towing speed

Lo el

(i.e., time required for each pinger to advance to the ship's location). Clearly,

the array motion was effectively isolated from the ship motion except at the low-

A ol il

RS vy

est frequency. These results were consistent with conventional "water pulley"

effects that describe array motion relative to the towship.8

Ha

The array heading measurements for these same straight line and sinusoidal

E runs are presented in Figure 23. As shown, the array was only responsive to ship
a motions for the low frequency sinusoidal run (Figure 23c). The response amplitude
L was about *3 degrees, and the period was about the same as the ship excitation
- .
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S period. Note that the array operative heading measurements (i.e., Hl, H2, and H3)
vere still within 1.5 degrees of each other, indicating that the array was still
very straight, even though it followed the ship's sinusoidal displacement.

The array depth measurements as a function of time for these straight line
and sinusoidal runs are presented in Figure 24, As shown, array depth across the
200-m (656-ft) aperture was essentially constant to within 0.5m, (1.64 ft) and
independent of the ship's sinusoidal displacement. These results were consistent
with cable/array hydromechanics wherein depth is primarily a function of towspeed,
which remained constant during these sinusoidal tests. The array motion was
nearly independent of HAYES motion for all but the lowest frequency sinusoidal
runs. The array 200-m (656-ft) aperture still remained straight to within

1.5 degrees.
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The array was retrieved twice during the sea trial, the first event occurred
after the transit to the AUTEC range and the second occurred at the completion of

the trials. Two spacer modules were damaged during each of these retrieval se-

PN

= DISCUSSION OF LAUNCH AND RETRIEVAL
g

¢

!

-

quences. The damage to the array consisted of the hosewall separating from the
1 coupling and was a result of the high freeboard putting excessive weight and drag
_} on the section of the array between the power sheave and the water. This problem
- is unique to arrays using the internal strength members where the hosewall lacks
sufficient strength for supporting the entire towing load. The problem also may
be unique to this particular array. The attachment of the hosewall to the cou-
pling is still undergoing design work.
oy Besides the aforementioned problem, the launch and retrieval of the towed
array system from the stern of HAYES was accomplished with little difficulty. The
deck space for the winch, winch power supply, power sheave, power sheave power

supply, the array, its tub and personnel was more than adequate.

<.

- TOWING LOAD AS A FUNCTION OF TOWSPEED

' Towcable tension at the ship and nosecone tension as functions of ship speed
j over the ground are shown in Figure 25. The curves drawn through the data points
: are an empirical least squares power fit. It should be noted that these tensions

may not be indicative of tensions for the TTUMS array.
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CONCLUSIONS

The purpose of these experiments was to obtain sufficient data to determine
if the USNS HAYES' motion introduced unacceptably large motions into a TTUMS-like
towed array. Because HAYES had a reputation as a rough riding ship with a unique
corkscrew motion, there was concern for its usefulness as a TTUMS towing platform.
For serious consideration, the ship needed sufficient stability with minimal mo-
tion to facilitate array stability, on-deck handling operations, and crew comfort.
The results of these tests indicate that the HAYES' motion was not adverse but

completely tolerable. The experiments were very successful and resulted in the

acquisition of a significant bank of towed array motion data. The towcable acted
as a low-pass mechanical filter and effectively isolated the array from high-
frequency motion transmitted by HAYES.

Sea Conditions were:

1. Sea states from 2.5 to 4;

2. Wind speeds from 13 to 27 knots;

3. Wind directions from 10 to 87 degrees T.

The following is a summary of key observations drawn from the experimental
results:

a. For nominally straight-ahead ship trajectories the array remained
straight to within about 1.5 degrees over the entire 200-m (656 ft) aperture at
all times and to within approximately 1.0 degree on average.

b. The array aperture towed nearly horizontal with maximum depth varia-
tions of less than lm (3.3 ft).

c. The array motion was primarily speed dependent, but independent of
high-frequency ship motion.

d. Array curvature was independent of ship's heading.

e. The array motion was generally independent of most helmsman errors or
course meandering that would normally occur during straight-line TTUMS-like towing
tests. In addition, array motion was independent of autopilot usage.

f. The long period sinusoidal runs had a noticeable effect on the array
configuration. The towcable acted as a low-pass mechanical filter and isolated
the array from all but the lowest frequency ship motions.

The TTUMS classified requirements dictate a maximum allowable deviation for

depth and heading over the aperture length and a maximum transverse velocity.
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Based on the data presented here, the resulting motion of the TARP array
TTUMS like towing configuration over the towspeed range of 3 to 10 knots was:
Maximum Heading Deviation = 1.5 degrees

Typical Maximum Heading Deviation = 1.0 degree

Average Depth Deviation = 0.5m (l.64 ft)

Average Transverse Velocity = 0.1 m/sec (0.33 ft/sec)

The exact TTUMS requirements have not been totally defined. However, these
motions should be adequate for the TTUMS mission. The ship is stable in the sea
conditions of the experiment and does not adversely affect array motion or sta-
bility. It has ample space for electronic laboratories, technical conference
rooms, and data analysts' offices. Furthermore, there was sufficient room for all

aft gear installations. And lastly, the personnel accomodations are extremely

spacious and comfortable for both on and off watch activities. Based on these
results HAYES should be a suitable TTUMS towing platform.
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APPENDIX A
USNS HAYES CHARACTERISTICS
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TABLE A-1 - USNS HAYES DESIGN CHARACTERISTICS

Hull v,
Length (LOA) 246 ft \

Beam (Max) 75 ft .:_i

Freeboard (Amidships) 34 ft :.'.-’_z;

Draft (Max) 19 £t o
Displacement (Full load) 3,180 tons "

Potable Water (Full load) 31 tons (7,451 gal) ':i

Diesel Fuel (Full load) 368 tons (100,753 gal) ‘{-:'-:.'-

w "

Machinery o

Main Propulsion

Propulsion shafts 2 (i.e., one per hull) j:".‘.‘
Design full power 5,400 BHP T
Endurance @ 13.5 knots 600 nm :“.
Maximum sustained speed 15 knots ":j:‘-
e
N
Personnel Requirements i
-
q
Officers and Crew (req'd) 45 j:f:‘*
Scientists (available) 25 :
- Deck Gea: 1-4
‘ - -
3 R
- N
I: Significant complement of deep sea winches, A-Frames, overhead cranes, :::-f-j
. etc. :::.:::
| "
:. Laboratory Space o
) Over 3000 square feet of electronics laboratory plus mechanical and :f o
b, .
3 electrical shops, wet laboratories, data analysis and conference rooms, 4
p
b etc, ‘3.‘
E o
N
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APPENDIX B

AUTEC WEAPONS RANGE TEST AREA
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SELECTED MEASURED DATA
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Figure D-1 - Run S1030 with Autopilot Off, at a Speed of 3 Knots
and a Ship Heading of 342 Degrees
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Figure D-1 (Continued)
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and a Ship Heading of 342 Degrees

Figure D-2 - Run S1050 with Autopilot On, at a Speed of 5 Knots
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Figure D-3 - Run S1060 with Autopilot Off, at a Speed of 5 Knots
and a Ship Heading of 162 Degrees
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Figure D-3 (Continued)
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and a Ship Heading of 342 Degrees
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Figure D-4 (Continued)
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Figure D-4 (Continued)
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"y FPigure D-5 - Run S1110 with Autopilot Off, at a Speed of 10 Knots
and a Ship Heading of 342 Degrees
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Figure D-5 (Continued)
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Figure D-5 (Continued)
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Figure D-6 - Run Z1230 with Speed of 10 Knots and 90 Second .—:.:::
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Figure D-6 (Continued)
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Figure D-7 - Run 21290 with Speed of 8 Knots and 1200 Second
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Figure D-7 (Continued)
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— DTNSRDC ISSUES THREE TYPES OF REPORTS

1. DTNSRDC REPORTS, A FORMAL SERIES, CONTAIN INFORMATION OF PERMANENT TECH
- sy NICAL VALUE. THEY CARRY A CONSECUTIVE NUMERICAL IDENTIFICATION REGARDLESS OF
. THEIR CLASSIFICATION OR THE ORIGINATING DEPARTMENT.

2. DEPARTMENTAL REPORTS, A SEMIFORMAL SERIES, CONTAIN INFORMATION OF A PRELIM
INARY, TEMPORARY, OR PROPRIETARY NATURE OR OF LIMITED INTEREST OR SIGNIFICANCE
THEY CARRY A DEPARTMENTAL ALPHANUMERICAL IDENTIFICATION.

3. TECHNICAL MEMORANDA, AN INFORMAL SERIES, CONTAIN TECHNICAL DOCUMENTATION
- OF LIMITED USE AND INIEREST. THEY ARE PRIMARILY WORKING PAPERS INTENDED FOR IN
TERNAL USE. THEY CARRY AN IDENTIFYING NUMBER WHICH INDICATES THEIR TYPE AND THE
NUMERICAL CODE OF THF ORIGINATING DEPARTMENT. ANY DISTRIBUTION OUTSIDE DTNSRDC
MUST BE APPROVED BY THE HEAD OF THE ORIGINATING DEPARTMENT ON A CASE BY CASE
BASIS.
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