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FOREWORD

On October 3-4, 1984, the Defense Advanced Research Projects Agency,
Information Processing Techniques Office held a workshop on Image Understanding. %
This workshop was the fifteenth in the series which have been conducted by DARPA
since 1975. The purpose of the workshop was to bring together the research
community and the user community so that each could benefit from the interaction
and, at the same time, promote a synergism which would improve the efforts of the
individual participants as well as the communities as a whole. Toward this end,
each Principal Investigator under the DARPA program reviewed progress during the
past year and research personnel presented specific technical details of selected
facets of their research work. This Proceedings incorporates the P.I. reports and
the technical reports presented at the workshop and, in the interests of providing a
total record of the research program, includes copies of those technical papers p
which were not presented due to the press of time.

Commander Ronald B. Ohlander, Assistant Director for Computer Science for
the DARPA/IPTO, and the program manager for the Image Understanding research
program chose as a theme for this year's workshop "Future Directions for I.U." The
community should, he observed, reassess itself and take a close look at where it is
headed in the next five years. Commander Ohlander believes that we should be
concerned with new architectures for high-level vision processing, the use of
techniques from other areas of Al, such as expert systems technology, and major
thrusts in modeling and representation systems. With this in mind, a feature of this
years workshop was the inclusion of a special panel discussion session to air various
views on the future directions for Image Understanding, and an overview by
Commander Ohlander of the l.U. portions of the Strategic Computing Program, one
of the major technology thrusts being undertaken by the Defense Advanced
Research Projects Agency.

This proceedings has been supplied to the Defense Technical Information
Center (DTIC) and copies may be secured from that Agency by writing to the
following address:

Defense Technical Information Center
Cameron Station, Bldg. #5

Alexandria, VA 22314

A small charge is assessed by the DTIC for reproduction expenses. Accession
number for this proceedings is not yet available but will be assigned by the DTIC
within the next thirty days. Accession numbers for previous issues are listed on the
following page.
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The images chosen for the cover design of this proceedings were provided by
the Computer and Information Science Department, Lederle Graduate Research
Center, University of Massachusetts at Amherst. The images were essentially
taken from Daryl Lawton's thesis* and are meant to illustrate the type of work that .
can be obtained from mjiotion processing. The notes accompanying the images
describes the process as follows:

The three photos shown on the left side represent successive frames of an
image sequence taken from a vehicle moving along a road. The images show a
road sign in the foreground, a telephone pole in the mid-ground, and a
background of tree foliage. .
In the center, the displacement vectors show the zero-crossing contours of the
Laplacian of the images in gray. Superimposed on these, in white, are the
locations of interest points along these contours. The lines extending from
these points show the displacement of these interest points through subsequent
frames along radial flow lines emanating from the focus of expansion of the
optic flow, which is found by an optimizing search procedure.
Once the focus of expansion has been determined, displacement vectors can be
computed along almost all contours, even those on which there are no interest .
points. From these displacements, the environmental depth of the contours
can be calculated. For the depth segmentation, as shown in the three right
hand photos, the contours are separated into intervals of environmental
depth. This fairly well extracts the road sign, the telephone pole, and the
background foliage, which lie at distinct ranges of increasing depth from the
observer.

As usual, the artwork and lay out for the Proceedings cover is the work of Mr.
Tom Dickerson of Science Applications International Corporation. Apppeciation is - . -

also due to Ms. Lori Beth DeFuria who handeled all the mailings and Ms. Barbara ...
Burkett and Ms. Barbara Ashooh who contributed typing support in putting together .- ..-
the proceedings.

Lee S. Baumann P-
Science Applications
International Corporation
Workshop Organizer

* 6

* Daryl T. Lawton, "Processing Dynamic Image Sequences from a Moving Sensor,"
Phd. Dissertation and Coins Technical Report 84-05, University of Massachussetts
at Amherst, February 1984.

* Daryl T. Lawton, "Processing Restricted Sensor Motion", Proceedings: Image "

Understanding Workshop, 3une 1983, Pps 266-281.
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IMAGE UNDERSTANDING RESEARCH

AT THE UNIVERSITY OF MASSACHUSETTS

Edward M. Riseman and Allen R. Hanson

Computer and Information Science Department
University of Massachusetts

Amherst, MA 01003
S

ABSTRACT various algorithms is being quantified on a larger set of im-

Our DARPA funded research program continues to fo- ages. We intend to study the sensitivity of the algorithm
cus on dynamic image processing. The work includes the hi- to the number of feature points employed, the amount of
erarchical computation of more accurate displacement fields texture exhibited in the scene, the orientation of the sensor
in the presence of occlusion, the computation of general mo- relative to the direction of motion, the rate of convergence
tion parameters of the sensor and independently moving ob- to a solution, and the accuracy of the final depth map.
jects, and architectures which will allow real-time image in- A second major approach to motion, involving the anal-
terpretation. Closely related work involves a new low-level ysis of general sensor motion in an environment containing
algorithm for extracting straight lines, even those with very independently moving objects, will be documented in the
low contrast, from natural scenes, and the development of forthcoming thesis of Adiv IADIS4a). This motion algo-
a knowledge-based system for photointerpretation of aerial rithm first approximates the visual field as rigid motion of
images. a set of planar surfaces, groups them into rigidly moving

objects, and then drops the planarity assumption to infer
1. MOTION PROCESSING FOR the 3D motion and depth of each of these segments. Let us

RECOVERY OF ENVIRONMENTAL DEPTH consider the issues in a little more detail.

We continue to explore and evolve several classes of The most common approach for the analysis of visual
motion algorithms for processing image sequences from a motion is based on two phases: computation of an optical
sensor moving through an environment. The major goal flow field and interpretation of this field. A major prob-
in motion processing is the recovery of the motion param- lem which has emerged in this research area is sensitivity
eters of the sensor and each independently moving object. to noise. Flow fields generated by existing techniques are
The computation of environmental depth of visible surfaces noisy and partially incorrect, especially near occlusion or
follows in a rather straightforward manner. motion boundaries. Most of the algorithms for interpreting

In the firsl group, we have already reported Lawton's these fields cannot successfully deal with realistic levels of
research ILAW83, LAWS4] on a class of algorithms for re- noise. Global approaches, which utilize all the available in-
stricted cases of sensor motion through a static environ- formation, can be expected to be relatively robust. Still, an
ment; of particular interest are pure translational process- inadequate choise of an optimisation criterion often limits
ing and motion restricted to a known plane. This algorithm the performance of these techniques. Furthermore, the pres-
combines the computation of the image displacements form- ence of independently moving objects usually makes such
ing the flow field with the computation of the sensor mo- global techniques impractical.
tion parameters. It avoids many of the errors produced by These two issues, the presence of noise and the pres-
noise, ambiguity, and occlusion when, as usually is the case, ence of independently moving objects, are addressed by a
the flow field is computed prior to inference of the motion new scheme for interpreting optical flow fields, which are
parameters. Current work on these algorithms is directed allowed to be either dense or sparse [ADI84b]. In the first
towards a more careful analysis of the accuracy, efficiency, stage of this scheme the flow field is segmented into con-
and robustness of this approach. The performance of the nected sets of flow vectors, where each set is consistent with

a rigid motion of a roughly planar surface and, therefore,
is likely to be associated with only one rigid object. The
algorithm for achieving such a segmentation is based on aSThis work has been supported primarily by the Defense grth oahevnsuhaemeaini bedoa .•i.

Thised woerhasbee Portedy primar bytrathe Defee modification of the generalised Hough technique, in which
flow vectors are grouped into components consistent with

82-K-0464. Some of the work reported here has been sup- a ne trsforats t i. fa o t compo-
ported by the AFOSR under Contract F49620-33-C-0099 ...ne art n eg ed. create semets

and by RADC under Task I-4-0055. nents " t m .s
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In the second stage of the proposed scheme sets of seg- displacements from the pixel. For example, the SSD surface
ments are hypothesized to be induced by the same rigidly tends to have a rather flat behavior in homogeneois areas
moving object. Each of these hypotheses is tested by search- of the image as opposed to a much sharper valley in areas ; -
ing for 3-D motion parameters which are compatible with all where there is distinct image structure. The confidence
the segments in the corresponding set. This search is based measure is computed as the minimum of the normalized
on a least-squares technique which minimizes the deviation second derivatives of the SSD surface computed at 0, 45,
between the given flow field and that predicted from the 90, and 135 degrees by a I x 3 Laplacian operator centered
computed parameters. Once the motion parameters are re- at the point of best match. This measure tends to be low in
covered, the relative environmental depth can be estimaed. homogeneous and occluded areas, and along edges; hence

Teneit is useful in isolating the areas in an image where the.-. ~This technique, of segmenting the flow field and, then"-"-•
combining segments to form object hypotheses, makes it displacement estimates are unreliable and often incorrect.

possible to deal with independently moving objects while The original search strategy described in Glazer started
employing all the available information associated with each at a coarse level at which all image aisplacements were at
object. In addition, the optimization criterion for recovering most one pixel. Matches found in a 3 x 3 window were pro-
3-D information is appropriate for dealing with partially in- jected to the four pixels at the next finer level of resolution
correct flow fields. Thus, the proposed scheme is relatively and a search conducted in a 3 x 3 window around these
insensitive to noise. Experiments, based on real and simu- estimates. This process continued down to the finest level
lated data, involve flow fields which are noisy and partially of resolution. Anandan modifies this search strategy in two
incorrect, especially near occlusion boundaries IADI84bI. ways: 0
The successful results demonstrate the effectiveness of the 1. Only high confidence coarse estimates are projected.
scheme in such situations. There are, however, inherent The motivation for this is that when incorrect coarse
ambiguities in the interpretation of noisy flow field. These estimates are proeicted, the 3 x 3 searches at the finer
ambiguities will be analyzed and demonstrated in [ADI84a]. levels are conducted in areas of the second frame that

do not include the true match point, which in turn -
2I. COMPUTING ACCURATE DISPLACEMENT causes incorrect searches at all subsequent levels. .0

FIELDS IN THE PRESENCE OF OCCLUSION
and 2. Estimates may be projected to an area larger than the

One method for computkig displacement fields prior four descendant pixels. If the incorrect coarse level
to depth and motion parameter computations is by area projections are eliminated, then the finer level search
correlation. However, the displacement fields produced by can be conducted oiera larger area and the true match
this method are often incorrect in homogeneous areas of can perhaps be recovered. -
the image and near occlusion boundaries (where an area _
is visible in one frame and occluded in the next). Anan- The modified algorithm appears to work well in com-
dan [ANA84a,b] has developed a matching algorithm which plex image pairs. Future work involves using the confidence
overcomes many of the problems with current techniques. measure and other attributes of the SSD surface to distin-
The algorithm is obtained by modifying the search strategy guish between occluded and homogeneous areas and to use
employed in the hierarchical algorithm of Glazer, Reynolds, directional information in the SSD surface to modify the
and Anandan IGLA83 to take into account the reliability of expansion of the search area in a direction perpendicular to
each displacement vector as provided by a confidence mena- an edge. O
sure. The result is a computationally efficient matching 3. EXTRACTING STRAIGHT LINES
algorithm which provides a dense displacement field with
estimates of the reliability of each displacement vector. The organization of local intensity changes into the

more global abstractions called 'lines' or 'boundaries* is
The matching algorithm developed by Glazer et al is a an early and important step in the transformation of the vi-

hierarchical coarse-fine strategy using band-pass filtered im- sual signal into intermediate constructs useful for interpre-
ages in which matches found at the coarse (low-frequency) tation processes. A recent algorithm developed by Burns
levels direct the search for matches at the finer (higher fre- IBUR84a,b,c uses gradient orientation, rather than changes
quency) levels. In this algorithm, each pixel at a coarse level in image intensity, as the initial orgtaniing feature. The ]:]•
coven, a large area at the finest level; errors at the coarse general approach consists of four basic steps:
level cause incorrect initial estimates to be generated for the
finer levels and hence the search at the finer levels is car- 1) Grou2 ixels into line-suRport refions based on simi-
ried out in areas which do not include the correct match. larity of gradient orientation. This allows data directed
The confidence measure attempts to detect these and sim- organization of edge contexts without commitment to
ilar situations so that the search strategy can be modified masks of a particular size.
accordingly. 2) ARoroximate the intensity surface by a Rlanar surface

The confidence measure used is based on the shape The planar fit is weighted by the gradient magnitude
of the SSD surface generated by the values of the sum- associated with the pixels so that intensities in the
of-squared-differences corresponding to different candidate steepest part of the edge will dominate.

-9
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3) Extract attribute from the line-support region and description of those areas or objects that are of potential
the planar fit. The attributes extracted include the interest and to which computational resources may most
representative line and its length, contrast, width, lo- fruitfully be applied. The mioet suitable method for ap-
cation, orientation, and straightness, plying such selective processing to high resolution imagery

4) Filterline on the attributes to isolate various image is the multi-resolution, or pyramid, technique. From the

events such as long straight lines of any contrast; high original, large-scale, full resolution image is constructed a

contrast short lines (heavy texture); low contrast short progression of smaller and smaller images, each covering the

lines (light texture); homogeneous regions of adjacent same extent, but at successively coarser resolution.
very low contrast lines; and lines at particular orienta- In this section we describe some recent experiments
tions and postitions. using a hierarchical segmentation algorithm and focus of

Gradient orientation at a pixel is estimated from the attention mechanism for locating buildings, roads, and air-

horizontal and vertical components of the gradient obtained ports in a high-resolution monochromatic aerial image. The

from two 2 x 2 masks. These estimates are then grouped approach involves formulating segmentation and feature ex-

into regions by using two overlapping sets of partitions of traction algorithms as hierarchical algorithms within the

fixed size, say two 4V sets staggered by 22.5 ° or two 22.50 processing cone [HAN801. The focus of this section is on

sets staggered by 11.25. Each set produces a region seg- the segmentation processes; more complete interpretation

mentation of the gradient image and then these segmenta- results may be found in [REY84abJ.

tions are merged by choosing that region satisfying local The general idea is to use the Nagin-Kohler localized
constraints. Each resulting 'line support region' is a can- histogram region segmentation algorithm [NAG79, KOH83]
didate area for a straight line since the local gradient esti- and the Burns straight line extraction algorithm as the
mates share a common orientation. A representative line primary low-level processes used to drive the bottom-up
can be extracted by intersecting a least squares planar es- component of a hierarchical localized segmentation process.
timate of the underlying intensity surface with the plane The feature extraction process yields a low-level represen-
corresponding to the average region intensity. tation of the data and an evidential-based inference net is

A set of attributes is extracted from the line support used to transform this data to an intermediate level of rep- .5
region and its associated line. These attributes include line resentation within long-term memory. This intermediate
length, contrast, width, steepness, straightness (or devi- level of representation in turn allows the multiresolution
ation from straightness), and various orientation and posi- segmentation algorithms to be focussed and selectively ap-
tion parameters. They form the basis of a line data base for plied to areas of interest in the image. We are investigat-
an image over which various filtering operations can be per- ing the effectiveness of directing the system to look only
formed in order to extract lines with specific properties. For in areas where a coarse level segmentation yields a hypoth- -

example, in many of our images long high contrast lines cor- esis that an object of the sort we are looking for exists.
respond to significant boundaries, medium contrast short For high-resolution imagery, the computational advantage
lines may correspond to textured areas, and low contrast of this approach is significant. For example if we assume
wide lines to slow intensity gradients. that even 2/3 of the possible sectors are used at each level,

then only 1/5 of the image is being examined 4 levels down.
Thea In the case that only 1/4 of the sectors are selected, onlystraight

lines, including very low contrast lines. It represents all lines 1/256th of the image is being searched 4 level down. Thus 

as straight lines and we are examining ways in which the the computational complexity of the process can be kept
same general technique could be used to generate curvilin- within reasonable bounds.
ear lines and boundaries. The gradient orientation grouping
operator does a credible job for such a simple technique and The selection of candidate regions for examination at
we are looking at methods for detecting and overcoming the a higher resolution is accomplished by choosing all regions
overgrouping and other errors it sometimes produces. Fi- which satisfy a set of object dependent constraints on re-
nally, we are examining a variety of line descriptors and gion and line attributes. In general, the results from such .
are incorporating them into other interpretation processes a simple rule will be unreliable and prone to error. Image
(e.g., see [REYS4bi in this proceedings). interpretation is implicitly involved with the problems as-

sociated with combining information from multiple sources
4. INTERPRETATION OF of knowledge. Any perceptual system which utilizes pro-
AERIAL PHOTOGRAPHS cessed sensory data must recognize the fact that to varying

under degrees the information will be imperfect and prone to error.
The detailed examination, segmentation, and e- With this in mind we are developing mechanisms for eviden-

staningof ighresluton igitl iage reresntsa ~ tial reasoning and inferencing under uncertainty [L0W82,
vere computational load for current computers. One tech-
nique for reducing the overall computational requirements WES821 in order to construct more reliable focussing sets.

involves selectively focussing on relevant portions of an im- Some of the limitations of inferencing using Bayesian
age and ignoring irrelevant portions. The specification of
relevancy implies some external model which represents a •

S. - - .. . .. . . . . . . . .
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probability models are overcome using the Dempster-Shafer 16K processor parallel machine will have an effective oper-
formalism for evidential reasoning, in which an explicit rep- ating speed several hundred to a thousand times that of the
resentation of partial ignorance is provided ISHA761. The fastest sequential processor available today. The CAAPP
inferencing model allows lbelief' or "confidence* in a propo- would be connected via its own controller to a VAX-11/780,
sition to be represented as a range within the 10,11 interval. LISP machine, or some other general purpose computing
The lower and upper bounds represent support and plausi- machine which would provide both the algorithm develop-
bility, respectively, of a proposition, while the width of the ment environment and the operating environment for the
interval can he interpreted as ignorance. Wesley JWES831 system.
is extending this approach to the problem of distributed The CAAPP is capable of providing an intermediate
control of a set of knowledge sources which can be applied symbolic representation by storing the results of low level

to examine particular concepts in long-term memory. vision algorithms and providing the communication inter-
Once the inference network is fully integrated, we ex- face to knowledge-based processing [FOS841. In addition

pect the hierarchical segmentation and interpretation pro- to its two dimensional communication pathways between
cess to operate as follows. First the local histogram-based neighboring cells and bit-serial local cellular computation,
region segmentation and the linear feature extraction algo- this device would be capable of content addressable mem-
rithm are applied at a coarse level of resolution. Knowledge ory (associative) functions including broadcast instruction,
sources in the form of object hypothesis rules are then ap- find-first-responder, and count-responders. These opera-
plied to region and line attributes at that level. The output tions permit the feedback loop to be closed between high-
of these rules is converted to a form appropriate for input level processing and low level processing by allowing com-
into the inference network of long-term memory. The in- munication and control information to flow up and down
ferencing process is then invoked and each region yields a between the different representations supported by the ar-
support and plausibility (i.e., a range of belief) that it is chitecture.
a candidate region for one of the goal objects. The region The intermediate level of representation provides an
and line segmentation algorithms are then applied at a finer interface between the low and high levels of representation,
level of resolution, but only on the candidate regions which that is, between pixel-based representation and symbolic el-
have high support. At this finer level of resolution the repre- ements representing visual knowledge stored in a database.
sentation of the object is of a different form and may involvemor epeniv obec rle ominaios f te egin nd In the UMASS VISIONS system, the intermediate level con- .
more expensive object rule combinations of the region and sists of a symbolic description of the two dimensional image
line attributes, but applied only to a small subset of the in terms of regions and line segments (that are still in regis-
image. The process is recursively applied to finer levels of tration with the raw image data) as well as their associated

attributes which can be used in the interpretation process.
In some systems this level would consist of representations6.CON ET AR ESSABLE (ARA Y yaof surfaces, or more generally, *intrinsic' features of the

PARALLEL PROCESSOR (CAAPP)phscleirn nt
For the last several years there has been a synergis- Intermediate procesing includes several kinds of activ-

*~nemeit ticesin relatonshi between ourd macin viiotgouvad
pacrlel aronhi etren ou led in byP sonrou anto Fote ities. First is the set of bottom-up tasks which are neededparalle archte84ue group desed nd Proessor Caxtonopostr to complete the intermediate level of representation. ThisthWeE, Lonstrcin We avre dsied ndt are owrg includes the extraction of the features for regions, lines, and

* the construction of a large scale Content Addressable Ar-
ray Parallel Processor (CAAPP) for low, medium and high vertices as well as the relations between these entities. The
level vision processing. This new architecture combines second group of intermediate processing activities involve
associative orocessine via global broadcast and response to grouping, splitting, and labelling processes, in either data-
and from an array of cells, and array processing via local directed or knowledge directed modes (i.e., bottom-up or
cellular square neighborhood computation. The resulting top-down) to form intermediate events which more natu-
architecture allows simple solutions to many problems that rally match stored object descriptions.
are difficult for parallel machines which provide only one of We believe that the key to vision processing is a flow
these capabilities [WEE83). of communication and control both up and down through all

The prototype CAAPP would consist of sixteen thou- representation levels. Communication between these levels
is by no means unidirectional. In most cases, recognition ofsand processing elements arranged as a 128 x 128 square an object or part of a scene at the high level will establish

array. We have taken a pragmatic view of VLSI technology a strategy for further processing and probing the low and
because we wish to actually construct this machine. Hence, intermediate levels, in order to pull out additional features
we have approached the design in a very conservative man- uner .te in o a pat l nterpettion thi snetmakig ue ony ofexitingtecholoy (3 NMS), under the guidance of a partial interpretation. This might"'"'"
ner, making use only of existing technology ( 3M NMOS), involve joining together region, line, and surface informa-
to insure rapid and successful development. This design is tion to form a symbolic representation would more easily
intended to be expandable up to at least a quarter of a mil- and naturally match a stored object description.
lion processing elements in a 512 x 512 array. The initial ao
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Image Understanding Research
at Columbia

John R. Kender

Department of Computer Science
Columbia University, New York, NY 10027

1. Abstract 4. The Analysis of Texture "
The Image Understanding Project at Columbia continues to Many of the algorithms we have devised for our middle-

center its efforts on basic "middle-level" vision research: the level work are derived from a central methodological
representations and algorithms concerned with deriving paradigm called "shape from texture" gj. We have most
surface information from low-level aggregate cues. The recently applied the paradigm in two additional areas,
project has expanded somewhat to cover six major concerns deriving further surface constraint relations and procedures.
In image understanding: the conplexity of algorithms, the We have shown how to exploit the gravitationally induced
theory and analysis or texture, the integration of systems environmental labels such as "horizontal" and "vertical" [8J,
the development of research aids, and the exploitation of and how to exploit the assumptions of equality of linear
two parallel architectures. This report on our second full extents such as equal spacing or widths [7].
year summarizes our progress in each. of these areas; we
note the graduation of our first doctoral student. In work done jointly with IBM, we (Paul Douglas) have

begun to extend the theory by examining the textural
residue that remains a:ter a surface has been represented in

2. Introduction its scale-space filtered form. We are pursuing several2. Intrductionconjectures about the fractal dimension of this residual '"
The Image Understanding Project at Columbia continues S signal, relative to the surface's perceived orientation and

steady growth. We have augmented our hardware and distance. In related work, we have explored the use of
software base (Vax plus Grinnel, running melded CMU and simulated annealing as a control structure for the perception
SRI vision libraries)by incorporating an image processor of "emergent" visual phenomena such as subjective
board and by implementing a flexible convolution package. groupings of textured surfaces.
Our research is a bit wider in scope, although it still
emphasizes that level of image understanding which
moderates low-level cues into sur ace information; we have
six investigations. 5. Integrated Image Systems

Our (Mark MoerdlerI work continues 0n a middle-level
We have taken the information-centered approach to vision system that integrates knowledge about surfaces from

optimal algorithms and applied it to the sparse depth data multiple independent texture-based sources. Two knowledge
interpolation task (and others), with surprising results. We sources have been refined, based on texture density and
are extending the shape-from-texture theory by investigating texture spacing cues* they are tested for accuracy on several
the applicability of scale-space texture filtering and kract synthetic (but noisy) images. The sources are beginning to
texture descriptions. Work continues on the integration of develop specialized heuristics: for textural segmentation, and
multiple texture algorithms into a coherent shape analysis for the handling of degeneracies. Several other sources,
system. We have pursued the development of various based on texture orientation and textural area, have been
graphic aids for the image understanding experimenter. For implemented and are waiting to be incorporated into the
the Non-Von supercomputer, we have simulated and system.
critiqued a wide range of image understanding algorithms.
For the Grinnell image processor, we have written and ,
experimentally verified routines for highly efficient low-level 6 e r
edge detection 6. Image Research Aids

Image understanding systems produce vast amounts of
complex intermediate data: the middle levels of vision
Tenerate multiple assertions about any underlying surface.

3. The Complexity of Image Algorithms e have explored some graphic aids to the perception of
Under independent development at Columbia is a theory of these hypotheses on surface orientation, but without great

computational complexity called the information-centered success. The use of sequins (circles seen in perspective so
approach to optimal algorithms. It has proven surprisingly that their ellipsoidal shapes are suggestive of underlying S
successful in the analysis of image understanding tasks. We slant and tilt) appears fairly promising, however
(David LeeJ have applied it to the problem of reconstructing
a surface from sparse depth information, and we have found In a related effort, we (David Freudenstein) are in the
that the problem is optimally solved, in constant time y beginnings of the construction of an environment for the
spline interpolation; no adaptive algorithm would perform ea.v intermingling of images and textual information: for e
better [81. Since splines are easily computed by parallel communication, documentation, and publication purposes.SIMD algorithms, we foresee the possibility of very simple "-.'
interpolation machines, based on binocularity or range
finding. We (Terry Boult) have empirically investigated the
computational properties of the splines on synthetic data, 7. Image Understanding on Non-Von S
and discovered encouraing regularities in its behavior which Under independent development at Columbia is the Non-
we hope to exploit for high efficiency. Von supercomputer, one of a class of fine-grained tree-

structured machines built of custom VLSI chips. We
Preliminary results indicate that similar mathematical (Hlussein Ibrahim in his thesis 12]) have found that such

approaches to the problems of shape-from-shading and of architectures lend themselves easily and naturally to many
optical flow may result in similar optimal algorithms. Thus, low-level vision algorithms, and, with some care, to middle-
it may be possible to put a fair amount of low-level image level vision algorithms as well.
understanding algorithms on a unified theoretical footing.
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Vision algorithms were selected to span different levels of Rfec
computer vision tasks 131. They included image correlation, References
histograming, connected component labeling[41 geometric
property computations, set operations, the Hough transform 1. Fortunel, C GRICON: Grinnell Convolution Package
method for detecting object boundaries t5f, and the Department of Computer Science, Columbia University, May,
correspondence methods for moving light displays. The 1984.
encoding of the algorithms incorporated novel approaches to
reduce the effects of the communication bottleneck usually 2. Ibrahim, H.A.H. Image Understanding Algorithms onassociated with tree architectures. . ...

Fine-Grained SIMD Machines. Ph.D. Th., Department of

Performance was studied using two simulators: all Computer Science, Columbia University, Oct. 1984.
algorithms were simulated on a functional level simulator
and some were also simulated on a machine instruction level 3. Ibrahim, H.A.H. Some Image Understanding Algorithms
simulator. In general, we have found the performance of on Fine-Grained Tree-Structured SIMD Machines.this class of tree machines to be superior to other highly o ieGandTe-tutrdSM ahns
parallel architectures for image understanding problems. We Proceedings of the Workshop on Algorithm-Guided Parallel

ave also identified the limitations of these architectures, Architectures for Automatic Target Recognition, DARPA,
and have proposed methods to ameliorate them. July, 1984.

In other related work done jointly with Bell Laboratories, 4. Ibrahim, H.A.H. The Connected Component Algorithm
we (Marcia Derr) have explored the nearly opposite problem
of distributing visual computation over % very coarse-grained on the Non-Von Supercomputer. Proceedings of the Second

multiprocessor: several Motorola 68000s on a high-speed bus. Workshop on Computer Vision: Representation and Control,
No straightforward way of partitioning the algorithms or the IEEE Computer Society, April, 1984. 0
images has proven fully effective over the entire class of
problems considered. 5. Ibrahim, H.A.H., Kender, JR., and Shaw, D F The

Hough Transform Method on Fine-Grained Tree-Structured

SIMD Machines. Proceedings of the ARPA Image
8. Exploiting the Grinnell Image Processor Understanding Workshop, Sept., 1984. (These proceedings.)

We have upgraded our Grinnell with an Image Processor
board whose primitive 16-bit ALU imbedded in the memory S. Kender, J.R. Environmental Labelings in Low-Level
refresh-cycle performs as an extremely fine-grained SIMI)
machine. After writing a general purpose convolution Image Understanding. Proceedings of the 1983 International S
package for it 1J, we (Christian Fortunel and John Kender) Joint Conference on Artificial Intelligence, Aug., 1983, pp.
were able to design for it very fast parallel algorithms to do 1104-1107.
edge detection. By various stratagems we have reduced the
O(72 ) time for a series of Laplacian of Gaussian to O(, 7. Kender, JR. Surface Constraints from Linear Extents.
with very little loss of accuracy. Proceedings of the National Conference on Artificial

Briefly, the two-dimensional band-pass operators can be Intelligence, Aug., 1983, pp. 187-190.
decom osed into sums or differences of other functions in
mu tiple ways; these component functions can further be 8. Kender, J.R., and Lee, D. The Information-Centered P
separated by variables into outer products of one-dimensional Approach to Optimal Algorithms Applied to the 2-1/2 D
functions. Intermediate results can be calculated so that
partial computations are cascaded. Further time reductions Sketch. Department of Computer Science, Columbia
are possible by expanding the operator support. Under University, Sept., 1984. (Also these proceedings.)
proper scaling of intermediate results, integer arithmetic
alone suffices and expensive floating point can be dispensed 0. Kender, J.R.. Artificial Intelligence Research Notes.
with altogether. Zero-crossings are localized with a prairie- Volume : Shape from Texture. Pitman Publishing, Ltd.,
fire technique. London, Accepted for publication, 1984. p

The above code, written for the CMU Grinnell
environment (Vax/Unix/C, with IU testbed standards), has 10. Kender, J.R. Columbia's Vision Experience with Two
been distributed to other ARPA sites with comparable Fine-Grained SIMD Architectures. Abstracts of
equipment. Presentations at the Computer Architectures for Vision . -

The Grinnell Image Processor's ability to instantaneously Workshop, DARPA, May. 1984, pp. 7-10.
pan over wide ranges of pixels has be exploited in another
related way: to implement a fine-grained message-passing
parallel shape-from-texture algorithm I10. Aithoug5 0
requiring some skill in design and debuging, it was
surprising to be able to cast what was essentialy a row-wise
sort into a simple SIMD procedure. The algorithm, which
generates vanishing lines based on texture density gradients,
was executed on a real image with good result.
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for effective implementation, demonstration, and experimental 9
verification of theoretical concepts; we have developed an en-

The SRI Image Understanding program is a broad effort vironment in which some of the newest and most effective corn-

spanning the entire range of machine vision research. Its three puting instruments can be employed for these purposes.

major concerns are: (1) to develop an understanding of the
physics and mathematics of the vision process, (2) to develop a
knowledge-based framework for integrating and reasoning about 2. KNOWLEDGE BASED VISION:
sensed (imaged) data, and (3) to develop a machine-based en- the Construction of an Expert System
vironment for effective experimentation, demonstration, and Control Structure for Stereo Compilation
evaluation of our theoretical results, as well as providing a vehicle and Feature Extraction.
for technology transfer. This report describes recent progress in Our intent in this effort is to develop a system framework -'
all three areas. In particular, we have shown that fractal func- for allowing higher level knowledge to guide and integrate .

tions are an effective tool for representing natural shapes and
provide a good basis for recovering 3-D shape from the shading the detailed interpretation of imaged data by autonomousscene analysis techniques. Such an approach allows sym- ..-
and texture in a single image. For scenes containing man-made bolic knowledge, provided by higher-level knowledge sources, to - - -

objects, we have found ways of using straight edges to recover aoicaley crol t hee oa opriate aorihs,

the 3-D orientation of surfaces from a single view, and reason
about the shape of an object from partial information in multiple ad.; s their parameters, and apply them in the relevant por-

tions of the image. More significantly, we are attempting to -. ..-
views.provide an efficient means for supplying and using qualitative
environment for use in image understanding research, and are knowledge about the semantic and physical structure of a scene
putting together high-performance systems for stereo compila- kow abt the shem nta physic str ed of asntion fetur exracion andlinar elieatonso that the machine-produced interpretation, constrained by this-

knowledge, will be consistent with what is generally true of the .

overall scene structure, rather than just a good fit to locallyp o . .
"  

-

1. IN RODU TIONapplied models.
1. INTRODUCTION An important component of our approach is to design a

means for a human operator to simply and effectively provide
The goal of this research program is to obtain solutions the machine with a qualitative scene description, in the form of

to fundamental problems in computer vision, particularly a semantically labeled 3-D sketch." This capability for effective
such problems as stereo compilation, feature extraction, linear o unatnbeweahu nadtemcieaotte"

delneaion an geerl senemodlin tht re eleantto he communication between a human and the machine about the
delineation, and general scene modeling that are relevant to the three-dimensional world requires both appropriate graphics tools " - -

development of an automated capability for interpreting aerial and an ability on the part of the machine for both spatial reason-
imagery and the production of cartographic products. ing and some semantic "understanding." The importance of this

To achieve this goal, we are engaged in investigations of such work derives from the fact that a major difficulty in automating 0
basic issues as image natching, partitioning, representation, and the imageinterpretation process is the inability of current com-
physical modeling (shape from shading, texture, and optic flow; puter systems to deduce, from the visible image content, the
material identification; recovery of imaging and illumination general context of the scene (e.g., urban or rural; season of the
parameters such as "Yanishing points," "camera parameters," il- year; what happened immediately before, and what will happen .- -

lumination source location; edge classification; etc.). However, it immediately after, the image was viewed by the sensor) - the
is obvious that high-level, high-performance vision requires the knowledge base and reasoning required for such an ability is well
use of both intelligence and stored knowledge (to provide an in- beyond what the state of our art can hope to accomplish over (at
tegritive framework), as well as an understanding of the physics least) the next 6 years. Thus, our work is intended to provide
and mathematics of the imaging process (to provide the basic an interim means by which a human can supply, a task-oriented
information needed for a reasoned interpretation of the sensed program, the high level overview it needs for its analysis, but
data). Thus, a significant portion of our work is devoted to cannot acquire by itself.
developing new approaches to the problem of "knowledge-based Two of our major integrative efforts are directly concerned
vision." Finally, vision research cannot proceed without a means with the knowledge-based vision problem: 5

a ° " i
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One effort, integrating our work in stereo compilation and physi- mutually orthogonal scene features, the method backprojects the
cal modeling, is the construction of a rule-based system with a lines into three-dimensional scene space, generating (potentially)
library of processes and activities, which can be invoked to carry all possible combinations of line orientations. It selects the corn-
out specific goals in the domain of cartographic analysis and bination that is 'most orthogonal" by maximizing the triple
stereo reconstruction. This work is based on results described product of three unit basis vectors, using the method of steepest -below, but the integrative framework is still being developed and descent. In general, two solutions are found, and the correct
will not be described in this report. one can be chosen by relating the solutions to knowledge of the

The second effort, described in a following section on fea- vertical direction. A more complete description of this work is
ture extraction, is a restricted version of the concept discussed presented in Barnard [1984a].
above (it employes contextual and semantic knowledge, but does Inductive Approach. The technique discussed above has led
not address the issues of qualitative reasoning nor 3-D spatial us to investigate a new class of computational methods for the
understanding). interpretation of single images. These methods constitute an

inductive approach because they explicitly recognize that the
available data (the image) are insufficik at to make a well-founded

3. DEVELOPMENT OF METHODS FOR logical interpretation; that is, many interpretations are possible,
MODELING AND USING PHYSICAL but only one is preferred. Specific prior models cannot account
CONSTRAINTS IN IMAGE for the general power of such perception in the case of a human
INTERPRETATION. observer (although prior models are certainly used when avail-

Our goal in this work is to develop methods that will first able). To be truly general purpose, machine vision must be able

allow us to produce a sketch of the physical nature of a scene to mimic this amazing human ability. The inductive approach
and the illumination and imaging conditions, and then permit selects interpretations that are "simplest" in some sense. While

and he llumnaton nd iagig cnditons an the pemit it does not preclude the use of specific prior models, it emphasizes
us to use this physical sketch to guide and constrain the more
detailed descriptive processes - such as precise stereo mapping. the use of abstract generic models, such as parametric curves

Our approach is to develop: and surfaces. One measure of simplicity we have considered is

a models of the relationship between physical objects in the based on information-theoretic considerations. This work will• moels f th reatioshipbeteen hysial bjecs inthe be described in a report by Barnard 11984b]...-.
scene and the intensity patterns they produce in an image (e.g., b dy a
models that allow us to classify intensity edges in an image as Optic Flow. In the optic flow paradigm, a moving observer
either shadow, or occlusion, or surface intersection, or material is normally able to interpret a time sequence of images as an
boundaries in the scene), implicit description of a static scene. In principle, the images
* models of the geometric constraints induced by the projective can be matched point-by-point and the motion of the observer
imaging process (e.g.. models that allow us to determine the can be deduced by exploiting the constraint that the scene is P
location and orientation of the camera that acquired the image, fixed. In practice, this is exceedingly difficult to achieve, both
location of the vanishing points induced by the interaction be- because point features are rare and because the methods are very
tween scene and camera, location of a ground plane, etc.), and sensitive to small matching errors.
* models of the illumination and intensity transformations We have dveloped an alternative optic-flow method that
caused by the atmosphere, light reflecting from scene surfaces, exploits the often available information about the rotation of the
and the film and digitization processes that result in the com- observer. Knowing the observer's rotation greatly simplifies the p
puter representation of the image. problem of matching successive images, but, since all the useful

These models, when instantiated for a given scene, provide information that can be derived from the sequence is due to
us with the desired "physical" sketch. We are assembling the translation of the observer, it does not significantly sacrifice
a "constraint-based stereo system" that can use this physical generality. The major advantage to translation-only optic flow
sketch to resolve the ambiguities that defeat conventional ap- is that curvilinear image features can be matched by exploiting a
proaches to stereo modeling of scenes (e.g., urban scenes or constraint that is essentially the same as the epipolar constraint
scenes of cultural sites) for which the images are widely separated in stereo interpretation. This work is still in progress. b

in either space or time, or for which there are large featureless
areas, or a significant number of occlusions. Spatial Reasoning from Line Drawing. of Polyhedra. •"

Construction of a three-dimensional "sketch" is one task faced . -A summary of some of our current work in the area of by the user of an interactive image understanding expert system. . "
modeling and Using physical constraints is presented below. An urban scene typically contains buildings and other objects . .

Rectilinear Forms. Images of cultural scenes, such as build- that can he modeled as planer-faced polyhedra. An effective way
ing complexes, typically contain a significant amount of linear for the user to create 3-D sketches from multiple views of such
structure. We have developed an effective computational tech- objects has been devised.
nique for recovering 3-D interpretations from a single 2-D image The system requires two or more line drawings of a
in many such cases. It works by finding a basis for a vector polyhedral scene from arbitrary vantage points. These line draw-
space suitable for quantifying spatial relations, while satisfying ings may be obtained from a freehand sketch, by tracing the
constraints imposed by linear features in the image. Given three edges in several photos, or from the output of an automatic edge
image lines that are assumed to be perspective projections of detector. A "wireframe" model of the objects is obtained by
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back-projecting the line drawings. Labels of solid or vacant space compilation.
are then assigned to all spatial regions defined by the wireframe There are five components of this stereo system: a rectifier,
using an iterative constraint propagation algorithm. The result a sparse matcher, a dense matcher, an interpolater, and a
is a data structure that captures the volumetric structure of the projective display module, The rectifier accepts estimates of
objects depicted, which can then be used to support hidden-line the parameters and distortions associated with the imaging
elimination and other volumetric operations upon the object. process, the photographic process, and the digitization. These
This work is described in Strat [1984a]. parameters are used to map digitized image coordinates onto

an ideal image plane. The sparse matcher performs two-
Determining The Imaging Geometry from a Camera dimensional searches to find several matching points in the two
"1ransformation Matrix. Many scene analysis algorithms images, which it uses to compute a relative camera model. The
require knowledge of the geometry of the image formation dense matcher tries to match as many points as possible in the
process as a prerequisite to their application. When the imag- two images. It uses the relative camera model to constrain the
ing situation can be controlled or measured directly, the needed searches to one dimension, along epipolar lines. The interpolatersearcheseto oeadimensionalongdepipoeavlines. The ntereolater-
parameters can be determined; however, in the case of un- computes a grid of range values by interpolating between the
calibrated images, or photographs whose history is unknown, matches found by either the sparse or the dense matcher. The
the necessary parameters are not available. In these cases, an projective display module allows interactive examination of the
alternate method of inferring the imaging situation from the computed 3-D model by generating 2-D projective views of the
correspondence between a small set of image and object points model from arbitrarily selected locations in space.

*is required.moefrmabtaiyslceloaininpc.
On ppred. The current system, which runs on the VAX/1l-780 in C, 0
One approach has been to compute the imaging geometry is described in Hannah [1984]. At present, the system produces

directly from the constraints provided by the known data points, relatively sparse 3-D information, even in its dense matching
Partial information such as the camera's focal length or the loca- mode. Often 3-D data are required that are more closely spaced
tion of the piercing point in the image can be used to reduce the than On 3- ded are ered at a rocespaced

numbr o daa pontsneeed.A seondappoachconist of than can be provided by the stereo matching process. Further,
number of data points needed. A second approach consists of there may be areas of the images that cannot be matched due to
two steps. First, the known data points are used to compute noise, insufficient information, and occlusions; this will produce

.a 4x4 homogeneous coordinate transformation matrix that cap- holes in the dense matched data that must be filled in. In either •
tures the entire transformation from object point to image point, case, interpolation is necessary to provide 3-D data between

An established technique for this computation involves the least matched points.
squares solution of a set of simultaneous linear equations from

six or more known correspondences. The goal of the second Interpolation. We are currently exploring two different
step is to derive the various parameters of the image formation schemes for interpolation. One is a global approach, in which all
process from the transformation matrix. This problem can be of the 3-D information available is used to find the interpolated
posed as a system of nonlinear equations whose solution had re- value for a given point. (This approach is described in Smith
quired iterative methods. Recently, Ganapathy 119841 published [19841.) The second approach is a local one, which only uses
the first noniterative solution. the data in the neighborhood of the point to be interpolated.

Research performed at SRI has also produced a noniterative The global approach produces a functional description that can
solution (Strat [1984b]). By reasoning about the geometric con- be differentiated analytically to determine slope and other sur-
straints inherent in a camera transformation matrix, a simple, face attributes; the local approach is most useful in the context -

easily understood method of determining the various parameters of verifying the plausibility of the matches by comparing the .0
is obtained. Through a series of geometric constructions, the data from the stereo images after projection onto this surface.
camera's location and orientation, along with the piercing point The local approach is being used in the context of a hierarchical
and the relations between the focal length and scale factors, can matching scheme described below.
be determined. The method relies purely on spatial reasoning
about geometric constraints and does not involve an intuitively Mstching. In a parallel research effort employing our Lisp

opaque matrix decomposition. Furthermore, its sensitivity to er- Machines, we are exploring a hierarchical technique for devel-

rors can be studied geometrically, allowing a clear understanding oping a regular, dense grid of matched points This technique 0

of the conditions that lead to inaccurate decompositions. The does appropriate warping of the images between each level of the

technique has been successfully applied to both synthetic imag- hierarchy, to account for differences in perspective between the

iag situations and real photographs. two images as predicted by the model. As a part of this effort, -

local interpolation techniques have been developed to fill in holes
in the model before proceeding from level to level.

4. STEREO COMPILATION: IMAGE The Lisp Machine implementation includes a sophisticated

MATCHING AND INTERPOLATION terrain display package, which permits the user to interactively
designate a flight path through the 3-dimensional model derived

We are implementing a state-of-the-art stereo system that from a pair of images; ihe system then creates a "movie' (a
produces dense range images given pairs of intensity images. We sequence of either monocular or stereo views) of the terrain as
plan to use it both as a framework for our stereo research, and the user "flies' along the path above the terrain. This package
as the base component of an expert system concerned with 3-D is useful not only for assessing the quality of the derived model,

.. 0
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but also for tasks in which a prediction of the appearance of intensity.
the scene from arbitrarily specified points of view is desired, as The computation of a 3-D fractal-based representation from
when an observer is moving through mapped terrain. This work actual image data has been demonstrated. This work has shown
is described in Quam [19841. the potential of a fractal-based representation for efficiently com-

puting good 3-D representations for a variety of natural shapes,
Evaluation, Ve now have available, on our VAX (Testhed) including such seemingly difficult cases as mountains, vegetation,
and Lisp Machines, some of the most advanced stereo match- and clouds.
ing systems developed by the III community. As a part of our This research is expected to contribute to the development

stereo research effort, we plan to run several calibrated data of (I) a computational theory of vision applicable to natural ...

sets through these systems to determine the relative strengths surface shapes, (2) compact representations of shape useful for

and weaknesses of the various methods, including area cor- natural s,. faces, and (3) real-time regeneration and display of
relation, hierarchical warped matching, edge matching, and natural sc .nus. We also anticipate adding significantly to our
edge/intensity matching. understanding of the way humans perceive natural scenes.

Details of this work can be found in Pentland [1983 and

5. THE REPRESENTATION OF
NATURAL SCENES

Our current research in this area addresses two related prob- 6. FEATURE EXTRACTION: SCENE 0
lems: (I) representing natural shapes such as mountains, vegeta- PARTITIONING, AND LABELING
tion, and clouds, and (2) computing such descriptions from image Our efforts in image partitioning and labeling have advanced
data. The first step towards solving these problems is to obtain along two fronts: we have developed a goal-directed texture-
a model of natural surface shapes. based segmentation algorithm and have studied knowledge-based

A model of natural surfaces is extremely important because control concepts required to integrate this with other image

we face problems that seem impossible to address with stan- feature-extraction techniques.
dard descriptive computer vision techniques. How, for instance, The SLICE goal-directed segmentation system combines
should we describe the shape of leaves on a tree? Or grass? Or knowledge of target textures or signatures with knowledge of
clouds? When we attempt to describe such common, natural background textures by using histogram-similarity transforms.
shapes using standard representations, the result is an unrealis- Regions of high similarity to a target texture and of low " -

tically complicated model of something that, viewed introspec- similarity to any negative texture examples are found. This
tively, seems very simple. Furthermore, how can we extract 3-D use of semantic knowledge during the segmentation process im-
information from the image of a textured surface when we have proves segmenter performance and focuses segmentation activity

. no models that describe natural surfaces and how they evidence on material types of greatest interest. (The system can also be
themselves in the image? The lack of such a 3-D model has used for goal-independent texture segmentation by omitting the
restricted image texture descriptions to being ad hoc statistical similarity-transform computations.) Development of this seg-
measures of the image intensity surface, mentalion technique is essentially complete; all that remains is

Fractal functions, a novel class of naturally arising func- to integrate it into the more general feature-extraction system

tions, are a good choice for modeling natural surfaces, because described below. Performance of the SLICE segnientation algo-

many basic physical processes (e.g., erosion and aggregation) rithm is documented in Laws [198-ti.
produce a fractal surface shape and because fractals are widely The KNIFE (knowledge-based interactive fea, ure-extraction)

used as a graphics tool for generating natural-looking shapes. system is intended to solve problems in image segmenta-
Additionally, in a survey of natural imagery, we found that tion, feature extraction, material identification, and feature
a fractal model of imaged 3-D surfaces furnishes an accurate classification. (Image segmentation and feature extraction parti-
description of both textured and shaded image regions, thus tion an image into meaningful units; material identification and
providing validation of this physics-derived model for both image feature classification label those units.) Experience has shon
texture and shading. that these tasks cannot be carried out adequately in isolation.

Progress relevant to computing 3-D information from Image segmentation, for instance, cannot produce a meaningful
imaged data has been achieved by use of the fractal model. A partitioning unless it is guided by semantic criteria from material
test has been derived to determine whether or not the fractal identification and feature classification.

model is valid for a particular set of image data, an empiri- The KNIFE feature-extraction system will combine a data
cal method for computing surface roughness from image data base of recognition rules (using shape, texture, and context)

has been developed, and substantial progress has been made with recursive segmentation and other techniques to find and
in the areas of shape-from-texture and texture segmentation. label scene features. Initially selected image r-gions, based on
Char:uterization of image texture by means of a fractal surface image brightness and texture, are resegmented and refined to

model has also shed considerable light on the physical basis for locate recognizable objects (e.g., roads, fields, and buildings).
several of the texture-partitioning techniques currently in use The control process assigns initial labels for each region, and

and made it possible to describe image texture in a manner that then recursively analyzes those regions that might contain useful
is stable over transformations of scale and linear transforms of substructure. The choice of regions to split or merge is influenced

--. it
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by analysis goals rather than solely by statistical properties of and Wolf [1983)) is based on the discovery of a new perceptual
the image data. The segmentation and interpretation will thus primitive that is highly effective in locating line-like (as opposed
proceed at unequal rates or to different depths in separate scene to edge-like) structure.
regions, with differing types of knowledge applied at successive One approach to decomposing linear structures into
stages in the analysis. Objects detected by other means (user coherent components (Fischler and Bolles [1983]) is based on the 0
interaction or direct object recognition) may override the normal concept that perception is an explanatory process - acceptable
interpretation cycle, precepts must be associated with explanations that are believ-

W'e are concentrating our development efforts on goal- able: They must be complete (i.e., they explain all the data), .-

directed recursive segmentation and on related display, query, simple (i.e., both concise and of limited complexity), and stable
and editing tools. Among these tools are display of input (i.e., they must not change under small perturbations of either
images and segmentation maps; readout of region descriptions the imaging conditions or the decision algorithm parameters).
and relationships; and commands for interactively designating, A second approach to the partitioning problem, which S
splitting, merging, and classifying regions. also addresses the problem of qualitative matching of linear

The control process is a production system that looks for structures (Smith and Wolf [1984]), focuses on the concept of
applicable rules in the rule base. Such rules will be placed on simplicity as the basis for making perceptual decisions. Given
a prioritized queue of tasks to be performed. When executed, a set of primitives as the basis for description, each possible
they may query the user, invoke image analysis subsystems, or description of a set of data is evaluated as to how accurately
affect the behavior of the control process itself, it describes the data and how "long" a description is required

Besides the rule base and the input or derived imagery, the (a natural conversion from accuracy to descriptive length is
system will have two principal data structures. These are the provided). The shortest description is chosen as being correct.
sketch data base, and the prototype data base. These new delineation and partitioning algorithms have

The sketch data base serves as the system blackboard, stor- prduced excellent results in experimental tests on real data.
ing all the information relevant to the current image. The Our continuing work in this area focuses on theoretical, as well
prototype data base will be a semantic network with nodes stor- as performance, issues.
ing object properties and pointers to image examples.

The system is being developed on the \'AX-b-,'sed SRI Image
Uniderstanding (I') Testbed. The basis for the system's data
analysis capabilities will be the body of software currently ac- 8. COMPUTING ENVIRONMENT FOR
cumulated in the testbed and other programs now being devel- IU RESEARCH
oped. such as the S.LICE goal-directed segmentation system dis- Previous reports (e.g., Hanson and Fischler [19811) describe
cussed above. the VAX A/780 testbed environment we created for evalua-

tion, demonstration, and transfer of Iw technology. A
significant recent addition to this system is based on the

7. LINEAR DELINEATION AND Symbolics 3000 LISP machine. Documentation of this new sys- .-..-

PARTITIONING ter is still incomplete, but as noted in section four of this

A basic problem in machine-vision research is how to report (Stereo Compilation: matching), applications recently

produce a line sketch that adequately captures the semantic in- considered beyond the state-of-the-act on comparably priced

formation present in an image. (For example, maps are stylized hardware, have already been programmed and demonstrated

line sketches that depict restricted types of scene information.) (Quai 198]).

Before we can hope to attack the problem of semantic inter-
pretation, we must solve some open problems concerned with Al e
dirc-t perception of line-like trcture in an image, and with
decompoing complex nc work, of line-like structures into their Tc'he following researchers have contributed to the work ..
primitive (coherent ) cOmonu'tits. Both of these problems have described in this report: II, Baker. S. Barnard. I (t. Bolles. M.
im port:ant pr:ictical :as well ;is theoretical iimplic:it ions. Fischler. I.I. Ilannah , A.. IHanson, D.I. Kashtan, K. ILaws, 0,

For example. the roads, rivers, and rail-lines in aerial images Firschein, A.'. Pentland, 1_11. Quaml, G.B. Smith, T. Strat, and

have a line-like appearance. Methods for detecting such struc- lIt. Wolf.

tures tmut bt. general enough to deal with the wide variety of References
sh apes they ran assurme in an inage q they traverse natural
terrain.

Most approaches to object recognition depend on using the ST. Barnard. Choosing a Haqii. for Perceptual Spare. Pr.

information encoded in the geometric shape of the contours of ]EWE Workshop on Computer Vision: 1?presenfation and

the objects %hen objects occlude or touch one another, decom- 'ontrol. Annapolis, Maryland, IApril 1984) (to appear in
position of the merged contours is a critical step in interprets- Computer lidon. ;raphics, and Image Processing).
ti on ST. Barnard, "An Inductive Approach to Figural Perception,"

Xe have made significant progress in both the delineation Technical Note (in preparation), Artifieial Intelligence (enter.
nd t he patit ioning problems. ()ur work in delineation (Fischler SRI International, Menlo Park, (alifornia (1981). 0
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MIT PROGRESS IN UNDERSTANDING IMAGES - j

T. Poggio and the staff

The Artificial Intelligence Laboratory. Massachusetts Institute of Technology .

The gap between the image arrays and the high level descriptions that 0 Does not exist.
are required for inan) visual tasks is too wide to be bridged in a single 0 Is not unique.
step. Intermediate steps are necessary, leading to several representations
(f the visible world. Our work to date has focused primarily on the * Does not depend continuously on the initial data, or said another

initial representations of low-level vision up to the 2.5-D sketch that way, the solution is not robust in the face of noise.
encodes information about the 3-D surfaces and their propertiei We Most early vision problems are ill-posed in Hadamard's sense. There
are now turning our efforts to the integration of different sources of are three reasons for this. First, most early vision problems have no
infornation and to various aspects of the general problem of deriving unique solution. Second, their solutions do not depend continuously
a powerful symbolic representation of the world from image intensities. on the data. And third, most early vision problems are inverse
In this report we review our recent work on early vision, starting from problems, and we know that most inverse problems are ill-posed.
the perspective of regularization analysis which is providing a new and We have fimnally shown that several low-level vision problems such
powerful theoretical framework for most of early vision. In particular, as edge detection, motion measurement, stereo matching and surface
we will discuss our progresses in edge detection, multiple scale methods, interpolation, are ill-posed in Hadamard's sense (Poggio and Torre,
computation of motion, stereo algorithmx multigrid algorithms and 1984). 5
surface reconstruction across discontinuities We also describe sotne of Our optimism about the prospect of solving much of early vision flows
our work on higher level vision, including shape representation. object from recent advances that American and Russian mathematicians have
recognition avid the analysis of spatial relations anong objects and made in developing rigorous regularization methods for "solving" ill-
object parts posed problems. The basic idea behind these regularization techniques

is to restrict the space of acceptable solutions by choosing a function
that minimizes an appropriate functional. The mathematics involved
in regularizing ill-posed problems leads to choices that depend S
fundamentally on a physical analysis of the generic constraints on
the problem. It ha, ong been recognized that the identification of
appropriate physical constraints is a necessary prerequisite to the
formulation of early vision problems in a way that is well-defined and

1. Regularization: the New Approach soluble. In fact, some vision problems such as shape from shading,
surface interpolation and motion measurement have previously been

Until recently, researchers in vision had little common theoretical formulated precisely in the form required by standard regularization
framework to call upon. It is true that significant progress has been methods. This common theoretical framework allows us to apply ..
made in recent years toward solving some problems of early vision these rigorous methods to many other ill-posed problems in vision.
and implementing those solutions in working algorithms. But the
methods, the tools, and the techniques were specific to each problem 1.2. Standard Regularization Techniques for Early Vision

and had to be invenited fresh on each occasion. Early vision can best be defined as inverse optics. Its main goal can

A recent theoretical development promises to improve on this be viewed as the solution to inverse problems. For example, in many
situation. We now believe that most of the early vision problems problems, one seeks a solution -, given data y. such that Az = y. To
can be "solved" using regularization analysis. Ibis new approach apply regularization methods, one must first choose a set of norms M •
leads to a specific. powerful class of algorithms for most problems in (usually quadratic) and a stabilizing functional ItzII. The problem is
vision. and to parallel. fine-grained, local interconnections hardware then restated as the following variational problem: find a solution x
for implementing these algorithms efficiently (Poggio and Torre, 1984; such that functional (1) is minimized,
l'oggio and Koch. 1984). As we will see, regularization analysis is far
from being a one-shot solution to early vision. A physical analysisIA- i+ ld t, ()--.- '

of any specific problem and of its generic constraints are critically ".--I+ ".I,(
important. Examples of domains of analysis that are required and The first term captures the closeness of the solution to the data. The
can be exploited in regularization analysis are the physics of image second term captures the degree of regularization of the solution, -

formation and multiresolution analysis of images. In addition any and generally embodies the additional physical constraints necesay--
specific module of early vision requires an analysis of its specific to solve the problem. The regularization parameter X controls the
physical constraints, compromise between these two factors. The regularization techniques
1.1. Ill-posed Prnblems and Regularization Analysis that we are presently extending to early vision provide ways to

determine the best X. They also provide results about the form of

In 1923. lladamard defined a mathematical problem to be ill-posed te stabilizing functional ' that ensure uniqueness of the result and
when its ,olution rapid convergence of the computation.
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We have reccntly shown that our work on ie problems of shape Poggio, Voorhees and Yuille (1984) have shown (a) that die solution
from shading, computation of motion, and surface reconstruction of this problem f can be obtaincd by convolving the data it, (assumed

can be reformulated as instances of the main regularization method, on a regular grid and satisfying appropriate boundary conditions)

We will discuss some of these problems in more dctail in the next with a convolution filter It. and (b) that tie filter I is a cubic spline

sections. We have also applied rcgularization methods to the proolcm with a shape very close to a Gaussian and a size controlled by the

of edge detection, obtaining an explicit form for the optimal filter regularization parameter X. l)ifferen:iation can then be accomplished
(Poggio et al., 1984). We will briefly review this and other work in by convolution of the data with the appropriate derivative of this

the next section. Other problems such as stereo depth determsination, filter. The optimal value of ) can be determined for instance by

..*- and structure from motion can also be approached in terms of cross validation and other techniques. 'this corresponds to finding . - -

'- regularization analysis. At present we are working on several of these the optimal scale of tie filter (see Poggio and Torrc, 1984).

problems. These results can be directly extended to two dimensions to cover

In summary, the concept of ill-posed problems and the associated both edge detection and surface interpolation and approximation.
regularization theories provide a powerful theoretical framework for Ibe resulting filters are very similar to two of the gaussian-bascd
solving many of the problems of early vision. This new perspective edge detection filters derived and extensively used in recent years
justifies the use of specific variational principles for solving certain (Marr and I lildreth. 1980: Canny. 1983: see 'lorre and Poggio, 1984).
problems and suggests how to approach many other early vision The present derivation is, however, more general and rigorous: the
problems. Most importantly, it provides a link between the ill-posed filter follows naturally from regulari/ing the ill-posed problem of
nature of early vision problems and the computational structure of the numerical differentiation for regularly spaced image data.
algorithms for solving them. We are exploiting this link by designing In the area of edge detection, the problem of which differential
fine grained hardware to efficiently implement these algorithms, operators should be used after the filtering operation has been analy/ed

So far we have found two powerful classes of algorithms for solving theoretically and with computer experiments by lorre & Ioggio
variational problems of the type indicated by equation (1). They and co-workers (1984). In particular, they hase deri ed relationships
consist of filtering operations and of multigrid methods. Multigrid among several 2-1) differential operators and characterized the relation
methods are a general and efficient method for solving quadratic between the I aplacian and the second directional derivative along the
variational problems of the type of equation (1). When the data are gradient. In addition they have studied the properties of the critical
dense and given on a regular grid, a simpler method can be used, points of the differential operators and characteri/ed the geometrical
for appropriate boundary conditions: the solution can be computed and topological properties of the /ero-crossings (and level-crossings)
by convolving the data t, with a suitable filter (see Poggio and of differential operators in terms of transvcrsality and Morse theory.
Torre. 1984). hus. the structure of these algorithms leads directly
to parallel, fine-grained hardware with local interconnections of the
sort used in the Connection Machine. We are presently beginning to 3. Multiple Scale Analysis
explore how to implement rcgulari/ation methods efficiently in the
Connection Machine architecture.

As we have seen, differential opcrations on sampled images require
2. Edge Detection the image to be first smoothed by filtering. The filtering operation

introduces an arbitrary parameter - the scale of the filter, e.g., the
standard deviation for die Gaussian filter, which is strictly connected,
as we saw in the previous section, with the regularization parameter . -

We have recently applied regulari/ation techniques to another classical X. In computer vision, the necessity of considering several scales
problem of carly vision - edge detection. Edge detection, intended of filtering was realized quite early on. 'This was supported by
as the process that attempts to detect and localize significant changes evidence suggesting the presence of filters of several sizes in the
of intensity in the image can be regarded as a problem of numerical human visual system (Rosenfeld. 1982). More recently. Witkin (1983:
differcntiation (Torre and Poggio, 1984). Notice that differentiation see also Stansfield, 1980) introduced a scale-space description of
is a common operation in early vision and is not restricted to edge zero-crossings which gives the position of the /ero-crossing across a

detection. The problem is ill-posed because the solution does not continuum of scales, i.e., sires of the Gaussian filter (parametrized by
depend continuously on the data. the c, the Gaussian). The signal-or th- rest:lt of applying a linear

The intuitive reason for the ill-posed nature of the problem can be (differential) operator to the signal -is convolved with a Gaussian
seen by considering a function f(r) perturbed by a very small "'noise" filter over a continuum of sizes of the filter. Zero- or level- crossings
term b sin di. g(x) and f() + sinex can be arbitrarily close for of the filtered signal are contours on the x - a plane and surfaces

term~inOx. (x)andf~x)+ (in O ca bearbirarly cosefor in the x,ys,ey space. Witkin proposed that this concise map can be
very small c, but their derivatives may be very different if 11 is large eneche use t in proposed tat sciption beenough. This simply means that a derivative operation "amplifies" effectively used to obtain a rich and qualitative descriptioit of the ' '
hioghhisipy s tsignal. Ytiille and Poggio (1983a. 1983h) have established interesting
high-fiecquency noise. relationships between multircsolution analysis, the Gaussian filter and
In I-I). numerical differentiation can be regularized in the following zeros of differential operators. [heir main results ate two theorems:
way. Let the image model be y, = 1(x,) + (,. where V, is the data (a) Zero- and level-crossings of an image filtered through a linear
and t, represent errors in the measurements. We want to estimate ( a -n g re
f f'. We chose a regulari/ing functional Il'fl= f (f"(r ))

2dx, where differential operator of the Gaussian filter have nice scaling properties,

f" is the scond derivative of f. One regularization method would i.e., a simple behavior of zero-crossings across scales, with several
f is th sendacon hattractive properties for further processing. Zero-crossings are not
be to find a unction i that minimiies the functional tP1 This created as the scale increases. 'the nice scaling behavior is a
method assumes no noise in the data, and is equivalent then to using characteristic property oif the Gaussiant filter and only of the Gaussian
interpolating cubic splines for differentiation. Another regularizing filter (see also abaud. Witkin and onutda, 1983).
method, which is more natural since it takes into account errors in
the measurements, leads to the variational problem of minimiring (b) The map of the zcro-crossings across scales determines the signal

(see Rheinsch, 1967) uniquely for almost all signals in the absence of noise. [he scale
maps obtained b. Gaussiin filters is thus a comple r'preswitaltolo of

S the image. This result ipplics it) ccl-crosNings of an, arbitrar) linear
S(Y - f(z,)), 4 J (X"(z ))d. (2) dilfrential operator of the Gaussi.an. sice it itpplifcs to litictions that
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ohicy live diffusion equation (the /.eiO'eftismings are thcn a uniquc (we denote this comprnpiai by the function vIi (a). where a is a curve
chariacteri/ation modulus dic nll space of thc differcntial operators parameter): and (2) at velocity field is computed that is consistent
and prourded thcrc arc at least two Icr-crossings conttoutrs). Withi I L(a) and which exhiiit the least amouint of variation along
The first result sheds sonmc light onl dhc properties of' /cro-crossings the /cro-crossing contours. In particular. thc velocity field V(s) is
and lesel-crosngs at different scales. assuming the Gaussian filter. computed [hat minimizes thc measure of variation given by the

*It also suppoirts the use of the (Gaussian filter in a itiulti'csolution integral f l1 .)ads along the contour (ibhis is an instance of thc second
edge detection -A-herne. 'I'le second result implies that scale-space regularization method described in Iloggio and Tlorre. 1984). E'xcept
fingerprinis are complete pi'itnitivcs. that capture the whole information In the case of an infinite straight linc. there exists a unique velocity

* in the %igiial anid cltaracteri/e it uiniquely. Reconstruction of thc signal field that minimizes this measure.
is. of cour-se, not the goal of early signal processing. Symbolic TIhis velocity field algorithm has been implcemcnted and tested on
primittses mutst he extracted from the signals and used for later both synthetic and natural images. Thew synthetic images consisted
processing. Subsequent processes can therefore work onl this more of two types: (1) ideal contours undergoing a known motion, incompact representaion instead of the original signal (see Asada and which the measurements of v-i-(.) were computed analytically, and
Bfrady. 1984). (2) nritural images undergoing an artificial movement. It can be shown
Fihe second theorem has% theoretical interest in that it answers the analytically (Yuillc. 1983) that the computed velocity field of least

question of what iiiformation is consesed by tire ediges identified with variatioit will be equtiialcrit to the trite pi.'jcctvd velocity field when
/ero- and les..l-erossings of' tultiscale Gaussian filtered signals. It the following relationship is satisfied along the contour:
is fu itherniore interesting dhitl Oits comipile representation happens
to coincide ii ith the baic s berni for edgte dletection discussed ()2

earlier. From this point oIf view it cain be argued that the fingerprintT- =0
representiation make,. explicit exactly the Infortmationi that is iieededor
onl physical Piouiids. i.e. it imakes explicit edges in the image. We Tle~- is the local taineciit vector along tdie contour. If we assume
aic niiw attempting (H. \ ioihees I. Poggio and A. Yuille) to attack orthogiaiphic projection of the scene onto the image plane, there are

*again the problem posed hy tire primait sketch - of laheling changes at least two general classes of moition for which the above relationship
in Intensity Iii terms of [hi. uiidcrlying surface ptoperties -exploiting is saifid (1) pure translatiomn of arbitrary objects through space,
the use of fingerprints. I hie idea is to identify a smnall niutmber of and (2) irigid rotatioin and translation of three-dimensional objects
primitive image intensity features - such as step edges and roof whose edges are straight lines. Fm1rpirical analysis of these classes of
edges - and partially label them in terms of the properties of the motion verities the correctness of the velocity field derived from this-
underlying physical surfaces, distinguishing fo6r instaiice shadows firom algorithni (llildreth 1984).0
occlusion boundaries. [Ilie initial success of a similar attempt in the Frtecs fntrlmto eune; twsfudta hr a
ri of will d sibec laers encoaing byAaaadBay 18) hce conisiderable error it) the measurement iif the perpendicular velocitywe wll dscrie laer, s enouraing.components, v-1 (a). Ib is led to a reformulation of the algorithm
It may be asked ait this poiiit MhA the correct sequence is fur the two tn such at way that the computed velocity field only approximately
stps of difrrtiation and filtering. For linear opcratt:'s order satisfies tII(a). In particular. the algorithm ininii/es the following
is rif coiurse iminatirat. sitice they commute. 'Ibhis is Inut Oie ease expression:
ht iionfliniear opecrators, surch ats thme d irectio nail dernative along the-
gradient. I lie regularizationi argumnirt for the filtering step implies C7 V
that filtering at oine scale must precede die di tkrentiaitiiin operation.] j, .u()- 1
'thle computation of diflerent scales requires filtering at at range of f f

resolutions ilicr di lferentition. th1 e reaison is that the theiiremis of
't'ille auth loggiu I l9S3a. 1983b) hold true even for the Idenltity where ui I (,) is the uinit vector in die direction perpendicular to the
operator. butl are nit necesily salid if filterint; is perforined before contouri. I lie first term describes the %araioi lin the velocity field.
at noinlinear dillkucuita optitio Ini pairticular. (jauSiami Scalintg after and the secoind describes how well the compuited velocity field satisfies
tire nonlinear directional dei.it a i. long die gradiit does not save thc image measurements gisven by I, L .,). I his for tuldition of the -

at nice scalinig behavior. 'ibus fitevring -us a reg li iing operator must tmotiion mleJAsu renmt cii taition is. precisely (if die type required
he performied first at one scal hi. itbhering ait different s;Calies miutst by %tand,ird regulamitiom tiethods. as shiiwn earlier inl equation (I).

* be performed ifter the differentialf operation. For linear differential E-mpiricalf studies bave shown that velocity field algorithms derived
opcriatrs. this is equivalent to i niultiscale filtering either before, from this formulation aire tar inure robuISt in the preseince of error in
af -ter. uir together wihi thi. dilleuiunti it operatiomi (e.g. the L aplacian the iniitiail motioni nieaiuremnnts derved f'roin the chaniiging image.
of the Gaussian). For the case of aerial phtiograiphs, the eniitre sAce call he treated

essolmliafas a sinlgle Sourficv. iundrgimig a simu-fc uiiiiutii. the relaitive
4. Corn pt at ion f Mat ionIno i emuciut of hjects )I) thre grooiiid is 'cry sinal coimparied to their4. om uttin o M tin erlifl uisplhilecit WilisQpect) the i rfl.11nC. Ill geieral. liiieser.

ascenec %ill conmtain mituftiple obijects tmdergoing dufferent miitiions Withi
In rtse area of visual motion unalysis. we hive developed at /ero- sharpl discomntiniuities ill the %elgicmy field along object lioundamrics. 't he
crossiiig dt001(110C(1CnoUI bsed muethod for ci inipuong die pioijected tw o-dimensioinal deetiio'teeiicmtit iss espcci ill yimpit 'tamt for .ilgo'itmmns

- ' e~%locity field friont a chancing iuoay'e. )I 'e uithod iflows art sutrary sorb as, the oime dtesciiu ed liceu e. bIicfi compute .I smooibly siry ing
ttiree-dmmensionail sitrfaces ii mdeu going generail motion in space. ' Ie piattern of moset. We fit1\ hC goil iito CsplIO Ire "II posfie.lgoritils
iicistiremeist of iiioiion is. Iii geiicrail. atn l- posed protbleim. because it detect inotio n discontiintuitics Muc hicl J IIrcm 'i sodden chaniges inl
die solution is, not uniqueC: there are infinitely many two-diun-insional (lie sign or niqPiiiiude ot' tie Iiiial pcqueiidicul.ir comiponents tif
sefiicity fields consistern with) a given dynamic imaige. 'tbis problem %efocity . I liesc ilgitfuuns plo de Ili uidi-imm of tire location uifthe
emi he ippro.ichied tisig thre stuind teicmqutes of regiulari/athon discontuuit)ieCS prior to die viniatiin of thre mmiesouients oft1, 1 (.,)
,iutl ihs. metiuonted cirlier (see ilsi Puigtio aid I orre. f984). 1 Itidreth to c:ompute Lhe hill iwo'diicrsioil %efoco\ field. I lie inciurpora1tion

I fy .ffig klCVefoprdt .u1eivi field .1lgoritfiim viuisisiiuug (if twi (Tain if' i iciiitiydeteCtion1 11oruthiui us itfi A th[le siifQqiuent sliicity
steps: 0ll iniii.il umigtiogi uiiii cmlemis are idc am the locations of field algorudini Ati lead ti .u mire rohi.. uiue.usuur11cunit of' miotion
AI ONM v IsIucS. aMid Jius ide the cilumuplienit Of'00I 'd ity i the direction for scene,., i iultiple objects utndergoing dfflnl~' nuovemueni .

(iif ifu m.:iilh mni,,0 i~t~ Mf !lie /cri'Juussiiig ctoturs



5. Stereo Algorithms point search. instead. a single correlationr measurement is made at
a test disparity (provided its input) arid a determination is made

We arc presently dcvc!oping a rcgularization solution to stereo as to whether thc corr-ciation peak can he near by (within ha~lf the
inatching, about which wc will report soon (Yujilc and Poggio). HeIre cxiciiatory diameter ofthei IXJG operator) . If thcrc is a positive result,
we will describe two other very recent approaches to thc problem of several additional correlation measurements arc made at neighboring-
stereo matching. 'I lic tirst algorithmi. which is a cornsiderable eVOIlution disparitics to dcterrnine tie slhape ;if the correlation functioni over the

~ o itie oiriginal stereo theory of Matrr and Poggio (1979). has bccn test disparity. F-rom this anl estimate is niade for the disparity at which
developed by Nisbahara (1984) with the goal of achieving a high ccorltnpakrcs.lh nncofienodecoesrm

-h the work of G. Poggio arid Fisher who described a class of neuronsspeodt nowric rrlctrint stre~ro mitelter Thbis rching %,herne. ba1 i rmtsVsa otxsoiiict ite ero ardsaiis
on partchwisc correlation (between filtered images), can be shown to i rmt ita otxsniiet ihrna rfrdsaiis
be a special eawe itf a inore gerrcraiI variational principle that can be The principal surface paranreter is distance fruom the cameras which
derived with standard regularii/ition methods. [Ihe second approach manifests itself as a translatiuonal disparity between corresponding
by Yuille arrd Poggio (1984) leads to a gecralie/rtion of the ordering patches fromt the two images. We are alsor able to correlate against
t'onstrairi (Blaker, 1982) that captures several purwerful constraints for parameters other than transliniral disparity. For example, art elevation
solving the correspondence problem of stereo, gradient onl the phlysical surface viewed can be rmeasured by ecorrelations

against the comnpressive anid shreair dirtrimns. I hese distrortionrs arc
5.1. A Fast, Noise-Tolerant Stereo System introduced between the left and right imrages by hori'urrral and

Nishihara has developed an approrach to solving the binocular-stereo- vetcllvaingdets
matching problem which places special emphrasis onl the practical 5.2. A Generalized Ordering Constraint for Stereo
issues of norise tolerance, reliability, and speed. It is struongly inliocrced
by Mart and Pviggiir's zcro'crrssirg theory. but differs front recent [he pruoblem of stereo matching is ill-posed and underdetermined:
implementations in the way iervr-crossing informatioin is used to drive constraints are needed to inarke the SurLllr utnique. and toi reduce
the matching and in tie product the matcher is designed to produce. the search prioblem amuing poissible matches.

Four design objectives have guided Nishiltara's study. '[be first is noise Nlarr anrd Poggiur (1979) orriginrally identified twor cuinsiraints: (I)
tokfle(i. We want tvi understand lriw matching earl be accomplishred uirnes. that is. air clerrerrt in ureicmange in general vonly
in the presence oif moderate to large noise lev~els which occuir cirriespirrd% with ai single clemnent in thre oilir ri.,ge. and (2)
an ' timc surface conrtrast is lorw comrrpared with sensor and inter-image ioiliitioti . that is. stereor dispairity \arres srrrurothly alrmrist everywhere
distortin.;. '[he seconrd objective is tor achieve -omrpueent perjbirrnnce in the irninge. I'lbese conistraints ire po w erful bccainsc threy do not
for at least one uif thie three kinds (it' stereo mecasuremnrts-volume depend tin tie specific prorperties if thie scenec but (in generalS
occupancy, range. aird location irf elevaition disconrtinuities (Nishihara prorperties of thre stereo grnetry. - ~rrr arid l'iggiri (1979) prorposed
and l'iggio. 1984). [1he third objectivec has been to operate at a at stereor rmatching arlgoirthmn, fuirther dei~clurped by Grimson (1981.
pratrcu specl rising existing comnputer technolorgies. The emphasis in 1 984). which rirroprrres the orriquienes arid coinuiity constraints
this woirk his been ti streamline the courtation to increase speed tir in~itch ierur'crossrrg dew-ripiirs comurpuited at different scales.
and use processing resources efficiently. I[its has fuorced a careful Ani rrng conirdiil alring n'pq;'rrir ines has been explorited. both
conridueration Oif tie relative cost of producing at measurement in implicitll and explicitly. in severall corrIter algriirns for stereo

different wais rrvs its coributimn to the [trial product of' the iriatcbirig (for cuarrple. llaker arid Bloiid. 1981) its a special instarncc
algorithm. ifth t~eConrtinuity conrstraint. Frpipurlar lines in the two iritages arc linies
With these design conisideratioins as a base. Nishihara has% designed oin which cirrresponrdrng Prlits lie I hie prorjectirrrs rrf a pint P in

* .r~~ birolr Stlir-eer-rnitclinrg rlgrr hi for roakiris rapid v isiral range space lie tin the planre defined bi, P arid the twoi carirra fyci and,
-- meniasuriernris in rnoisy irmages. '[is technique is develirped for as .r corrsequence. i the twir lilies defined by tire intersection of

applicirirm itr prrrblemis iu riobortics %%hrere nirise torlerarre. reliability, this plane with the m rr iiage planes. I Iiis iripl rev that the mratching
* ~~and speed arc piredoinarit issues. A high speed pipelirred corivolver proiblemr can be reduced it) a orre dr ioinal searclr ifthre e pip lr

for preprocessing itrages and ir urrstrnwfnrerj li/i technique for are krinm. Most a-lgirritbins assumei that the epipnrlar geometry is-
iproirsrg signal qqarlity are intrirduced to help ernha~nce performance krmurwi (frornt a kriown camera geurnietry) and thiat the images are

toi meet the demrands oif this tausk duomrain. I'lese rrptimi/atirrns, re~gistered. Fuurtheriire. the ordring rif edges uir otrher features is
hnrwever. aire nun suficticent. A clorser cvairninaition oif the prorblems usurally preserred h% steriro prorjectionr along eprprrlar lines (that is.
encouintered suiggests that brrrader in terprclaitioins rfbrrtl tire Oibjective if feature A is tor the left Of feature It in thie left stereor imarge. then
oif birilicut lar stereor and iii Elhe /ero-criissinrg thieory oif Marr and this spatial relaitiornship is rnitined ir the right %tereir imrage). [hec
Poggiri are reqirred. Ii tits research has been restr icted tor tile problem Oirderinrg coinstraint airing epipirlar finres fiui iris trim the continuity
if riig a sinrgle p rriiu s e sourfarce niri cuement. For example, to (if sirrfarces anrd Elie issiumrpion of itiact ' v As ririgi uan I suggested
deterineri whether Oir ito a specified rilmne of space is occupied. irs l~nker ( 198?) the chferi r c' nstriint is % ii ned iii some situations

to iuncastire the rarrrg it)r a su rfaice at airr indicated imarge loicatioin, (in tile '"forbidden /one''). I lie fo rbridden /one aissociated with each0
our tori 'trrrrrrr the des itirin gradient art that positionr. Itt this point tiC the %isible surface is a set of points in space that would
framework a subtle hurt imnportanrt shift is mnade fri tire explicit hime irmirges r irritirig tire rideirig cririsuaint. If amn potint in die
vise of .'ecit-cissirig conitouirs ( in baiid-paiss filtered irirages) as the forbidden zone woulrd be conniecied toi tire first point by an opaque

* ~ciernerirs rniatced betweeni left and right irrrages. to the vise rif the suirface the lwor images wriuld "see" Oi~posite sides of' tie surface.
signs Of the L0ns olutrnrn betwee cci/crur-crr ssi rgs. With this change, a '[his iblin-iig irrixliriri carn be exsplit ied to redhuce the coimplex ity -

sirmp1cr rig tilin is oibtairned with a redUCed Wersi tryity to norse and of the search fur iiichiirg teilt ces.. rid to eiinate false: matches.
at rnrre predicitible behas or. 'I lie PR ISMN sy steirt incoirporrates this .I lice ire, bowec cr. sittfun tins in vs i cl ifie inrge a re niot precisely
ilgi rithin vi ru the rinstrucr rred brht itch iiique and at high speed rc-ciux. I -rrtlemir c. pbs iciledjgces irsnhifererit I tw ir-dimensioral

* ~digital curry ir. It hais beenl uiSCd stircessl i by borth R. Blrooks (ai i ip,,it that is nit explit ed by the epiprilar oirdering coinstraint).
arid K.- I kicdi i ,r a sensour inr pith planinrg and bin picking systems It is tireefrre naun ii liio.ask w icrher tire oirdeniring conrstrarint can be

* rcsrpcctivelv. ferrcr i.'dco aw-ay t rrirr epiprilar lines. Yrrriltc arid l'rgginr (1984) base -

* lir~~Fe PR ISM %%actni incorrporates an eftierr i nrrdvre for detemin ing shown Elm firt is indeedi poissibrle tri gerrhc de ie uri-dotri rig constraint.
tlire twit-dirmiensionran d ispicetirit .n. -btsy ei patches r ii of the

- I C~lf arid 1ir1it v iiT19s. I Iris nra'ic/fii moinre dries nuol dio point by
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'rhe analysis of Yuille and Poggio considers a simple stereo geometry: representation of the surface in depth, and the optical flow algorithm
it begins by proving a simple ielationship between the two images can handle (low discontinuitics at known occluding boundaries. Ih"c
of a 31) curve that leads to a gencrali/ation of the classical ordering mulhiesolution algorithins have heen tested on synthetic images, and
constraint. This relationship allows one to identify special points in all three are significantly more efficient than the single level versions
the images that correspond uniquely to the same physical point in the (between one and two orders of magnitude).
object curve. The (cncrali/ed Ordering Constraint (GOC) implies bis approach provides a general. efficient and powerful method
sescral of the specific constraints listed by Baker ct al. (1983) (see the for solving all vision problems that can be formulated in terms
crossproduct constraint). Mayhew and Frisby (1981) (sec their figural of quadratic regulari/ation principles. We are now considering the
continuity constraint). and Ohta and Kanade 11983), [he ordering eventual implementation of these multiresolution algorithms on our
constraint breaks down when the object curve enters the forbidden Connection Machine.
zone. From this analysis. Yuille and Poggio Outline an algorithm
based on matching contours. From a single contour the algorithm
retrieves the viewing parameters and unambiguously matches points 7. Regularization Theory of Discontinuities
along the contour using the genciili,ed ordo iig constraint. Tiffany •
is now developing an algorithm based on this constraint. As we discussed in section 1. many early vision problems can be

characterized as ill-posed problems and treated by regularization
methods such as that represented by eq. (I). A standard class of

6. Multigrid Algorithms for Regularization Analysis stabilizing ftinctionals are so called Tikhonov stabili/ers that typically

impose smoothness conditions on the possible solutions (e.g., restricts
them to be members of Sobolev spaces). Ihis is sufficient to adequately

6.1. Background and test report of surface reconstruction solve a number of ill-posed problems in physics, and it applies in
algorithm an approximate sense in vision inasmuch as the coherence of matter S

tends to produce smooth surfaces relative to the viewing distance
We have investigated the computation (if visible-surfacc repre- at certain scales (of course, regularization theory is not restricted to
sentations. and rel.tcd problems. AN was described in previous reports. Tikhonov stabilizers!).
we have considered the ellicient reconstruction of visual surfaces fromscattered depth constraints using mulhircsolution iterative processing. A notable complication which arises repeatedly in early vision
[he theoretical basis of the schemes has recently been tested on problems, however, is the necessity of dealing with discontinuities.

several sets of data - on data which was generated synthetically, on I)i";ntinuitics are ubiquitous at all stages of visual procesii-g takloi;ig
natural image data preprocessed by a photometric stereo method and part in the representation of images to the representation of surfaces.
two stcreopsis algorithms. as well as data [I un Brous laser rangefinder The stabilizing functionals used so far in early vision problems cannot
system (lerzopouhs, 1984a). The results of this extensive testing, deal adequately with discontinuities, since they offer no control over
coupled with the fact that the surface reconstruction code has been smoothness. Our recent work by crzopoulos, Marroquin and Poggio
employed in other research projects in the laboratory, attests to the standa reurm al n er vison.

computational efficiency and robustness of the surface reconstruction standard regularization analysis in early vision.

algorithm. 7.1. Discontinuities and splines under tension
6.2. New multiresolution algorithms Terzopoulos is extending his earlier analysis of the discontinuity - .

As *,is argued by several authors (Grimson, 1981: Brady and Horn, problem in computing visible-surface repreentations. lie proposed
1982 and especially Terzopoulos, 1984c). many early vision problems as a physical model of visoal surfaces the thin plate surface under* tension," a natural two-dimtensional generaliation otf the well-knowncan be posed as variational principles. This is subtantiated further sin tiner t ension a gentition is essellynby Poggio and Torre's (1984) view of problems in early vision spline Linder tension. Since surface reconstruction is essentially an..-
as natcn atically ill-posed problem which can he transformed ill-posed problem (the available visual constraints do not uniquely - -
astmawhematiellyaill-posed prbciles wh egularizaon ec qued. determine the surface, see Poggio and forre. 1984) this class of
intt well-poscd variational primciples by rgilarization techniques, surfaces can be viewed as defining a stabiliting functional with -

An attractive feature of these types of variational prinuciples. once smohespoete htcnb•otoldaporaeya et

discretited, is that their solutions can be computed by local, iterative smoothness properties iso at can be controlled appropriately at depth

algorithms, which can be executed by many processors arranged and orientation discontinuities. Details and generalizations to other

in locally-connected networks or grids. Given only local processing ill-posed vision problems are currently under analysis.
capabilities, however, the essential global properties (e.g. (piecewise) 7.2. Beyond Standard Regularization Methods
smoothness. consistency, minimal energy, etc.) of the desired solutions
must be satisfied indirectly by propagating visual information across A related approach to the same problem is being followed by
grids, through iteration. Substantial computational inefficiency can Marroquin and Poggio (Marroquin, 1984). and is based on the work
result since grids can become extremely large in machine vision by Geeman and Geeman (1984). The surface to be reconstructed is S
applications. Multiresolution iterative processing can overcome this considered as a sample from a stochastic process based on a Gibbs
inefficiency, as demonstrated by the application of multigrid methods distribution (that is. it is modelled as a Markov Random Field).
(llackbusch and Trottenberg, 1982) to visual surface reconstruttion. 'he reconstructiun problem is then equivalent to that of finding • -'.- 7.

1:xploring further the idea of applying multigrid methods in early the best (Bayesian) estimate for the surface, given the information , - ...
vision. lerzopoulus (1984d) has developed and implemented efficient provided by the observations (which themselves may be the outputit
multiresolution iterative algorithits for other early vision problems; of some process. such as stereo or laser ranging techniques), and
in particular, the computation of lightness, shape from shading, the a priori knowledge, both about the properties of the surface
and optical flow from images. These new algorithms are based (piecewise smoothness, for example), and about the geometry of the
on the theoretical work of Ilorn and his colleagues; however, discontinuities. if they are present. It is interesting to note that this
there are certain interesting novelties aside from the fact that the construmtion leads to a mathematical fiormlation which is very similar
algorithms compute consistent visual representations at multiple to the ones obtained from the standard regulartzation techniques.
scales. Notably, the lightness algorithm is locally parallel and iterative The best estimate is chosen as the one that minimizes a certain " -
whereas Horn's involved convolution with a (global-support) Green's "energy" function that consists of the sum of a term that corresponds . --

function, the shape from shading algorithm works in conjunction to the agreement of the estimate with the observations, and terms
with the multiresolution surface reconstruction algorithm to provide a

*. - .



corres.ponding to the constraints imposed by the prior knowledge contained within the cover of some other spine. An intermediate
about the nature of the solution. I his should not come as a surprise, level proides a symbolic decription of ,Al the primtitie spines.
since Ilayesian estimation is a regulairization method: the functiunals 1ic d. ' I .. 1taLion has bload ..ope. it miices to that I loood ci
obtained by this approach, are, in general, non-convex, and the by Ilollcrhach (1975) for globally s)mmnetic shapes that have no
computational problem of finding their global minimum is, therefore, attached subparts.
a complex one. Although there are many geometrically piiisible descriptions of any
At present. we ha applied tis technique to the problem of given shape, the human visuaI system is usially quite delinie about
reconstructing a piecewise smooth surface from sparse and noisy the one that is perceived. Indeed. ambiguity often his to he pointed
data. and we hase obtained encouraging results (using synthetic out for us to realise that it is possible. I-or example a square that has
data). The algorithm simultaneously detects die di&continuitics and a small square removed from one of its corners is rarely perceived asinterpolates smooth surfaces across the appropriate regions. For dense an l-shape, or vice versa. BIagley has insttigctd this problem for
data, the same algorithm may be used for edge detection and image polyhedral shapes using smoothed local synietriics and a database
segmentation tasks. of models. I Is program generates descriptions that accord well with

human perception. Metric information is often important for choosingThe problem of global minimization of the corresponding energy between ahernative descriptions of a shape. Bagley's program is alsofunctionals, is currently being solved using the method of simulated betwee rn descripiomislofi a shape.
a stochastic chnique rccently deseopcd by Khkpatrick capable or deisribing overlapping shapes.

et al. (1982). which is ef:ective, but computationally expensive (at [he various implementations ofsmoothed local symmetries result in a
least on a serial machine). Currently, research is progressing, aimed semantic-network-like symbolic description ofa shape. We have begun
at trying to find algorithms that are computationally more efficient, to insestigAtte the usefulness of this representation for perceptual goals
and extending the range of applications of this approach, other than inspection and recognition. In particular, we have interfaced

smoothed local symmetries to Winston's ANALOGY program (Brady,
Agre. Braunegg. and Connell. 1984). I lie resulting program can be . S8. Shape Representation and Object Recognition taught to recognise simple tool shapes. It can learn to recognise that
a tool is a hammer yet learn that there is a functional hierarchy

*At a higher level we are actively developing several approaches to of hammers. Our goal is ito be able tm reason about objects by
shape representation and object recognition. Though the primary relating their shape to their function (see (Winston. Binford, Katz,
iiterest is in the field of robotics, we expect that our research in and Lowry. 1984)). Suppose one's goal is to drive fine tacks into
this area will have a significant fill-out for image understanding in upholstery. We know (somehow) that it is a bad idea to use a typical
general. We will first describe the approach of Brady and coworkers framing hammer for the job because it tends to break tie tacks
to the problem of computing, representing and exploiting 2-1) and and destroy the furniture. A specialized tool called a tack hammer -
3-1) shapes. We will then outline a system developed for object has been invented: hlt one might not be aailable. Based on a
recignition in robotics by Brou. We will conclude with an algorithm suitable model of hammering and of tool shapes, one learns die
for recognizing polyedral objects from sparse sensory data. due to trick of grasping a screwdriver by its blade and using the handle to
Grimson and ILozano-I'erez. drive the Lick. Our program is almost capable of such reasoning. We

propose that higher order geometric structures based on smoothed8.1. Smoothed Local Symmetries, the Curvature Primal local symmetries directly support reasoning between structure and
Sketch and Reasoning About Shapes function.

Brady and his colleagues have investieated the representation of two We have continued to develop a representation of three-dimensional
and three dimensional shape. Sm(oothed local symmetries (Brady and surfaces (Brady and Yuille 1984: Brady. Poice. Yuille, and Asada " . - -
Asada 1984: Brady 1984) represent both the hounding contour and 1985). llie work has both a theoretical and an empirical component. . %
regiin subtended by a two-dimensional shape. Brady and Asada [he theoretical component is a study of classes of surface curves . •.
(1984) have developed a mathematical analysis of the smoothed local as a source of constraint on the surface on which they lie. and as
synmeir) representation, and constructed an efficient implementation, a basis for describing it. Brady. Ponce. Yuille. and Asada (1985) . -"
-xtensive experiments base been carried out on images of tools, analyze bounding contours, surface intersections, lines of curvature,

leases, and animals to detenine the stability and sensitivity of and asymptotes. [icy develop a novel proof of. and extension to. .
the representation. Brady and Asada's implementation performs the a recent result due to Koendcrinck that shows that the sign of the
following operations: first, the significant changes of curvature are Gaussian curvature of the surface at points aIlng the boundary curve
found at a variety of scales: second, the contour is approximated is the same as the sign of the curvature of the projection of the
between successive curvature changes by quadratics. and the spines boundary curve.
are computed between pairs of quadratics. lie spines are displayed Tlhey also prove a theorem about generalized cones that relates surface
as curves" but they are in fact represented internally as descriptions curves to a volumetric representation proposed by Marr (1977). Marr
of the parameters proposed by the mathematical analysis. considered generalized cones (Brooks 1981; Brooks and Binford,
The multiscale representation of significant cursature changes is called 1980) with straight axes. lIe suggested that such a generalized cone is
the Curvature Primal Sketch (Asada and lrady 1984). Curvature effectively represented by (i) those cross-sections. called skeletons for
changes are detected. locali/ed. and assigned a symbolic description which the expansion function attains an extreme value; and (ii) the
by the multiscale patterns of curaturc and curvature change peaks to tracings, called flutings, for which the cross-section function attains
tie idealized responses of a set of models that includes corner, crank, an xrmum. (A tracing is the sp"ce curse formed by a point of the
and smooth join. 'he mi dels are analogous to those investigated by cross-section contour as the cross-section is drawn along the axis.)
Marr (1976) in the original Primal Sketch. Brady. Ponce, Yuille. and Asada (1985) show that if the axis of a

generalized cone is planar, and the eccentricity of the cone is zero,
Hleide (1984) has based an alernative implementation of smoothed then (i) a cross section is a line of curvature if and only if the -Il
loral symmetries on an efcient algorithm developed by Bookstein cross section is a skeleton: and (ii) a tracing is a line of curvature if
for the symmetric axis tramnsfiirm. He has developed a hierarchy of the generalized cone is a tube surface (the expansion ffunction is a
symbolic descriptions of a shape that has the raw parameter values of constant), or the tracing is a fluting.
the contour and region at the lowest level, and a symbolic description 'Dc -," wor ,,
of the major spines and contours at the top level. lhe major spines The experimental work investigates whether the information stggested
are found by smoothly extending spines whose descriptions are by the theoretical analysis can be computed reliably and efficiently.
sufficiently similar, and by subsuming spines whose covers are wholly Brady. Ponce, Yuille, and Asada. (1985) demonstrate algorithms
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thoa compote lines of Co rs Atur,, ol a jC i.Iissidl tiloodtied) surface: and so rface oocant-iton of' 'small pitches on a sui ice. I -caus of'
dc (li inc planar patchecs anid iiiiibilic Iiinus: extraict axes of sourfaces k uselct I ii es~~f~i riet.tllslifri CIln

ot rs oln o andtub ',ufacs. Itic epot pelmili ~iryresb~s nll adiIC tCould he used to ohtii a thc data. InI order to recognize
adaping the curs itt re i nil 'sketch l .o i iiiis of' Asada and Brady k OheIs tesiis'sno>smtcd--
(1984) ito detect and describe 'Su (h!Ce intersections. isocsoln~iojci iesee h pnenoyI ace

Pl 1.1Iiis pOl~ idr'i nOidel 0t thc knotA i objeCtS. h11is ag up; Io Six
-8.2. Object Representation with EGI degrees ir' freedomn relatise it) the seiisi (three translitional and

threce ioi.itioiial ). We stiess that the objeci ineed not he themselves
VWe histe used the lhtended Gaussiaun Image tlsGI) it represent pol> hedral. oinly that they cin he so modeled to within sonic bounded
oie.ts .ind ohtaill their mic.itiott i dcpih mnaps, (Ito u 198.;). Mi error.

- .approich a kes it possible to separitec the t ranslaion and rotational lcapohoertsb exmnghyteesbutains
coniponents of the OtijCL tpOi 510011 I he I CI is (bra led by Mapping Icjprahiprle ~eaiiia iptee hu a ig

-surtoce infotiirion ou nto .i unit sphere. ( lie s aluc assigned t(o each cwesnedpitadobctSr'cOf ts.exm igal
- oftheectrs d(inthesphcc i co d t di solaceare ofthe possible assignments of' Nenscd points to object sourfaces is inife'isihle
of ~ N th nkoasr o h skr is tt i o csiio uaratee that for all but to. lal cases. I1 e> tii to i iroac is idetitf ins simple,.oibject i aitli normral vi nk~k' hoe psto urnesta riihust constraints that aill eff~ectis dy iind tbl iaIsl rediice tie si/c

this representatioti is un ique fo~r cacti ciovex object. Un fortunately of tlie portiiias of' the search space tiat oiust he ex'plicit> explored.
amiui(ties arise whlen the objct is ubon -convexo but. in atiy given We Las eF(ouiid (Cirinison and I o/aro-P'e/ 84) that ite\ry effectivc
applicaion,' it is unili kely that iss o non -cons c objects will liase thc set oif ciiordinatC- framfie- indepenident coiisti aints cati he derived by
sam111 I (; A C \1 ) Nsln stmKiswdi on con'strictis e solid geoiiery w as conisiderin lo~ ical conistrin(ts onl: (1) distances between (beces. (2)
hiiil it, decrcibe objects ft the i i.hinui (Bitouii 1981).I tie program angles beta ea face normals, and (3) atieles. ri laise toi the surface
obtains thie pilili li edird represcata ion of thle object aiid constricts the norinalsiof s eetors betweent seiised pints. 'I hese ciinstraihIits tuirni OUt

I-6; a Iiumatically. tol he very etlicient in reducing die nul~toe Of Feaisible iiteripretatioins-
(lhe orienatintit' the ohject c.i he ((hi i nd from tlie depth nap of the se .nsiory data, Usually to a tinique in terpretationi. midiilo partial S

* ~b% forn i n I GiI of the depth daita aiid coip long it awithi the FI ~ symmetries of dic object.
- if the ohject,. The constrainits have ses-eral ads-antages. They are coord ina te-frame-

- Ni,,as lrnplecenittk prioblemls ha.d tol he addressed before thc indepedent, so that die obhject is recognized independent of any
* suiccessfuil ililcliieiitmIion (If the tcmrpa.iioi. I he first of thiesc peculiarities of the sensior's coiordinate system. In other words, thc

is le iteral ieprsenii in (f iic ICalL i ike~n ge hat objects arc recognized hy matching intriiisic shape ctharacteristics.
-~~~ is Ifc ieiiii'l\ sted cciiii .i td CI-iI. l ariske piaeuthis Only after all feasible interpretationis are foouid, does the algorithm

a ( ome ' s~ni 1 rg oldSt ~~I5 (~iti iita a d ra spere A explicitly silve for a legal trautsformatioii from model coordinates
gcoesc epoenatondeiedfo te coalidrn ,I. tenseeced to sensor cooirdiniates, thereby localizing die oibject. The cotnstraints 0

tLoOi rchelie spiit. denIt (hrw~ theillsn ileSdi ivi s tin santd isdmnsrt a strung degree of robUstness to noite. d gradin;

* .il (list iii I orm. Atesselition s ili ~ilthtriatiiil~irpitcfeuprylsctt (lihe sensorfolyeasthresesorsmesrrcinctsear sincresinglyperterdd.WW
piuilI lk t mqgl s re rojcte ono fle phee ad te shercal have routinely run the algorithm successfully with errors in measuring

I Iinal- ticirim~ks ie pojetedont th spereati th sperial surface orientatioin on the order if 3O1 anid with errors iti measuring
* i~~~ipaches formed by thieni define certain ranges of olrientationsl. An surface poisitioin of I part iii 5t. [he conistraints alsoI straightftorwardly

- alorihm saga a alu tilelei o thee cllsby cmpuingthe extend to. thle case (if recognizing overlapping o~r partially Oiccluded
PI 'irt IteL area (of die o(bjcct pointing in the range of direction definied objects. As well, the coiistraints apply both to the simiple case of

by the cell. isoilated olbjects in stable polsitioIns (three degrees of freedomt) and
- I~ lie second importaint prilblcuil is the comlparisoni (If the twit mtiodels. to the miore cimplex case o(f artiitrarily orieited (objects (six degrees

Finding die iOrIeniii.(i Of othde objct in the imrage is equis alent to of frecoii). Because of die simtplicity (if die technique, it has been
* h-no ,mfs in the relus e orienuti I)(o die d itriliUtiiins onI tie two impleented in a table-lookup algiirithmn that is quite fast.

sphees.It s bsicll culrelit inlirlhlm. ht i th spce if The algorithon hats been tested l both synthetic and real data. We ----

(115. i i th ( neessIrsto ctrutinetherottilil d~t wll hasve rtii extensive simulations on both two dintensional amid three -

- be used to comiih.ire die models. t his was solvced by representing ditiensional oIbjects. under at variety oif sitoiatiiins including widely
wiots as quie rons and COTII1irng triem ats points (in a utit s-aryini ranges of simulated error. tIhe success (If tiese simulations

Slillere In at fioi imenIcisioinal space. Bty studying regular figures in that n'" in * fo s-r
Npi. in .(.ilizoritin ssas deseotied tol unifiiinil> sl~ipe the space of inideistihyiitg objects inte presence of nIiicfrmvy few data

italls s d a-btrril lrg noibrs(i po is.A t nl eifiaot points has beeii further Supported by a theoretical combinatorial
ssa doic ~l uu~r~mee hatt~l grds if he esslitd sher hu up analy-sis (Crimson 84). We lase alsoi successilully tested versions of

* ~ ~ %I donirea of 9tieriltCatisi the set.s (I ah fI irioatedii mpc ean tui the algorithiin oti real dtata obitained froimi grey level image data and
- ~illitiple I.GIS oif cacti object are required (oie foir eachi set ol r 6 laser ringing des-ices. M. D rumhiteller has applied it tou noxisy and

* r~litilns).sparse sonar sensor data.

All the algllrittilis were tested with real and artificial datta. 'f1ie
cst1iriins rese.ildd1.1 thtde Most difficult factor to deal with is the 9. The Analysis of Spatial Relations

- ~~~si/c. (If tile space oIt rotationis. Ise ciialen abioult 6il0M rotatis arc
* us~~tied iti dliiip.i ic die twil liidels. errlir. oif l16 degrees ire poissible. Today,. there is still at noltale lack (if sulid methods for anial yzing .

* 111(5 I is I acceptabile fior someli pick a(ld place operations, hut in iirder shiapes aiid spatial relations ill imnages. I olr examtple. there are few
it ((l~ii i the h ighi les e of acctiracy required (or asseiibly, hun idreds mechanisms flor dealinig a-itti questionts alOit spatial relations such as
(if thousands (if' lilatilons a-Iouild be required. Fromt this anail~sis, it ''does obhject A lie swith in otbject If.' ''is A suppolrted from below."
%%,Is Cio((ltuded thlat the FG I technaiquec can still he uised to obtan an 'cl i ntesaeleacl idC' h blt opoessait
esntili (It the object's oricotat i'l. IFeature based techniques would ill Iuiinattion efliciently antd Prosvide anIswers. it quiestiolns regarding

- ~theni be required ill reduce the error ranige to a fen- degrees. s11.11 properties anId spatial relationis is crucial for the tasks (if-

- ~~8.3. Object Recognition from Sparse Visual Datalijcreigltit.ssulguddtaipilIiI.(idralni iltt
s cenes.

All alternate ;ipprol.icl by ( rilasil and Io/ -Paolcrc7 toi(ljc In aidditioin to thle lack (If'siditble (Ilgilritlins stanidard comiputer
rccilgniiin is aiiicd aIt using5 sry sinmplc. sparse, poitentially nIis)i archit(ecture is inmiiproi linie (or this Imptntiii taisk. a(ld th is deficieiicy

- ~~scoisII!- inlcisiicii iis. It ass umes tha~t sensolr) in f irnlatioii abub (t a
Sce'ii call he lilwessed to ohtaii ,I set (If est illis oif the poisitioln
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hinidcrs the nitierjrtaiin and use of s isiial In fo rmation. spinal aiialysis opelioli Ilhe rich Contexst presenlt Ii a map
I he prohlem oIf compuiLng generail shape piopertics and spatial makes thle secirch piobii non rmil cxi epecidily wxhen human

*rchltio ns aniiing objects and objct parts is a nox ci doimain (if perfoirmance at such taisks is Liken as a Stanldird fo r efficiency.
ins estigation. Mahoney and llimiai has C begun ita study oif the 5. O)er itne Spatial properties of the items ill tile map, or relations
aiiwiiysis iif spati.ii iii fi ination and dcx cloipmerit of new algoritihms holiding bctsx cen then). Ihe in icinig pio pciics and reiliiioiisin
for tile compultat in iif Spatiail relaitions. Maiiney his choisen ats a at map are those %hichl hiLO LIe~ use lICii C cr Illesi thle gcogralphical -

specific domain for this projcti tile prohlem of interpreting terrain %o rid. P'roperies of ;nd iclitions be-,- Lm I d'caip featxirci
* maps. Since this requires die coiiipuitiin of many simple and oiften can map directly or initecilv to two -d inensional properties

quite difficult spaitial reliiions frontii rither siimpie primitic, m s.nainly and relations Pin tie nap. I leie lngth of a i 5cr is a case , fthli
ie draxxiiigs. We expect tiiat fOr ,ichies tug the required ievei of direct ciaw: the elesatioii ot' a tin must be Inferred froiii the
perfinance in di is task thle use oif parallei iiperaitions would be nesting ifl the marker for the town wxitin iie contiiur lines.

qiired Ibs xii reuir inthi te uc ii nss y~~.sof rocssos. I ypicai map use can be chauracterised Ii termis of txxo interacting
speciailied for the parailel processing of' spaial iinfonmation. sscs bsteei eioin ~tiieiae naiikxi c

is xxeii known front the Pereepirina, worik iif Minsky and Papeit. WC paii'l. dciaritie model iif' the Aoild. froni Ah iich certaiii iiiferences
* discuss the priiblem Of Coinputiiig Spatial rcelations it some length in can be miade. Belcow. there is, a Spaial ,in.iihsis s" %siein xxhose Input is
* the followxx ig subsectiions, because Axe belies, it is ; critical issuie for an imiape of' at map. and xxhich IS c iabi iOf rwsalsing spaiil qlueries
- attic king the probhleims of in teninediate and high Ic sci vision. 'I'ley givseii by the incasoii g systeml iii rough thle Loxidited application

*suggest a class ofl algorithris that are not of die regnlari,'ing type and of die capabilities described uhose. I1 he ansxxers txi these queries are
xcIk Ii iCux a iuaidxxale facility iii a pi lici ax idiuCcuUIC - sod i used to extend orl correct the iih- lesci gp iaph icalxx rid umixdel.

ats (lie Connection Machine router - to support die use of poinuters Our cx entual gx xii is to des chip such a spaia ai*nilysis system.
a;slid nxxii-local connections. li oowgiok-or fnvnglll 7.1iILt-,eSOTC

* 9.1. Terrain Maps and the Study of Spatial Analysis Ofl die requiuremoents oil a spatwl anmu~iss system,. in tenmis of at few
-kalycI~ct~c n wie ang o 0 the kinds (if' spati.ii p xiopei ies aiid relationis it must decxiiimate.* ~ ~~~ Ilie tise of diagrams is renitralye tienawdergeo Stuchi a sequeiice i]lighit be giseni toi a itia user on the other end of

liurini priihlem-soli iig situatioxits. IDiagrams provide at rich, compact a radti liiik.
esternmil iniformatioin store. fromn xxhich sisual processes rapidly extract
jUll the inorinatioli relevant to the task at hand. Moreover, the fact 1. Find die arrowx Iii die uppe11r left sectioill' the map.

* tiat pexople often finld it useful toi draw, diagramis in die course iif 2. Find the towxn poxinted axt by the arroiw.
solvinug at proiblem Suggests diat visual processing can play an integral 3. Visually foillow the road thle toiwn is on to the second riser
part iii reasoning, crossing.

I'lie use of terrain maps - applied to navigation, for example 4. \'istiaIly Follow the riser ti its source.
*-priis ides a very gencixruzI example of this phenomenon, in the sense idtepaofh muaninwchherc ast'%uc.

* ib~~!at maps pose most of the visual problems foutid in at range of other 5. 1idtepa i h on~i n hc h ie a ~ ore
* . sclietnamdc representations. Nuitice that navigation mlight involve not 6. IFinid Robot Stile PRnk. xxii cii is due noi rthi of this peaik.

*only examining a map. hut also skemi~uing selected aspects of it, or 7. 1 ind thle polint inii~iked \ inside tile state pirk.
registe'ring one map xxith another. 8 hti akd1)deX

terrain maps represent the physical elements of the landscape8.Wais arebydeXp
anid their spatial distribution. [hle dcvriptive ceixnts of a nap 9.2. A few elemental spatial operations go a long way

* include primarily plane curses aiid syrnbuls. Curses are used to
- ~~represent both linear geographic features'- such as r-isers and roads - [he v'iti, rfiuuiix% pfir.idligni, Ix iis1 uiC c b% I, I ii1i. iOPO ses

and die boundaries of areal geuigraph ic features -such as landmassecs that anl Olien-elided set it' ibsmrict spit ii prollcili es anid reiitxionsi
and political boundaries. Symboils - cartographic and ailphanumeric c~iii be computled by iiian bai.1115 sic sp.ttid Oiiperaion s t~ikem firin.
characters, - arc used as place markers for geoigraphic feattires that at sii,iil fix ed set ito speCL ju11ice pi icd1I es B,111 OiC KiSe b Oi f mixost
haise little or n(, splatial extent at die scaie of die map (like summits;), iither spatial analy six. tiiese eleiieiit.ii x pc atoils iti uul lie simiiple,
or they arc used to label other items, general. icry robust. anid %cry tist.

[:s en siniple tise oif a mapl requires the 'allowing capabilitics: We iiais ebgU ii to stuldy sisiuai iisk% Ili the colliext of'stulernltic

-~~~~ . Dustiniguiish aiid clatssify ui rsiwi/ deseriptis e elements. l:iir draxings. xxit Ib a scx to the ii lliiix g issues:
exiniple. .1 gis cit liiii Ii tie imip itiust lie interpreted ats at river, 1. Whait are the Objects of %patmi .iiial , is and Ahai~t ire thle

- ~~road. shxreiiie. etc. I I his is a problemt Iii segnrieitaition/grouping Im portanlt spit iii relatuins and pi ipertlc Csl te xibit.
-aiid recougnition). 2. What are robust. ethicuenit s suali rouinies foir ciliphtilig these

2. Interpret i'ixiuixx~ fdsrpieeeiet srepresentations uibjects. properties. aind relaitiiiis. from xxhait hisic operlitionls
oif gxugrijihic itern. For examrple, at set iiicliusel y spaced cointour are these rolutinie% comiposed.
lines thiat ire nearly ci rcula~r and cxincenitric might represent a I lie Standards for elliciency anid riilUstn lesCollie fromt 1141iunIui
iolcaiiiv (I his. also, is a problem Iii grioupinig aiid recognition.) performiance al simi lar tasks..

3. Interpret references ti locations in the map. There are several 3. 1 low should die processinig be i'corolled Such ili.i. Iii .i real
* ~difrent coxirdiiuatc sy stems defined inl a riap in xxhlich such %isMii problem suit hg sitxi,itioii. tile .ipprop ie rotiils ie
*references miighi be expressed. "Nort-west', 'top-left'. "P-16". plcprd tiey
- l~~~~"atitude 4. lixtgitude 4.itind "central Africa .irc inistances ofapleprdcily

ciiordinatcs in differenit itap-hased refcereiiee framies, and whose 4. What sort iof' architecture xxiil efrectis ey support die suggoested
Initerpretition depends on sophisticaited Spatial antalysis. basic operations Old control structure.

- ~4. Search for specified mnarkers. descriptise eletments. or combitia- Ullmiani hais made a number of silgeesmixns for gcniixall usefl'i
tio ns of tlicm. I ~scry fuorim oiii uip mse iii sii c. as an Initial step, basic operit ii xui, justified Ilimaril yxii coimpuitaitionail grounids, I liese

* l~~inditig ''it'' on tile map. xxhere ''it' can be an arrow, a name, or opications iteliule cointouri trackinig, areai colxorinug, rixy projction.
-. a /st ti'r i (if huesc xxilli ';pecificdl prioperties -like a s olcano. 'The imarking locatins for ite ir processinrg. sili x g the process ig 6 xis.

utilit.irn n lature of iiiaps makes sisii,ii search a svcry prominent aiid iiidexinig to loca.tions si ich iiaxsx s~iicii liiopertles.
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We hive begun studics of %isual tasks of the sort that arise in Achieving the required performance for these operations will
maps and diagrams. in ordor to further define. evaluate. and complete invole discovering nivecl paraillel Coiiipucitiiin structures. Such
this pairtial set oif basic oiperatioins and the processing miidel of which ohserv atlilli haA t ichiitectural consequences fir expeoriniental systemns:
they are at part. Initial effoits indicate that the operations listed above kusunl the Connection Machine's programmable interconnect will
(.an account. in large part, for a wide variety of thc needed spatiail proiv ian experimiental mediuim for this study.
relations.

For example. coloring can bc speeded up dramatically-in
Current effiorts are aimed it (a) determining what additional basic iconis of the number of algoiirtmic steps it takces-when the non-local

o iperations ire required .and (h) designing an efficient implementation comnatnisue priael.Ih sfitesieraonhta
*~~~ ~o irte basic uipeiations that are being used. c'umnetuni sd*prir~tl.Iisi uitesm esnta

figure cani he paintedf more quickly with a lirge brush than a siiaflone:
9.3. Pointers are useful for spatial analysis. the atialugiu iifbrushi si/c onl tiuichiuues %ith iiii-local communieation

is the si/e oif the pixel neighbiirhood,, that are turned oin at each
We have hegun to consider the possible implementations step. Again such iihscrsatumns have alchitectural consequences for

(if spatial i peratmons (in the Connection Machine. [ihe following expermental systems: tisi ng the Connect ion Ma~chine's priigrammnableI subsections ciintain initial proposals for the use of non-local intercoinct will enable us to experiment a ith various brush suecs.
intecnei.tiiiis in the COils Of spaial analysis.0

*9.3.1. Directing Processing To Salient Locations Sysiematic andCXtnISmveSiimlarions'Canf leadtoan understanding
Aliunpilat oeraionin patal nalsisis he ntelignt of hosw the optimal si/c and shaipc iof the brush, in this example, are

Ac un imputnt peation 1B1prcsin g aIa oaayi ios th e pitilent conistrained by paiticuular kinds (if input figu res. (A tree niight require
eciii %in if cvied i o ritialr pCroCs.ochas thathtnrespronirast. different strategies for last coiloiring than the disc of the moon.)

in ~ so I eleted prpert ii feto e- uchas bighite cntrst. ie adsantage iof the Connection Mach inc as a simulation tool
p relative inmotin. or the presence of line terminations, croissings. coimes not ((lly from speed-priaminable interconnecctions; priivide
i iir curvnuure chan1ges-are iuften goiod caindidates. We believe it is a substantial conceptual adsantage iii the design and simulation of

uimini that u isuimi hard%.ire be ible toi rest fur prominence in nosel parallel algorithms. Sinmilar advantage has been experienced in
ill, piopet tit inm e t at ill I ci iiis sitmultaneotusly : then further the use (if high-level languages. or iii the gradual adoptioin iof what
puucsuug can be selectively applied tii thoise locations at which the were once strictly language-lesel concepts in the design of moidern
t is successful. cinvcntioinah -chitectores. Naturally, the benefits will be even greater

* Si-c~illed %imncr-tkeall mechl.imiisms have been priipiosed to as effective proigram m ing- languiage concepts are developed.
.iunti i fo r hiiw (the most prominent loication might be chosen aiiong
J1 tit fthiose hi ing ai giAveil proi ens ( Koch & U.llma,in 1984). One way
tif iucoinphushing this with nun-locul commnmication is to determine
ithe lokituin with the mnaximmn %,tile by an iteratiive proxcdure 10Cocuin
mnkdi like ain aiictiiin. Whlen ,ill bilt the most priunmnut location has 10Cocuin

diopped uot if the biddi. .g. the processor repreting this location
scuits its address ti the mis-riiucm-ucumimcell preassigned for
ifu, g eii propertA. Pruocessing uif this liocationu tim now proceed by In this report we have reviewed Some Of (iur work tover the last
imuking use ifl the address this special cell contains (Koch & Ullman. year (in Vision and Image Understanding. Our effort spans various

j 1984). levels, It begins with the early problems (if computing surface distances
and other surticc properties (the 2[-1) sketch). We have analyzed

9.3.2. Concurrent Computation of Spatial Relations in depth the problem of edge detection, multiple scales, stereo and
(On machines, with non-luc~ul communication, spatial properties motion. We have implemented algorithms tbr solving these problems * ~

(,r relaimns mnis he ciimpuitcd concurrently in a single application efficiently. We now plan to refine our analysis of the individual.-
uuf the operaution if the relev~ant scene items base been uniquely modules of cuirly visioin, consider new ones and attack the problem of

* dclitfied first, their fusion for a reliable aind robust comptutation of the 2 -1) sketch.
I-orcx~nipc al te isid/iitsicc rlatonsoccrrig aong At a higher level we are SUdying the problem of representing shape

sonic sexampulue andh f~igures ide aionipocute in atonb and recogniiing objects from different, complementary perspectives.
sonicqet c ui ndarites n fiures ilcoud ies (whihe atcr the At a still higher level we have described in some detail the idea of

* l~Uie te naiu.,ii te col lecing the addresses of all bonaiswihclgrste visual rotines, as a key area of investigation for solving efficiently
Alf cicKh ciilor. and reliably many high level visual tasks, including navigation and

recognition.
9.3.3. Linking Symbolic and Iconic Visual Representations

As spaitii .inaklis is uncnen-taill applied to the early, more T~he new idea of regularivation analysis promises to unify

kii i icpres,:nt.uouns. inure ssunhic representautuons of portions (or at least part of our research in early vision. It also suggests
uspcoos 4 the scciic ate iriidiicd. It is useful to link these symbolic a preliminary classification of parallel architectures for vision.
rid cliv. urAloiitiuchit S. for each sceiie item., Using pointers. For Regulari/atiiin algorithms of early visioin typically process retinotopic-

cv iipl flirmijug okih plointers operations at the symboilic level can arrays of data with only local ccinnections. Non-regtilarization
wit, tic iiirtlier mi.uf:e level priwesing when tncessary. algorithms. stich as for instance some of the visual routines, are

best implemented with hardware facilities capable of manipulating
*9. 3 4. Optimal Algorithms for Elemental Spatial Operations pointers and setting tip virtual clinnections between spatially non-

( loring 0,i region growing) is one important class of elemental adjacent processors. The Connection Machine, being developed at the
ipx maions. I sung siumcthiing like the Conne~ction Machine 's fixed Artificial Intelligence Laboratory. promises to become soon a fertile
NI vv'; tonnemim tietwork. coloing can be implemented with run ground for experimenting with efficient parallel implementations of
mlm: rrporuumnil it, the diamieter mf thec regioin. On a serial architecture our vision algorithms.
ifue tuicw is pmpii tonal to the region's area.

I lowever, thus is only a loiwer bound on the performance we
seek - ubsrvutinis ifl human vision suggest that the corresponding

prci itioiis taike row v':I coinstanit tune-up to quite large diameters,. ~-
W N cive that sucth performance will he necessary for full-scale. -:
r il-time visin.
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SPATIAL UNDERSTANDING

Thomas 0. Binford

Artificial Intelligence laboratory

Stanford University, CA 94305

naming p)arts. Models of objects are built tip from stereo

Abstract pictures of objects by using a pointing, device with a stereo
station. The system minimizes the number of input points

We describe research inl intelligent systems for Image required for defining generalized cylinder parts.

Under-standing. The ACRONYM system has been used
ilt recognition of industrial parts in the Intelligent Task A system is nearly completed For symbolic graphic

Automation p~roject. A system for intelligent matching output for a very arge class of generalized cylindlers [Scott

* in stereo and motion sequences is tinder development. A 841. Generalized cylinders are specified by spine, cross

*geometric modeling system using stereo images has been section, anid sweeping rule, each of which can be a. gen-

implemented. A sophisticated symbolic graphics system endl function of one variable for this system. The sys-

for a very general class of generalized cylinders is nearing tent is novel in the large class of objects which can be

* completion. A preliminary report is presented of reformu- displayed. The hidden surface algorithmi is related to ray

lation of problems in computational geometry. Continuing tracing which is the method of choice in high performance

analysis of the interpretation of line drawings is dlescribed. graphics. Although ray tracing is a brute force proce-

* New results have been obtaiiied in aggregation and in edge dure which consumes great complutational resources, this.-

segmentation. A survey is presented of commiercial array research includes an analysis of comlputat ional comp~lex-

processors. ity and has resulted in conceptual imtprovements to limit
compexiy. hisresarch has led to some concepts for

generating generic, symbolic predictions of possible views

1. Introductionofbjcs
This report decscribes research in intelligent systems for Rsac nocosn ersnain o ovn
Im age Un itd erstaniding w hich in)clutdes geoimetric inodeli ng, Reeac int chosn rersnain. o ovn

* ~~geomietric reasonitig, analysis of image structure, antd in- poltt ngottn esnn elit pcaiigi

terpe t at ion (if three dimencns ionald stnri ctutre. One goal of reformuntlatin g prob~lemiis in comi i )tat io ial geomi et ry [Lowry
the research is an intelliget stereo mapping system. 841. Con i pi Ltt iomml geometry algo rithm its have SpecialI rele-

vance in geom Ietric re.isottijig and geomtrinc database oper- .0

I ('h ~~Cel berg 841 d escribhe us in g thle pre viou s itttelligent at ions. ThIiis researcht deal., w i thl PCol it -solv iii g inl coinpu- -
sys u'iuA('f( NYMBroks 1 fo re ogniti~i ofiuds- tatinnal geom tetry wit It cotmptutaitiontal Conmplexi ty co iusid-

riail parts ii the hItelligcuit'l'ask A tutoiat iiti project.. Sev- crations foremtost, relal cd to strategy selectiotn ror eIlicieit
i-rat exu'ntsioiis were niecessary ill geuuit c miodel ing and agrtluu i trei olraottg i turrsacui
geotitric reasouiiug, exteiisioiis wbich carry over to the geotmt(tric reasoning, ('le'rg (ititioiblislted) utoole a Sys-

( ( ~ tsystemii. The experienmce in thtis p~roject has tent for symbo1)0lie miiti pulat ion for p roblem simlti icat ion

U sharpeiictl requirements for the new systemi. by approximtation of algebraic coiist raints.

A system for obutainiing correspondence iii stereo and~ M'Valik 841 descrili's inference of surfaces from line

iiuitiiii sequenices is near the stage of mtatching image se- drawings. h iference riles amol geontuie c reasoning are de-

* ti~ui'tces JI)resclelr.Iisclucr 8,11. Thte systeiii tuses curves scr-ittl togetlier with alt eiilight ci hg exam ple. The ap-

aiid corners as, iimage features, hotwever it. tperformis struc- proacli is particularly rclevauut becauise previotis antalyses

iiu-al miiatchiin g. It rroup s features wit lii i single imiages had aitt big uiftiis of 10)0 to 2010 for lie simuprles t drawings,

inito conistellat ions and generates plans fur data-driven that of a tetrahedron.
L.niatching.

Research continues nit aggrigat ion and segmentation.
A geomuetric model in g systemii has Ibeen buil t whIiich I ,owe 81 (lisc ril es it program i whticlh geniips curye seg-

en abdes cons truiic tion of ge ieral ized c ylindoler muodelIs aiid i ie its whtichI formt coltttiinuts ciirvvs. IN alwa 8t1 ecie

which detteriies a class structure tf models ITa-katilita a directionual edge oprto.''rictndl 841 tdescribes an ilege
841. Th'Ie user iiic rae ts withI thiei syste cii y menucm select ion f11ining systemii whtichl dlete rminaes ix t etdeti curves with cir-

* using a voice input device, uisiiig the keyboard only for

. . . . . . .. . . .



cular arc and straight segments. IDreschler has inspie- sources which can change dIynlamically according to knowi-
mented her corner finder. edge acquired in operation. Corners and curves are the

features used in the system. However, it analyzes struc-
An evaluation of short term improvements to colnpu- tures or constellations of these featuires in each iniage and

tation power for WL hats been carried out inl the form of a plans a matching sequence which seems effective for the
survey of commercially availab~le array processors [Lini 84j. image. It classifies corners formed by curves, especially to

relax constraints on T-junctions which indicatc occlusion
[Blicher 84] notes that dimensional arguments dictate and for which no correspondence is expectedl. The systems

that edges cannot be localized simultaneously in angle and groups features into similarity classes which miight be am-
transverse position by zero crossings of a single convolution biguous under the local matching operation. For example,
operator, for a checker board, interior corniers are all similar, while

the four corners of the checker board are uniquie. The sys-
A mobile robot is on the verge of being operational tein begins by matching them. Corners connected to them

without sensing. It has an onboard 68000 and LSI/I1, are then unique. Matching takes place between classeb of
digital comnmulnication at 1200 baud, analog tv transmuitter features, rather than indlividual features. Matching has
antI Polaroid acoustic sensors, been tested only on artificiall data.

II Systems III Geometric Modeling
The Intelligent Task Automation project dealt with loca- The geouiettic modeling systenm JTakaniura 84] has a user
tion and assembly of a tray of fifteen parts in an uncon- interface which relies on commands invoked from mienus

trolled environment JChelherg 841. Occlusion and moder- and selected with voice input. The keyboard is used for

* ate leaning of parts on one another were p~ermiitted. This naming elements. Geonictrc forms are specified by points
ws a new class of parts for ACRONYM. All parts were which are enteredl by pioiniting devcs( nti aeatak

mod(1e led. To (In so req u ired ex tenrding thle miod elin g system ball. Pomints are thmree dlimen~isionl poI~init~s (leter11mined from

to include hI oles or niegat ive voI Ii mes, hli ces, andI to repre- stereo pmai rs of pictLures. ( cmierd izci cy Ii id ers aire specified

sent stable t:1;tes. ACR'ON YM was aiigmiented to include: by cross section, spine, and sweeping rule. Cross sections

stable states inl reasoning; to reason about holes; to p~re- canl be specified by a few points, e.g. three poiiits for a

diet oiew relat ions am ion g pr im itivYes, sper ifical ly conce n- circle or rtr tangle. For thle clauss oif g('ecrali zed cylinIde rs

tic rel ation s I etwee ii Cone iitric cy linde rs translated into w ithm straighlt spimli alli ol mimtt swee pinig riole, only two

preicetions all oilt c once n tric ellipses; to predli ct conniiected cross sect ions are req iiiiredl. F~or soilme sim ple c ross see-

reIat on s lie tweeni ellipses andi rib bonms; to predict parallel tions, a to tal of onlIy fouir poilits are reqiired for ain obiject

relations bietweeii coils of a sprinig, and enclosed relations For comiplex parts, still relatively few pints are required,

between coils iof a spring and ain enclosing boundary of the of ordler tell points. Parts caii be defined froii others by

sprinig. While soiie code to predict ellipses had been in the symmnetry. A miodel of a simpmjle object with a few p~arts can

original ACROI )N YM code, e'll ipse predict ion and miiatechiing be Liit ill 10 Iliii iu tles. Th ytci rtsui e ta

* were noet fully imiplemenited. iiMdel of I In part. It. also rlcteriiiii object. claLses by geri-
eral i zaii (if (constralintis whIiich de teriiiin e obijec t classes in

Of the fifteein parts, ten have been recognized in any ACRONYM.
stable state. Piredictions were gemnerated automatically

* ~for tile remiainling five parts hilt miatching has not been A syiidolic display systemi generates a projection of

achieved for them, visible surfaces of at very general sulmelauss of generalized
cylinders JScott 84]. Cioiceptually it call lie thought of as

- . ]l~Dresliler-liscmer 841 dlescribes a system for correspon. ray traciiig, i.e. projectiiig back rays fromi eachl pixel to

deuce iii stereo pairs arid miotioni seqpielices. Constraints intersect obijects, ordeiiig intersections of suirfaces along
in correspondence are maintained as separate knowledge each ray by dlistance from the imiage. Hlowever, it is waste-
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fill to order surfaces along each ray, since order relations by problem-solving miethods. The first is called schema-
change only along boundaries, a one-dimiensional subset of drivcn, the second constraint-driven.
rays. In fact, decpth relations change only at T vertices and

*cusps, at zero-dimiensional sub~set of rays. This is a striking [Malik 84] describes extensions of the analysis of [Bin-
deceas i copuation in depth ordering, ford 811 for interpretation of surfaces fromi linc dIrawings.

decrese i couput.Implementation has begun of a programn to interpret corn-
Limibs of generalized cylinders are obtained by an iter- plex line drawings. The initial analysis is primarily aimied

ative search stepwise along the surface. Surfaces are spec- at drawings with straight lines. The notion of minimum
ified by spine, cross section, and sweeping rule, each of number of surfaces was introduced, leading to analysis and

*which inay be an arbitary function of one parameter which constraints on invisible surfaces. Coplanarity rules have
is evaluated at each step. Steps are chosen according to a been introduced to identify surfaces coincident with lines.
uniform quality criterion. The step distance was chosen to A particularly interesting example is used to demonstrate
to give a constant numlber of iterations per step. About these constraints.
100 steps were required for at three turn helix. ObjectsThlitaonofpeouaaysswrmstti-
are defined by unions, intersections, and negatives of theseThlitaonofpeouaayssWrmsttik
primitivc volumes or surfaces. ing in that they tried to find all solutions. [Draper 80]

shows that there are miany solutions for the simplest draw-

Projections of limibs are put into anl imiage quad-tree ings. The current analysis promises to reduce this ambi-
from which surface ordering is obtained. 'F-junctions are guity extensively.
found here. Because the determination of limibs is approx- _

iinate stepwise, some degradation can occur from lack of
resolution. An algorithmn has not been yet worked out to V Segmentation
obtain consistent, realizable approximations, but an out- [Nalwa 841 describes a directional operator for determining..
line is given for a solution, edge elements over a small disk. It has subpixel position

resolution and 5 degree angle resolution for step to noise of
The system has generated hidden surface views of 2. The operator has at one-dimnensional funiction oriented

complex parts, but the full systemi for structured objects at an angle; its cross-section function is tanh. First, it
is still being implemented. determines the orientation of the initensity surface in the

window by fitting at planie. Then it fits a cubic surface, then
From this research has come Ihe problemi of determin- at tan h surface, and a quladratic surface fit for comlparison

ing the locus of points at which the qualitative structure of to deterine presence or absence of an edge.
projections changes. This inay lead to compact prediction
of image appearanice for comoplex objects. RIEFERENCES
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cover properties of the p~roblemi which can be exploited Project"; Proc Image Understanding Workshop, 1984.
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Recent Results of the
Rochester Image Understanding Project

J.A. Feldman, D.H. Ballard and C.M. Brown

Computer Science Department
Uni~ersity of Rochester

Rochester, New York 14627

I. Robust Vision Operators Work in each of these directions is in progress, ,ome
of the cited references are draft documents. [he behavior

1.1. Parameter Networks and the Hough I ransform of caching schemes for accumulation of %otes in the
Hough transtbrm is equivalent to the statistical problem of

One of the most difficult problems in %ision is estimating the mode of a distribution using only a finite
segmentation. Recent work has shown how to calculate memory for vote tallies, and is a generalization of the
intrinsic images (e.g., optical flow. surface orientation, familiar 'secretary' ('maximum of a sequence,' *beaut.
occluding contour. And dispant). Yhese images are contest) problem. Loui's document explores this akenue
distinctl easier to segment than the original intensity for analysis. The experiments with HT implementation are
images. Such techniques can be greatl. improved b> to see how well the peak-sharpening provided b%
incorporating Hough methods. The Hough transform idea complementary HT performs with real images on comple\
has been developed into a general control technique. shapes. Work on cache architectures (hierarchical scheme-,
Intrinsic image points are mapped (man. to one) into cascaded caches) is ongoing.
parameter networks' [Ballard, 19831. This theory explains
segmentation in terms of highly parallel cooperative The VLSI design project produced a circuit for i.ote
computation among intrinsic images and a set of cacheing that can be cascaded to provide a cache of an-
parameter spaces at different levels of abstraction, length. Work on improving the efficienc. and power of

the design %ill continue this summer.
The most recent application of these ideas are to

improved shape-from-shading calculations which work on 1.3 High Level Planning
several spaces [Brown et al., 1983] and motion extraction
[Ballard & Kimball, 1983). This domain specific effort is In general, problem solvers cannot hope to create plans
closel> linked to our new work on a more general theory that are able to specify fully all the details of operation
of Hough-like computations and general implementation beforehand and must depend on run-time modification of
techniques for them. the plan to insure correct functioning. The run-time

planning idea becomes particularl> important when
The theory is also useful in analysis of cache-based different plan segments are being explored concurrently. .O

Hough Transform implementations. It is an appealing idea These communicating segments ma require sophisticated
to use a small content-addressable store to accumulate actions e.g. (do PLAN, until PLA\ ,). These issues are
Hough transform results, rather than a potentially huge being studied by [Russell] in the cont'et of a cooperative
multi-dimensional array. The initial technical issues %ere planning and execution system for manipulation tasks. A
discussed in [Brown & Sher, 1982]. More recent recent effort [Ballard, 19841 is e\amining robot planning
developments are presented in [Brown, 1983: Brown, from a task frame perspectie.
19841. We are currently pursuing VLSI implementations.

2. Computing with Connection%
1.2 Hough Transform Implementation 2 o i t n i

We are continuing our interest in problem-scale
Earlier work on the Hough transform [Brown, 1983; parallelism, both as m"odel of animal brains and as a ..-

Brown & Sher, 1982] has led in three directions, paradigm for VL.,i, eldman et al., 19841. Work at --
Rochester has concentrated on connectionist models and

1) Research toward a theory of cache accumulator their application to vision. The framework is built around S
arrays [Loui, 1983: Brown & Feldman, 1983] computational modules, the simplest of which are termed

p-units. We have developed their properties and shown
2) Experiments with complementary HT and how they can be applied to a variety of problems
cache management strategies [Brown et al., 19831 [Feldman & Ballard, 1982]. More recently we have

established powerful techniques for adaptation and change
3) Hardware (VLSI) designs for HT vote caches in these networks [Feldman. 19821.
[Sher & Tevanian. 19831.
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A major milestone was achieed with Sabbahs thesis %er, sparse data. The ke idea is ito use appropriate shape
on massisel. parallel recognition of Origami-world objects descriptors to hypothesize a transtormation which aL.Lunts
[Sabbah, 19821. Sabbah's work extended the connectionist for the difference in shape between successile contours
methodology to a problem domain with several When the hypothesized transtormation is minor. %ers
hierarchiLal structural levels. The resulting program is. to simple-minded surface reconstruction techniques are
our knowledge. the most noise-resistant system for dealing sufficient. Vkhen there are major difference,, in shape or
with this level of complexity. One outcome of Sabbah's position between successive contours. our method
effort has been a project to build a general purpose hallucinates new contours using the hpothesiied shape
simulator for massioel. parallel s\stems [Small et al., transformation [Sloan & Hrechan>k. 19811. A major new
1982[. effort is the extraction and use if ". mmetries in images

[Freidberg & Brown, this Proceedingsl.
l'he general connectionist simulator has been well

tested and is being used in a number of applications. One Hierarchical descriptions of shapes were considered in •
project involves a quite detailed simulation of motor [Ballard & Sabbah. 19811 in a preliminar fashion. Our
control networks of the occulo-motor system [Addanki. previously reported shape model [Hrechan.k & Ballard.
19831. Another application is to a spreading activation 19821 concentrated on problems of |ew-in~ariance and
model of word sense disamhiguation and related problems attention shifting within a single prototy pe. This model has
in natural language understanding [Cottrell & Small, been extended to handle the problems of extracting
19831. A major new effort in~ol~es modelling conceptual primitive shape descriptions from noisy images. Our work
knowledge (such as that needed for high level vision) in was motivated by dissatisfactions with smoothness criteria
connectionist terms [Feldman & Shastri. 1984: Shastri & for intrinsic image conputations. Recent work etends •
Feldman. 1984). these ideas to simple 3-D shapes [Ballard et al.. 1984).

N new effort has been the development of a much The practicality of shape from shading computations
faster C version of the simulator and the exploration of its and their interaction with the determination of other
use on a highly parallel machine. We have received major image parameters (such as illuminant position) was
funding for a new highlv parallel computer which will be addressed by two papers in the Fall, 1982 DARPA Image
available for work in IL tasks. Understanding Workshop. We are now applying the

algorithm to real images, and want to investigate scenes
For a V.SI design couse, a circuit was designed to with non-Lambertian reflectance functions that are

implement ke. aspects of the "connectionist" unknown apriori. We want to explain how humans in fact
computational paradigm [Rainero & Kautz, 19831. This use shading to derive shape, given the complexity of
cited document is a course project report, and the exercise reflectance functions and imaging situations in the world.
was mainl> useful in isolating particular technical Two competing theories are that somehow the reflectance
problems that must be addressed in anv such parallel, functions are derived fairiv accuratelv bv an adaptive .
actixation-passing computer. procedure, or instead that we only 'support' a small

number of reflectance functions that are selected bv other
3. Motion cues (such as gloss).

Our interest in motion has centered around methods 5. General Theory of Vision
for extracting rigid body parameters from optic flow and
intensity images. These parameters are extremely useful in Work in our laboratory, among others, has "
navigation and target tracking. Currently these nine demonstrated strong links between powerfu IU
parameters (origin, translational velocity, rotational techniques and computations used bh animal %1sual
velocity) can be extracted from flow via a Hough systems. We hae established strong ties "ith a wide range
technique [Ballard & Kimball, 19831. A more recent model of visual scientists at Rochester and a variety of
exploits multiple channels [Bandyopadhyay, 19841. We are collaborative efforts are underway. One earl> project is to
also pursuing the use of these parameters to speed up the survey the computational similarities in natural and
flow computations themselves [Stuth et al.. 19831. A major computer vision [Ballard & Coleman. 19831.
current effort relates optical flow information to surface
orientation [Aloimonos & Brown, 19841 and sensor motion We have begun to exploit Rochester neurobiology
[Aloimonos & Brown. 19841. expertise in order to hone and improve our connectionist

modelling efforts. One difficult avenue is to specify the
4. Shape interface between our computational models and the state-

of-the-art neurobiological picture. Our efforts in this
lhe description and recognition of complex shapes direction are summarized in [Ballard & Coleman, 19831

continues to be a major focus of the project. The analysis and the collaboration is continuing. Another effort is our
of the dot product space representation has been improved attempt to develop a general framework for theories of
to handle certain pathological cases, and has been vision that would provide a common structure for
generalized to accommodate different criteria for the integrating studies from various disciplines [Feldman,
goodness of the representation. 19821,

[his simple concept of shape has been applied to the

problem of reconstructing three-dimensional surfaces from •
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mation. view, but not necessarily in an oblique view If we
3. Surface Markings- These are caused by changes in view a non-straight, non-homogeneous generalized

the surface reflectance rather than the surface posi- cone as consisting of piecewise LSHGCs, then we
tion or slope ("3" in Figure 1). In simplistic analysis, can expect the contour generators to be "piecewise

these may be confused with occluding boundaries, coplanar". In our current implementation, we have
4. Others- Other sources are due to noise, shadows, tested only the LSHGCs. but believe that we can ex-

highlights etc. Our approach does not deal with tend to elongated generalized cones by using the

them explicitly, but should work in their presence piecewise approximations
(we can essentially consider them to be same as

surface markings for our analysis). The method, then, consists of computing descrip-
tions from a given set of segments that follows the above

For generalized cones, the important boundaries could be constraints. In our current implementation, we find all
alternatively classified as those produced from "contour possible pairs of contour generators (i.e. all coplanar

generators" and terminators. Intuitively, contour pairs), then compute the corresponding terminators and

generators are the extremal points on the surface which then evaluate the descriptions. Clearly, for a complex
enclose the visible surface (and are thus view-point scene, it will not be feasible to examine all alternatives,

dependent). For a smooth generalized cone, the contour and some choices will need to be based on partial

generators are the points on the surface where the line of analysis alone. Tracing of terminator boundaries is rela-
sight is tangential to the viewed surface More generally, tively straight-forward when there are no gaps, otherwise

the contour generators are the loci of the extremal points only fragments of terminators will be obtained.

on the cross-sections Note that contour generators are a The selection of descriptions is based on the follow-

subset of the occluding boundaries (In this, our definition ing:

is slightly different from that used in Shafer [2], but has

the same intuitive notion Also we will not differentiate 1. Longer contour generators are preferred over shorter

between "contours' which are projections in the image of ones (i.e. we prefer descriptions with longer axes),
2. Parallel contour generators are preferred (iLe.

contour generators and contour generators,here as we use 2alers are preferred (ices3Dbudre)cylinders are preferred over cones),3-D boundaries) 3. Descriptions with closed and/or planar terminators
The terminators of a generalized cone are simply its 3a

ends (imagine an infinite generalized cone that has been are preferred.

cut at two ends). Note that the cut, and hence a ter- With this simple implementation, we are able to find

minator need not be planar, and when planar, it need not good descriptions for simple objects such as cylinders and

be normal to the axis. Thus, we prefer to describe a right, cones. We have analyzed scenes with some occlusion and

circular cone with a slanted cut, as a straight, surface markings, but with no missing segments
homogeneous generalized cone with an oblique termina-

tion, rather than as an homogeneous, generalized cone

*with cross-section changing shape at the end, i.e. our 4. MAPPING FROM AERIAL IMAGES

descriptions are necessarily in terms of right generalized This is part of our continuing research from previous

cones. Note that the terminator may share part of the oc- years. In the past, we have developed methods for linear

cluding boundary. The terminators have been a source of feature extraction and region segmentation, image to map

difficulty in analysis of boundaries, as in (31; however, they correspondence, stereo analysis, and shadow analysis.

can also provide valuable clues to the shapes of the These have been reported in previous DARPA Image Un- ,
cross-sections. derstanding workshops, our internal reports and other

Now, the scene description problem may be con- open literature. Our current work focusses on two

sidered to be that of isolating the contour generators and projects: stereo analysis and development of an "expert"

terminators of the generalized cones present in a scene. module for airport analysis.

This axis of the generalized cone is the axis of symmetry

of the contour generators, and the terminators give cross-
section shape under certain conditions. 4.1. Stereo Analysis (Mohan, Medioni and Nevatia)The key to our approach consists of the following Stereo is relied upon heavily by human analysts in

mapping from aerial images. In many cases, stereo may

* observations about boundaries of generalized conesb;.. ~be the only direct cue for obtaining 3-D data in aerial-.- "

1. A contour generator is tangential (in 3-0) to the ter- images (direct ranging is often not practical). In previous
minator boundaries. (3-D tangency also implies a 2- work, we reported a stereo algorithm that matches the line

D tangency). Further, the contour generator must be segments detected in the two images [4]. We feel that

to one side of the plane containing the local contour being an edge based scheme, it has important advantages S
tangent and the viewing point. (In 2-D, The ter- over the conventional intensity correlation based stereos,
minator boundary must be all on one side of the and also over methods that match unconnected edges.

contour at the junction.) Our recent work has been in a detailed testing and evalua-

2 For a linear, straight, homogeneous generalized cone tion of this algorithm on a variety of scenes One of the ,. ".

(LSHGC), the contour generator is planar from any complex images we have been working with is the

view (established by Shafer [2]) For a non-linear "Pentagon" image shown in Figure 2 (resolution 512 x 512); -

SHGC, the contour generators are planar in a side this is a good test image due to the presence of parallel 0
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lines, and fine detail, and there is some comparative data Figure 3 shows the segments extracted and matched
available from other work [5]. Our tests have indicated from Figure 2, reduced to a resolution of 128 x 128
several minor and major areas for further improvement The number of matched segments is 359 Figure 4

shows the segments matched at the resolution of
1. We found that imposing a constraint that the con- 256 x 256, the number of matched segments is now

trast of the matching segments be similar caused 1340. We believe that the matching results for this
our system to loose many good matches. We have image are impressive and almost all segments are

eliminated this constraint but still use the sign of the matched correctly However. we still lack a suitable

contrast. This also indicates that correlation stereo way of displaying the results in 3-D as linear inter-
would have difficulties in these instances too. polation is sensitive to local errors which mark the

2. Order preservation - our original algorithm did not other data in a perspective display, As a partial
explicitly require any order to be preserved among solution, Figure 5 displays the points with disparity
the matching segments. We have incorporated an values that would put their height a certain minimum 0
order constraint and tested its effects. Our algo- amount above ground (about half the height of the
rithm works with segments rather than edges, and building itself). It is clear that major parts of the
no complete order can be defined on segments in 2- pentagon building are detected correctly.

D. We define and use a pairwise order instead - the
order of two segments is defined by their relative Some Remaining Problems

positions in the parts where they overlap in the - O
direction of the epipolar lines. This order is well - Our most important problem is the detection of seg-

defined and unambiguous as segments may not in- ments that are matched incorrectly. The number of
tersect. The order is used in matching in the fol- such mismatches is small, but some of them can
lowing way orealu ina matching air e fhave a significant effect on the interpretation of thelowing way, evaluation of a matching pair (i,j) image. We are currently investigating use of more-""

depends on how well the disparity of (i,j) agrees with
the disparities of other matching segments pair (kI) global context to identify and correct such matches

in the neighborhood of i and j; if the order of (kI) is We need to develop a suitable way of interpolating

not the same as that of (ij) then (kl) contributes a and displaying surfaces. Many sophisticated
large penalty weight to the evaluation of (i,j). (We methods of surface interpolation exist in the litera-
are omitting the details here as the evaluation func- ture (e.g. Terzopoulous [61), our main difficulty is in

are~~ietiyn omittin the detilsheenattenealutinefnc
tion is rather complex; it is described in detail in [4]). identifying errors and discontinuities.

Our experience with using the order constraint in-

dicates that the use of order removes some incor- 4.2. Developing "Domain Experts" (Huertas, Nevatia and
rect matches, and finds matches for some segments Price)
left unmatched previously. However, the improve- As a step towards developing visual domain experts,

ments seem to be rather minor, at least for the ex- we have selected the task of mapping a major commercial

amples we have tested on. Perhaps, this is an in- airport complex. Our first chosen task is to find the run-
dication of the robustness of the original, unordered ways and taxiways One may think that these objects
algorithm itself. would be easy to extract and would consist of relatively

3. The third area of improvement has been in the im- homogeneous, elongated linear strips. In reality, these ob-
plementation of a hierarchical matching method. As jects are rather complex, an example of the Los Angeles

the resolution of the image increases, so does the International Airport (LAX) is shown in Figure 6. The in- J90
number of segments detected in it. In our case, tensity of a runway surface is not uniform, in fact, in one

since we use 2-D windows to establish context, the of the runways the surface material itself changes from

number of segments in a window grows rapidly with concrete to blacktop, perhaps due to extensions made at

resolution. We can control this complexity by using different periods. There are many markings on the run-
the information from a lower resolution match to ways and taxiways - some are intended to aid pilots,
guide a higher resolution match. others are due to factors such as tire tread marks, dirt,

etc. The runways and taxiways have many intersections 0
A match of a certain resolution gives disparities of and the contrast with the shoulders is not always strong.

the points on the segments that match. These dis- The difficulty of mapping in face of the above com-

parities are used to compute disparities for in- plexities is. of course, dependent on the amount of a priori
between points by linear interpolation. These inter- knowledge that is assumed If we assume that we are
polated values provide the initial disparity for the looking at LAX and have a previous map, the task of locat-
match at the next higher level. Since the ap- ing runways is much easier. We are taking a mid-way ap-

proximate disparity is known, the search for a match proach that assumes that we are looking at a major com-
Is now restricted to a small range, thus limiting the mercial airport and know the altitude of the camera, but

computational complexity and also reducing chances not the identity of the scene. Thus, we can infer a range
of an error Note that the errors made at an earlier for widths and lengths of the runways and taxiways but do

'" stage will not be corrected at higher resolution by
tail neo, thbe coret do t hg e esi y not know their specific relative locations and orientations

this method, though they do not necessarily Our approach is to first extract linear line segments
propagate (the higher resolution segments may end in the image using our "LINEAR" software (which incor-
up with no matches).
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Figure 8: Potential runway APARS (displayed as "boxes")

Figure 9: Connected runway APARS

A:

(a)

Figure 10 (a). A connection hypothesis and area to be
bridged (shown by dashed box)
(b): Segments in and around the area to be
bridged

Figure 11. Four longest APARtS after the final processing
stage
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they produce different colors in the image. The pixel values found in a 2D search plane whose axes are left-image column

measured by the camera will be a sum of these two components, position and right-image column position, and the sti.cking is

i.e. a linear combination of the R-C-B color of the specular done in the direction of the row (scanline) number of the images.

reflection and the color of the diffuse reflection at each point. The cost of the matching surface is defined as the sum of the

Since these colors are constant across a surface, the pixel values costs of the intra-scanline matches on the 2D search planes, 0

measured across a single surface will form a parallelogram in while vertically connected edges provide the consistency

R-G-B color space. The position of any pixel's color within that constraint across the 2D search planes and thus penalize those - "-" - -

parallelogram yields the magnitude of the specular and diffuse intra-scanline matches which are not consistent across the "-

reflection at that point. This theory applies to rough surfaces of scanlines.

inhomogeneous media, i.e. most plastics, paints, glazed -

ceramics, glass, etc. The color theory will work under extended The algorithm has been tested with various images including

light sources, parspective imaging projection, and curved urban aerial images, synthesized images, and block scenes. The

surfaces. We are working now to extend the theory to deal with results show that the 3D search achieves roughly 1/10 the error

diffuse ("ambient") illumination, and we hope to calibrate a rate of the 2D search. For some images containing a large

camera to use in implementing the theory on real images. number of edges, the 3D search requires as much as 10 to 15

times longer processing. However, the processing time is

1.4. Stereo expected to be reduced drastically by implementing the algorithm

We have implemented a stereo algorithm using dynamic on a parallel machine such as a systolic array processor.

programming (181. Edge-based stereo involves two searches.

One is intra-scanline search for obtaining correspondence of 2. Vision for Navigation .

edge-delimited intervals on each scanline pair after the pair of The IUS group has been working on navigational vision in

images has been rectified so that epipotar lines are horizontal, collaboration with the CMU-Robotics Mobile Robot Lab. The ' . -

The intra-scanline search can be treated as the problem of finding effort includes path planning, motion determination, and obstaclp

a matching path on a two dimensional (2L') search plane. The detection using video and sonar data [22, 231.

other is inter scamine search for possible correspondence of S
vertically connected edges across scanlines in right and left 2.1. A Visual N-jvigation System

images. This provides the consistency constraints that inter- Using a CMU-rover testbed vehicle, a visual navigation system

scanline matchings should .,tisfy. Previous use of dynamic has been demonstrated by Thorpe and Matthies [101 to maneuver

programming has been limited to the intra-scanline search [4, 11. to a pre-defined location in a static environment. The visual . •

Henderson processed pairs of scanlines sequentially where system is based on algorithms developed by Moravec for the -

results of the previous line guided searches in the succeeding Stanford Cart. At each cart position, these algorithms used -

scanline. Baker [1J employed post-processing on the results of stereo correspondence in nine camera images to triangulate the . - -

intra scanline search to enforce the inter-scanline constraints, distance to potential obstacles. Motion of the vehicle was

determined by tracking these obstacles over time. Detailed

We utilize dynamic programming for both of the inter-scanline evaluations have been made on the performance of the

and intra scanline searches, and the two searches proceed navigational vision system during the evolution from the Stanford

simultaneously: the first supplies the consistency constraint to the Cart to the present CMU system. The results of the evaluation i'- -

second while the second supplies the matching score to the first, have led to the use of fewer images per step, to the use of more

An interval-based similarity metric is used to compute the score. constraints to limit the search in the correspondence process, -

By simultaneously onsidering intra- and inter-scantine searches, and toward the use of a different motion solving alqorithm that

the correspondence problem in stereo can be cast as that of better exploits the rigid motion of the scene.

finding in a three dimensional search space an oplim:; matching

surface that most satisfies the intra-scanline matches and inter- 2.2. Obtaining Camera Motions from Image Sequences -

scanline consistency. Here, a matching surface is (lefined by Lucas and Karade [91 applied the method of differences to the . -

stacking 20 matching paths, where the 2D matching paths are problem of obtaining camera motions from an image sequence.
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The method of ditferences refers to a technique for image At present. Webb is working to make Warp a useful tool for

matching that uses the intensity gradient of images to iteratively low level vision [8]. rhis will involve programming a large number

improve the match between the two images. When tho iterative of low level vision subroutines, and inteqrating Warp into a ful!-

scheme is combined with image smoothing, the method exhibits scale visu:il task. The iow leve l vision subroutine library will

good accuracy and wide convergence range. This method will be provide a rea=dy source of programs for someone who wants to

used in the actual demonstration system of visual navigation, use Warp, as well as pruvidig numerous guides in programming

Warp for a new programmer. A library of vision subroutines has

Kanade [81 is currently working on a new theory for motion troin been studied and classified from the point of implementing them

image sequences that relates line correspondences, differntial on Warp. The assembler and simulator for Warp have been

motions of the viewer, and temporal and spatial ditlereotials of written. Several sample Warp programs including 3x3

images. The theory consists of two parts. The first part provides convolutions have been written.

the formu'as to solve the differential molidn of the viewer frorm line

correspondences. The second part relates the line Dew [21 has investigated re-implementation of FIDO algorithms

correspondence problem with temporal and spatial image (visual obstacle avoidance algorithms by Moravec and Thorpe) on

differentials. Interestingly, this theory seems to provides a way to Warp; we anticipate a speed-up of a factor of 10 from Warp

*devurly get around the aperture problem that ari.es as an implementation compared with VAX implementation. We also

ambiguity in matching points using only the local image plan to investigate use of Warp for other navigation tasks,

properties within a window. When viewed as a line including path following.

correspondence problem, local image properties do provide

enough information. 4. 3D Vision System: Generation and 5
Matching of 3D Scene Descriptions

3. Vision on a Systolic Machine Warp
We have started developing a vision system on a systolic array 4.1. From 3D Range Imagery

machine. The machine called Warp is being designed and built We have been active in developing techniques for generating

by H. T. Kong's VLSI group at CMU. The original design of Warp three-dimensional scene descriptions from range inageiy and for

was for a parallel architecture providing high-speed floating-point matching scene descriptions. These techniques will be applied to

computation for signal processing. This design has been both industrial vision problems and outdoor scene analysis to be

changed in cooperation with the lUS group to provide the used for outdoor navigation.

computational flexibility needed for doing a variety of low-level

vision tasks. Two pieces of worK have been done with different approaches

and emphasis. The first piece of work, by Smith 1211, produces

Warp consists of ten cells organized in a linear array. Each cell object-centered three-dimensional descriptions starting from

contains a 32 bit floating-point adder and multiplier, 4k of 152-bit point-wise 3D range data o.tained by a ligh!-stripe rannefinder. A

word micro-store, and 4K of 32-bit RAM, as well as other registers careful geometrical analysis shows that contours which appear in

to provide Sufficient control. The adder and multiplier, which are light-stripe range images can be classified into eight types, each

pipelined, each produce one floating-point resuit avery 200 with different characteristics in nccluding vs. occluded and . .

nanoseconds for a throughput of 10 MFLOPS per cell or 100 different camera/illuminator relationships. Starting with

MFLOPS for the whole array. The cells include facilities for detecting these contours in the iconic range image, the

systolic processing or limited local address generation, so that descriptions are generated moving up a hierarchy from contour,

each cell can be programned individua!,y to do a different surface, object, to scene. We use conical and cylindrical
computation, or the whole array can do a coordinated systolic zuef ices as primitives. The emphasis in this work is data-driven

computation. The 10-cell machine will be interfaced with a VAX bottom up a,onomous processing, generating object

I U/7F through an APTEC DPS-2400 interface machire, whi-;h descriptions from complicated scenes without referring to

provides 1 Mbyte of memory and 2,4 Mbyte/sec bandwidth. specific pre-stored object models, Therefore, in the process of
generating descriptions, we exploit the fact that general coherent
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relationships, such as symmetry, collinearity, and having a

common axis, which are present among lower-level elements in 5. Digital Mapping and Photo
the hierarchy allow us to hypothesize upper-level elements. The Interpretation
analysis program has been applied to complex scenes containing Work in the area of Digital Mapping and Photo

cups, pans, and toy shovels. Interpretation [13] has continued and expanded into two new

areas. The first is map-guided feature extraction, and the second

Tile second piece of work, by Tomita [241, is edge-based and area involves new research in the area of building rule based .

directed toward object recognition. A light-stripe rangefinder systems for photo interpretation.

image is first segmented into edges and surfaces. This

segmentation is done in 3D space; edges are classified as either 5.1. Map Guided Feature Extraction

3D straight lines or circular curves, and surfaces are either planar We have developed an approach to map yuided image analysis

or conic. An object model consists of component edges and using a region-based segmentation system. A full paper is

surfaces and their interrelationships. Our model representation included in these proceedings [14]. This segmentati')n system

can accommodate riot only objects with rigid, fixed shape, but

also objects with articulations between their parts, such as correspondence with a geodetic map to find occurrences of

rotational-joint or linear-slide motions. The matching process is
known buildings, roads, and natural features. The map predicts

rather straightforward. A transformation from an object model to
the approximate appearance and position of a feature in an

the scene is hypothesized by initially matching a few scene

features with model features. The transformation is then tested image. The map also predicts the area of uncertainty caused by

with the rest of the features for verification. The object model is errors in the image to map correspondence. 1he segmentation

constructed either interactively by using sample scenes or by process then searches for image regions that satisfy 2-

dimensional shape and intensity criteria. If no initial region isderiving the model representation from the PADL-2 solid- found, the process attempts to merge together those regions that
modeling system.

may satisfy these criteria. Several detailed examples of the

During the course of iur work we are accumulating facilities segmentation process are given.

useful for acquiring, processing, and displaying three.

dimensional range images. The collection includes: data This work uses the CONCEPTMAP database [111 from the MAPS

acquisition system for industrial setting, a program library for system [12,15] as its source of map knowledge. In the

boundary detection, 3D curve segmentation, 3D edge detection, CONCEPTMAP database, map knowledge is represented as three

etc, a 3D display program using fast 3D graphics to quickly see dimensional descriptions of man-made features, natural features, - - .

the data and model description overlayed. and conceptual features. Examples of man-made features are

buildings, roads, and bridges; natural features are rivers; lakes,

4.2. From Aerial Photos: 3D Mosaic System and forests, and conceptual features are political boundaries,

The 3D Mosaic system now can combine both stereo image residential neighborhoods, and business areas. These feature .1

analysis and monocular image analysis as sources of information positions are represented in the map database in ierms of

to be accumulated into a consistent 3D description of a scene. Olatitudelongitude.elevation.

Each view of the scene, which may be either a single iriage or a

stereo pair, undlrgoes analysis which results in a 3D wireframe 5.2. Rule Based Interpretation of Aerial Imagery

description that repressnts portions of edges and vertices of We have begun research on the deelopment of a rule based

objects. The surface-based scene description is constructed system, SPAM [17. 16], that uses map and domain specific

from the wireframes. With each successive view, the description knowledge to interpret airport scenes. This research investigates • S
, is incrementally updated and gradually become more accurate the use of a rile based system for the contol of image

and complete. Task-specific knowledge. involving block-shaped processing and interpretation ol results with respect to a world . .

objects in an urban scene, is used to extract the wireframes and model, as well as the representation of the world model within an - -

construct and upr'ate the model. A complete report is included in imge/map database.

these proceedings [5].

%S



SPAM, A System for Photo interpretation of Airpurts using imagery, others in the design and implementation of effective

MAPS. is an image interpretation system. It coordinates and recognition strategies using the rule-based approach. However,

controls image segmentation, segmentation analysis, and the we believe that the integration of map knowledge, image

construction of a scene model. It provides several unique processing tools, and rule-based control and recognition

capabilities to bring map knowledge and collateral information to strategies will be shown to be a powerful compulational

bear during all phases of the interpretation. rhese capabilities organization for automated feature extraction from aerial imagery. -

include:
6.~ Reference
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analysis. Tech. Rept. AIM-347, Stanford Artificial Intelligence Laboratory, S

* The use of explicit camera models that allow for the 1982.
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IMAGE UNDERSTANDING TECHNIQUES
FOR AUTONOMOUS VEHICLE NAVIGATION

Azriel Rosenfeld
Larry S. Davis
Allen M. '.!axman

Center for Automation Research
University of Maryland
College Park, MD 20742 S

ABSTRACT 2. TIME-VARYING IMAGERY XNALYSIS

This report summarizes research carried out Earlier work on analysis of optical flow
during the period December 1982-August 1984 on fields at Maryland dealt with propagation of local
Contract DAAK7O-83-K-0018. The focus of this re- object motion estimates along contours and with
search is on image understanding techniques appli- flow field smoothing. An especially powerful S
cable to autonomous land vehicle naviga. ion. Par- smoothing technique (1] utilizes global information
ticular emphasis has been placed on ttie-varying about the motion field, derived from the histograms
imagery analysis, but some work has also been done of the components of the estimated motion. The
on two-dimensional shape analysis and three-dimen- method is an adaptation of the "superspike" image
sional object recognition. A second major empha- enhancement algorithm to motion field estimation.
sis was the development of an approach to road Experiments indicate that the method can yield more
network following and obstacle avoidance tasks; accurate and precise estimates of motion than pre- -
this work has now received major additional fund- viously proposed motion estimation algorithms. 0
ing under the DARPA Autonomous Vehicle Program.

A major new effort on optical flow field ana-
lysis was initiated when Dr. Allen M. Waxman joined
the University of Maryland in May, 1983. Dr.

I. INTRODUCTION Waxman's initial work on the structure from motion

problem was done in collaboration with Shimon Ullman
The Computer Vision Laboratory of the Center of MIT [2]. This work involved a new formulation

for Automation Research at the University of and method of solution of the image flow problem.
Maryland first received support under the DARPA The two-dimensional image flow is generated by the

Image Vnderstanding Program in 1976. This support, relative rigid body motion of a smooth, textured
which was funded through the U.S. Army Night Vision object along the line of sight to a monocular camera.
and Electro-Optics Laboratory in Fort Belvoir, VA, By analyzing this evolving image sequence, one hopes
emphasized the development of techniques for de- to extract the instantaneous motion (described by
tecting tactical targets on infrared imagery. six degrees of freedom) and local structure (slopes and

curvatures) of the object along the line of sight.
In December 1982 a new effort, entitled "Auto- The formulation relates a newlocalrepresentation of

nomous Vehicle Navigation", was initiated at an image flow to object motion and structure by twelve
Maryland under the Image Understanding Program. nonlinear, algebraic equations. The representation
This work was funded through USANVEOL under Con- parameters, termed observables, are given by the two
tract DAAK70-83-K-O018, with Dr. George R. Jones components of image velocity, three components of
as COTR and the Westinghouse Corp. as a subcon- rate-of-strain, spin, and six independent image gra-
tractor. dients of rate-of-strain and spin, evaluated at the

point on the line of sight. These kinematic vari-
The focus of the research being conducted ables are motivated by the deformation of a finite

under this project is the development of image element of flowing continuum. A method for solving
understanding techniques applicable to autonomous these equations was devised and successfully imple-
land vehicle navigation. Particular emphasis has tese ons as devied A uesfulyample-

mented on a VAX computer. A number of examplesbeen placed on time-varying imagery analysis, but were explored revealing two classes of ambiguous
some work has also been done on two-dimensionalshape analysis also theeon w-dimensional recscenes (i.e., nonunique solutions are obtained).shape analysis and three-dimensional object recog- A sensitivity analysis was also begun in order to

nition. A second major emphasis was the develop- estimate noise levels in the representation para- S
ment of an approach to road network following and meters which still yield acceptable solutions; indi-
obstacle avoidance tasks; this work has now re- cations are that the method is quite stable. Final-
ceived major additional funding under the DARPA ly, an approach is suggested by which the kinematic
Autonomous Vehicle Program. variables may be extracted from evolving contours

in an image sequence.
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Dr. Waxman has formulated a general "image animation package simulates motion of objects

flow paradigm" [3] describing the relationship through space and also the evolution of surface

between a three-dimensional (3-D) scene consisting contours through time. It includes graphics algo-

of several objects in rigid body motion, and its rithms for projection, clipping, hidden surface

associated two-dimensional (2-D) time-varying ima- removal, shading and animation.
gery. The paradigm addresses a number of theore-
tical issues: What is a useful represeintation for Another part of Mr. Sinha's M.S. thesis deals

the 2-D flow field and how can it be ontained from with "dynamic stereo" [6], a new concept in passive

the time-varying imagery? How should a flow field ranging to moving objects which is based on the
be segmented and how do these segmentation boun- comparison of multiple image flows. It is well
daries relate to the 3-D scene itself? How is the known that if a static scene is viewed by an obser-

3-D structure and motion of objects in the scene ver undergoing a known relative translation through

recovered from the 2-D flow representation and its space, then the distance to objects in the scene
segmentation? In attempting a answer these ques- can be easily obtained from the measured image velo-

tions, a variety of interesting concepts arise such cities associated with features on the objects

as image neighborhood deformation, evolving con- (i.e., motion stereo). But in general, individual

tours, space-time stream tubes, virtual contours objects are translating and rotating at unknown

and virtual tubes, flow analyticity, boundaries rates with respect to a moving observer whose own

of analyticity, kinematic analysis and structure- motion may not be accurately monitored. The net
motion compatibility. The various "elements" of effect is a complicated image flow field in which
the paradigm are supported by analytic techniques, absolute range information is lost. However, if a
some of which have already been developed, some of second image flow field is produced by a camera

which are now under investigation, and others which whose motion through space differs from that of the
remain to be studied. first camera by a known amount, the range informa-

tion can be recovered by subtracting the first image

Initial work on implementation of the para- flow from the second. This "difference flow" must

digm has been carried out as part of the Ph.D. then be corrected for the known relative rotation

dissertation of Mr. Kwangyoen Wohn [4]. In the between the two cameras, resulting in a divergent

kinematic analysis of time-varying imagery, where relative flow from a known focus of expansion. This S
the goal is to recover object surface structure passive ranging process may be termed Dynamic

and space motion from image flow, an .appropriate Stereo, the known difference in camera motions play-

representation for the flow field consists of a ing the role of the stereo baseline. We have de-

set of deformation parameters which describe the veloped the basic theory of this ranging process,

rate-of-change of an image neighborhood. We have along with some examples for simulated scenes.

developed methods for extracting these deformation Potential applications are in autonomous vehicle

parameters from evolving contours in an image navigation (with one fixed and one movable camera

sequence; the image contours being manifestations mounted on the vehicle), coordinated motions be- O

of surface texture seen in perspective projection. tween two vehicles (each carrying one fixed camera)

Our results follow directly from the analytic for passive ranging to moving targets, and in in-

structure of the underlying image flow; no heuris- dustrial robotics (with two cameras mounted on dif-

tics are imposed. The deformation parameters we ferent parts of a robot arm) for intercepting mov-

seek are actually linear combinations of the Taylor in_ workpieces.

series coefficients (through second derivatives)
of the local image flow field. Thus, a by-product In collaboration withDr. Jacqueline LeMoigne,

of our approach is a second-order polynomial ap- Dr. Waxman has also been studying the feasibility
proximation to the image flow in the neighborhood of using projected light grids to construct range

of a contour. For curved surfaces this approxima- maps of a robot's immediate environment. They

tion is only locally valid, but for planar surfaces have addressed a number of operational considera-

it is globally valid (i.e., it is exact). Our tions and image processing tools relevant to this

analysis reveals an "aperture problem in the task domain, including the issues of operating in

large" in which insufficient contour structure ambient lighting, smoothing of range texture, grid

leaves the set of twelve deformation parameters lattern selection, albedo normalization, grid ex-

under-determined. We also assess the sensitivity traction and coarse registration of image to pro-

of our method to the simulated effects of noise in jected grid.
* the "normal flow" around contours, as well as the

angular field of view subtended by contours. The A study of object tracking and occlusion
sensitivity analysis is carried out in the context analysis has been carried out in connection with

of planar surfaces executing general rigid body the M.S. thesis of Mr. Nader Kazor [7]. A system

motions in space. Future work will address the was developed that builds a map of the environment
additional considerations relevant to curved sur- by tracking moving objects and detecting instances 5
face patches. of occlusion. This information is used to place

bounds on the ranges and bearings of the stationary

An Image Flow Simulator for the experimental objects in the scene.

study of optical flow fields was developed as part

of the M.S. thesis of Mr. Sarvajit S. Sinha [5]. 3. OTHER TOPICS
The purpose of the Simulator is, from a knowledge
of structure and motion, to display the 2-D image A method of recovering closed boundaries of

sequence and associated flow. TI'is 3-D graphics two-dimensional shapes from disconnected boundary S
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segments was developed as part of the Ph.D. disser- The long-range navigator is responsible for
tation of Ms. Tsai-Yun Phillips, under the direc- determining general paths through regions of uni-
tion of Dr. Takashi Matsuyama of Kyoto University. form visibility/navigability. Its map is a low-

A geometric labeling scheme was introduced for the resolution decomposition of the environment into
Voronoi diagram of a set of straight line segments regions in which:

in the Euclidean plane, and a method was developed
of recovering the medial axis of a closed boundary 1) a minimal number of landmarks (either

by using the labeled Voronoi diagram [8]. Algori- specified in the map or acquired, dyna-

thins were then developed for computing the labeled mically, during navigation) will be

Voronoi diagram for a set of digital line segments, visible from most points within the

using a labeled Euclidean distance transform [9]. region (uniform visibility), and
Finally, a digital algorithm for extracting the
digital medial axis from the labeled Voronoi dia- 2) the terrain is of uniform composition

gram was implemented [10]. (uniform navigability). 0

A study of visibility in planar polygonal re- The long-range navigator constructs a path,
gions was conducted in connection with the M.S. represented as a sequnece of regions, from this

thesis of Mr. Mark Doherty (11). Algorithms were map that will get the vehicle from the starting

developed for finding minimal sets of points from location to its goal. This path might be edited

which the entire region is visible. The relation- as the vehicle navigates through its environment
ship between this task and that of decomposing the based on information obtained at lower levels of

region into a minimal union of star-shaped subsets navigation and passed up to the long-range navi- S
was also investigated. gator.

The use of Hough transform methods for three- The principal visual capability of the long-

dimensional object recognition was investigated as range navigator is landmark recognition. By recog-

part of the Ph.D. dissertation of Ms. Teresa M. nizing a sufficient number of landmarks to suffi-

Silberberg [12]. This involved an iterative proce- cient accuracy, the long-range navigator can com-

dure in which straight line segments in the image pute the location of the vehicle to the accuracy

are matched by finding the parameters of a viewing required for continuing the mission. The long-

transformation of a three-dimensional model con- range navigator is responsible for planning a
sisting of line segments. Assuming the scale of sequence of landmark recognition tasks, and then
the object is known, there are three orientation controlling each of these recognition tasks. The

and two translation parameters to be estimated, control involves first analyzing map information

Initially a sparse, regular subset of parameters to, e.g., predict the appearance of the landmark

and transformations is evaluated for goodness-of- and the background against which it will likely

fit; then the procedure is repeated by successively appear from the vehicle's perspective. Secondly,

subdividing the parameter space near current best the camera system, which will include an electroni-

estimates of peaks. tally controlled zoom lens and pan/tilt mechanism,

must be controlled to locate and identify the land-

In the area of software development, an inter- mark with sufficient angular resolution.
face between the C and Franz Lisp languages was

implemented and documented [13]. The documentation In summary, the inputs to the long range

describes in detail how C functions may be called navigator include a coarse visibility map, visual

from Lisp and vice versa, models of landmarks, a low resolution terrain map,

and a mission description. This navigator must be

4. AUTONOMOUS LAND VEHICLE NAVIGATION capable of object recognition and of path genera-
tion from a region graph. Its internal data rep-

The goal of the research being conducted on resentations include a map of regions of uniform

this project is to demonstrate the roles that visibility/navigability; the location of the vehi-

vision .j an play in navigation. Our approach to cle; and a sequence of (paths through) regions.

visual njvigation involves segmenting the general
navigation task into three levels, called long- The intermediate range navigator maintains a S
range, intermediate-range, and short-range naviga- map which is a subset of the long-range map, but

tion. The general flow of control between levels represents that subset of the environment in

is that goals flow from levels of greater abstrac- greater detail based on analyses of its vision

tion to levels of lesser abstraction (long-inter- system. Its navigation task is to compute a path

mediate-short) and status information, concerning through a region of uniform visibility/navigability
the achievement of those goals, passes in the oppo- by identifying what we call corridors ot free

site direction. Each level of navigation maintains space. A corridor of free space is a straight

a map of (some subset of) the environment to be swath of navigable terrain that is not so densely 5
navigated, with the map information becoming more populated with obstacles that the vehicle could not

concrete as one moves from long down to short range maneuver among them. The intermediate range navi-

navigation. Specific sensors and visual capabili- gator constructs this sequence of corridors by ini-

* ties are also associated with each level of navi- tially considering a straight line path of nominal

gation; these sensors and algorithms function to width, and then perturbing this path, by increasing

maintain the correctness of the map representation its width and splitting it into subsegments, to get

at that level. a minimal length path of sufficient "instantaneous"
navigability.
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The vision capabilities required at this on texture continuation; consistency over scale and
level of navigation are by far the most complex of perspective; and generalized Hough matching. Know-
all three levels. The intermediate range navi- ledge about the road (slowly varying) and vehicle
gator needs to maintain a three-dimensional model motion allow edges to be predicted in subsequent
of its environment to ranges far greater than can views -- in other words, guided search can be used
be explored using active ranging; furthermore, it to find edges in views from new perspectives. The .
requires a sophisticated object recognition and model and predictions can then be corrected and up-

terrain analysis capability. The vision algorithms dated.
will rely heavily on both multitemporal and stereo
analyses. The road following process also involves other

intermediate range navigation tasks, such as plan-
In summary, the intermediate range navigator's ning for anticipated road changes; negotiating in-

inputs include a subset of the long range map, tersections and curves; getting on and off roads;

models of known obstacles, models of gross terrain and (eventually) navigating among other moving
features, and a path. This navigator must be capa- vehicles. It also involves short range tasks, in-
ble of general image analysis for segmentation and cluding avoidance of obstacles (with the aid of
recognition; qualitative ranging (e.g., relative range data) and constraining the vehicle's path
depth by occlusion; motion stereo; dynamic stereo to the road corridor; as well as long range tasks,
from image flows); landmark acquisition (anomaly including recognition of landmarks along the road
detection); and path (corridor) planning. Its and road network navigation.
internal data representation includes a map of
corridors of free space, major obstacles and R
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Number 512 x 512
Name Technology Year of Units ops/s Frames/s Customers

AUTO.Q I MSI TTL 1980 45 400 Million 3 Army AF, NASA
M I r, SU, DEC. etc.

AUTO-Q 11 MSI TTL 1983 2 1 Billion 13 AF, Army

VI-SIC of 1.25 Am CMOS 1985 * Army

VHSIC o2 0.5 jum CMOS 1988 *Proposal Submitted

'Star% Denote Information (annot Be Puhh~hed ati hi, rim

Figure 3. Vital Statistics of Westinghouse's Image Processors
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VLSI IMPLEMENTATION OF SYSTOLIC AND 3-0 CELLULAR ARCHITECTURES FOR IMAGE PROCESSING

J. Greg Nash, R. 0. Etchells, J. Grinberg, S. Hansen, M. J. Little, G. R. Nudd, K. Petrozolin, R. Turk

Hughes Research Laboratories
3011 Malibu Canyon Rd.
Malibu, CA 90265

Abstract which has been built in an optimum way for linear
systolic arrays. In addition we have integrated on

We report here on several implementations of to the chip a special high speed multiplier [2]
computing architectures for use in array-based 2-0 which is far more area-time efficient than
image processing applications. First we will conventional fast parallel multipliers.
describe our linear systolic array, which has been
built using a custom designed VLSI Multiplication Architecture S
Oriented Processor (MOP) chip as te processing

lement. It is capable of performing OFTs, 1-D and Our prototype system, shown in Figure 1,
2-D convolutions, and solving Toeplitz linear consists of nine replicated copies of our custom
systems. A second, more general systolic array we MOP chip, plus a commercial divider. (Each MOP
are building, is based on the Faddeev algorithm, chip serves as a PE.) Eight of these MOP chips are
This machine, which is ultimately intended to be a used in the systolic array ar1 one (MOP AUX) serves
general linear algebraic processor, is presently as a fast buffer memory for che rest of the array.
capable of matrix operations, linear system Since many algorithms for linear systolic arrays
solution, matrix factorization, and least squares result in only alternate processors active at any
solutions. Finally, we will briefly describe our time, we effectively time multiplex operations so
3-D computer, which combines wafer scale that all processors can be active all the time.
integration, bus lines through wafers, and For example the eight MOP chips can be used to
inter-wafer connections, to provide a computing solve a 16th order Toeplitz linear system.
capability with several orders of magnitude
combined improvement in power dissipation,
throughput, size and cost, when compared to present
special purpose computers.

Introduction MOP MOP M

In this paper we describe three computing
architectures, which vary from very special purpose
with a relatively simple implementation to more
general purpose (in terms of image understanding) DATA

with a complex implementation. In Section I we B U 2S6ITSI
discuss our linear systolic array and give an cZ C3
example of how it can be used to solve a special
type of linear system in 0(n) time steps using only
0(n) processing elements (PEs). In Section II we
describe a 2-0 array of PEs capable of much more
general operations in 0(n) time steps using an Rs232 S
O(n ) array of PEs. Most of the discussion will DAS9163 DECI/34

center on the Faddeev algorithm, since it is the
architectural basis of this array. Finally, we
will briefly describe our 3-0 computer and Figure 1. System block diagram of linear systolic
summarize its capabilities in Section III. array. The inputs Ci, to the MOP chips

are used to gate control signals to each

I. Linear Systolic Array chip.

The linear systolic array architecture has been
recognized as a relatively inexpensive approach to
providing increased throughput in a number of Instructions are broadcast to all PEs by our
important application areas. [1] Such arrays are control unit (Tektronix 9163 system). Each PE has
easily expandable, relatively simple to design and a gate associated with it to control receipt of
interface, while offering a surprisingly large instructions. In some "wavefront" type algorithm
range of calculational capabilities. We describe implementations this is necessary to prevent PE's
here a design that uses a custom VLSI chip as a PE which are not part of the wavefront from receiving
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cX + Cx 2 + . + cnX n + d, that numerical accuracy is comparable to the usual
LU decomposition and backsubstitution.

where c, c2 ,..., c and are given numbers, and
xx 4... ,x is then solution to the linear system This result can be generalized to the case of
oi e uation rectangular matrices C,D, and B, or

a 11x1 + a 12x2 + ... + alnXn = bI  A B

21x + a22x2 + + a2nxn = b2  
D

After the-lower left hand quadrant is annulled, the
result CA 8+0 will appear in the lower right hand

anl X + an2 X2 + . a x = bn  quadrant. As shown in Figure 5, numerous matrix
operations are possible by selective entries in the 0

four quadrants.
whose determinant is non-zero. The problem can be
codified by writing it as POSSIBLE OPERATIONS

aa a Ina11a12 .. Ian bI

a21 a22 "' a2n b2  A A
-10 A-

a n1 a n2  an bn

-c-c 2  -c n d I BCB
or in abbreviated form, -C O B

AB(2
-C , (2) I BCB

where B is a column vector and C is a row vector. -C D --+C

If a suitable linear combination of the rows above . _

the line (from A and B) are added to the row
beneath the line (e.g., -C+WA and d+WB, where W A B
specifies the appropriate linear combination), so
that only zeroes appear in the lower left hand A--A-1
quadrant, then the desired result, CX+d, will -I O "="' A 1 B
appear in lower right hand quadrant. This follows
because the annulment of the lower left hand
quadrant requires that

WCAA B : CA-B+D
so that

d+WB=d+CA B. Figure 5. Illustration of possible matrix

Since X=A- B, we have the final result operations using Faddeev algorithm.

d+WB=d+CX.
Modified Faddeev Algorithm

The simf licity of the algorithm is due to the Although the Faddeev algorithm has some very
abserce of a necessity to actually identify desirable features, we would like to add an
multipliers of the rows of A and the elements of B; orthogonal factori7atior rapability for added
it is only necessary to "annul the last row." This numerical stability and to permit the coefficient •
can be done by ordinary Gaussian elimination. An matrix to lip non-square for over- and

* important feature of this algorithm is that it underdetermin d systems of equations.
avoids the usual backsubstitution or solution to Unfor-tunatfly, when Givens rotations are applied to
the triang!,Iar linear system and obtains the values the matrix
o f the unkrn-,,.s directly at the end of the forward
c;-sc nf he computation, resulting in a A B
ccnn .r_ ,vings in added processing and •

ji , pl , * f! studies we have dore show -C D
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in the usual way (beginning in the lower left hand

BOUNDARY CELL corner) to annul C, the result is

(C ) IF xi, 0. c=1 F R t
= O0B Q = [Q 1 : Q 2]

-YC +WA YD + WB n m-nIF Xin 0, t V r2 +Xin 2  i '"

where A is mxn, R is upper triangular, Q is
c=r/t orthogonal, and Y is a matrix resulting from
S=X n/t rotations on elements of C. Sinc the lower left
r=t hand quadrant results in W = YCA _ , we find that

xin the lower right hand quadrant becomes Y(O+CX)
ITherefore, the mixing of the rows beneath the line
INTERNAL CELL 24 during the rotation process causes the incorrect

(c.S) r (c.s) xout=-sr+cxin result to appear. For this reason it is necessary
to divide the process of annulling the lower left

r cr+sxin b2 3  b14  hand quadrant into a two step procedure. First A
is triangularized by Givens rotations

JOUt -  (simultaneously applied to B); after this is
* b22  b13  completed the remainder of the process can be

rL-( accomplished by Gaussian elimination using the

r- - I diagonal elements of R, all of which must be
0 0 9 0 b21  b12  , non-zero if A is full rank, as pivot elements. In

L I L other words after the first step (Givens rotations)
S L _J we obtain

- , -- r--,
* * * a24  bl , I I 1, . I F t 1

a•.j a2 14  ' : r ' Loi - -
r I r I r q

C I r~ I K I Jr r~ --- r - r -- , r-- ' -

* a22 a13  I I II ,
-j I - L. and after the second step, Gaussian elimination,

r. J - -- J the final result is _I ' 2 : : I : ' _ _ I F "'

a2 1  812 I I I I I I

J .. -. .J L. J L _ J . .. LO- J R -B.

T~ O C R_ Q B+U

There are no restrictions here on the coefficient
matrix A other than it be full rank. Thus, as will
be seen later, least squares problems can be solved
in addition to the matrix manipulation capabilities
shown in Figure 5.

Architectural Considerations

As mentioned in the description of the Faddeev
algorithm, one of its nice properties is that it
maps well into an array architecture with datar ,flowing in nearest neighbor fashion. One approach

/r\ RESIDUALSCELLL _ would be to use a triangular array [8] for this
r_ v ]_y purpose. In order to correctly process the B

Kout rXKig r-- - matrix it is only necessary to extend thex gt jn triangular matrix in the eastward direction as
x =Xin --- ' - - shown in Figure 6. By passing A and B down through

in r- ithis array with delays as shown, and performing the

DELAY CELL Figure 6. Processor flow diagram and PEL _ J "in Xoutarrangement for first step (orthogonalI triangularization) of modified Faddeev

X"A algorithm.
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computations indicated in the circles and boxes, R
BOUNDARY CELL and QIB will be left stored in the array of PEs.

"in (In this example both A and B are mx4 in size.)

Kin The second step in the modified Faddeev
Xout xout = algorithm could be accomplished as shown in

Figure 7. Here C and D, each of which is nx4, are
also passed down through the array of processing
elements in a similar way. In this case the set of

Xin INTERNALCELL operations performed in each PE is slightly
different as shown. The PEs indicated by the
circles each zero one column of C by pivoting on

v r Y Xout in -Yr the diagonal elements of R. If tthis case after
O(n) time steps the result CR Q1 B+O will appear

row by row coming out of the array at the bottom
right.

Kin DELAY CELL d24 The triangular structure of Figures 6 and 7 can
r d23  d14  be easily transformed to a square organization for

' Xout Xin more efficient implementation and generalization to

L- J , handle arbitrary sized matrices.
d22  d13 L

XOut r- r-I Least Squares Problem

* * * d2 1 d121 - L J As an example of the use of the Faddeev
r- r-- algorithm we will show how it can be applied to the

I I ; 4 d' 'least squares problem [9] of finding the value of x
L__C L_ d 1 _ I that minimizes

J- -' '-T I-[ II IIT
I , Ax-b . .

& * C23  C1 4  I I I I I IL_ L ._[ J I_ L- I .J.
_j - :.' The usual procedure is to perform an orthogonal

r r ,r ' -[ , triangularization of the mxn (m>n) matrix A, which
• C22  C 13  ,i ' for the overdetermined case leads toL -J L- J L_ i L _ _,J L- J.,.

r, > ,_ ,_ r- - " r - i [ R]
C2 1  C12  , '' I QtA R

-- L L , -
C11 i , ' so that.

LL- J k. j L - j L- -

IlAx-bl ll IIQt Ax-Q t bll

or

11 Ax-bjI - tb + IQtbjl
The minimum value efIlAx-bl1is obtained with x as the
solution to Rx=Qlb. The residual is then Q2b.
These results can be found using the modified
Faddeev algorithm with the data arrangement

A b 6

n -I 0.
I ..L I '

IFLn r T For example the processor arrangement shown in

923  914 Figures 6 and 7 would be suitable for computing the
U least squares solution to min 11Ax -b.11 forL -4 i=1,2,3,4, where A is mx4. Note, as "shoWn in

022 13  Figure 6, the residuals are very simply obtained by

L. J

U21 012 Figure 7. Processor flow diagram and PE
arrangement for second step (Gaussian
eliminetion). The output matrix is
G=CR Q B+D.
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accumulation of the squares of the first m-4
n~n-zero outputs (corresponding to the elements of
Q2b) of each of the columns associated with bi. MICRO-BRIDGE

For the underdetermined system, where A is mxn INTERCONNECT
with m<n, we find after factoring that S

11 Ax-be = II [R:O]Qtx ' bi
If we let 32 x 32

ARRAY

Qtx
STACKED

then y can be found from the solution to the WAFERS
triangular system ...

Ryl = b

and Y2 is arbitrary. The usual procedure is to set
y =0 which corresponds to taking the minimum norm
sglution. The underdetermined case requires that Q Figure 8. Basic structure of the 3-0 computer.

be applied after the solution for yl, so that the
rotations must be accumulated during the course of
the computation. This problem can be solved using equal to the number of pixels in the information
the modified Faddeev algorithm with the data plane, allowing the assignment of a complete
entries processor to each pixel. This organization is in

direct correspondence with (and is therefore more 0
+A efficient for processing) 2-D arrayed data.

bt 0 .However, it should be emphasized that the
application of such a machine is not limited to
two-dimensional data, and a very wide variety of
computationally intensive applications can be

At the end of the calculation the entries will be performed by the structure with considerable
advantage.

R t The 3-D parallel processor structure can beLo t visualized as a stack of large silicon wafers lying
-0 on top of each other like a stack of coins

(Figures 8 and 9). Each wafer is divided into an
0[y: 0] N x N array of primitive computing cells. The

signal is transferred through the wafer at each - .
where the desired result xt is in the lower right cell and then interconnected to the corresponding S

cell on the adjacent wafer. In this way, N x N
hand quadrant. Of course multiple underdetermined signal paths (bus lines) penetrate the stack of

wafers. Each of these N x N data lines serves as
least squares calculations, m IIAxi-bi~l, for the main data path of a primitive serial computer.

i=1,2,..n, could be performed with the entries R-------- -- 1 /DATA

-B 0,

where B=[b :b : ...:b ]t contains the set of right L '---

" hand side eciors. prom an architectural point of A
view no extra PEs are necessary when processing USLINE CONTROL
more than one right hand sidp vector. MEMORY AND SERIAL

I SORD RORA ! LOGIC WAFERS 1/0- . -

I1. 3-0 Computer SCONTROL UNIT

The 3-D4 computer6 concept consists of a large
number (10 to 10 ) of parallel computing
channels (10]. Typically the number of channels is Figure 9. Organization of 3-D computer as shown

from "side" view.
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Functional units of each computer are arranged range-Doppler computation, spotlight SAR, and
along these serial data buses. Each wafer in the matrix computations such as matrix inversion and
stack contains an N x N array of computing elements multiplication. In Table 2 we summarize
of one type (such as memories, accumulators, as computation times for some primitive operations.
shown in Table 1), one such element for each of the
N x N data lines. The idea is to put a stack of
these primitive computing elements behind each Table 2. Processing times for various primitive
pixel or matrix element, thereby providing a simple operations (1O-MHz clock)
computer for each element of the incoming data "
structure.

OPERATION TIME
Table 1. List of Cell Types in the 3-D Computer. 0

CELL TYPE FUNCTION Data move (MEM -> MEM) 1.8 1s
ADD (ACC + MEM -> MEM) 1.8 p.s

Memory Store, shift, invert/non invert, MULTIPLY (ACC X MEM -> MEM) 42.2 [Is
"OR," ,ull word/MSB only, DIVIDE (ACC MEM- ACC) 127.1 ,s
destructive/non destructive SQUARE ROOT ( ' -> ACC) 152.6 ps
read out Sobel edge operator 54.3 ,s

256 x 256 matrix multiply 12.0 ms
Accumulator Store, add, full word/MSB only, 256 x 256, 8-bit histogram 2 1.7 ms S

destructive/non destructive 256 x 256 matrix inversion 10.2 ms
read-out

Replicator I/O, X/XY short, stack/ Redundancy
Plane control unit communication

Our approach here for a prototype machine is to
Counter Count in/shift out provide a full 2:1 redundancy on every wafer plane.

In this case, there will be two computing cells,
Comparator Store (reference), four feedthroughs, and four interwafer contacts for

greater/equal/lower each pixel element in the image. Assuming 0.99
yield on a 12 x 12 mil unit cell, we have computed
the yield on VLSI arrays of different size both

Due to the enormous number of processing with and without 2:1 redundancy and disconnect-type
elements that must be contained on a single silicon repairs. The result is shown in Table 3. Without
wafer, the actual area available to each such the redundancy, the yield on a 450 x 450 mil array
element is quite small, presently on the order of would be practically zero. But with 2:1 redundancy" -
20 mils x 20 mils. This places a strict limitation and disconnect-type repairs, the yield stays
on the number of components available with which to reasonable up to a 1-in. chip. The assumption in
construct the elements. This restriction is this case is that, if both cells on any pixel are
overcome by dispersing the various functions of defective, the chip will be thrown away. If one is
each computer vertically throughout a stack of willing to make 10 or fewer discrete wirings on a
wafers. In a typical example, the array may wafer, which means being willing to repair a wafer
consist of 256 rows and 256 columns, for a total of with 10 or fewer defective cell pairs, one can
65,536 identical computers. Each of these substitute a good working cell from a next neighbor
computers would have its functions distributed over pixel that has both cells good for the two
a vertical column extending through 20 or more defective cells. In this case, a 93% yield can be
wafers. achieved on a 3.6-in. array.

In the usual mode of operation, only two of the
wafers in the stack will be simultaneously active, Table 3. VLSI yield comparison.
one functioning as the source of the data being _

processed, the other performing the processing and
acting as the repository of the results of that 2:1 REDUNDANCY
computation. Although serial arithmetic means that 2:1 AND 10 SIMPLE
the individual cellular computers are fairly slow, REDUNDANCY DISCONNECT
the massive parallelism of the array results in an ARRAY SIZE NO & DISCONNECT -CONNECT
enormous overall processing power. Benefits of the (MILS) REDUNDANCY REPAIR ONLY REPAIRS
serial arithmetic include the simplicity of the
processing elements and the fact that the S
processing occurs simultaneously with the memory 225 x 225 0.076 0.957 1
access. As a result, the memory bandwidth of the 450 x 450 0.00003 0.903 1
3-D computer is always matched to the processor 900 x 900 0 0.664 1
bandwidth. 1800 x 1800 0 0.194 1

3600 x 3600 0 0.0014 0.93
Numerous processing algorithms have been

sinulated on the 3-D architecture, including object
identification and analysis, cueing routines, radar

- iiii~iiiS

V V*. .. . .. . . . . . . . . . . .



0

System Cost References
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In the 3-0 computer, most of these costs are -

eliminated. It is not necessary to dice, bond, or 2. M. D. Ercegovac and J. G. Nash, "An area-time
package the chips; fabricate the printed boards; efficient VLSI design of a radix-4
solder the packages onto the printed boards; or multiplier," Proc. 1983 IEEE Conf. on Computer
wire the printed board connectors together. The Design, Port eter, WV,t . 1-N . 3,
3-0 assembler simply places the wafers one on top1 .
of the other. The majority of the fabrication time
will be spent on testing, and even that will be a 3. S. Y. Kung and Y. H. Hu, "A highly concurrent
minor effort compared to that encountered with more algorithm and pipelined architecture for 0
conventional architectures. solving Toeplitz systems," IEEE Trans. on

ASSP, Vol. 31, No. 1, Feb. 1983, pp. 66-76.
In summary, the 3-D computer offers several

imprtant features: 4. J. G. Nash, G. R. Nudd and S. Hansen,
10 "Concurrent VLSI architectures for Toeplitz

o Very high data throughput (>10 linear systems solution," presented at Gov't
instructions/sec) Microcircuit Applications Conf., Orlando,

Fla., Nov. 2-4, 1982. 0
o Very low power (<30 W)

3 5. H. C. Andrews and B. R. Hunt, "Digital Image
o Extremely small size (<6 in. 3 Restoration," Prentice Hall, 1977.

o Potentially low cost. 6. V.N. Faddeeva, Computational Methods of Linear
Algebra, transae y uris .l-nsterF

These specifications were calculated assuming an o6ver ublications, 1959)
array of 128 x 128 cells using presently available
1:1 photolithography techniques. 7. J.G. Nash and S. Hansen, "Modified Faddeev

Algorithm for Matrix Manipulation," Proc.
Acknowledgements SPIE, San Diego, CA, 1984. -

The support by NSF Grant No. ECS 8016581, Office 8. H. T. Kung,"Systolic Array for Orthogonal
of Naval Research Contract No. NOO14-81-K-0191, Triangularization," Proc. SPIE, San Diego, CA,
and DARPA and NVEOL contract DAAK-70-78-C-0163 is 1981. _
gratefully acknowledged.

9. Gene H. Golub and Charles F. Van Loan, Matrix
Computations, Johns Hopkins Press, 1983.-

10. J. Grinberg, G. Nudd, and R. D. Etchells, "A
Cellular VLSI Architecture," Computer,
Jan. 1984, p 69-81.

W-
S

S .

-S 1 .



Semantic Network Array Processor
and

Its Applications to Image Understanding
V. DIXIT AND D. I. MOLDOVAN

Department of Electrical Engineering - Systems
University of Southern California

Los Angeles, CA 00089

processed on SNAP.
Abstract

This paper describes the organization and operation 2. SNAP Architecture
of a semantic network array processor (SNAP). The The architecture consists of a square array of
architecture consists of an array of identical cells each identical processing cells which are interconnected both
containing a content addressable memory, microprogram globally and locally a.s shown in Figure 2-1.
control and communication unit. The applications
discussed in this paper are discrete relaxation and MOST C PuTER

dynamic programming for stereo. I
CONTROL LOGIC

1. Introduction .
The nature of symbolic processing used in artificial

intelligence (Al) is different in many ways from [,,, .
conventional programming language processing.
Consequently, the architecture of computers intended for G*0"

Al applications should be different from today's
commonly used von Neumann computers. The mapping - .-•

of -U algorithms into architectures cannot be done with
the same efficiency as that of numerical signal processing
algorithms (mapping into systolic arrays, for example).
Communication networks supporting packet switching
and complicated data transfer protocols are necessary.

The vision 'algorithms range from very low level
number crunching to symbolic processing. It is not
possible to efficiently implement all these algorithms on a
single machine. SNAP (Semantic Network Array
[or(cessor) currently under study at USC, addresses the
high end of the vision processing. In this paper we show
how SNAP can be effectively used for descrete relaxation Figure 2-1: Architecture of SNAP 0
and dynamic programming for stereo. The interested
reader should see 181 for other symbolic processing Its functionality rests upon two underlying concepts:
applications such as pattern search, inference, and a.ssociative processing and cellular array processing. Each
production systems. cell contains memory control logic and communication

logic. As a whole, the array is operated by an outside

In this paper we first present briefly the controller which :l,, proiles an interf:ce between SNAP S
architecture and the instruction of SNAP, and then show an(d a host computer. Our intent %n to minimize the
how discrete relaxation and dynamic programming can be role of the global functions which affect the entire array

and to provide more operational freedom for each
individual cell. The cells can be microprogrammnd so

Th.o re',ar,-h wxs supported by DARPA contract No, hey can o)perate independently. The signals involved in

F-W..l5-9,-K-175f and F-33615-81-K-1401. the inter-cell comnmunications are Propagated from a cell

. . . . . . . . . . . . . . . . . . . ...... ....











vote: the minimum. Algorithms for such CAM computations

I. M0 = J(u-i(t);t) are described by Foster [4]. After updating the D(*)

values, the packet received from left is pipelined to the

2. Use of a vector as the index of a for loop simply right cell. When the cell originating the data packets for

denotes nested for loops. one loop for each component the pipeline sends its last packet, which is marked as

of the vector. In our case, the order of nesting such, the next cell becomes the originator. The p-loop

Is immaterial, ends when the rightmost cell becomes the originator.

Now the summation over scanlines, the I-loop, is done

4.3.1. Data Representation and Cell Allocation serially by the host employing broadcasting and

One row of SNAP is allocated to each scanline. pipelining. A minimum is taken to compute the value of

Each cell in a row stores information about one edge in A and the process is iterated for another value of i.

left(right) image, and the associative memory within each

cell contains an entry for each possible matching edge in In order to retrieve the optimal path, one must do a

the right(left) image. An entry in the associative memory backward search: start from the final point (cell and

has the fields shown in Figure 4-1. CAM entry) in the path. Fetch the id of the previous

point which produced this value. Go to that previous cell

.- .. . and so on until you reach the origin of the path.

4.3.3. Complexity

(Note: A, B, C, and D are variable in the program) The maximum number of the total CAM entries in

Figure 4-1: CAM Entry for a Possible Matching Edge any row is not more than MN, the product of the

maximum number of edges on any scanline in the two
The cells are assigned to the edges in right or left images. Similarly the time for i loop is O(UT, where U

image such that the vertically (horizontally) connected and V are the number of connected edges in the left and

edges are mapped onto same column (row) and the right image respectively. The summation over

consecutive rows (columns). This can be thought of as scanlines takes the time proportional to maximum of the

iconic representation of the image at edge level. If lengths of connected edges, which is 0(7b), where T is the

horizontally connected edges are present, broadcasting number of scanlines and b is the number of bits used for

may be necessary to compute the summatior, over the numbers. Thus the total time on SNAP is 0(UVMNTh).

t-loop, otherwise, simple pipelining would suffice. Compare this with the sequential execution time -

O( UeVeAMN27). 
-

4.3.2. Program Flow
The program on the host-SNAP combination is a

parallelized and pipelined version of the sequential 5. Conclusions

program. The different for loops are executed as follows: In this paper we presented an architecture intended
for symbolic processing. We examined the applicability of

u-loop : in parallel for all connected edges SNAP to image understanding problems of scene labeling •
and stereo. The two problems are computationally

i-loop :sew~entially run by host intensive and employ different techniques for their

solutions. Solution to Stereo uses intra- and inler-scanline

dynamic programming technique where the computations
are highly ordered. However, the discrete relaxation used

for the labeling problem is a parallel technique. Since
rm-loop : in parallel for all edges on every scanline these are general techniques, any other problems that use 0

them for their solutions could be solved on SNAP with

p-loop : pipelined along rows the same speed up.

The host executes the i-loop sequentially selecting a

point i = (ij). Each cell in the SNAP computes the

limits for the rn-loop. The pipelinpd execution of p-loop is
begins. The leftmost cell in each seanline starts sending

the values of D(*) of each CAM entry along with other

information to the cell to its right. The other cells receive

the values from the left cell and update their values of 6. Acknowledgement

D(*). The D() values are updated for all entries in the We are indebted to Ram Nevatia and Gerard

CAM simultaneously by bitwise arithmetic operations. Medioni for suggesting these two li problems as SNAP

These operations are addition, multiplication, and taking applications. 0
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viewer be given by the unit vector . A face, with unit is not easy in the general case because it is hard to determine
normal i., will be visible only if ii -7 > 0. Suppose that which faces are adjacent 1211. Finding the actual offsets of
the surface area of this face is Oi. Due to foreshortening each of the faces from the center of mass of the polyhedron
it will appear only as large as would a face of area is not as hard.

(N, -)0Oi, The structure of a tetrahedron, however, is very
simple: Every face is adjacent to the other three. Thenormal to (Figure 4). The total apparent area of the shape of the tetrahedron is completely determined by thevisible surface is •.
surface normals of the four faces, only the size of the

)= (ii .)Oi, tetrahedron remaining to be determined. In other words:
>0) There is only one degree of freedom left. Another way to

when viewed from the direction - . The tota' apparent look at it is to note that the four faces must have areasarea of the visible surface when viewed from the opposite that place the center of mass of the extended Gaussian
direction is image at the origin, as we have just seen. This condition

( -( ) 0, places three constraints on the four parameters.

A i(- <0 c
This should be the same, that is, A(',) -A(-= ).
Consequently,

ri i ai 0
all i L 1i I

where the sum now is over all faces of the object. This A

holds true for all view vectors, , so we must have
ii Oj -- . ~-

all i
That is, the center of mass of the extended Gaussian image Figure 6. A tetrahedron with vertices A, B, C, and
is at the origin. D. We are to find the distances of the faces from the center

of mass, given the areas and surface normals of the faces.
An equivalent representation, called a spike model, is

*a collection of vectors each of which is parallel to one of Let the given unit surface normals be i, b, a, and
the surface normals and of length equal to the area of d, and the areas of the corresponding faces, A, B, C,
the corresponding face. The result regarding the center and D (Figure 6). We have to determine the distances,
of mass is equivalent to the statement that these vectors a, b, c, and d, of these faces from the center of mass of
must form a closed chain when placed end to end (Figure the tetrahedron. From these distances we can, if desired,
5). compute the positions of the vertices A, B, C, and D, ...

simply by intersecting three of the planes at a time. The
notation here is that the face opposite vertex A has area
A and unit surface normal A, and so on.

The perpendicular distance of the center of area of a
triangle from one of the sides is one third the perpendicular
distance of the vertex opposite that side. Similarly, in a
tetrahedron, the distance from the center of mass to a
particular face is equal to one quarter of the distance of the
vertex opposite that face. We start by finding a formula for 0
the distance of the face with area D, say, from the opposite
vertex d. The desired distance, d, will be just a quarter
of the result obtained in this fashion. The remaining three - -

Figure 5. Vectors parallel to the normals of the faces distances, a, b, and c, can then be computed using formulae
of a polyhedron, and of length equal to the areas of the obtained by cyclical permutation of the variables.
corresponding faces, form a closed chain when placed endto end. The position of the reconstructed tetrahedron is

arbitrary, since the extended Gaussian image is insensitive

2.2. Reconstruction of a Tetrahedron () to translation. To make the result unique, we might place
the center of mass at the origin. To reduce the size of

Faces that share a common edge are said to be adjacent. the expressions to be manipulated here, however, it is
The masses on the Gaussian sphere corresponding to two convenient to move the tetrahedron so that one vertex, D,
adjacent faces need not be each others closest neighbors. say, is at the origin. The distances of the faces from the
Recovering a polyhedron from its extended Gaussian image center of mass are obviously not affected by this. 0
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Suppose for now that we know the locations of the So that finally,
vertices A, B, and C relative to D. We can then compute
the directions of the six edges of the tetrahedron, by taking 4d
all of the distinct pairwise differences of the four vertex -[Ab1El
positions. Four surface normals can then be found by The other distances, a, b, and c, can be computed using
taking cross-products of these edge-direction vectors. We similar formulae obtained by cyclical permutation of the •

actually need only four of the edge vectors forming a closed variables.
circuit to do this. The results can then be normalized to
obtain unit surface normals,

BXC b ___ AxB3. Continuous Case: Smoothly
b IA xB' CurvedObjects

and, The ideas presented in the previous chapter can be

a = (A - C) X (B - A) A X B + B X C + C A extended to apply to smoothly curved surfaces.
I(A-C) X (B--A)= -AX B+B XC + CX Al

Now the perpendicular distance of the plane with area D 3.1. Gaussian Image

from the origin can be found by taking the dot-product One can associate a point on the Gaussian sphere
of any of the three vertices, A, B, and C with the unit with a given point on a surface by finding the point on

normal dl. Thus, the sphere which has the same surface normal (Figure

d A = [ABC) 7) [20, 22, 25]. Thus it is possible to map information

4A X B + B X C+± C X Al' associated with points on the surface onto points on the
Gaussian sphere. In the case of a convex object with

The area of the facet opposite the origin is also easy to positive Gaussian curvature everywhere, no two points
compute, have the same surface normal. The mapping from the

D 1 (A-C)BX(B-A)=-1AXB+BXC+CxA. object to the Gaussian sphere in this case is invertible: 0

2 2 Corresponding to each point on the Gaussian sphere there

Our task is to express the offset d in terms of the area is a unique point on the surface (If the convex surface has

D and the given unit surface normals. The two formulae patches with zero Gaussian curvature, curves or even areas
above do not allow us to do that directly, because we do on it may correspond to a single point on the Gaussian
not know what the value of [ABC] is. This quantity, by sphere).
the way, is six times the volume, V, of the tetrahedron,
or,

V = (4d)D [A ~ B C],

We proceed by considering the four distinct triple products
of the four unit surface normals. First of all, "

[ABC 2

X Ax B3IB x ClC X Al'

since [(x X y) (y X z) (z X x)] = [x y z]2 . Then, by similar
reasoning,

[ABC]
2

[ a -tB x CIIC x AflA x B +B xC + C x Al'
X xC X onua fo [B + B] X C +CxAl'Figure 7. The Gaussian image of an object is obtained

since [x y (x +y + z)J = Ixyz]. Formulae for bEd] and by associating with each point on its surface the point on the

[E Ad a] can be found by cyclical permutation of the variables. Gaussian sphere which has the sane surface orientation.
The mapping is invertible if the object has positive Gaussian

Multiplying the three formulae found this way together cuvtreeywr.curvatur~e every-where."--
we get,
[AlidJb dJ, a ] =-

[~ABCO One useful property of the Gaussian image is that
* i Y xUCxA2i'AXkit-UB-C -A-ii it rotates with the object. Consider two parallel surface

and so normals, one on the object and the other on the Gaussian

[Al,[gal ___ [ABC]2  sphere. The two normals will remain parallel if the object

E1~
2  A X ~B X C + CX Al and the Gaussian sphere are rotated in the same fashion.

A rotation of the object thus corresponds to an equal ' "
(4d)2(2D). rotation of the Gaussian sphere. S
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3.2.Gausian urvaureConsider a plane which includes the surface normial at
sonic point on a smooth surface. TFle surface cuts this plane

Consider a small patch 60 on the object. Each point along a curve called a normal section (Figure 9) 119, 22 25].
in this patch correspiond~s to a particular point on the Let the curvat Itre of the normal section be denoted by KN.-
Gaussian sphere. The patch 60 on the object inaps into Consider the one-paramieter family of planes containing
a patch, 6S say, on the Gaussian sphere (Figure 8). If the surface normal. Suppose that 0 is the angle between
the surface is strongly curved, the normis of points in a particular plane and a given reference plane. Then KN
the patch will point into a wide fan of directions. Trhe varies with 0 iii a periodic fashion. In fact, if we mneasure
correspondling points on the Gaussian sphere will be spread 0 from the lane that gives :naxinium Curvature, then it
out. Conversely, if the surface is plaiiar, the surface normials can b3C shown that
are parallel and niap into a single p~oint. KN(0) = 'rn Cos 2 0 +t r 2 sin2 o0,

wvhcre K I is the mnaxirmun) and K-2 is the inininmuun curvature.
These two values of' r are called the priincipal curvatures.
The cerresponuing plaiies are called the principal planes.
Th'le twoi principal planes are orthogonal, pirovided that the
principial curvatures are distinct (F'igure 9).

soC

Figure S. A patc-h or( the obiject mnaps into a patch on
* n lite Gaiissian sphere. T[le Caussian curvature is the limit

ul the ratiooif the area of the patch on, the Gaussian sphere
to the, area of thle patch on the object as these become
smialler and smialler.

T1hiese considerations suggest a suitable definition of
Curvature. The Gaussian Curvature is dfertiled] to be equal
to the limit of the ratio of the two areas as they tend to

zero. Tlhat is,

K = lint FsdSligu re 9. Norm~al sectioiis of the stirface are miadle
bo( -o 60 dO' wit li planes which inceluide the( siirface normal. Tlhe pilaneis

Fron tuhiis dIiff~erenit ialI re ait inshipi we can obtain two useful icorrespond(1in g to the largest an minmallest valule of ciirvat ore
are referred to as the pirincipal plaines. T[le Gaussian*integrals. Consider first integrating K over a finite patch enrvatuire is oqual toi the prod urt of the largest aiid smallest0) on the object: values ouf curvature.

jfKdO -- f dS S
where S is thle area iif thne corre~spondling patch oii tne I i sotta

* Gaussianu spherv. 'The expre ussion on the left is calleid thne K K1 K2
integral cuirvaiture. TIhis relat iounship allows one to deal is equal to the Gaussian Ciirvatiire initrodiiced earlier. TIhis
with surfaces wvhichi have d iscontinunities in surface normsal. is clearly zero for at plane. it is equal to 1/1?2 for a spherical

Now consiider instead integrating !1K over a patch S surface of radios R?, since the Curvature of any normal
othe Gaussian sphere: section is 1/I?.

J~l/ dS~ fd oA ruled surface is one whiich can be generated by
S C) sweeping a line through space. A hyperboloid provides one

v here 0 is thn area of the correspondling patch on the example of such a surface.. Developable surfaces ;ire. special
*objoect. This re-Latiorishiip suiggests the use of the inverse of cases of ruled surfaces 122, 23, 251. Cylindrical andl coniical

ftin Gaussian curvature iri rlie definition of the extended surfaces are examples of developable surfaces (Figure 10).
p .. A 1..li ly ,u i ~ku aAc,' We m11411 Onl at developable surface at, least one of the two priincipal

s-e It ako shows, by the( way, that the integral of 11K curvatures is zero at all points. Consequently the Gaussian
uuver the w hic Gaussian spnhere equals the total area of Curvature is zero everywhere toa.
the object.

3..3. Alternate Definition of Gaussian Curvature

- W.



A(4 fm-c) f G(i) (i. -4) dS.

This should be the same, that is, A(4) =

Consequently,

._ff J is (f (9)i dS) s =S = 0,

where the integral now is over the whole sphere S. This
holds true for all view vectors, 4, so we must have

ff GCi) 9dS 0O. .- "'

Figure 10. A conical surface is an example of a J
developable surface. On it the Gaussian curvature is That is, the center of mass of the extended Gaussian image
everywhere z. -o, because (at least) one of the principal is at the origin (This, by the way, is not a very helpful
curvatures is zero. constraint in practice, since one usually only sees one side

of the object).
3.4. The Extended Gaussian Image Another property of the extended Gaussian image is

We can define a mapping which associates the inverse also easily demonstrated. The total mass of the extended

of the Gaussian curvature at a point on the surface of Gaussian image equals the total surface area of the object.

the object with the corresponding point on the Gaussian If one wishes to deal with objects of the same shape but

sphere. Let u, and v be parameters used 'o identify points differing size one may normalize the extended Gaussian

on the original surface. . imilarly, let and q be parameters image by dividing by the total mass.

used to identify points on the Gaussian sphere (These could We can think of the extended Gaussian image in terms
be longitude and latitude, for example). Then we define of mass density on the Gaussian sphere. It is possible then
the extended Gaussian image as to deal in a consistent way with places on the surface 0

where the Gaussian curvature is zero, using the integral
G(,) K(u,v)' of I1K shown earlier. A planar region, for example,

corresponds to a point mass. This in turn corresponds to an - -

where (C,7) is the point on the Gaussian sphere which impulse function on the Gaussian sphere with magnitude "
has the same normal as the point (u, v) on the original proportional to the area of the planar region.
surface. It can be shown that this mapping is unique (up A mass distribution has inertia about an axis passing _•
to translation) for convex objects. That is, there is only through its ceniter of mass that depeinds on the direction of
one convex object corresponding to a particular extended the axis. This inertia takes on three stationary values, for
Gaussian image [9, 19, 261 The proof is unfortunately three particular orthogonal directions, called the principal
non-constructive and no direct method for recovering the axes of the object. It is tempting to imagine that one can
object is known. find the attitude of an object by lining up the principal axes

of inertia of the observed extended Gaussian image and the ®R
one computed from the geormetric model [9]. This would

The center of mass of the extended Gaussian image be rather straightforward, requiring only the calculation
of a smoothly curved object is at the origin. We show this of the eigenvectors of a three by three inertia matrix.
in a way similar to that, used earlier for extended Gaussian In practice, one typically has information only about the
images of polyhedral objects. Consider viewing a convex visible hemisphere and thus cannot compute the required
object from a great distance. Let the direction from the first and second moments over the whole sphere.
object towards the viewer be given by the unit vector 4. 0
A surface patch with unit normal i will be visible only if 3.6. Objects that are not Convex
o > 0. Suppose its surface area is 60 (Figure 4). Due Three things happen when the surface is non-convex:
to foreshortening it will appear only as large as would a 1e
patch of area 1. The Gaussian curvature for some points will be . -

p- 6, 2. More than one point on the object will contribute to 0
normal to C. Let H(4) be the unit hemisphere for which a given point on the Gaussian sphere.
i. 4 > 0. Ther the apparent area of the visible surface is 3 s o m b y r3. Parts of the object may be obscured by other parts."-" "

A(4) - , f G(5) (9 .,) dS, We chose to extend the definition of the extended Gaussian - -
Ilcv) image in this case to be the sum of the absolute values of

when viewed from the direction 4. The apparent area of the inverses of the Gaussian curvature at all points having
the visible surface when viewed from the opposite direction the same surface orientation, S
is

% . . ... . . .
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This definition is motivated by the method used to compute
the extended Gaussian image in the discrete case, as we

will see later. S

The above extension makes sense if there are a finite,
or at most a countable, number of points on the surface
with the same orientation. At times, however, all points

on a curve or even an area on the surface have parallel

surface normals. In this case we may use, Figure II. Ellipsoid with contours ol)t;,! od by cutting

f o -the surface with three orthogonal planes passing through
G() = ]f6(fi-)dO, pairs of points where the Gaussian curvature has stationary

where fi is a unit vector on the Gaussian sphere, while i is values.

a unit vector on the surface of the object. The integration
is over the whole surface of the object 0 and 6 is the unit A normal at the point

impulse function defined on a sphere. r = (a cos 0 cos ,, b sin 0 cos 0, c sin O)T

We can be more specific, if we let r(u,v) be a vector on the surface is given by •

giving the point on the surface corresponding to the
parameters u and v, then n -(cccos0cos ,casin0cos ,absin ),

as will be shown later. The Gaussian curvature turns out
G(,7)cos = 1J6(E-O(u,v), 7 -O(u,v))Iru XrIdudv, to be equal to

where 0(u,v) and O(u,v) are the latitude and longitude K __[_ abc 12
of the point on the Gaussian sphere which has the same [(becos 0 cos )2 + (casino cos o)2 + (ab sin I)2

orientation as the surface does at th.. point (u, v). A planar
region of area A will thus contribute an impulse of weight -

A to the extended Gaussian image, while a cylindrical "'*
region will give rise to an impulse wall along a great circle where n 2 

=n n.

at right angles to the axis of the cylinder. The integral of
the impulse wall will be equal to the area of the cylindrical
region.

Usually we think of the extended Gaussian image as
a fixed entity associated with an object. In the case of
non-convex objects we might want to alter the definition

• to include only those parts of the surface visible from
i particular direction. This wou!d inake thz (modified) -

Gaussian image dependent on the view-point. We avoid S
this potcntial complicatioi, ..ere.

3.7. Examples of Extended Gaussian Images ()

The extended Gaussian image of a sphere of radius R Figure 12. Latitude and longitude can be used to identify
is points on the Gaussian sphere. Each point on the Gaussian

G(C, r) = R 2, sphere corresponds to a unique surface orientation. S

as discussed already. If we let C be the longitude and r be the latitude on
Perhaps slightly more interesting is the case of an the Gaussian sphere, then a unit normal at the point (M)

* ellipsoid with semi-axes a, b and c lined up with the on the sphere is given by (Figure LL)

coordinate axes (Figure 11). An equation for its surface
can be written ft = (cos C cos 77, sin cos 1, sin t)r.

(Z)2 +(,,)I+ () Now n = nfl. Identifying terms in the two expressions for

a b + .surface normals at corresponding points on the ellipsoid

More useful for our purposes here is a parametric form and the Gaussian sphere we get,

z =a cos 0 cos 0, be cos 0 cos 0 = n cos f cos77,

Vj =b sin O cos , ca sin 0 cos 4 = n sin E cos t1,

z =csin i. absin 0 = nsin 7,
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so that

n2 [(aco EcosS) 2 + (b.os sin ?1)2 + (C Sill 77)21 (abc) 2 ,

and finally, substituting for n2 in the equation for K we
get / /

(a cos cos 7)2 + (b sin cos 17)
2 + (c sin 7)2"

The extended Gaussian image, in this case, varies smoothly
and has the stationary values ,

. 2 and , Figure 13. Mapping of discrete patches on an object
a c onto the Gaussian sphere. The patches in this case

at the points where r is equal to (±1,0,0)1, (0,±1,0)T, correspond to a regular tesselation of the image plane.
Since the patches lie on a conical surface they contribute

and (0,0, +1)', respectively. These results can be easily to the extended Gaussian image along a small circle.
checked by sectioning the ellipsoid using the xy, yz and
zz-planes. The Gaussian curvature, in this case, equals a
the product of the curvatures of the resulting ellipses. 1/(s- ), where si is the normal of the patch, while is

One then uses the fact that the maximum and minimum the vector pointing towards the viewer (Figure 4).
curvatures of an ellipse with semi-axes a and b are a/b 2  Measurements of surface orientation from images will
and b/a2. not be perfect, since they are affected by the noise in

Later we will derive the extended Gaussian image of brightness measurements. Similarly, surface orientations

a torus, an object that is not convex. obtained from range data will be somewhat inaccurate.
Consequently the impulses on the Gaussian sphere will be
displaced a little from their true positions. The expected

4. DiscreteApprocimation:NeedleMaps density on the Gaussian sphere will nevertheles_ tend to
be equal to the inverse of the Gaussian curvature. One

Consider the surface broken up into small patches of cannot, however, expect the impulses corresponding to a
equal area. Let there be p patches per unit area. Erect planar surface to be coincident. Instead, they will tend to
a surface normal on each patch. Consider the polyhedral form a small cluster. To be precise, the effect of noise is
object formed by the intersection of the tangent planes to smear out the information on the sphere. The extended
perpendicular to these surface normals. It approximates Gaussian image is convolved with a smoothing function of
the original surface. The smaller the patches, the better width proportional to the magnitude of the noise.
the approximation.

The extended Gaussian image of the original (smoothly 4.1. Using Object Models

curved) convex object is approximated by impulses cor- Extended Gaussian images also have to be computed 6
responding to the small patches. The magnitude of each for surfaces of prototypical object niodels. In this case it is
impulse is about 11p, corresponding to the area of the best to find a convenient way to parameterize the surface
patch it rests on (Figure 13). Strongly curved areas will and break it up into many small patches. Suppose the
distribute their impulses over a large region on the Gaussian surface is given in terms of two parameters u and v as
sphere, while areas which are nearly planar will have them r(u,v). Then at the point (u,v) we see that ru and r,,
concentrated in a small region. In fact, the number of are two tangents (Figure 14). The cross product of these
impulses per unit area on the Gaussian sphere approaches tangents is normal to the surface. The unit normal

p times the absolute value of the Gaussian curvature as
we make p larger and larger. This can be shown using the n X r ..

integral of 1/K given earlier. Iru X rl"
The tesselation of the surface can be based on an allows us to determine to which point on the Gaussian

arbitrary division into triangular patches as long as the sphere this patch corresponds. Suppose that we divided

magnitude of each impulse on the Gaussian sphere is made the range of u into segments of size 6u and the range of v
proportional to the area of the corresponding patch oi, into segments of size bv. Then the area of the patch,
the surface. Alternatively, one can divide the surface up tSA = Ir, X r,46 utv,
according to the division of the image into picture cells.
In this case one has to take into account that the area can be used to determine what contribution it makes to the
occupied in the image by a given patch is affected by corresponding place on the Gaussian sphere. Note that we
foreshortening. The actual surface area is proportional to do not have to explicitly compute the Gaussian curvature

or take second partial derivatives.
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Figure 14. A surface normnal call be computed by
taking the cross- prod Oct of two tangent vect' rs. T[he
tangenit vectors call lie obntainied by differeniation of the
parainetric Formi of tie equation of the(, surface. Figure 15. Thre Gaussian sphere ca;n be divided into

Cells alonig ijieridianis and lines of' lonigitudie. Thec resulting
theGausiasphre:cells do riot hiave the samne areas however arid only align5. Tesselationof teG usa phr:With each other for certain rotations about thre axis through

Oriertationll1istograms the poles.

It is useful to divide thre sphere up into cells in order Ic tQ satl!.s'ying the criteria Lta-d~ albove. 'i pactLicusac,
to represent the information on the Gaussian sphere in the cells are brought into alignment only for a few rotationsa computer. lIdeally the cells should satisfy the following about the axis of the globe. Rotations about any other axis
criteria: can not bring the cells iato alignment.

I . ll cllsshoud hve te sme aea.5.1. Tesselations Based on Regular Polyhedra
2. All cells should have the same shape.

I. T[he cells should have regular shapes that are compact. Better- tesselations may be found by projecting regularpolyhedra onto the unit sphere after bringing their center
4. T'he division should he line enough to provide good to the center of the sphere [27] Regular polyhedra are

anigular resolution, uniform and have races which are all of one kind of regular
5. For soime rotations the cells should be brought into polygon (They are also called the Platonic solids). [19, 20,

coincidence with themselves. 28 -32] The vertices of a regular polyhedron are congruent.
Cells which are ciopact culliine information only from A division obtained by projecting a regular polyhedron-

siir~ic pache whch aveneary te sme rietaton, has the desirable property that the resulting cells all have
Eloigatd cels f te sae aea cmhine nforsiaion the same shape and area. Also, all cells have the same

fromn surface patches which have more widely differing geometric relationship to their neighbors. In the case of
* ~~orientations. T[le area of a regular polygon with n sides teddchern h el r vnfil elrudd

* incried ii cicle f rdiu r s 'he dodlecaliedron, however, has only twelve cells (Figure16a). Even the icosahtedron, with twenty triangular cells,
[r sitn I(27r/n)]1 provides too coarse a sairiling of orientations (Figure 1 6b).

(27r/n) Furthiermnore, its cells are riot well rounded. Unfortunately

Si) the area of a hexagon inscribed in a circle is (313/2)r2 , there are on l), live rerifar soulids (tetrahedron, hexahedron,
twice that of a triangle inscribed in the same circle. octahedron, dridecahedron, and icosahedron).
Tessulations wvith ivnar-triangular cells will thris combiine
information frorri orientations which are v2timnes as far -'

frrn tire ave rage as rho tesse fati ot rising lie r - Iiexagoriaf
cells.

* ~If cells oc~cur in a regular pat tern, the rvlfstionsfiip of ~
* a cell to its nicighbors will be the sallie for all cells Such

arranrgemenrt s are to lie preferredl. Vn rfrirtui intu'lv. it is not
possible to sirmultanreorisly sattisfy titre t itr'ri;i iisterl ibove,

A sinllple tCsselati~n consists, of a division initoi farit rule K
bands, each of' which is then further rivirler afong

* ~lonigitudinail strips (l'igiire 15). Th~e cells cimuifr lie riiardo
irrore necarly eqtual in area by haivinrg fewer at higher 1_ Ar I i 'I (- ll i ft let auisian sphlere using (a

* ~latitudes, or buy mraking the hltiude hrandhs wider there, Ili(- r,' 'uifar lfrilver.ihcronr an(]r (h)j th fr gular iro'.;didron.-
or bonth. One adlvanitage of this sehCierru is that it imakes it.
easy to cormpute tuo which cell a particular surface nornial ()re, 'i vo a fitto ifhurt her liv cornsidlering senni-treguilar
shridud bie assignedl. Still, thnis arranigerrient does not come lyfl Ira A* svii oevi~l prlYhirn has regular polygons



as faces, but the faces are not all of the same kind [19, 20, form suitable bases for further subdivision, as we shall
28 32J (They are also called the Archimedean polyhedra). show later.
As for regular polyhedra, the vertices are congruent. There To see how fine a division we might need, let us
can be either two or three different types of faces and these calculate the angular spread of surface normals which map

have different areas. An illustration of a tesselation using into a particular cell. If there are n equal cells, then each
a semi-regular polyhedron is provided by a soccer ball ove will have area
(Figure 17a). It is based on the truncated icosahedron, on wl havear
a semi-regular polyhedron which has 12 pentagonal faces A-(4r)/n,
and 20 hexagonal faces, since the total area of the unit sphere is 4r (This area

equals the solid angle of tile cone formed by the cell when
Unfortunately there areonly 13semi-regular polyhedra connected to the center of the sphere). The shape which

(The live truncated regular polyhedra, cuboctahedron, minimizes the angular spread for given surface area is the
icosidodecahedron, snub cuboctahedron, snub icosidodeca- circular disc. The area of a circular disc On tie unit sphere
hedron, truncated cuboctahedron, rhombicuboctahedron, is
truncated icosidodecahedron, and the rhombicosidodeca-
hedron). Overall, these objects do not providre us with fine
enough tesselations. The snub icosidodecahedron has the where 0 is the half-angle of the cone formed by the disc

largest number of faces, but each of its 80 triangles is when connected to the center of the sphere. If 0 is small,

much smaller than each of its 12 pentagons. the area can be approximated by

The edges of a semi-regular polyhedron are all the A z; 70
2 .

same length. One consequence of this is that the different Thus if there are many cells and if they could be made

types of faces have different areas. The area of a regular circular, the angular spread would be

polygon of n sides and edge-length e equals 0 2 / i .

ne2  The best we can hope for, however, are near-hexagonal
, tan(ir/n)' cells. The area of a hexagon inscribed in a circle of radius r

is (3V3/2)r2 , as already mentioned. The area of the circle,

so it is very roughly proportional to n 2 . This is a problem 7rr", is about 20'/ more. So a hexagonal shape has a spread
generally with semi-regular polyhedra. It is sometimes which is
possible to derive a new polyhedron which has the same
adjacency relationships between faces as a given semi- 3 - 1.0996... .

regular polyhedron but also has faces of equal area. The 3•1-
shapes of some of these faces then are no longer regular, its larg.r as; that of a circular shape of equal area. A lower
however. bound on the aingu lar spread for a tesselation with n cells

then is

47r 2.1993...

Por a 60, for example, the spread is at greater than
16.2'. One should also remember that the spread for
triangular cells is even more, namely 1f2 times that for

hexagonal cells.

5.2. Geodesic Domes

To proceed further, we can divide the triangular cells

Figure 17. Tesselation of the Gaussian sphere us- into four smaller triangles according to the well known
ing (a) the truncated icosahedron and (b) the pentakis geodesic dome constrnietions 127, 30, 33) We attain high
dodecahedron, resoliitioi by relent ing on several of the criteria given above

(Figure 18). Specifically, the cells of a geodesic .;sselation
If we desire a finer subdivision still, we can consider do not all have the same area and shape. The cells are

splitting each f;ice of a given tesselalion further into also not. compact, being shaped like (irregular) triangles.
triangular faints. If. for ex-imple, we split each pentagonal The duals of geodesic dones are better in this respect,
face of a dod(ahedron intto live equal triangles we obtain sirlce they have facets that are 1o.sly (irregular) hexagons,
a pentakis dodecahedron wit h 60 fa, vs (ligure 17b). This with a dosen (regular) pentagons thrown in. Tesselations
happens to ie the dual of tLe truiiitu'd icosahiedron, of arbitrary fineness can be constructed in this fashion.
disii-ed above. If we apply this et hrIod instead to the The penitakis dodecahedron is a good starting point for
trutuated icosahedron we construict an otiject with 180 a geodesic division, as is the object constructed earlier
faces. This object. as well ;u the pentakis dodecahedron,

0 ?



from the truncated icosahedron by dividing the faces into It is clear that the extended Gaussian image can
triangles. be computed locally. One simply counts the number of

Each of the edges of the triangular cells of the original surface normals that belong in each cell. The expression for
polyhedron are divided into f sections, where f is called the the Gaussian curvature, on the other hand, includes first
frequency of the geodesic division. The result is that each and second partial derivatives of the surface function. In
face is divided into f 2 (irregular) triangles. Tesselations practice, estimates of derivatives are unreliable, because of
where the frequency is a power of two are particularly well noise. It is important therefore that the extended Gaussian
suited to the method suggested here, as we see next. image can be computed without estimating the derivatives.

One has to be able to efficiently compute to which The values in the cells can be thought of as an
cell a particular surface normal belongs. In the case of orientation histogram. It has recently be brought to my
the tessclations derived from regular polyhedra, one first attention that this is analogous to a scheme used for
computes the dot-product of the given unit vector and the histogramming directions of dendrites on neurons 134].
vector to the center of each cell (These reference vectorscorrespond to the vertices of the dual of the original regular The result can be displayed graphically using normal
polyhedron). This gives one the cosine of the angle between vectors on each of the cells to represent the weight of the
the two. The closest reference vector is the one which gives accumulated surface normals. A frequency two sub-division
the largest dot-product. The given vector is then assigned of the pentakis dodecahedron provides 240 cells, enough for
tthe el orres-podt threfen vector .isthenmost practical purposes (Figure 19). The angular spread in

to the cell corresponding to that reference vector, this case is about 11.50. An alternative way to present the
extended Gaussian image graphically is by means of a grey-

level image where brightness in each cell is proportional
to the count. The surface of the Gaussian sphere may be
projected stereographically instead of orthographically in
order to preserve the shapes of the cells. Their areas will
be scaled unequally however. 0

A further refinement of the orientation histogram has
us store the sum of the vectors, scaled according to the
area of the corresponding patch, rather than just the sum
of the areas of the patches. This requires three times as
much memory space, but provides more accuracy. In fact,
in the case of polyhedra, this representation is exact. S

Figure 18. Tesselation of the Gaussian sphere us-
ing a frequency four geodesic tesselation based on the
icosahedron (There are 16 X 20 = 320 faces).

In the case of a geodesic dome, it is possible to
proceed hierarchically, particularly if the frequency is a
power of two. The geodesic dome is based on some regular

polyhedron. The appropriate facet of this polyhedron is

found as above. Next, one determines into which of the

triangles of the first division of this facet the given unit

normal falls. This can be done by considering which dot-
product has the second largest value. No new dot-prodacts S

* need to be computed. The process is then repeated with

* :the four triangles into which this facet is divided, and so
on. In practice, lookup table methods can be used, which,

- while not exact, are very quick. Figure 19. Orientatioi Ilistogram collected on a
geodesic dome derived fri)m the pentakis dodecahedron

Let the area occupied by one of the cells on the (There are 12 X 5 X 4 z. 240 faces). This is a discrete
Gaussian sphere be w (in the case of the icosahedron approximation ,f the extended (;aussian image. The length
w =. 47r/20). The expected number of surface normals of the vector at zached to the center of a cell is proportional
mapped into a cell equals to the number of surface normals on the surface of the

original object which have orientations falling within the
pw Cl, range of directions spanned by that cell.

for a convex object, where C is the average of G( , q/) over

the cell.
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6. Solidsof Revolution since 6 C 60. The curvature of the generating curve, .G,

is just the rate of changc of direction with arc length along

In the case of the surface of a solid of revolution, it (22. 241. So
the Gaussian curvature is rather easy to determine. The dt _

-

solid of revolution can be produced by rotating a (planar) ds
generating curve about an axis (Figure 20). Let the and hence
generating curve be specified by the perpendicular distance ca Cos 17
from the axis, r(s), given as a function of arc length s along K-
the curve. Let 9 be the angle of rotation around the axis.

Now consider the Gaussian sphere positioned so that its It is easy to see that (Figure 21), sinr- -ra, where r, is

axis is aligned with the axis of the solid of revolution. Let the partial derivative of r with respect to a. Differentiating

be the longitude and P be the latitude on the Gaussian with respect to a we get
sphere. di7 d-

We can let C correspond to O. That is, a point on the cos -
object produced when the generating curve has rotated and so we obtain the simple formula
through an angle 0 has a surface normal that lies on the

Gaussian sphere at a point with longitude 0 =9. K .r

In the case of a sphere of radius R, for example, we

have r = Rcos(s/R) for -(r/2)R < s < +(ir/2)R. Thus

-(•/R 2 ) and K -IR 2 .

171

Figure 21. This figure shows the relationships between "•'""""
infinitesimal increments in arc length along the curve,
distance from the axis of rotation and distance along the

Figure 20. A solid of revolution can be generated by axis or rotation.
rotating a curve around an axis. The curve can be specified
by giving the distance form the axis as a function of the
arc length along the curve. For some purposes it is more useful to express the

radius r as a function of the distance along the axis, rather

6.1. Gaussian Curvature of Solid of Revolution than as a function of arc length along the curve. Let the
distance along the axis be denoted by z. It is easy to see

Consider a small patch on the Gaussian sphere lying that (Figure 21), tan v7 -r,, and so, differentiating with

between f and f + b in longitude and between i and respect to 8, S

r + 6,7 in latitude. Its area is s dr d dz

cos/6 16r7. se = -- -r,) -• ,

We need only determine the area of the corresponding where from the figure we see that cos -- z., so that

patch on the object. It is 4G Cos = d = -rcos4 ,7'

where 6s is the change in arc distance along the generating and finally
curve corresponding to the change 6,7 in surface orientation. K - r(- +r-)'
The Gaussian curvature is the limit of the ratio of the two
areas as they tend to sero. That is, since

0= Ji 7 6C ~' 617 i co$ 7617 cos17 di7 sec q +r;.
"" K liim cosr/ 6r 7 - lim os_ - =or/r se- r..-.'''

SO 6 60a Eq-O 68 r d"_
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6.2. Alternate Derivation of Gaussian Curvature of
a Solid of Revolution ()

We first need to review Mcusnier's theorem f22-24).
Consider a normal section of a surface at a particular .

* point. It is obtained by cutting the surface 'with one of
the planes including the local normal (Figure 22). Suppose V

this plane is KN Now imagine tilting the plane away from
* the normal by an angle tj (using the local tangent as anaxis to rotate about). The new plane will cut the surfacein a curve with higher curvature. In fact, it can be shown .

that the new curve has curvature

IC/OSq.
It is easy to see this in the case of a sphere, since a

plane including the center cuts the sphere in .a great circle,
while an inclined plane cuts it in a small circle of radius Figure 23. If the solid of revolution is cut by a plane

.proportional to the cosine of the angle of inclination perpendicular to the axis of rotation, a circle is obtained.

The ctirvature in this plane is just tile inverse of the
distance of tile surface from thle axis. The curvature of
the corresponding normal section can be obtained using
Meusnier's theorem.

relative to this plane (The local tangent plane also makes
ian angle ? relative to the axis of revolution). Now construct

the plane including the local normal which intersects the
horizontal plane in a line perpendicular to the axis. This
plane will be inclined relative to the one we have just --
studied.ett aso produces the second principal normal

section sought after. By Meusnier's theorem we see that
thle curvature of the curve found in this normal section is
t ha/r) cos,. Finally, the Gaussian curvature is found
by multiplication to be

K XG cos 17.

I.:.

In the case of a sphere of radius R, for example, we
Figure 22. The curvature of the curve obtained by have r = Rcos.. and .= , so that K -hR

2 , as
cutting a surface using an inclined plane is greater than expected. h
that obtained by cutting it using a plane which includesTo mar th res or uable, erct a oordine
the surface normal. Meusnier's theorem tells us that theTomkthsrutmresaerctaordne
ratio of tie two curvatures is equal to the cosine of the system with the z-axis aligned with the axis of revolution.
angle between the two planes. Tile generating curve is given as r(z). Let the first and

second derivatives of r with respect to z be denoted by

Now, let us return to the surface of revolution. It is riiid r, respectively. It is easy to see that (Figure 21),
not hard tu show that onc of the principal curvatures at aaT
point ona the surface will correspond to a cut through the1
surface by a plane which includes the axis of revolution. Cos. .
The curve obtained in this way i just the generating curve
of the solid of revolution. So one of the two principal Fuarthermore,
curvatures is equal to the curvature ocG of the generating

Ncurve at the corresponding point. Ka, i n r

Now consider a plane perpendicular to the axis of
revolution through the sam surface point (Figure 23). Itfa
cuts the surface in a circle. The curvature in this plane K - ZX

equals (1/r), where r is the radius of the solid of revolution.+-
at that point. This horizontal plane, however, is not a In order to use this result in deriving extended Gaussian
normal section. Suppose that the normal makes an angleq images it is necessary to identify points on the surface with-

-7-
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points on the Gaussian sphere. Suppose that we introduce since xG - -1/p and r R R -pcos 7), so that
a polar angle 0 such that 4-cos 17•. " i

z =rcosO and y =rsin8. K -(R±pcos v7)

Then a unit normal to the surface is given by The extended Gausian image of a torus has singularities
(cos 0, sin 0, -r,)T at the poles. These correspond to the two rings on which

the torus would rest if it were dropped onto a plane. All
01 -+1 .1 of the points on one of these rings have the same surface

Equating this to the unit normal on the Gaussian sphere, orientation.

(cos cos 17, sin cos 1, sin 17)T, We can think of the Gaussian spF.,-e as covered by

we get two sheets of a Riemann surface, one corresponding to
the inner half of the torus, closer to its axis of symmetry,
the other corresponding to the outer half. The two sheets
are connected to one another at the poles, branch pointscorresponding to the two rings mentioned above. There

As an illustration we will now determine the extended the Gaussian curvature changes sign.
Gaussian image of a torus. Let the torus have major axis
R and minor axis p (Figure 24). A point on the surface
can be identified by 0 and s, where 0 is the angle around
the axis of the torus, while s is the arc length along the S.

surface measured from the plane of symmetry. Then,

r R+ p cos(s/p), "

and

r,= -(1lp) cos(slp), O

so that

r3 cos(s/p)
r pR+pcos(s/p)" k . - R -

Two points, P and P (Figure 24), separated by 7r in 0,
have the same surface orientation on the torus. The surface
normal at one of these places points away from the axis Figure 24. A torus obtained by spinning a circle around
of rotation, while it points towards the axis at the other an axis. The resulting object is not convex. Its extended
place. Accordingly, two points on the object, Gaussian image can be computed nevertheless.

(0, a) = ( , p/) and (0, a) =( + 7 p(r- )), We may also note at this point that all tori with

correspond to the point ( , 7) on the Gaussian sphere. The the same surface area, (47r2 pIR), have the same extended -
curvatures at these two points have opposite signs Gaussian image.

1 Cos~ 7 Cos 1)
K, = + 1 cos- and K- =---- - cos 6.4. The Unique Convex Object with G( , Y7) 2 sec o7p R-+ prosq p R- pcosq" (*) ..

The torus is not a convex object, so more than one point
on its surface contributes to a given point on the extended While all tori with surface area 4r 2 have the same
Gaussian image. If we add the absolute values of the extended Gaussian image,
inverses of the curvature we get G(, P7) = 2 sec 7,

2.. f - sec,7. there is only one convex object which has that extended
K+ K,.. 2RpsecK_ (Gaussian image. It is a solid of revolution since PI(, nj) is

If we had added the inverses algebraically instead we would independent of C. So we have on the one hand
have obtained K 1/2 cosq,

+-_- 2 and on the other hand
k +k- 

K( OS_K K. --- cos-!

which is twice the result for a sphere of radius p. r

The same results could have been found using so that

K CG cos q ,r; K r/2.

r The equation states that the curvature of the generating
curves varies linearly with the distance from the axis of
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rotation. This deceptively simple equation represents a -(3

non-linear second order differential equation for r in terms W

of z since
ta while the maximum radius is

11 =-2. 2.(1+r.)3/2'  0i=2
The minimum radius of curvature equals one, so that a .

so that circle tangent at the outermost point is also tangent at the

-2(1 +r! origin f351. This circle, when rotated about the vertical .-.
axis, produces a torus with the same extended Gaussian :.- -

Now image (Figure 25). Both objects have total surface area

*and
d r2  rrz

dz 4 2

so that

d 1 _ dr 2

dz + dz 4

* or

1 2 +c
2

vi +r: 4 ' S

where c2 is a constant of integration. We now have reduced

the problem to a non-linear first order differential equation
for r in terms of z. If the object is to be convex and smooth Figure 25. The unique convex object with the same

extended Gaussian image as a torus has an interesting
at its poles, we expect r. - oo as r - 0. Thus c = 0. Next shape. It is a solid of revolution whose generating curve

note that the term on the left equals cos Y7. So we also have is the curve of least energy. This is the shape which a
uniform bar constrained to pass through two points in

cos 7= space with given orientation will adopt.

or, using an earlier expression for ice, ' -. -

- _v-9 7. GaussianCurinturein the GeneralCase

This is an implicit equation for the curve of least energy When the object is not a solid of revolution we need to
j35j' The curve of least energy is the curve which minimies work a little harder to obtain the Gaussian curvature. Let

the integral of the square of the curvature It can be x = (u,v), v = y(u,v), and z -- z(u,v) be parametric
solved for z in terms of r to yield )r=

equations for points on a given surface. Let r -(a Y) z)T

z = V2[2E(cos-'(r/2), I/V() - F(cos-1 (r/2), 1/v2)l. be a vector to a point on the surface. Then

where E and F are incomplete elliptic integrals. If we let Br Or

a be the arc length along the curve we can also write the r u = and
solution in Whewell form are two tangents to the surface, as already noted earlier.

A= c,%F coa- j/-n I , The cross product of these two vectors,

or Cksaro form n ru X r,

will be perpendicular to the local tangent plane (Figure
a = '~F~os'(ItG) 1/ r2).14). The length of this normal vector squared equals :

The length of the curve from the pole to the equator is
r 1 4 2n

2  = n .- n -= -(r. .- ru)(r. - r.) - (r -r.)2 P . .

vr'K(11V ) = %I2K(sin(-/4)) since (a X b) .(c X d) = (a. c)(b -d) - (a. d)(b . c). A unit
vector ft = n/n can be computed using this result.

where K is the complete elliptic integral of the first kind,

and r is the gamma-function (241. The height from equator 7.1. Gaussian Curvature from Variation in Normals

to the pole is (')
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The Gaussian curvature is the limit of the ratio of the same orientation as the patch on the surface, as it
the area of a patch on the Gaussian sphere to the area should. An outward pointing normal of size equal to the
of the corresponding patch on the surface, as the area area is given by
shrinks to zero. Consider an infinitesimal triangle formed
by the three points on the surface corresponding to (U, V), ! ~[n nu n,] n bu bv.
(u + bu, v), and (u, v + 6v). The lengths of two sides of this Th rainftetoara4 teGusancrauete

triangle areThraioftetoaesth asincrtuehn

IruI6u and Ir.I6v js
while the sine of the angle between these sides equals K-[nn

Iru X rul Now

so that an outward normal with size equal to the area of so that
the triangle is given by

1r v u v nb v 1n nlu ruu X r.+ru Xruv,

Xv r,,6uv X r.~~v and r
To determine the area of the corresponding triangular r,,Xr ~xru
patch on the Gaussian sphere we need to find the unit using (a X b) X (c X d) [ a bdie - [a b cd or (a X b) X
surface normals at the three points. The unit surface (c X d) =[acdjb- Ibcdlawe get
normals will be

n~, fi + ftU bu, and fi + fi" bv 'UXfy [i ~r~r r~
if we ignore terms of higher order in bu and 6v. Here fi5 -[, 5 r, 5 r,
and fiv are the partial derivatives of fi with respect to + fru r5,, r,1r5, p...

u and v. Note that fiu and fi,, are perpendicular to fi. + [ru ruv vv,,
The area of the patch on the Gaussian sphere equals the
magnitude ofsota

~(ft 5 X Auv) bu 6V nnun,,J n.(fuX nl,) = rurvruulfrurvrvvl-[rur,ruv j2

by reasoning similar to that used in determining the area ,and finally
of the original patch on the given surface. We need to find
fi. and f,, to compute this area. Now K 4_[~rr5 [ 5 rr,, r ,Iru X rv)j

nu = u - = - . This result can be used to derive the expression for
8n curvature of a solid of revolution in a more rigorous

From n 2  in-nweget fashion.

=n l n.u,

so that 7.2. Fundamental Forms of a Surface (

(n -n)n - (n .)n (n Xnu) Xn Let, as before, =rX,

*and Ic5 X r,,I'

(n . r)n,, - (n - n.)fl (n X n.,) X ni be the unit surface normal vector. The first fundamental
n30form of a surface gives thc square of the element of distance

*since (a X b) X c(a -c)b -(b -c)a. Then as [24)

ds2 = IdrI = E(u, v) d + 2F(u, v)du dv +G(u, v) du
A5U X ft Rn -j[( n)(n,. X n.,) + (n -nu)(n, X ns) The second fundamental form of a surface gives the normal

+ (n - .)(ri X n)j curvature using the equation [241

*or -dr -dfi = % Luv) du + 2M(u, v)du dv +N(u,v) dV2.
The coefficients can be expressed in terms of derivatives of

ft 5 X fi= 4 in nuflujf r as follows,

since [a b cp =(a. p)(b Xc)+ (b p)(c Xa) +(c -p)(a Xb), E =ru ru, F = r,,.r,,, and G =r,.r

where fabcj=(ax b).c.an
This shows that the patch on the Gaussian sphere has L =ru -fiu, M =r,, . A,, =r. fiu, and N =v -, fu,
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or, LN - M 2

L _[r, r,, r.)] M 1ru ru ruvl d K EG-F
%h- F' anc

(b CO 9 [(i COS 0s4)2 + (asnCS02+ (ab sin-0)2h .
N(easinrvos4')

-,,,F;G---IThis resuIL was used earlier in the discussion of the extended
Gaussian image of the ellipsoid.

so that 1241

LN - M 2

K = G -F
2 ~8. Sumnmaryand Conclusionsh Finally, if the surface is given as z(z, 11), the above reduces

to the familiar We have defined the extended Gaussian image, dis-
2 cussed its properties and given examples. Methods for

* ~~K -ZZV-Z 5 1 determining the extended Gaussian images of polyhedra,
( If+ solids of revolution and smoothly curved objects in general

were shown. The orientation histogram, a discrete ap-
7.3. Application of the General Formula to the proximation of the extended Gaussian image, was described
Ellipsoid ()along with a variety of ways of tesselating the sphere.

Machine vision methods for obtaining the surface orien-
*In the case of the ellipsoid we have, as discussed tation information required to build an orientation his-

*before, togramt are discussed elsewhere [1, 3-8]. Extended Gaussian

r = (a cos 0cos04, bsinG cos04, csin of), images based on object models can be matched with those

re ~ ~ ~ ~ ~ 0 =(anco4,cscs'of, derived fromt experimental data. The application of ex-ro =(-a in 0COS , b OS 0COStended Gaussian images to object recognition and, more i
ro= (-a COS0 sin 0, -b sin 0sin 0, c COSOf, importantly, to finding the attitude in space of an object, '

*and are discussed in a recent article [171.

rt= (-acosecos', -bsin0cos',O) T",
rp# = (a sin 0sin 0, -b COS~sn'O 9. Acknowledgmert
r##= (-a COS0 COS, -bsinCOS4, -c sin 4) T .

A surface normal can be found by taking cross products, I wish to thank Eric Crimson and Tomi.s Lozano-

n = re r# (b CO 0 CS 0 ca in cuO, a si )rPerez who made a number of very helpful suggestions after
:n~t~'e r~ bccs~co4',asi~cos',asin4)co4', reading a draft of this paper.
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Symmetry Evaluators

S.A. Friedberg and CM. Brown
Computer Science Department

University of Rochester
Rochester, NY 14627

Here, as in previous work, we ign3re the problem of
Abstract searching the locus - -in fact, in our work we evaluate

It has been known for some time that a bilaterally all paints on it. The main content of the following
symmetric figure in an arbitrarily oriented plane P. sections is the various evaluators for (a.,y) pairs in the
viewed under orthography, yields a skew symmetric search. Each of these evaluators may be simply regarded
figure whose axes of symmetry and skew constrain the as a measure of (non-skewed bilateral) symmetry. To
orientation of P to a one-parameter subspace of the evaluate an (a,,) pair, the skewed figure is (implicitly or
sphericalpaceoforientation vfPtoretors, sexplicitly) "deprojected" through the (a,y) skew, that isapplying the inverse skew, and the symmetry of the

In recent work aimed at finding skew and symmetry resulting figure (across the x axis) is evaluated (Fig. 1).
axes of shapes, we used the measured moments of input
skewed figures to costrain their symmetry and skew Briefly, to recapitulate the mathematics of the
axes to a one-parameter subspace of the toroidal space of constraint on (aq), first note that the 3-D orthographic
axis angle pairs. This subspace may be searched for those projection is equivalent to a 2-D skew of original paints
axis pairs yielding maximum symmetry in the original xo to yield points x,
figure. xi = xoS, where

Here we briefly review the original constraint and [csasin a 1--
then consider several symmetry evaluators for use in S =osa]
axis-finding. The most reliable proves to be one based S cosacoto - sina sina coto + co
on the mass in radial segments of the figure. The original figure has a second-moment matrix •

Key words: symmetr% measure, skewed symmetry. rm in..• " 2in 0 mli .-,' '
symmetrN constraint, discrete image shape. M 2 1

I. Skewed Symmetry and The Axis Constraint Lmll m02J

A symmetric shape on a plane P viewed in which mll,= 0.
orthographically from an arbitrary viewpoint exhibits
skewed symmetry. In the image, let the angle of the axis The moment matrix for the skewed image shape is
of symmetry from the horizontal be a, the angle of the M' STMS, and this implies the constraint C:
axis of skew from the horizontal be ,. The skew of the
figure is7  - a = . a = tan '(('in 11tan a-m' 02)/(m'2 0tan -,-mi'l))

Any two of a, -y y constrain the plane P to a -= tanl((n' 02cot a-m' 1 )/(M'llIcot a-rM' 20))
hyperbola of orientations in gradient space (Kanade,
1979: Kender. 1978. Stevens. 19791. A method for where the m,,j's are measured in the image. Constraint
finding a, 0, and -f from image input was given in C implies a and y lie on a I-D locus in (a.,') space.
[Friedberg, 1984; Friedberg and Brown, 19841. Briefly, a
and y may be expressed in terms of the second moments 2. Practicalities
of the input shape. The resulting equations constraint a
and y' to a closed curve on the toroidal (a,.) space which The evaluator research is concerned with noisy digital
is guaranteed to contain the correct a and - values, of images, not continuous mathematics. Quantization and
which there may be several. This locus must then be noise effect have considerable effect on mathematically
searched for (ay) values that are "correct", i.e. that perfect evaluators. Further, it has so far been concerned
explain the input shape as a symmetric original shape with reliable symmetry detectors, not those that mirror " -.
viewed under orthography. For example, any image human performance. We find that evaluators based on ".
triangle has three such (a.y) pairs. boundary features, while possibly relevant for humans, . -'-'.

do not, in the simple form we implemented, perform " " "reliably or predictably.
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3. Lateral Symmetry Evaluators figure are just those that transform some symmetricfigure into one with the moments measured in the

All the measures discussed in this section require a image. The observed range of values for .poi is
significant amount of computation to evaluate. This is unsatisfactorily small and close to the minimum value of
due to the need to invert the candidate (a,Y) zero.
transformation on a point by point basis. Esmct (Section 6
3.1) is worst in this regard since is requires transforming 3.3 Third Moment
two points completely for each point in the figure. E3m A measure of a symmetry (used in statistics to

. (Section 3.3) is best since it requires determining only measure skewness) is the third moment in y. m03.
the ordinate of each point in the figure. All the measures ene
in this group require processing an entire figure to judge
its degree of symmetry. This precludes time-saving
techniques like abandoning a candidate axis pair if the E3. IM031
evaluation passes some heuristic threshold. Experimental Again, we measure this moment in the originalresults with these evaluators are given in Section 7. figure. not the image. The measure is minimized by a

3.1 Strict Symmetry symmetric figure.

An obvious evaluator is based on the definition of This measure exhibits at least one major weakness:
symmetry. Strict symmetry requires that D(xoyo) = E3m is minimized by antisymmetries is well as
D(xo,-yo), where D is density, intensity, texture or some symmetries. This is most noticable when evaluating
other feature of interest. Let our measure of strict parallelograms, which are judged to ha%e an infinite

number of equally good (a.y) when there are actuallysymmetry be defined as: only four. For many general figures, Ejm has proven
Ec= z I D(xo.Yo) - D(xo,-yo) I  quite effective in discriminating axes of skewed

symmetry.
L Deprojecting through the best (a.y) minimizes Ect 4. Radial Section Symmetry

• Our definition of skewed symmetry for a figure is
equivalent to finding Estrict = 0 when measuring This technique is based on the polar coordinates of
original point locations in the coordinates implied by points in the figure rather than their Cartesian . -
some (a,y) pair. Clearly this measure is perfect in the coordinates. It has been the most effective evaluator in. .-

continuous realm. Unfortunately, under the discrete our experiments (Section 7). Divide a figure into n
representation Euout performs poorly. The most sectors by drawing n equally spaced rays with their

endpoints at the center of the figure, aligning thesignificant problem is the dislocation of fine detail. F.trict positive ray of the x axis with one of these sector
" is based on one-to-one point pairings and is very boundary rays. Number the sectors I to n clockwise from
. sensitive to dislocation, especially of high-frequency the sector whose counter-clockwise border is aligned

features of interest such as boundaries, with the x axis.

3.2 Product of Inertia Let the area of the figure falling within sector i be A.For a symmetric figure A, and An 1 i will be equal for -..* ..
More successful than the one-to-one point pairing are

some necessary but insufficient conditions for symmetry. I < i < n. Define the measure of sector symmetry as:
Our solution for the constraint C was based on the E. .
product of inertia, moment roll, being zero for Ess I A i - Ai+ 1 1. I < i < rn/21.
symmetric figures. Let us define the product of inertia E, is minimized for a symmetric figure.
measure as:

SA i may be quickly calculated. Rather than transform 0
E = Im1ll the points in the image figure and place them in the

where rol 1 is the moment measured in the original untransformed sectors, we may place the untransformed
points in transformed versions of the sectors i. We

figure, not the image. In practical terms, we first exploit the fact that any angle 8o (measured relative to
deproject by applying the inverse of the candidate (a.y) the x axis) in the original figure is skewed to an angle i
skewing and then measure iI. Probably because of its
global nature, this measure is less sensitive to dislocation in the image figure by the relation:
than Es t t (a property it shares with other moment = tan-1 (tango + COt(7'a)) + a
measures).

The transformed sector boundaries can thus be easily
It appears Epo i lacks discriminator. power due to the calculated. We only need to calculate the * i for each . !

,, nature of constraint C itself. Since we exploit the point in the image figure once, since they are measurable
property Epoi = 0 for symmetric figures in the solution in the image and do not depend on the candidate skew
for C. the (a,y) candidate pairs in the locus for a given transformation.
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A suggested implementation is to calculate a sorted The standard technique of calculating area and
list of the 8e once. For each candidate (a.y) pair generate perimeter length concurrently while following a chain

the transformed sector boundaries. Find the sector in code representation of the figure's perimeter may be
which the least 9t falls. Test each e against the upper adapted to the purpose [Freeman, 19741. This techniqueboundar for the current sector, Increment the area for is a discrete analogue of the continuous integration for -

- f u carea by Stokes theorem. There are two ways to approach •
the current section if o is less than the sector boundary. an adaptation for figures under various (a.,)

" Advance to the next sector if not. transformations. The first is to take the chain code
derived from the image figure. make a table of

'" Using 32 sectors, evaluations of (a,y) pairs as close as transformations from angles and distances in the image " "
five degrees total difference in a and -y vary by a factor figure to angles and distances in the candidate
of eight or more when one of the pairs is a solution. The transformed figure and use these transformed measures .
result is a high degree of discrimination among (a,y) in the usual calculation. The second is to transform the •
transformations. Adaptations of Es that substitute polar figure, define the new perimeter and the corresponding
moments over sectors rather than areas of sectors could chain code and proceed as usual. The first approach
be developed. Since such moments would essentially introduces less quantization noise and has the advantage

measure powers of the points" distance from the origin, of being much cheaper computationall%.
which is invariant under skew, they can be readily
calculated from measurements in the image. We have Ec0M works best with connected figures but can be
not found the need for such adaptations. even for highly used with unconnected figures once the separate . 0
distorted image figures or image figures derived from components have been identified. It has the
unconnected originals. computational advantage that the amount of perimeter

information required can be substantially less than the
5. Compactness information required by other measures to evaluate

symmetry. This essential dependence on the perimeter
A widel.-used shape number is compactness. defined means initial determination of the perimeter is critical -

as area/perimeter 2. Define: and subject to some of the same resolution issues that 0
affect tangent and curvature computation.

A/p 2

Ecom inherently resolves shear ambiguit in favor of
which takes on the maximum %alue of 1/4, for a circle, the most compact shape. Other measures of symmetry
Brady and Yuille use compactness to determine three- respond equall favorabl to all shear-ambiguous
dimensional orientation from two-dimensional contour, solutions. Ecom produces local m ima for the multiple)
They show that compactness is maximized if a skew l .ocr t
symmetric figure is "unskewed" to one of its original solutions, but it may not be possible to determine the S
symmetric shapes [Brady and Yuille. 19831. For a number of actual solutions, especially since some .-

somewhat related measure. ellipticity, see [Proffitt, 19821. solutions may be much less compact than others of equal
symmetry.

We have implemented a version of the measure for
our discrete representation. We found it lacking in 6. Boundary Features and Hough Transfori Fialuators
discriminatory power (Section 7). Although area and
perimeter are elegantly calculated in the world of The Hough transform is a technique with a wide
continuous figures. they are not well behaved in the range of applications. Typically, a set of operators is
discrete realm. Perimeter may be especial troublesome applied uniformly over an input parameter space, Fhe
to compute accurately in comparison with other results of evaluation at each point in the image space aremeasures. Rosenfeld reports experment wi here consistent with certain values in the space of parameters

compactness of large digitized circles was computed to be determined. This has been likened to "voting" for
using two different measures of perimeter. F-or one the appropriate parameters. In this way, local
measure, the discrete compactness was maximized at information in the image space is transformed to a global
approximately .98: for the other measure, the maximum solution in the parameter space. Experimental results for
was approximately .73 [Rosenfeld. 19741. Compare these the techniques below appear in Section 7.
figures with the expected figure of about .79. For
additional discussion of computing compactness over 6.1 Boundary Pair Matching
discrete figures see [Sankar and Krishnamurthy, 19781 T t p s"ya ( y o h
and [Kulpa. 1979. Take two points (xl, yli) and (x2i, y2,) on the

perimeter of a figure defining a chord across the figure
Our version of EcOm is based on the A, defined for or a lobe of it. Each such pair of boundary points

use with Ess. Approximate the radius for sector i by r contributes one vote in the parameter space. (a.y):
/(At /) and the perimeter for sector t by P, = 2,r,/. a tan((yl, y2,) / (xl, In.
From this, approximate the total perimeter by P = z P,

+ , Iri - r,+I I, and calculate the ratio A/P 2. -y = tanl((Yl - y2,) / (xl, x2,)).
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That is, make the assumption that this chord is y= y2 - I I
parallel to the axis of skew and the midpoint of the
chord lies on the axis of symmetr. Symmetric figures a = tan'l((tanol1 Y21 -tan82 i yl,-tan 02 Axi

maximize the contributions fbr (a.y) pairs corresponding / (Ay -tan82 x2i + tanl 1, xli))
to axes of skewed symmetry.

where 81i and 82, are the angles of the tangents at l,, 0
Wh. is this a plausible evaluation? We distinguish y11] and [x2,, y2J respectively. The value for a is

illegal, legal and actual solutions. Illegal solutions are
(a.) pairs that do not fall on the locus of constraint C. determined by the angle between the intersection of the

Legal solutions are pairs that do fall on the locus. Actual tangents and the centroid.

solutions must be legal solutions and they correspond to
the actual skewed symmetries in the figure. If the 6.3 Strict Lateral Hough

points are, in fact, symmetrically corresponding points in This is an adaptation of strict lateral symmetry. Each
some legal solution, the chord does have the desired pai is n tati no st te symme t h
properties. If the two points are not symmetric points in pair of points in the figure. not just the points on the
a legal solution, the chord will contribute to an illegal perimeter, contribute to the overall result. Otherwise, a

(a',) pair in the parameter space. and y are calculated in the same fashion as for boundary
pair matching.

We now need to determine that the voting process 6.4 Discussion
isolates the actual solutions among the legal solutions. 6 c

Let the length of the projection of a figure onto the
symmetry axis for some (a,,,) pair be L. Assume the These techniques are significantly more expensive

figure is convex and connected. If (a.y) is an actual than the others discussed. The two perimeter-based
solution, the evaluation of that pair will theoretically versions run in time proportional to the square of the
receive L votes. This corresponds to the number of length of the perimeter, rather worse than the other
chords centered on the axis of symmetry and parallel to perimeter-based techniques. The strict lateral technique
the axis of skew that can be drawn across the figure. A runs in time proportional to the square of the area, again
non-solution will receive less than L votes, else it would worse than the other area-based techniaues. -0

be an actual solution.
An additional disadvantage is th - " cmmulate

Robust behavior is generally provided by the (sparse) partial results over the entire ( ,,irameter space.
distribution of votes over the parameter space. which Doubling angular resolution axis solutions
tends to avoid clustering around legal but non-actual quadruples the size of the parameter znac, It is possible

* solutions. If we measure the "projection" of a non- in some sense to invert the technique, ,sed here by
convex perimeter onto the symmetry axis as L = I (As evaluating transformed figures for orthogonal axes rather Jk_

* Pos(Ax/As) where s is arc length along the perimeter than directly evaluating image figures for axes of skewed
and (x > 0) -- Pos(x) = x, otherwise Pos(x) = 0, then symmetry, but this removes one of the potential benefits

again an actual solution theoretically receives L votes, of using a Hough transform. Fortunatelk, the constraint
C allows us to discard an. results that do not contribute

So long as we compensate for changing L with to legal solutions. Doing so sa.es considerable space at
changing (a,y), actual solutions can be discriminated the expense of minor additional complexit.
from non-solutions. In the absence of such •
compensation, this Hough transform generally Both perimeter based techniques have a strong bias

demonstrates an acceptable degree of discrimination for axes of symmetry that align % ith parallel lines in the

between solutions and "close" non-solutions and a figure or with the axis of elongation. The preference for

moderately better degree of discrimination between parallel lines is due to the hea contributions to
solutions and "background." The need to compensate precisely the same a. The preference for the axis of

evaluations differently for each candidate transformation elongation is due to the relationship between the

poses a practical problem for Hough transform methods, projection onto the symmetry axis and the number of
votes that can be accumulated, as noted above. This is

6.2 Tangent Pair Matching most noticeable when evaluating irregular
parallelograms. One symmetr) axis is clearly preferred

A variant of the boundary pair matching idea uses over the other three solutions.
the following observation. Let Tl 0 and T

2o be tangents at
points [xlo.Ylo] and [xl o, -ylo] in a symmetric figure. The tangent pair matching technique demonstratesThenthe inteci and Jx~o one advantage over the boundary pair matching
Then the intersection of rlO and r2o: technique. The undesirable preference for parallel lines

1) lies on the axis of symmetry, and can be adjusted by weighting contributions by some
function of the difference between the two tangents. It
has the disadvantages of additional computational cost
and a requirement for higher resolution representation

Let y be calculated as before and let for equivalent accuracy results.

Ax %21 - xl
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Hough techniques have two major redeeming values Skew transformations significantly alter some forms
in this application. First, the perimeter techniques are of texture. Consider radial lines as a texture pattern. In
robust enough to deal with obscuration since no portion an unskewed figure, these lines are of uniform density
of the perimeter is critical to the overall result. Second, around the figure. In a skewed figure, the density of
the techniques evaluate all candidate (a.y) pairs in one these lines varies with position and the axes of skewed
pass over the image rather than requiring a separate symmetry can, in fact, be recovered from the variations
evaluation of each candidate pair. When the angular in texture density. A generalization of this behavior and
resolution desired is high, this mav swing the overall its exploitation would provide a useful tool in processing
running time for evaluation of skew symmetry to favor obscured images or in further constraining the axes of
the Hough transform. Clearly we lose most of this skewed symmetry for visible ones.
feature if we are forced to process each possible
transformation separately. An additional potential of If we adopt an imaging model with perspective
these evaluators over others is the inherent parallelism of projection. we can no longer use constraint C on shear
Hough transforms. ambiguit. or Kanade's constraint on gradient ambiguit.

Many tasks in robotics and "near" %ision must process
7. Experiments images produced under perspecti e projection.

Generalizing either constraint would be useful.
Evaluation procedures were implemented for Esther, Finally, we make no claims that the symmetry

Ep, E3m, Ess, ECOM, and the three Hough transform evaluators presented here have any relation to analogous
techniques. The performance of each implemented processes in the human visual system (Friedberg and
evaluator was tested on at least 10 different figures in Brown, 1984: Schaefer, 19841.
judging (subjectively) their relative merits.

Calculation of the locus of constraint C was Bihilography
performed once, and as many as four evaluators could Ballard, D. H. and Brown, C. M., Computer Vision,be invoked on each candidate transformation. m'e BalrDH.nd ro.C.M.omueVio.beinokdoneah adiat rasfrmton TePrentice-Hall, Englewood Cliffs, New Jersey. 1982.
Hough transforms were implemented separately, and the
constraint C was used to "filter" the results of applying Brady, M. and Yuille, A., "An Extremum Principle for

each transform. Graphic displays of the locus of Shape from Contour," A[ Memo 711, Artificial
constraint C and intensity plots of the evaluators were Intelligence Laboratory, Massachusetts Institute of
implemented. Technology, January 1983.

Figure 2 serves as a guide to Figures 3, 4, and 5, Brucks, M. L., personal communication October 1983.
which show the eight evaluators applied to three input BL n, t
shapes. Davis, L. S., "Understanding Shape: II. Symmetry,

IEEE Tran& Syi Man. Cvbernet., SMC-7. 3, 204--"
*8. Conclusions and Future Vork 22 97212, 1977. . . .

We present and test eight evaluators of symmetry, Ellis, T. J., Proffitt, D., Rosen. D. and Rutkowski. W..
some from the literature and some new. The sector "Measurement of the Lengths of Digitized Curved O .
symmetry evaluator provides the best combination of Lines," Computer Graphics and Image Processing, 10.
accuracy and speed. This paper is a condensation of a (4), 333-34, 1979.
technical report [Friedberg. 1984). in which eleven
symmetr) evaluators are presented and analyzed at Freeman, -. , "Computer Processing of Line-Drawing
greater length. Images," Computing Surveys, 6, (1), 57-97, 1974.

Analysis of the sensitivit of various evaluators to
different kinds and degrees of asymmetr. can provide a Friedberg, S. A., "Finding Axes of Skewed Symmetry,"
more objective method of choosing among the (many) TR127, Computer Science Dept.. University of
alternatives. The evaluators discussed here and others Rochester, November 1983.
encountered in the literature should prove amenable tosuch analsis.Paruular , itereting form of Friedberg, S. A. and C. M. Brown., "Finding Axes of"'--'
such analysis. Particularly interesting forms ofSkwdymerPocdig,7hItlCnfn
asymmetry are those introduced when processing real Skewed Symmetry," Proceedings, 7th nt'l. Conf. on
images, of course. Pattern Recognition, Montreal. Canada, August 1984.

If there are constraints on the original shape of the Friedberg, S. A.. "S.mmetry Fvaluators." TRI34. 0
figure being processed (e.g.. figures are known to be Computer Science [Dept.. Universit of Rochester.
portions of automotive connecting rods) or if there are September 1984.
constraints on the axes of skewed symmetry (e.g., in Hoffman. D. D., "Representing Shapes for Visual
aerial photography with known relation between camera Recognition," Ph.D. thesis, Dept. of Psycholog\.
and ground coordinates) additional analytic constraints Massachusetts Institute of Technology. 1983.
may be developed.
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GRAPHICS AND PREDICTION FROM MODELS

Richard Scott

Computer Scienice Departmnent

Stanford University, Stanford, California 91305

Abstract The method of atttack in all cases is,
The first part or this paper describes algorithmns and comn- 1. What are thc singularities, %here a sniall change in the-
plexity argumients for a near optimal lidrdeni surface schceme. left hand side produces a large change in the right hand
It starts with a viewpoint and a scene eorupesed by unions, side? low can they be found anid rep,-esented?
interscctiokus, negatives of parametrized volumes. Thenm 2. flow can the sigu lari ties, and the continuous spaces
ljuaihs are founid on thre surfaces to given accuracy, and] mnutii- b-etween themn be organized and rep~resented? -

ally consistent T-junctions and cusps arc found in their pro- 3. flow can a complete description of the miap be extracted J,-
j1.eCtions to the image plane. The surfaces anid image planes from I and 2?
are represented by quad-trees. lFronm these, the topology of In the case of P1, the mnethod is justified by complexity
the p~rojection is extracted, represented by a "tooth-pick" arguments in section 3. The rest of the paper is organized

% structure which orders the surface regions, that project into as follows:
*the same area or the image. The foremost regions can be (Introduction.)

displayed for hidden surface graphics. The projection topol- Part One.
ogy. is invariant over a range of viewpoints and models. The

*second part of the paper examines the projection topology 1. Geomietry of the projection mappming. Define some terms.
for changing viewpoint and surface shape, and discusses how 2. Complexity arguments to derive the outline of the hidden
Ji.t m~ight be p~redlicted) and represented. surface algorithm.

3.1 The three algoritlrin steps.
3.2 Supporting algorithms.

Introduction. 4.1 Modelling outline.
Treare two parts to this paper. The first describes an 42Moe odlig

optimial (and mainly implemented) schemie lor a variation
* of thre hidden surface problem. This is graphics whose goal Part Two.

is not just to display the imiage, bu~t to know qualitatively
* what it is displaying. Its ouit represents the topology of 5.0 Overview.

thke projection iuampimg in a "tooth-pick" graph structure, 5.1 Singularities for changing view.

which aligns regions of surface and image, and at whose 5.2 Singularities for changing surface shape.

* ~~nodes5 the quantitative details are stored.6.reitoSrutes
(;raphics can be thought of as predliction with fixed

viewpoint and smrface shape. Thec ptojection topology struc- Part One.
ture is invariant to small changes in viewpoint and stir-

* fac-ice shp.Tescn art of the papmer discusses general

p prediction by c~onsidlering how #he projection topology can 1. Geometry of the Projection Mapping.
change as viewpoint antI surface shape vary. Before dlescribing the algorithms, a few geometrical terms

So three different mnappings are analysed, with decreas- are deicned.
ingsccess, A limb, also called a contour-gen~erator is a closed loop-

l'l: srfce ungeof points on the surface being looked at, where the line of
* IP2 viewpoint -- ' tojnilogy-of-PI, sight is tangent to the surface, i.e., perpendicular to the .

-P3 surface-shape l opology-of. P2. surface normial.
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A contour is the projection of a limb to the image plane. 2. Find the intersections of limb rays (tangent to
*A T-junction is at point in the image where two contours some surface) with other surfaces in their paths.

*cross. There airc two different limb points oji the same line This is inefficient because between neighbouring limb points
of sight, the onc closer to the viewpoint occludes the other. thc surface ordciiugs can only diatige in two -aYs. When

The limbs dividr the surface into forward and 1h;41 w--rd an intenormcliate contour ray passes throtigh (i) a I-junlction,
*facing regions compared to the eye, and are oriented so that (ii) a cusp.

* the forward face lies on the left, (when looking down on thce 'rttt h id astc iu h usto I
surface fromt outside). Let F be the line of sight vector, a. junctions and ciusp rays andI the iitersect onis with

* . L the lib tangent vector. Both F and L lie in the surface other sutrfaces there.
* tangent plane. If FVL is paiallel to N (the outward suirface

* ~normal) then the forward face, on the left of L, is closer to Ilwvrtofidteoupcesfaeoeri angay
th ee ha herihtsie gvig nouter lm ot through cusp and T potuts, it is niot necessary to to ;olve

the ye tan he rght ide givng a lib pont, for the intersections and then order theni. histleau, the dif-
*If F V L is anti-parallel to N, thent the back face, on the fercnce in surface orderings are already known:
* right, s closer, an inner limb point. ()Oe tlmtefrada( mkadfcn ein

If FVL is zero there is cusp point. F parallel to 1, means (iOvralmtefwrdadbckrdfigrgon
* that the tangent p~lane intersects Lte surface along P, which ar ib ser'iltentheaoe forwrd~u inecoe fr the bi~eiig 'rank

Is the definition an asymptotic direction in the surface,.ue iub:eunntefradfc ole eoetebc
face, while for ain inner segurent, thle back face cmlles first.

So L is parallel to an asymlptotic direction in a hyper- (ii) Over a cuisp, lte forWaLrd and batlkwarrl faciing regions,
bolic (saddle shiapedl) region of surface. Tl'ii is another way adcetithorrspple.
of diefining a cusp. There are two types of cusp, with L (ii OvraT1, the two regions of the other T branch insert

pontngtoards or away fromn the eye. th(isve.

* Fig. I shows ru, oblique view of T ous 1his set of dlifferences can he solved to give comiplete stir-
Whitney in 1955 proved that limbs and cusps are the face orderinjgs for each imiage region, by propagating partial

- only possible singulari ties from a generic viewpoint. orderings over the image.

T Muer oT co xrN R
V5 P 4. Find the singular rays at lim,n T junctionks and

cusps, then solve for the uinique, comiplete siurface

jNNE ~ orderings in each image region, that satisfy the or-
dlerinig rhiffereuces at singular rays.

This is the optimal bidden surface alg-orithmn. Still unspeci-
fie,! are the details of
(i) how the limnbs, cusps and T junctions are to be found,
(ii) exactly what surface regions are being ordered, (and
how to ensure that the Tls and cusps of each region, solved -

* V4157,t locally to within an error bound, are globally consistent.)

2. Hidden Surface Complexity Arguments. (iii) and how to propagate up the orderings.

These will show that an optimal algorithm must find the Ths r ecie ntenx etobtas far a
singularities; limubs, Ts and cusps. comp~lexity is concerned, (ii) and (iii) are both

If e is thre mnaximumin allowed error ini the imiage, I is the O(nuinber of image areas between contours)
total length of the limbts, c the total curvature of the limbs, which is at measure of the scene complexity, of smaller cost

*then it has optimal complexity thanr (i).

0(n log n), where nr has 0\-ce Let, e be thle maxi,rmii allowed error distance between
thc ap~proximiate aunl exact, contours in the image, I be the

There is a sequence of refinements to lte following first at- total length of the limbs, (7 lie the total curivature of the
- tmptalgorithnimms. ;i etenoiiil er of limbh rays; sol ved for.

1 . Shoot out at conical bunch of rays from the eye, The the average step Ivngtu betwevin adjacent rays is
Calculate where they intersect the surfaces of the I/n, thie average stepli agle is c/n, and the interpolation.

-~~~ ~object being viewed, and order the intersectionseroisOtelnghsepiml)s,0(;') 0()
*along each ray hy idistance front the eye. and it must. be 0( VLce).

AlIgor ithmti I is itelfic ieu t herarise ic iglb ott irig rays (imnage ~ Ma v c i oto o iigieaieyfro .I il
points) have the same ordering of surfaces along thcm, ex- t.is(! (ii.ia-err lialro).TuIinleors

ceptwhu aninte~ur lu ra goe thoug a lth ~e. is 0(c), and the iniitial-erruor is ()(stp-eigth x step-angle),
tangent to the siirface there. So tt order of surface regions Which mrakes the ciist 0(huog(tc/en")) -0(h).

front the eye along an arbitra-ry raty can be rerun ered from
the ordlering along the subset of limtb rays.
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my is ii?,'. T 'Ih atCorest o l sol each Cr is 0 1)oit al ready bieen butilt upl in Step 1. It is a quad -tree of part

seye i i(le lim to rayt ofgl lii igche ctsjil is f(i); jT Of lite image plane. However since it is not yet being rised

junein the n tor sgens hat~o e tted for iun-' for ;lily distance imcasurcints, it might be better to think
jitnct~~~~~~~itors, ~~~~o tiinru u eiiit5hv oletsc o n t twa a small sphere surrountdintg the viewpoint, that the

tersertion withI each other, Costilng ((log n). (Assirriing surfaces are being p)rojected onto.
that rio t ojol ogital iniformiat ioni is Itein titt5(' to dlirec t tile In thItis step TI jutn ctions bctweer' conrtours in di fferent
seart h.) ssarfon.''Tere are ito global consistency conditions

A r~lii ( (i) ti t)( I g ) rs ils it I ettii j le ity for thItese T's. i'The smtallest unid iv ided areas of thle imoage are
or ~ t t talItii I' i stirfcealg n liir ,()(nItg n wt rcit ext ratcted from t[lic qual- tree, to hbuild a graph of the irtiage-

is (V /).where thle nrodes are areas anrd the links are the pirojected

Actullythe (n)lirtb slvig doinaes.boirirtaries of the (I -I)areas of Step one. The ends of the

3.1. Three Steps of Hidden Surfarce Algorithm. links ;ire cusps or T jutictions.

1. Split tfite whole surface tip ittto toaxittal regions that Step Three.
projct.(I -- I)tothe rtuge.i~e. whch orit tistTihe last stepi qutickly' redistriburtes informiation already

arojectilto hr i tt te Imels. [ie, arehit do titist of Containted in tlt(e two graphis pirodulcedI by steps I and 2, to

the forw. t i antd bark fa.cinrg areas hiotundedl by littibs. get. tlte ordering of surfaces in every irriage area.
yIt is imiportanrt that tile algorithm that does this can-

2. Split thle ittage plante tit) ittiareas that~t have acotistant be proved to work in all cases; atid that the orderinrg of
Ordering Of the suirface regiotis that, project ottto them. urmdncotrsialyseovdwth thvngo

strachidit corteur is alwayse reole wiau havingr tcntu eget
wait aisr ius b ilt e coranlt ero oittrsgutt itttersect a new ray withr both surfaces. For two discon-

witlr'l's r ctsj~ t th cornrs. Iected objects, that share ito 'r jrictiotis, exactly one ray
3. In each imtage area work out what Lite orderinig actually intersect ion is needed.

is. Threre serus to lie an optiontal algorit lin to (1o this Tegaho tp2 aswtc I I)eiir fsrfc

wIci nd tir' o2yt. notttor rvddb tp project over artly imtage poinit. A sketch of Lte proof that they

C ato lie ord ered pai rw ise, ini gi venl in 3.2.FI. UThe details of the
For itiddeni sitrface grapthiics it citd inig transparency, lte stir- ordetrittg algori th lihtIave tnot yet been workedh ottt.

face regiotns Cati le displayed ill order, ti p to tire fircst opilqte Th'lesc 3 steps ot inte the htiidden sturface sch crie. The
one. fur acit areaof the irrage. itext settiorts givse sotmte ttmore de'tailIs. Somte pre'viotus ver-

Step One. sions of thtese algorithmits that ftitd limbils, 'I's aind crisps
1. Step otie first. finds thle litmbls, which dlividle tire sturface up wvit.Iotit Organ izinig Lte sitrface regionrs, have bet ittipie-
into ailterttatting fotward anid backwartl facing regions called itetited e.g., Gove two views of a helix, figs. 7,8.
faces (w.r.t. tlie viewpoint). IFot planar surfaces tangent
to 'he fiie of s ighit, t Ite limtb is t aketi aloitg the ftonrt edge,
so thiat tite p~aite belonigs to the( 1hack facing regint. E~ach
lace is boit ited biy a set of d iff'erentt litmbls Calledi limb sets.
Stce isi vi segi te tts of the lii , are st ored hit q itad -t-rees

represetfin tg t hi' cordiinate jiatties of (tre surface. Rlegionts

tf the qtiad. trees lietweut littbs are lilid to extract tlie litttb
sets.

2. 'l'iti mtly way that, a face Cai occltile itself is by having

'T jirtiitiois tir titsps it its limtb s't . If there are titt, titen

lie faLc ;iojVIrtS (I )tO tire outage.

3. 'I's atnd cutsps itiiait that, tie( fatct, netets tto lie split tip
frrrtlo-t- itto (I I )silirt'giitns. Tltert- set'tts to lie a ikctiti-
positittn ;ilgoritlttt that mtakes tire- splitt itg iuie, (it1) pirs
tip 's iand ctips itn tire! litil, e), andi at, the satie tillie en-
sttrvs that t lit: Coimbinationi of 'ls itill rilsls is toiitittt withr

phulysit ally piossibile urftaci', (applriixioiij,' 1' Vact onte).
I Iavitig t(i 'I's aini rtsCOtisistttit fttr t'acl face sepa~rately, FK.1
< > thle whotlt' imiage is cotisistenit. lwt~~mto

TIh e resutlt is a graphi str tct itre whtere tire, notde i' re the 3WL

(I-I)sia. f.mce regiontrs arid t lie booiks are alj anetic y aloy g at
limbll, or projected hunt) inidicatetd by tlI' dlecomipositionu.

Step Two.
li0 Oirder tt searri for TI jitu It its ini criititir sits (tile

projectiOit Oif huntII sets), areprestrit ai itotf tih' imtitige has
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Slow-

In other words, step length d, and step angle ax, along . -'

Cte extrapolation curve atre chosen'so that dsina is con- %...-..
staoLt, which nkakes the inlitial error and number of iterations -"-.' "
roughly c:onstant._ --"" "

Ifi and v aethe tosurface parameters, then the ::-:
tangent direction in parameter space is, du = ,l(n-f)/dv, •
dv -(n~.f)/du. This and the previous limb point ire

~~~used to fit a curve to the linib in paranieter space, that-.....

has linkearly changing curvature. The extratpolation curve...
awssuines linearly changing curvature. -

3.2. Supporting Algorithms for Steps I and 2. B. T-Junctions and Cusps. .~_

A. Finding and following the limbs. To fi~d cusps on limbs check for change in sign of the ,.-...

B. Searching for T junctions and cusps. triple sc ,ar product, ..

C. Decomposing into physically possible (I-l)subregions,.•-'•.
giving itage consistency. Surface-nornal •(Line-of-sight V Linmh-tangent) . -.-

D. Refining T junctions. Finding T Junctions."

E. tilage -aCCUracy. The image is represented by a quad tree, with clipping -
F. Pirwise Ordering. usually done aound the brders of the unit square. When

A. Finding the Limbs. crossing contours are found in a quad square, they are ini- "..- .
1. Search for it point on a new limb. tially refined until the ordering at the T is clear. Both ends "''"""

This is not a time consumning step; the algorithmn steps of one seguient must be closer to the eye than both ends of i- I

along a fixed parameter path, and works ont whether suc- the other..- " .. "" .

cessive surface normals point towards or away front Lte eye. .D om sngteFe.-""-'-""

When hey ointoppoitel, a imb asse beteen hem. The test to find cusps is local to a sniall patch of sur- - --

ing, otherwise give the two spanning points to the following imp~ortat that these local, approximate calculations can be """""" '

algorthmcombined into a globally consistent image. Fig. 5 shows

2. Follow the limb over the surface, point by point, until it two spurious T junctions. Fig. 6 shows the.T junction of
loops tip with itself. This is the most expensive part of the afishitail detected without, its cusps. As the accuracy con-
whole hidden surface scheme. straints are relaxed, the resulting iniage shoul be the exact

Each limib point is actually a p:%r of points which span projection of a 3D volue that approximiates the real one, -'
the limb closely. Having solved a stretch of limb, at the end degenerating into a sphecre-like biob. ""' ''"

point we know the tangent direction and the previous step ' ' ' i i'

tion for the next limb point can be inade by exrap,,hatig_ , , B

the curve .ionic distance. The distance is chosen to mini-
mize the number of iterations per step length. If the step ST"ES

if too short, nunnecessary extra p~oints are foond, It is chosen k - "
to give the constant, optimal number of iterations (3 or 4)

that gets a bounding pair with angles between their surface f' '
nornials sinall enough to give an accurate estimate of limib ": ""

tangent for the next extrapolation.
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C~rS

The deconmposition algorithn has not been fully workedPOT0
out, but hcrc is a sketch if how it should go for each face.

Start with tlic urface graph for that face, as if it pro-
Aete (1--)witli no Ts or cusps. This is a sinigle node, wihrluc o ek

* with a link for each lim;b in its Iindb set. LFiit thc obviouis whc 2ehcstd <2/;

cusps. U~se thc imoage qluad tree to dctect 'l's, mi~d refine theal This is the condition for stopping the iteration that refines

to Lte dlesired imiage accuracy, using the (imuplemented) aI- thC bounirds of a limb point.

goritlhin in the next section, 1). If the dicsircd accuracy is For a p~rojected stecp of length I in Lte imnage, with .

*smnaller than thc distance between the false Ts, this will step angle a, the error in any interpolation scheme will
mergethem way. Then link up the 'I's -n up aron be O(isin a). a is a nucasutre of the inverse of radius-of-

stib-regions which split the face and its graph node. Consis- curvature, so the error is O(12 /r.diu-of-ciirvature). Thcre

tency conditions (paired I's, cusps, etc.) are applied around are two alternatives. If the image interpolating error needs

the b~ordlers of tihe stibregiotis, and extra T's and cusps are to be bounded by fixed e, -then -the step length I between knot

adided or removed to resolve ineoiusistenis ~. h w points shiouldl be O(v4riuli.4of-cuorvtuore). However if the

undetected cusps of Fig. 6 would be added. image interpolating just neceds to loo1k good, then Lte error
should be p~rop~ortional to step length. So I sin a oc 1, giving

*D. Refining T junctions. sceahoer elngr constant step angle, and step length O(radius-of-curvature).
1. iwo contour segments intersetec te.Telne

* ~~contour is bisected (or a halfway interpolation), .s an iniitial F arieOdrn o tp3
* guss o ierae t a nw llol soiitoii oin. I on ofthcThis is the step that combines the information in the

two new halves crosses the shorter segment, this step can be surface and image graphs, produced by Steps 1 and 2. Its
repeted.output are the complete surface ordlerings in each inage
repeted.region, represented by lining up nodes of the surface and

2. lBnt what if it does not? Then one end of the short image graphs.
segment must be enclosed by the triangle formed by the long

segment and its two htaves. The contoor at the enclosed end

is extended uintil it leaves the triangle. If it crosses one of For each image region, we can get the set of surface

*the hialve.;, 1. can he resumed. But if it crosses the long regions that project over it. (By propagating around Lte

segmient, then it re-enters the stack )f triangles forined by inside of each centour set.) They can be ordcred pairwise,.

previous successful bisections. The contour continues being hence completely.

*extended (step by step) through the stack, until it exits over Sketch of proof:

a bisected side, and can return to 1. If this never happens, it Take a pair of (1-)surface regions A and B, that in-

finally cuts out of one of the original segments that formed tersect in the image. There are two ways that they can be

a T in the quad-tree. In that case two quad-tree Ts can ordered immediately,
be merged away; they were just an artifact of approximate (i) if they have a T junction between the image projections

solution methods, of their boundaries.

* E Guraneeig mag Acuray.(ii) if they share a boundary, are adjacent on the surfa ce.
If 1I aid 2 ar th tw boudsi'uthe ram ofthe If neither of those works, find a comiuected path of re-

eye, and ace distance d apart, with 0 the angle between their gosfo oDvrtesraeo h bet ~. hog

surface nornias NI and N2, then, sign(NI - Fl) is opposite tegahfo tp1
to sin(N2.F2).Step down the path, starting at A, checking each region

the si aximum poFbeim2)rori.s i.3 against B by (i) and (ii), until one of thenm gives an ordering.

*rk(l - cos0/2) where k is the ratio: It is Lte same ordering as between A and B themselves. We
imag~plae~dstane/mi(I~I, P1),will eventually get an ordering because the last region in the

ais- l dsnc/i(F, JF/2. path borders on B, and (ii) applies.

dk sin 0/2 <e
2(1 + cose7/2<e
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4.1 Modelling Outline, 3,2,1D. 4.2. More Modelling.

3D Modelling.
Scene: Objects positioned iii scene frame. A. Preprocessing.
View: Scene transformed intk eye frame. B. Primitive Vohune Details.
Object: A connected object is given by: C. Quad Trees.

Primitive VOlumC, or Preprocessing by the 3D Modelling System.
Deformed sub-object Given an Object, scene, or view definition, perhaps with
(e.g. reflection, stretch, negative), or".'-'-.-a repeated sub-object deformed in different frames, the nood--
union of :.mb-ohjects, or
ntetion of h-objects, elling system constructs an Object-tree, with each node de-

intiiv vlu e: retized o umue scribing a separate object instance, and the leaves being
Primitive volume: 1 e ie vou the primitive volumes. The nodes provide a place to store

that is piecewise continuous information about each object. For example, sequences of

and differentiabile.
e.g. Generalized cylimuler, linear transformations between coordinate frames are con-
half space of a plane. biued. Another example; at the leaves of the Object-tree for

This is theoretically eluivale'lt to hLAVilig the Whole a view, the coordinate patches and limbs of the surface are - -

Thisis lucretiall e~uiivlem tohavig te wole represented.scene surface patrani etri leu in a no n hebr of coorcl j nate reesnd..-'-:":
ite surface modamelreed ccnu sethy of crdiiatenThere axe two more things that the modelling system - .

patches. Volhume models are tised beeause they are often does before it can be used (e.g. by the graphics program).
ion'e compact and easier to describe. First it finds the common intersection lines on the sufaces of

Examiples of deformations: intersecting objects. At present this information is given by
Onme wing of an aircraft can be inoJdelledl as the reflection hand. Then it works out which surface areas of the primitive

of the other. A tube will be the intersection of the outer volumes of intersecting objects actually lie on the surface of

cylindur with the negative of the inner one. The deformation the composite object. It implements the formulas:
of objects can be non-linear. E.g. looking at the scene

through a distorting lens.

E.g. Definition of a screw, formed by cutting out the a(a U b) = ((oa n (Negb)) U (Ob n (Nega)))
helical threads.

(Union (screw-head head-frame) aa n b) = ((tga n b) U (8b n a))
(Intersection (screw-body body-frame)

(Negative (screw-threads-helix body-frame)))) where Ng means negative volue, to ecide which side of

each intersection line is on the outer surface. The intersec-

2D Modelling. tion lines are stored in the coordinate patch quad-trees with

The image plane, and each coordinate patch of the the outer surface on the left.

surfaces have lines and regions represented by quad-trees. 4.2.D. Primitive Volumes.
The lines are stored with step length roughly proportional -bin o r.ai l

to -a dius-of-curvatnre, to give constant accuracy, as ex-

plained in section 3.2 E. The discrete version of this is, unies. They have three paranmeters, (t,.sr) with each vol- .-

step-length (x te - ,e with a minimum length ime point P = P(t,s,r) having unique liarameters.

/77,, (ste p-ngle )' 91"1(9, D P/as, aI'/89r form a right handed (not nccess.
equal to the allowed image error. The quad squares are orthogonal) set.
subdivided until the ends of a step are in different nodes. P is continuous in its parameters, and piecewise dif-
Example of use: Intersections of lines are found using the fCrentiable. The surfaces of discontinuity (called jump-
quad-trees. surface.s) must he planar in paraimeter space. The purpose of

ID Modelling. this restriction is that it makes it eaqy to biterpolate where a

Lines are represented by 2-way list of knot poiits, con- line segment in paranmeter space has crossed h jump-surface

tainiug curvature information, and intersections with other and to work out the closest jump-surface. At present these

lines. surfaces must le parallel to a parameter plane. To alow

Topological Modelling. more general volume discontinuties and surface edges, ar-

Projection mapping of viewed surfaces to image: bitrary planar jump-surfaces cold be implemented using a

Kd-tree structure. 0
The topology is represented by a "tooth-pick" struc- The bounds of the volume are defined by restricting the

ture. A small number of tooth-picks, emanating from the parameters t,s,and r to all lie in some volume of parameter

eye, spear through surface regions of the scene and into re- space, typically the unit cube. So there is a mapping (posi-

gions of the image. They line up occluding patches of stir- tion function P) from the unit cube of parameter space to

face bounded by inmb segments and their projections. This real coordinate space.

is invariant for a range of viewpoints and models.

103

V,







The singularities produced by changing the surface References.
shape suggest it model beirachy. One object might be de-
scribed in terms of another by giving the sequence of sin [11 Arnol'd, V.I., "Singulm i' i's 1)f SyStcmmiS of Rays," Russian
giilaritics that occur whien its surface is defornmed to fit the Math 5urvey~s, 38:2 (1983), 87-176.
other's. Eg., Forming at "diiiibell' (see fig. 10) by deform- 121 Ilinford, Th~omas 0., "1'igure,/Ground: Segmentation
ing it sphere. F'irst tihe sphere is bent into a banana shape and Aggregation," P~roceedings: Rank P'rize Fund, Con-
when at parabolic cuirve, bisvcted lby a curve of asymptotic ference in England, 1982.
iilieXiINs appears at a point on Ltme sphecre's surface. Then [3] Brooks, Rodney a., and Thlomas O.Binford, "Interp'retive ~
the two enids of thme asymptotic imlxion curve, which are Vision and Restriction Graphs", First National .4AAI
also on the parabolic curve, ieet 'ip around Lte girth of Conference, 1980.
the banana. The parabolic curve splits into two, and the [41 Koenderink, J.J., and A.J.van fDoorn, "The Sinrulari--
banania becomes a dlumnbell. ties of the Visual Mapping', Biological Cybernetics, 24

(1976) 51-59.

SIPW51M 5] Koenderimuk, J.J., and A.J.van Doorn, "The Internal Rep-
resentation of Solid Shape with Respect to Vision", Bii-
ological Cybernetics, 32 (1979) 211-216.

IN& nuYV v ized Hidden Line Algorithm," Comput.8 Graphics 6:3

LIMpPPALEMO 17] Scottu, RcrSph, "An Apprach to aDislclationeini-

3 Syffnc(1982) 

121-126.

% ApdA i__zedCylindcr " Proc. III Workshop A ril 1983.

L INE /5
pUMBELI-

Fife. '10

A cknow lecgemrn its.

pManmy thanuiks to Tomi lBim'ord.

This research is snpported by the Air Force Office of
Scientific Research l"49G20 82--C- 0092, and previously by
the Defenuse Advanced Recsearchm Project~s Agency N00039 -

84 ~ C -0211.

106

. . . . ... . . . . . .



.-.---- . ,- .----.- •-- ..--.l.

p@

The Information-Centered Approach to Optimal Algorithms
Applied to the 2-1/2 D Sketch

John R. Kender
David Lee

Department of Computer Science
Columbia University, New York, NY 10027

A note to the reader. In brief, our intention to show 0
how the problem of transiting from a sparse depth map to1. Abstract a full one can be cast in the framework of the theory ofIn this paper, we introduce the information-centered computational complexity and optimal algorithms. Once the

theory of optimal algorithms as an approach to image problem is posed in the context and terminolozv of that
understanding problems, and apply it to obtain a dense field, the solution is a straightforward special case of several
depth map from a sparse one (the "21/2 D Sketch"). ex;.ting theorems. However, since the methods and terms of
There are three major results. First, we give a spline that subject are probably foreign to most vision researchers,
interpolation algorithm that is provably optimal in the we also take care in what follows to explicate, step-for-step,
worst case for surface reconstruction; since it is linear in the the reasoning behind the procedures, explaining the more
data, it is simple to compute using precomputed coefficients, abstract constructs in terms of the actual vision problem at
Secondly, we show that adaptive information (that is, the hand. We therefore adopt the General Theory f Optimal
intelligent and selective determination of which depth points Algorithms [61 to binocularity in what follows below,
to sample based on the values of previously sampled points) retaining much of the specialized notation, but with running
does not improve accuracy performance; a simple regular glostes. In part, our intention also is to alert the vision
grid is provably otinial. Third, we discuss designs for ommunity to the relevance of the research in this area.
a mentations -piting the above results which are very Additionally, we hope to exploit the theory further in later
amenable to paralel processing, and allow for local, point- papers for other vision problems, such as optimal surface
wise determination of surfac character without the necessity recovery from a monocuar intensity array (optimal shape
for global optimization. We conclude with some remarks on from shading).
our construction and execution of a prelimirary form of one
such implementation.

3. What is the Optimal Algorithm?
The analysis proceeds in severa steps. To begin, the

2. Introduction problem must e restated as a problem of: classes ofThe calculation of a full depth map of a scene from unctions (here, of three-dimensional surfaces), available
information present in an image is a central problem in information, and classes of algorithms. The following
image understanding. In 4eneraJ, what is desired in the ful aspects must be quantified, and we discuss them in turn:
depth map is some "best' surface that fits the sparse and
errorful depth data (the . 2-1/2 D sketch) derived from 1. The space of surfaces.
shadin$, binocularity, motion, texture, and other "shape-
from-x surface cues. Mathematically, this can be cast as
an interpolation problem subject to some error criterion. 2. The infortation available and the dependencies
Much work has already been done [3, 4, $1. This paper by which it is obtained.
investigates the general problem from a different and
relatively new viewpoint. We attempt to answer the
following class of questions: 3. The class of algorithms.

1. What algorithms are provably optimal with 4. The measure of error and the meaning of
respect to the accuracy of the constructed full "optimal".
depth map?

5. The specification of splines and spline algorithms.
2. What information on which to base the

construction is provably optimal with respect to 8. The optimality of spline algorithms.
accuracy? (Here, which depth samples, taken in
whatever place, in whatever order, however
intelligently?) 3.1. Choosing the Space of Surfaces and Their Norms

We take as our space of (possibly infinite) real-world
3. What properties does the optimal algorithm have? surfaces the following class:

Do the properties lead to feasible and, even, Let F be the set of all real-valued functions f defined on
parallelizable computation? R2 , such that f and its first and second order partial

derivatives all belong to L2(R2). That is, the class o' real-
We address the first question in Section 3, and'show that world surfaces is smooth at least up to local curvature: their .. 9

spline algorithms are optimal with respect to the worst case curvatures are square-integrable. In particular, this class
error criterion. In Section 4, we first show that adaptive rules out any surfaces that are merely piece-wise continuous
information, which is seemingly much more powerful than or differentiable. These two latter exceptions, unfortunately,
nonadaptive information (and certainly more computationally rule out true occlusions (where depth is discontinuous) and
complex), does not improve aceur icy performance. Thus one true corners (where the derivative is). Thus, the world to - 'only has to seek for optimal information among the classes be seen appears as if it were shrink-wrapped: corners are
of nonadaptive information In Section 5, we construct the rounded and discontinuities papered over. Inasmuch as the
spline algorithm Spline algorithms are linear in their dat:u, surfaces of objects tend to be locally smooth, however, this
and hence favorable for paral-l computations. appears to be a reasonable assumption.
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secondly, the bpiine function o..} D can be shown to be .... f(nhh), f(nh,2h),..., ftni,nh)J
the exaci center of the set V4(V fI)ID, and thus it must
minimize the worst case approximation error. The centrality These are siriply interior mesh points. Notice that the
is proven by showing that every f ID in V4(Nf)ID can be optirnality of this information (and, of course the resulting
expressed as the sum o',lD + 7, where the properties of h error of the optimal algorithm using this optimal
are sufficient to show tMt the difference ouflD - h is also information) depends on the norm 1112; in general, the
in V4(N,f)ID. intrinsic error is monotonically decreasink in h. For a full

proof of the optimality of this particular N mesh, see 111.
For the detailed proof of the entire theorem, see [61Theorem 5.1, page 76.

5. Implementation of the Optimal Algorithm

In the previous sections we have shown the existence and . .
4. A eInformation DeNo unioueness of the spline interpolating given depth data, and4 Adaptive Io nDoes N Help we have shown its optimality for surface recovery problems.

In Subsection 3.2, we defined information as samples of In this section, we show how the spline functions can be
depth data: con.tructed, with the side condition of minimizing quadratic 0

N(f) - [L,(f), L2(f),  Lk(f)I, i-l,...k, (17) variation. Note that in what follows, we do not necessarily
require optimal information; the depth samples can appear

where Li(f) = f(x;,y), and (x.,y,) E D. We call this anywhere within the subimage D: in a mesh, aligned on
nonadaptive information, since the ith component of N(f), contours, clustered, or even at random.
L.(f), depends only on f. Adaptive information, on the other
hand, attempts to exploit whatever was learned while With some restrictions on F, it can be shown that the
obtaining the (i-I) components of N(f). More precisely, appropriate reproducing kernel 'is K(x,y;u,v) - {(x - uY +
adaptive information N6 is v)2})32, the Euclidean distance cubed (see (21).

Therefore the spline interpolating depth data z = fz.
N(f) = z = [z .... zkI (18) ,zk = f(xv,yi,.. . I (xk,yk) is developed in the usual

way:
where z = L (f, z 1, .... z), i=2,...,k. In the case of (21)depth values, k (1

i= ( 2xi'. .. a1{(X.Xi)a+(yyi)2}s/2+,3X+8 2y+S

where x = x(z, zi..) and yi = y1(z, zi.),with (xi. yi) E 1 where Jai} and {fli} can be determined from the linear S
The structure of adaptive information is much richer than system of equations:

nonadaptive information and one might hope that by virtue (22)
of adaption, some intelligence might determine te location k
for (x, y,) on the basis of the results of the (i-) prior
samplings. Nevertheless, theory shows that, against i{(xj-x)2+(yj-y)}/2+ +y+ ,
intuition, adaptive information cannot aid surface " X" " 0'."

approximation. For detailed discussions and proof, see [71, k
pages 57-62. The formal proof is based on the radius of ="" " -
information. Intuitively, the radius estimates the intrinsic SiXi = 0,
error of the problem. For several classes of problems
(including interpolation), the radius cannot be reduced by k
adaptive strategies, in large part because there exist fixed
but universal strategies. This is perhaps the strongest result liYi L 0,
of all: one cannot do better in co lecting data than a
snapshot does. Not only can the data be collected in k
parallel, it should. = .

At this point, we have shown that the spline algorithm is
the optimal interpolation algorithm, and that nonadaptive
information suffices. lowever, we have not attempted to
optimize where to obtain the information itself. It is From equations (21) and (22), it should be apparent that
apparent that all sampling strategies are not equal. If we the splines are linear ipa the data. That is, if o
are free to select the location of information points, what interpolates information z01, and a interpolates nforrpation
points are optimal? zt2t then co0,+co0"2 interpolates tinormation ciz'+cozt. In

terms of image understanding, this means that if two
Restating this problem, suppose we are allowed to choose a surfaces are superimposed so that their depths samples

k-vector of information samples: N(f) [f(x,y), ... , accumulate, than the superimposition of the two full depth

f(xk.yk)]. Suppose, too, that no matter what in ormation we maps derived independently create a valid full depth map 0
select, we always use the optimal spline algorithm. Since for the ensemble.
the algorithm is tailored to the information, any error that
would remain is intrinsically irreducible. .We then can Since the spline algorithm is linear in depth data it can
define optimal information, denoted. by N, to be that be easily rewritten as the weighted sum of basis splines, as
information with the minimum intrinsic error. follows. Suppose that the information is merely i-th unitvector for R', that is, N(f) = e = [0. . 0, I .,

For our depth map problem, the optimal choices for (x y) ,01, where the unit is in the i-t h coordinate position. This
can be shown to lie on a regular grid. More precisely, let simpler information constraint is satisfied by a unique basis
the subimage D be the open rectangle: (0, (n+l)h) x (0, sline function oi, with the property that o.(e.) - .. (the 0
(n+l)h). Then the following information N is optimal (up K ronecker delta). In terms of the deptl J interpiation
to a constant factor) for surface recovery: problem, a generates a surface that has a value of I at

sample point (xi,yi), is identically zero at all other sample
N'(f) [f(h,h), f(h,2h). f(h,nh), (20) points, and is smoothly rippled in all the space between, in

f(2h,h), f(2h,2h).. f(2b,nh)) order to minimize its bending energy. The spline - "
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interpolating depth data z lZI, .... zJ then is simply where z z.. . . zkl [f(x .y . . f(xkyj and
the weighted sui of these individual basis splines, with z- each , has b previously torn p ed. Such a SW D
values as the weights: algorithmn would require about k multiplications, plus k units

(23) of local storage per process. If special purpose hardware
k were available, the data could be circulated in a type of

toroidal systolic array. All output would be complete in
= zio i. roughly k cycles. Precomputation could be achieved in k S

parallel streams as well.

Therefore the problem of computing o, may be reduced to We have simulated some of this behavior on a standard
that of solving the k independent subproblems of computing uniprocessor. We briefly list the following experimental . -
each a This has several important consequences for preliminary results, obtained by Terry Boult. Many of them
implementation. siggest there may be algorithmic or computational

efficiencies to be exploited.
1. Since the heart of the method is the solution of a

system of linear equations, much is known about 1. Depending on how one enumerates the k points,
its convergence, stability, and running time (about under optimal information the Gram matrix (the
O(kS). matrix of the cubic distances which one solves toobtain the coefficient matrix) appears to have a

2. If the location of the information is known recursive block Toeplitz structure.
beforehand, the basis splines can be precomputed. Experimentally, this matrix appears to be well-

3. With precomputed coefficients, the desired conditioned with respect to computing its inverse,

interpolation points can be computed in parallel as fairly large systems (k=100xlOO) show little
with a simple SIMI) algorithm. loss of precision: coefficients known to besymmetric or equal retain their symmetry and -

4. With precomputed coefficients, any individual equality to about the limits of ordinary round-off
value of the solution surface can be determined error.

locally, without the need for global optimization 3 n tr is
over the full surface: if just one is needed, just The inverse of the Gram matrix is highly sparse;one is computed. when k 1100xl100, there are only 621 distinct •

entries. Further, the ratio of distinct entries to

5- With precomputed coefficients, the surface can be total entries appears to decrease as k increases.
incrementally updated. Any sample value that

" changes over time has only a linear effect on 4. Although the basis splines do not have compact

existing interpolated data. The increments at support, they appear to fall off rather rapidly.

each point can be computed in parallel with atrivial SIMD algorithm. • -
7. Related Problems in Computer Vision

The theoretic results reported above--the optimality and - -
6. If one uses optimal information, the system of linearity of spline algorithms, the sufficiency of nonadaptive

coefficients becomes highly regular; the matrix has information, and others--apply to other vision problems that
only a very small number of distinct entries (for can be cast in the same airly loose framework. The theorylargeakveapproximately er/offorsaik-by-ktsystem).rrequires that F, be an arbitrary linear space and that the

tlarge k, approximately k/2 for a k-by-k system) information be a vector of linear functionals on F,. In
"Symmetries suggest that efficient solution is terms of vision, the linearity of F is rarely a problem, since

possible, even without precomputation. object surfaces superimpose well; thowever, only some classes -
of image features can be considered to be linear information.
The trouble is that linear information must also

7. If one uses optimal information, the system shows superimpose: the features derived from "sum" of two
. an eight-fold symmetry, which could probably be surfaces must be the sum of the features independently

exploited both in precomputation and execution, derived. This is often contrary to the laws of geometry,
physics and optics; shading clearly does not sum well.
Nevertheless, there are several important types of linear
vision information, among which are:

6. Preliminary Experimentation
These results suggest that it would not be hard to 1. The depth values themselves, at any place in the

construct a special-purpose machine for surface interpolation inage: L i = f(xi,Yi). This is the problem just
that would be very quick and accurate. Using active analyzed. Note that there need not be any
imaging, it could obtain depth samples on a square grid of t c e
k total points, by ranging or by triangulation. The position restriction on the location of (xiYi); they can even
of these sample points would remain fixed, so all coefficients be chosen randomly.
could be p recomputed Run-time computation would entail
only the distribution of input data and the calculation and
collection of output data using weighted sums of 2. The depth values derivable from a contour: Li
precomputed coefficients. Thus, the interpolated values at - f(xi,yi), where the values are restricted to lie
any point (x,y) are given by: on a particular curve. This is the usual result of

k(24) the first stage of edge detection methods (zero-

o,(x,y) = ., zja 1(x,y),

.-.0
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crossing contours, etc.), or work on silhouettes. R~eferences
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Ifrm ation, f 'eicrtainty. C.oniplcritfy. Addison-

8. Fuure W rk Nesley.ResdingNIA, 1983.

Wesee several, areas of great interest. We plan to 8. Wasilowski, (;.W. flow Powerful is Continuous
tlivest igate thle effects of missing or errorful information.

The general theory is being pursued along those lines as Noinliniear Infortiat ion? Department of Computer Science
%%well. _,o some results may straightforwardly rall out. Rep., Columbia University, 1984.

Mire pract ically, perhaps our most pressing interest is in
filiding ati efficitit algori thm for evaluating the basis spline
o. etficietits. As an aid, we are pursuing the idea of
d. ila vitig the mtatrix as ati image itself to get a better
un erstandiig (if its structure. Again, since an exact
S, l,,ti-in ttay be difficult, we are also exploring various

a iiproxirtiate techtiiques, particularly with regard to replacing
tebais lines with ones that are finitely supported, or .--.

* with ones that are only asymptotically correctly shaped for
- their piositmin,

9. Stdlmrfarv
We believe 'that thle information-cente'red a pproach to

algoritirtis can be applied to many .vision problms, with
powerfuil resuilts In this paper, we introduced the method
and] have shown how results pertinent to depth niap
interpolation are e-rollaries (if te gene iral theory. The
Hiajur results are that spline interpolations are provably
o optial in the worst case, that the resultant linear
a Igorithitis are exceedingly simple and parallelizable given
siome precromptitatiion and that adaption does not help. Our
hor)pe is that the' application of this approach to other vision
problems will provide imlrinsight and computational
power.
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DETERMINING 3-D MOTION AND STRUCTURE FROM

OPTICAL FLOW GENERATED BY SEVERAL MOVING OBJECTS
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ABSTRACT rigid objects in the scene. Furthermore, the flow field
allowed to be sparse, noisy and partially incorrect. The

A new approach for the interpretation of optical flow information in only one flow field, as opposed to a time
fields is presented. The flow field, which can be produced by sequence of such fields, is utilized.
a sensor moving through an environment with several, in-
dependently moving, rigid objects, is allowed to be sparse, Our approach is based on two main stages. In the first
noisy and partially incorrect. The approach is based on stage the flow field is segmented into connected sets of flow

two main stages. In the first stage the flow field is seg- vectors, where each set is consistent with a rigid motion of a

mented into connected sets of flow vectors, where each set roughly planar surface. In the second stage sets of segments

is consistent with a rigid motion of a roughly planar sur- are hypothesized to be induced by the same rigidly moving

face. In the second stage sets of segments are hypothesized object. Each of these hypotheses is tested by searching
to be induced by the same rigidly moving object. Each of for 3-D motion parameters which are compatible with all

these hypotheses is tested by searching for 3-D motion pa- the segments in the corresponding set. Once the motion 0
rameters which are compatible with all the segments in the parameters are recovered, the relative environmental depth

corresponding set. Once the motion parameters are recov- can be estimated as well.
ered, the relative environmental depth can be estimated as In the next section, techniques existing in the literature
well. Experiments based on real and simulated data are for visual motion interpretation are examined. The mathe-
presented. matical formulation of the model and the task is presented

in section 3. In subsequent sections, algorithms for flow
field segmentation, estimation of motion parameters, and

1. INTRODUCTION structure determination are developed. Preliminary exper- . - - .
iments based on real and simulated data are described in

Dynamic visual information can be produced by a sen- section 6.
sor moving through the environment and/or by indepen-
dently moving objects in the visual field. The interpreta- 2. LITERATURE REVIEW •
tion of such information consists of dynamic segmentation,
recovering the motion parameters of the sensor and each In this section we review methods existing in the lit-
moving object, and structure determination. The results of erature for interpreting optical flow fields. We concentrate
this interpretation can be used to control behaviour, as in on techniques which assume rigid motion and basically rely
robotics or navigation. They can also be integrated, as an on the information contained in one flow field. Two main
additional knowledge source, into an image understanding issues are emphasized:
system, such as the VISIONS system [HAN78]. a) Scene Complexity. Some researchers assume that the

The most common approach for the analysis of visual scene contains only one object, or, equivalently, that the
motion is based on two phases: computation of an optical sensor is moving but the environment is stationary (e.g.,
flow field and interpretation of this field. In the present dis- [BRU81l, (LAW821, ITSA84l). Others allow the scene to
cussion, the term 'optical flow field' refers to both a 'veloc- contain several independently moving objects (e.g., rULL79],
ity field', composed of vectors describing the instantaneous INEU80).
velocity of image elements, and a 'displacement field', com- b) Robustnesa. Optical flow fields produced from real im-
posed of vectors representing the displacement of image el- ages by existing techniques are noisy and partially incorrect
ements from one frame to the next. In the latter case we (see the discussion in lULLS I]). Many of the algorithms de-
will assume small values of motion parameters. scribed in the literature for interpretation of flow fields fail

The second phase, i.e., the interpretation of the optical under such conditions. Other algorithms are less sensitive
flow field, is the main concern of this paper. A new scheme and work reasonably well on real world images.
is proposed, which allows motion of the camera as well as In the first class of techniques, discussed in this re- S
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view, only one rigid object (or camera motion) is assumed. FOE of the translational field. However, the environment is
A few researchers 1ROA80, PRASO, NAG81a,b, FAN83a,b) assumed to contain occlusion boundaries which endow the
present sets of nonlinear equations with motion parameters flow field with strong discontinuities.
as unknowns. Methods for solving such equations are usu- A number of methods, presented in the literature, al-
ally iterative and require initial guesses of the unknowns. low (at least in principle) unconstrained sensor motion and

A Sensitivity to noise is indicated by experiments reported in independently moving objects in the environment. Ullman, 0
.ROA80, PRA80, FAN83a,b]. in his somewhat pioneer work lULL791, examines small sets

Longuet-Higgins [LON81I and Tsai and Huang [TSA841 of adjacent vectors. If there exists a unique rigid interpre-
develop techniques based on solving a set of linear equa- tation consistent with all the vectors in a given set, then
tions. Furthermore, conditions for the uniqueness of the this interpretation is assumed to be correct and the vectors
solutions are formulated. However, difficulties in the pres- in the set are grouped together. This approach seems to be
ence of noise are still reported [TSA84]. very sensitive to noise because of its local nature.

Brunss and Horn [BRU81) employ a least squares ap- Longuet-Higgins and Prazdny 1LON80] and Waxman
proach which minimizes some measure of the discrepancy and Ullman IWAX83] introduce equations for computing
between the measured flow and that predicted from the the motion parameters and the local structure at a given
computed motion parameters. In the case of general rigid point in the environment from the flow field and its first
motion this approach leads to a system of nonlinear equa- and second spatial derivatives at the corresponding point
tions from which the motion parameters can be computed in the image. If the scene consists of several objects in
numerically. This method is computationally more compli- relative motion, then a separate computation can be carried
cated than the methods offered in ILON81] and [TSA841, out on each one. However, local estimates of the second
but seems to be more robust in the presence of noise. derivatives of the optic flow seem to be inaccurate in the

Assuming a purely translational motion, all the flow presence of noise, and no algorithm has been presented for

vectors are oriented towards or from a single point in the reliably computing such derivatives.
image plane. Determining this point, called the focus of More global approaches are proposed in INEUS0 •
expansion (FOE), yields the direction of the translation. A and [BALSIbi. Neumann [NEU80 proposes an elegant
few techniques, reviewed below, are based on this observa- hypothesize-and-test scheme: for any rotation hypothesis,
tion. the translation component may be decomposed such that

Early results based on real images are reported in motion compatibility of many flow vectors can be easily

[WIL81]. However, only sensor motion restricted to trans- tested. This technique heavily relies on the assumption of

lation is allowed and the environment is assumed to contain orthographic projection.
only planar surfaces at one of two given orientations. Thus, Ballard and Kimball [BAL81b] apply the generalized
the algorithm can be based on a search for the FOE and Hough technique to the optical flow field and thus extract
the distances to the surfaces in the scene. Lawton [LAW821 the motion parameters. This is a global approach which
describes a robust algorithm which has been applied to real is relatively insensitive to noise. In principle, it can also
world images from several different task domains. This al- be used in scenes containing independently moving objects.
gorithm requires no restrictions on the shape of the envi- However, the depth information is assumed to be known,
ronment, but is still restricted to translation. It is based on thus making the task much easier.
a global sampling of an error measure corresponding to the
potential positions of the FOE, followed by a local search Tis riw deortes ti trats Nd ak-
to determine the exact location of the minimum value. Re- nesses of algorithms reported in the literature. No ags-
suits for other restricted cases of motion are presented in rithm for interpretation of optical flow fields in scenes con-
[LAWS4I. taining several, independently moving, rigid objects, has

been shown to work with noisy, real world data, unless se-
Praindny (PRAfl1f describes a method which relies on vere constraints are assumed or additional information is

decomposition of the velocity field into rotational and trans- utilized.
lational components. For a hypothesized rotational com-
ponent, the FOE of the corresponding translational field 3. THE MODEL AND THE TASK -

and a related error measure are computed. Thus, an error A MATHEMATICAL FORMULATION
function of the 3 rotation parameters is obtained and the
soltion can be determined by minimizing this function. Je- 3.1 Basic Model and Equations
rian and Jain IJERS31 report on difficulties with applying In this section we present a notation for describing the
a similar approach to noisy data. motion of a c imera through an environment containing in-

Rieger and Lawton [RIES31 develop a relatively robust dependently moving objects. We also review the equations .-

and simple procedure for computing the motion parameters, describing the relation between the 3-D motion model and
based on the fact that the differences between optic flow the corresponding optical flow, assuming a perspective pro-
vectors near occlusion boundaries are oriented towards the jection. The equations are developed both for velocity fields

1,4



and displacement fields, where (aR, R) and (aT, OT) are, respectively, the rota-

Let (X, Y, Z) represent a cartesian coordinate system tional and translational components of the velocity field:

which is fixed with respect to the camera (see figure 3.1)
and let (z, V) represent a corresponding coordinate system a'R = -IXZY + fy(l + Z') - (zy, a7 = (Tx -TZ -
of a planar image. The focal length, from the nodal point (3.4a,b) S
O to the image, !a assumed to be known. It can be normal- PR = -flx(l + Y2) + flyzv + fizz, PT = (Ty - Tzy)/z.
ised to 1, without loss of generality. Thus, the perspective (3.4c,d) " -

projection (z, y) on the image of a point (X, Y, Z) in the In the displacement-based scheme, let (X, Y, Z) be the -"
environment is: camera coordinates at time ti of a point on the object and ..-

let (X', Y', Z') be the corresponding coordinates at time
z = X/Z, p = Y/Z. (3.1a,b) t2 . 0

X') = R ( )+ T, (3.5)

T, y • .. .

where the rotation matrix R can be approximated, assum-
Tx ing small values of the rotation parameters, by: S

R= flz 1 -Dxl• (3.6)

P X,-fly fix I1
n.-
z T If (z, y) and (z', V) are the image coordinates correspond-

ing to the points (X, Y, Z) and (X', Y', Z'), respectively,
then:

Figure S.I(redrawn from [LONO)): A coordinate
system (X, Y, Z) attached to the camera, and the zI XI z - fnzy + fly + TX/Z (37a
corresponding image coordinates (z, y). The image g -fly: + fIxy + 1 + T/Z (3.7a)"
position p is the perspective projection of the point •
P in the environment. T_ = (Tx,Ty,TZ) and f1 and
(fiX, fly, fiz) represent the relative translation and
rotation of a given object in the scene. V' flzz+ y - x + Ty/Z "" Th'

The motion, relative to the camera, of a rigid object in ."+'++"
the scene can be decomposed into two components: trans-
lation T = (Tx,Ty,Tz) and rotation 1 = (flx,fly,fiz). Now, let (a,P) be, in this case, the displacement vector .0
In the equations corresponding to velocity fields, these sym- (z' - z, V- y). Then from (3.7) we get:

bols represent instantaneous spatial velocities, and, in the
equations corresponding to displacement fields, they rep- u = "y(l + :2) - -Zy + (TX - Tzz)Z
resent differences in position and orientation between two 1 + 0 xy - flyz + TZ/Z
time instances.

In the velocity-based scheme, if (X, V, Z) are the in- and0
stantaneous camera coordinates of a point on the object,
then the corresponding projection (z, V) on the image moves ' -= l + y2) + nyzy + fiz + (Ty - TZV)/Z

with a velocity (a,,8), where [LONSO: 1+flx-fly:+Tz/Z .. •b-(3.8b) . "-

a -fixZl + fiy(1 + Z2) - 0 Zy + (Tx - Tzz)/Z (3.2a) If ITz/ZI < 1 and the field of view of the camara, i.e.,
the visual angle corresponding to the whole image, is not •

and very large, then (employing also the assumption that the
rotation parameters are small) we can approximate the dis-

. = -fIx(l + 2) + flyzy + fiZZ + (Ty - Tzp)/Z. (3.2b) placement vector (a,O) by equations (3.2).

To conclude: equations (3.2) hold not only for veloc-
Notice that (a,fi) can be represented as the sum ity fields, but also for displacement fields, given that the

rotation parameters are small and that the 2-component •
)= (aR,,R) + (aTT), (3.3) of the translation is small relative to the distance of the
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object from the image plane. Such assumptions are rea- nodal point (and, therefore, the corresponding region in the
sonable if the time interval between the two image frames image is a straight line), the surface can be represented by
is short enough or if the motion is slow. In the following the equation
sections we restrict ourselves to conditions which allow us k1X + k2Y + k3Z = 1. (4.1)
to employ equations (3.2) as the basis of our analysis. The coefficients k1 , kr and ka can be any real numbers, 0

3.2 The Task - Inputs and Outputs except the case in which all of them are sero. Using (3.1),
we obtain:

The input utilized by our scheme for interpreting mo- 11Z = ksz + ksy + k3. (4.2)
tion information is a flow field described by {(a(z, l),Z (x, y),
W(z, y))}, where (a(z, y), 6(z, y)) is the flow vector at the Substituting (4.2) in (3.2), we realize that, given a relative

(z, y) pixPl in the image and W(z, y) is a corresponding motion {I.fl),the flow field is:

weight between 0 and 1. High reliability of the flow vector 0
is represented by a weight close to I and low reliability by a = al + a2Z + a3Y + 47Z

2 + aszy, (4.3a)
a weight close to 0. The flow field can be either dense, thus
defined at most of the pixels, or sparse, thus defined only = a4 + az + a6y + a7zy + asy 2,  (4.3b)
on a sparse subset of the image pixels. It the flow field is
undefined at a pixel (z, y), then W(z, y) is determined to where:
be 0. A rough estimate of the noise level in the flow field is = fl + k3TX, (4.4a)
assumed to be known. 02 =klTX -k3TZ, (4.4b)

The interpretation process should result in three out-

puts: object masks, motion parameters and depth. We a3 = -0z + k2Tx, (4.4c)

want to partition the set {(z,y) : W(z,y) > 01 into dis- 44 = -CIX + k3 Ty, (4.4d)

joint sets of pixels, where each set corresponds to a different 45 = flz + kiTy, (4.4e)
rigid object. The pixels corresponding to the stationary en- as = k2TY - k3Tz, (4.4f)
vironment, where the optical flow is induced only by the a7 = fly - kTz (4.4g)
camera motion, should be grouped together. and

The 5 recoverable motion parameters of each rigid ob- as = -11x - k2TZ. (4.4h)
ject, relative to the camera, should be estimated. These -
parameters include the rotation parameters (Ox,fly, flz)
and the direction of the translation vector defined by the Note that similar results are introduced in [WAX83]. Equa- -

unit vector IL = T/r, where r is the length of the transla- tions (4.3) represent what we shall call a W tranasormation.
tion vector T. Once the motion parameters are recovered, This is a 2-D transformation of the image into itself based
it is also possible to estimate the relative depth, Z(z, y)/r, on the 8 parameters a,,... ,as.
corresponding to each pixel (z, y) where a flow vector is de- We proceed now with another observation, related to

fined, unless r = 0 or the location of the vector is exactly arbitrary surfaces in the environment. Given such a surface,
in the FOE. it can be described as a function Z = Z(z, y) defined on

the image region R which corresponds to the projection of
this surface. Let Z' = Z'(z, y) be an approximation to the

4. SEGM"ENTATION surface Z such that

In this section we develop a method for segmentation
of the flow field into connected sets of flow vectors, where IAZ(z,y) df IZ(z,y) - Z'(z,y)I < Z(z,y) V(z,y) ER.
each set is consistent with a rigid motion of a roughly planar (4.5)
patch. A segment, satisfying this constraint, is very likely If (aT, PT) and (ar,fT) are the translational components
to correspond to a portion of only one rigid object. Thus, of the flow fields induced by the same motion of the surfaces
the data is organized into coherent units which form the Z and 2', respectively, then
basis for further processing. Another purpose of the seg- Z a- 

." "t.

mentation is exclusion of incorrect flow vectors which are Tx - TZZ Tx - TzZ Tx Tz . "

inconsistent with their neighbors. fT = z(I- z - AZ 2 (1 +'- /Z)

4.1 ' Transformations - = Qr (I + AZ/Z) (4.6a) -

A Segmentation Constraint

In order to achieve a useful segmentation, we employ an
a few simple observations on the structure of optical flow ~ z y-Tp T ~
fields. First, we examine the flow field induced by a rigid = z - z -i z " - (1" Z
motion of a planar surface. Excluding the degenerate case
in which the same plane contains both the surface and the = PT (I + AZ/Z). (4.6b) ,
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The rotational component of the flow field is independent are sub-class of the W transformations, parameterized by
of the structure of the environment. Hence, given (4.5), only 6 parameters. Furthermore, these parameters can be
the flow field induced by the approximating surface Z' is partitioned into two disjoint sets of 3 parameters each, cor-
very similar to the real flow in the region R. As a con- responding to equations (4.7a) and (4.7b). Thus, the group-
clusion, if Z' is a planar surface which satisfies equation ing problem in the first stage can be basically solved by
(4.5), then the flow field in R can be approximated by a 'P applying the Hough technique to 3-dimensional parameter
transformation. spaces, as will be shown in sub-section 4.2.1.

In a real world environment the surface can be usually In the second stage, components which are consistent
approximated by a piecewise planar surface, containing only with the same 1P transformation are merged into segments.
a few planar patches, where the distance between the real Given a set of adjacent components, optimal parameters are
surface and the approximating one is small relative to the computed, using the least-squares technique. Related error
distance from the sensor to the surface. If this is the case, measures, associated with each component in the set, can
then the flow field can be approximated, reasonably well, be then obtained. If these error values are not high (in a
by a piecewise ' transformation. This suggests that a sense defined in sub-section 4.2.2), then the components are
useful segmentation of the flow field can be based on finding merged.
connected sets of flow vectors, where each set approximately Sometimes over-fragmentation may occur in the first
satisfies the same 11 transformation. Thus, each segment stage of the segmentation, that is, a segment is partitioned
is consistent with a rigid motion of a roughly planar surface into a large number of small components, as demonstrated

and can be assumed to be induced by the relative motion in expeme o inasectio 6. (e mbnsrder
of oly ne igi obect Inthenex setio wedesrib an in experiment I in section 6.1 (see figure 6.1b). In order

of only one rigid object. In the next section we describe an to reduce the computational cost of the first and second
algorithm for achieving such a segmentation. segmentation stages, the grouping of vectors belonging to

small connected sets may be postponed, in such a case, to

4.2 Segmentation Algorithm the third stage. In this stage, flow vectors which are not

The generalized Hough transform technique [BAL81aI contained in any of the segments are merged into neighbor- S
is a enefu l e toolf roungh to r fow ectohiq sa ing segments, if they are consistent with the corresponding

is a useful tool for grouping together flow vctors which sat- 'P transformations. If, after the third stage, some of these
isfy the same 2-D parameterized transformation 1ADI831. small sets are still not merged into the existing segments,
In this technique, the set of relevant transformations is rep- then the first and second stages of the segmentation may
resented by a discrete multi-dimensional parameter space, be repeated, focused only on these sets, thus possibly cr- "

where each dimension corresponds to one of the transfor- ating new segments. In the following sub-sections the three

mation parameters. Each point in this space uniquely char- stages of the segmentation are more fully described, hut,h

acterizes a transformation, defined by the corresponding for the sake of brevity, many details are still suppressed.
parameter values. A flow vector 'votes' for each point with
an associated transformation consistent with this vector. 4.2.1 FIrst Stage- Grouping Based on Affine Mrans-
The points receiving the most votes are likely to represent formations
transformations corresponding to large segments in the flowfield.4.2.1.1 A modified version of the generalized Hough
field. technique -

As a global technique, the Hough transform is rel- The grouping of flow vectors into components consis-
atively insensitive to noise and partially incorrect or oc- tent with affine transformations is based on a modification
cluded data. However,high dimensionality of the parameter of the generalized Hough technique. The affine transfor-
space requires large amounts of memory and computation mations can be represented by a 6-dimensional parameter
time. In our case, the segmentation constraint is based on sac e e dimension prete 
the 8-parameter IF transformations (equations (4.3)). The space where each dimension corresponds to one of the pa-
Hough technique can, in principle, be employed, but the rameters a1,...,as in equations (4.7). For computational -

reasons the parameter space should contain only a finite
computational cost required for such a number of param-v
eters is very high. Therefore, a three-stage algorithm is number of points. Therefore, minimal and maximal valuesare determined for each parameter and the corresponding
propod, interval is quantized. The parameter space is the cartesian

Tt* first stage is based on grouping together adjacent product of the obtained sets.
flow vectors into components consistent with aifine trans- A flow vector (c(z, y), j(z, y)) votes for a transforma-
formationa. The affine transformations, represented by tion (aj,..., as), if it approximately satisfies the constraint

a = al + a2Z + a3Y (4.7a) equations (4.7), that is, if

and 6 Le 6 2 +6b, < (4.8a)
p=a4+ az + ay, (4.7b)

where 40
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6=a -a - az - asyI (4.8b) Aao = A. x A0

and -= z(ai,az.,ai,a4 , as6, a4) ,j = I,...,N), (4.11)
,=I -a4 - asz - asyl. (4-8c)

is obtained. The support function can be then directly

Note that e is a function of the resolution in the parameter applied to the set A.p, thus determining the maximally
space and the noise level in the flow field, but it is never supported transformation T in this set. T" is not nec-
less than a given threshold, typically one pixel. In this case, essarily the maximally supported transformation in the 6-
the amount of support is determined by the function dimensional parameter space. However, large components

in the flow field, corresponding to maxima points in the
V(al,a2 ,a3, a4, as, as, z, y) I - 0.756/e (4.9) 6-dimensional space, can be expected to produce maxima

points also in each of the 3-dimensional parameter spaces. -.

which allows the support to range from 1 down to 0.25 for Therefore T" is, at least, a near optimal transformation, as 0
those flow vectors at the limit of the acceptable error range. can also be concluded from the experimental results. The
The total amount of support, given to each transformation decomposition technique is employed in each iteration of
(ai,..., as), is the weighted sum the multi-resolution scheme; together they create a very

efficient algorithm.
S(al,a2, a3, a4,as,a.)

= -W(z, y)V(a,,a 2 , a3, a4, as,aGz,y), (4.10) 4.3.1.2 Implementation of a multipass approach
z'Y The components which we try to locate are connected

sets of flow vectors which support the same affine transfor-

where W(z, y) is the weight of the flow vector in the pixel mation. The algorithm for obtaining this goal is based on

(z, y). a multipass Hough approach, where a basic cycle of oper-
Suppose now that we want to find the affine transfor- ations is repeatedly executed (FEN79, ADI83]. The input
Supose amono thwe ented tin the paffietr space, to each cycle includes masks of the components which were

mation, among those represented in the parameter space, already detected during the previous cycles and a mask of
which is maximally supported by a given set of flow vec- those vectors which were excluded from further considera-
tors. Basically, we have to compute the support, according tion. The cycle is composed of the following steps:
to equation (4.10), given to any of those transformations. A
serious computational problem may arise if the number of 1) Consider the set of pixels which are assigned a pos-

points in the parameter space is very high. If, for example, itive weight, do not belong to any of the previously found

the minimal and maximal possible values of the parameter components and were not excluded from further considera -

a, are -64 pixels and +64 pixels, respectively, and the de- tion. Find in this set a connected subset E with maximal

a ired accuracy is 0.25 pixel, then 512 samples are apparently su ofwih. ftssmisblwagvnhrhldL.-
needed for this parameter. If an equal number of samples is which is related to the noise level in the flow field, then stop
also required for the other parameters, then the parameter searching for new components and start the merging stage.
space should contain 512e  16 × 1016 points. In such a Sometimes over-fragmentation occurs, i.e., a segment is par-

case, a straightforward Hough technique is computationally titioned into a large number of small components. In order
impractical, to prevent an excessive number of cycles in such a case, a - -

new threshold, higher than L, is determined and the pro-

This problem is alleviated by using two techniques. cess is stopped if the sum of weights is below this threshold.
First, a multi-resolution scheme in the parameter space is The grouping of vectors in small sets is thus postponed to
employed. The Hough technique is iteratively used, where the third stage.
in each iteration the parameter space is quantized around
the values estimated in the previous iteration, using a finer 2) Partition the set E into a given number (typically
resolution. Thus, utilizing a limited memory size, accurate 64) of square windows, such that the sum of weights in each 0

parameter values can still be found. Other methods for window is roughly the same. Then, from each window,
are presented in [ORO1, SLO81[. select the flow vector with maximal weight. The Hough

technique will be applied only to these vectors, and not to
The second technique is based on decomposition of the the whole set E, in order to reduce the computation time.

parameter set into two disjoint subsets, (a,, a2, as) and
(a4, as, aS). The Hough technique is separately applied 3) Use the modified Hough technique, described in sec-

to the corresponding 3-dimensional parameter spaces, us- tion 4.2.1.1, to find the affine transformation which receives S
ing the relevant constraint, (4.7a) or (4.7b). Sets of highly the maximal support from the flow vectors selected in the

supported parameter triples, Ao = ((ai,,a2i,as.) : - previous step.

1,...,N) and A$ = {(a4,,as,, a,) : a =,...,N}, are 4) Determine the set F of all the vectors in E which ....

thus found, where N was experimentally determined to be are consistent with the computed affine transformation. If
10. As a result, a set of N2 hypothesized affine transforma- the sum of weights corrsponding to F is below the threshold
tions, L, then exclude the set E from further consideration and
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start a new cycle. Otherwise, find in F a connected subset especially when a merging decision is justified. Hence, the
G with maximal sum of weights. Then, if this sum exceeds allowed level of o-/u, will be defined to be a monotonically
L, add G to the list of components; otherwise, just exclude decreasing function of pi:
G from further consideration (to prevent an infinite loop).

4.2.2 Second Stage - Merging of Components L.(p) = r, - (rI - i)pi, (4.14)

Components, created in the first stage of the segmen- where r, is a given threshold (typically r, o 1.5). Thus,
tation, are atomic units which, if consistent with the same Lo(p,) ranges from values close to 1 for components with
# transformation, should be merged together to create a relatively large weight, up to almost n for small compo-
segment. Two main steps can be observed in the merging nents.
process. In the first step an optimal * transformation is
estimated for each component, employing the least squares Sometimes, however, vi can not be computed because
technique. If the component contains n flow vectors, then the linear equations derived from (4.12) are linearly depen-
the error function to be minimized is dent. In addition, if the component C is small, then or

may be unreliable as a basis for evaluation of a' values.

E(a1 ,...,as) = E [y Therefore, an absolute threshold Lb(pi) of allowed values
of o is also employed. Lb(pi) is given by

+(,-a4- Lb(pj) = r3 - (r3 - i2)pi, (4.15)

(4.12)
where, for each I < i < n, (ai, 0) = (a(zi,, Y) P(z,, Y,)) is where r2 and r3 are pre-determined thresholds related to
a flow vector and Wi is the corresponding weight. Taking the expected noise level in the flow field and r3 > r2. Thus
partial derivatives with respect to a,,..., as and equating Lb(p,) ranges from r2 for very large components up to 73
to 0, a set of linear equations is obtained. Their solution, for small components. The reason for this dependency on
a,. . . , as, is the optimal 9 transformation. Substituting pi is related to the effect of statistical averaging of the noise.
this solution in (4.12) and using the normalization equation In large objects, such averaging is likely to take place and

thus r2 represents the estimated standard deviation of the
noise. The threshold r3 , on the other hand, represents some

= E(a],..., a)/ V Wi, (4.13) reasonable upper bound of the noise level. If, for example,
'=1 the moat significant noise is induced by using flow values

rounded to integers and, therefore, the noise is uniformly JD

an error value, corresponding to the component, is ob- distributed between -0.5 pixels and +0.5 pixels, then r2

tained. a is an estimate of the standard deviation of the will be taken to be the corresponding standrad deviation,

actual flow values from those predicted by the optimal * that is, approximately 0.3 pixels and r3 will be 0.5 pixels.

transformation. To conclude, a merging decision is accepted if and only if,
for each component C, in 5, or'/ai - L,(pi) or q,-

In the second step W transformations, correspond- Lb(pj), i.e.,
ing to merged sets of adjacent components, are computed.Based on related error values, associated with each compo- , - .-

nent in such a set, it is decided whether to merge the com- - max{L.(zi)o, L6(p,)}. (4.16)
ponents. In order to formulate the conditions for a merging
decision, some notations are used. First, S denotes a set of
adjacent components and 1s is the corresponding optimal The algorithm, for finding sets of components to be

D * transformation. For each component Ci in S, oi is the merged, starts with detection of the component with the

din the first step of the merging process, maximal sum of vector weights. Then, merging of this com-
error value found ponent with its neighbors is sequentially tested, in the order
is the error value obtained by substituting the coefficients of their associated sums of weights. 1f one of these merging
of *s in (4.13), and pi is the ratio between the sum of trials is successful, then merging of additional components
vector weights in C, and the total sum of weights in the with the already merged pair is examined. In general, given
set . a set of already merged components, neighboring compo-

The ratios ( /oj} are a major factor in the merging nents are tested as candidates for adjoining this set. This S

decision. If these ratios are only slightly higher than 1, then process continues until all the candidates for merging are

a merging decision seems to be justified. Note that a. is examined. Then, the process starts again, considering only ,. -
never less than aj, because the optimal I transformation the components which are not yet assigned to any of the

corresponding to the component C, can be adjusted to the already created segments. Evantually, all the components

local surface and noise associated with Cj. If, however, are contained in one of the segments.

pJ is close to 1, then we expect a' to he very close to
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4.2.3 Third Stage where T = (Tx,Ty,Tz) and 11 = (fx,fly,flz) are the

The purpose of the third stage of the segmentation is translation and rotation vectors, respectively, and, for each
examination of flow vectors which were assigned positive i between I and n, (ai,fli) is the flow vector computed

weights and were not grouped into any of the components at the pixel (zi, y), W is its weight and Zi is the spa-

in the first stage of the segmentation, ,rnd thus do not be- tial depth of the corresponding point in the environment. 0long to any of the segments. Such vectors, called 0-vectors, The task is to determine T, G/ and (Zil which minimize

lon toanyof he egent. Sch ectrcaled0-vctos, ht~sk ucis o deesinte i:, a in of. whih minimiie
which are neighbors of one of the segments, are tested for this function. Using the decomposition of the flow field
consistency with the % transformation corresponding to into its rotational and translational components, denoted
this segment and, if consistent, are merged into it. Then, by (aR,iR) and (07,#T) (see equations (3.4)), the error

0-vectors, neighbors of the just segmented vectors, are ex- function can be more concisely represented by
amined in their turn. This process is iteratively executed ft

until no new vector is merged into one of the segments. z W,[(ai - ORi - aT) 2 + (A, - PRi - OT.)') •  (5.2)

It is possible that after the third stage, connected sets i=1
of 0-vectors, which were not excluded from further consider-
ation in the first segmentation stage, are still not contained As can be easily seen, it is actually impossible to de-
in any of the existing segments. In such a case, the first and termine the absolute values of (Tx, Ty, Tz) and { Z i =

the second stages of the segmentation are executed again, 1,..., n }. However, if the length, denoted by r, of the 0
focused only on these sets, thus possibly creating new seg- translation vector is non-zero, then it is possible to esti-
ments. mate the direction of the 3-D transl tion, represented by

the unit vector

5. FORMING OBJECT HYPOTHESES AND
RECOVERING 3-D INFORMATION (Ux,U1 , Uz) = (Tx, Ty, Tz)/r, (5.3)

In the first stage of the interpretation process, de- and the relative depth values, represented by 0
scribed in the preceding section, the flow field is segmented
into connected sets of flow vectors, where each set is consis- ii = r/Zi, 1,..., n. (5.4)
tent with a rigid motion of a roughly planar surface. Such r - .(

a segment is assumed to correspond to a portion of only
one rigid object. The next task is to detect sets of segments Introducing the abbreviations
which are consistent with the same 3-D motion parameters.
Such a set can be hypothesized, employing the rigidity as- au = Ux - UzZ = aT/Z (5.5a)

sumption IULL79], to be induced by one rigidly moving and

object (or by the camera mot n). In sub-section 5.1 we /iU = Uy - UzY = r/Z, (5.5b)
describe an algorithm for computing the motion parame-
ters from a set of flow vectors generated by a rigid motion. (5.2) can be rewritten as
In section 5.2 we combine this algorithm with the segmen-
tation results to form object hypotheses and estimate the r - -
corresponding 3-D motion and structure. Again, for the W, [(a, - auZ,)2 +
sake of brevity, many details are suppressed. i=J (5.6)

5.1 Estimating Motion Parameters and Thus, the task can be reformulated as finding the values

Depth Information of a Rigid Object of (flx,flyOz), (Ux,U.,Uz) and (2i :t = l,...,n}
which minimize this expression. In addition, the depth con-

5.1.10Optimisation Constraint straints S

Given a set of flow vectors, assumed to be induced by , > 0, i= 1,... ,n, (5.7)

a rigidly moving object, we want to find the 3-D motion should be satisfied. Note that this error measure is different
parameters which are maximally consistent with this data. from the one employed in IBRU8I where the contribution
Following [BRU8I1, we employ the least-squares approach o c w t s ie"
because of its relative robustness in the presence of noise. of each flow vector is multiplied by ctu 2 + #U2.

Based on (3.2), the error function to be minimized is For any given i, I < i < n, we can find the optimal 0
value of ,, as a function of the motion parameters, by

W +- TX-TZZ 2  examining the first derivative of (5.6) with respect to Z,.

,lW,~a, + xZ, y, - 'Z,) +IB , / This derivative is given by

+(, + ox(l+y.2) - flyz, nzz - T)- -TZY) 2 ] [-(a,- a, - (/, - I)RJPI+Cau / u )Z]1"

(5.1) (5.8)
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Setting it equal to 0 yields be considered further in this paper. Thus, in the next sec-
tion, we concentrate on the much more difficult task of find-

* . = ((a, - aRj~aU, + (1, - flRi)13u,)/(a u + fl?), (5.9) ing values of U and f1 which minimize the error function
ii = -E(U, fi) (or, equivalently, the function o(L, f) ), where LU

can be any unit vector and fi is unconstrained. 0
unless au? + Pf = 0, in which case 4@ can be assigned 612Agrtm- .
any non-negative value. If the expression in (5.9) is neg-

ative, then the corresponding depth constraint in (5.7) is The algorithm for recovering the motion parameters
unsatisfied. In such a case, to minimize the error function employs an error measure, derived from (5.12), correspond-
(5.6), Zi should be set to 0, since the derivative (5.8) is ing to possible directions of the translation vector. A min-
non-negative for non-negative values of 4, and, therefore, imum value of this function is determined, using a multi- •
the error function is monotonically non-decreasing for these resolution sampling scheme.
values. To summarize, the optimal value of Zi is given by Let us start the derivation of this error measure with

the observation that if the depth constraints (5.7) are ig-
+ =6). .nored, then, for any hypothesized direction of translation,

(5.10) the optimal rotation parameters can be easily extracted by
solving a set of three linear equations. To see that, notice

where 6i = (ai - aR)rU. + (A3 - flR,)flUi. Substituting that the error function (5.11) can be reduced in this case to
(5.10), for any I < i < n, into (5.6) and expanding the the function
resulting expression yields the following representation of
the error, as a function of the motion parameters: ( (04 - u?+ flU-

E(_,il) = E, (5.11a) (5.14)

Differentiating E'(L,fl) with respect to the rotation pa-
where rameters and setting the derivatives equal to 0 yields three

linear equations with the rotation parameters as unknowns.
[(a- , )fuj - (, - )_U,1 2  Thus, ignoring the depth constraints (5.7), the search space

2+ can be limited to the unit sphere { U: IUI = I})

(a, - + (A3 - PR) 2  otherwise. Moreover, changing the sign of any unit vector U has
(5.lib) no effect on the value of E'(L, ) since it only affects the

A normalized version of this error function, defined by sign of au and flu. Therefore, the search space can be
further restricted to the hemisphere

(U,l) = ,(5.12) HS = { : IUI = I and UZ > 0). (5.15)

The preferred sign of U can be then determined, as pro-
posed in [BRU811, as the one which gives Zi _ 0 for most

will be also utilized. a is an estimate of the standard devi- indices i. Still, we wish to incorporate these constraints or,
ation of the measured flow values from those predicted by equivalently, the equations (5.lib) in a more rigorous way.
the motion parameters and the corresponding depth values. Hence, for each U in HS, we define the error measure

Note that the expression (5.11) for the error function S
was obtained by assuming non-zero translation. In the case 'l(L_) = min (BU_, II), (5.16)
of a purely rotational motion, the appropriate error function - i
to be minimized is: where B can have the values +1 or -1. The goal is to

find a vector L in HS which minimizes the function a,.
ERU) = Wi (ai  oR) 2 + A -R,)2 - (5.13) The associated values of B and fi are, respectively, the

-=- determined sign of the translation vector and the estimated S
rotation parameters. The function a, is, however, difficult

If the minimal value of this function is close to the miAimal to compute. Therefore, in the proposed algorithm we corn-
value of the function (5.11), then the motion is, poaiibly, pute an approximation to a, which is experimentally shown
purely rotational. to be very accurate. A few main steps can be distinguished

The task of finding the rotation parameters which min- in the procedure for computing this approximation:
imize the function ER(fi) can be easily accomplished by 1) Given a vector L in HS, estimate the optimal ro-
solving a set of three linear equations IBRUlI] and will not tation vector W by minimizing E'(LU, 0) with respect to
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f, and compute the corresponding normalized error mea- probabilistic distribution function. Such a function can be
sure &'(L, f*). This error value is a lower bound of a(-) defined, for example, on the set HS, using the computed
since it minimizes the error function o(, fi), with respect values of &I . Investigation of situations which may lead to
to fQ and the sign of U, without considering the depth this ambiguity is under way.
constraints (5.7). 5.2 Forming Object Hypotheses

2) Compute o(IL,IT*) and c(-LYfP). Determining
the minimum of these two error values yields the preferred Segments of the flow field, which are consistent with
sign, denoted by #s, of L. Using the notation U p ,~ the same motion parameters, can be hypothesized, using
cr(U*,f*) is an upper bound of ori(I"), because it gives the rigidity assumption [ULL79], to be induced by one rigidly
the actual error measure for some values of B and _Q in moving object (or by the camera motion). The process for
equation (5.16). detecting such sets of segments is similar to the second stage

of the segmentation process, where components are merged •
3) Compute an approximation to 0ri(LL) by averaging into segments. Optimal motion parameters and a related

its lower and upper bounds: error measure A are computed for each segment SEGj,

using the algorithm described in the previous section. In
i(UL) = (&(UW *+ 0(-*, fr)) /2. (5.17) addition, given any set of segments, the algorithm is ap-

plied to this set and the corresponding motion parameters
The relative deviation of &i(LL) from ori(L-) is bounded by are computed. Then, for each segment SEG, in the set, an

error measure M, is obtained by substituting these param-
(o(*,f") - (crQ(,fl)) / (2(rl(U). (5.18) eters and the related flow data in equation (5.17). Based

on the error values {Mi} and {Mi'}, consistency of the
In the experiments, this value was found to be very small, set with rigid motion is determined, employing a decision
typically much less than 0.01. procedure similar to the one described in section 4.2.2.

The search for an optimal vector in HS consists of Actually, each segment is sampled, using the method in
a sampling (similar to ILAW821) of the error measure &I . step (2) of the multipass Hough technique (section 4.2.1.2),
A multi-resolution scheme is employed, where in the first and only the selected vectors are used for forming object
iteration the set HS is coarsly sampled and, in each addi- hypotheses and computing the corresponding motion pa-
tional iteration, only the neighborhood of the vector giving rameters. This sampling procedure considerably reduces
a minimum value in the previous iteration is sampled, using the computation time. Notice that, because each segment is
a finer resolution. Note that solutions near the boundary of sampled, all the distinct surfaces and independently moving
HS require a vector LL' to be defined as a 'neighbor' of a objects, even the small ones, are appropriately represented, -
vector U if either UL' or -U' is close to UL. Another way thus preventing the suppressicn of valuable data.
to obtain the same effect while using the normal definition

In addition to the ambiguity described in the previousof a neighborhood is to extend the domain of definition of
the function &I to the whole unit sphere, employing exactly section, another ambiguity may exist in the decomposition
the same definition used for the domain HS. In this case, of the environment into independently moving objecte. Forthe-0-) : hi(U) for each unit vector U .thus, computa- example, two independently moving objects induce, in some
tionally, it makes no difference which domain of definition cases, a flow field which can be interpreted as resulting from
is used. one rigidly moving object. In order to deal with this ambi-

guity, one may have to find a set of possible decompositions,
The final solution of U, and the corresponding sig not only one. Analysis of this ambiguity is also under way.

iu and the rotation parameters fl" , defined in the proce-
dure for computing 61 , are the determined motion param-
eters. Substituting these parameters in equations (5.10), 6. EXPERIMENTS
the relative depth, corresponding to each flow vector, can In this section we present four expe-:ments which
be estimated as well. demonstrate our proposed scheme for the interpretation of

We should mention that sometimes the error function optical flow fields. The first two experiments are based on
&I is very close to its minimal value in a large portion of simulated data, and the last two are based on real data.
the search space (see figure 6.2e). Hence, in the presence of In all the experiments, values to appear in translation vec-
noise, it may be impossible to obtain reasonably accurate tors and surface equations are given in focal units, whereas
estimates of the motion parameters. Two complementary rotation parameters are given in radians and flow vectors
apFroaches may be taken in order to deal with this am- are given in pixel units. Actually, the flow values in the
biguity. First, constrainta on the motion parameters and experiments based on simulated data are rounded to in-
the environmental depth, rather than values, can be still tegers, thus inducing noise uniformly distributed between
recovered, using, for example, the coefficients of the related -1/2 and +1/2 pixels. The methods employed for com-
* transformations (see equations (4.4)). Second, possible puting the real data in experiments 3 and 4 also produce
values of the motion parameters can be represented by a flow values given in integer units, hence the noise level
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in these experiments should be at least as high as in exper- represented by To = (0.5, -0.5, 0.) and o = (0., 0., -0.2).
iments 1 and 2 (actually it is higher). The image, in all the The stationary environment is composed of two surfaces: a
experiments, contains 128 x 128 pixels. The field of view of plane described by Z = X + 0.SY + 50 and an ellipsoid de-
the camera is 450 in the experiments with simulated data scribed by [(X + 3)/212 + 1(Y + 1)/5]2 + [(Z - 20)/212 = 1,
and 300 in the experiments with real data. A 32 x 32 sample of the flow field corresponding to this S

scene is shown in figure 6.2a.
0.1 Experiment I

The segments found in the experiment are shown in
The first experiment simulates a translatory motion of figure 6.2b. The two segments associated with the sta-

the camera, represented by the vectors T = (0., 0.02, 1.) tionary environment were determined to be consistent with .*-.-

and Q = (0.,0., 0.). The environment consists of two dis- the same rigid motion, while no rigid motion compatible
tinct surfaces: a plane described by the equation Z = 50Y+ with the third segment was also found to be consistent S
100 and an ellipsoid represented by (X - 2) 2+1(Y - 2)/4]24 with one of the other segments. Thus, the decomposi-
(Z - 5)2 = 1. A flow vector is computed for each pixel, un- tion of the flow field into sets corresponding to indepen-
less the corresponding ray of light does not intersect any of dently moving objects could be uniquely (and correctly)
the surfaces, in which case the related weight is assumed to determined. The error function al corresponding to the
be 0 (otherwise it is 1). A sample of the flow field is shown stationary environment is displayed in figure 6.2c. The as-
in figure 6.1a. sociated motion parameters of the camera were determined

The results of the three stages of the segmentation, to be -U = (0.3897,0.4017,0.8287) (the corresponding ac-

shown in figures 6.1b, 6.1c and 6.1d, demonstrate the role tual values were C = (0.4082,0.4082,0.8164)) and -f[ = .

and importance of each of these stages. The two segments, (0.0204, -0.0196,0.0494). The related depth map is repre-

found in this process, were determined to be consistent with sented by the function r/Z in figure 6.2d.
the same rigid motion. The error function al (equation The error function corresponding to the independently . -

5.17) was computed using 64 vectors from each segment. moving object is shown in figure 6.2e. This function is
Employing a spherical coordinate system (r, , 9), where very close to its minimal value in a large portion of the

search space, thus, demonstrating the ambiguity discussed
X = rsin(O)cos(0), (6.1a) in section 5.1.2.

Y = rsin(0) sin(0) (6.1b)

and

Z = rcos(o), (6.1c) / ////..

the domain of definition of &I , that is, the hemisphere { L_:
ILI 1, Uz 0), can be represented by the set ..

{(,): < 90,0 < 0o < 360*). (6.2)

This representation is utilized for displaying the function 5
&I in figure 6.1e, where (0,0U) are used as polar coordi- -..-. - ".

nates. Employing the sampling procedure for minimizing ..................................

&I the motion parameters were determined, after two it- ...................

erations, to be L = (0.0017,-0.0204,-0.9998) and .=......"

(-0.0004, -0.0003, -0.0004). Note that, assuming a sta- ...... ......

tionary environment, the camera motion is given by -_.
and -[I. These results are in a good agreement with the -.

correct values. Substituting the computed values in equa- i::;,,, .' . - .

tion (5.10), the 'reciprocal depth' map, that is, the function ...... "

r/Z shown in figure 6.1f, was obtained. ____, , ' lA \X1A1V..'. "i'

6.2 Experiment 2

In the second experiment, the camera motion is com-
posed of both translation and rotation, described by T, = Figure 6.1: Experiment 1. (a) A sample of the

(0.5,0.5, 1.) and fi = (0.02, -0.02,0.05). The environ- flow field.
ment contains an independently moving sphere, defined by

(X - 9)2 + (Y - 9)2 + (Z - 30)2 = 4. An object coordinate
system is defined, which is parallel to the camera coordi-
nate system but its origin is in the sphere center (9,9,30).
The motion of the object, in this coordinate system, is
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ambiguous cases. Integration of such information over a [LON80] Longuet-Higgins, H.C. and Pradny, K., The in-
time sequence of flow fields may, eventually, resolve the terpretation of a Moving Retinal Image, Proc. Roy.
ambiguity and result in a unique interpretation. Soc. Lond., B 208 (1980.).
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be recovered, though not always uniquely 110, 1I1. Actu-
ally-, once unknown object motions are admitted, we are I Vz Vy
really in the realm of the more general "structure from V Z - + [(1 + vifX- zifly- :flzI. (Ib)
motion" problem which also has a long history, but has
recently been addressed in the context of "image flow"
theory [10- 131. .

Dynamic Stereo can be viewed as an extension of
motion stereo, applicable to scenes containing moving -
objects. It employs two cameras in known relative . "
motion, both imaging a scene containing independently
moving objects (which are assumed rigid). The relative r .
rigid body motions between objects and cameras generate %
image flows (of feature points and contours) at each cam- Z C _
era. Differences between the two flow fields are mainly ,.
due to the known relative motion between the two cam-
eras. This fact will be exploited below in order to recover * ,.,
absolute range to the objects in an evolving scene.
Dynamic stereo can then be used in conjunction with the
image flow derived from a single camera in order to "
recover surface shape as well as absolute motion parame-
ters for objects in the scene [II]. Z.

We expect that dynamic stereo can be utilized in a
variety of configurations. In the context of autonomous
land vehicles, one can mount on the vehicle one fixed
camera and one sliding camera in order to range to mov- Fig. 1 - Spatial coordinates moving with the observer, . S
ing vehicles in the scene. The larger distances typically and image coordinate system.
associated with flight would require two cameras, each
mounted on separate aircraft moving with respect to each Figure I illustrates the coordinate systems of the observer - -

other at known relative speeds. This kind of coordinated (X, Y, Z), to whom the relative translations
flight could enable passive ranging to moving targets. (I1x' ',, V'z) and rotations (fIx, fly, f1z) are ascribed
There is also potential use in industrial robotics for han- (and which may differ for each rigid object in the scene),
dling moving objects, by configuring two cameras on and his image plane (z, y) which has been reinverted and
different parts of a robot arm such that they experience a scaled to a focal length of unity. As the directions to
relative motion. It should be noted, however, that any points (or objects) in the scene are specified by their
application will require that at some point in their rela- image coordinates (z, y), their absolute range is deter-
tive motion, the two cameras become sufficiently close so mined by the component of distance Z, along the
that their respective images can be easily brought into observer's line of sight. It is seen from equations (1) that
correspondance. the distance Z appears in ratio with the translational AD

This paper present3 the basic theory of Dynamic motion parameters. Clearly, if the motion parametersThispape prsent thebasc thorywere all known (e.g. a camera moving through a station-
Stereo along with several simulated examples. The con- -'r .m

tassociated with "relative image flows" are dcscribed ary scene), the distance Z could be obtained directly from
cepta ar .. iiied .suired image velocities; this is simply "motion stereo."
in Section 2. which follows. Section 3 then addresses the Ibit if the obhjects are also moving, then these relative
recovery of range to moving objects using these relative totion parameters are unknown as is the distance Z to
flows. Filtering techniques to reduce the effects of noise Points (or sealo factor" 0, slopes and urva;irN in the S
on the required image velocities are discussed as well. sur sal 's T he o ryso sngle ig e 

ease of surface patches) The thery of single image flows
('oneluidinig remarks are presented in Section 4. addresses this problem of recovering both surface strue-

ture and space motion [10 - 131; however, solutions are
2. RELATIVE IMAGE FLOWS obtained in a form which are scaled by the factor Z. "

The flo% fields measured at each camera correspond That is, absolute range is not recoverable from single -'

to the time-varying projection of object surface texture, image flows.
dut' to the relative rigid body motions between o',,jects in The mathematical basis of dynamic stereo is simple:
the scene and t lie cameras. The equations relating iniage one need univ note from (1) that image velorities are
velocity to relative space motion and distance to points in linearly prnportional to the parameters of space molti,.a.
the scene have been derived in other studies (e.g. (10 - We can make this more explicit by re riting (1l synboli-
121); they are given by tallv as

t'
5  
'2 + 1Y 0, - (I +i2)fly OZ), (1a) u(r. A 7(z, v) V + PI:, i). Y (2)
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3. RANGING TO MOVING OBJECTS 0_

Equations (4) and (5) form the basis of the method 7(1 1/ (7c)
for recovering range to points (on moving objects in the A w, {., y) -1/2 (7c)
scene) and planes (surface patches on moving objects). If A (/ - zI,) 2 + (y _ voi 2  .
it were not for the effects of noise on measured image A

velocities, the method would be simple and This equation can serve as the basis for a linear least-
straightforward, as will be presented in Section 3.1 below. squa io a n seera n the araleaeasth

Theineitaleeffctsof igtiztio erorandnoie hve squares approach to determine the parameters of the
The inevitable effects of digitization error and noise htave plane, 70', p/Z o and q/Z"0.
led us to explore two filtering methods; "radial flow filter-
ing" as motivated by the divergent nature of the relative 3.2. R l""
flow noted in (5), and "second-order flow filtering" which 3.2. Radial Flow Filtering e -"
stems from the Velocity Functional Method developed by In the absence of noise and digitization effects, equa- •

Waxman and Wohn (121. These techniques are described, tions (7) are exact and yield perfect results, putting aside

along with examples, in Sections 3.2 and 3.3, respectively, for the moment the issue of finite separation between
Section 3.A considers the effects of the finite baseline cameras at all times. In our simulation, we are al-le to
between cameras, at their closest approach. explore the effects of noise by perturbing the individual

flow values before forming the difference flow. We con-

3.1. Ranging to Points and Planes sidered a uniform distribution of noise, up to a specified

Given the measured image velocities of correspond- percentage, superposed on the individual components of

ing features on both image planes (determined when the image velocity.

two cameras are at closest approach), we form the meas- The effects of noise on estimated image velocities 9
ured difference flow values A. Then, according to the are amplified by the differencing procedure in obtaining
definition in (4), we can compute the relative flows by Av. Since the order of magnitude of v is I V I/Z, while

correcting these difference values for the knowu relative that of Av is I A V I/Z, the noise effects are amplified by
rotation between cameras, the ratio I V I / JA V when referred to Av. Clearly, it is

important to have as large a relative velocity between
-. A =--- A, -[y Afx - (1 + z2) Al y+ y Af"Z i, (6a) cameras A V as is possible. This translates over time to

building up as large a separation between cameras as is
Aw A - (1 + y) A.x -- z$ Aly- z Aflz] (6b) practical.

One simple thing that can be done to reduce the
According to equations (5a-d), the ideal relative flow effects of noise is to perform a "radial filtering" on the
diverges from (or converges to) a known focus located at relative flow. This notion stems from the divergent
(v, yfo,). Thus, we can define the "radial relative flow" nature of the ideal relative flow discussed in Section 2.
as simply As definition (7a) is meant to imply that the ideal relative

1 1/2 flow should consist of vectors emanating radially from a
Aw, j (Au') 2 + (Au',)2  (7a) known focus of expansion, we can impose this constraint

on the relative flow derived from noisy velocity measure-
ments. That is, we consider only that component of the

Then according to (5), we can solve for the range Z, relative flow which points radially from a known focus.

The orthogonal component (or "azimuthal relative flow")
AI'Z n/2 can be used to ascertain the magnitude of the noise; it " " .

SZ(.r, )) , vioe)2 } . (7b) vanishes in the limit of ideal velocity measurements.

Figure 3 illustrates the simulated effects uf noise
(10c-) on the image velocities and the relative flow which 0

This result applies to individual feature points in the results, in the case of a planar surface. By using only the
scene whose relative flow has been derived from measured radial component of the relative flow, one essentially
image velocities on both cameras. All terms on the reduces the noise by a factor of two. As one might
right-hand side of (7b) are either known or measured. expect, the errors in range should scale like

If a number of feature points are believed to be the ('i noise: ) X I V I AV . The results of our simula-
images of points on a planar surface in space, then their tions bear this out. For a ratio I AV) / I V of about
individual range values Z(z, y) can be used to fit a planar 1/10, reasonable range estimates could be found only - 0

surface. Alternatively, the parameters of the surface can %4hen the n',ie imposed was less than a few percent. In

be obtained collectively from (7b). A planar surface in the case of planar surfaces, the same is true for recovery

space, Z = 70 + pX + qY, can be written exactly in of the ,cale factor Z0 . The slopes of the surface, which

image coordinates as Z Z (I p - qy) I. Inverting describe the differential changes in range, are extremely
17b) then yields sensitive to noise, as might be expected. Their determi-

nation requires noise below one percent. In practice, one

InN
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become available. Many of them will only be obtained gradually
through interaction with the scene environment. Our system must IMAGE STEREO

therefore have the ability to utilizc partial descriptions and incrementally MAOR A...I

update them with new infomsation whenever a new sie,' happens to I,,E ",E.

become available. As a practical example. consider a robot (perhaps a v
mobile ground robot or an automatically guided airplane) which is sINGLE N-

attempting to nasigate through an unknown environment. The robot IMA•E

wo,;d sequentially acquire images of the environment as it moves about.
Inlormation derived from each new hnage would serve to updatc its
internal model, and this partial model would be used to d.2:ide where to 7A-G1c CEN TR_

go next, or where to analyze in more detail. E I SCN NOT

We hatc adopted an approach in which the .31) scene model is
incrementally acquired over the multiple views. The views of the scene
are sequentially acquired and processed. Partial 31) information is -- "- I -.E
derived from each view. 'Me initial model is constructed f.,jm 3D I IMAGE L . It"T NCj

information obtained from the first view, and represents an initial L I N "- 1A TLN

approximation of the scene. As each successive view is processed, the
model is incrementally updated and gradually becomes more accurate .. -AY

and complete.

Figure I: 31) Mosaic flowchart. The dashed lines represent B
Most previous research efforts at acquiring 3D scene descriptions from components that have not ,et been unplcmented: the solid lines

multiple views have dealt with relatively simple scenes in controlled represent components already implemented.
ensironments12, 8, 9, 18, 22,251. This has led, in some cases, to only
utilizing occluding contours in the image to form the 3D description First, feature-based matching results in more accurate 3D positions for
12, S. 9, 181. The %York of Moravec1201 deals with complex indoor and occlusion boundaries than gray scale area matching. Second, by
outdoor scenes, but the 31) descriptions generated by his system consist extracting 31) information dealing with scene vertices and edges
ofsparse sets of feature points. Our system, on the other hand, generates emanating from them, we obtain portions of boundaries of scene
full, surface-based descriptions. builuings, particularly building corners. These boundaries are then used

to construct 31) approximations of the buildings.

2.2. Overviewflowchart for the 3D Mosaic system, showing the major modules Finally, because of our wide-angle stereo images, there are largedisparity jumps and large portions of the scene are visible in one image
and data structures, is displayed in Fig. 1. The input is a new view of the hut not the other. Because most stereo systems do not distinguish thes
scene, which may be either a stereo image pair or a single image. The from other regios of the image, they try to find matches for them and
stereo pair undergoes stereo analysis, while the single image undergoes therefore have trouble 13, 5. 6, 12, 13, 17].
monocular analysis. The purpose of these analyses is to obtain 3D scene
features such as portions of surfaces, edges, andcormers. In our approach, rather than attempting to find matches for scene faces

The central scne model is a surfacc-based description which is occluded in one of the images, we match face boundaries visible in both
constructed and modified from these features. Before modifications to images. We do this by explicitly taking into account the way junction
the scene model can occur, the 31) features from the new view must be appearances change from one image to the other, using the knowledge -
matched to the current model. The scene model may, at any point along that in urban scenes, roofs of buildings tend to be parallel to the ground
its development, be used for tasks such as image interpretation, planning, plane, while walls tend to be perpendicular to this plane. Edges in the
or display generation. A new view may then be acquired which may scene perpendicular to the ground will appear in each image to be
further modify the model. directed towards !ie vertical vanishing point (161.

Ifa feature in an image lies on a roof. its appearance in the other imagei-or example, when the stereo analyis, component is applied to the as a function of position along the epipolar line can be predicted if theimages in Fig. 4. the result is the set of wire frames in Fig. 9. [he scene normal to the ground plane is known. I'o see why, consider Fig. 2.model construc~ed from these wire frames is shown in Fig. 20. When the Sups h•ucinpp 1 ~i mgli ieadorga stSuppose the junction P 3 PIP2 in imagel is given. and our goal is toA
monocular analyi s component is aprfied to the image in Fig. 10, the 2
result is the set of wire frames in Fig. 17. These, in turn. are converted predict the junction Q3Q"Q2 in imagc2. where the point Q, ies
into the scene model in Fig. 21. Finally, the result of modifying the anywhere (inside the infinity point) on the epipolar line corresponding to

the~~~ll mode ine Fig.do 21. Finlly thec resulto of moifin thcPFan be compttd asmodel in Fig. 20 with a new view is shown in Fig. 27. P F the position Qr the 3-space position of V cnthe intersection of the rays through PI and Ql. This uniquely determines
the position of the plane. parallel to the ground that contains Vt. The

3. Stereo Analysis 3-space positions of the points V2 and V3 can now he computed as the
Most stereo matching methods involve mtching low-level image intersections of this plane with the rays corresponding to the points P2

features, such as image intensities 13, 13, 17, 21i or image edge points and P3' respectively. Finally, the points Q2 and Q3 ire uniquely
13. 12. 211. Points to be matched may also be chosen as "interesting detemminedascentral projeetionsof the points V2 and V3, respectively.
points", e.g., those with high variance in all directions [6, 201. Our
method involves matching structural features-- i.e., junctions--extracted Therefore, when an I. junction is found in one image, it is initially
from the images. [here are several reasons for this. assumed to arise from a coiner of a roof, and its appearance in the other

image can be predicted. When an ARROW or FORK junction is found,

133 '. .'.1-....,..
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V3, infinity. The focal length and vertical vanisning point are currently
manually obtained.

,3.1. Steps in Stereo Analysis
We now provide an example showing how the stereo analysis is

performed on the stereo pair of images in Fig. 4. First. linear features are
extracted by finding edge points. thinning and linking them, and fitting 0

03 03Epipolar line piccwise linear segments. Ihe resulting line images are shown in Fig. 5.
Next. junctions are extracted h placing a 5x5 window around each end

02~o. point of each line and searching for ends of other lines. Junctions that
have been found are labeled iin Fig. S. (See [151 for more details.) Notice
that many of the junctions correspond to building corners.

We now want to find potential junction matches between the two
images. L.et us consider how I. junctions are matched. Each I. junction
is initially assumed to lie on a horizontal scene plane. 'lhe shape and

Image1 Image2 orientation of its corresponding junction in the other image, as a function
of position along the epipolar line. can therefore be predicted. F.ch L

Figure 2: Fsor junction P 1PP, t, appearance in imagc2 can be junction in the first image may therefore usually be matched with several

predicted as a function o povition Q, alotg the epipolar line. ]he junctions in the second image that have. within tolerance, the predicted
normal toplaneV 3vIV2 mustb beknown. shape and orientation. However, we do not try to match only with

junctions in the second image that have b.en preiously found. Rather.
for eccry point on the epipolar line (on the appropriate side of the

-projection infinity point), a search is made within a pre-specificd window for lines
,ertical ." --- intite that might correspond to the predicted junction. 'he requirements,

vanishing infit however, for two lines to form a junction is more relaxed than the
point requirements during initial junction search. The matching is performed

in two directions, from the first image to the second, and vice versa.

ver-ina" At this point, each junction in one image is associated with a set of

Cf~a space potentially matching junctions in the other image. The next step is to
point find the best of the potential matches, resulting in a single match for each

junction. Two criteria are used in determining the best matches:

iniage 1. If the image intensities inside two potentially matching
plane junctions are similar, the likelihood that they really match is a

increased. This is because the two junctions will often have
Figure 3: The vector from the focal point to the vertical vanishing similar intensities if they arise from the same face corner. To
point is a 3-soace vector in the vertical direction, measure the degree of similarity, we compute the average .

the leg of the junction directed towards the vertical vanishing point is intensities of regions along the two legs of the L junction in
initially assumed to arise from a scene edge perpendicular to the ground, each image. As depicted in Fig. 6, let A and B be the average
while the other two legs are initially assumed to arise from scene edges intensities of these regions in one image, and let A' and B' be
lying on a roof or on the ground. Again its appearance can be predicted, the average intensities of corresponding regions in the other

image. Thcn the degree of similarity, called the local cost, is

Structural relationships between scene vertices are also used to aid in defined as
the matching. if two'junctions in an image arise from scene vertices at the CIcal A - A' I + I B - B-
same height above the ground, the positions of the corresponding A.A Aip o i B j B n n r
junctions in the other image, as a finction of position aloiig the epipolar 2. As described previously. if two junctions in an image arise

line, can be predicted if the normal to the ground plane is known. This from scene vertices that arc at te same height, the relative

can be shown using similar arguments as before. In Fig. 2, pretend that positions of the ctrresponding junctiolts in the other image,
as a function of position along the epipolar line. can -be

thepointsP. Q , and V, correspond to positions ofseparate junctions and predicted. We use this to determine whether two sets of
vertices. For example, if PI and P3 are two separate junctions in imagel, junction matches are consistent with one another. Suppose,
then for fme point Q, on the epipolar line corresponding to Pj i the
position of the junction QV corresponding to P. can be predicted if Vt in Fig. 7, that the junctions I I and J2 in imagel arise from

and V3 are assumed to lie at the same height. We make the assumption scene vertices that are at the same height. Suppose also that

that junctions close to one another in the image often correspond to the junction matches (J 1 J',) and J2' J*2) have been

vertices lying on top of the same building and therefore have hypothesi/ed. To measure the degree ofconsistency between

approximately the same height these two sets of matches, we predict the position of the
junction in imagc2 that corresponds to (say) J" I.et us refer
to the predicted position as J" 2' If the vector from I' I to Y" °

These matching techniques assume that the vector normal to the to t pdt p oI the vector from 's to th 2

ground plane is known. To obtain this vector, we form a vector from the degree of consistency between the two sts of matches, called
focal point to the vertical vanishing point. As shown in Fig. 3, this results dge ofacosis hen th t somc .al
in a 3-space vector in the vertical direction 141, since a line containing the

focal point and vertical vanishing point intersects any vertical line at Ct1obal =I a, - a2 + I b/- b2 1.
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Figure 10: Aerial photograph showing pan of Washington. D.C. This / """
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Figure 14: The 31) configuration of the junction jAp2p3P,, ran be
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* Fiure 12: E.ach line represents a possible connection between the P,
junctions at its two end points Fach end point correspondn to a
junction i Fig. 11. Figure I: The solid lines represent a connected 2D structure. The

dashed lines are for the reader's convenience to make the 3D shape " "

more apparent
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[here are many structures in Fig. 13 that do not contain points lying The following factors have determined how the scene model is
on the ground plane. Nscerthless. the heights of some of these structures represented and manipulated.
can be determined using the rule that if two lines are aligned in the . Partiall) complte, planar-fced objects most be cfficictitly
image. the) are often aligned in 3-space. Suppose. in ig. 16, that points dsc ribed by the modl. it is cerefore rcpreented s a graph
p through p, have alread) been assigned 31) cootrdinates, and we want to d e s bythe o l .itis h i ts faese ge s vrach
obtain the 3-space position of the 21) strtcture PSPQP I. Since the lines in terms of symbolic primitives such as facas d edgcs, vertics,
pp. and pW,, are aligned in the image and both are labeled "horizontal", and their topology and gcumtry. Infornation is added and 
they are assumed to be aligned in dUe scene and to lie in the same deleted by meansothese primitives.
horizontal plane. Ihe 3-space position of (say) point ps is therefore
determined as the intersection of this plane with the ray through P. The 2. The model most be easy to use in matching.
31) coordinates of this point may then be propagated to points p9, Po, and
p. as described previously. Note that all 3D positions are functions of 3. Because scene approximations are often more useful if they
the parameter d. which is arbitrarily chosen for the equation of the contain reasnable hypotheses for parts of the scene for
ground plane. which there are partial data, we introduce mechanisms that

permit hlpothcscs to be generated, added, and deleted. S
Fig, 17 depicts a perspective view of the 31) wire frames obtained using 4 Because incremental modifications to the model must be easy

these methods. to perform, we introduce mechanisms to (a) add primitives to

the model in a manner such that constraints on geometry
imposed by these additions arc propagated throughout the

14 model, and (b) modify and delete primitives if discrepancies
arise between newly derived and current information.

!3 II The 31) structure in the scene is represented in the form of a graph,
called the siructure graph. The nodes and links represent primitiveI topological and geometric constraints. The structure graph is

vincrementally constructed through the addition of these constraints As
constraints are accumulated, their effects are propagated to other parts of

/ the graph so as to obtain globally consistent interpretations. 0

Nodes in the structure graph represent either primitive topological
Figure 16: If the 1) configuration of the structure on the left has elements (i.e.. faces, edges, vertices, objects, and edge-groaps (which are
been deteimned. the relative 31) position of the structurz on the rings of edges on faces)) or primitive geometric elements (i.e.. planes,
nght ma a, be dv;rmned bekcas lines 6p and tppl are aligned lines, and points). Face, edge. and vertex nodes are tagged as either

conifinned or unconfirmed. Confirmed means that the element
represented by the node has been derived directly from images. - .
Unconfirmed means that the element has only been hypothesized.

The primitive geometric elements serve to constrain the 3-space
locations of faces, edges, and vertices. Plane and line nodes contain
plane and line equations, respectively. Point nodes contain coordinate
values. The structure graph contains two types of links: the part-oflink. %
representing the part/whole relation between two topological nodes, and
the geopnetric constraint link, representing the constraint relation
between a geometric and topological node.

Fig. 18 shows a simple example of a struc!ure graph consisting of two " ' "" -

objects, obl and ob2. Arrows with single lines represent part-of links, and -".
arrows with double lines represent geometric constraint links. 'lhme faces

Figure 17: Perspective iew of 3D wire frames generated from Fig. arc represented as f,, the edge-groups as g . the edges as e , and the S
13. vertices as v,. The graph shows one point node pi and one plane node pl.

Further details on representing and manipulating the 31, scene model
may be found in 115. 141.

5. Representing and Manipulating the 3D Scene
Model

The representation we have developed for the 3D scene model draws 6. Generating the 3D Scene Model
on ideas from geometric modelling used in computer-aided design 'le result of image analysis is a 31) wire-frae description that .

systms 1. 31.In tm sstes, owevr, he D mdelsareusully represents 31) vertices and edges which correspond to portions ofsystems 1. 23J. In these systems, however, the 3D models are usually boundaries of objects in the scene. We construct a surface-based
derived through interaction with a user. Our case is different in that (1) d ne es dthe3D odes re eried utmatcaly fom2D mags, nd(2)ma 1) description -- the 31) scene model -- from these boundarie by
the 3D models are derivedautomatically from 2D images, and (2)many hypothesizing new vertices, edges, and faces using task-specific
portions of the scene are unknown or recovered with errors bc'ause of knowledge. Some of the rules used here will be described next, and will

eclu ions or unreliable analysis. be illustrated on the wire frames in Fig. 9.
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igure 18: Simple example of a slructure graph consisting of two
objcts, obi and ob2.
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Figure 19: Obtaining a surface-based description from wire frames.

Each adjacent pair of legs ordered around a wire-frame vertex is Fig. 20 shows perspective views of the resulting scene model. Notice
assumed to correspond to the corner of a planar face. A partial face, that one of thc buildigs has a hole in it. through the roo. The planar
called a iteb fate, is gencrated for each such pair (Fig. 19a). Next, web patches at the "front' of the scene are part of the ground. Fig. 21 shows *

faces that represent corners of a single face are merged. Wcb faces may the scene model generated when these techniques are applied to the
ciioer be touching (e.g.. Fig. 19b, and F and F2 in Fig. 9) or non- wire-frame description obtained using monocular analysis (Fig. 17).
touching (e.g.. Fig. 19c. and F3 and 1:4 in Fig. 9). When merging two
non-touching faces, the two edges on which each matching pair of end In order to render more realistic display' s, gray scale is added to them
points lie are extended in space and intersected. [Ihe intersection points 1101. ('his is useful For realistically simiulng the appearaince of the
form two new vertices on the resulting face, sccne from arbitrary iepoinis, We associate with each face in the

model an intensity patch obtained front the image. For faces that are
Incomplete faces are then completed either as parallelograms (for faces pirtiaflv occIluded in tie imalge. the intensity ptch is associated with the

consisting of' a single corner (Fig. 19d)) or as polygons (for faces sisibltc poitioni.s. 22 and 23 showx the results of adding gray scale to
cont~iaing three or more connected edges (Fig. 19e)). Next, one face is the faces of the models in Figs. 20 and 21, respectively.
assumed to represent a hole in another face if (1) the planes of the faces
are nearly par. Ic! and close to each other, and (2) the boundary of the
first face, when projected onto the plane of the second face, falls inside *Cm ingNwVes itCur tMo l
the boundary of that face (Fig. 190.7.C m ingN wVe s itCur tMo l

The process oi incorporating a 31) wire-ftrame description extracted
At this point, many ohjects will be otly partially complete because they from a new stew into the current scene model can be disided into three

are not closed. Since we are dcalingewith urban scenes, faces that lie high main steps:

enough abos e the ground are assumed to represent roofs of bueildings. A 1. The wire-frarge data mist First be matched to the current
hypothesied ertical wall is dropped towards the ground from each edge model. Iis Process proides (a) te scale transformation
of such faces, unless the edge is already part of another face (Fig. 19g). and coordinate transformation from the wirefsraeis data to . -.

ach wall is dropped eithr to the ground or to the first face it intersects the model. and (b) corresponding elements (i.e.. vertices and..................... ............. rom the.img.. . . . . .ha r .,_.-._.--

contann th rermoeonetdegs( 1e)Net way down. is tedes) in the toling. 2 n 1 epciey
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2. he new w're-frame data is then merged with the current lo determine whether or not hypotheses arc still valid whzn confirmed
model. ihis piocess includes (a) merging pairs of elements in the model are modified or deleted we consider the elements
corresponding elements, and (b) adding to the model wire- which gave rise to the hypotheses. A hypothesis is dependent on all
frame elements for which no correspondences were found. elements whose existence directly resulted in the creation of the
lDuring the merging process, hypothesized parts of the model hypothesis. If one of these elements is modified or deleted, the -

that are inconsistent with the new wire-frame data arc hypothesis must also be modified o. deleted since the conditions under S
deleted. which it was created are no longer valid. The dependency relationships

for hpothesi.-ed ctements are explicitly recorded at the time of their • -

3. At this point, many objects in the model may be incomplete creation using dependency pointers 1111.
because (a) new wire-frame data has been added, and/or (b)
some hypothesized elements have been deleted. These The following examples show how some of these relationships are
objects are completed using die techniques described in the recorded:
previous section. 1. When two non-touching partial faces are merged, (Fig. 25a)

each face has two edges which are intersected with their
To see how these steps are carried out, consider the exzmple of counterparts in the other face. The intersection points form

incorporating the information from a second view into the scene model

of Fig. 20. Ibis scene model was constructed from the set of wire frames two new hypothesized vertices, each of which is dependent
on the two edges whose intersection gave rise to it. In Fig

(Fig. 9) automatically extracted from a "front" view of the scene (Fig. 4). o5a te edges e ave e to it. I 2
h scond set o wire frames, shown in Fig. 24, was manually generatede3 and ertex

theeo n s smulatet ifor n w ire frames. sh i n ig.p4.wsmnul ntiew is dependent on edges e2 and e4. If one of the edges were to 5
tO riulate inforth ition aailable from an opposing point of view be modified (e.g.. if its position were to be displaced), the
( Li tog the scene from the "hack". Notice tiiitthe information in Fig. vertex that depends on that edge would no longer be a valid
9 inpha.ses edges and tertices facing the front of the scene, while those hypothesis, and would therefore be deleted. A new vertex
facing the back of the scene are emphasized in Fig. 24. might then be hypothesized.

_2. When a face is completed by connecting its two end points

-'-. ..- (Fig. 25b), two new vertices and one new edge are
hypothesized. The new edge e4 is dependent on both el and
e3. while the new vertices v/ and v2 are dependent :n the

P3 edges on which they lie.

\ P, When a confirmed edge or vertex in the model is modified or deleted,
the set of all hypothesized elements that depend on it are deleted.
Recursively, elemens depending on deleted ones are also deleted.

7.2. Merging
IFigure 4: Perspcuoe ,iew of manually generated vertices and
edecs t7he ,leupOmi for this draung is chosen lobe similr to ig. 9. The procedure that merges corresponding wire-frame and model
Pomnis Pt. P2. and P3. for esampic. crrspond io poinA Pt. P2, and objects takes into account the fact that the 3space positions of end points - -

P3 in Fig. 9 of edges that are confirmed vertices are generally -much more accurate - ' "
than the positions of non-vertex end points. Therefore, confirmed -

vertices are given more weight during merging. As an example, consider

We assume in this example that the scale and coordinate Fig. 26. Suppose the wire-frame object in (b) is to be merged with the
transformations from the new wire-frame data to the current model is model object in (a), and the corresponding edges and vertices are as
know n. Next, corresponding edges and vertices in the data ind model are follows: (Y2, 4J0, (v3, Yi1l1). (e2. 000Q), (el. e10l), (0,0e02) (012,
obtained, as described elsewhere 115. 14). e04). We assume the wire-frame object has been transformed to register

with the model object.
V1

7.1. Discrepancies
We must now merge the new wire-frame data into the model. An 01 Z1

important issue here is how to handle discrepancies between the two. We . "
consider the following two types of discrepancies: \ e4

I After the coordinate system of the wire-frame data has been
transformed' to that of the model and scale adjustments have e4 e2
been made. corresponding pairs of confirmed vertices and e22-
edges may not register perfectly in 3-space. In order to merge
them into single elements, we perform a "weighted Vf
averaging" of their positions. (b)

2. Hypothesized elements in the model may be inconsistent Figre 25: Geneiating dependencies for hypothesized edges and
with newly obtained elements. We handle this by deleting venjces The dependence of an element on anoiher is depicted a. in
such hypothesized elements, arrow from the former to the latter (a) Iwo non-touching partial

faces are merged (b) A face is completed S
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Hierarchical Warp Stereo

Lynn H. Quam
SRI International

333 Ravenswood Avenue
Menlo Park, California 94025

September 10, 1984

Abstract * Minimize the rms difference between the disparity mea-
surements and "ground truth." Without ground truth, we

This paper describes a new technique for use in the auto- cannot measure this.
matic production of digital terrain models from stereo pairs of
aerial images. This technique employs a coarse-to-fine hierarchi- * Maximize the sensitivity of the disparity measurements to
cal control structure both for global constraint propagation and small-scale terrain features, while minimizing the effects of

for efficiency. By the use of disparity estimates from coarser lev- noise. S
els of the hierarchy, one of the images is geometrically warped to e Minimize the frequency of false matches.
improve the performance of the cross-correlation-based match-
ing operator. A newly developed surface interpolation algorithm * Minimize the frequency of match failures.
is used to fill holes wherever the matching operator fails. Ex- These criteria are mutually exclusive. Under ideal conditions,
perimental results for the Phoenix Mountain Park data set are increasing the size of the match operator decreases the effectspresented and compared with those obtained by ETL. of noise on the disparity measurement, but it also diminishes

sensitivity to small terrain features. Similarly, tightening the

1 Introduction match acceptance criteria reduces the frequency of false matches,
but results in more frequent match failures.

The primary objective of this research was to explore new One of the goals of this system is to minimize the number

approaches to automated stereo compilation for producing digi- of parameters that must be adjusted individually for each stereo
tal terrain models from stereo pairs of aerial images. This paper pair to get optimum performance.

presents an overview of the hierarchical warp stereo (HWS) ap- S
proach , and shows experimental results when it is applied to the 2 Approach
ETL Phoenix Mountain Park data set.

The stereo images are assumed to be typical aerial-mapping This section briefly explains the HWS approach, which con-
pairs, such as those used by USGS and DMA. Such pairs of im- sists of three major components:
ages are different perspective views of a 3-D surface acquired at
approximately the same time and illumination angles. Normally * Coarse-to-fine hierarchical control structure for global con-
these views are taken with the camera looking straight downward. straint propagation as well as for efficiency. ,
The major effect of non verticality is to increase the incidence of
occlusion, which increases the difficulty of point correspondence. * Disparity surface interpolation to fill holes wherever the " .

We shall call one of these images the "reference image," and matching operator fails.
the other the "target image." We will be searching in the target
image for the point that best matches a specified point in the Geometric warping of the target image by using disparity
reference image. estimates from coarser levels of the hierarchy to improve the

It is also assumed that the epipolar model for the stereo pair performance of the cross-correlation-based matching oper- S
is known, which means that for any given point in one image ator.

we can determine a line segment in the other image that must
contain the point, unless it is occluded from view by other points 2.1 The Use of Hierarchy and Surface Interpola-
on the 3-D surface. This i. certainly a reasonable assumption, tion to Propagate Global Constraints
since an approximation to the epipolar model can be derived
from a relatively small number of point correspondences if the The goal of stereo correspondence is to find the point in the

parameters of the imaging platform are not known a priori, target image that corresponds to the same 3-D surface point as n

The primary goal is to automatically determine correspon- a given point in the reference image. It is often impossible to
select the correct match point with only the image informationdences between points in the two images, subject to the following that is loct t i point ith referene image infombin-

:riteria: that is local to the given point in the reference image in combina-
tion with the image nformation along the epipolar line segment
in the target image. When the 3-D surface contains a replicated

pattern, there is the likelihood of match point ambiguity. Let us
This research was supported by the Defense Advanced Research Projects consider, for example, a stereo pair that contains a parking lot -Agency under Contract No. MDA 903-83-C-0027.
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(a) Compute filled-surface 1+= The bottom-left images of figures 4 and 5 show the pixel-by-

expand(surface-interpolate(reduce(surfacei))), pixel differences, after contrast enhancement, between the HWS

where reduce computes a Gaussian convolution reduc- and ETL disparities. The graphs to the right of these difference

tion by a factor of two, surface-interpolate is a recur- images depict the histograms of these differences.

sion call to this interpolation algorithm, and expand The mean and standard-deviation values shown with the his-

computes expansion by a factor of two, using bilinear tograms provide a useful quantative comparision between the

interpolation. HWS and ETL results. They show that the average disparity
differences were .082 and .025 pixels, and that the standard devi-

(b) For each hole in surfacei that is completely surrounded ations of the disparity differences were .67 and .34 pixels for the

by other holes, fill the hole with the value from the A and B window pairs, respectively, in terms of pixel distances

in the 2048 x 2048 Phoenix pairs. These standard deviations be-

2. For each hole in surfacei fill the hole by solving the system come .17 and .17 pixels when expressed relative to the scales of

of linear equations (1) for the n x n pixel neighborhood A and B windows, respectively.

centered at the hole (n = 7 in the examples). Similar results have been achieved for other examp 
, 
that

include both higher resolution and larger windows.

3. Return the filled surfacei.

7 Problems6 Examples
IIWS is still very experimental. Some of the parameters that

This section describes the experimental results achieved when affect the system, such as the range of disparities to compute at

the IIWS technique was applied to areas of the ETL Phoenix each level of hierarchy and the size of the correlation operator,

Mountain Park data set, and compares these results to those ob- are still specified manually.

tained from the semiautomatic system developed by Norvelle [1]. There are problems in estimating the range of disparities to

The following components of the Phoenix Mountain Park be computed at each level of the hierarchy. If the estimate is

data set were used: too low, there will be frequent out-of-range match failures. If,

on the other hand, the estimate is too high, computation time
* Left image: 2048 x 20.18 pixels, 8 bits per pixel will increase and there will be more potential for match point

e Right image: 20-18 x 20,18 pixels, 8 bits per pixel ambiguity.

IIWS has difficulty dealing with steep terrain features that

* x-correspondence array: 400 x 400 points , floating point, have small image projections, but large disparities. At low res-

olitions in the matching hierarchy, the disparities of the terrain

The left and right images had been scanned such that the surrounding the feature dominate those of the feature itself, re- -

epipolar lines were almostly exactly horizontal. The ETL x- suiting in a disparity estimate that is usually intermediate be- -

correspondence array was converted to an x-disparity image to tween that of the feature and that of the surround. At higher

enable comparison between ETL and IIWS results, resolutions in matching, the disparity of the steep feature may

Results are shown for two different areas of the Phoenix data be outside the permissible disparity range.

set. All disparity measurements are indicated in terms of pixel HWS has even greater problems with oblique stereo pairs

distances in the 2048 x 2048 Phoenix stereo pair, rather than the containing many occlusions. At low matching resolution, the dis-

resolution of the selected windows, parities of foreground and background in the same neighborhoods

cannot be distinguished. As the matching resolution increases,
Area A is defined by two approximately aligned 150 x 150- foreground and background features are discernible as separate

pixel windows of the Phoenix pairs which were reduced objects, but their disparities are out of range for the matcher.

by a factor of four (the windows thus corresponding to the Most of the difficulties caused by sudden changes in disparity

600 x 600-pixel windows of the originals). The measured might be solved by preceding the disparity surface interpolation

disparities for area A range from -40 to +16 pixels. step with an algorithm that attempts to match still unmatched

" Area B is defined by two approximately aligned 125 x 125- regions ir . reference image with regions in the target image

pixel windows of the Phoenix pairs which were reduced that likewise ,.ave not yet been matched. We thus attempt to

by a factor of two (the windows thus corresponding to the match holes with holes.

250 x 2
5

0-pixel windows of the originals). The measured

disparities for area B range from -40 to -34 pixels. 8 Conclusions

Figures 2 and 3 show the inputs and outputs of three levels IIW\S produces very good results for vertical stereo pairs of
of the hierarchy for areas A and B, respectively. Columns I and rolling terrain. With the incluson of a hole-to-hole matching step, S
2 are the reference and target images at each level. Column 3 IIWS should be capable of comparable performance for terrain
is a binary image that indicates the positions of match failures, characterized by steep slopes and frequent occlusions.

Column 4 shows the resulting disparity image of each level after

the match failures have been replaced by surface-interpolated

disparity values.
Figures 4 and 5 contain a comparison of the IIWS results with

those obtained at ETL by Norvelle for areas A and 13 respectively. S
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corresponding equation is stated in the appendix). Start-
ing with the initial estimiate, this search is generally not
more than a few steps. It is important to point out that
the plot of the square-error vs angle is bowl-sliapedr and Fig. 3. Adequate Bases
centered around thle true angle, for windlows containing

* edgels. Hence, once within the howl, the standard ieth-
ods like steepest- descenitt can be used to find thle flninii. Somec authors have tried to comlpensate for an inac-
For edges with the step size twice the stand~ard deviation curitte model, i.e. at iatheinatical step for at step-edlge, by
of the noise the variance is appIroximiately 5'. using diferi-mit scales. l)ifferent, scales, we believe, are un--

necessary for imost scenes comipletely withbin the depth-of-
It should be p)ointed out that there cannmot be any field of tile citinra, unless somie of te sliadows are partic-

one mniq ..e basis which can he iself for all the windows. ilarly (lilfuse.
If we attempt to dto this, we will obtain incorrect results
wheni the basis is inadequate and noise senisitive results We have carriedl out our inmit ial investigation for step-
if thle basis is riot miinimial. Similar cosiderat ions for one edges, with images having at single scale i.e. all objects are
diimicnsional steps have been inivestigatedI ly Leclerc (ILecil. within thle depthi-of- field of flt!e camera. Tlhe blurring func-

tion i for on r can era was determiiinedm to hiave at standard de-
Now, the choice of an adlequiate basis. F'or iiost step)- viat ion of 0.6 pixels. Numerically, it wats deteriminedI that..

edges the tanli funiction will be adlequiate. One iimfportant for a standard dleviation of I and a miathematical step, the --

by-produmct of employing the tanli is the contrast of the opt inim scaling factor for the argument of Ltme tnl func-
* ~edge. From our case studies it seemsi5 tat this would be tion was 0.86. Tlhmis factor was deteromined by mimintizing-

hielpful not only in liiikinug, but, also interpretation. Ilow- tile square-error. Hencice, a rule of the thumib for the scat-
ever, for edlges which (10 not have similar slopes on both ing factor is (0.86 / j,.The detection scheiiue
sides of Lte step, the tanh is inadequate and it cubic or a is iiot particularly sensitive to this factor and in fact it-
tanh with at cuhic miight be adequate. The latter has somie detects reasonuably diffuse shadows.
problems because Lte tanh and cubic are not comipletely
indm ependenc t. It iay lie desirable to cemnploy sp lines whien Thlie win i ow size is deitermlinedita by tle standard dIC-
the taub and tile cuibic are iniadequiate bases. It should be viation of thme blurring gaussian. As the window size is
repeated, that thle cuibic is indequate for miost Stepl edlge$ imcreaseul for a fixed blur, we trade-off resolutioni for lo-
and th at, til erci vativye is not at very nuoise- robuist operator. cal ization. R esolumt ion refers to the mun iiiiiin soupp oct re-
As at result evenl if one dtoes use at ciubic, it is preferable to quired for the dletection of an edgel i.e. if an edgel can

-- localize and obtain thle contrast front Lte tanil lit. We have he located within any window without thle simunltaneoums
Used a cubic for our detector because our windouw is too presence of any other edgel, it is theoretically resolvable.

* small (5 x 5), for finding the parameters of a tanh with If it is not detected, it would be (fie to Ltme inadequacy
at cubic or of splines, in the case of horizontal amid verti- of Lte edge-metector. If three parallel edges are two pixels
cal edlges. For roof-edges and hune-edges, comubinations of apart, then the muiddle edge would not lie resolvable, but

* the taimb function, as mlejicleml iii Fig. 3, seem to be ad- the other two might be. We will p~oint out examples of
equae. e cmpae te q aaic fit with Lte t Ih fit ti,ese in our first case study.

to determiine the existenice of a step-edgel. In thme initial
stages, we hadl itsedf the Chi-Square statistics to deternmine V.heA ortm ortp- geDtcin -

the adecquacy of the basis. It was found that this was un-
necessary and perhaps undesirable because edlges of high (i) Fit a planar surface to the window, minimizing the
contrast seened to be more noisy.
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EXTRACTING STRAIGHT LINES

J. Brian Burns, Allen R. Hanson, Edward M. Riseman

Computer and Information Science Department
University of Massachusetts 0

Amherst, Massachusetts 01003

In most edge and line extraction algorithms, the magnitude of
AB T R A T  the intensity change has been used in some manner as the

dominant measure of importance of the local edge. It is our
This paper presents a new approach to the extraction of view that edge orientation carries important information about S

straight lines in intensity images. Pixels are grouped into edge the spatial extent of the straight line.
smxyrt regions of similar gradient orientation, and then the
structure of the associated intensity surface is used to determine The technique presented here was motivated by a need
the location and properties of the edge. The resulting regions for a straight line extraction method which can find straight
and extracted parameters form two separate representations of a lines in reasonably complex images, particularly those lines that
straight line segment, pixel-based and symbolic, that can be used are long but not necessarily of high contrast. A key
together for a variety of purposes. The algorithm appears to characteristic of the approach presented here that distinguishes it
be far more effective than previous techniques for two key from most previous work is the alobal orasnization of the
reasons: 1) the gradient orientation is used as the initial sunorting edge context prior to any decisions about the
organizing criterion in the extraction of straight lines, instead of relevance of local intensity changes. An estimate of the local
the gradient magnitude; and 2) data directed organization of the gradient orientation at each pixel is the basis of these first
complete context of a straight line is determined prior to any organizing processes. Grouping pixels into edge support regions
local decisions about participating edge points. avdds the plethora of magnitude responses from masks at •

varying sizes and oriettations, as well as unnecessary complexity

in the subsequent organizing mechanisms. The approach
presented here has its roots in the "gradient collection" process
of Hanson et at [HAN80], as well as ifR78].

10 INTRODUCTION Our approach allows the extraction of straight lines ---

despite weaknesses in line clarity due to local edge .
The organization of significant local intensity changes into inconsistencies or deficiencies in width and contrast. It directly

the more global abstractions called "lines" or "global intensity addresses the problems associated with the size of the edge
boundaries" is an early, but important, step in the operators and determines the extent of support to be given to
transformation of the visual signal into useful intermediate edges and lines directly from the underlying data.

constructs for interpretation yrocesses. Despite the large amount
of research appearing in the literature, effective ertraction of 2.0 A REPRESENTATION AND PROCESS FOR
linear boundaries has remained a difficult problem in many EXTRACTING STRAIGHT LINES
image domains. There are two goals of this paper: a) the
development of mechanisms for extracting straight lines from 2.1 Overview
complex images, including intensity discontinuities of arbitrarily
low contrast; and b) the construction of an intermediate There are four basic steps in extracting straight lines:
representation of edge/line information which allows high-level
mechanisms efficient access to relevant tines. A more detailed 1. Group pixels into edge-stpport regions based on S
presentation can be found in [BURS4I. similarity of gradient orientation. This allows data

directed organization of edge contexts without
We contend that the major failings of line extraction commitment to masks of a particular size.

algorithms are twofold: the relegation of information about edge 2. Anxroximatc the inil.nsity Siface by a weighted
orientation to a secondary role in the processing, and the lack planar fit. The fit is weighted by the gradient

magnitude associated with the pixels so that
of a comprehensive global view of the underlying image intensities in the steepest part of the edge will
structure prior to making local decisions about edge features, dominate. S

.. . . -



3. Extract attributes from the edge-support region and 2.3 Interpreting the Edge-Support Region as a
the plane fit. The attributes extracted include Straight Line
the representative Line and its length, contrast,
width, location, orientation, and straightness. The underlying intensity surface of each gradient region

4. filr on the attributes to isolate various image is a candidate for a straight line structure; the key problem is

events such as long straight lines; high contrast to use this information to find the line. The positional
short lines (heavy texture); low contrast short lines parameters extracted will serve as the core of the structure's
(light texture); and lines at particular orientations symbolic description as well as a coordinate system about which
and postitions. other attributes will be measured.

2.2 Grouping Pixels into Edge Support Regions Via In this section, we will examine a simple process for
Gradient Orientation computing the parameters of a planar fit to the intensity

surface of the pixels in each edge-support region. The region

Figure 1 shows two representative images used to depicted in figure 3(a) and as dots in the surface plot of figure

illustrate the process. Figure 2(a) is a surface plot of a 3232 2(a) will serve as our example. Note that it includes pixels

subimage from another house image; results for the full images outside the group of gradients depicted in figure 2(c), since the

are shown in subsequent sections. The vector field drawn in two-by-two masks incorporated them in the gradient estimation.
figure 2(b) shows the corresponding gradient image where the Haralick fHARS1] modelled the local intensity surface in the
length of the vector encodes gradient magnitude. The gradient neighborhood of a pixel as a planar surface patch called a 0
estimates were formed by convolving the image with two-by-two 'sloped facet'. This planar fit served as a model of the

edge masks (figure 2(h) inset). Note that the sign of the region structure and was used to determine if the pixel was at

gradient is relevant, a region boundary or not. In our application the planar fit
will be applied to all pixels in a support region instead of an a

An extremely simple process was employed to group the priori fixed geometric configuration. If a direct least-square

local gradients into regions on the basis of the orientation planar fit to all pixels in the support region is computed, then

estimates. The 360 degree range of gradient directions is many pixels which might be at the tail of the intensity change

arbitrarily partitioned into a small set of regular intervals, say could dominate the fit. Therefore, the pixels were weighted

eight 45 degree partitions or sixteen 225 degree partitions. If by local gradient magnitude to enhance the effect of points

our conjectures about edge orientation are correct, then pixels near the edge center.
participating in the edge-support context of a straight line will
tend to be in the same edge orientation partitions and An obvious constraint on the orientation of the line is
adjacent pixels that are not part of a straight line will tend to that it be perpendicular to the gradient of the fitted plane. -. .

have different orientations. A simple connected components Thus, this leaves the problem of locating the line along the
algorithm can be used to form distinct region labels for groups projection of the gradient. A simple approach is to intersect
of adjacent pixels with the same orientation label (Figure 2(c)). the fitted plane with a horizontal plane representing the average
Note that in Figure 2(c) the great degree of fragmentation into intensity of the region weighted by local gradient magnitude as

many small regions of very low gradient magnitude could be shown in Figure 3(b); the straight line resulting from the
grouped into a homogeneous region later, rather than intersection of the two planes is shown in Figure 3(a).
interpreting them as edge elements. 2A Extracting Attributes of the Support Context

To make the fixed partition technique more sensitive to
edges of any orientation, the current algorithm uses two The gradient region and the planar fit of the associated
overlapping sets of partitions, with one set rotated a intensity surface provides the basic information necessary to
half-partition interval. Thus, if a 45 degree partition is used quantify a variety of attributes beyond the basic orientation and
starting at 0 degrees, then a second set of 45 degree partitions position parameters. Length is simply the distance between the
starting at 22-5 is also used. The critical problem of this two endpoints. Other attributes of the line include properties
approach is merging the two representations in such a way that of the intensity profile perpendicular to the line and its
a single edge is principly associated with a single gradient behavior along the length of the line. Analysis of the profile
region. The following scheme is used to select such regions for of the line can provide a measure of the edge's contrast and
each edge: first the lengths are determined for the regions; width (fuzziness), while behavior along the length determines it's
then, since each pixel is a member of exactly two regions (one straightness; see [BURS4].
in each segmentation), the pixel decides which one provides the 0
longest interpretation; finally each region counts up the number 3.0 EXPERIMENTAL RESULTS
of pixels within its boundaries that voted for it as opposed to
regions of the other segmentation. The 'support' a region is The algorithm described 'n the preceding sections was
given is the number of votes for it over the total number of applied to the full images shown in Figure 1. The algorithm . .
pixels in the region. The regions selected are those that have a utilized overlapping partitions as described in Section 2.2, the
majority, ix., the support is greater than 50%. For further partition size was 45 degrees, staggered by 22.5 degrees.
discussions on grouping see [BUR84]. Figures 4-5 demonstrate the performance of the algorithm.







MATCHING CLOSED CONTOURS'
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Index terms. Image analysis, Contour matching, Segment simulated closed patterns using polygonal figures. McKee

matching. and Agarwal [2] looked at matching with only partial views
of objects. They developed a measure to define how well

ABSTRACT two curves match. Martin and Agarwal [3] used curved

Many object are recognizable by outlines of their two boundaries in their studies of dynamic scenes. Davis [41

dimensional projections If there are distinct features, the and Davis and Henderson (51 explored the use of relaxation

position and orientation can be determined, even when matching for shape analysis. The first paper recognized

there are substantial occlusions or additional touching islands based on their outlines, and the second combined

objects. Contour matching has been used for a variety of relaxation and syntatic methods for recognition. Bhanu [61

tasks by other researchers We present a simple algorithm looked at contour matching of closed contours using a

for matching linear representations of closed, or almost relaxation technique on the piecewise linear representation

closed, boundaries of objects Arbitrary changes in of the boundary curve. Ayache [7] has given a method for

orientation and position are allowed along with occlusions, accurately locating an object in a scer, where there is

Unlike many other methods, no relaxation (or iterative substantial occlusion (or additional metal on the object

updating of the match rating) is necessary A complete - metal castings) using matches for key segments to force

system which uses multiple resolution representations the locations of other segments. Line segment matching,

(currently three) has been implemented and tested on a without considering closed contours, has been studied by

variety of scenes. The results for the general matching Clark et al. (81 for aerial views and Medioni (91 for stereo

problem (determine if two contours can match and how to pairs. Here we have ignored the use of global boundary

transform them to best match) are very good. Further description:, since they tend to not work well with

work remains in using this method for identifying very occlusions and missing parts.

similar objects, but for distinct objects it currently works The matching method we present here is an attempt to

very well. be more general in terms of the type of potential tasks ...

and computationally simpler than previous methods. The --

1. INTRODUCTION previous work has shown that corresponding segments in

Two dimensional projections of objects are sufficient for two views can be computed reliably and used for

many recognition tasks. In industrial automation recognition or object matching. Also, it has shown that

applications, many oblects have only a few stable some correct corresponding segments can be located by -•

positions. For sequences of images of dynamics scenes, simple, rotation invariant, features of the segments. but

the 2-d prolection of the objects does not change these features give many extra matches The most
significantly from one view to the next important consideration for matching closed contours is

The outlines of the object often provide sufficient that the order of segments in the two views must be the

" information for recognition With occlusions and missir same (or in strictly reverse order if mirror images are

pieces, we can expect only a portion of the outline to allowed). This last property was important in (21 and [31

match in two views of an object In this paper we will and was also used in [41. [51, [61. and [7]. 0

concentrate on using closed outlines of objects for

matching, but the main ideas should apply to matching 2. ALGORITHM DESCRIPTION

with long curves which correspond to only a portion of an Rotation invariant features of line segments include the

object line segment length and the angle between consecutive " "
A variety of contexts have been used to study the

problems of matching closed boundaries There is a
segi ent in one view can readily match many segments in

series of papers [1.2.31 which report on a different another view But a consecutive sequence of border

techniques for recognition and motion analysis. Chow and segments in one view should have few matches with
Aqarwal [1] used contour matching for studies of semnsioevew hulhaefw ates ih

consecutive or monotonically increasing sequences in the
other view Rather than comparing sequences of boundary

T'his research was supported by the Oefense Advanced Research segments, we will compute the potential matches and look
Projects Aqencv and nonitored b, the Air Force Wright Aeronautical for sequences.
Laboratories under Co tract No F336 f5 82K - 1786, DARPA Order No
3119
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2.1 Boundary Descriptions 2.3. Initial Matching Sequence
The images are of a variety of small tools on a light From the pair of initial matches we search for the next

table for a good contrast, but the clear handles of some of (or previous by searching backwards) matching segments
the tools do not always have a sufficient contrast between using the disparity array We look at the diagonally . -
the objects and the background The objects are extracted adjacent segments next (increment both by one) then theusing a simple threshold to separate them from the bright points off the diagonal. In the following S
background The boundary of the region is transformed
into a sequence of straight line segments by a procedure X . . "
originally developed for sequences of edge points [10]. 8 5
Figure 1 shows the segment representation for two views 2 1 63
of the nine oblects The accuracy of the line segment 7 5 l 1
representation is controlled by a parameter which gives 4 2 0 9
the allowable deviation of the individual points from the X is the first point located and Y the second. The search •
straight line segments Three representations are starts at 1 then continues at 2. 3, etc, after 9 we continue
generally computed corresponding to a deviation of 1.2 (1 at 0, 1, . This search continues until another matching
has an anomalous behavior), 2 and 4 Each boundary is pair is located which has an orientation difference close to
represented as an ordered sequence of these line that of the first pair The threshold for close is the same
segments with length and orientation for each. Figure 2 as was used as a limit on the difference between theshows the two lower resolution segment representations angles of segments and their successors Gaps between
for the image in Fig ta Segments are numbered in order the last match and the new match are filled in as matches ,
around the boundary, thus consecutive segment numbers when the new match occurs along the diagonal, i e both
correspond to adjacent segments in the boundary These sequences skipped the same number of segments.
segment sequences are called families. Each family All possible sequences are located in the two families. If
corresponds to one region boundary with separate families the longest sequence has enough points (5 for cases
for the interior boundaries of holes Several families are where good matches are expected 3 as an extreme where
included in the description for an image, with each family nothing is known) then this set of matching segment pairs
matched separately is used to determine the approximate transform to align2.2. Initial Matching Segments the two families If no long sequence is found, then there

The matching procedure considers two families at a is no match for these two families The transformation is
time, one from each of two images Each segment in the one which will perfectly align a pair of matching
first family is compared with each in the second family to segments This pair is the one near the median
determine if they i:an possibly match. If they do match, orientation difference (computed using the length of the
then the orientation difference is stored in an array segments as weights), which is longest and where both
(indexed by segment numbers), called a disparity array segments of the pair are close to the same length That ......
Possible matches are determined by comparing the is, starting at the median look for the longest segment
segment lenqths and by comparing the angles between where the ratio between the segment lengths (short/long) . -
the current segments and their respective successors is greater than 0.8. The best two transformations are used
Both of these tests use a threshold chosen by the user for the transformation refinement (along with the best
The length threshold is a multiplicative factor greater than transformation from the second longest matching
1 thus we can use the test sequence - if it is close (0.7) to the length of the longest

one) This transformation only applies for mapping -I Il t < L(2) < t1-)'t between the given pair of families, there will be many

such transformations in the final complete match
Athere I (X) is the length of segment X and t is the
threshold At this point the length restriction is ,evere

iround 1 3 The angle difference threshold depends on 2.4. Transformation Refinement
the resolution of the line segment representation, ranging Two (or possibly three) transformations for a pair of
from 90' for the lowest resolution version to 450 for the families have been generated which must be compared to
highest select the best. With a known transformation, we use

Each segment will have many possible matches using different constraints for computing matching segments A
these two criteria, but there should be very few cases possible match is indicated if the segments overlap in
where several consecutive segments in one image match position, or nearly overlap, and the orientations are similar
consecutive ;egments in the other all with similar (900 for short segments and 200 for long ones) - after
orientation differences. Figure 3 is an example of the data the transformation has been applied to the segment in the
in the disparity array, values are not given, just the first image Figure 4 shows the matches for the
locations with matches Thus. we need to find long transformation generated by the longest and second
consecutive sequences Of matching segments As the first longest sequence from the data in Figure 3.
step, we find two matches. n with m and n+f with m+1 Using each of the possible transformations, we compute
These two matches are used as the starting point for a the set of initial matching segments and find the longest
simple search to find a long sequence of matches where sequence of matching segments by the same procedures
gaps in either sequence are allowed 
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as above A disparity value (Euclidian distance) is stored of segments be forced to match? What transformation will
n the disparity array and is used in the search for long align the view in the first image vvith the second'

sequences Since a transformation is applied to segments Because we wish the program to work even with
in the first view the disparities should all be near zero. occlusions. tne prcgram will indicate a match when
but the matching ideas here are more general and can be presented two partially similar oblects If the task is
used in , stereo problem where there is no orientation recognition then an evaluation of the match quality is
transformation and similar disparities are used to separate necessary to determine which identification is best In this
various possibilities. The search for long sequences paper the results are for a basic matching task, not
allows wrap around matches - if one sequence hits the specifically recognition, but we do evaluate the matches
end of the sequence it can start over at the beginning and eliminate those which are much worse, based on
while the second only increments by one number of matches, total disparity after transformation.

total orientation differences, and total successor angle
difference, than others for the same family 02.5 Hierarchical Matching The input images are of a set of tools (two pairs of

Multiple resolution segment representations help improve

speed and accuracy The time for Matching of two pliers, two small screwdrivers, one longer one with a
similar handle, one large screwdriver and one short, fat

families depends on the number of segments in the two one). A mechanical pencil and a fountain pen were also
families, but the alignment is best when the segments included These last two had fewer segments in the
very closely follow the contours of the object We apply representation and, in some cases appeared as mirror
the two step matching procedure to the lowest resolution images and thus did not match as reliably Two views of
representation and obtain a set of matches for many of age nd ts did no machsas relia Tois oall nine objects, with no occlusions, were taken, plus two
the families At the next higher resolution we use the more views of a subset of the Oblects and six other views
known transformation as the starting point and apply the with a variety of occlusions The exact segment to
transformation refinement operation twice (The second
step primarily finds which segments match with the segment match is not important since some segments

updated transformation rather than a more accurate only partially match, therefore, we will present the resultsaspoutlinesataenofromithe fisteimagesntranformedctorlin

transform and is primarily for display purposes.) Families as outlines taken from the first images transformed to hne
up with the objects in the second image 5

which had no match at the lower resolution are processed Figure 1 shows the outline of the two images with all
the same as at the lowest resolution - find initial matches objects and no occlusions These two images are
using the length and angle with the successor, then refine matched with all the others (including with each other) in
the match using position and orientation.-" our experiments Even though the images were digitized

on a light table to obtain near perfect outlines in some

2.6 Matching Summary cases the clear handles of the screwdrivers cause
In summary, the matching procedure can be described as problems. Figures 5-10 show some of the results -

two passes of two processing steps applied to each pair - selected to show successes and problems

of families 3.1. Evaluation
The program locates most of the correct matches and

Pass 1. step 1 Compute likely corresponding segments by many of the extra matches are with very similar objects
comparing all segments with all others Use The differences between the two small screwdrivers are
segment length and the angle between a segment very minor and the handle of the long bladed screwdriver •
and its successor to determine the match is almost the same as the two small ones so these three

Pass 1, step 2 Locate sequence of corresponding often match all three possibilities (see Figs 5 and 6) In
segments where the segment number increases Fig 5. there are three good matches for each of the two
monotonically in each image Use these sequences small screwdrivers and two for each of the larger ones".
to determine a good transformation to map one set These are valid since the handles are very similar Both of
into the other the pliers in one image match with both in the other since

Pass 2. step 1 Using the transformation compute a new then handles are very similar Many of the 'incorrect'
set of likely matching segments using segment matches can be eliminated by (:hoosing only the best

position and orientation match, but this also means some (orrP(;t matches Ire

Pass 2 step 2 Locate sequences of monotonically missed When two similar objects occlude each other the
increasing segments and determine a new match for both may be with the same sequence In Fig 7
transformation both pliers match with one sequence because this was the

best match at the lowest resolution The same is true of

For multiple resolution data, Pass 2 is repeated as Pass 3 the group of three screwdrivers where all matches are •
with only one of the objects Figures 8 and 9 show that,

and 4. to determine corresponding segments at the higher in o e of the objects 8 ho that,
resolution and yet a better transformation,.in some cases, the overlap of similar oblects (the pliers)

does not hurt the match Round objects can cause
difficulties (even when there are small well defined 'ears")

*.RESULTS since many different rotations will give equally good
This matching program is intended to be somewhat matchs. We show no examples here, but we encountered

general, it answers the two questions Can these two sets this problem on an earlier similar data set and mention it S
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Interest Points. Disparities and Correspondence •

Amit Bandyopadhvav

Computer Science Department
The University of Rochester

ABSTRACT implemented in parallel. Then interest points are -.

matched to obtain disparities. The matching algorithm
Matching feature points is a reliable wa for measuring uses heuristics that are compatible with psychophysical
image disparities that arise in case of stereo or images of observations of the visual mechanisms in man and - -
time %arying scenes. To do this effectively ve require a animals (e.g.Ramachandran & Anstis 1983). S
means of isolating the feature points. Here we describe a
simple scheme to deteci such interesting points in images. 2.0 Computing Interest Points
A correspondence algorithm then assigns matches based An interest point is a point in the image (actually a
on local consensus. Fxperiments show this scheme to be small neighbourhood) that has properties that distinguish

, robust and widel. applicable to photographic images of it from its neighbouring points. The properties in ques-
natural scenes. tion may be simple, like gray levels, or sophisticated ones , .

indicative of the local topography of the imaged surface.
Previous approaches to finding interest points are

1.0 Introduction exemplified in the work of Moravec(19'71.Kitchen &
Image disparity is the displacement of the image of a Rosenfeld(1980) and Nagel(1983). The above approathes

world point due to a shift in the camera position. Meas- utilize operators that are nonlinear and sometimes require
urement of disparities used in for computing depth from computation of higher order spatial derivatives of thc
stereoscopic image pairs or for anal'.zing motion from image function. Another method is a locatonwise 1'po- _
sequences of images of a dynamic scene. In the case of logical classification of the image function. However.
motion, given a sensor with high temporal resolution and topological analysis is computationally expensive. Furth-
good spatial acuity, one can compute instantaneous ermore, this method has to deal with the Hessian of the - -.

motion disparity using spatio temporal intensity variation image function at every point. Hence. it is also inherently .

and assuming smooth motion and illumination constancy. unstable in the presence of noise. A crucial observation
Such techniques are, however, largely untested in images [Brown 19801, is that. interesting patterns in the image _ ..

• of natural scenes. can be thought to have a sharpl% peaked autocorrelation

some measure of success in the case of both stereo and operator which selects image locations %hose autocorrela-
motion. Two problems with this kind of technique are tion decays sharply with increasing eccentricity. This
expensive computation (for correlation type of matching) could be implemented with great simplicity if we could ..

and large computation time (for matching with iterative design matching templates with the above property. How- -
improvement or relaxation). The first problem leads to ever no constructive algorithm exists to construct this type 0
hardware complexity and the second detracts from real of template. In any case, sharply diminishing autocorre-
time applications. lation is a desirable property for operator templates. and

it is useful to bear this fact in mind.
he approach outlined here is an attempt to com-

bine the benefits of both correlation type of matching and The location of interest points is the first step in
relaxation type of technique. Our algorithm does not tackling the so-called correspondence problem. Hence the
correlate image patches, but first isolates interest points in operator must satisfy 3 requirements: - "
the images by simple linear convolutions. which can be 1. Selected points must be sparse

2. Contours must be suppressed
3. Interest points should be, stable across frames

r'he orthogonal decomposition technique descnbed subse-
quently, is an attempt to satisfy the above requirements.
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The method described here is computationally = rI': f 1I)

simpler than the prevalent techniques at locating interest-
ing points in images. The image function is decomposed The purpose of this transformation is to obtain an imae-

into a weighted sum of basis functions. The central idea code whose components correspond to the degree of 6

being that if the basis is chosen with care, then the distri- match between the image fnction and the feature otin.-

bution of the respective weights indicates the nature of tions. In general to compute the transformed 'ect "

the image function directlh. A similar approach can be from r requires the solution of simulta eous linear equa-

seen in the literature in other image processing contexts tions. However, computation of the k component of ' ."-"-

[Frei & Chen 1977,Hueckel 19711. A pleasing aspect of becomes simple when r is orthogonal to the other basis ."- "

this design is that there is neuro-physiological evidence to bectors in the set {f}. In this case, o he from equa-

support our approach Hubel & W iesel 19591 tion (1) 
. .. -sf

2.1 Preliminaries

The image .. i n is a three dimensional function. r, ,rI 11.

However, we concern ourselves with a time slice of this In particular, if the basis vectors are chosen so that the%
function at time = i. thus obtaining a two dimensional torm an orthonormal set then

function Ii ..A) = ./(Ax,, .f = ,,•

An image vector at a location ,x., is formed b. con- Since the image vector is finite dimensional we can

catenating the rows of the following 3 x 3 image patc.h design a orthogonal basis set for the space of the image

/Ix-l.v+I) /( .y+I) /(xi-l..+) vector. In addition, this basis set is constructed in such a
10-1.tA.V xi..) way that the each basis corresponds to a feature primitive.

/ -I.?,-I) I.-l) (Ax+l..r-)I Thus decomposing the image vector in terms of the new -
basis would give us a new set of components (or weights) •

* .. Fhe the image vector r belongs to a 9 dimcnional indicating the strength of each of the features represented

Vector Space defined over the Real field, by the respective basis vector.

= : Il, ' .,.. QId 2.2 Selection of the Feature Basis

tiwhere I is /(--l. / is Ii .)-1) and so on. alterna- The set of basis functions in our model is built

timely around feature primitives like edgema.xima/minima and .

= 'kek saddle type variation. Since the image vector is nine

dimensional (i.e. the operator size is 3x3) there are nine
where e, is the k" column of the 9x9 identitv matrix, elements in the feature basis space. There are man ver-

The image vector as defined previously, is represented sions of edge masks of which the Sobel masks have been

with respect to the basis le, 1. The components. therefore, chosen. The maxima/minima feature is represented by

by themselves do not convey any information regarding the laplacian centre/surround operator. There are three

the local topography of the image. saddle type primitives. Finally, the basis is completed by

When we define the image in this manner, the two edgelike masks and an averaging operator to capture

operation of convolving the image with a given point the dc intensity. The image space is thus divided into

spread function or correlating with a particular feature three stibspaces:

template can be expressed with respect to the %ector inner I. The Extremum subspace defined by the laplacian

* product. Ihus convolution becomes and saddle masks. d

2. The edge subspace. -
1 3. [he average ( or dc) subspace.

where is the vector representation of the point spread
function and t is the image vector at a point. 1 2 1 0
With the above interpretation in mind we freely inter- 0 2 0 -2

change the terms function and vector in subsequent text. 0 1 0 -1
More importantly, thinking of point spread functions as
vectors allows us to transform the image vector into
different finite basis space corresponding to the prototvpi- 20 -1 2
cal features that %c are interested in. This transformation -

is wrought b a non-singular matrix F whose columns are .'"

the teature hasis %ectors if Thus the image vector is 0 1 2 2 1 0

transformed into the %ector w where Ilk
The Edge Basis Functions.

*''."*,...- .....................



for every interest point in the first ftame do
find the point in the other frame that best matches it.

-. TId-iin-ue i -e frs'o p
0 1 0 Fhe important parts of this algorithm are

I. The decision rule in the first loop.." ' .- :

1 0 1 1 -1 2. The matching method in the second loop. .,','."

0 0 0 -1 These are related since a stringent decision rule mas ".-. -
1 0 -1 1 -miss many good interest points in its effort to maintain

sparseness. On the other hand, if the matching algorithm
The Extremum Basis Functions. is relatively sophisticated, matching labelled points, then •

the decision rule need not be sophisticated.
Some examples of decision rules are

1 (1) Projection of the image %ector onto the extremum
1 1space is greater than the projection onto the edge

space. Erf ,
etrenmm -dce.•

(2) Of all the image components in the feature space.
the one corresponding to the laplacian basis is theThe Averaging function. aiu."' "'

* maxim um.

3.0 The Matching Algorithm (3) Either rule I or rule 2.

- he corrrespondence problem is almost universally (3) Rule 3 with the proviso that if there is a clear max- -

regarded as difficult. As mentioned earlier, it arises in the imum in the projections then it is not onto one of •
measurement of image disparities. The problem is the edge space bases.
magnified in the case of motion since the disparit in this The matching rule is then formulated according to
case is not constrained, as in the case of stereo disparit\. whether the points are labelled or not. In case of unla-
to be parallel to a base line. The overall scheme is sim- belled points
pie: select interest points in image frames and then decide All neighbouring points support (vote for) a particu-

P which point from one frame matches another point from lar disparity value. Similar values support each other
the other frame. If it is possible to obtain interest points in a local region. Shorter length disparities are pre-
that are sparse then correspondence is not dilficult. Here ferred.. A point adopts a match for which it finds the
sparseness means that the average disparit. value is maximum support.
smaller than the average spatial distance between points
in the same image frame. One way to obtain this, at the The strategy is similar in spirit to the more sophisti- - •
cost of losing accuracy, is to operate at multiple resolu- cated matchers, for instance, those using labelled points
tion. This means that the algorithm is applied to images (e.g. Prager & Arbib 1983). In our case the points carry athat are bandpass filtered and sampled by different reso- label which is computed from the outputs of the nine
lution grids. A better, albeit costly, way is to use correla- basis operators. The label is a code that identifies the
tion of iniage patches as a measure of the closeness of image point in question. Now the matcher weights the
match. This again is prone to error due noise or due to "supporting" votes according to the similarity of these
variation in the average intensity in corresponding regions codes. However, we avoid iterative refinement, which is
in the image frames. Another source of confusion is a common in similar algorithms (Barnard & Thompson S
contour - giving rise to what Marr & UlIman call the 1980).
aperture ptoblem [Marr & UlIman 19811.

4.0 Conclusion
The outline of our algorithm is as follo.hs :- Fhe experijnents that we have conducted so far

encourage us to pursue the orthogonal decomposition
for both image frames do method for selection of interest points. The algorithmic

for every image location do design of the correspondence scheme is biologically
begin motivated. The advantages of the method are that it is

not dependent on illumination constancy, it eliminates
decompose the image into components with respect to contours and that it is implementable in parallel
normalised feature primitive basi. hardware.

decide whether to select or reject the point.
end
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A THEORY OF LINE DRAWING INTERPRETATION

Jitendra Malik and Thomas 0. Binford

:% Computer Science Departmecnt
Stanford University, Stanford, California 94305

Abstract Segmentation into individual bodies and identifying
This paper describes a theory for interpreting line drawings. support edges is an essential component of interpretation........ .....

*Line l)rawings are considered to be Image Structure graphs but needs to be done in a general way as opposed to ad hoe
derived front the imiage by segmentation and aggregation heuristics which fail irretrievably in utaliy situations.
operations. The goal of interpretation is to hypothesise a Line labelling using a predetermined junction catalog

* correspondinig spatial structure. Inference Rules are derived cannot dleal with scenes which violate the assumptions on
froin geoinetry and six additional assumptions. These rules which the scene is based. Also, interpretation involves more
are applicable for scenes with curved ats well as planar sur- than line labelling-it includes estimates of metric infor-
faces. A control structure is sketched which works oil a least mation. Gradient Space, while it permits quantitative in-
comm~itment style of reasoning. The approach is illustrated ference, siuffers front another fatal flaw--as was shown quite
with it worked out examuple. strikingly by Draper in his thesis[5}, there is a combinatorial

explosion in number of 'bizarre' spatial interpretations pos-

1. Introduction. sible for a given line drawing. By bizarre interpretations we

Tli-. paper describes a theory of line drawing interpretation. mean physically realizable configurations which could give

Section 2 reviews past work in this and related areas and at- rise to thle line drawing, but are not usually perceived by

tempts to characterise the limitations of those approaches. a humian looking at the scene. Instead, the goal of human

Sect ion 3 describes what kind of input we expect front the vision- and good mtachine vision -is t~o lind] one or two (in tile

lower level processes. Section 4 describes the output rep- Case of certain well-known illusions like the Necker Cube)

reseniation. Section 5 develops our world-view-- what kind mutpasbeiereaio.
of objects are permitted in the scene (liven this, we ex-Ietcino"mpsbl"bets()sntapray
haustivclv chiaracterise all that can possibly appear in thle ga fvsa rcsig h iim ytmadayueu
line draiwing, Section 6 states six assnuiptions which seeni coptrvsnsyemdaswhiagsfralbjt.
to he the key to the process of interprett ofie draw- Line drawings canl he imipossible to realize as objects un-
igs. Section 7 has some sample inference rules. Sectioni 8 der "reasonable" assumptions. Failure of the initerpretation

I discusses conitrol structure aspects. Section 9 has a solved process to resolve inconsistency results in the detection of
exaiple to illni-trate thle app~roach. implossile objects.

(Comtput er 6oip Ic ic itat ioni of tmis the o ry is uinder way P resenlt techniiiqutes used to finl op timn it i 3-1) shapes
withI a progral i cal led lMt SHI ' correspond inig to siingle isolated contours ignore cites in tile -

line drawiiig frin othler areats, interior culrves, aiid jlioc- -

2. Ri-view of l'nst Work.tionis. P sychtological e-xperimenlts have shtowii the priit ili- -

2. eviw o Pst ork prtance~t of these othier cies.lIn Copuer Vision, initerpretat ion of line drawings Itas Teohrobeen 1iknto nhe mat difeen ehigs ojectives are all slibsim ited iii on r frame-

b. een ito int ianydilidIeut tomins.(ui 7) work in a c lean waly as opphosedl to ad hoe technIiqules used
1 Sei~inl it wt ito ndiidua boies(Cliinal 11). ill previous work.

2t. lIdeif lO~en usingo edIa let ion u 1a .lo 6 hittta!. l

K ( '~lowve I, Wilt zi I31) or Gradieiit Space Hieasoiiing 3 tutr rp

1 Viuuhiiig %%iethier thle line drawing dlepicits an "i;npossi- Thli Imiage St ruc ture graph is obtio'u frumnitle iiage by-
lhe" ohujcc t (%\lackworthl Ill). qcgiiientatioii and aqggi-iat ioil operattiuons. l-'dge mu1 ing andI

* ~~5. l'itnling ''0)11ininii" three diiiieiiomial shuape corres- linikinlg, hIegion growing, C'orner Iiuint, P'ercepmtual organi-

)lonin I o aI t 1sinlte isola til iiiage c ouito ir (lar row aind zat tol are soit ICsuich processes. We p refe r the terni Image -

i' I iCit u, i IB rady aii ii ii lc :j), St ruct ure? Graph to thle ter nii ine dret a' m n as it is miore sug-..
* 0~~6 Ittfer r ing 3t I)struic tolr fron non 101-aO ci ilen tal reg ii Ian ties ges ti ye andl inid icates at relevance to general v isioil There

iii tile iiteu r'y skewed syiiiitis, pl rallkl(RKiadlktIJ ,~imay be iiiuiltiple iliage structures for a Ilurtioli of an imlage
Blin ford 12, Lowr and B ii ford 1101). corrspoin g to hierarceis of description.
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The nodes of the Image Structure Graph are discrim- centered fraine or viewer-centered franic. H-eights of objects
inable points, curvcs and arcas; the arcs arc of two kinds- may be most conveniently expressed as above the ground
t-arcs(for topological relationships) and g-arcs~for geouiet- plane whereas a limib boundary of a surface element is spec-
ric relationships). The t-arcs are of four kinds-bounds ified relative to the viewpoint( line of sight grazes the surface
and is-bounded-by which have an iaverse relationship, inte- tangentially along the limib) These estimates may be very-
rior and exterior which have an inverse relationship. The sketchy and can be refined by other shape-fromn processes.
g-arcs are used for representing relationships like paral-

*lelismcollineaity, symmetry etc.
These elements are found in the following way: 5. Modelling the scene and the projection procesf

1. Discriminable point. In the image structure graph, The scene consists of objects which are connected volumes
it corresponds to either a tangent or curvature disconti- bounded by smooth surfaces. A smooth surface is defined
nuity in a piecewise smooth curve or to the intersection as one which has a unique tangent plane everywhere. The

- t-of two or more image curves or the termination of a points on the object where there is no unique tangent plane
curve. are either isolated points, eg the apex of a cone, or curves-

a2. Curve. A curve in the image is the output of edge where two smooth surfaces intersect, eg the edges of a cube.
finding and perceptual organisation processes. These curves are true edges- there is a discontinuity of sr-

3.Area. An area in the Image Structure graph is a con- face orientation across themi.
nected subset in an image. It is defined by its boundary. We use at very simple model of illumination- diffuse

lighting and nospecular surfaces. Interpretation under
lInertmore complex lighting conditions giving rise to specular-

4. Satia Inerprtaton Gaphities, shadows etc requires more inforiiation,eg brightness
*The nodles of the Spatial Interpretation Graph correspond to values, than are available in the limage Struictuire Graph.

elements of the scene in space-- surfaces, curves and points. Incorporating these will be the subject of future work.
These are not the same as inmage struch res. We ute the Thec various eleents of the image structure graph orig-
notation aP,,C,, A,) for image points, curves and areas re- mein in one of the following three ways: e
spectively. For scene elements we use { Smon for scene . Projection of a single smoth sinaice. A single smooth 
points, curves and surfaces. rhere may bc scene clemnentse surface projects to at area. P farablic lunes on the stir-
hidden surfaces, which have no corresponding elements in face which correspon to the transition, between elliptic
the liniage Structure Graph. an d Ihype rbolic patchies, in ay po ujec t to sign ilicaitt in-..-

A surface elent is a sturface or stirface leiient re- teriur curves in this area. the iny other elients of -

stricted by a oudary. A sutrface Seicot is represented as th e image structure graph which can resuIt froit the
t d strface and t botiniary or is poiit set operations oi sur- projection of a si oth surface correspond to tie sin-

- . face elemnents (union, intersction, iffereince) . The bound- gularities of the vistial mnappig. These call only be
any is a spare curve which may be null. The suirface is also folds and cusps[Iulr. Cusps are isolated points. Folds
typically a boundary of two volnunes. have traditionally beeun called limbhs or apparent edges ~

A siialar representation holds for curves, surfaces, vol- in visimi literatire.
tumes, and ly per voloiites. In each cease, tle bndlary has 2. inersection or two or more sinfoati so brfaces. Two in- " "
lower diimie nsion . I-or exaiii ple, a ecurye elmii enit is at cirye tersec tin g surface's give rise to a true edge. Thiis ei ther
restricted by a boundary, i.e. a set of points, or by unions, represents a discoiitciinuity of stircSt orientatio across

eintersections, and diferences of c curve leents. it or a crack betweei two diert objects. Three or
In addition to arcs fron a node poiinting to its bound- inre strfaces iitersecting at a point in space gives rise

aries, there are also arcs poitiig to the noive/s of which it is to a jiniction. Edges which are space curves give rise to
a bouinday . Also at tac es. to each de is a set of geoimetri- liscriiiii ale points co respO ling to tani genit or cur- . - -

cal properties like position. dirett n(for cirves), orientation vatd iip discolit iit'iies oul toen
(for surface clentents), curvature (for cirves and surface el- 3. Occision. To cat alog exa istively all the pheono-
elements). These iay be specified either in ceu environment- ena we first observe that in n-dinTensioal manifold
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can occlude only mianifolds of n dimniisions or less. A 3. Suipport. The scene consists of objects which are in
* ~~~poin t can occludi~e an otheir poIint only unod er a specijal physical equililibriu iiri (a) the resuti tant of tire bod(y 's

view point- ticclod ing point, occluded point, observer in wegtadterciosttrepnsoftpotae
hel( samle S tT ri'o lit ic Se imnilarly at curve canl occlu de wer b lit e nte roeatn abt h po ints of siip port arc

* ~~~an otheir cu rve o r a poo iint on n miier ,pecial vieCwpint. zero. F~rom thItese phlysical cond itions a set of inore us-
If tire iciluijiirg mianiifold is a surface, thin we hiave able rules can lbe (lerivul. Itr is ,- inicd that the direc-
three cases. A surface occlmoling at point, results in its tion of the gravity vector is known.
a hisen cc inl the imiage strulc tutre graph. The occlusion 4. F~requen t Str mt tire s/I? ia tioniships. lit both natuoral
of a curve lby a surface in tie scene gives rise to (a) at admi aeseecransa a aainhislk

T-ilcion itm1 on visibile segmrenit or(Ib) two back to rectangularity, symnmletry anid verticals occuor with iback 'l-jiuict uris arid two visibile segiii('rts or (c) coil- imuichi hiigher freqirentc y thian piirely by chiance, Tire
p let e alisetic e of any cor respomndinrg elemiien t in thle im-i physical reasons for tliis are riot too hard to sec. Trhis
age stru titre graphI. Thie oc clui on oif at surface S, liy a eniabiles us to do quasi I ayesian reason inrg and infer the
si irfac e S2 giv~es rise to ii()t lie( e lerment s assoc iated withI

Ii uccliis n f tlieen ys if S hi S. aii (b aras presence of thiese re lat inshIipsj if there arc siipp ort irigth ccuio offl.uvso lb . i b ra scenes. Tbhis is biest cx plain ed with itle hiel p of art ex-
correspioninrg toi the irriicc bulei part s iif Si. These are amiple. A ii orthlogonal tn i il ral vertex (( ' TV ) iii the
* de lii ed Iw t Iie cii res frot (a).scene prjec~ts eithlier to ain ar row or at Y -jitic tioni whIiich
Becaiuse of tilie liiiit-e resoltioni of rmeasurinlg devices, satislies the P~erkinis criteria i" cu)s 0cos 0"cos 03 < 0

solid objects mray degenerate into lamtinae or wires in the where 01 ,02, 03 atre thle angles between the rays in the0
line drawing. itmage. If the Per kitns c ritenia aire sat isIi ed by tlte jutn c-

tioni, tlien either it counld 1w" a gein ite ()TV or at con-
6. Iterpetaton -asicApprachfigiiratiiin of three st raight ius itt Space which just

* ~~In onrde r to intIe rplretI linie idraw inrgs it. is esseti ial to be able happens to project to ttiat i iag whicli sat isflies tlie eni-
tcarry oit tst ilt' geoiiet cri aotn.T lrvteti teria. Ilii' assutimpt ion of rectangularity is cotmriornly

* ~~a ii lty a set of axiontis, / liheorem s fronrt Euclitdeari Geomtet ry niare hty liii n rs 21. 'rhte skewetd symimitetry lieu rist ic
atnd a logical irnferetnce miuaiisit are neededir. As liroijt'tioti of Kanlade is another examiple. hniper apiplicationus of

* t~s a iiility-to-iiiie nitappplrg we nieed sonic additional assirrttp- this assuitti ion require tliMi the a p irtitroabtility of
*~ ~ ~ i t it,t facifltate Olei rercovery iot three iiro'tsitonl struc- flit, strcuo' beitig iii thte scetie lie siifficienttly high.

iurv. Ainy of (lost' ;Lisutitt iits (mtilid lie violatetd in par? ic-
uiu I imattiotis t ncy are itierely very g"Oil lieirristi" ''lie Assutriptiots ab~out, the Viewpoint.

- ~fdll II i t i e4I s ssiittirt ii tpOscs aCiitst rai uto(n n -arcciden tal Vicwpoiti . Ii t' rjirctat iotts which re-
the logical irn-etice tiich~anuismt it 'irrist lie tioniiontitonic qiuire' the viewpintt toi le frii a set with a two -
atid allow the rent reIion cit ideduItiiotis inivali ii ile pres- dlimeCn sional ineasitre of zero alt' cxc lided. Th is as-
ec co' futiihIler ev identce. These assumtio in s fall in to two sunip titin, origintal ly dute to Hu i fifman , is best illutstrated

clisses:with anr examtple.

Astimiptiorrs about tire Etivironment. C
I . up-ity. Surface's at'( opaque. This piermiits its to assign
a tiniqu te sitrfacc to alla Prea ill the imrage.

..Slidity. A ny space cuirve either bioutntts two surfaces V

oir is an interior curve ti at surface. This encourages
solitd arid latin ina inter pre tat ionrs ( A houiindlary cuirve C3of a1 lailtrina blonbgs to the two sides of a haina) atd 2
risc ouiragecs wires ill ti' l e ter' rf ad tI iitrinal ev idhence. Cotns ider I le Y-jui tcht on shown ii i tle fi grire. TIhi three

S&k(' C Sk ) A~ (c, ( Si). ItI (C, c A,,,) A (C, cr A,,) imiage curves Cl, C2 , C3 correspiondt to space curves
S~, 1 d rio neessailycrireshoti to rn,,,.C 1 c2,c3 Which intersect in space at a vertex pi(inverse
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of PI). For this to be an accident the endpoints of the 2. Edge llule. If (C, C AA) A (C, c Ai),ie the image curve

*three curves would have to be along the samec ray front bounds Ak, A& then (c, >- 5k) and (c, >- 51) ie the edge

the observer. This corresponds to a two- dimensional is not behind either surface. We will use >- to denote

measure of zero. Alternatively we call treat this sta- ti iwon-(e~nln eainhp
tistically, The two visible components of tilc difference 3. Arrow Mile. An arrow junction is defined to he one
vector are ieach where c is the size of a pixel. Given where two of thle angles are less than 7r/2 and the third

WNthis, the nmaxinmum likelihood estimate of the third corn- angle is greater than ir. C
ponent is of the order of c.

2. Teirrestrial Viewpoint. Thle scene consists of objects ly-
ing on or above a ground~ planie being viewed by an C2.

observer above tile ground plane. This assumiption, ob-
viously useful from ecological perspective for humans
anil other landbased animals is anr important conipo- Here cl C- S1 , C2 C SC 2 C S , and C3 C S2 . This

nentof ur ercetio oflinedraing. Itenalesitsrule is interesting because to derive it, it is necessary
to inivoke the notion of ininim number of surfaces* ~~to choose amiong Necker flip related interpretations,.hc a x~ai h ucin

4. T-Junction. For the TI'junction shown C2 >- cl. There
7. Some Inference Rules are two cases C2.

*We view the process of interpretation as one of constructing *
a simple explanation for the Image Structre graph. This
immediately raises thle questions- What is simple? What C,

-is anl explanation? In our view of things an explanation
is a SIG which under the projection process described in

6 Section 5 wouldl result in thle the given ISG. The notion of 1 Occlusion T junction. C2  c I1 A C2 C: S
simplicity is twofold -(a) Occani's razor "Entities will not 2 Object Alignoment S, belongs to a different. object
be multiplied without necessity" (1) Minimise the number of than S2, 53.
violationis of the perceptuiad principles stated iii section 6. 5. Liinb-T Junction.

*We dlescrib~e here some inference ruiles dleriveid front these
Cn0s iderat ions. T he Rtules for initerp ret ing the ISO can be

*part itioned into three groups:
. Assigning a spatial interpretation for each node of tie 

C2. Introducing additional constraints inl the SIC corre- C,
sponding to the g-,arcs in the ISG,

* ~~3. Making necessary geometric inferences and enforcingAlii'!unto is(enelbtefathtalte
consistency. three curves C , C2 , C3 share a coimiion tangent at P1.1Instanitiation thles. A junction~i it a iscriiiinable point -eI aib hown that c3 c 5S, r-2 ( 52 , cl c S;1.
in the image corresplondls to a un iqu iinmt in space. A

cure i th iiiag corepons t a niqe crvein 6. Continuiity Miles I [crc we (feline zeroth order'continuitycure n he mae orrspnd toa inquecuveinto be coincidence in space, first order continuity to be-
sp~ace. Ali area iii the imiage corresp~onds to a uniqlue continuity inl slope atul secoiIdlorder continuity to be
surface in space. This enables is often to use the same continuity of curvature. Ilere are the rules as they apply
indlices for corresponding structures Pi -~ pi, C1 -~ ci, to curves.
Ak -~ Sk- T]his notational convention will be used in . eohodr.Cre hc nereti h mg

* ~~the rest of the paper, unless otherwise stated. 21Art rlr uvswihitreti h mg
Thme next four rules einable its to (deduce which curves belong intersect in space.

to which surfaces. 2.2 First order. A curve which is smooth in the imiage
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is smooth in space. 161 + Ali 162 + AAz and 163 + )iz where i is the unit
2.3 Second order. Segments of the curve which have vector in the z-direction.

continuous curvature in the image have continuous Requiring mutual orthogonality implies that the dot

* The~~racorespdn g rulseso urc. eedicn products of these vectors in pairs be zero. From theseThee ae orrspndig ule fo srfaes Hee iscn-conditions and some simple manipulations we call cal-
tinuities can be along points or curves. An area which culate the formulas for
has no visible creases has smoothly varying curvature.
This provides us with a way to estimate surfaces.

(cos a) (cos c)7. Surface Estimation A surface is cstiniated by first es- Al b
-iting relative position, orientation, and curvature(csb

at sparse locations on the surface at which curves are
visible. Surfaces and curves are regarded as splines A2- (Cos)ob
through sampled points. For examiple, if C, is straight (oe
and C1 - cl then assumie cl is straight in space and
that the suirface ci lies onl is singly-curved. If C1 and A3-± (oc(ob

C2 ar srag tid intersect, then in absence of further(csa

evidecnce assume that the surface onl which thecy lie is
planar. This can be gerneralized further, ats the next Hence solutions exist if (a) cosa, cosb, cosc are all non-
rule shows. zero and (b) either one or three of cos a, cos b, cos c are

8. Coplanarity Riles. A set of straight lines { c1 ,.. .,c, negative, so that the quantities under the square root
is said to be coplanar illf ]S.planar(S) A c, E S. The sign are positive. ..

*following three riles enable uts to deduce coplaniarity: These resuilts were first derived by Perkins [121

intersect (C1, C2 ) z4cnplanar({Cm,c2}) 8. Control Structure Specifications

paraltrt(c1, r2 ) >coptanar{c 1, C2 }) Thc control problem is to be handled fly at nieta- level archi-
tectuire. A deliberation action loop is at the heart of such

(interse" (C i, C) V parallel(c 1, Ck)) A ittersect(c 1, cl) aIn approach. There are three mnain reasons why we need to

Act, C S A el S A COpI(Mfar (S) -> co7plarlar(S u {ci I Ilse maicta-level ruiles to direct the inference process:

9. Nle attachuelut If c1 , c,_ both elemnits of a coplaiar Reduce Search
set {jc,...,,}satisfy iC) ES, Ck E S for soiie lIn ordler to iimliinise search, the deductions proceed from

surface S, then C 1 , C2 . ,,c are all E S. the iuiost reliable to the least reliable. This least commnit-
10. O'1V reasoning. Suppose that soiie 3-star has angles imient style of reasoning is a miajor characteristic of human

b etweeii its rays a1, 1) aind c and also that the rays are percepmtion as p~ointed out ainig others hly Perkinsll12J. We
repreeii ed b U1 ~iinit vetors2)1,V

2 ,. Ihave foii id in ouir nu nuerou s haind sini ulatiomis that using the
following iimeta - letiristics, the gearcm is negligible.

1. histailiiite Spatial Graph from himage Graph first.

a.. ~ 2. Consider neiglhboring vertices together and prunie off
inmconsistenicies.

V'3  3. Use planarity early.

4. Use TI-junctions early.
5. Use geonictrical rules tit onice if they do not require

V2. ally case analysis.
Sinice lirojectioui is accoi 1 ishied by dropping the z- 6. Act iliuediately wlheiicver all exceptionial coindit ion
component, the vectors ill space miiust be of the form isfged

is laged



Nontmonotonie reasoning
Most of our reasoning rules have exceptions-- wires, sur- 1. Using the Instantiation Rule, A SIG is hypothesized

* face ina-rks , accidental coincidences of viewpoint etc. Thesewihpitnds1,. jegeoesc,.., 1 ,
* are detected by either detecting contradictions or by di- surface nodes Si,... ,S6.
* rect inference. Whmen contradictions are detected, a Truth 2. Using the Coplanarity rules, deduce the coplanar sets

Maintenance process gets into acio- the offending fact/s {eCsc) C,~,I, 1 } Cjji~ n
aire detected and conclusions drawn front those retracted. C)2.,c-

The Truth maintenance process can be represented by a set 3. Using the arrow rule it may be deduced that S
* of nieta rules which operate on the inference graph. The 3.1 C6, E S1 ,.,9 E Sj,cq E S2,C12 G S2 from P6.

*secondl way exceptional conditions are detected is by ob- 3.2 ell C S2 ,clo E 52,clo E S 3 ,cl 2 E S3 from Pwo.

ject level rules eg X-junctions denote either wires or trans- 3.3 C7, E Sj,cs E S1 ,cs E S.3 ,C1 3 C S3 from Pg.
parency. Here again ieta-level rules enable the retraction 3.4 cl E S4 ,c5 E S 4 ,c5 E S5,C2 G 85 from P2 .
of previous conclusions. 4. Using the results of steps 2,3 and the Plane Attaching

Inference Rule, it can be shown that
*Dealing with noisy data C6, C7, C8, CO are all C- St1

The input to our program- the linage structure Graph- is C0 , CIO, C1 1 , C12 are all E S2
oltane a teoupu o a eg-finding process which C, 1 0 C 2 ,C 3 are all E S3  .-. J

does not yield perfect line drawns ie mmyhv isn 5. The T-Junction rule applied to P4~ gives either C4 >-
segments, there may be inore than one line corresponding to cs A C4 E S1 or there is object alignment.
a single physical edge and so on. These get reflected in the 6. Consider C3. It is parallel to cj which intersects S5 at
conclusions drawim -what seemis to be a surface muark mmay only one point. As S5, is planar, cl and C3 are straight,
actually be a true edge with a missing segnment. Again this it follows that1* 3 E Sti) # C36 S 1 > GJ
can be handled by umeta-rules like -- If yonl det~ect a surfamce 7, As c1 , cl E S1 we can use the Plane Attachument rule
inark, look for t eoni'inimatin inark. A mnodel of the edge- to infer that
findiiig process is reqluiredl for this stage in order to be able C I, C.2, C3, C4 are all E S1
to spot likely errors. 8. The Perkins criteria are satisfied at thme junctions. We

can apply the O'fV Rule to (ledoce dlirections at the
junctions and from that coumpute the orientations of

*10. An Exanmple - Time cube with a hole. th -ufaces containming theum. Support on SG and using
P? 7 g Lte l'errktrial Viewpoint assi upion, we arrive ;%t the

C complete interpretation.
This example was chosen, because it was considered

C4 interesting. We have tried our approach on nunmerous other
S4 C S5 Cl cis examples, including with curved surfaces.
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ABSTRACT .
The experiments described in this paper were conducted on a 4096

In this paper we will describe a combined region and edge rep- x 4096 digitized aerial photograph (see Figure 1.1) with the goal of ef-
reseutation which is used to guide the transformation of data from a iciently extracting instances of a variety of object classes stored in the
low level representation to a flexible intermediate level of representa- knowledge base. This in fact represents a small image in the context
tion. This intermediate level of representation in turn provides infor- of digital cartography. They were performed using a software envi-
mation for the control of a multiresolution segmentation algorithm via ronment which interfaces the user to virtual processing cones through
multiresolution models. The system employs a goal-oriented focus of LISP IKOH82, KOH8$, KOHS4J. This also provides a natural inter-
attention mechanism for directing the system to examine only areas face to the knowledge base and interpretation system. The preliminary , .

where a coarse level segmentation yields hypotheses of object classes results described later represent a step in the direction of developing
being sought. The experiments are carried out in the domain of digital object and scene models associated with each level in the processing
cartography on a 4096 x 4096 pixel serial photograph, cone.

I1. Interpretation1. Introduction ..-

The vast quantity of data available in the form of aerial and satel- The VISIONS system is an experimental testbe for investigat-

lite imagery far exceeds the processing capacity of current computing ing the construction of integrated computer vision systems for image .4

environments. Efficient processing of large amounts of data requires se- understanding. The goal is to provide an analysis of images from seg-

lective focussing of expensive detailed analyses on that fraction of the mentation through the final stages of symbolic interpretation. The
irestin y cae output of the system is intended to be a symbolic representation ofmage data which is likely to contain objects of interest. in many cass ipratwr vnsdpce nteiae '

it might be possible to only roughly interpret or even ignore large areas important world events depicted in the image.

of the image. Such a processing methodology implies that goal-oriented The low-level segmentation system is responsible fot decompos-
analyses, controlled by strategies which utilize both the domain knowl-edg atnton- ing the original image into easily manipulatable visual primitives such
edge aives the goal constraints, are required. One focus of attention as regions and lines, and their attributes such as color, texture, size,
method involves reducing the spatial resolution of the data and using shape, orientation, length, etc. While initially not dependent upon -.9--
information from coarser levels to direct the proesaing at sme levels scene knowledge, the segmentation process can be made more context
We propose a hierarchical multiresolution interpretation based on the sensitive as the interpretation process continues via feedback from se-
VISIONS system architecture. mantic processes. An interpretation is created in Short Term Mai-

The most suitable methods for applying such selective processing oy by grouping the visual primitives in various ways and linking them

to imagery of this size are the multi-resolution, or pyramid, techniques to semantic labels under the constraints imposed by the knowledge

[TANS0I. Typically, from the original, large-scale, full resolution aerial base, which is referred to as Long Term Memory. This process is

image s constructed a progression of smaller and smaller images, each accomplished by applying sequences of knowledge sources which are 

covering the same extent, but at successively coarser resolution. While modular process governing the transformation of data between parties-
manyvariehave been proposed, a pyramid is lar levels of representation [PARS0. One important class of knowledgemany varitions on this strcturehv enpooeaprmdi ore htwl ehaiyue sta farl retdojc y

* ~~typically constructed by dividing the image up into disjoint, two-pixel sorethtwlbeeaiyudishtofaue-inedbech-
by two-pixel blocks. From each block a single pixel of the image at pothesis. Knowledge source application takes place under the guidance

the next coarser resolution is computed, by taking the mean or median of a control strategy and extends a panially constructed interpreta-

pixel value of the block. tion of the particular image (see HANTSc]).

The underlying computational model is provided by the processing
cone ]US574, IIAN7a, HANSO, GLA831, a pyramid structure imple-
mented as a parallel array computer hierarchically organized into levels 11.1. Multiple Ranolution Imegee and Models
of increasing (or decreasing) spatial resolution. Level i is 2 rW pixels, Object models should be represented in trms of the image events (i.e,
hence a 4006x4096 image would reside at level 12; i=0 corresponds to image features) which it is posible to extract from an image, as op-
an image of one pixel and is the "top" of the cone. Processing is ac- posed to image events which it is ia to extract from an image
compliahed by executing a prototype function in parallel on windows IMAR82. This reasonable design obervation must be adapted to the
of data at level i; data may be processed at a given level, up the cone multi-resolutiom architectures where features of size, color/intensity,
from fier levels to coarser levels, and projected from coarser levels to texture, shape, orientation, etc. for particular objects might only be
finer levels. The inter-level communication provides a mechanism by extracted at particular levels. For example, given knowledge of the
which information at coarser levels can direct more detailed processing camera position in an serial photograph, the size of a region in pixels
at Bae levels i Ike hierarchy. of a given object can be predicted at the various levels of the pyramid.

However, the type of averaging (or in general the type of data reduction
This work was supported in part by the Air Force Office of Sci- transformation) used in constructing the higher levels of the pyramid

entilic Research under contract number F49020-3-C-0099 and in pan can dramatically alter the appearance of an object and either help or

by Rome Air Development Center under task number 1-4-0055. hinder various algorithms for detecting these objects.
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In order to reliably extract an object, the knowledge representa- The simultaneous use of both region and edge information permits

tion problem also involves specifying a description of the sequence of two types of perceptual grouping processes to take place. On the one

processes which must be applied at various levels of the pyramid. These hand a region or set of regions can guide the grouping of edges, while

control processes are of course not isolated since each object establishes on the other hand a He or set of lines can guide the grouping of re-

a context which the the other processes can take advantage of. The gious. For example, the set of lines on the boundary of a region can be

control strategies can be constructed to make use of multi-resolution collected and shape descriptors obtained, or the set of short high con-

object models which capture the set of visual events - i.e., different trest lines within the region can serve as the basis of texture measures.

object clas features - that are most appropriate at the different levels Similarly all the regions adjacent to a long straight line can be grouped,

of resolution. Multi-resolution object models can be defined in terms yielding a strategy for obtaining semantically significant collections of. . -'.- . "

of the line and region attributes that potentially can be extracted, the regions. The representation of intensity and edge information as re-

reliability and importance of these features, the processes used to hy- gions facilitates the implementation of these grouping processes within ""- .
"
.

pothesize and verify objects, and the relations between objects. the hierarchical structure of the processing cone.

11.2. Rule-Based Object Hypothe.e-

A simple type of knowledge source for generating hypotheses of object
class labels for particular regions has been developed recently in the 111.1. Region Segmentation

VISIONS environment IWEY83. They take the form of simple rules

defined in terms of ranges over a scalsr feature, and complex rules The region segmentation technique employed was first developed by

defined as combinations of the output of a set of simple rules. The Nagin [NAG791 and extended by Kohler [KOH83, KOHS4i. The ap-

rules can also be viewed as sets of partially redundant features each of proach is in the spirit of the Ohiander-Price algorithms (OHL78, P11184,

which defined an area of feature space which represents a 'vote" for an HAN841, but we believe it is more robust in certain situations. The a--

object. The 4mage features include color, texture, shape, size, image gorithm involves detecting clusters in a feature histogram, associating

location. and relative location to other objects and the line features labels with the clusters, mapping the labels onto the image pixels, and

include length, orientation, contrast, width, etc. then forming regions of connected pixels with the same labeL The pro-

cess of global histogram labeling causes many errors to occur because

The basic idea is to form a mapping from a measured value of the global information will not accurately reflect local image events which

feature obtained from an image region, say f, , into a "vote" for the do not involve large numbers of pixels but which nevertheless are quite

object on the basis of this single feature. One approach to defining this clear. The Nagin algorithm overcomes this difficulty by partitioning the

mapping is based on the notion of prototype vectors and the distance image into NxN subimages (usually N = 16 or 32) called sectors. The

from a given measurement to the prototype, a well-known technique sectors are each expanded to overlap the adjacent sectors by 25%, and

which extends to N-dimensional feature space. In our case rather than then the histogram segmentation algorithm is applied independently

using this distance to "classify", we translate it into a 'vote" by defining to each sector. Thus, each sector receives the full focus of the clus-

the response of the rule as function of the distance. ter detection process and many of the problems of cluster overlap and

"hidden" clusters are significantly reduced. A postprocesaing stage is

In many cases, it is possible to define rules which provide evidence applied to merge selected regions that have been artificially split along

for and against the semantically relevant concepts representing the do- sector boundaries. S .. .

main knowledge. While no single rule is totally reliable, the combined
evidence from many such rules, some of which may be relatively com- The partitioning of the image into sectors has an obvious weak-

plex and costly, should imply the correct interpretation. One function ness. If an adjacent sector has a visually distinct region which does not " '

of the focussing mechanisms is to generate constraints on the applica- overlap the central sector sufficiently, it is quite possible that the cluster

tion of the more costly rules, will be undetected in the central sector. The small region representing
the intrusion into the central sector will then be lost. The Kohler a-

I1. Integratlng Region and Line Information gorithm improves the clustering step by adding candidate peaks from

In an Interpretation Process surrounding sectors to the set of peaks selected for the central sector. S
The augmented set of peaks forms the basis of the labeling process.

We are using a combined region and edge representation based on The algorithm can be summarized in five steps:
two low-level algorithms: the Nagia-Kohler region segmentation algo-
rithm INAG79, NAG82, KOHSS. KOH841 and the Burns linear feature 1) Subdivide the image into sectors and select cluster labels in

extraction algorithm fBUR84j. Both of these algorithms are briefly re- each expanded sector.
viewed below. A useful characteristic of the Nagin-Kohler algorithm

that will be exploited in our system is its simple localization process 2) Analyze cluster labels from adjacent sectors for augmenting the

which can be applied selectively on various subsets of the image data. label set. 0
The algorithm determines feature cluster peaks in local subimages, and 3) Use the expanded set of labels to segment each sector.

them forms regions based upon these histogram labels.

The Burns algorithm is a new and robust approach for extracting 4) Remove sector boundaries by merging similar regions.

linear features in intensity images, including low-contrast linear fea- 5) Perormsmallregionsuppression (whichoften reduces the••m-

turn. It provides a low-level representation of intensity variations by be of regions by a factor of 4). "um

segmenting the intensity surface into connected subsets of pixels which b

have similar gradient orientation; these regions act as "edge-support Figure 3.1 shows the result of applying the first 3 steps above to

regions' of a linear feature, and various characteristics of the associ- data at level S in the processing cone. The level 8 data was obtained
ated line or edge can be extracted from them. Thus, both regions and from the level 12 data by averaging over 2x2 windows from level to

lines have a common pixel based representation which is a tremendous level. Figure 3.2 is the segmentation after elimination of sector bound-

advantage for information integration. aries and small region suppression.
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L. Hierarchical Focus of AttentionExtraction

The region segmentation algorithm can be applied to any subset of the Intensity changes n images are due in part to reflectance, depth, or-

set of available sectors. Starting at a coarse resolution image (level i), entation and illumination discontanuities u d the interpretation of sch

regions ae selected which potentially correspond to a specific object
modeled in the knowledge base. The sectors intersecting these regions chnges is fundamental to computer vision. The organization of gig-

are determined and used to select the corresponding set of sectors at nificant local intensity changes - called 'edges' - into more global

the next finer level of resolution (level i + 1). The algorithm is applied coherent events - called "lines" or "boundaries" - is an early but im-
subset. portant step in the transformation of the visual signal into useful in-

again but only within this new subset. termediate constructs for interpretation processes. Despite the vast

Thus the processing methodology we are employing can be sum- amount of research appearing in the literature, even the extraction of

marized as repeated execution of: linear boundaries has remained a difficult problem in many image do-
mains. There are two goals of the approach presented here: a) the

1. Segment the image at some level i; development of mechanisms for extracting linear features from com-
plex images, including low contrast lines; and b) the construction of

2. Select a sub-collection of the regions satisfying some object an intermediate representation of edge/line information which allows
model- high-level mechanisms efficient access to relevant image events. A moredetailed presentation can be found in []BUR84].

3. Select those sectors which have a non-empty intersection with 
"i 

p ci

one of the selected regions; The linear feature algorithm is based on the contention that edge
magnitude (local intensity change) is inherently unreliable as a local

4. Project those sectors to level i + I obtaining a collection of estimate of the meaningfulness of edge events. Some of the problems
sectors at level i + 1; with using edge magnitude include those caused by: 0

5. Re-segment only within the sectors obtained in step 4. a) discrete sampling - sharp intensity changes involve "mixed pix-
els" which result in the full edge contrast being distributed

For large imagery of the type considered in this paper, the com- across several pixels;
putational advantage of this approach is significant. For example if
we assume that even 2/3 of the possible sectors are used at each level, b) wide gradients - total edge contrast may be distributed across
then only 1/S of the image is being examined 4 levels down. In the case many pixels so that no optimum edge operator size can be fixed
that only 1/4 of the sectors are selected, only 1/256th of the image is a-priori (ad there are no uniformly acceptable mechanisms for
being searched 4 levels down. In addition, the knowledge base can
be structured to be level dependent such that at finer levels of resolu- combining responses from different operator sizes and place-

tion the description of objects, and hence the infrencing process, will ments);
be more complicated, while at the same time the system is looking at c) world events - a change in background or foreground objects

only a small fraction of the image. With these types of strategies the along an edge may cause the local magnitude estimates and
computational complexity of the process can be kept within reasonable total edge contrast to vary in arbitrary ways.
bounds. -- -If the entire set of pixels associated with a particular linear feature -

I1.S. Finding Bulldinip were determined, then the decision about the line could be made glob-
ally as opposed to locally; in purely local decisions, weak or noisy edge

In the aerial image of Figure 1.1, many of the large buildings appear information could confuse the process which locates the edge. While we
as small, bright regions at coarse levels of resolution. Although such a cno rvdddtie icsin fteise ee h s fgacannot provided detailed discussions of the issues here, the use of ga-

simple selection rule allows the system to hypothesize likely locations dient orientation as an early organizing criterion appears to be effective
of buildings, the evidence is too unreliable to permit actual labeling of i overcoming these problems.

individual buildings. The coarsest level where reliable shape features
can be extracted is level 10 (1024 x 1024), although to exhaustively The general approach to extracting linea image events is to group - 0
search level 10 for buildings would be very expensive. Rather, the the pixels into "edge support" reGions of simla gradient orientation,-
system starts building candidate regions at a coarser level (here, level and then t treat each region as a representation of a straight line .- .•

* 8) and builds a mask which specifies likely areas. The mask is refined segment. Note that every intensity varition (including very low mag-
level by level until more expensive features can be extracted at level nitude changes) will initially be extracted as a line segment. During
10, but now focussing only on the likely areas. the interpretation of these events, adjacent low contrast support re-

gions can be grouped into homogeneous regions and filtered so that
Using the level 8 Nagin-Kohler segmentation (Figure 3.2), size and they are not viewed as weak linear events.

brightness features were calculated for each region. Figure 3.3 shows
regions whose average brightness is greater than 160, regions whose size There are four basic steps in extracting linear image events:
is less than 70 pixels, and the intersection of both sets of regions. By y Group Pixels into EdgeSupport Regions. Sets of pixes re
this criteria, any sector intersecting a bright, small region was marked. grouped based upon similarity of gradient orientation. This &I-".".".,
The resulting mask is shown in figure 3.4. Using the pyramid structure goue ased o siiaty of gdie onttio Tia-
to project the mask, the segmentation algorithm was applied under this lows dtart of aniation ofe
mask at level 9 (figure 3.5). Note that the intensity range in the rule mitment to masks of a paticular size.
at one level could be different than those at other levels, and that the b) Approximate the Intensity Surface by a Weighted Planar Fit.
size range has a natural sealing to the lower levels. The features of A plane is fit to the intensity surface of the set of pixels in each
intensity and size were calculated for this new segmentation, and the support region. The fit is weighted by the gradient magni-
upper left hand quadrant is shown in fgure 3.6. A new mask is created tude associated with the pixels so that the important intensity
by selecting a sector if it intersects a region satisfying a size and inten- changes will dominate.
sity constraint (figure 3.7). This mask is projected to level 10 and the
Nagin-Koher algorithm is applied. Again, regions are selected on the
basis of size and intensity criteria and the result is displayed in figure
3.8. 0
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c) Extract Attributes from the Edge-Support Context. A straight from shadow length.

line and a set of features is then extracted from the support
region and the planar fit of its associated intensity surface. I11.6. Finding Runways
The attributes extracted include length, contrast, sharpness Runways ae an example of a large, clear, linear structure whose foca-
(width), location, orientation, and straightness. tion may be hypothesized at a very coarse resolution. The identifying .

feature is a set of long lines appearing close together with similar slope.
d) Filter to Extract Straight Lines and Texture. Various image The location of such a group provides the system with a starting point,

events, such as long lines, high contrast short lines, low contrast but does not locate the full extents of the runway since fragmented see.
short lines, and lines at particular orientations, can then be tions of lines at the ends of the runway may fall below length thresholds.
extracted by filtering on the desired attributes. If, on the other hand, intensity regions could be identified the homoge-

An example of this algorithm applied to the level 8 image (?2,4 x nitty of brightness would more reliably give us the ful extent of the
236) with all lines of length greater than 2 pixels (and no filtering for runway. The idea of the method which follows is to trace the bound-

aries of the selected edges to identify the pertinent intensity regions.
contrast) is shown in figure 3.9. These regions can be used to build a mask to direct further processing.

IlL.S. Combining the representations
The region and edge segmentations complement each other in several Figure 3.12 shows the image reduced to level 7 using 2x2 averaging

ways. The region segmentation algorithm segments an image on the up the cone. The line algorithm is applied and the result of filteringw a y s T h e re g o n s gm e n ati n al o ri t m s gm e n s sa i m a e o n t h e th e e d g e s o n c o n tras t a n d le n g th w re sh o w n in i gu re 3 .1 3 a n d 3 .1 4 .. -

basis of homogeneity m intensity, color, or texture features. In this trhe.
paper we are only using intensity for the region segmentation, thereby The edge edge representation includes the position p and orien-
producing what will be called intensity regions. The edge algorithm tation 9 of each fine. This facilitates the grouping of lines via clusters
defines regions, usually several pixels wide, which support edges. The in Hough space. The lines remaining after the filtering shown in figure
most important point, however, is that each of the two segmentation 3.14, were mapped to Hough space. The largest peak in this histogram
processes results in a pixel-based representation. The natural duality was selected and the edge support regions of that cluster were identi-
between regions and their boundary fines can be exploited in a straight fled. These selected edge support regions, projected from level ? to level
forward manner, since the edge-support region associated with a linear 8, are highlighted in Figure 3.15. The adjacent regions obtained from
feature should overlap the regions on either side of the region bound- the region segmentation applied to the intensity image are highlighted
ary. This means that a set of edge support regions can be expected to in Figure 3.16. We now apply the focus of attention mechanism to the
be found superimposed on the boundary of an intensity region. Con- regions, selecting the sectors are shown in figure 3.1?. These sectors
versely, a set of adjacent intensity regions can be associated with an are projected to level 9 and the region algorithm is applied within these
edge support region of a linear feature. This grouping of regions in one sectors. The result is shown in figure 3.18.
segmentation based on information contained in the other is performed
by tracing the boundary of a selected region in the first while collect- IV. Conclusions and Future Diseetlons
ing the regions encountered in the second. In a parallel architecture
such as the processing cone the set of related regions and lines can be We have proposed an architecture for interpreting large images
collected in parallel. based on hierarchical segmentation and interpretation processes func-

There are several other advantages to using the combined line and tioning under focus of attention mechanisms. The experiments dis--
cussed in Section M demonstrate the potential effectiveness of late-

region information. The lines produced by edge support regions tend to grating two particular complementary segmentation algorithms into a
be much more accurate than the boundaries of the region segmentation multi-resolution structure. They have shown how a range of object by-
due to the global nature of determining the line placement; eg. this pothesis rules can be used to gui.e and constrain the process of locating
overcomes local problems of mixed pixels. Thus the limits of regions instances of the objects. The rules themselves are hierarhia ad the
can be determined more accurately. The overlap of short high-contrast strategies for applying them are a function of the features which can
lines with regions also provides a texture attribute for regions. Finally, be reliably extracted at the various image resolutionsf t fush
a set of edges can be associated with a region and descriptors pertinent b
to shape can be extracted from these lines. These obervations led to The selection of candidate regions for examination at a higher res-
improved algorithms for the detection of buildings. olution was accomplished by choosing all regions which satisfied a set - '

of object dependent constraints on region and line attributes. In gen.
Let us consider one algorithm for verifying buildings based upon eral, the results from such a simple rule will be unreliable and prone

the line and region information. One such algorithm traces bound- to error. Image interpretation is implicitly involved with the problems
aries of selected intensity regions to gain from the corresponding edge associated with combining information from multiple sources of knowl-
segmentation the collection of edges surrounding each region. Lines edge. Any perceptual system which utilizes processed sensory data
are selected which lie on the boundaries of regions hypothesized to be must recognize the fact that to varying degrees the information will 0
buildings based upon size and intensity information. Results of the Uan- be imperfect and prone to error. With this in mind we are developing
ear feature algorithm on a subimage for which the building hypothesis mechanisms for evidential reasoning and inferencing under uncertainty
is to be veriied is shown in figure 3.10. (LOW82, WESS2J in order to construct more reliable focussing sets.

Rectangularity is a property which can be expected of many build- Some of the limitations of inferencing using Bayesian probability - . -

ings and several measures can be applied to test the set of lines selected models are overcome using the Dempster-Shafer formaism for eviden-
for this ad a variety of other geometric properties. For, example the tial reasoning, in which an explicit representation of partial ignorance
orientation of the lines can be histogrammed as a weighted contribu- is provided jSHA7O6. The inferencing model alows 'beliet or "conS- 0
tion of the length of the lines. One simple measure is the degree to deuce" in a proposition to be represented as a range within the 10,1"
which the lines group into two colinear sets at each of two orientations interva. The lower ad upper bounds represent support ad plausibi- 

that are 90 degrees apart. Figure 3.11 highlights regions whose average ity, respectively, of a proposition, while the width of the interval can be
orientations between the two clusters is within .15 radians of a right interpreted as ignorance. Wesley IWESS31 is extending this approach to
angle. The labelling of some buildings provides a context for finding

, others. It also reduces the search space for the processing of algorithms the problem of distributed control of a set of knowledge sources which

which do require the inest level of resolution such as measuring height ca be applied to examine particular concepts in long-term memory.
to the best possible accuracy in stereo pairs and determining height
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The object hypothesis rules described in the last section can be [HANg0) Hanson, A. and Riseman, E., "Processing Cones: A Corn-
applied to both region and line attributes provided by our intermedi- putational Structure of Image Analysis", in Structured Cow""
ate level of representation. A set of KSs associated with objects can pater Vision (S. Tanimoto, ed.J, Academic Press, New York,
be constructed so that when executed they will input evidence to the 1980. Also COINS Technical Report 81-38, University of
knowledge network as support or refutation of propositions. The infer- Massachusetts, December 1981.
eace engine will then be turned on to indirectly update belief in other H
propositions based upon the implications of the direct evidence. JHAN84[ Hanson, A., Riseman, E., Nagin, P., 'Authors Reply" to

[PRI841,1EEZ Trans. Pattern Anslusis and Machine Inteli.
Once the inference network is fully integrated, we expect the hier- gence, Vol. PAMI-6, March 1984, pG. 249.

archical segmentation and interpretation process to operate as follows.
Fint the local histogram-based region segmentation and the linear fea- jKOH82 Kohler, R. and Hanson, A., "The VISIONS Image Operating

ture extraction algorithm are applied at a coarse level of resolution. System", Proc. of Oth International Conference on Pattern

Knowledge sources in the form of object hypothesis rules are then ap- Recognition, Munich, Germany, October 1982.

plied to region and line attributes at that level. The output of these
rules is converted to a form appropriate for input into the inference IROBS31 Kohler, R., "Integrating Non-Semantic Knowledge Into Im-

network of long-term memory. The inferencing process is then invoked age Segmentation Processes", Ph.D. thesis, University of Mas-

and each region yields a support and plausibility (i.e., a range of belief) sschusetts, September 1983.

that it is a candidate region for one of the goal objects. The region and [KOH84 Kohler, R., 'Integrating Non-Semantic Knowledge Into Im-

line segmentation algorithms are then applied at a finer level of reso- age Segmentation Processes", COINS Technical Report 84-
lution, but only on the candidate regions which have high support. At 04, University of Massachusetts, March 1984.
this ner level of resolution the representation of the object is of a dif-
ferent form and may involve more expensive object rule combinations [L0W821 Lowrance, J., "Dependency-Graph Models of Evidential Sup.

of the region and line attributes, but applied only to a small subset of port", Thesis, University of Massachusetts, Amherst, MA.,

the image. The process is recursively applied to finer ivels of resoln- 1982.

tion. Other ongoing research uses the inference net to focus the system ILOWS3 Lowrance J., Garvey T., Evidential Reasoning: An Imple-
within the various feature spaces that are active and that work will also mentation for Multisensor Integration, SRI Technical Note
be reported in the future. 307, Dec. 1983.
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rlhe tiiiicirieatiofi or an N log N algorithin coi~LMaifl the
split and merge steps tA) be tiiiear Ltt mle, anid Lte outputs or
the( split stmp to be haliced ill size. This is an exam plc or
how the criteria for judcginig thle ririts of a roriuiulatiom
call conistraini the searchI. 'I'lie logical r. misrai iii oil the split
step is that it be a jiartitioniiig ricLio for thle iniput type,

* in this case a set. I'ariioimg funictionis for a binary split
(in be i ii tlemmeL ed osi hg aI iiiarac teristi, fti~i lii oni a1 set

* (rilapinlg eachm elltll't to I or 0t). A heuristic is liii' incor-

pior,itiogi of a iiiil 111111 tii il In'o p roilent spieificationl into

- ~till' stplit step; piossiblly Ii is will appropriately eon misrai 0 tile
remlalinin g poirtioil5 tr Lie schemia. () l' possihi lily is to qpe-

ciali zi till' Iliniary relationl x (L) > x(s) to aI un ary f ic tionI by o
fixinig s. Th'le constral mit of bialanicid on tpits reqjiires that s 0
be fixedl to tIme- point wi thi mediami x co-oriinate. 'I'lmis requi res
a lrirrcssing sip or sort-iorg tile poi ii s by x-co-orinate,0

* ~wlili lits within lioe timie Iiioils of' N log N.

Thell nix I, step is to propagae the ase iisfromil this 00 0
lienuristicatlly chosen spili t step tlr rorglr the( sceylna, in o 0rder00
to eonistrai n sitbsequen t steps. B riefly, tile highlIighits of this

- -propagation arc: Figure 1. Maximal Point Problem
I. l)isjoinritiess of subsets ou~tpult front thle partitioninig

V~lESI,.2CS2Iz(s-l) < x(s2)l Denotes maximal point
2. l'is aI subset, or r, fly 4ileiiiitiori with respect to

the parti tini S2 anid because of be ing greater in x co-

ordinate for the partition St

* Vt2ET2,-ZES2[z(s2) < x(12) V y(s2) < y,(t2) V f2 =s2)

3. Part of TI is a subset of T, namely those points with
y co-ordimiate greater than y co-ordiniate of all points

in Si
'VnieTI,.aESI/t(8

2 ) < a(tl)- > (1) < V(t)V i,2 = nil
VItIETI,--ESlj(al) < r(tl)- > ( ) < x~tl) V =slj

y(t 1) V l= s21
These assertions constrain tile mierge step to be the

uinion of TI2 and those eleineui s of Ti which satisfy the thmird
asertion. Uinfortuniately, the runninig Ltme for the cliarac-
tenislefitic oitin denoted liy tliis assertin is n 2 , which cx-.
ceeds the( linear Lttle boitind constraint. Constraint based
reformnulatin, discussed more fully it, the inext section, deter-

* liiities hi at.asserion 3i be refoirmuiilated in ters of thc

* loaxitnurn of S2, with respect to Lte total order iniduced by S: (Type (Set Points)) *

* ~y co-oriniatie. Thle cost is 110w liniear for fillimg tile subset

of Tri which satisfies assertiin 3. Th'le idiviide anid conquer
sceita is now fully instantiatedl as a N log N algorithmn to
compote the miaximial poinmts.

S11 S2

Fg RecuPriale IntRite ii edconquverShm
Call I Cal 0S
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M. C NST AIN BAED R FOR ULA IONAlgorithmis asociated with finding tile maximia or am. ONTRANTBAED EFRMU ATONpartial order arc n 2 , so in this case rorinuiiation through
recognition does nlot improve Lte contputatiornal complexity.

.1 Through discovery or implicit constrairsanud propterties I lowever, Lte recognition of thle partial ordcr serves as a
inikirent in a problem it is oftetn possibfle to dferivye repre- guide for cx plor. rg possibilities related to partial orders.
seittaiorts where the Hyrita~x iniatchi's the swtinittics or the lit particular, total orders are specializationts of partial or-

* it~roblemi anid the control sirucii tre ex ploi ts tlie Conistrai nts. tiers whotse assoia ted algaori thtms have' very good time coin-
* ~~MatIletiatics, partic ttlarily ablstrac t algeltra, provides a rich itlexi ties. TPhe gotal beta ries to refrrrti late thie problem -

vocabutilary for dfescri lij ig till- structu re or mnany prob- thesc ription in ri ritis of a ttal ordler. lit order to be relevant,
femin tlttgainis, iii particutlar the dotin ouf comut ittational thet ttt tal order should betctit e.x Icsia i or tite partial order, -

* geotitetry.so that if two poits;L are related ill tlie partial order they are .* .-

Itel first step) itl cottstraintt based reror ttotlatou is tO ttcer'ssily related by Elie total order:
* ~~chiaracterize Ie probthett, as given, ii termtrs of uasic settian- P artial(s t) - > Total(t L)

tie prototy pes. lThe prototy pes often have strotng girobleirt Two total otrders are fpart of tile corrjutnittiori dt'i flitg tll!
sol vittg tttellti~s :iss-,tciatc with tltet, ruin itg thie ptroblem ptartial order, tiagtely orderintg by x co-ordintate atid orderinig
of reforttutlation to one orf recoigni tiont. More imttportantly, by y co-orch nate. Since a cotnj unction always i itoc plerach of
tite re'cogntition rr sciriattic piratotype% serves to gidte Elhe its; conijuncts, vithter of these total orders are good candidates.
searcft for propettrties that. (:tit le exploited by problemi 80lv- Ordering by x co-ordinatc is cliosetiabirriy
itg ittethttus. rhte goal is to recover tfte niaxiltia or thie partial order

i~tcttgnititti of semnnirtic prototypes proceeds both tusintg tltt total orderinig by x co-ordinate, utnder thie con-
atnaly tically atnd etttpi rically for all comrtponients of thie inii- stiraintt or N lotg N timtie. 'lThis gtoal is split inito the sit lgoal
tial ptrobletrt tisc ri ption. For Lte miaximtral poinit problemt, tof finintg netessary contdl itioits ouil Lt(e ttax itit:, gi veltile to-
Lit e genieration it ati exainiination or several itnpiut/output pairs Lai ord~er, andt tit(, si goal of litili tg stfirlittilt condmitionis on
deterittintes thtat Lite otutpuzt is 'iot the ritull set, andi usually the nimaximria given tlie total order. 'The two sitbgtaltt are ex-
.;.rt a siorgettur set. If t, ott tplut had al ways been a sintgletont tlireilli parall lu- intili otne sutcceeds or thut It fail. If necessary
set, thtert the ltroltlertt dfescrip~,tioni cortuld he rerortinulateil:as a cotitions arc fou it, thten tile sitbgoal is set tt p to find corn-
fitncttion front a set of painLit to a potint. pleieit ary sit liciei t cond itis ill artier to Iin iti an euivalent.

* ~~'rhice characteristic funictio n for the otaxi itaf points is coiittition. Si mia ly , if the sitbgmaf for sie -t conditLions
* ~~analysed in termis of its comntponients, which are a bi nary rela- sticret-is, the ii Lte sri fgial is set till (A) fin comp-trtlemntmttary --

tion arid a quantified variable. rhe binary relation defined by ittwessary condtitionis in order to findf nut equtivalett condiition. -

tite disjuinction within thle characteristic function is analyzed Tro find necessary conrditions cempirically, examuples of -*in termns of tlie basic algebraic properties of binary relations, miaxi ma arc generated and relations related' to the total order
such as syntitetry, transitivity, arid functional dependence of arc determined. 'rhe cempirical approach briefly described-
arguments. It is found that Lte relation is neither symmitetric below resembles that of Finde [Etude 831. Ilandont examples

* nor anti-syronaietric, and it is not transitive. Since a relation of iaxiinial poinits are generated, anid semantic prototypes -cart be defined in termrs of its comtplemtent, the complement is linked by extension to tortal orders iii the lattice are retrieved, -* ~~also characterizedl. The comtplement is foundit to he antisym- such as mtinimnunm, m~aximnumn, -successor, and mionotonicity;-
metric and transitive, bitt not total, arid therefore defines which are then used to examinte the examples with respect
a partial order. lThe problem call then be reformuldated as to the ordering by x co-ordinate.
firiding thle irrnintia of this partial order, or the maxima of
its dual.

l)Pfintition rr partial order arid the reformiulated problem
* description:
* I'rtial(. t ) t* Iz(t) : x(s) A y(t) :S ys) A t $a)
* It E SIV.ES-'I'urtial(at)}

Points lee in x co-ordinate can be Ignored. SFor points greater in x co-ordinate,
a I monotonicity condition must hold.

0
0 0 o

0 0 0

1 0
00

0 0 0 0

Figure 4. Equivalent condition for a point T
to be a maximal point.
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The niecessary conrdition round is th at the mraxi ma are 1. P ropiagate thew eoistrainils fromi i iisLaoii Li,i jig a coiin-
rniotoni4cal ly increasinrg in y and dcl ea n f .I et jioniii thiroiuglh 1.1 riest. or the st'ilia
step it; to find a comopleimentary suillirient. condition, in order 5. If1 tite seheiria, is lolIly i lisi :iii3144 Li thiI eni ternii iiate,
to dleveliip a reformuiilated problemn description aitchored in ohrielo akt ~p3
the ordering by x oodnt.This is clone by considering Cntan ae eoml~o sesnilyga
si licient condi ions for ai poi nt t 1-4 he it uaxiina of the par. di rec led discovery. 'The objetlive is Lo findl properties arnd
tial order. T he order inug liy x co-orna its partitions the rest wil iapoliiithtrieiLhlriouiLos

or the poitnits ito Lhose greater thian 1L aiid those less9 Lhan t. o lijr rbe ovn n~os t()1 d re i tp
lor those Ii-.4 than 1, Ilivi Ii rst i-Iause ill the Iisj inc Liii i (x(s) < one andi thiree of the Sc hena dirivyen sLraLegy. 11, Lhc exaimipie
x(.)) satislies Li( iiiaxiiiality rcoifiitii for L. Por thoise piolints ofr cinstraint basedl reformiiulation, all the prolemi propeiirties
greater than t, Lte iiiiiotiiiiiciLy couiioin is a in Ilicient and were fouinrd becrc at sehc-rsia w;Li c-1uosei u itu ito i
necessary condiiitiion - thaL is, if t is greater in its y co-ordinatepur isattonbt

than Ilit,' next moaxioua in x co-ordiiiaLe, then t is also a rnx in actual operation the strategy is mixed between schema0
inia. Theise two cnniti~ns providle an equivalent eoiidiion ~ drivcn reformulation and( constraint based reforimlation.
to the origiiial problerin formrulation, all Lhat remnains is to Constraint based reformulation is based upon the use
insLaritiate a simple siiiirt-etaciuuae shema to of semantic prototypes-abstract structures that capture ex-
derive ani N log N algorithirr. Aui N log N preproci-ssiig ploitabic regularities in a domain. Semantic prototypes are
stepI is reqjiir-r to order Ilie, poiis biy x co-ordinate. Time also organized in a dual hierarchy. For example a group is

* - i-riii unii-raiiii is by ileseeiiing order iif x co-oriinate, which an extension of a monoid, while a total order is a specializa-
iotuvlic-itly enodetis Ltn- Lest fur all viol.s less in x !o-iirdiruate. ion or a partial order. Often the constraints that define0

* ~ T olonotonlirity coiiltion imstatiates the test iiperation of semantic prototypes can be found independently. For ex-
Lliv s- herria. IL is eniutstarit 1i me bec: use onily Lhei p~revioiisly ample a binary relation is a partial order if it is an tisym-

* ~~fiiiml 1inilxiniir needs Loi hei cieki-i. The' airm-inil:Lioi i's metric and transmitive. These constraints are found indepcn-
.a simiiple set aeuil muiiatio ii. dently and cached, for use in possibly instantiating other

semantic prototypes. T[his substaintially reduces the search

IV. DFSCRIPTION OF REFORMULATION STRATEGIES spaev Semantic prototypes are det-rmrined both empirically
and aiialytically. The empirical search is done by generating
examples anid verifying thant the exariples are consistent with

A schema serves as an abstract plan for guiding the the constraiiits. The auralytic search is (]il(i by setting up the
*search for ant algorithm. The cheria uhiioinposes the goal of proving that the constraint~s of a hirototype hold for

* - ~reformulation in to mutually conistrai n ing subparts, deliiiig sonic applicabile strui- iire suchi at; a li nry relatio n, Special
* - the relationship between the new termns of the problem purpose tlmeorerii proving techniiqiies are used, since general
- - description. Sehemas are imoplemented using Lte fornualusuin purpose thieorem provers are too inefficierit.

or th2 progranmncr's apprentice (mtcli 811. Like semantic Thse strategy of constraint based reformulation is as fol-
prototypes, schiicnas arc orgaiZei ill a idial hierarchy with lows:

- specialization .1rid extenisioii liiiks. As ani exai.pe 1uck. Characterize Lte problen description as stated
sort is a specialization of liviileanid Conqmu-r. An i-xteiision in terrins of sernitic protuitypes. Although the

* 'to a schenua is ain adiditioii of iiew coniponiints, suc as aproitotypeis will vary between domnains, certain
preprocessingr step to sort Lte pili by x (o-orminate. An pooyisacisfli luotai oman uha

* ~~algoritLbhr is a s-liema whose operators auiii test predicates s i utisb~e-iaguninhsh eai iailta-________
have been fully specialized to base level operations;. Thle sitivity. lteloriulau- the di1-sc-riptiori iii termns of the
jiisti fitatiomi for a schemna r(-corils; thii logical eoristrai iits he~ apliiialile siiiarilLi proitotypues.
twc-m subparts andi the pre-orudi tinus for apuplication of a 2. The siiiaii Lii pril,Ly pi-s gidie Lte search for
schemna. alte-rnative- rum-mssary :Liui su Iliierit coniitioins.

* ~~The strategy or schi-mia dhriven reformriulation is as fol- spi-imai zatioiis iif a liriiLypi- are often associated

lows: with i-lliciiu priileiim solviug meiithiods. The serrian-
1. Choose a kernel shienia based upon Lte known tii, p~rotiityp-s ar- also :ussmuiiatr-d, through extensions,

properties of the lirohili-i. The pireconduitions of the to other poLenutially useful pirototypes. F'or eXamniple
sc hina iniuist riot ei)n Lrafil the k nowni prioperties oririorotin icity is anm cxteiisioni of a Lotal order.
Lte problem.- For exampqle, one iirecoiniiLiii of dhiiide . Wiea sfli-mrsryciiiLiiiisfinltmei b-
arid i-oruur is that Liite inpuiit be a% parhLitoiiablc iitriic- 3. ua Whif ai iiil nesar gcond i l iiii onur s rouindi tL-iiitie sub-

Lure. is pursue-d. Siodulairily, wlui-i a usi-ful siilli,iit .oirdli-.
- ~2. P ropa~ga~te the kniowun u-oll.a us nli-prbe i tioiii fourl, Ilii Si) lgiial iuf Iiindiig a ionni plunruentary

the i-iiustraii s onin i-o liuuu Lat in nual co rr llilr'x( tyhiiriiighi n1Cessary coinitiion is piirsoin-u Thllis usua-lly enutails
Lte se herni. 1)a. ftesoh -u~ il rbbyb doing a cause analysics on Liie problem, wliu-re time par-
uiiiinsLaiiti itied ilis sii lhii--rit. ionmstrainris onl tire Litio ninig of Liii' problen iii Li cases is based uipon the

prolulnni hve alru-;uly lu--u ilsi-uui-ru-l - prototLypeus inivol vi-i iiLte rur-essary or si liriimrt con- *

3. rius ch ii iiio otosliuai, u'nuunini uf11 iliuaitiori.
and imstaniuLt iL. ( housing tit iiusuliatiiii for part ----

of a sc liina is a:uri-iirsivi- id I onl liiiisinig a sciuciuia 4. Wheiin all i-i1liAivuiII I. Cen n1iLionl is iiriud tii thii origiinal

ror slvinmg a priiluleii. lit this r-aw Ci uistiatel prolemur description, all Lit. re-muains is to choose and
cornuponielit is tien- iiw piriobleri. li Liii- pirocess of instantiate a problem solving schema.

i nstitiatiorr, Lthe ki-rneil sto liia iuiiglut be exten-rded.-
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A Fast Surface Interpolation Technique.

Grahame B. Smith

Artificial Intelligence Center, SRI International
Menlo Park, California 94025

Abstract influence exerted by the data values themselves, against that
A method for interpolating a surface through 3-D data is exerted by the implicit surface model embedded in any fitting

presented. The method is computationally efficient and general procedure. If our data values are inaccurate and we know the
enough to allow the construction of surfaces with either smooth class of surfaces that should fit the data, we can usually let the
or rough texture. surface model dominate the construction process. Least-square

methods are typical of procedures that prefer a model to data. In
general, techniques whose resultant surfaces do not conform ex- .

1. Introduction actly to the data are known as approximation methods. Methods
that produce surfaces conforming exactly to the data are called

In image analysis we are often faced with the fact that the interpolation methods.
measurements we make in an image only constrain properties of The selection of an approximation or interpolation method
the 3-D world, instead of specifying them. Analysis techniques is influenced by properties of the data other than their accuracy.
that recover 3-D shape information from image measurements Consider, for example, the terrain data collected by a surveyor. -

incorporate very restrictive assumptions about the nature of the In selecting the places at which to make measurements, he con-
world. In our attempts to avoid the need for these restrictions, siders the breakpoints of the surface - that is, those places on
we have been examining hypothesis-and-test methods. If we the surface where the gradient is discontinuous - and his data
assume that we are able to obtain some shape data, from which include measurements at these breakpoints. Surface reconstruc- .

we can hypothesize an approximate shape model for the world, tion by linear interpolation over triangular surface patches is
then we can use this model to predict image features. To proceed possible because the surveyor has furnished not only the 3-D
from shape data to an approximate shape model we need to "flesh data, but also an implicit statement that the surface between
out" the data. In this paper we address the problem of fitting a his points can be approximated by planar patches. In match-
surface to a set of points whose 3-D locations are known. While ing stereo pairs of images, an edge-based matcher provides more -"

our interest centers on fitting a surface to 3-D location data that than the 3-D data it produces Like a surveyor's data, it too
have been acquired by processing images of that surface, the makes an implicit statement about the continuity of the imaged
technique developed has application to a broad class of surface- surfaces. On the other hand, an area-based correlation matcher .. -

fitting tasks, says less about surface continuity, but has the desirable behavior " " -

To select a surface-fitting procedure, it is insufficient merely of providing regularly spaced data. ,it c ls
to know the data set and to require that a surface be fitted to the Such data can usually be processed with considerably less -
points in that set. We also need to know the desired properties of computational effort than data that are irregularly spaced. The -volume of data, the regularity of their spacing, the implicit --.--the surface, the characteristics of the data, and the uses to which chaaceristict of their e an the accuracy .. -.-characteristics of their collection procedure, and their accuracy"'"""
the fitted surface will be put. If we are building a surface to a l e.t-ca c t.
allow, say, water runoff estimates to be made, smoothness may l e p
be a desired property for that surface. For realistic rendering nique. For our applications we choose to investigate interpola-
of a natural surface in computer graphics, however, a fractal tion methods. We want methods that will work with irregularly

spaced data, but still achieve substantial computational savingssurface may be preferable. While the technique we develop sae aa u tl civ usata opttoa aig "
surfce my beprefrabl. Wile he tchniue w devlop if we can use a regular grid of data points. We need to be able :

can construct either smooth or rough surfaces, our applications
to handle thousands of such points. As a rule, we do not want to . . . -generally require the former. Our examples, Figures 3 and 4,
use implicit properties of the data that stem from their collectionp dhow both types.r d .

Besides the desired properties of the fitted surface, the The uses to which the fitted surface will be put further 

characteristics of the data limit the approach we must adopt restricts the set of applicable surface-fitting procedures. If the
to surface construction. In fitting a surface we must balance the task at hand is surface area estimation, the accuracy of the

The research reported herein was supported by the Defense Advanced surface gradients is not important. Conversely, if we wish to
Research Projects Agency under Contract MDA9O3- 3-C-0027 and by the use the fitted surface to generate the latter's image under some -
National Aeronautics and Space Administration under Contract NASA known lighting conditions, the surface gradient information then
9-16664. These contracts are monitored by the U.S. Army Engineer
Topographic Laboratory and by the Texas A&M Research Foundation for becomes crucial. We can classify the uses of fitted surfaces by
the Lyndon B. Johnson Space Center. the surface derivatives that are needed. An application that does
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not require surface derivatives to be calculated can usually be the cone's apex is in the z - 0 plane. That is, the data are
satisified by a surface composed of local patches. That is, the fitted with a set of cones, some of which are inverted. The z
surface is fitted locally patch by patch, with each patch deter- value of the constructed surface at position (x,i) is calculated
mined by a small number of local data points. Such methods by summing the z values contributed by each of the n cones at
have strong surface models and few data are needed to instan- this (z, Y) position.
tiate them. As a consequence, however, the surface derivatives Each cone has one free parameter, namely, its apex angle;
are more a function of the surface model than of the data. The we determine these apex angles by requiring that the constructed
amount of data used to determine the surface patch may be surface pass exactly through the data points. In the foregoing - -.
barely sufficient to calculate an average value for the surface expression, the c,'s correspond to the apex angles of the cones. . - -
derivatives across the whole patch; besides, any variations in We calculate the cj's by solving the nxn system of linear equa-
derivatives across the patch are caused by the model, not the tions
data. The more data employed, the less is the influence of the En-cj[(iy+ hI z, -0,.n -I
surface model on the calculation of surface derivatives. In the j-oj
extreme case, all the data may be used to determine the sur- Note that this fitting technique does not require that the
face to be fitted at each locality. Such techniques are called data be regularly spaced; furthermore, when h 7A 0, hyper-
global methods, whereas those that use only local data are lo- boloids rather than cones are fitted to the data. Cones and
cal methods. Our applications require that we calculate surface hyperboloids are not the only options. Stead [2], for example,
curvature from our fitted surface. The technique we present here has generalized this method, using the form
is a global method for surface fitting. ) n-+

In summary, we address the problem of fitting a surface to a z(, V) ._doj(z, y) + h

large data set composed mostly of regularly spaced data points,
but which also includes grid points at which we have no data, 2.2 General Form
and non grid points where data values are known. The data are
acquired through a collection process that is assumed to yield We examine surface-fitting techniques that use the general
accurate values, but for which we choose not to characterize the form of the above method, namely,
data further. We require a solution that is smooth and from t v) - tci(x - Xl,V- i) ,
which we can calculate the first and second surface derivatives.

We present details of a global interpolation method that is com- where the kernel function g is any function of the parameters
putationally efficient and appears to applicable to a broad range x - j,y - Vj. Clearly, the previously defined functions are
of tasks. Although the general form of the method applies to particular cases of this form. As before, we determine the cj's
non gridded data our computationaily efficient algorithm comes by solving the nxn system of linear equations
from exploiting the regularity of the data points. z - -j) - , - .n-I

We commence by considering the multiquadric method in- jO
vented by Hardy [I] for modeling natural terrain. In its general- For large values of n it is not feasible to solve this system
ized form, we examine it under the restriction of regularly spaced of equations. In our applications n may be 10,000. However,
data points and derive an algorithm to solve for the unknown for smaller n we have used the above form to "patch" holes in
parameters. We show how to generate the interpolated surface a regular grid of data points. While any kernel function can be
in an efficient manner. employed, we have found it important to match the method used

to solve the nxn system of linear equations to the form of the
kernel function selected. The numerical difficulties encountered

2. Surfa.,e Interpolation in solving some of the systems of equations produced by a par-
ticular kernal can often be averted by exploiting properties of
the linear system stemming from the choice of kernel function.

2.1 Hyperbolic Multlquadries For example, if we use the Gaussian function as the kernel, the

Suppose we have a set of data points, I(x, ,, z,)I"-t in 3-D symmetric positive definite coefficient matrix of the system of 0
space to which we wish to fit a hyperbolic multiquadric surface linear equations allows solution by the "square-root" method
I1) defined by (see, for example [31), and avoids the numerical problems created

by Gaussian elimination. If we impose the restriction that the
data points must be gridded, we can find feasible solution tech-Z(Z, V) ej I.od[(z, y) + hl

) -0  niques even when n is of the order of millions.

where d2(z, V) - (z - zj) 2 + (V - Vj)
2, h is a user-specified 2.3 Regulas Grid Solution

constant, and cj's are the coefficients that must be determined.
To understand this method, let us suppose that h - 0. The Consider the problem of fitting the surface

data are fitted by placing a cone at each of the n data points
so that the cone's axis is aligned with the a axis direction and z(Z, Y) LEi 0 L." .. i9(3 - V,j,y - Vtj) (1) ".. .-
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parameter values can result in peaks that are
relatively flat For this reason, a small window (4] Brown, C M Peak Finding with Limitedr Hierarchical Memory Proceedings of the 7th
around the regions of voting activity should also be Int,,rnational Conference on Pattern Recognition,
checked when counting the exact votes This second Montreal, 1984
approach executes in time of O(ml + m2 + h),
where ml and m2 are the number of bins in the two [] Duda, R 0 .Hart, P E "Use of the Hough 0
one-dimensional histograms The computation of a 64 Transformation To Detect Lines and Curves in
bins one-dimensional histogram requires about one Pictures " Communications of the ACM 15, 1

msec The algorithm for locating the local peaks in (January 1972)
the two-dimensional histogram of the parameter values [o] Duff, M J B A Large Scale Integrated Circuit
a descrbed ex ecutes in about 5 msec The Array Parallel Processor Proceedings of the IEEE
total execution time of the second approach is thus Conference on Pattern Recognition and Image 0
about 53 msec, which is considerably less than the Processing, 1976, pp 728-733
time required by the first approach (50 msec for 1000 [7] Flynn, M I 'Some Computer Organizations
boundary points) and Their Effectiveness " IEEE Transactions on

The algorithms described here can be extended using Computers 21, 9 (September 1972)

slight modifications to deal with parameter spaces of [8] Hough, P V C "Methods and Means to -

higher dimensions For example, in the first approach Recognize Complex Patterns " US. Patent 3069654
if we have an n-dimensional parameter space, then (1962)
each PE will correspond to a n-dimensional grid cell [9] Ibrahim. H A H Tree Machines Architecture
in this space In the second approach, the subtree and Algorithms Columbia University, June, 1983
size will correspond to that of (n-i-dimensional area
of the parameter space, and each PE will store [101 Ibrahim, H A H The Connected Component
parameter values that represent cells in this sub- Algorithm on the NON-VON Supercomputer •
parameter space A second approach to extend the Proceedings of the IEEE Computer Society Workshop
Hough transform to parameter spaces of higher on Computer Vision Representation and Control,
dimensions involves applying the current algorithms to 1984, pp 37-45
two-dimensional cross sections of the multi-dimensional [111 Ibrahim, H A H Some Image Understanding
parameter space Algorithms on Fine-Grained Tree-Structured SIMD -

Machines Proceedings of the Workshop on -

Algorithm-Guided Parallel Architectures for Automatic
In this paper, we have addressed the problem of Target Recognition, 1984
implementing the Hough transform method on fine- [12] Ibrahim, H A H Image Understanding " -'

grained tree-structured SIMD machines Two Algorithms on Fine-Grained Tree-Structured SIMD
algorithms have been developed for implementing the Machine Ph D Th , Columbia University (in
Hough transform method on the NON-VON machine preparation), 1984
The first one is a parallel implementation of the
standard sequential machine algorithm. The second [13] Knuth, D E The Art of Computer
algorithm incorporates novel approaches to exploit the Programming. Addison Wesley, 1973.
tree organization of the machine, and it executes 10 [141 Kushnei, T, Wu, A U, and Rosenfeld, A
times faster than the first algorithm "Image Processing on ZMOB " IEEE Transactions

on Computers 31, 10 (October 1982) .
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SPATIAL REASONING FROM LINE DRAWINGS OF
POLYHEDRA 0

Thomas . Strat

SRI International
333 Ravenswood Ave.

Menlo Park, CA 94025

Abstract tiple views are available; the second part explores the problem of
accomplishing this task when only one line drawing is available.

A method is presented for transforming a set of line draw-.

ings of a pol.hedral scene into a representation that embodies
the three-dimensional structure of the scene. The line draw- 2. Multiple Views
ings are first converted to machine-readable form and then back-
projected to acquire a wire frame skeleton of the scene. A The algorithm to be described solves for a three-dimensional
novel three-dimen~ional constraint propagation scheme is then description of a scene when several views are available. The over-
employed to transform the wire frame to a description of the solid all process can be thought of as accepting a set of line drawings of
objects which compose the scene. This process has applications a scene as input and providing as output a display of the object -

in computer-aided design as well as in machine understanding of from any angle, with all hidden lines removed. The algorithm
multiple images. The paper concludes %ith a discussion of issues consists of four sequential modules called input, projection, wire
related to achieving the same result from a single view. frame, and display.

The required input is a set of two or more line drawings
1. Introduction and the angular relationships among them. A line drawing is

restricted to be the projection (orthographic or perspective) of a
polyhedron from a particular vantage point and, as a result, is aMachines that must reas on about or function in a three. collection of straight line segments.

dimensional world must be equipped with models of objects in c
that world. A, multitude of representations has been devised The input module is responsible for producing a data struc- - .-..-

for three-dimensional models [I]. yet the specification of individ- ture that specifies the positions of all lines and their endpoints "-' _ .-

lial models can be a tedious undertaking. This paper examines in a line drawing. Its actual form will vary with the source of
methods for computing a three-dimensional model of a particu- the line drawing, as different input processes dictate different
lar class of objects from a particular form of input-polyhedral procedures for constructing the data structure..-
objects from line drawings. The projection module computes the three-dimensional co- S

Researchers in computer-aided design have produced numer- ordinates of vertices and edges that may have given rise to the
otis systems that manipulate models of solid objects to assist in endpoints and lines in the drawings. The output of the projection -

the design. analsis. or fabrication of everything from machine module is in the form of a three-dimensional wire frame, which - -

parts to factories. The act of specifying a model is one of the is represented as a list of vertices and edges. The computation
most difficult tasks associated with these systems, is carried out by back-projecting the points in each line drawing

In an interactive image-understanding system, there are sev- and determining their points of intersection.

eral sources of line drawings. One can envision a very competent Next in the pipeline is the wire frame module, which is the
line-finder that automatically extracts the line drawings of me- most interesting of the four. Its task is to derive the solid oh-
lected objects. Alternatively, the user can specify the lines in an ject that corresponds to the given wire frame. It employs a
image by pointing at their endpoints with a mouse or other in- Waltz-style constraint propagation scheme [8), but differs sig-
put device. A third possibility is for the user to draw the figures nificantly by assigning labels to spatial regions and propagating
freehand or with mechanical assistance. Whatever the means of them throughout the three-dimensional structure, in contrast
entry, the objective is to produce a three-dimensional sketch that with propagation across a two-dimensional line drawing. Only
captures the volumetric nature of the objects. two labels are allowed (SOLID and HOLE), and a consistent Ia-

This paper is concerned with deriving the representation ge- beling is usually achieved very quickly.

ometrically, as opposed to using model-based representations. It The display module uses the labeled output of the wire frame
is divided into two parts: The first presents an algorithm for de- module to produce a display of the object, with hidden lines
riving a volumetric description of a polyhedral scene when mul- removed. As will be seen shortly, the hidden-line algorithm is

The research reported herein was supported by the Defense Advanced Re- somewhat unusual in the way it takes advantage of the label
search Projects Agency under Contract No. MDA 903-83-C-0027. information in the wire frame. 0
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Figure 4: Spoke diagram of edge El.

Figure 3. The geometry of backward projection. El

wire frame. Some of these 'ertices are identified in later stages o
processing and discarded; the remainder are the result of alterna-
tive legal interpretations of the line drawings. It is also possible E3
that some real vertices may be missed, but, fortunately, they
can be found during the second phase of the projection module's
operation. E 2E

In Phase two, the edges of the wire frame are found. Two E 1  El
vertices are connected by an edge only if that edge is consistent E3

with all views provided. An edge is consistent with a view if that El
edge projects to a line in the view, to a set of continuous colinear
lines, or to a single endpoint. When all such edges have been
found, the edges are checked for internal intersections. Any such E2  SOLID E
intersections are the missing vertices of Phase one and are added
to the data base. lust as extra vertices may have been found Figure 5: Propagation of Intravertex Constraints.
earlier, extra edges may arise for the same reasons.

In Phase three, any vertex with fewer than three incident solid matter and which are not, relative to the wire frame. Its
edges is eliminated. (Realizable solid objects always have at least basic tool for performing this reasoning is the spoke diagram
three edges meeting at any vertex.) Any accompanying edges are (Figure 4). The spoke diagram is an edge-ott view of a vertex.
also removed and the pruning is continued until a stable config- The spokes are the projections of the edges at a rertex onto the
uration is reached. Usually, however, there are no vertices to be plane that is perpendicular to the selected edge. The spoke di-
removed in this manner. agram in the figure is the view along edge E, toward vertex Vi,

At this point. a wire frame has been computed that is guar- such that E, itself projects out of the drawing. The sector be-
anteed to encompass all the edges and vertices of the object. If tween two spokes represents the solid angle defined by the two _..
the set of line drawings provided determines the object uniquely, edges corresponding to the two spokes and the selected edge.
the wire frame will correspond exactly to the wire frame of the The solid angle must either be filled completely with matter or
object. If the line drawings are ambiguous, the wire frame may be completely void of matter, because boundaries between mat-
contain vertices and edges present in one interpretation but ab- ter and space can occur only at faces and all faces are bounded 0
sent in others. The ambiguous case can be accommodated by by edges. Therefore, each sector can be labeled by either SOLID
invoking the wire frame module for each of the possible inter- or HOLE to reflect this choice. The task of the wire frame module
pretations. Those found to be inconsistent can be disregarded; is then to assign a label of SOLID or HOLE to every such solid
those found to have a legal interpretation can be construed as angle, as defined by the wire frame.
alternative solutions. The remainder of this paper assumes that As mentioned earlier, the wire frame module is a constraint
the wire frame has been determined uniquely, propagation algorithm. Three separate processes serve to con-

strain and propagate the labelings:2.3. The Wire Frame Module
I. Intravertex constralnts-These serve to propagate la-

The input to the wire frame module is a data structure rep- bels (SOLID or HOLE) among the spoke diagrams at a
resenting a wire frame that contains only edges and vertices that given vertex, as in the example of Figure 5. Here an as-
correspond to true edges and vertices of the underlying scene. signment of SOLID to the sector between the spokes corre-
The module's job is to find out which regions are occupied by sponding to edges E2 and E3, in the spoke diagram of E, at
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and compactness of description may provide a useful inroad. nical Note 271, Artificial Intelligence Center, SRI Interna-

The determination of the origin and scale of gradient space tional, Menlo Park, California, November 1982.

is in itself not sufficient for the interpretation of all faces in a [31 Draper, S. W., "The Use of Gradient and Dual Space
polyhedral scene. Figure 10 shows an object and its gradient- in Line-Drawing Interpretation' Artificial Intelligence 17,
space interpretation. Even if the orientation of face A is known Augu. t 1981, pp. 461-508.
exactly, the locations in gradient space of faces B, C, and D are [41 Kanade, T., "Recovery of the 3-D Shape of an Object from S
still underdetermined. The figure is analytically ambiguous but a Single View", Artificial Intelligence 17, August 1981, pp.
subjectively resolvable; additional heuristics may be necessary to 409-460.

*find the solution.
151 Kender, .1. R., 'Shape from Texture", CMU-CS-81-102,

Another issue inherent in the analysis of line drawings is Carege lloR Unive om er 1980.
how best to cope with imprecise input. Line drawings may be Carnegie-Mellon University, November 1980.

extracted from real images or may be hand-drawn. One would 16] Mackworth, A. K., "Interpreting Pictures of Polyhedral
prefer an algorithm that does not degenerate completely when Scenes", Artificial Intelligence, 4, 1973, pp. 121-137. •

confronted with inaccurate drawings. A drawing of an "impossi- [7) Sugihara, K., "Mathematical Structures of Line Drawings
ble" object, that is, a drawing that does not correspond to any of Polyhedrons- Toward Man-Machine Communication
geometrically possible object, should be interpreted as the "cos- by Means of Line Drawings", IEEE Trans. on Pattern
est" object that is geometrically permissible. Kanade's algorithm Analysis and Machine Intelligence, Vol. PAMI-4, No. 5,
14). which works through iterative minimization of errors, pro- September 1982, pp. 458-469.
vides a framework for achieving this goal. One can conceive of
designing a system that theoretically supports only orthographic [8] Waltz, D., "Understanding Line Drawings of Scenes with

line drawings, and using it to interpret perspective drawings. If Shadows', The Psychology of Computer Vision, P.H. Win-

the focal length is sufficiently large, the perspective distortion ston, Ed., McGraw-Hill Book Co., Inc., New York, 1975,

might be treated as drawing error and an approximate interpre- pp. 19-91.

tation obtained. While the validity of this approach depends on [9) Wesley, M.A. and Markowsky, G., "Fleshing Out Projec-
the application in mind, it does circumvent the difficulties of a tions', IBAf J. Res. Develop., Vol. 25, No. 6, November
truly perspective model. 1981, pp. 934-954.

The gradieni-'pace representation is unsuitable for analyzing ,
perspective drawings 15]. The primary reason is the inability to

capture the concept of sidedness of a plane in gradient space. Sid-
edness reasoning iA essential to the interpretation of perspective
drawings because either side of a plane may be visible, depend-
ing on the plane's location in a perspective drawing. Formalisms
based on the (;ausian sphere overcome this problem. The math-
ematics becomes a little inore complex (quadratic versus linear
equations). but the two solutions to each quadratic equation, cor-
responding to the two sides of a plane in three-dimensional space,
enable quantitative analysis of per')ectivc scenes.

4. Summary

Recovering the shape of an object from a single line drawing

of that object is a diflicult problem. Further investigation is
necessary to achieve human-level competence.

The algorithm presented for interpreting scenes from multi-
ple views embodies a novel approach to a long-standing problem.
The type of spatial reasoning used promises to be applicable in
other situations as well. The technique may be successful when
only a portion of an object is vi-ible and may perform adequately
even with inaccurate line drawings (such as those missing a line
here or there). It is a local reasoning process that may be es-
pecially appropriate for supporting higher-level reasoning about
solid objects.
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COMPUTING DENSE DISPLACEMENT FIELDS WITH CONFIDENCE MEASURES

IN SCENES CONTAINING OCCLUSION 0

P. Anandan --.-. .. ,

Computer and Information Science Department
University of Massachusetts

Amherst, MA 01003
* Correlation matching tends to produce false matcles

ABSTRACT in areas of the image where the variation is lo"

Matching successive frames of a dynamic image se- 9 Correlation matching fails most miserably in areas of
quence using area correlation has been studied for many the image that are occluded and the non-occluded ar-
years by researchers in machine vision. Most of these ef- eas that border them.
forts have gone into improving the speed and the accuracy Some researchers have used hierarchical search strate- 0
of correlation matching algorithms. Yet, the displacement gies [Gla83, Burt83, Wong78] to reduce the amount of
fields produced by these algorithms are often incorrect in search required. However, the problems in processing scenes -.

homogeneous areas of the image and in areas which are visi- containing occlusion still remain. In this study, we use
ble in one frame, but are occluded in the succeeding frames. the hierarchical matching algorithm of Glazer, Reynolds,
Further, these displacement fields are often incorrect even and Anandan [Gla831 as our basis. We isolate the situa- -
at non-occluded areas that border occlusion boundaries. In tions where this matching algorithm fails by computing a S
this paper, we present a confidence measure which indicates confidence measure which estimates the reliability of each
the reliability of each displacement vector computed by a displacement vector that is computed by the matching al-
specific hierarchical correlation matching algorithm. We gorithm. We then modify the hierarchical search strategy
also provide an improved hierarchical matching algorithm to improve the results, especially near occlusion boundaries.
which performs particularly well near occlusion boundaries. The result is a computationally efficient matching algorithm
We demonstrate these with experiments performed on real which provides a dense displacement field with estimates of
image sequences taken in our robotics labaratory. A more reliability of each displacement vector. = "
detailed version of this work appears in [Anan84]•. -- '-Section 2 of this paper describes the various types of

correlation techniques that have been investigated by re- -.searchers. Section 3 describes some of the work done by

One of the powerful techniques that have been studied by other researchers for finding a confidence measure, and de- " -

researchers in image processing and computer vision for the scribes the measure chosen for this work. Section 4 de-
purpose of matching images is area correlation [Aggagla, scribes our modifications to the search strategy. Section 5 -

BardB0,Hann74, MoraS1, Genn8O, Burt83, Gla83, Wong78, describes some applications and the possible future direc-
Lawt84I. Much of this work has addressed issues in choos- tions of this research.
ing a useful match measure, increasing the accuracy of the
match, and in reducing the computational complexity of 2. TYPES OF CORRELATION MEASURES
the matching algorithms. However, most of the current AND ALGORITHMS
techniques produce false matches when applied to scenes A variety of correlation measures and associated search
containing occlusion, i.e., where a certain area of the im- strategies have been studied by researchers in the field of
age which is visible in one frame is hidden by other moving image-matching. In this section we briefly review some of
areas in the succeeding frames. The problem include the these measures and some of these search strategies. The
following: particular choices of the measure and the search strategy

* The search required may be large. are -ot always independent of each other. In our discussion
* The spatial resolution of the displacment field pro- below, we point out such dependencies where they occur.

duced by correlation matching becomes poorer as the 2.1 Types of Correlation
size of the sample window increases [Genne0]. Some typical correlation match measures that are used -.- -

This research was supported by DARPA under Grant N00014
82-K-0464. S

236

........ ..... . ... ..... . . . . ..... ... ...'-'..;.:-:... . . . .



by researchers are described in (Hann741. These include the differences of the means tend to be small, even though
direct correlation, mean normalized correlation, variance the means are not zero. Our own experiments suggest (see
normalized correlation, sum of the squares of the differ- Table 1) that for a fixed size of the matching window, the
ences between corresponding pixels (SSD), and sum of the performance of Laplacian-filtered SSD exceeds that of the
magnitudes of the differences. Laplacian-filtered correlation using the same sized window.

A comparative study of direct, mean-normalized and Based on this, we have used Laplacian-filtered SSD as the 0
variance-normalized correlation measures can be found in match measure for the rest of our study.
[Burt82I. In addition, Burt also suggests the use of Laplaciai Although the problem of mean changes can be elm-
filtered images for matching. Although this filtering process inated by using Laplacian-filtered SSD, there are still two
can be used in combination with any of the above match sources of false matches. First, contrast variations between
measures, his study includes only the Laplacian-filtered di- the images degrades the performance of the SSD measure
rect correlation. Burt shows that the most reliable results [Hann74]. Second, the Laplacian-filtering process removes •
are consistently obtained by choosing correlation with both image variations below a certain frequency, thus causing the
mean and variance normalizations. However, this process image structures to repeat beyond a distance correspond-
(especially, variance normalization) is computationally ex- ing to the filter cut-off wavelength. Therefore, if the search
pensive. Therefore, he recommends the computationally area is large, there is greater potenitial for the occurrance
efficient Laplacian-filtered direct correlation which appears of false matches. In the following section, we note that the
relatively insensitive to both mean and constrast changes search strategy used can be helpful in alleviating both these
between the images, although this measure performs poorly difficulties.
in the presence of high frequency noise.

The reason for the success of the Laplacian-filtered 2.2 Search Strategies

correlation process is that the mean value of a Laplacian- There are only a limited number of search strategies
filtered image tends toward zero as the sample window size that have been employed by various researchers. The most
increases. Thus, the filtering process has the effect of mean- obvious strategy is to search the whole area within the ex-
normalizing the correlation values. However, we found that pected maximum displacement. Hannah [Hann74] and Gn- S
when the window sizes are smaller than 8 x 8, the mean of a nery [Genn80] use this technique, although Gennery men-
sample window, though small, was not nearly zero. In such tions a number of ways to cut down the computational cost
cases using Laplacian-filtered SSD provides more accurate of the search, and mentions the possibility of using global
results than Laplacian-filtered correlation. This is because techniques to get approximate estimates which are then im-
the SSD measure is senstive to the difference of the means proved using local searches. Lawton [Lawt84 uses a search
of the two areas that are compared. For smaller windows, technique that is most suitable for the case of pure transla-

.__ _.__ _,__ _ _ tional motion of the camera. In this case a global search is .

S .AMPLE v .performed for the focus of expansion (FOE), which is the
NOISE3 J 2 Lr 3 Z £1P intersection of the translational axis and the image plane.

Specific values of the FOE are evaluated and for each, the
",S.q3 64- .07 71.38 local searches for optimal feature matches are constrained

0 to lie along radial lines emanating from the assumed FOE.
$P 6.. 6 7. 26 5%.03 Wong and Hall [Wong781, Glazer et. al. [Glaz831, Burt

CORR et. al. [Burt83], and Moravec [Mora8l] all use a multi-
R 3o-3 60-30 78. IL4 resolution coarse-fine strategy, but there are important dif-

sD 9(.60 74-10 g 1ferences among them. Among these differences, we are in-
___.0 7.__. terested in the fact that Wong and Hall and Moravec used

CORR 2.1.19 %l. 73 7, .V low-pass filtered images, whereas Glazer et. al., and Burt
I Oet. al. used band-pass filtered images. Burt et. al. used a

S&D 30-4 60.3 76.6? strategy where the searches at the different levels of reso-
lution operate independently of each other. This results in

Table 1: Comparing Laplacian-filtered correlation with low-frequency coarse resolution searches detecting large dis-
Laplacian-filterd SSD. placements and higher-frequency finer resolution searches ' "detecting smaller displacements in the image. Glaer et. al.

The tests were conducted using the Mandrill Images de- IGla83] use a strategy which utilizes the approximate esti-
scribed in [Glaz83I. Gaussian noise of standard deviation mate given by the low-frequency, coarse resolution searches
0, 5, and 10 percent of the intensity range were added to as a starting value to define the search in the higher fre-
the second image which was translated by (3,5). The table quency images, thereby resulting in a more precise displace- " - .
entries are percentage of pixels with correct displacements. ment estimate.
Matching was based on square windows of width 3, 5, and
8 pixels.
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For large displacements, the use of band-pass filtered information. Gennery's measure requires a model of the

images and the coarse-fine strategy for matching is a nat- camera noise and scaling effects between the images to be

ural generalization of the Laplacian-filtered matching tech- matched. This requires calibration of the camera set-up.

nique. In this approach, at any given level of resolution the Although this appears to be a robust measure, it is often

band-pass filtered image corresponds to Laplacian-filtering the case that such calibration is difficult due to changes in

the low-pass filtered image that is faithfully representable illumination, surface reflectance, etc. We believe that it 
(according to Nyquist criterion) at that resolution. The 3x3 is possible to provide a confidence measure which does not
search area used both by Burt et. al. and Glazer et. al. ef- depend on an a-priori model of the camera and the image
fectively limits the search to less than half-the wavelength noise. Burt provides a confidence measure, which in many

of the highest frequency information available at each level, ways is similar to our own. We describe Burt's measure in

This restriction also helps reduce the effect of false matches greater detail in section 3.3 and compare it with ours.

that may arise due to contrast variation between the im- 3.1 Properties of the SSD surface 0

We define an SSD surface as the surface formed by
The band-pass filtered, coarse-fine search strategy tends considering the Laplacian-filtered SSD values corresponding

to introduces some problems of its own. At occlusion bound- to different candidate displacements as the elevation at that
aries, where there is a discontinuity in the displacement displacement. This surface appears to contain a wealth
field, the coarse-resolution processing errors usually occur of information about the nature of the image structures
because 1) sampling windows will overlap across the bound- at the point being matched. Intuitively, it is clear that 0
aries and 2) the low-pass filtering process smooths the im- where there are significant intensity variations in the image,
age across the boundaries. Since each pixel at a coarse level the match is likely to be reliable and unique, whereas at
tends to cover a large area at the finest levels, these coarse- points in a homogeneous area, this is not so. This fact is
level errors tend to cause incorrect initial estimates to be noticeable in the shape of the SSD surface corresponding
used at the fine-level pixels, thus leading to a search in ar- to such points. Usually, the SSD surface corresponding
eas which do not include the correct match. Typically this to a point with distinct image structure tends to have a
creates a large area near the occlusion boundary with in- sharp valley centered at the best match value, whereas at a
correct displacement field. Since these errors are primarily homogeneous point the SSD surface is rather flat.
due to the hierarchical search strategy, it may be possible We conducted an empirical study of the behaviour SSD
to eliminate some of these by using a single level search e Foriu dted a par of sythtic im-

surface. For this study, we created a pair of synthetic ir-
strategy. However, we believe a better approach would be ages by digitally "cutting and pasting" pieces from two realto maintain the coarse-fine search strategy, but try to rec- images. photographed in our robotics lab [Elli84]. We then
ognize such errors as they happen. Our confidence measure selected a number of specific points corresponding to typical
is, in fact, an attempt to do precisely that. image structures, (e.g., intensity corners, homogenous ar-

eas, occluded areas, etc.) and studied the behaviour of the
3. A CONFIDENCE MEASURE Laplacian-filtered SSD surface at these points The detailed

As noted in the previous sections most correlation matching results of this study are described in fAnan84j. Figures 3.1
algorithms generate false matches in homogeneous areas, and 3.2 show examples of such surfaces. Fig. 3.1 corre- , .
i.e., where there is a lack of any significant image struc- sponds to an intensity comer which is visible in both im-
ture, and around occlusion regions. Previous work that ages. Fig. 3.2 corresponds to an intensity corner in the first
has attempted to provide smoothly varying dense displace- image which is occluded in the second image. These sur-
meat fields (Horn80, Glaz81, Nage83, Hild83) usually relies faces are inverted in the displays so as to enhance visibility.
on the propagation of displacement information from image Thus the point of minimum SSD value is the peak in these
areas with significant intensity variations to homogeneous two figures. We have marked the view-angle of the surface
areas. However, when occlusion is also present, such es- displays, as well as the minimum and maximum SSD values
timates at the occlusion boundaries are usually incorrect on the surfaces. In each figure, the point of minimum SSD
due to occlusion effects and using them for initial estimates value is marked with a s0' and the point corresponding to

" tends to confound the errors. the correct displacement is marked with a "X*. Note that

There have been efforts by Hannah [Hann74], Gennery Fig. 3.1 shows a distinct peak and the point of minimum
d BrtBurt83 to understand the reliability SSD corresponds to the true-match point, wheras Fig. 3.2[GennS and Burt ut tshows erratic behaviour and the true-match point is away

of correlation matching algorithms. Hannah observes that fro0 the point of minimum SSD value.
both the sharpness of the correlation surface at the point f
of best match and the similarity between the shape of the
auto-correlation and the cross-correlation surfaces can be
used to decide about the reliablility of the match. However,
she does not provide any concrete technique for using this
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The behaviour of the SSD surface lAnang4l suggested
that the confidence in the correctness of the match esti-
mate should be directly proportional to the curvature of the
SSD surface, and inversely proportio.al to the SSD value
at the point of best match. Consider the normalized second
derivatives of the SSD surface centered at the point of beat 0
match in the four directions 0, 45, 90 and 135 degrees. Each
of these can be computed numerically using a I x 3 Lapla-
cian operator oriented in the appropriate direction. We
divide these curvatures by a weighted sum of the three SSD
values used to compute the curvature. This is done both
in order to normalize the curvature to be between 0 and 1,
and to make it inversely proportional to the minimum SSD
value.

In the formulae given below, the SSD surface is con-
sidered centered at the point of best match. The indexing
is relative to that displacement, with index (0,0) referringMMIMUM 5sb z 72

,M AWINVM sb - 2o to the displacement corresponding to the best match:

-,,,,., 0 - s(-1,-l) S(-l,o) S(-l,l)

Figure 3.1: SSD surface at a corner S(0,-1) S(0,0) S(O, 1)

s(I,-I) s(1,0) s(I, )

We compute the four normalized directional second
derivatives of the SSD surface as follows:

i-- - 1)(,-)- * S(0,0)+ S(o,) -
CO s(o,-i) + 2 s(0,0) + S(o, 1)

C45 S(1,-1) - 2 S(0,0) + S(-1, l)
S(l,-1) + 2* S(0,0) + S(-1, 1)

S(-1,0) - 2 s(o,0) + s(l, 0)MOP,41,AVtA stb -. S(- 1,o 0 ( ) + 2 * S(o,o0) + S(1,o) i.] /-
aLgvAloO O" :
OteVArON -

C135 - S(-1, -1) - 2 * s(0,0) + S(1, 1)
S(-1,-1) + 2 *S(0,0) + S(1,1)

Figure 3.2: SSD surface at an occluded corner

The deta;led study of these surfaces [Anan84 demon- where S(i,$) denotes the SSD value at position (i,j) rel-

strated how the SSD surface usually captures much of the ative to the point of best match.

information about the image structures as well as occlusion At this point various possibilities arise. Since each
effects. Where a proper match exists (i.e., the non-occluded of these four measures provide information specific to the
regions), the SSD value at the point of best match generally corresponding direction they could all be separately main- . -.
seems to be low. At occlusion areas this value is generally tained. Alternatively, a conservative measure will be to
higher, and the selection of a proper match becomes diffi- choose the minimum of these four measures. We have
cult. We also found that the curvature of the SSD surface adopted this latter approach for our study. Hence our con- •
along different directions reflects the degree of variation in fidence measure is,
the image along those directions, and hence the uniqueness
of the match estimate along that direction. These facts are MIN(CO, C45, COO, C135)
combined in our confidence measure described in the next
section.

3.2 The Confidence Measure
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At any level I of the pyramid, the displacement up-
dates at pixels where the confidence measure is low can be d .
suppressed (this can be achieved by a simple threshold on
the confidence measure). Wherever such updates are sup- e

pressed, we simply pas the displacement estimates from fee"- s
the parent pixel at level I - I to the children pixels at Itwe

level I+ 1. Assume that at such a pixel at level I, we are 4/ VL

searching over a window of radius r (at level 1), centered 0 Is
about the displacement estimate from level I - I. This cor-
responds to a window of radius 2 x r at the next finer level.
Hence the lack of update at level I would require that we e.te--Afe
search over a window of radius 2 x r at the children pix- -~ € .3C,

elm at level I + 1. If there is still no update at this level
the search window radius should be doubled at the next tevl tl
level below, and so on. This expanded search strategy is Lw 1+1
illustrated in Figure 4.1.

4.2 Modified Projection of Coarse Estimates

Our second modification to the search strategy involves -
the manner in which the coarse level displacement estimates
are propagated to the fine level. The strategy of Glazer,
et. al. projects the displacement value of a parent pixel as Figure 4.1: The expanded search area
the estimate for all of its four children at the next finer Pixel (0,2) at level I has a low-confidence dispalcement
level. At areas which are near discontintuities in the dis- update. Therefore, its initial estimate from level I - I is
placement field (e.g., occlusion boundaries), this approach passed down to its children pixels at level I + I. The ex-
can cause incorrect estimates to be projected from a coarse- panded search area is shown cross-hatched.
level pixel to the finer level pixels. This occurs because, at a
coarse-level of resolution the boundary of discontinuity can
be placed only within a coarse accuracy. For fine-level pix-
els along one side of the boundary, it is then possible that
the coarse estimates from the other side of the boundary are
projected down. This causes the search at the subsequent
levels to find incorrect matches.

We propose a slightly different method of projecting
the coarse level displacement estimates to the next finer
level. This idea is based on the 'overlapping' pyramid idea
of Burt, et. al. [Burt80J. Each coarse level pixel covers a
4 x 4 area at the next finer level, rather than the usual 2 x 2.
In this manner, each pixel at the finer level I + 1 is con-
sidered to have four potential parents at the coarser level I

(see Figure 4.2). We consider all the four estimates as pos-
sible initial estimates for the search at level I and conduct
searches around each of these estimates. The displacement
corresponding to the best match in this expanded search 0
area is then chosen as the updated displacement estimate .
for that pixel at level I+ 1. In this way the pixels along the
boundaries of displacement discontinuities are not bound to
an incorrect coarse estimate. This allows for more precise ir 2 h lp•ir o
placement of the boundaries of displacement discontinuities The thick double lines show pixel boundaries at level I.
at the finer level. The thin lines show pixel boundaries at level I + 1. The

It is obvious that we can combine both the modifica- projection area of level I pixels I and 4 are shown in the
figure. Note that each pixel at level I + I has four parents

tions into a uniform algorithm. This would involve choosing at level I.
the appropriate search radius for each of the estimates of %
the parent pixels according to their confidence value and
their search radius at level I.
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Figure 4.7: Results using overlapped projection Figure 4.6: Result. using both our modifications

One of the primary uses A, image displacement fields

expndng heseachare cn ladto ale mtces ueto has been to recover camera and object motion parameters.
expndig te sarc ara cn lad o flsemathesdueto and thereby the depth and the orientation of the image

repeated features. surfaces. Typically, techniques that address these prob-
Fig 4.7 displays the displacement estimates superim- lems involve solving a system of equations [Long8l, Tsai84I

posed on low confidence areas as provided by a search strat- or minimizing an error measure IAdiv84, Rieg84, Praz8O,-
egy which incorporates only the second modification, viz., Lawt84].
the overlapped pyramid projection. Fig 4.8 displays the dis- These techniques can use the confidence measure in -

placement estimates superimposed on the shaded low con- two ways. The first method is to eliminate the displace- -

fidence areas as provided by a search strategy that incor- ment estimates with low confidence measures. The sec-
porates both the modifications mentioned above. In Fig- onmehdibadontebsrtonhtsmeftee . ---

ures4.7and4.8 is asyto ee hata drmatc rducion techniques compute a global error or transform which has
in the size of the low-confidence areas has been achieved. contributions from each displacement vector. This confi-
Figure 4.7 shows that the modified projection strategy pro- dence can be weighted by the confidence measures. In
vides the major contribution to the improvement in the dis- ti a esacrt ipaeetvcos(hc yi

placmen fild.Thi isso ecaue, n tis pprachthe cally have lower confidence), contribute less to the opti-
coarse-est imates are not altogether eliminated. Instead, in- iaonpcesthsnacngherlbltyftatr-

m izaiion process, ll _ thu enhancin th"eiaiiy ,ftatpo

formation is used from neighbours who may have correct cess. As an example of this latter use, we point to Adiv
estimates. [Adiv841, who attempts to segment the image into regions

Later in this paper, we discuss other possible ways of which have consistent displacement fields within those re-
utilizing the confidence measure to improve the matching gions in order to compute the 3-d motion parameters corre-
results, all of which are currently under investigation. sponding to these fields. His technique is a multi-stage one,

and involves transformations from the displacement vectors

6. APPLICATIONS AND FUTURE WORK to affine-tranformfat ion parameter space, as well as least.--
square-error fits of 3-d transformations to the displacement

Thus far in this report we have described our confidence fields. For both these purposes, he uses the confidence ame-
measure, and demonstrated its use in our modification to sure to weight the contribution of a displacement vector to
the search strategy. This measure can also serve as useful this transformation and the error measure.
piece of information for techniques that process the flow
field. In the following sections, we outline the immediate 6.2 Future Work

applications of the confidence measure, and describe the Directional Information about Matching
directions in which this study can be extended to include The demonios of the of te measur-
the various modifications necessary for other applications. Th deostation the beviour of the se

6.1 Use by Parameter Computation Algorithms t
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face at typical areas of the image with directional structures Our study of the Laplacian-filtered SSD surface sug-
(e.g., edges) clearly showed that such directional informa- gests that we can weight the function to be minimized using
tion was indeed noticeable in the shape of the SSD surfaces, information from the SSD surface. Since Nagel's smooth-
More specifically, we noted earlier that along edges in the ness constraint uses image gradient information only from
images, we see a ridge like SSD surface where the orienta- image, it is not sensitive to effects of noise and illumina- •
tion of the ridge corresponds to the orientation of the edge tion in both images and to occlusion phenomena. The SSD
in the image. Hence, the directional confidence measure surface includes such information and is therefore likely to
along the direction of the edge is low, whereas it is high prove more useful, particularly in scenes containing occlu-
in the direction perpendicular to it. It has also been well sion. One of our future goals is to pursue this approach and
recognized by many researchers (e.g, [Glaz81,Horn0]) that compare it with the approach of Nagel.
a directional feature in the image (say, an edge) can pro- Recognition and Processing of Occlusion 0
vide reliable information about the component of the dis-
placements in the direction perpendicular to that feature, Occlusion, although a source of failure and frustration

whereas it can provide no information about the component for most algorithms that attempt to produce dense displace-

of the displacements along the direction of that feature. ment fields, is very useful for the purposes of segmentation
of the image into objects at different depth or with different

There are two possible ways in which this directional movements. Therefore, any process that detects occlusion
confidence information can be utilized. The first is to use very early in the processing can be useful for focus of at-
it in an algorithm similar to the modified search strategy tention, tracking, and more accurate computation of the
described in section 4. In this case, the search area would various image properties.
not be expanded along the direction where the SSD surface
shows significant variations. Instead, we can expand the The confidence measure discussed in this study pro-

search area in the direction along the ridge, thus obtaining duces low values for both homogeneous areas as well as oc-

a somewhat rectangular search area. clusion areas. However, often it may be possible to separate
these situations using the information in the SSD surface. S

The second method is to use these in an algorithm in real world images, it is usually the case that where there
that propagates information between neighbouring pixels are occlusion boundaries, there are also discontinuities in
especially along edges and curves in the image in order to the image texture. This suggests that all values on the
bring together reliable information about different direc- cross-SSD surface will usually be high at occlusion bound-
tions. One way of doing this is described in [Gla8l. Each aries, whereas they will be uniformly low at homogeneous
pixel provides a linear constraint equation on the displace- areas. This observation can be useful in the identification of
ment vector at that pixel. In Glazer's approach, a least-
square-error solution for the system of the constraint equa- occlusion areas in an image. These issues will be the focus

tions from neighbouring pixels along an edge is considered of our own future work in this direction.
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3.3.4. Linearity to give better results in practice since this further increases the

The linearity measure is an heuristic designed to give high values for sensitivity to imperfections -- dis also eliminates the need to compute

long, narrow features and lower values for other shapes. For square roots when the entire expression for linearity is expanded.

rectangular features, the linearity is approximately equal to the length- Thus. for regions that arc approximately rectangular, we compute the

to-width ratio, independent of orientation. Thus, this measure can not length-to-width ratio. For other regions, the score computed for 0
only detect linear features, but also gives some measure of how linear linearity is relatively low.

" the feature is. To use the linearity criterion, a user specifies a 3.3.5. Template Matching

minimum linearity. Regions with a linearity greater than or equal to Template matching can be used to look for a region having a specific .-

the value specified arc then classified as being linear, shape. The measure computed is the percentage of overlap between

the region being measured and the template shape. The template •
We use the length and width of the bounding box of the region, its shape, given in polygon form, and the minimum percentage of overlap

area and perimeter to compute the lineai;.- riaziirc. If the region is a
must be specified. The shape may be specified either interactively or • "

narrow rectangle, it will lie diagonally in its bounding box and its from a stored database file. The template shape is scan-convenrted into.

length will he approximately
a matrix to simplify the shape comparison process. Scan-conversion of

length= 0,ATflRHi + MBATRWP the regions is not necessary since they are stored in image format as a -

where MBRI and AIBR W are the height and width of the bounding part of the region growing process. To compute overlap, we find the

box. Still assuming the region is a rectangle. we can compute its width centroids of both regions and shift the region matrix so that the

as centroids line up. Overlap is defined as the total number of pixels

h area matched from both regions (ie. twice the number of overlapping
w length pixels), divided by the sum of the areas of the two regions.

The length-to-width ratio is therefore overlap= 2 x intersection
area 1 + area2

length length _ length 2
width area/ length area where intersection is the area of the intersection and areal and area2

AIIRH 2+ MBRW 2  are the areas of the two regions under comparison. This gives an "
area overlap of 1.0 for identical regions. It also gives low overlaps for

We use either this expression or ite reciprocal, whichever is larger. regions whose size is very different, even if one of the regions is wholly -

'This formula will give the length-to-width ratio for regions that are contained in the other. For regions of the same size, it will give scores "

rectangular. However, for regions that are not rectangular, the result in proportion to the area of intersection.

in this form is meaningless. By adding a further dependence on

perimeter, we can reduce the score for regions that have appendages. This comparison can be performed at an arbitrary number of

Since the formula is designed to give high values for rectangles, a orientations spaced at equal intervals: in some cases (eg. template 0
perimeter value different from that which would be expected for a criteria) we know the orientation approximately and need only one

rectangle should decrease the score. That is, we will add a dependence orientation. In other cases, we may have a good model of the expected

on perimeter in such a manner as to decrease the value of this formula shape, but have weak constraints on its orientation. For multiple

for non-rectangular regions. The desired effect can be achieved by orientations, we compute the overlap for all orientations and use the

multiplying by a correction factor. maximum value. This comparison is obviously computationally
correction factor= 2 x (width + length) expensive, but many regions may be excluded from this operation

perimeter simply because their area is too large or too small for a match of the .- " . -

Note that this is a unitless quantity. The value of this expression will desired percentage to be possible. For example. if we are looking for . - -..

be approximately 1.0 for a rectangle but will decrease with an 80 percent overlap with a feature containing 100 pixels, we only

imperfections. The expression will not be exactly 1.0 since we use need to perform the overlap computation for regions with areas

approximate length and width as computed above. For some shapes, between 67 and 150 pixels. the performance of the overlap

(circles, for example) the value of this expression can be greater than computation could be improved using altcrnativc formats such as run-

1.0. Since this can only occur when the region is fairly compact, and coding, or a variation of chamfer matching. However, in the first case .

compact regions are not linear, we multiply by the reciprocal of this this would require additional storage and the computation of new run-

expression if it is greater then 1.0. The square of this expression seems codes for merged regions. Additionally, our method allows for holes
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within the template region, which would complicate the the database and the map correspondence for the image given. The

straightforward run-code algorithm as well as chamfer matching as template feature description determines both the area to segment in

implemented by a grassfire algorithm, and the shape to look for. CONCEPTMAP invokes the MACIIINESEG

3.4. Limiting the Search Area program to find a feature of a specific shape within a small context

In addition to providing the ability to look for regions of specific area of the image. The regions shown in Figures 3,4, and 5 were

shape, other actions of the region grower can be controlled by higher extracted using a match score of 0.8 (eighty percent). The context area
level processes. The region merging can be limited to specific image was approximately twice the size of the predicted feature. Using a

sub-areas to improve efficiency. This might be done by a high level small area helps to reduce false alarms from similarly shaped features

in the same area. This is usually only a problem in lower resolutionprocess whose goal was to complete the merging in a certain area to i

determine if a feature was present. This may be useful in analysis of images.

other areas of the image if some specific information is known about
Figure 3 shows the results of processing for the feature Kennedyth e sc e n e b eing segm en ted . F o r su b -area m e rg ing , th e ed ge list isC e t r i f ve d f r nt m a s . I g e p ch s l b ed D 1 3 a dCenter in five different images. Image patches labeled DCLO13 and

traversed as usual, but merging of regions is disallowed if neither DCll09 are digitized from aerial photographs taken at scale 1:60000,
region is wholly contained in the sub-area. Since the region merging is

DC1420 was taken at scale 1:36000. and DC38618 and DC38617" were S
expensive, lim iting the search area can achieve significant speed-up. taken at scale 1: 36000, a n e pixel1 i a b u equal to re

taken at w ale 1: 12000. In these scales, one pixel is about equal to 5, 3

3.5. Suspension of Merging and I meters square, respectively. The image labeled 1)C386170 had
Another form of high-level control is the ability to stop region been segmented by hand to create the database feature used for

merging at a specified point and return control to a higher level. This matching. In the lower resolution images, the contrast is rather poor,

can be done when: but large portions of the feature were still detected. In the higher S
" Some number of regions that fit the feature criteria are resolution images, the roof of the Kennedy Center is not

found. homogeneous. In these images, the feature is not merged together into
* A particular marked feature is updated as having been her

extended a single region that matches the shape specified until fairly late in the
" A certain number of merge cycles have been performed. merging process. The tail on the feature in DC38618 is a piece of

This gives a high-level program a fine grain of control over the sidewalk that was merged into part of the building before the feature

segmentation process as well as the ability to modify the criteria or was merged together.

search in a small irca. After analsis of the results of an initial region

merge, criteria can be relaxed or made more restrictive, based on the Figure 4 shows the results of processing on the feature Executive

goals of scgmcnter. Merging may he restarted from the inital seed Office Building in four different images. One of the images of the

regions, or resumed from the point of suspension. This flexibility feature is shown on the left with the segmentation result overlayed and

allows us to implement high-lesl strategies such as best-first or appearing as a dark outline. On the right are the outlines of the

botton-up propagation of weak hypotheses. S,milar control over predicted feature shapes, the extracted features, and the superpositions

paramneterh bescaluatitin procedures are described b) Selfridgeli. of the predicted and extracted features, showing their relative positions -

in the image. Note the recovery from a significant correspondence -

4. Some Examples error in one of the examples. The resolution for each image is given on
The following examples illustrate map-guided segmentation using the far right. 0

the MA(IIINI SIG program. [he first three examples show the

extraction of buildings and natural features from images of the Figure 5 shows the results of processing for the feature McMillan

Washington ).C. area using the CONCIPPMAi' database. "he final two Reservoir in four different images. One image of the feature is shown • - "

examples show the use of map-derived s.e and shape criteria to find on the lcft with its segmentation result overlayed and appearing as a
instances of generic objects in an image of National Airport. dark outline. In this image, part of the feature is not visible since the S

4.1. Map Guided Template Matching feature is on the edge of the image and is clipped. When this happens,

The following three examples were generated using the the map-to-image correspondence of the database feature onto the

tCOCrt*PtMAP program. This program allows a user to specify a feature image results in a template feature clipped to the image bounds. The

in the database and an image in which to look for the feature. The resulting shape is approximately the same shape as that in the image to

program then creates a template feature using the map description in be segmented. The accuracy of locating the partial feature is usually 5
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the same as for location of the whole feature. On the right and bottom and transformed automatically into pixel distances using map-to-image

of figure 5 are the outlines of the preeictd featuxre shapes for the other correspondence. Current generic feature criteria include runways.

three images along with the extracted features, and the superpositions taxiways, access roads, parking lots, grassy areas, tarmac, hangars, and

of the predicted and extracted features, showing their relative positions terminal buildings.

in the image. The superposition of the predicted and extracted shape 5. Conclusion
is not shown for the example at the bottom due to space limitations.

In this paper we describe MACH INESEC3, a program that performs -

[hc region at the bottom of the figure was also on the edge of the map-guided image segmentation.'The use of shape and spectral criteria '""""""
image except in this case almost all of the feature was off of the image. t c "r" of rto control merging of regions within a region-growing paradigm is2.:" ~
The resolution for each image is given on the far right, discussed. Examples of the use of a feature description from a map

4.2. Using Generic Descriptions database to guide feature segmentation from an image database using

In addition to the use of specific map feature templates, explicit map-to-image correspondence are presented. The use of

MACIIINTS[G can be used to find regions having generic shape or generic map-based descriptions of shape find instances of classes of

spectral properties. Figure 6 is a photograph of the terminal building objects is presented. This program has been integrated into the MAPS

area at National Airport. Washington D.C.. We have been using system and uses the CONCEPTMAP database as a source of feature

MACIIINE S|G to provide region candidates to a rule-based system for descriptions. It is also used as a component of a rule-based system O

photo-interpretation, SPAM 7 
. Figures 7 and 8 show line drawings of (SPAM) for photo-interpretation.

the regions extracted from Figure 6. The criteria for Figure 7 were 6. Acknowledgements
established to produce large blob regions, which might correspond to " "David Smith implemented several novel aspects of the low-level
tarmac, grassy areas between runways, or parking lots. A histogram of

initial seed region areas was used to select an area criteria based on the region grower, particularly, an efficient representation of regioniniialsee reionares ws ued o slec anare crtera bsedon he adjacency and edge strength. Steve Shafer, Takeo Kanade, and Victor

distribution of large initial regions. Since we were searching for blob adaency andcedgeste n eve shaf er. a i
Milenkovic commented on an earlier version of this paper. Kim

regions, a compactness criteria which excluded compact regions was
* selctedFaught aided in the preparation of this paper.selected.
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we suggest is to use the EulerLagrange equation associated

k(t, 8) = nk(t)1k(s). (3) with the variational problem.

In the computation of motion, Yuille (1983) has obtained the

Obviously if R(A) has finite dimersion, then IR(A) cannot coincide following sufficient and necessary conditon for the solution of

with Y. and therefore the inverse problem of an integral operator the variational principle equation (8), to be the correct physical

or a convolution is in general an ill-posed problem. solution

We can relax condition (2) and admit the case that A is not
mlective. The problem is then regularized by introducing an T - .. 0

appropriate norm and finding the generalized pseudoinverse of j ,_2

the mverse problem (1). where T is the tangent vector to the contour and V is the true

When is not in /1(,), it is not easy to regularize the problem velocity field. The equation is satisfied by uniform translation
ywinot alin Rthe , itssenot heasy tprula ithe or expansion and by rotation only if the contour is polygonal.

altering the essence of the problem itself. These results suggest that algorithmL, Oased on the smoothness

131 J Canny's (1983) variational formulation can be derived from principle will give correct results, and hence be useful for
eq (4) and a stabilizing functional of the lorm of eq. (5) (see computer vision systems, when (a) motion can be approximated
Poggio et al., 1984). locally by pure translation, rotation or expansion, or (b) objects

(4) It is shown in Hildreth (1984a) that extremizing equation (8) have images consisting of connected straight lines. In other

yields a unique velocity field, since it corresponds to minimizing situations, the smoothness principle will not yield the correct
a positive definite functional on a convex set. The theorems velocity field, but may yield one that is qualitatively similar and

of du Bois-Reymond state that, provided LV is continuous the close to human perception (Hildreth, 1984a,b).

solution of the minimization problem will be the solution of the In the case of edge detection (intendeo as numerical differentiat- i
corresponding Euler.Langrange equations, ion), the solution is correct if and only if the intensity profile is

[51 The problem is to find the solution z to a polynomial spline of odd degree greater than three (Poggio et
al., 1984).

y = Az [12] The variational principle (minimization of jerk) corresponds
to the second regularization method, with P = d

3
/i

3 . The

wh Tassociated interpolating function is a quintic spline. Analog
with (A)() e s (i)dl. Thus, z is the eae iative of the data networks for solving the problem can be devised (Poggio and
.. The problem is (mildly) ill~posed because if z E 1. [0, 1], the Koch, 1984). It may be interesting to consider our third method
compact operator A is not closed in 1,2[0, 1]. of regularization in the context of the av .ilable data on arm

[6) For data on a regular grid, it corresponds to convolving the trajectories.
data with tne L,1 filters of Schoenberg (1946). [13] The variational principles that we have considered so far for
[7) A higher degree stabilizer may be used for higher derivatives, early vision processes are quadratic and lead therefore to linear
leading to higher order splines. equations. The ill-posed problem of combining several differe"

[81 Methods such as the Generalized Cross Validation method sources of surface information may easily lead to non-quadratic

(GCV) (Wahba. 1980; see also =leinsch, 1967) may be used regularization expressions (though different "non-interacting" S
to find the "optimal" scale of the filter, i.e., the optimal X. constraints can be combined in a convex way, see Terzopoulos,

Fingerprints (Yuille and Poggio, 1983) may provide a method for 1984). These minimization problems will in general have multiple

finding the optimal value of the regularization parameter X. This local minima. Schemes similar to annealing (Kirkv trick, Gelatt

follows from the fact that the filter given by equation (10) is very and Vecchi 1983; Hinton and Sejnowski, 1983; Geman and

similar to a Gaussian and that X effectively controls the scale of Geman, 1984) may be used to find the global minimum (see also

the filter (see Poggio et al., 1984). Poggio and Koch, 1984).

[9] , other clearly ill-posed problem is stereo-matching. It is not (14] This is a list of open problems on which we are presently

immeceiately obvious, however, what the correct regularizing pro- workil:

cedure is Berthold Horn has suggested (personal communica- a) Regularized solution for stereo matching.
tion) a variational principle for stereo-matching sirnilar to his b( Regularized solution for structure from motion.

scheme for computing optical flow. The norm to be minimized b Rsti

measures deviations from smoothness of the disparity field. c) Full extension of the edqe detection analysis to 2-D and
Specifically, the ncrm of the derivative of the - component, the application to stir' we approximation for computing differential
depth component, has to be minimized subject to the constraints propt-rties of surfa s

given by the data. This caln be regarded again as a variational d) Analysis and implementation of methods for finding the optimal S
principle of the type t.nat is obtained directly using the standard regularzation parameter X. Use of fngerprints.
regularization methods of ill-posed problems. We are presently
developing regularization solutions to the ,tereo problem (Yuille e) Connection between the rmgularizinq parameter X, the iteration
and Poggio, in preparation). number in lbrative re(ularizin, methods (Nashed, 1976) and the

The problem of shape.from-contours in the variational formulation truncation of a formal power series expansion of the regula'
t zing - -.

of Brady and Yuille (1983) is an ill-posed problem but the solution operator.

is not of the standard regulariztion type. I) Use of stochastic regularization methods (see also Geman and

[10] The rubbery constraint proposed by UlIman (1983) is more Geman, 1984). 5

general than the rigidity constraiiht. It may be possible to [15] But see Hummel and Zucker, 1980.
reformu!ate it according to regularizalion techniques.

[11] A method for checking physical plausibility of a variational
principle is, of course, computer simulation. A simple technique
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starts with a whole image field of matches (the some experimental results and draw some conclu-
"optical flow field"); Bruss & Horn (1983) have sions.
shown how how to determine the camera motion
from the optical flow field, again using a least-
squares formulation. Obtaining the optical flow 2. Applications

field has been investigated by several people, for Many rol 3tic tasks require a knowledge of
examp!e Horn & Schunck (1981) and Cornelius & the position and orientation of the "robot' This
Kanade (1983). In the three-dimensional match- is because mechanical imperfections and environ-
ing approach, corresponding points in three di- mental uncertainty make it impossible to know
mensions (obtained e.g. by stereo) are used to exactly how a robot will move in response to the •
determine the camera motion; this technique was commands sent to it and exactly what it will en-
used by Moravec (1980) to navigate a rover, counter in its surroundings. Optical navigation

takes its place alongside various types of mechan-
These approaches all split the process into ica' navigation to correct this problem, and in-

two steps: finding the matches ar e using those deed has distinct advantages with respect to re-
matches to solve for the carriera paranmters. In sponding to environmental uncertainty over those
this paper we show how to combine the two steps methods. Such tasks can be classified along sev-
into one, by applying a generalized image match- eral dimensions; three of particular interest to us
ing technique that we term the method of differ- are the nature of the robotic agent, the nature
ences. The method of differences directly con- of the environment, and the manner in which the
putes the six camera parameters, much as stan- optical navigation is used. 0
dard matching techniques compute two parame-
ters (the x and y displacements). That is, the
camera parameters are explicitly included in the Robotic agents. For our purposes, robotic
matching process. The method takes advantage agents can be roughly divided into two classes:
of the fact that, in many applications the approx- fixed-base robot arms and autonomous roving ve-
imate position and orientation of the camera are hicles (although many vehicle designs call for the
inown. Starting from that estimate we compute rover to have a robotic arm or manipulator of
a better estimate by using the image intensity some sort). In both cases optical navigation can
gradient as a guide. By using an iterative scheme play an important role, although the nature of
our estimates converge to the correct value. The the navigation may be different.
result is a technique that is fast and free of search. For example the. "world" in which a ma-

The method of differen'es and similar meth- nil)ulator moves is generally smaller than that
ods based on image gradients have been ap- in which a rover moves, and so the nature and
plied before to the analysis of small image mo- juality of tile image obtained may differ (con-
tions (Limb & Murphy, 1975; Cafforio & Rocca, sider such effects as depth of field). Moreover,
1979), to optical flow field determination (Horn the two types of agent differ with respect to the 0
& Schunck; 1981), and to stereo image analysis availability of other sources of information about
(Lucas & Kanade, 1981). Here we show how it the robot's movement. A rover might well be ca-
can also be applied to navigation. pable of inertial or radio navigation in addition

to optical navigation. On the other hand robot
In the remainder of tie paper, we first arms typically operate in environments where

present several robotics scenarios calling for op- such techniques as. structured lighting may feasi-
tical navigation. Then we describe the method bly provide ad(ditional inforination, while such is
of differences in a one-dimensional case, which generally not the case for rovers. Such additional
serves to illustrate many of the issues. Then we sourec of knowledge could I)e incorporatel into
show how the same technique can be used for the method, for example to provide the necessary
multi-parameter estimation. Finially, we present initial estimate of position.
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A second point of differ(-uce is that tie inech- tances call be directly measured; the distances
anisuis for control of an arm arid a rover are quite can be oltaine(1 )y structured lighting; and so
,lifferent: an arm is generally controlled by tlie co- on. In any case since this is a training step to bc

dj ordinated rotations of a number of joints, while (lone only once, the assignment of distnces need
tlie a rover is inoved under the power of a num- not be completely automiated. This concludes the
ber of wheels or legs. Thus, the method must training process. Then, at each step of an ac-
tbe adapted differently in each case if it is desired tual run. the iraage received 1 by the camera will
to directly solve for the joint positions, the wheel be conpared against one of the stored reference
rotations , or even the control signals that cause images (actually, only the positions and intensi-
those movements, ties of the reference points are need be stored), 0

Another point of difference is in the degree of and the method of differences will be used to de-

counst rainit th.t exists in the motions of the robot. termine the position of the robot relative to the

Typically, a manipulator will be able to move in reference coordirate system. In a .ariatioi of this

all six degrees of freedom. while a rover may only process, the method of differences can be used to
have freedom in say the pan, x, and z iotions. directly solve for tile control signals to be fed to Shavefredomin sy te pn, , an z otins. the robot.
These const 1 it s )ear on the specific formula-
tion, of tle technique for the different tasks. The case of an unknown environment is more

difficult. It is not possible to store reference im-

Environment. In a known environment, the ages, so the process of selecting arid determining

robot must perform a series or maneuvcr. with re- the distances of reference points must be carried S

'spect to it set of otbJectsi in the environirient whose out anew each time the rover encounters a new

tnature and approximate position are known in situation. Techniques for doing this, such as by

advance. Ii ai unknown erivironnient case, tile automatic stereo vision, are themselves the sub-

robot niuist be prepared to encounter anything, ject of research. Once the reference points are lo-

or ;at 1e4t a variety of objects. Tasks in which Cated and their distances determined, they can be

a robot arni init operate iin an unknown envi- used to navigate until they are lost from view. If

roinenit are co,mceivable, but unlikely: therefore necessary, the stereo solver can be called again at

we will confine ourselves to the rover case, but each step to reline the estimates of the distances

our remarks concerning the rover operating in a and to determine the distances of new reference

knowii environment will atppIly equally well to the points acquired to replace old ones that have dis-

robot arm case. appeared from view.

In the case of a known environment, the sce-
nario for the use of the method of differences is Manner of application. Finally, optical
as follows: the robot is taken tfhrough the series navigation can be used in a robot in one of two
of operations that it will be expected to perform. ways. If tile position of the robot can be calcu-
A.\ it does this it records a nmber of camera 1 te( quickdy enough (for example wi!i tile aid
views sulficient to cover the substantially differ- of special-purpose hardware), then the result can
(tit situations tile robot will encounter. These be used in a continuous feeuback loop. Two its-
inmages will serve as landmarks with respect to pects of the mietlio(d are favorable for this mode.

hhi(h the robot will later navigate. Then a num- in a feedback loot" the range of converger 2e of
6 t~er of reference points are chosen from each in- the algorithin need not l)e large, because the po- 0

age and are assigned a distance from tie cam- sition will be calc'ulated frequently enough that
era. This can be done a number of ways: a sec- the robot will have 11ioved relatively little during
0'.1nd camera in a known position with respect to that tinre. Moreover, tile met hod need not ac-
the first can provide a stereo baseline for making curately conrpute the position of the robot, but
the measurements: a known model of the envi- rather needs to he taught what the canera should
roninent can be fitted to those points; the dis- see when it is in the desired position: as lng as
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the method is able to provide signals to move in ference between the images, II(x) - I 2 (x), with
the proper direction when the camera is out of the derivative DzI 2 (x) (which will in fact be im-
position and provided that the method can de- plemented as a difference), to obtain an estimate
tect when the camera is seeing what it is expect for the parameter h.
see, the position of the camera will converge to S
Lhe correct position. Of course proper precau-
tions are necessary to prevent oscillation.

Iteration and smoothing. As it stands, this
Even if the method cannot b; applied fast rnei.hled would not work very well. However, two

enough to be used in a feedback mode, it can additional modifications make it a viable tech- Z -
still be fruitfully used in a "stop-and-go" mode. nique. First, because the method yields only an
In such a case the rover will movc greater dis- approximation h to the disparity h, we must use
tances between each application of the method, an iterative scheme to obtain an accurate result.
and so the demands on the optical navigation are The idea is to calculate an estimated disparity, ""-"
greater: it must exhibit in this case a greater Move 12 by that amount, and calculate again.
range over which it will converge to the proper Starting with an initial estimate ho, the iteration
value. is given by

3. The technique = 1  +

Parameter estimation by the method of EX (I1(X) - 12 (X + h,))D.I22(X + hi) (3)
differences. First we present the technique for Ez D.I 2 (x + h) 2

the one-dimensional, one-parameter case to give
its flavor. Consider two one-dimensional images Note that if hi h, then our calculated increment

I,(x) and 12(x) related by a translation, so that is zero (since I(x) = 12 (x + h)), so h is indeed a
11 (x) = 12 (x + h); we wish to estimate the trans- convergence value for the algorithm.

lation h. One way to do this is to find that i that Second, to improve the accuracy alid range of ,:.':,
minimizes the total squared error, validity of the linear estimate used in (1), we must

E= (X + 2. smooth the image. This can be thought of as
Xsnmoothing out purely local Lamps and wrinkles in

Since we want a local, non-searching algorithm, the image intensity profile that would make a in-
we approximate 12 (x + h) using 12 (x) on the basis ear estimate accurate only over a small range. Al-

of local information, namely the derivative; this ternatively, smoothing can be understood in the

yields the approximation frequency domain as reducing the high frequency
components. We have shown (Lucas, 1984) that

E Z (1(x) + hD I2 (x) -I (x)) , " (1) h as calculated in (2) can be expressed as .

where D, denotes partial differentiation with re- r~k sin 2irkh
spect to x. This equation is quadratic in h, so we .sin 2..',

can differentiate with respect to h, set equal to = (4 ) ''k"

zero, and solve the resulting linear equation for 2r E rk '

h, obtaining k>o

(II~D -I2(x)) 2 (. () seisfo)2
This (Im(x) - I2 (x))DI((x) where the rk are the coeffcicints of the Fourier .-..- D./2(X)2 2 series for 12:,-"..,

This one-parameter case illustrates the nature of
the method. We call it the method of differ- 12(x) = rk sin(X + Ok).
ences because it is based on comparing the dif- k>O 0
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This is a very interesting result, because it says an estimate of the vector c of six camera param-
that the estimated disparity h depends only on eters, which define the relationship between the
the power spet;rum r, of the image, which tends two camera coordinate systems. We wish to esti-
to be similar from image to image: and is indepen- mate the effect that a change Ac in the camera
dent of the phase spectrum, which is where all the parameters c will have on the error, given by ,
information in the image is (Kretzmer, 1952; Op-
penheim & Liin, 1981). In particular, the power E = Y (12 (v) - (p)) 2

spectrum r tends to fall off as k goes to infinity.
Thus the behavior of the disparity calculation in
(2) will be similar from image to image, and so After the change, the error will be approximately
experiments can yield generally valid results.

E~zi (2v +" @A( Du)( Duv)( D,12(v) )i
Indeed, inspection of (4) shows that the es-

timated disparity h, as a function of the real dis- -Ii(p))2 .(5)
parity h, is zero when when h is zero (as already
noted), increases as h increases (with the proper Here, D~u indicates the matrix of partial deriva- *. .
sign), and finally falls back to zero as h increases tives that describes how the position of the three-
further. (Examples of such curves are presented space point u in the Camera 2 coordinate system
later in Figure 3). Furthermore, the more high- varies as the position of that system (which is
frequency terms are present, the smaller are the determined by c) is varied; Duv describes how
values of disparity h for which the disparity es- the projection v of the point u onto the Cam-
timate h falls off to zero. For example, if Ii(x) era 2 coordinate system varies as the position of

were a pure sine wave, then we could not in prin- that point varies; and D,I2 is simply the inten-
ciple calculate the disparity if h is greater than sity gradient of the image 12. (We use row vectors
one-half wavelength. Both lines of reasoning thus for c etc. so that D, etc. can be prefix operators; ...-

lead to the conclusion that smoothing will extend Dr for example is a column vector of the par-
the range disparities h over which the iteration tial derivatives w.r.t. c.) Their product, by the .
will converge. While this analysis is not exact chain rule, tells us how the image intensity of 1'2

" (for example, (4) is strictly true only if the sum at the presumed match v to the point p varies as
in (2) extends over the whole real line or over we vary the camera parameters c. By knowing
one period of a periodic function), experiments this at each of the many points p over which the
we present below will verify the applicability of summation runs, we can estimate how we should __

• the conclusion. change the camera parameters c to make the in-
tensities at each of the points v match those at

Thus, larger smoothing windows yield wider their respective matching points p. To do this,
disparity ranges over which the algorithm con- we differentiate (5) with respect to Ac, set equal
verges, but may not produce an accurate answer. to zero, and solve obtaining
The relationship between iteration and smooth- .
ing is that successive steps of the iteration can Ac = [- Z (I2(v) - I(p))(DcI,2 (v))] ".

be done with progressively loss smoothed images, p
in a sort of coarse-fine approach. This allows the rV") T -1

(D 12 (v) (D, v12 (6)
algorithm to tolerate a large disparity yet yield (Del&())(DC6(v))T- .6

P
an accurate answer. where

DI2(v) =(Du)(D~v)(DI2(v)). "

Multi-parameter case. The multi- ..-u...v
parameter case is analogous. Consider the cam- Note that DI 2 (v) is a 6 x 1 matrix (column vec-
era model illustrated in Figure 1. We start with tor), so that the second sum of (6) is a matrix
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r. .77

that must be inverted. This raises the question of Convergence range. The convergence
under what conditions this inversion will be possi- range in a typical one-parameter case can be de-
ble. We have shown elsewhere (Lucas, 1984) that termined from the graph in Figure 3. In this ex-

. this matrix will be singular under orthography in periment we solved tor x while holding the other
'- the case where all six parameters are to be solved five parameters fixed. This graph illustrates that
, for, and conversely that it will be non-singular un- the computed adjustment (vertical axis) to the x

der perspective. However, if the reference points estimate (horizontal axis) is zero when the value
are positioned in three-space so that the perspec- of x is at the convergence point near the correct
tive projection is well-approximated by the ortho- value of 26 cm, increases as the disparity increases
graphic projection, then the matrix will be nearly and has the pr( per sign, and then falls back to
singular. This implies that the points should not zero. The range of convergence is the interval
be too far fro.. the camera and should be well- over which the computed adjustment is, say, at
distributed in distance from the camera. least 0.1 times that required to move the esti-

H n cmate to the correct answer at the point where thea Having computed Ac according to (6), we-

update our estimate c to c + Ac. yielding a better curves cross the horizontal axis, which is roughly S
estidate. Thsiat p ce r ieslin a itetver the same as the region over which the adjust-
estimate. This procedure result-, in an iterative ment has the right sign. For the largest smooth-
scheme analogous to that in (3). Moreover, the ing window, the range of convergence is nearly
previous comments coceriin g smoothing the ira- a meter in one direction and well over a meter
ages to improve the range of convergence apply in the other direction; the range is smaller for
as well to the multi-parameter case. the smaller smoothing windows. Note that the .

convergence value for the larger window is not
4. Experimental results the same as for the smaller windows, but is well

" Our experimental data consisted of three within their convergence range. This means that
views o saa coarse-fine ,echnique would work, and indeedviews of the same scene taken by a cameraa
mounted oil the Stanford cart (Moravec, 1980); coul kprgtfo h ags idwt -O ..

m e t a c (9 much smaller one, avoiding the need to calculate a
* they -ire shown in Figure 2. The camera was .' ' "

mounted on a slider, so we had accurate knowl-
edge of the relative positions of the cameras. The raige for y is similar, and for z is somewhat larger
three views were pictures taken by the camera at (although the result is less accurate). The con--

the left, middle, and right slider positions, with vergence ranges for pan and tilt are ±10 degrees

26cm separating each position. The left picture or so, and the convergence range for roll is a;ound
was used as the reference image, and a n b ±30 degrees. These convergence ranges (exceptfr roll) are of course dependent on the geometry " '•- ,.
of points were selected from this image as ref-
erence points. These are the points p that the of the situation.

sum in (5) runs over. Then the right picture was What is the relationship between these con- 0
• used as the second image of a stereo pair to ob- vergence ranges and the convergence ranges in the

tain the distances z(p) of the reference )oints p. multi-parameter case? This is shown in Figure 4.
* The nmethod was then used to determine position We see that if we solve for two parameters (pan

of the middle camera. Since the position of the and tilt, top graph), the range is smaller than the
middle camera was known, we could assess the range that would be expected on the basis of the

* accuracy of the method. Moreover, by varying one-parameter results for pan and tilt alone; and
*: around the correct value the initial estimate of if we solve for all six parameters (bottom graph), :

* the nmiddle camera's position that we provided to it is smaller still. Nevertheless, the range is still
" the algorithm, we could det(,rmine the ra,,ge of quite adequate for the continuous feedback mode.

convergence. Whether it is adequate for the stop-and-go mode,

277

%-1

............................. *

. . . . . . . . . . . . . . . . .. . .. . . . . . . . . . . . . . . . . . . . . . . . . . . .
....................

. . . . . . . . . .. . . . . * * . * .-. * .. '. ."..-".* . . . . . . . .
. . . . . . . . . . . . . . . .. . . . . . . . . .. . . .~. .



which involves a larger motion at each step, de- The parameter estimation step is more in-
pends on the accuracy of the arm and on the ac- teresting. Our implementation, in which no at-
curacy of other navigational aids that can provide tention was paid to efficiency, requires approxi-
the initial estimates. mately 3 to 4 ms per reference point per iteration

on a VAX 11/780. In the continuous feedback
mode, only one iteration per time step would be

*:. Accuracy. To assess the accuracy under a used since only an approximate answer is needed.
-.. variety of conditions, we select reference points Thus 50 reference points (the largest number used

using a variety of methods, including by hand in the experiments reported above) would require
and by computer, resulting in several sets of data less than 200 mis per time step. This figure could•
points of various sizes. Then we doubled the probably be improved severalfold by more care-
number of sets of reference points by either ap- ful coding and taking account of the fact that
plying or not applying a pruning process to the some of the entries in the matrices in equation
sets we had. This pruning process, which is de- (6) are known a priori to be zero. This infer-scribed elsewhere (Lucas, 1984), was based on the (6 r kona roitob er.Tisifr

mation, together with the fact that the algorithm
method of differences and served to improve the has a regular structure free of decision points that 6
accuracy of the stereo matches. It also eliminated could easily be implemented in special-purpose
some points as being unfit for use by the method, hardware, suggests that it is feasible for real-time
for example because they were in a region of small control of a robot.
gradient. The results are shown in Figure 5. Sev-

eral general trends are observable. First, using It should be noted that a considerable stor- .

more points produces more accurate results. Sec- age savings is possible with respect to the refer- 6

ond, the pruning process can to improve the re- ence image. The image intensities of the reference

. suits, as evidenced by the left endpoints of the image and its smoothed versions are needed only

lines in the figure being lower than the right end- at the reference points p. Thus, the entire refer-

points. These two factors are of course in conflict, ence image need not be stored.

and the improvement due to the pruning process We have demonstrated that the method of
is apparent only provided the number of points is differences provides a useful technique for optical
not reduced too much. Finally, the accuracy does navigation. We have shown that the algorithm
not seem to be affected much by the number of can successfully determine all six camera param-
parameters solved for. eters. It converges to the correct position given

an estimate within something on the order of a
"Implementation. The implementation may meter (less if more parameters are solved for), and

be divided into two parts: smoothing and cam- converges to a result accurate to a centimeter or

era parameter estimation. The smoothing must so (regardless of the number of parameters solved

be done over a relatively large window, up to for). Moreover, it can do so using 50 or less ref-

65 x 65 in our experiments. It is the most erence points. Because of the regular structure
time-consuming, even though we implemented it of the algorithm, the prospects of carrying out .

as uniform smoothing over a rectangular region, the calculations in real time with special-purpose
which by a well-known algorithm takes a constant hardware seem good.

number of operations (two additions and two sub-
tractions) per pixel, regardless of the size of the
smoothing window. However, it is fairly well un- 6. References 9

. derstood how to build special-purpose hardware A. R. Bruss and B. K. P. Horn, 1983. Passive
for doing smoothing quickly, essentially in real navigation. Computer Vision, Graphics, and Im-
time. age Processing, 21, 3-20.
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V

Camera 1 Camera 2 0

Figure 1. Camera model for optical navigation. Camera 1 defines the refer-

ence picture and coordinate system, with the origin at the "pinhole." For any .-

point p = p 2  py ] in the reference image there is a point q = qx qy q I in

three-space that produced the image, at depth z(p) = q,. This point is expressed N.
as u = [u= u. u. I in the Camera 2, or test, coordinate system. The relationship

between q and u is a function parameterized by the six camera parameters c: three

for the relative positions of the cameras and three for their relative orientation.

Finally, the three-space point appears at the point v = Iv v1,] in the Camera 2

image plane. The points p and v are said to correspond.
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Figure 4. Left graph shows, for each initial value of pan and tilt, whether the
algorithm converged to the correct value (large boxes), converged to the wrong
value (small circles), or failed to converge (pluses). Solid dot is correct value, big
rectangle indicates range predicted by single-parameter results. Right graph is a ,
two-dimensional slice of a similar six-dimensional solid, in which all six parameters
were solved for.
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0 10 20 30 40 50 60
Number of points

Figure 5. Graph shows the absolute error in x position on images smoothed with
9 x 9 window. Each point represents the result with a different set of reference -

points, distinguished by resulting error (in cm) on the vertical axis, and by number
of points in the reference set on the horizontal axis. Triangles indicate the case
where three parameters were solved for, circles six. The point at the left end of
each line represents a reference set in which a pruning process was carried out on
the points represented by the right end of the line. Large points represent image
pair discussed in text, small points represent a different image pair.
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Autonomous Scene Description
with Range Imagery S

David R. Smith and Takeo Kanade
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Pittsburgh, Pennsylvania 15213

Abstract
This paper presents a progrqnl to produce object-centered rcpresentation of snakes and dolls made of cylindrical parts _

thrre-dinensional descriptions starting from point-wise 3D by means of generalized cylinders [I. 81 or representation of -

rangc data obtained by a ligh-stripe rangefinder. A careful polyhedra by planes [11, 9]. recent work .eems to be more

geometrical analysis shows that contours which appear in concerned about efficicnt matching of objects with 3".

light-stripe range images can be classified into eight types, models [3.4]. Our emphasis in this paper. however, is data-

each with different characteristics in occluding v occluded driven bottom-up autonomous processing. gencrating object

and differentcamera/illuminator relationships. Startingwith descriptions from complicated scenes without referring to , ,

detecting these contours in the iconic range image, the specific pr-stored object models.

descriptions are generated moving up the hierarchy of -'.-

cylindrical surfaces as primitives. In this proces& we exploit generated moving tip the hierarchy of contour, surface, - .
the fact that coherent relationships such as symmetry, object, to scene. We use conical and cylindrical surfaces as

collinearity, and being coaxial, which are present mong primitives. While a top-down verification process is

lower-level elements in the hierarchy allow us to hypothesize important, the bottom-up process for producing plausible,. -.

upper-level elements. The resultant descriptions are used for natural, object-level descriptions is at least as crucial in order ' ,

matching and recognizing objects. The analysis program has to realize general vision systems [7, 2] as the task world

been applied to complex scenes containing cups. pans% and toy becomes larger and less contrived. Our approach to the

shovels. problem is to exploit the fact that coherent relationships,

such as symmetry, collinearity, and being coaxial, that are

present among lower-level elements in the hierarchy allow -

1. Introduction us to hypothesize upper-level elements. This is justified

The research presented in this paper aims at producing because those coherent relationships do not usually occur

object-centcred three-dimensional descriptions starting from accidentally [6]. For example, if the same surfaces with the -

point-wise 31) range data obtained by a light stripe range same relationships appear across two scenes, they tend to be

finder. While most of the initial work in range data analysis grouped into one object; if one cylinder's axis intersects with

was on generating object descriptions of simple objects: another one's, like the relationship between the handle and,,. •-

body of a pan, they tend to belong to the same object

______________These coherencies must be present because they have been - --

S'lhLs research w i sponsored by the Dcfere Adsanced Research inherited through the hierarchy from the scene level down
. Protecct Agency (DO)). ARPA Order No 3597. niontlored by the Air to i c.,rs a

Force Avionics LAboratory underConract F33615-81-K-1539 .o thc iconie range-data lesel. Our task is ta trace and ..

exploit these coherent relationships reversely for.- - " -

* Th~e vift" and conclusions contained in "l.i docurnent am cthose or the
author and smould not be interprctcd aq rpresentng the official policies, autonomous generation of object descriptions, " -

either expressed or implied, of the 1-rensc Advanced Research Projects
Agency or the US Gover"ent.
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We fitcused our effort on the use of occluding contours, bound a surface against either another surface or a region

which can be extracted quite reliably from the light-stripe which cannot be measured. Object A cast a deep shadow

range data. First, contours arc cxtracted, segmcnted and region umbra. which cannot be seen front either the

classified. From the cohcrcncies among them, such as illuminator or the camera. It also cass tso half-shadow

parallelism, surfaces arc hypothesizcd. Thcse are regions, peiumbras. which might he seen from either tie 0

represented as conic surfaces (pipes, cones, and planes). illuminator or thc camera, hut not both. No data can be

The surface hypotheses are confirmed or refuted by their recorded for a surface which lies in either an umbra or a

,ability to account for observed surface area. Hypotheses of penumbra.

surface groups are formed by examining coherencics among

the verified surfaces, such as axis intersections. Finally, such Occlusions occur at the four combinations where the line

surface groupings from multiple scenes are compared. If a of sight, either from the illuminator or the camera, is

similar structure repeatedly occurs, it is identified as an tangential to the surface of the foreground object A: that is,

object. The succeeding sections of this paper follow these ipl-ip2, iul-iu2, cpl-cp2, and cul-cu2. Ilere, the first point
s oof each pair forms the occluding contour and the second the
steps in order.

occluded contour: therefore there are eight types of

2. Taxonomy of Contours in Light-Stripe contours in the light-stripe range imagery. 'Ibis analysis

Images points out a few interesting points. First, previous

The range images for this work were produced by a light researchers have dealt only with the simple occlusions

stripe rangcfindcr, which consists of an illuminator involving cpl-cp2 and ipl-ip2, by converting to three

IL projecting a sheet of light into the scene and a camera that dimensions and drawing rays from the illuminator and

detects amount of deflection in the light stripe on each scan camera. It can be shown that this can be done without '

line. Triangulation produces surface-point positions in three resorting to three-dimensional geometry, by exploiting

dimensions. A range image is shown in Figure 1, which is a information in the raw deflection image. Second,

composite of the camera's views of the light stripes, using interpretation of the occlusions iul-iu2 and cul-cu2
every tenth stripe. provides information about the object, even though the

occluding contour is not recorded. This is especially true 0

The parallax between illuminator and camera makes and useful when we can assume cylindrical objects, because

ranging feasible, but it also causes occlusions which are the totally visible region (from cpl to ipl) is fairly small, and .

difficult to interpret. Figure 2 shows the geometry in light- expanding the known part to the region from iul to cul will, .

stripe imaging which include a circular object A and the greatly increase the accuracy in reconstructing the

background B. It explains how contours arc generated which cylindrical shape.2

Figure 3 shows the contours detected in the image of

Figure 1: a) shows all the contour points, b) shows the - -

occluding points, and c) and d) show the penumbral and . -

umbral occluded points, respectively. The occluding

. contours are directly uscful for shape cues, while the .\ occluded contours provide indirect information 110].

." ° ii -. °

2
Incidentally. this point suggesti that the light-sipe range data be taken

with the background. am opposed to the conventional way in which the

IMl : I ight-nripc anage ora wene background is blacked out by a black carpet o curtain.
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parallel * The axes arc nearly parallel
coplanar * But the handle axis does tip in a little, and its
oaxCal extension intersects the extension of the body

concentric axis. 0
cocircular * The surfaces arc closc together.

* The surfaces oppose each other for the whole
parallellength of the handle.

parallel * In the image, the surfaces have a path to bleedcoaxialtoehr, .""-.-,

antiparallel together.

However, grouping at this level should not be considered 0

final, because surfaces not belonging to the same object can

exhibit strong accidental alignments. In the example scene,

perpendicular the shovel handle has a fairly strong relationship with the

standups pan body, since their axes intersect and the shovel is inside

the pan. These are both accidental alignments. Without 0
Figure 6: he group type cov i and the relationships insolved for it. other knowledge, it is not possible to tell whether they
All or he seegmcns and relationships are not neccsary to suggcO the
group belong to the same object. One way to resolve this problem

is to combine information from different scenes, which will

be discussed next.

5. Object Analysis
Surfaces are grouped into objects in a similar manner as 6. Multiple Scene Analysis

contour grouping, but in this case based on coherent Figure 12 shows a different scene and its processing

relationships among surfaces. In addition to the obvious results. Note that the round-handled cup is also included in

(strong) relationship of shared contours (i.e, connectivity), this scene, with a view angle which is opposite to that in the

we have considered the following relationships: previous scene. [he extracted surface cotmponents and their

relationships, however, are the same as in the previous

scene.
I pt.di I ....n =,/odci I.'. "

In this way, if a group of surfaces can be identified in

pn/dix Copl.n., ais.,i.ptbn. several different scenes, holding the same relative positionscoet suands-up 0
ap and orientations, one can assert that they are part of a

common object. Relating objects trom different scenes is a
coie/cynder .. ,suptn" pl.C.n.. matching problem. illustrated in Figure 13. Suppose object

suinds up Okht

i comprising surfaces a and b from scene I matches object 2

___ _""""_______ comprising c and d from scene 2. [hen two conditions must

be met: 0

* A surface from object / matches a surface fiom.
object 2. [his is called the surface match.

Iliese relationships are examined between pairs of surfaces a If the surfaces a and b are to match surfaces c

add their evidence is weighted by their strength and and d respectively, then the placement and --
orientation of b with respect to a must match the 0

importance. The results are summarized as a graph, such as placement and orientation of d with respect to c.

shown in Figure 10. in which the nodes are the surfaces and This is called the transfom match.

the arcs carry the weights of relationships. The surface The transform match gets its name from the transform

groups with stronger relationships are shown in Figure 11. which maps the local coordinate system of b into the

For example, the cup body and handle are strongly grouped coordinate system of a. This must match the transform

together because: mapping the coordinate system ofdinto that ofc. 0
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group 2 disc group 4 cone group 5 disc

group 6 ribbon group 8 cone group 9 disc

group 10 disc group 1 K.sibbdo 9VOLIP 12 cone

Figure 7: The result of the contour grouping ror Figure 5 a). "here
are gaps in the numbcring because one group may be subsumed in a
later hypothesis, as the binary relations involving differcent contourn
are examined. Group 2 is formed by a vet of cocircular contours, and
suggests a (nonexistent) disc+ Group 4 suggests the frustrum of a
cone. It was formed because the bottom circular contour was coaxial
wvith the top ones, wile the straight sides rstcndcd between top and
bottom. Groups 8usnd 12 were aggregated in the sme way. althoughs
group 12 lacks a bottom. Groups S. 9. and 13 are discs suggested by
lone circular contours. Groups 6 and It are ribbons. The ribbon
classification avoids too-early commitment to shape, since there are
no cross-conlouts to indicate whether the surface is curved. Group 6
tacks the crosu-contour because the contour at the end was discrded
as unreliable because it was too short.

To solve the transform match in a general manner is not a even for the same geometrical situation. Secondly. the -

*straightforward calculation of coordinate transformation objects may have parts connected by linear or rotational

matrices for three reasons. First, whens the component articulations, such as scissors. We need a method of

*surfaces include some symmetry, such as in cylinders and representing, calculating, and comparing transforms which

cones, thcn the placing the coordinate frame is not unique, accommodates objects with articulations. Finally, due to the

Theref'orc, the computed transforms may appear different measurement errors, the calculated transforms won't be0
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surface 2 surface 4 surface 5 .-

surface 6 surface 8 surface 9

ie 10 surface 11 stifie 12

Figureg: Surfaces propiosed by the coniour groups in Figure 7.
Surfaces 4 and 8 are internally represented as rings cut fromi quadnic
surfaccs. but arc symboically classed as (frustiars of) conc. Surfaces
6 and Ut. denived from ribbon contour groups, are seen to be
cyiindcrs.

exactly the same CSCei whlen they shouild he. Thtus a iiiethod 7. Summary
* isrcqurcdwhic canIc~ whehcr he ransorm sTiis paper has described a methiod for 31) range-data

* ~~~~approximately dlic same. This is espccially% important for the nlss hc sschrnce mn otus ufcs

cases (if objects including articulaitions. because elemvent-by- and scenes to generate object descriptions. Specifically, the

element comparison does not work. Smith 1121 and 'Iornita following points have been discussed:

* and Kanade it 31 dictuss thes threc problem,; in more detail. a Taxonomy of contours in light-stripe images.. -

*and present partial solutions. A techiniquie of merging This helps us to understand what causeS each

descriptions from image sequences has heen deseloped alsocotr;w thrituldsorsocue. e
dewccion can be done with the initial deflection

in 151 for the domain of aerial phtott interpretation, image, prior to conversion to three dimensions.
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Figure 9. Accepted surface% from 17igure

Figure 10I: Relationship graph for stirraces_______

surface 4) IL

Figure 12: Re.wjhs of analysis for another scene

Surface match

A Tc
00

Suirface match
337

suy A.ce (0

surface.8I Figure 13: Nlatchingwsrfacc pairs front different inioges

Figure II: Objects in the scene: surface groupings
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070i I  ~ ~~DESCRIPTION OF 3-D SURFACES USING CURVATURE PROPERTIES' -.. :

G. Medioni and R. Nevatia

Intelligent Systems Group
Department of Electrical Engineering

University of Southern California
Los Angeles, California 90089-0272

changes of this curvature. It is therefore related to the -•
1. ABSTRACT 'Curvature Primal Sketch' of Asada and Brady [3) describ-

We describe an approach for describing 3-D surfaces ing closed planar curves, but we are now describing sur-
by using the surface curvature. Surface curvature com- faces in 3-D. Our approach allows for description of local
pletely determines a surface. Further. we suggest that properties, in contrast to global methods such as
simple properties of curvature, such as points and lines 'Extended Gaussian images' [41.
where principal curvature is a maximum, correspond to
important physical properties of the surface. Several ex- 3. CURVATURE REPRESENTATION P, ,.
amples are given, however, the process of interpretation of 31MaemtalBcgun3.1. Mathematical Background . .''-
curvature properties has not been fully completed. A curve in E3 (3 dimensional Euclidian space) is . . -.

uniquely determined by 2 local quantities called curvature .

2. INTRODUCTION and torsion. Similarly, a surface in E3 is determined by 2 '...

We are interested in the description of 3-D surfaces local invariant quantities called the first and second fun-

and objects. assuming that range data (i.e. the 3-0 damental forms [5).

positions) of the points on the visible surface are available, Let z-f(x.y) be a coordinate patch on a surface of . j
by say the use of a laser range finder. We also assume class > I (f is in C' and the rank of the Jacobian matrix is

that this data is 'dense', in the sense of being sampled on 2). By convention, let dz=fndx + fvdy, with f.-3z/B

a certain grid and not just at discontinuities (as may be
the case for uninterpolated stereo edge data); interprets-
tion from sparse data is discussed in another paper from dz has the property that
our group in these proceedings [1).

To generate useful descriptions, we need a useful f(x+dx, y+dy) - a + dz+ o((dx 2 +dy2 ) /2) (1)
representation. In general, such a description should be
suitable for the task of object recognition and position So, da is a 1st order approximation of f(x~dx,
identification. It should be rich, so that simi!ar objects can y+d¥)-i
be identified, stable, so that local changes do not radically
alter the descriptions, and have local support so that par-
tially visible objects can be identified. It should also an- Consider the quantity
able us to recreate, from its features, a shape reasonably
close to the original one. i-dz'dz-(f dx + fYdy)'(fxdx + fydy)

Generalized cones have come to be recognized as 2
an important class of representations, that satisfy the "(fxof )dx2 + 2(fx-f)'above requirements, particularly for complex objects.which dxdy+(f.f)dy2

are described as assemblies of smaller objects [21
However, generalized cones are 'volume" descriptions and -Edx 2 

+ 2F dxdy + G dy2  (2) . 0
may not be suited for objects that are essentially surfaces, where E-f5 .f. F-f f*v  G-fY fY (3)
such as a metal sheet, or for relative smooth, "featureless"
surfaces such as a turbine blade. In this paper, our inter- I is known as the first fundamental form.
est is in inspection of such high precision surfaces (our Let us now suppose that a-f(xy) is a patch of class
representation may also turn out to be an important step > 2. We can define a unit normal at each point

in generating generalized cone descriptions). N-f Xf41Xf. Yf, then, dN-Nxdx + Ndy"
Our approach to describing surface is to consider Consider the quantity

the curvature of the surface described by the range image,
and more specifically to identify and extract significant II - -dx~dN -(f~dx + fvdy)*(Nxdx + Nvdy)

.- f,. N~dx2-(f. •M Nf v -N) dxdy-.-, " -

Agency under contract numbers F33S15-a2-K-786a and F33615-64- - fy. "Y"
K-1404. monitored by Wright Patterson Aeronautical Labs
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- Ldx 2 + 2M dxdy + NdV2  (4) 3.2. Choice of Representation
For shape description, it is not sufficient that the

where L--fx.N.-f, *N representation specify the original shape completely. We
M--1/2 (fx.N,+f, N) - fV.N (5) propose to use certain points and lines that have distin-
N--fv.Nv=f,,*N guished and invariant properties, and the process of

description requires making these points and lines explicit.
They can be useful for matching (registration) or as the

II is known as the second fundamental form, and 6-1/211 is key steps in computing higher level descriptions, such as
called the osculating paraboloid at each point P and its generalized cones. We suggest that the distinguished
nature qualitatively describes the nature of the surface points are essentially the points of extremal curvature, or
around P based upon the discriminant LN-M 2. those of curvature changes, and the lines connecting such

contiguous points. We investigate the properties of such
- Elliptic case: LN-M 2>0. Here, 6 as a function of points and lines for specific configurations in surfaces

(dxdy) is a elliptic paraboloid as shown in figure 1(a). below.
The surface lies on one side of the tangent plane. For the curvature at a point, we will use the principal ...

- Hyperbolic case: LN-M 2<0. 6 is a function of curvatures (ic1 and K2) and the Gaussian curvature (KlI2).
(dxdy) is a hyperbolic paraboid as shown in figure The principal curvatures have a magnitude as well as
1(b). There exist 2 lines in the tangent plane direction, with the two principal directions being or-
through P which divide the tangent plane into 4 sec- thogonal. .
tions in which 6 is alternately positive and negative.

- Parabolic case: LN-M 2-0 and L2+N2+M2pi 0. 6 as a
function of (dxdy) is a parabolic cylinder, as shown 4. COMPUTING CURVATURE
in figure 1(c). There is a single line in the tangent First, a few comments on computing curvature.
plane through P along which 6-0, otherwise 6 keeps Since we have discrete data, we must compute differences . " "
a constant sign. rather than derivatives. We compute the first differences

- Planar case: L=M=N-0. Here 6=0 for all (dx,dy). in the x and y directions by convolving the range images •
with masks as shown in Fig. 2(a). The second differencesAt each point, surface shape can be completely inxyanthcrs-evtve3fxyaecopedbin x,y, and the cross -derivative a~f/axay are computed by

described by the six coefficients EF,G,L.M,N mentioned convolving with masks shown in Fig. 2(b). These masksabove. These coefficients, however, are not independent, aobtine bifferenin Lagranges mas.and it seems better to use more meaningful descriptors, are obtained by differentiating Lagrange's polynomials.
sand ithems beter tumre meaniThe principal curvatures and their orientations are obtained

* such as the principal curvatures.
Let us draw a curve C of class C2 onto our surface, by solving equations (6) and (7).

passing through point P. The normal curvature k, of C at P Computation of curvature is likely to be highly noise
is the projection of the curvature vector k of C at P on N. sensitive To decrease the effects of noise, we can use a
kn-k.N. large support for computing differences, at a possible cost
It is easy to prove that kn-ll/I. in accuracy of localization. We convolve the image with ". ,

The two directions for which the values of It take rotationally symmetric Gaussian masks of different
variance, u. The different sizes of the filter give us cur-

on maximum and minimum values are called the principal vaueadifrnscladaeintthlplinne-
directions, and the corresponding normal curvatures, K1 vature at different scales, and are in fact helpful in inter..
and K2' are called the principal curvatures. preting the results,(as in [3] and (61 for other applications).

The principal directions can be shown to be or- The width of the mask is chosen such that the volume un-
thogonal, and that a number k is a principal curvature if der the truncated Gaussian is very close to 1 (60 is a
and only if k is a solution of the equation good approximation).

For example, if a-1, the 5x5 filter has a volume of
0.982 and coefficients in the upper left corner shown in

(EG-F 2 )k -(EN+GL-2FM)k+(LN-M 2 )-0 (6) figure 3.

A direction (dudv) is a principal direction at P if and only
if du and dv satisfy 5. INTERPRETING CURVATURE

(EM-LF)du 2+(EN-LG) dudv (FN-MG)dv 2 -0 (7) 5.1. Introduction

We also need to define the Gaussian curvature K at P We are interested in three major properties of sur-
faces: S

LN-M 2  - Range Discontinuities (or 'jump' boundaries): these
K-KI 2=- (8) are typically the occluding contours of a surface

- Surface Discontinuities: these correspond to folds or

We can also prove that EG-F 2>0, therefore the sign cuts in a surface, such as the edges of a polyhedral
of K agrees with the sign of LN-M 2  Thus, a point on a object
surface is elliptic if and only if K>O; hyperbolic if and only - Points Of curvature maxima: these are physical in-
if K<O, parabolic or plansr if and only if K-0. variants of a surface
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the sign of the curvature on each side of the fold, as ii-These are the properties of the surfaces that we
lustrated in figure 6. The common characteristics are a

wish to identify, we now need to verify that they translate maximum of the curvature near the location of the fold, ""
easily into curvature properties, which is what we decreasing with larger values of a. Zero-crossings may
measure. appear, depending on the curvature sign, as shown in

The first, and simplest attribute of curvature figure 7, representing the variation of K, for the fold
properties is the sign of the Gaussian curvature. There shown in figure 6(c). If the curvature is 0 on either side, 0
have been empirical observations that the shape of the we have a polyhedral edge, and the corresponding be-
regions of constant Gaussian curvature sign roughly havior of K1 is shown in figure 8 for different values of a.
reflect the overall shape of an object [7). We will there-
fore detect zero-crossings of the Gaussian curvature, 5.2.3. Maximum of curvature
together with their angle. This feature allows us to This is typically illustrated by an elliptical cylinder

reconstruct exactly the region of constant Gaussian cur- where the maximum curvature keeps a constant sign and
vature sign. goes through a very smooth maximum.

Gaussian curvature, however, captures only a small g
part of the total information, and is totally inappropriate to
describe the large subclass of cylindrical objects. Indeed, 5.2.4. Others

the Gaussian curvature is 0 for such objects, regardless of We could define more types of transitions, as in [3. -
the cross-section shape. Such objects are then described some of them ambiguous at certain scales; it is, however,

by the variations of the maximum principal curvature, and more interesting to concentrate on the problems arising

more succinctly by the location of th. zero-crossings and when the Gaussian curvature is non-zero. S
maxima of this function. The case of positive Gaussian curvature is rather

These are the features we will be using for shape straightforward, and only maxima of I can appear in
description: zero-crossings of the Gaussian curvature, these zones. False maxima may appear in the neighbor-

zero-crossings and maxima of the largest principal cur- hood of umbilical points (for which Ki=K 2 ), when K, and
vature. 1C2 exchange their role, undergoing a sudden 900 change

In the introduction, we suggested that objects are in orientation.

naturally segmented at the points of maximum curvature, In negative Gaussian areas, the situation is more 0

with no mention of sign changes. The explanation is complex: Around points where the magnitude of K, and

simple: the curvature we mentioned previously is the one K, is the same, we can have reversals of (KiK 2 ). that is

we perceive by rolling a finger on the object, for example, the larger curvature becomes K2, undergoing a 900

and not the one we compute using digital filters. In the change and creating a zero-crossing in the curves

case of a jump boundary, for instance, we will see that, representing the maximum and the minimum principal cur-

due to the digital computations, the discontinuity is lo- vatures, even though the surface itself is smoothly chang-

cated by the zero-crossing position between a large posi- ing. This effect is shown in the "vase" example.
tive and a large negative response. 6. RESULTS

Let us now generate some instances of interesting Our implementation so far consists of the compute-
surface properties and observe the corresponding cur- tion of the principal curvatures, the extraction of zero
vature transitions. crossings from the Gaussian curvature and the maximum

curvature images, and the localization of the maxima in
the maximum curvature image. We have chosen two rep-

5.2. Some Special Cases resentatlve examples to illustrate the strong link between

curvature behavior and the features we wish to detect:
5.2.1. Step edge The first one is the range image of a straight

An example of step edge is shown in figure 4. We cylinder with an hexagonal base. It is a good example of
can consider it as a 2D problem, the minimum curvature zero Gaussian curvature surface, showing polyhedral edges
being 0 almost everywhere (planar patch). In the con- and jump boundaries.
tinuous case, the first derivative should be 0 everywhere, The second one is the range image of a vase, which
except at the discontinuity where we have a delta function. can be thought of as a Straight Homogeneous Circular
The second derivative is also 0 everywhere, except at the Generalized Cylinder (8], meaning that it has a circular

discontinuity where we have 2 delta functions of opposite cross section, and a straight axis It presents zones of
sign. In the discrete case, the maximum curvature is positive and negative Gaussian curvature, jump boundaries,

characterized by 2 maxima of opposite sign and a zero- surface discontinuities and zero-crossings due to reversals

crossing at the discontinuity location. As a increases, the Of
value of these maxima decreases and they move away Figures 9 and 10 present the processing performed 5
from the (fixed) zero crossing locations as shown in figure on each of these range images, and are organized as fol-

5. lows:

5.2.2. Surface discentinuities (a) is a graphic presentation of the object against the
background

This corresponds to a fold in a surface. We can (b) is a needle map' representation of the surface
identify different types of such an instance, depending on orientation, obtained from the first order differences. S
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(c) is a representation of Ki, the maximum principal perform the interpretation: the maxima for a jump
curvature. The length of the needle is proportional boundary move away as 0 Increase.
to the magnitude of the curvature. The curvature -The linking of identified primitives into connected
displayed here is the one obtained without any components.
smoothing of the data. - The reconstruction, from our features, of an object

(d-g) show the zero-crossings of ic after smoothing the which should be reasonably close to the original. S
original data with a o of 0, 0.5, 1 and 2 respectively. - The abstraction of such features, leading to a con-

(h-k) show the maxima of K1 , after smoothing the original cise, natural description of the object. such as a
data with a a of 0, 0.5, 1 and 2 respectively, generalized cone.

Finally, figures 10(Z-o) show the zero-crossings of References
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hexagon image, the Gaussian curvature is 0 everywhere. 1. Nevatia, R., "Image Understanding Research at USC: Q
We can make the following comments on these 1983-84." Proceedings of Image Under-

figures: standing Workshop, 1984.

-The horizontal lines in figures 9(d) through 9(g) 2. Binford, T.O.. 'Visual Perception by Computer,"
detect zero-crossings of K1. which varies in these IEEE Conference on Systems and Con-
areas between -10 - 7 and +10- 7, so that these lines trols, December 1971.
should be ignored.

- In this first example, we clearly see that the maxima 3. Asada, H, and Brady, M., "The Curvature Primal -
of K, identify the polyhedral edges accurately for all Sketch," Proceedings of the 2nd IEEE
values of a. Also, the jump boundary corresponds Workshop on Computer Vison:
to a zero-crossing of K, flanked by two maxima of Representation and Control, Annapolis,
opposite sign, receding from the zero-crossing as O MD, May 1984, pp. 8-17.
increases, as predicted. 4. Horn, B.K.P., "Extended Gaussian Images," Tech. -

- On the vase example, we see that the computation report A.I. Memo No. 740, Massachusetts Institute of S
of curvature is very sensitive to local distortions, Technology, July 1983.
such as quantization effects visible in 10(a) and
reflected in the processed views 10(d), 10(h) and 5. Lipschutz, M, Differential Geometry,
10(t). McGraw-Hill, 1969.

" - The Gaussian curvature is a good qualitative
description of the object as shown in 10(1-o). 6. Witkin, A.P., "Scale-Space Filtering," Proceedings

- It is the zero-crossings of K, (and not of the Gaus- of Seventh IJCAI, Karlsruhe, West Germany,
sian curvature) which accurately correspond to the August 1983, pp. 1019-1022.
non-jump boundary of the object, and the accuracye o ,nC -

decreases as a increases. 7. Terzopoulos, D, Multiresolution Computa-

- In the bottleneck area of the vase, we detect zero- tion of Visible-Surface Represen-
tat ions, PhD dissertation. Massachusetts In-crossings of K, even though no significant changes stiof Thnoog.serten ts of-Computer

of the surface occur. They are detected as a con- stitute of Technology, Departments of Computer

sequence of the "swap" between K1 and K., since Science and Electrical Engineering, January 1984

the two principal curvatures have opposite sign, and 8. Shafer, S.A., "Shadow Geometry and Occluding
one accompanied by a 900 rotation of K1 and K2.  Contours of Generalized Cylinders," Tech. report,

" This phenomenon is well illustrated by figure 11, CMU Report CS-83-131, May 1983
showing a profile of K1 and K2 along column 39.

7. FUTURE RESEARCH
Obviously, the material described in this paper only

represents the groundwork for a complete feature extrac-
tion task, and serves as a validation of our ideas regarding
curvature as a powerful, local support primitive

What needs to be done is

- The interpretation of significant zero-crossings and

maxima as jump boundaries, edges or simply ex-
trema. For instance, the zero-crossing of Ki as-
sociated with the jump boundary of the vase ex-
ample is nogt accompanied by a 900 angle change.

* except for a-2.
. - The integration of the detected primitives using

various values of o. This step will also be useful to
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Figure 1: Different types of surface

Flour. 2(A)

001

f~gv.. 2(bi

Figure 2: Masks to compute 1st and 2nd order differences

Upper left corner of Filter:
.291502409-2 .130614239-1 .2153928@-l
.130648230-1 .585489830-1 .96532359-l
.2153928@-l .96532350-1 .15915489

Sigma: 1.000000 Scale: 1.0000009
Slze:5 Volume: .9818148

Figure 3: Gaussian filter
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Figure 4: A step edge
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Figure 6: Different types of surface discontinuities
Figure 5: variation of K, for a step eige
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Figure 11: Zero-crossings of ic, and K(2 in smooth negative Gaussian
Curvature zone
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FEATURE EXTRACTION AND GROUPING REFERENCES

Feature extraction is done in three steps: First an interest operator 151 1. H. Baker, Progress in Stereo Mapping, Proc. Image Understand-
and an edge detector [121 are applied to the images and basic features ing Workshop, April 1983.
(edgels and points of interest: dots, corners) extracted. The interest 2. S. T. Barnard and W. B. Thompson, Disparity Analysis oflimages,
operator labels the points of interest as dark objects on a light back- IEEE Trans. Pattern Anal• Mach. Ingel. PAMI-2 (1980), 13-
ground or vice versa and computes also the orientation of the corners 340; see also Technical Report 79-1 (January 1979), Computer
and a measure of the quality. The edgels are labeled with the aver- Science Department, University of Minnesota, Minneapolis, MN
age grayvalues on both sides of the edge, the orientation, and also a 3. P.R. Beaudet, Rotationally Invariant Image Operators, Proc. Int.
quality measure. All these descriptions are used to match features. Joint Cont. Pattern Recognition, Kyoto, Japan, November 7-10,

In a second step edgels are tracked to find edges, their endpoints 1078, pp. $79-683.
and intersections. Neighboring endpoints, intersections or points of 4. P. Blicher, Stereo Matching from the Topological Viewpoint,
interest are combined to new features and if possible labeled according Proc. Image Understanding Workshop April 1983
to their junction type as (Y, L, T, X..) IIl. . L. Dreechler and H.-H. Nagel, Volumetric Model and 3D Trajec-

Finally, the features found in each frame are grouped into classes tory of a Moving Car Derived from Monocular TV Frame Se-
of features which are similar according to the similarity function which quences of a Street Scene, Computer Graphics and Image Pro.
is used for matching. This grouping is done by computing the minimal cessing 20, 109-228 (1982)
spanning tree, so that the number of groups is variable. 6. D. B. Gennery, A Stereo Vision System for an Autonomous Vehi-

The similarity function is based on the weighted average of the tie, Proc. 6th International Joint Conference on Artificial Intelli-
similarity of the basic features; to compute, for example, the similarity gence, MIT, Boston, Aug. 1977
of two Y-junctions, the similarities of the three edges meeting at the 7. M. J. Hannah, Computer Matching of Stereo Images, Ph.D.
junction to there corresponding edges are averaged. Thesis, Memo AIM 239 (July 1974), Stanford University, Stan-

ford/Ca.
GRADING AND MATCHING 8. H.-P. Moravec, Obstacle Avoidance and Navigation in the Real

Since the features are grouped into equivalence classes, matching takes World by a Seeing Robot Rover, Ph.D. Thesis, Department of
place between classes of features rather than between features itself. Computer Science, Stanford University, available as CMU-RI-TR-
The first step of matching is grading of the classes according to abun- 3 (September 1980) Robotics Institute, Carnegie-Mellon Univer-
dance and prominence of features. The matching sequence is deter- sity, Pittsburgh, Pa.

mined by the grades of the classes. The classes with only few but very 9. H.-H. Nagel and W. Enkelmann, Iterative Estimation of Displace-
prominent features (high contrast) are matched first to get reliable and ment Vector Fields from TV-Frame Sequences, Proc. Second Eu-
unique feature matches. From these initial matches new constraints ropean Signal Processing Conference EUSIPCO-83, Erlangen/FR S
are derived and propagated into the more ambiguous classes. The con- Germany, September 12-16, 108 (in press)
straint propagation follows the edges which connect the corners and 10. B. Radig, R. Kraasch and W. Zach, Matching Symbolic Descrip-
junctions. tions for $-D Reconstruction of Simple Moving Objects, ICPR-80,

The grouping and grading of features does not necessarily reduce pp. 1081-1084
the computation time for the matching. The comparison of features il. Ernst E. Triendl, The Edge Appearance Model in a Rule Based
within the frames takes about the same time as the comparison of System, (to appear)

features between the frames, but the grouping process saves the results 12. Ernst E. Triendl, Modellierung von Kanten bei unregelmaes-

of the comparisons in a more useful way, so that a plan can be derived siger Rasterung, Proc. I. DAGM-Symposium Oberpfaffen- .
to solve ambiguous constellations. hofen/F.R.G. 1978, Springer Verlag Berlin Heidelberg New York

1978
IMPLEMENTATION AND RESULTS 13. S. Ullman, The Interpretation of Visual Motion, MIT Press, Cam-

The edge operator and the interest operator are implemented in C, bridge/Mass. 1979
all other parts of the system are running in SLISP. The hardware
implementation of the convolution is in progress.

The feature extraction and the grouping and grading of features
have been tested on real-world scenes (machine parts, telephone ) with
quite satisfactory results; the constraint system is still under develop-
ment, and the matching has been tested so far only on artificial data, Akn ldg et
but further results are expected soon. 
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a 2.3. Spacial Relations between Parts

The listal geomietric relation between each part of n object is do- Class: Generic Jet Aircraft
scribed in ternis of thne relative position and the relative rotation of
thne local coordinnates system naf the part to atiother part. Thne relations a

*between parts udescribed below can be specified thnronugh tne mnenun selec-
tnion. At least tihe affix relation musnt he specified to nunother part. The
s iystemn automnaticully cakinlates nnecesary parameters for the trnansfor- nt ce

intiniofcorinuats ysembsed oi tihe rnitiva. location of the par Subclass: 6-747 Intne 1-1011
i3D space nand generates relatinan decscriptions. Alm), several relations

can bhe speciirol Fior tine accurate d~efinition of thne geoinetric relation.
F r insitanice. relatinsn like Align. Coplnunar, aini Flush can he specified ~t
to other parts which arme alreadly dlefined. If these kiannis of relations are
spi~iei'd, thne local roorlinatnn of tine Gncralintnl Cylinnier is slightly Instance: B-747B Instace: B-747SP
innonlafiei nd thne aicurate mnninel diescriptions nare generated.

Alin tine subanrt relatin innint hen nspecified, i.e. tine annue ofl the
* ~ ~~ sbpart inanst lhe defined when the snnbpart is specifiedl. The system 0 Subpart tree Cosrnt

* ~gennerateit s mupart tree nnsing thne une. If thne oblject exnample is not Al Ii xme nt tree
*the first exwonih oif the class, the name can be scectetn frontn thne menu.

Cylinder descriptions

* 3. Forming Object Class from Examples

After the model dlescripitimons nif the object instance tire generated Figure 5: An examnple on the class hierarchy.
as described in Section 2, the model of the uibject class is learned in.n hr satlrne ontansfrsrntnecnb eeaie

*ductively, hased on tine exiunples or moninlis of the object instances. weeei oeac.Cntansfrsrcuecnb eeaie
in thne same munaner. If the corresponding subpart cannot be found

* 3.1. Representation for Learning in a certaiun instance, the quasntity of tine subpart in that instance is

* In tine ACRONYM nsystem, data strunctunres are represenited by the regarded as 0.
franne-likesntruct tre, i.e., cra data object is ann instance of at unit. Units In snunmnry, the teacher teaches tine object instance using an e~-
have at set nil nassociated slots wianae fillm define thenir vinacs.i' Objects ampjle and specifies the name of the clnnss/snbclans to which it belongs.
awrenpresented bvy object graphn whomnmu arest ar- soinjiart nuid afixnnnent. The systena genneralizes the mnodnel descriptions ofl the obiject class as
Tine subpart arc ndescribies a coase tin fine structurtal iirarclny repro- described. ?Nunmely, all the constraints in the prenleccessor nodes in the
sentel by asnainlart tree. Affixiorent arcs rnelate conirniante systems of restriction graph are generauised. For example, if wc add a new in-
objects. Clasis is; represe~ntedn thnroughn a niecianiniin of coansntrainats mid a stance to thne clans 1-747, may I3-747X, tihe Constraints in node DB-747' -

restriction graph. Thne constraint is innequalities oun algebaic expressions and 'generic aircraft' are generalized.
wichd defines a set of values which can hi. taken by algebraic expres- Thne ininuactive learning described above uses only positive exam-
sion in the slot, i.e., 5.0 !5 witith < 6.0. Tine restriction graph is used pies aid tine nmodel descriptions sometimes become overgeneralised -
to organize the constraints into class, subclass aul instance. Namely, The spivialination of tine class model through the negative examples
a set of constraints can define obiject class, siblas or instance and or conanterexananpies should bie doane. In thin systenm. descriptions of the
the hierarchny oft each set oft constrainits can be dnefimned by restriction class mnodel cmi lie specialized with tine addfition if new constraints.

*grapnh. Figure 5 shonws an extunjle nil tine class hinerarchny nol the jet air- When tine ACRONYM system niisrecignixes aun object which is not. -

craft. The nudles in cich level have coirrespondling constraints, though inclnudeud in tine clss, the example can be unseid as A negative or cohn-
one set of subpart tree, affixnnent tree, cylinder idescriptions exits for terexauinin. Usninag tihis nnisrercognimed exaniple, the teacher can add a
the object class. Tine constraints of tine predecesisor are applied to its new type nil cnstranit in the model description.
snecePsnio nodes, for instance, tine constraints of 13-747 arc applied toi Learmning froma examples can be categorized into two types, the one.
both 13-747D1 and B-747SP. trial. and thne other, incremnental. "Althnough this increntental method

parallels human learining, it is apt to lead one dmw garden paths by
3.. ueso Gneaiztan#n injuicious choice of initial examples iun fornmunlatnng the kernel of ..

Generalization to form a class nmodel can be done simply owing the mew ciiicept" *? Thmereforie, in this systemn, the teacher mosut select

to the represeitaon described above. Tine nnnodnel ndnscriptions of the good exanniples for fornming good class iescritionis. Finally, the system is
obiject instanice built lay the system as udescribed in Section 2 are written currmnitly being planned to inicludle motoir tyin. of constructive induction

*in ternis of constraints( "=" is one nil tine frms nil tine constraints), in order to increase its power.
Tine conustraints can be usedA fur variations in size, in structure, and
in spatial relantionshnips. For MAiumiple, at Structure Can he expressed like 4. User Interface and Examples
LXEG-QITANTITY-. 3. (ieaneralization nif tine nmodel nucriptions can be
done by geuaerairing these constraiant. For exampile, suppose 11-74711 The uer-lrivauly initerface nil bniuing nmodls are describned timing
has the constraint, actual exanaple in tin sectioin. Nannely, nine inetlnon to iniput knots in

3D apatce madI tin fit tine Cenrnrliu'nI Cyliunde~r in ilencribeul, bnasedi on the
FIJSELACE.,LENGTH= 67.3 Generalized Cylindler fitting method described in Section 2.

and B-7478P has the constraint. 4.1. User-friendly Interface
Figure 6 shows tine following hardiware dhevices which are wsil am

FUSELACrI-LIINGTII= 52.0 user interface. (1) Scanning Stereniocinpe ODSS 111 (2) display device
lint stereo images (3) Voice Itrinimer SYS300 (4) trackball (5) TSS

These constraints are gieneralized miii tine following cinitraiitnt fthne tenmninal. Thne system genierates 3D inunuln thrmouigh the fofllnwing user-

* ~FITSELAG&ELEN(.Ti nil thne class 1-747 is obtained. frienidly initerface using thnese haardware. nlevices.
1) Cmnivenient Iput

52.0 - u <FITELA(IE.LENCTHl< 67.3 + cTine systnin is dlesigmned tn nuse only voice mid tine pointing device.
Thne keyhnaris are not usunally nan-nI except inn ie case where nannes
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L in stead oif a Generalized Cylinder while tile CGeneralized Cylinder is the first step towards thc powerful modeling system which can handle
being fitted. Besides, hidden-line removal is not niecessary as long as bo0th functionial and geomnetric features, thle geomertric modeling system
the stereo line drawing is used as there is no andiiguity of 3D structure described here is designed to build models of objects -.yhich can be
fin the sterco line drawing. Figure 13 shows G~eneralized Cylinder de- described by geometric features. This systein and the ACRONYM
scriptiomis generated by tlmc system after all the fitting operations are system do not yet handle functional and higher geometric features.
finished. They would become more powerful if, iii future, they could handle

Although it might be Accurate enough for most purposes (The ac- these feature.
tual ,se of fte pa~rt is 3lmnx 33mmnx l~uni), fte CGeneralizedl Cylinder
descriptions would have been more accurate if we had measured camera References
parameters mtore accurately.

It takes about three or four minutes to fit one Generaliz.ed Cylin. [1I Brooks. R.A., Symbolic Reasoning Among 3-D Models and R-D
(ler with four kunots. though the probletms of display time and 3D input Images. Ph.D. Thesis AIM-343, Department of Computer Science,
accuracy had to be solved. Thme total timec required to fit General- Stanford University, Stanford, California, June 1981.
ized (Cylimlers to all the subparts of anl object depends on flow many
subparts it lis. For exanmple. if the object is formied by two or three [21 Llautmgart. B.C., Geometric Modeling For Computer Vision Ph.D.
sutbparts. tell minutes would hie etiougli for building the model of the Thesis, AIM-249, Department of Computer Science, Stanford Uui-

* object. With tltis user-friendly interface, even at person who is not a versity, Stanford, California, October 1974.
comaputer expert can learni how to build Tnoulels easily and can built 11Dnod .. iulPreto ycmue.Po.IE of

thei siply nd Illcitl wihouterrrs.on Systems and Control, Miami, December 1071.

5. Conclusions [41 Newmnan, W.N. and Sproull, R.F., Principles of Interactive Com-.
puter Graphics McGraw-Hill, New York, 1079, pp. 154-158.

The Stereo Modeling System which etable- simple, fast model
building was described. Tile key idea- hiere are lte followitig: (1) build [51 Slamna. C.C. (ed.), Manual of Photograrnmetry. American Society.
a model of an object instance from a 3D exainple oif thel object. (2) of Photograninetry, Maryland. 1080
learn the class model oif tile object fron examples. This system is eay (6) Baker. Il.H., Biiaforil. T.O.. Malik. J., and Meller, J.F., Progress. ---

to Learnt. i.e., even a personi who is not a colmpuiter expert can nmaster i traMpig rc mg nesadn okhp r
it in ani hour or so an~d miodels of 3D objects canm be built e'asily and linSte re, Miping, ProeI. lug nesadn okhp r
quickly. e.g.. a nodel oif at simple object with two or three parts can be lnttVriiJn 03
built in 10 minuiv withiout errors. [71 Michlski. R.S., Carbonell, 3.G., and( Mitchell, T.M., Machine

Althoogh tlit- problemo if till- accruiy of tile niodeling waksitolved Learitng. Tioga Publishing Co., Palo Alto. 1083.
liy fte oilul fu-tiomaduil lite 3D poitater which (-lui bei moiived ilk 3D
il~w witli iour Iixt'l of thii stereo imafges, t his iiiiiieliig systein ]flighit [8) Winston. P.11., Binford, T. Katz, B., and Lawry, M.R., Learn.
mnt 1-. SIiitid fur t114' highly il-unAte 11iuiiilig iif Ciio11ipieil obijects. iny Physical Description from Functional Definitions, Ezamples
Howi-ver. the simplicity rather than the high accuracy of 3D model , and Precedents. Nationial Coniferenice ii Artificial Intelligence,
((.rilitions is imlportanit in lInage Understanding. Even we don't have Washington, D.C., 1983, lip. 433.439.

accurate 3D models of objects in the world in our braitns. Ahthought the
3D) models, which this system produces might not he suited for CAD or
Computer Graphics in which a high degree of accuracy is important, Acknowledgement: This work was supported in -

they are believed to be accurate enoiugh for most applications in unage
utiderstanding. part by the Air Force office of Scientific

It would lie ideal if 3D models were built automiatically without
any aid. However, it is still difficult to biuild useful 3D mnodels for Inmage Research under contract F49620-82-C-0092.
Unilerstanding fully automatically. Iii this system, the example of the
ohjict is, divided into parts acciirdinig to till- requtiredl accuracy based
on liumiin judgeitn n geome14tri' ffeatures Of tile Object aetaught

aund described efficienitly using tile knowledge oif thel object we have,
Miidls can be built fromn one stereo pair for we kntow that there is no
tail in tlit, hidden part of thle object. However. at fully auttomiatic system
witliiut such knowledge reqiires pictures of th. oibject friim all different
aigles. Nevertheless, it is true that iii our system, a stereo pair from
a giiiii viewpint is iiee(lid ani lseveral stvreo) pairs oiught be required
for a conmplicat ed iibjectt It is poissile to continue btulitng the moul
friiii ilifferut amighis if camera paramuieters arc known ndmu this may
lit Inetcessary ini future. However. thi- key iilea here is to build models
dir. ctly in 3D space using actual erzainples, i.e.. 3D space nered not be

* stereo imuages and stereoscope. It is alsou possibule to fit Generalized
* ('Cylinuders using knots iii actual 3D space via a 3D pointer like a robot
* ~~armi. Thlis type of alternative meuthoinil iglit hbe use~ful if a good 3D

*pointer is available.

Somle clawse. of objects have various geometric inistances and they
suae best ulescrihuefl liy fmntionaleaturi, andl higher geunnetric features.'

* ~ ~ ~ 1 tmiltl' Otit hianid. thenV is anoit her class uif oiljects which can best be
* iledtscrilitil loy geouiet ne fi-atllre amiil 6s iific tilt to describe by futnctional
* ~fi-atusre,,u .g.,. then, is niiu with 10 Itt ts iil whlat are tile funcmtional
* fi-atulr,. oif a mait ? Alsui thire is at chlss iif obujects which can be

dtuetrihiei bmothl funtionally waill greii(t rically, e.g., tennmis halls are

always foiundi, niitclouioks are rettigilar, ansd they hmavie funictions. As
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*ACRONYM was initially used for location of aircraft in aerial was known exactly but the altitude and camera orientation were
photographs. It was also used to model short range views of underspecified. The altitude was constrained to be between
some simple electric motors, Hughes Research Laboratory then 1,000 and 12,000 meters, and the camera was known to be

" used ACRONYM to locate ships from various camera angles. pointing generally at the ground.
r The ITA switch parts represent a significantly different set of

geometric features than these initial domains. Predictions

The Base ACRONYM System Given a set of object models and a scene and camera model,_ .
geometric reasoning rules are used to predict shapes and -.

The base ACRONYM vision system reasons about models of relationships that will be observable in an image. Features which
the objects which may appear in an image and is domain, are always observable (observable within the entire modeled,"'"
independent (i.e., the reasoning is based on geometry rather range of camera viewpoints) are called invariant. Unfortunately,
than on domain-specific knowledge). The system can be divided few features, in general, will be visible over the entire range of
into four modules -modeling, prediction, image description and camera and object position/orientation. Usually there are
image interpretation. The user models the objects in the domain accidental viewpoints in the range of camera and object S
and specifies the relationships between the objects and in the locations. For example, the sides of a cylinder will produce
world. Base ACRONYM analyzes the object and world models to parallel lincs in an image for all viewpoints except when the
predict image features and relationships. When given an image, viewpoint is collinear with the axis of the cylinder (not invariant).
the interpretation module uses these predictions to identify However, if the cylinder is known to lie on its side, and the
objects in the world image, inferring three-dimensional Camera position is known to be above the plane of the cylinder,
information concerning the shape, structure, location and then the parallel lines are invariant.
orientation of the objects.

ACRONYM also analyzes the range of camera/object •
Modeling System geometry tn predict features and relations that change slowly

with changes in viewpoint, called quasi-invariants. but which are
Qbiects An object model describes the threedimensional not invariantly observable. If no knowledge were available in the

shape and structure of an object. The object is divided into previous example, the length of the cylinder would still be quasi- . .

simple subparts, each described by a generalized cone volume invariant because it changes slowly with change in viewpoint. _ -
primitive. (A generalized cone describes a volume by sweeping a i bha i

planar cross-section for example, a circle, along a spine4 .) Base P dictions are described by the prediction graph. The
ACRONYM implements a subset of the possible volumes nodes of the graph represent the predictions of image shape S
represented by generalized cones. The spine must be straight features, and the arcs of the graph specify relations between the
and cross-sections may be one ol a circle, square, or rectangle. features. As will be seen, relationships between shapes are
The cross-section may be deformed linearly in one or both critical to ACRONYM.
dimensions (i.e., the dimensions of the cross-section) and may
be held at an arbitrary fixed angle to the spine. For example, a Shape Prediction ACRONYM predicts image shapes for the
cube is a square swept along a straight spine. This "swept" sides and for the end faces of a generalized cone. A
representation is not unique; each of the three axes of symmetry trapezoid is a two dimensional projection of the "swept" sides of
may be used for the spine in this example. a generalized cone with a straight spine. The projection of an .

end face can also be described by a trapezoid for square and
In addition to individual objects, base ACRONYM can rectangular cross-sections. Circular cross-sections produce

represent generic classes of objects. This is accomplished by ellipses in an image. The size of the shapes is constrained by
using symbolic, rather than nimeric, parameters for the volume upper and lower bounds based on the modeled range of camera-
descriptions. In the initial ACRONYM demonstrations, 747 and to-object geometry.
L1011 aircraft were described by the same generic model
containing symbolic parameters. Each aircraft type had a set of Relationship Prediction In addition to shapes, relations (arcs -

numeric constraints on these symbolic variables, of the prediction graph) between shapes are also predicted. 5
During interpretation, pairs of hypothesized matches of image

The structure of an object is described by the relative features to prediction nodes (shapes) are checked for
positions and orientations of its subparts. The volume of each consistency by attempting to find the predicted relationship .-. - .
subpart is described by a generalized cone and each generalized between them (which is represented by a prediction graph arc).

. cone has a local coordinate system. The object also has a Prediction arcs are generated to relate multiple shapes predicted
coordinate system. The position and orientation of a subpart for a single cone as well as between different generalized cones
(generalized cone) relative to the object is specified by the (subparts) for an object. The latter are actually more important in
transformation between their coordinate systems. arriving at a consistent global interpretation of collections of S

Scen An object which is expected to be seen in an image is image features as complex objects.

placed into the world model by specifying the transformation Exclusive arcs relate image features which are mutually
between the world and object c=oordmnate systems. Usually some exclusive. For example, the two end faces of a solid cylinder .-

or all of the transformation parameters are symbolic - if the cannot be visible at the same time, Collinear and connected arcs
position and orientation of an object are known in advance, then represent invariant relationships. If two straight lines are
a vision system is not needed to locate the object. collinear in three space, then their images must be collinear,

except in the rare case of a single degenerate point. If two cones 5
Camera In addition to knowing which objects may be in the are physically connected in three space, they are connected in

world image, base ACRONYM uses knowledge about the camera any image. Angle arcs are predicted between the spines of two -

and the camera location relative to the world coordinate system generalized cones. For those image features, which are not
to guide its prediction and interpretation. In the ITA task the connected, distance arcs are generated to provide additional . ....

camera location is precisely known but ACRONYM can reason constraints. Finally, contained arcs relate two predicted shapes,
about the appearance of objects without precise information, one of which contains the other in the image.
For the aerial photo demonstrations, the local ratio of the camera
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Back Constraints The shape and size of image features are
clearly viewpoint dependent. The predictions are constrained
with upper and lower bounds based on the range of camera to Holes Base ACRONYM was capable of reasoning about solid
object geometry. In addition to predicting the shapes and volumes only. Every item in the switch assembly contains a hole
relations, the prediction module also generates equations to and for many objects the hole is an essential characteristic (e.g.,
constrain the relative camera-object geometry from image a washer). Our description of holes follows the approach of base S
measurements. For example, from most viewpoints the circular ACRONYM for solid objects. We describe a hole by a
end of a cylinder will appear as an ellipse. Furthermore, the generalized cylinder with an additional tag indicating that it is
eccentricity of the image ellipse constrains the orientation of the void (negative volume). We restrict the representation to holes
cylinder relative to the camera. which are surrounded by some solid. This restriction allows us to

model all the parts in the ITA task but avoid arbitrary intersection
Imaoe Descriotion of volumes.

ACRONYM describes an image as a graph (the picture Spring While many man-made objects are easily described •
graph) of trapezoids and ellipses. That is, edges must be linked by a generalized cylinder with straight spine, the micro.switch
into trapezoids and ellipses. The prediction graph provides assembly includes three springs (two cylindrical and one conical
general guidelines for the shapes and sizes that can be expected spring). We have implemented a new generalized cylinder spine
from the image. The description module then looks for those type: the helix. A spring is a circular cross-section swept along a
shapes, ignoring the predicted relationships between them. The helical spine. A helical spine can also be used to describe the
result is a picture graph, consisting of shape descriptions and threads of a bolt by using a triangular cross-section. Special
their locations and orientations in the image. primitives describe the ends of a spring. A squared end indicates

Interpretation (Matchinql that the helix is deformed (squared) on the last revolution of each •
end. A plain end is simply the undeformed helical spine. The

ACRONYM interprets images by subgraph matching model of the conical (tapered) spring uses the taper primitive to

(subgraph isomorphism) between the picture-graph description describe the ratio of the small end of the spring to the large end.
of the image and the prediction-graph expectation. It proceeds
by combining local matches of shapes to individual generalized Stable States A further extension to the modeling system is a
cones (from the ribbon finder), into global matrhes for complete representation for the stable states of an object. A stable state is
objects. The global interpretation must satisfy the requirements an orientation in which the object will remain stable on a level
specified by the arcs of the prediction graph (i.e., the surface

6 . For example a convex regular polyhedron is stable on S
relationships between subparts). The constraints that each local any of its faces. A right circular cylinder is stable on its ends and
match implies on the three-dimensional model must be globally on its side (its stability depends on the ratio of radius to height).
consistent. As hypothesized local matches are combined into The representation consists of constraints on the orientation and
more complete objects, the size of image shapes and position of the object in the tray. Some information may be
relationships provide constraints on the camera position and unspecified, such as the orientation about the right circular
orientation relative to the object. Inconsistent constraints cylinder's axis (i.e., it can roll when lying on its side). By using
indicate an incorrect hypothesis. symbolic constraints we can not only model the nominal stable

state pusition (on a plane), but can also represent perturbations . S
Initial Domain (i.e., Aerial View of Aircraft) of the stable state explicitly. For example, in its nominal stable

state, the large washer lies flat on a plane. Our representation
The success of the original implementation is largely due to for it, however, can also describe its orientation when lying at an

the fact that most objects exhibit structure which is well angle (on top of another object).
anproximated by skeletal description. Consider the human
ability to recognize stick figure (Irawings. Stick figure drawings
resemble the objects they represent only in skeletal structure

the relative lengths of each segment and the relationships _ _ _e

between segments5 . Aircraft in particular are skeletal and can bedisambiguated by their skeletal structure.

Extensions to Acronym Nominal Leaning
Figure 2: Stable States of a Washer

The application of ACRONYM to industrial parts represents a
significant domain shift. The base ACRONYM system included While ACRONYM is capable of reasoning about positions and
suflicient geometric reasoning to demonstrate the power of orientations which are completely unconstrained, the stable
leature prediction and image interpretation but the states allow ACRONYM to produce tight bounds on the predicted 0
implementation was not completely general. In particular, the shapes and relationships. Stable state constraints reduce the
features of aircraft from aerial viewpoints produce image complexity of prediction and allow image interpretation to
trapeoids. Not surprisingly, a large proportion of its geometric proceed more quickly and to achiuve higher confidence object
reasoning rules are devoted to prediction and interpretation of hypotheses.

trapezoids.
The position of the camera relative to the world coordinate . "

In order to recognize the parts of the switch assembly, system is well known. When combined with the stable state
modifications to base ACRONYM were required. These description for an object, this means that the predicted shape •
modifications included changes to and extension of the and relationship parameters are constrained to exact values (i.e.,
modeling, prediction and image interpretation (object matching) tower and upper bounds are equal) and no back-constraint
modules. In this section we discuss the modifications which equations are generated. However, if the object orientation is
were necessary and the performance of the ITA version of described with some error tolerance (in case the object may lean
ACRONYM on the micro-switch components. on another object), back constraints will be useful in determining

the actual object orientation.
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Prediction Stable state reasoning Reasoning was added to achieve
better prediction about the range of shapes that will be visible in

The prediction module received the most extensive changes. an image. The constraints on object location form a context for
We improved ellipse prediction, and added a variety of new the object model. ACRONYM was modified to reason about the
relational predictions between shapes. ACRONYM finds image appearance of an object model within multiple contexts (i.e.,
shapes (which match shape predictions) and uses predicted multiple stable states). The improvements allow greater
relationships to prune the search for a set of shapes which is performance and produce more accurate image shape
consistent with the hypothesized object. Increasing the number descriptions.
and strength of relationship predictions improves the
performance and accuracy of image interpretation. ba n We have implemented some useful, although certainly -. "

not complete, reasoning about holes. We assume that a hole is
Relationships between the subparts of an object are very fully contained in a solid -the shape of the hole and the shape of

important to ACRONYM's performance. For the ITA parts we the solid are the only shapes to consider. We need not consider
found that the relationships which base ACRONYM could predict arbitrary intersections. (Note that generalized cylinders are not
were not sufficient. Stronger relations were needed to constrain closed under arbitrary intersection). While this may seem
possible interpretations and to link the different shapes restrictive, the solid-hole relationships in most industrial parts are
predicted. Because base ACRONYM had no prediction for quite simple - collinear, parallel or perpendicular axes.
holes, no relationship existed between the inner void and outer
solid of a hollow cylinder. (Base ACRONYM assumed everything Much of the reasoning about which surfaces of a solid may
was solid so it never reasoned about the insides of anything.) be visible does not apply to holes. Surfaces of a solid
Washers would have been predicted as a single ellipse. Clearly generalized cylinder may occlude surfaces which are further
these weak predictions, such as a single ellipse for a washer, from the viewpoint. The touching surfaces of connected solids
would not lead to high confidence in object interpretation are also occluded. Holes, however, are invisible. A hole cannot
hypotheses. Thus we needed new relational invariants, or at occlude anything neither its own surfaces which are further
least semi-invariants. The extensions that are most important for from the camera nor any object connected to the hole. The
micro-switch parts follow: swept surfaces of a solid object are often quite important

indeed, for aerial views of aircraft, only swept surfaces are
e reasoning about stable states visible. The swept surface is almost never visible for a straight
e reasoning about holes hole. While it is possible to imagine an object where the swept

side of a hole is visible (e.g., half of a hole), we do not consider

* concentric relation between concentric cylinders such rare objects.
(e.g.. solid and void cylinders describing a washer) Concentric Shapes The concentric relationship is important

* connected relation between ellipses and trapezoids for many of the objects which contain holes, especially for
and between ellipses and ellipses washer-like and ring-like objects. If two generalized cylinders are

concentric in three dimensions, they are coii.,ti ii,. a,,y
* parallel relation between coils of a spring projection. That is, concentricity is invariant and therefore a very

strong pruner of hypothesized interpretations. For the ITA
* enclosed relation between coils of a spring and the project, the concentric relationship is predicted for 10 of 15

imaginary bounding of the spring objects (17 of the 32 stable states).

Figure 3 demonstrates prediction of an object with holes. A weaker form of concentricity was also implemented. If two
This prediction example is for stable state three of the bushing cylinders (of unequal length) share the same axis and the shorter - -

(standing on its smaller end). The bushing is composed of five one is inside the other, then whenever you see both holes, they
cylinders - two outer (solid) volumes and three inner (hole) are concentric, or nearly concentric. This applies, in particular,
volumes (see figure 3a). to the case of structures inside a cylinder -- such as the bushing

viewed from either end.

Connected Shapes Reasoning about the appearance of
holes is often different than for solids. Both ends of a solid are
never simultaneously visible (the swept side occludes one end),
For a hole, however, both ends are visible whenever the

viewpoint is near the line of the hole axis. Furthermore, if both
ends are visible then they must be touching in the image
(remember the hole is surrounded by some solid). The ends of a
hole are connected.

a)Stable Stale (on end) b) Overhead View (eebrtehl ssrone ysm oi) h nsoed r iil hnte utb ocigi h mgWhile some code to predict ellipses existed in the original

ACRONYM system, ellipse prediction and matching were not
Concentric fully implemented - few relationships involving ellipses were

implemented. We added a stronger form of connectedness to
ACRONYM. Instead of connectedness between only trapezoid
and trapezoid, we now predict connectedness between ellipses
and trapezoids, and between ellipses and ellipses. This

Connected Connected relationship is important, for example, for viewpoints from which , . " -

one sees the side and one end of a cylinder.
c) Prediction Graph Parallel Trapezoids Relation between parallel trapezoids is

Figure 3: Simplified Prediction for Bushing important for the prediction of springs. If two generalised

cylinders or two parallel coils of a spring are parallel in three . "
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dimensions, their images are also parallel under any projection. algorithms; the current implementation uses a MACLISP
This relation is another invariant we have made use of. When the compatability package which runs on top of FRANZ LISP.
spring is lying flat on its side, in one of its stable state, the parallel
coils of the spring appear as a set of parallel trapezoids in the Figure 5 illustrates ACRONYM's performance at image
image (figure 4). These trapezoids are not connected in the interpretation. Although the parts will be located individually for
image. Since the spring is modelled as a single part and not as a the actual assembly, for this example we instructed ACRONYM S
collection of subparts, the distance, angle, and contained to search for the bushing and for the two switch elements
relations are no longer useful. A new parallel relation is thus simultaneously. Only the strongest hypothesis for each object is
predicted between each pair of the trapezoids, This new relation shown in the interpretation. Notice also that the image data is
also helps to prune off other undesirable random trapezoids in imperfect and that one terminal pin is missing. In general,
the image. deformed or missing subparts of an object affect only the

strength of the interpretation hypothesis and will not cause a
Enclosed Trapezej To increase our confidence in hypothesis to be discarded.

prediction of springs, we also predict an imaginary bounding 0
hollow cylinder enclosing a spring(figure 4). The coils of the The asymmetry of the switch element is an important
spring are enclosed in this imaginary cylinder. Thus, when the consideration for the assembly operation. ITA ACRONYM has
spring lies on its side, the projection of this imaginary cylinder determined that both switch elements lie on their "left" side.
will appear as a trapezoid enclosing all the parallel trapezoids Two incorrect hypotheses were also generated, each labeling a
projected from the parallel coils of the spring. When the spring is switch element with the wrong stable state (i.e., lying on its
standing on its ends, the prediction is exactly the same as that "right" side). The incorrect hypotheses contain fewer predicted
for a hollow cylinder of the same size. shapes (they are weaker) because each hypothesis omits the

middle pin (the middle pin position is inconsistent with the right- 5
Bounding Parallel side hypothesis). Generation of the switch element hypotheses
Cylinder Coils required 85 CPU seconds mu this example (again, improvements

can be achieved by re-coding).

When searching for the bushing in any of its three stable
states, many of the concentric shapes in figure 5c caused
ACRONYM to generate bushing hypotheses. The correct

interpretation is the strongest (figure 5d) , all four image ellipses S
are consistent with the stable state 3 hypothesis. The same

a) Spring in Space ellipses also form tI~e second strongest interpretation; three of
the ellipses are consistent with the bushing standing on the other

Bounding Parallel end. That is. the image shapes from the bushing generated the
Trapezoid trapezoids two strongest interpretations.

r-iSeveral weak hypotheses were generated from other sets of
image ellipses. For example. ACRONYM generated a weak 5

II hypothesis that the large washer (the concentric circles just -
I. below the bushing) is a bushing standing on end. The outer '

LJ diameter of the washer is identical to the bushing and the inner . -

diameter is within error tolerance. The correct hypothesis for the
bushing is stronger because more of the predicted features were

b) Spring in Image located in the image (i.e., the internal structure of the bushing . -

Figure 4: Spring Features disambiguates the possible interpretations). -.-. •

Performance o the ITA Darts Sometimes ACRONYM is unable to generate a single strong
hypothesis for an object. For example, if the viewpoint in the

Our changes have been very successful. Of the fifteen parts, preceeding example had been oblique to the point that no
ten can be recognized in any stable state We can automatically precedin examle ad be the poi th no
generate shape predictions for all of the remaining five parts but internal structure was visible, the incorrect hypothesis (the .the currently implemented relationships are not sufficient to link washer) would have been equally strong. Better object .. •.
the shapes (i.e., we cannot yet locate these two parts in an identification can sometimes be achieved by tightening the errorbounds on finding an ellipse (e.g., to eliminate tile inner diameterimage). of the washer). However, a few objects produce ellipses of

The ITA version on ACRONYM has been tested on data from identical dimensions and cannot be uniquely located by finding
real pictures. We have fully automated tihe process from) picture image shapes. When no one object hypothesis is sufficiently
real itupresn Wehoe fllykutomaed thu roe rom shapicture strong, the sparse range sensor (light stripe) will be used to
to interpretation; the linking of edges inlo image shapes is obtain a depth profile to distinguish between the hypotheses.
accomplished automatically (the original image description
module did not find ellipses). Figure 6 illustrates the situation where ITA ACRONYM fails to -.

Although analyzing an object model and predicting the image detect the desired part. The bottom switch element shapes
shapes which it will produce is expensive, it need only be done conform to the poor edge data for this image. The shapes for theonce. That is. predictions are done "offline" and stored for later top switch were artificially degraded for illustration. Becauseuse by the image description and image interpretation modules. image data is inexact, image interpretation allows for errors (inboth the base and the ITA versions of ACRONYM). In this
The complexity of the object increases the cost of prediction. example. the image trapezoid for tfme body of the lower switch
The large washer, a very simple object, requires 14 CPU seconds element is within error bounds, but the body of the upper switch
on a Vax 11/780 while prediction for the switch element requires is not (it does not match the prediction). Only three of the six
about 6 CPU minutes for both of its stable states, A large terminal pins match the shape predictions (tile ipper two pins of
performance improvement can be realized by recoding the the lower switch element and the leftmost pin of the upper switch 5

element). Image errors also affect the relationships between

312

• S





shapes. Even if the upper switch body had matched the shape surface is not a perfect mirror.
prediction, the angle between the body and the leftmost terminal
pin is out of the allowed error tolerance (the hypothesis would be Large Light-Source
discarded). For any composite object (multiple subparts), image
data must match at least two subparts. Three shapes for the
lower switch element are within the error tolerance and their
relationships are mutually consistent, that is, the image data is
sufficient to form and retain the displayed hypothesis.

Future

Planar Reasoning

ACRONYM currently reasons about 3-0 shapes and 3-0 V
relationships (such as collinearity) which are invariant when 0
protected into two dimensions. This type of reasoning provides
useful constraints on viewpoint but is inadequate for detailed Viewpoint
object recognition or inspection. The housing (figure 7) contains Figure 8: Light Stripes on a Metallic Cylinder
a plane with 6 holes in a pattern. While it may be possible to
identify 3 D relationships for this pattern of holes, this is Reasoning about light-sources can also predict shadows. In
essentially a col!ection of 2-D relationships and reasoning in two a number of images, a cylindrical object reflects its own shadow.
dimensions is more appropriate. This shadow is important as it often masks the actual boundary

of the cylinder. We wish to account for this effect when
Notice that the hole pattern is not symmetric about the calculating the Lipper and lower bounds on the apparent

vertical axis: the orientation of the object is determined by diameter of the cylinder (when lying on its side).
recognizing the orientation of the hole pattern. We will describe
the planar cluster of holes by specifying a coordinate frame for Useful predictions can be achieved without complex light-
the plane and describing tire location of each hole in that source models. Under the general lighting assumption, a shiny
coordinate system. The predictions will relate size of the circular cylinder will always exhibit stripes. Stripes will be visible anytime
plane (containing the 6 holes) to the size of each hole and will the portion of the environment which is reflected by the cylinder
specify that the major axes of the image ellipses must be parallel. is not uniform. Predicting the number, size, or location of the

stripes requires sophisticated light models.
With the addition of this 2.D reasoning, ACRONYM will

predict a hierarchy of features -. "coarse" 3-D features for Successor
gunerating object hypotheses, and "fine" 2-D features for Part of the value of this project is that we identify important
detailed reasoning. When interpreting an image, the hypothesize issues for the next generation model based vision system. Work

is underway on the "successor" to ACRONYM.

ACRONYM employs limited image shiape descriptions -all

shapes were approximated by trapezoids or ellipses. These
0 shapes are sufficient for the coarse reasoning necessary to

constrain the viewpoint but obviously cannot describe all the
possible image projections in our set of switch parts. Much
current research in computer vision is devoted to the description00of shapes in an image." "

Many of the parts for the switch assembly contain fine details
Perpendicular View Oblique View such as rounded corners and small slots which are important for

Figure 7: Housing successful assembly. While it is possible to model these fine
details in ACRONY'M the rules which embody the reasoning

and test strategy will first match coarse image shapes to 3-D about them would be comnlex, awkward and numerous. In the
predictions, then fine .;xlge leatures to the 2.0 predictions. Re- future we hope to use a uniform representation to avoid the case
processing of the raw image may be required to obtain the analysis that becomes unmanageable in ACRONYM. Case
desired line image data (over small portions of the image), analysis is acceptable for improved performance in common

cases but must be supported by general reasoning. S
Rellectivity

ACRONYM uses the structure of objects (the relative length
Specular reflections are particularly important for the ITA of each subpart, the angle between two subparts, etc.) for

parts (as for any shiny object). ACRONYM currently contains a feature prediction and image interpretation. It is quite competent
very simple light-source model (a single point) which was used with objects having skeletal structure such as objects
for crude shadow prediction in a previous project. Ideally, we recognizable from stick figure drawings. However, several of the
want to reason about multiple and more complex light sources to switch parts have similar skeletal structure (e.g., all the washers
predict characteristics of specular reflections. have the same structure). Additional relationships will be S

required for classes of objects which lack definitive skeletalFor example, a shiny cylinder usually exhibits bars or stripes, structure.
The specular surface approximates a mirror. The cylindrical
shape of the mirror causes light from a large area of space to be ACRONYM uses graph matching (subgraph isomorphism) to
reflected onto a small area of the viewing plane. Under general find image features (the interpretation graph) represented in the
lighting. many large light sources (while walls, fluorescent lights, prediction graph. Relationships connect the shapes for both,
etc ) produce obvious light stripes. Each stripe is widened graphs. In real images, some weak relationships may be lost due
(diffused) by the imperfections of the mirror, i.e., the shiny to noise or artilacts from edge detection. Subgraph isomorphism 0
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makes no allowance for partial evidence a node is either
completely consistent with all the predicted relationships or it is
inconsistent. Intelligent interpretation of image data requires
matching groups of features and relationships on the basis of
partial evidence.

Conclusion 0

The original ACRONYM vision system demonstrated the
power of geometric reasoning for image feature prediction and
image interpretation. It was very successful in recognizing
objects from skeletal structure. The modifications for the
Intelligent Task Automation protect have added a new capability
to reason about and recognize objects with holes. A
representation for springs was developed and new relations for
spring feature prediction were implemented. Results on
successful and unsuccessful image interpretations were
presented.
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ABSTRACT VAX
We discuss the design of a large scale Content

Addressable Array Parallel Processor (CAAPP) for
low, medium and high level vision processing. This via massbus
new architecture combines associative processing

with global broadcast and response to and from an
array of cells, and array processing via local Central
cellular square neighborhood computation. The ADC
capabilities of the CAAPP allow us to close the Control

feedback loop between high level processing and low = head/track
level processing by supporting communication disk
between different representations of an image. The
CAAPP would provide a means of mapping the signal -

level (iconic) pixel-based representation of an •
image into a symbolic intermediate level
representation suitable for high level vision Parallel
processing.

1.0 INTRODUCTION Processor

The Content Addressable Array Parallel

Processor (CAAPP) is a new architecture specially S
designed for machine vision processing [WEE82, 84a,

84bJ. The CAAPP is a "processor per pixel" Figure.

parallel image architecture which represents the
synthesis of both content addressable processors In the next sections we discuss our view of the

(such as STARAN or ASPRO [BAT823) and mesh goals of general machine vision in terms of image
connected parallel array processors (such as ILLIAC interpretation. We continue with a discussion of-- .',--

IV [BAR68j or CLIP-4 [DUF(8J). The full system the characteristics of our design of the CAAPP as a
will augment the CAAPP array via its controller machine for vision processing. We give a
with a host processor such as a VAX/11/780 or a description of the CAAPP and show the utility of
LISP machine. The resulting architecture can be such a design by discussing some of the algorithms
used for both associative and array type operations we have examined during our design process. Then
encountered in image processing and computer vision we illustrate the process of mapping a low level
tasks to produce simple solutions that are iconic representation of an image into a symbolic
difficult for parallel machines which provide only representation suitable for high level processing.

one of these capabilities (Figure 1).

The CAAPP will be capable of performing all low 2.0 THE MACHINE VISION PROBLEM

level image processing tasks, but more importantly The processing requirements needed to solve the

it will provide a mechanism for transforming low machine vision problem are not well understood.
level image data into higher level symbolic data The difficulty is that general machine vision is
directly without mediation (or serial far from being solved, and is currently a rapidly
processing) by symbolic "host" processors. Thus, evolving area of research. At this point in time,

it allows for a new style of high level algorithms no one can give a detailed algorithmic - S
where processing decisions can be based on direct specification for a general vision interpretation

global feedback information from the processing system. However, it is possible to give a list of
elements. We have closed the feedback loop between features that must be present in any machine that
low level and high level processing by providing a is to be used to significantly advance the vision

ntrol vision terface st global feedb this capability ions problem. We believe that if such machines are
built, they will greatly facilitate research and

from the array to the controller (Figure 2). clarify many issues in machine vision development.
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By machine vision, or image understanding, we and to extract lines via intensity and color
mean much more than image processing which, discontinuities at local edges. The result of what
usually, refers to the enhancement and we call low level processing is a transformed image
classification of images. The goal of machine with labeled regions and line segments. However,
vision is the automatic transformation of an image we are assuming that no operations relating
to a symbolic form that represents a description different image events have been performed nor have
and an understanding of the content of the image, there been any inferences on the object identity of
In general, the machine vision problem subsumes the these events.
tasks performed in normal image processing.

The intermediate level of representation
The image understanding process can be thought provides an interface between the low and high

of as an iconic to symbolic (or signal to symbol) levels of representation, that is, between

transformation. The input image data is pixel-based representation and symbolic elements
essentially an array of signal data and forms an representing visual knowledge stored in a database.
iconic representation of the real world. To In the UMASS VISIONS system [HAN78a,b,HAN83), which S
perform image interpretation the machine must is the environment in which most of this research
transform this data into a symbolic form. The was conducted, the intermediate level consists of a
transformation is from low level information (e.g., symbolic description of the two dimensional image
the pixel at coordinates [112,47] has a blue in terms of regions and line segments (that are
intensity value of 1) to symbolic representations still in registration with the raw image data) as
of objects in the scene, in terms of predefined well as their associated attributes which can be
knowledge about objects in the world (e.g., region used in the interpretation process. In some
75 in the image is an instance of the object class systems this level would consist of representations
HOUSE--DOOR). This task involves monocular static of surfaces, or more generally, "intrinsic"
image interpretation as well as integrating features of the physical environment [BAR'(8,MARd2J.
information from multiple sensory sources including
stereo input, motion sequences, and laser ranging Intermediate processing includes several kinds
information. of activities. First is the set of bottom-up tasks

which are needed to complete the intermediate level
From our perspective, the machine vision of representation. This includes the extraction of 5

problem will be described as involving three levels the features for regions, lines, and vertices as
of processing. These are referred to as the low, well as the relations between these entities. The
intermediate and high levels (Figure 3). The low results of this processing are representations of - .
level consists mainly of operations on pixels and image entities:
local neighborhoods of pixels. This may involve

segmentation algorithms to partition pixels into Regions have information about intensity,
regions of similar color and texture properties, color, texture, location, size, major axis

orientation, compactness, labels of .
bordering segments and adjacent regions,
etc.

Figure 2
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MMnications and Control Across Multiple Levels of Representation

igh Lee- Schema - Symbolic Descriptions of Objects - Control Strategies

Rule-Based Object Matching and Inference: - 0.

Object Hypothesis U Grouping, Spliting and Adding

I 'URegions, Lines and Surfaces

Intermediate Level - Symbolic Description of Regions, Lines, Surfaces

Segmentation jGoal-Oriented Resegmentation:
Feature Extraction Additional Features, Finer Resolution

Low-Lvel. Pixels -Arrays of Intensity, RGB, Depth

(Static monocular, stereo, motion)

Figure 3

* Line segments have information about features that are expected, spatial relations to 0
location, orientation, length, width, other objects which might be identified, and a set
contrast, labels of adjacent regions, etc. of control strategies for partial matches, for

* Vertices have information about location, merging fragmented regions (possibly due to
wnat line segments they connect, their texture), for filling in missing information
curvature, etc. (possibly due to occlusion), and finally for -.

inferring the presence of related objects. The
result of high level processing is a symbolic

These representations are stored along with the representation of the content of a specific image
normal "pixel" information in the processing in terms of the general stored knowledge of the

* elements which hold the respective image objects, object classes and the physical environment.
Note that the relationships between the objects in

the image and objects in the world are not yet Information flow between representations is in
elucidated. both directions. In the upward direction, the

communication consists of segmentation results from
The second group of intermediate processing multiple algorithms, and possibly from multiple

activities involve grouping, splitting, and sensory sources. It also involves the computation 5 _.p
labeling processes, in either data-directed or of a set of attributes of each extracted image
knowledge directed modes (i.e., bottom-up or event to be stored in a symbolic representation.
top-down) to form intermediate events which more The summary information and statistics allow
naturally match stored object descriptions. Some processes at the higher levels to evaluate the
operations in this class are: success of lower level operations. It is also the

mechanism for the passing of actual symbols. In
Labeling points of high curvature on the the downward direction the communication consists
perimeter of a region, of commands for selecting subsets of the image, for

•Merging co-linear line segments based on specifying further processing in particular
the properties of their adjacent regions, portions of the image, and requests for additional
M Merging adjacent regions based cn their information in terms of the intermediate
relationship to shared line segments. representation.

From the above description of the machine
The tih level processing controls the vision problem, a set of three general requirements -

intermediate level of processing where the symbolic for a machine vision architecture can be deduced.
two-dimensional representations of the intermediate The first is that the machine must be able to load
level must be related to object descriptions stored (and possibly dump) a complete image in well less
in a knowledge base. The object descriptions than a 33 millisecond frame time (or in parallel
represent information about the three-dimensional with the actual processing of a previous frame).
world in a representation that might be used to Loading a 512 x 512 RGB color image in under one
form matches. Thus, objects will be represented in frame time represents a rather high data transfer
terms of significant region, line, and surface rate.
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Second, since a great number of low level * Feedback mechanisms that allow focussing
operations will be needed to support processing at of attention and data-directed processing,

the higher levels, the speed requirement indicates without having to dump the image for
the necessity of the pixel per element class of external evaluation.

mesh connected (local neighborhood) cellular array a The ability to transform an image into a
processors. It is generally recognized that these set of meaningful symbols that describe
provide the greatest speed in performing low level it.

* image operations.
The solution that we have developed is a

M Most important of the architectural machine that is a fusion of mesh connected cellular
requirements, however, is that a general vision array processors with associative or content

machine shoull provide mechanisms for communicating addressable parallel processing capability. " " .

information and control both up and down through Previous research has shown that a mesh connected .-.

the three levels of representation. The control cellular array is a structure that is extremely
program must be able to determine the necessary well suited to performing basic image processing S
summary information quickly, so that it can try a tasks. With one processing element per pixel, such

variety of processing approaches to produce the a machine can perform many of the basic Image
best results. This type of communication Is processing operations, including both the pixel and
necessary to permit the autonomous transformation local neighborhood classes of operations, very
of an image to a set of meaningful symbols. For quickly. The problem with the cellular arrays that
this reason, the mechanisms that provide the have been proposed is that they generally do not
summary information must be applicable to both provide for selective processing of pixel subsets
pixel and symbol data. (such as collections of regions or line segments), 6

nor do they supply feedback to the controller. In
To summarize -- a key issue in achieving an other words, they do not provide the necessary

effective architecture is the ability to maintain bidirectional communication between symbolic
the low and intermediate representations, pixels processing and pixel processing. An image is
and symbolic region, line and surface simply loaded, some operations are applied to it,
representations simultaneously in the same machine, and then the image is returned for external

The necessity of dumping an image out, for sequential processing or human presentation.
evaluation by a sequential program, must be avoided
at all cost. It is too time consuming to transfer Research on content addressable parallel
the volume of information contained in an image, processors (CAPPs) has always emphasized selecting
Even if it took no time to dump the information, and processing arbitrary subsets of the data
the time required for serial evaluation would still elements, providing feedback to the controller and
be too great. Dumping an image for outside doing whatever is necessary to keep from having to
evaluation defeats the entire purpose of having a move data in and out of the processor. This is
special parallel processor for computer vision, because the time required for loading the data, O
Instead, the vision machine must be able to provide which is roughly equivalent to the time to serially

enough feedback to the controlling processor to process the data with one operation, must be
allow all of the operations to take place within included in the total processing time. In order to
the vision machine itself, claim any significant speed increase over a serial

processor, a CAPP must be able to average the data

3.0 AN ARCHITECTURE FOR MACHINE VISION load time with a large number of parallel
operations. One way of achieving this is to reduce

The CAAPP has been designed to support vision the number of times that the data must be - S
processing research. It is also sufficiently transferred in and out, by eliminating the need to
general that new approaches, to the various aspects externally evaluate the results of processing.
of vision, can be easily implemented on it. It is This can be done by providing global summary
quite simple to build special purpose machines that mechanisms that feed back to the controlling
implement particular image processing algorithms processor, thereby allowing it to perform the
with great speed. However, as mentioned above, evaluation of the processing without removing the
machine vision research is a dynamic, rapidly data from the processor.
changing area. New algorithms are constantly under
development and experimentation. A vision machine 3.1 DESCRIPTION OF THE CAAPP
must therefore be sufficiently fast and general to
allow complex experimentation up to the The CAAPP would consist of sixteen thousand
interpretation level, processing elements arranged as a 128 x 128 square

array. This design is intended to be expandable up
The basic architectural issues to be addressed to at least a quarter of a million processing

for vision stem from the requirements of the elements in a 512 x 512 array. The initial 16K
probl~w: processor parallel machine will 6ave an effective

operating speed several hundred to a thousand times
= The ability to process both pixel and that of the fastest sequential processor available

symbol data today. The CAAPP would be connected via its own
u A fast processing rate controller to a VAX-11/780, LISP machine, or some
* The ability to select particular subsets other general purpose computing machine which would

of the Pixels for special processing provide both the algorithm development environment
and the operating environment for the system.
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The machine would be constructed as a square The chips and the PC cards are designed to be

grid of 128 x 128 processing elements (or cells or independent of the overall size of the memory

P.E.s). We intend to extend this prototype to 512 array. All array size dependent functions are

x 512, which corresponds to the usual number of implemented in a single column and row of "edge

pixels in a digitized image. Each cell contains cards" that lie conceptually to the left and below

128 bits of storage, five register bits, and a the leftmost column and the bottom row of the S
one-bit ALU for bit serial arithmetic and logic array. Thus we will be developing not only a large

functions. Information in each cell can be moved parallel processor, but also a set of building
North, South, East, or West on the array so that blocks that can be easily assembled to make other

neighboring cells can communicate with each other. special purpose machines tailored for specific

The 128 x 128 memory array is controlled by a applications.

microprogrammed controller capable of issuing an

array command every 100 nanoseconds. If the Images are loaded into the CAAPP in a -

controller is interfaced to a VAX, it will be able parallel/serial scheme, one scan line at a time. S
to receive macro instructions from the VAX as fast This takes 1.64 milliseconds, or about 1/20th of of

as the VAX can issue them. a frame time for a 16 bit (color) image. In

addition to the array movement operations and the

The machine allows global broadcast from the usual content addressable functions, three

controller to all cells, an activity bit set by important global functions are included. These

each cell for its response, and the global response are: (1) report whether any of the cells is a

from the array of cells to the controller in terms "responder" (has I in its X register), (2) count

of a count or some/none functions. In particular, number of "responders", and (3) find the "first"
a comparand may be broadcast from central control responder. Together these provide the key to

and cells whose contents fail to match the adaptive processing techniques. For example, an

broadcast comparand will be turned off so that image enhancement algorithm could adapt

exact match to comparand, greater than (less than) automatically to different light levels in

comparand, maximum, and minimum searches may be different parts of the image in order to extract

performed in parallel on all cells of the memory. the same amount of detail from all parts of the
image.

The individual chips we are designing will

contain 64 cells in an 8 x 8 array in a 45-pin Communication Network
package (Figure 4, Table 1). Each PC board will

contain 64 chips in an 8 x 8 array (64 cells x 64 for 64 Processing Element Chip
cells) and the memory as a whole will contain 4

*such cards (expandable to 64 in an 8x8 array)
giving the overall 128 cell x 128 cell memory

design. Through a clever organization of the

architecture we have managed to reduce the number

* of off-card connections to only 146 lines per card
(Table 2), thereby eliminating what has been a
major source of unreliability in other parallel

processors.

64 Processing Element Chip 64 Chip PC Card . -.

Pin List Connection List

Instruction 25 North Communication 16

Communication 8 South Communication 16

Quadrant Enable 4 East Communication 16

Comparand In 1 West Communication 16 J
Some/None Out 1 Column Select 16 , ' S

Read/Hold Count I Row Select 16

Shift/Wait Count 1 Instruction 25 0

Clock 2 Comparand In I
Power/Ground 2 Some/None Out I

Read/Hold Count I
Shift/Wait Count I
Board Count Latch I Figure 4

Board Count 13
Board Count Select 3
Clock 2
Power/G-ound 2

Total 45 Total 145

Table 1 Table 2
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3.2 THE PROCESSING ELEMENTS Figure 6 shows the basic micro-operations
performed by each cell, instructions are of the

Each processing element, or cell (Figure 5) is form: "select two sources, perform some function
a bit serial processor consisting of a bit serial on them, and store the result in some destination."
ALU, 128 bits of memory (M), local (and global) Instructions involving the 128 bit memory must use
interconnection hardware, and five single bit the same location for read-modify-write operations. -

registers:
It is interesting to note that this machine

-X The primary accumulator bit, which is has, in a very real sense, sixteen thousand
also used for comunications. separate parallel processors. As an SIMD machine,

- Y The second accumulator bit, it can readily simulate STARAN, ILLIAC-IV, or any -

- Z The carry bit, used for arithmetic of the rectangular array systolic machines proposed
operations, by Kung EKUN82]. While there will, of course, be a

- A The activity bit, used for enabling and loss in speed due to simulation, most of this loss
disabling this cell on any given is attributable to the bit serial nature of the
operation. arithmetic and logical operations. In most cases

- B The secondary activity bit, used as a this is more than compensated for by the greater
temporary storage for activity "flags". parallelism of our design.

Functional Diagram of One Processing Element 3.3 IMAGE PROCESSING ALGORITHMS

________________________________________ Table 3 lists 28 algorithms of differing
complexity which we have examined during the course
of our design of the CAAPP. This is by no means an
exhaustive list, however it does show the wide

Sm.I....variety of tasks that the CAAPP will support.
C ... I* I... Table 3 indicates, for each algorithm, whether or

not it makes use of intercell communications. the
some/none report mechanism, the response count

UA mechanism, broadcast data, and local cellular
x FVj-processing. Of course, all of the algorithms use

Ccb Ithe instruction broadcast mechanism.

A Algorithms Used During CAAPP Evaluation

Broad- Local Inlter-
ri Mcro cat m11 cell Boo reet .

Algt th Cded Dae AS Com. Mons Cont

Basic Iacro Operations
Response cout yea No No 110 M yes

bact orthan yen Ye yes No M No
Figure 5 Lesstt.han Yoe Ys Ya No No No

select greatest Ye No yes No Ye No a
Select least Yea No Ya NO yes "I

Processing Element Micro-Instruction Set seec firs Ye No Ye es e No
Subtract onsatant Yea Yea Yee No No No
Ad fields Yee NO Yea NO NO No
Subtract fields Ye No Yee No No No
mltiply constant Yea Yea yes No No No
Divide constant Yea yes Yea No No No
Mltiply fed e i YaM i M

C~...~C 1 5... C.,~. , , ,,. ~Divide fied Yea No Yea No No No

sinple Image Processing oerations
Casee If life Ya Yes Yea Yea No No

Sobte ede "trac Yea Yes Yea Ye Na No-

Conected components Ye Yes Yes Yeal Yea ft
It ,..mon- preters Mi Ye. Yes Yes Yo Yes

S S oter AVltcao Arasa
'-Centserof as Ye Ye. Yes Yes NO Yea

I , G. - t- veseoo~eu Ye a Ye s Ye. e Yea No
R- .1e aSqaeq idloo t No No Yes Yes Yes NO

a taMl ur LISP No Yes Yes NO Yes Mi
C. Neural netuati, No Yea Yes Yea Yes No

SoatiC nat-S. No Mi Ye Yes Yes yes Yes

Figure 6 Table 3
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What Table 3 actually points out is which of entities has specific attributes (such as area and
the algorithms use purely the associative aspect of extent for regions; length and orientation for
the processor. which algorithms use purely the segments). There are also specific relations
square grid aspect, and which algorithms use both between these entities (such as adjacencies between
aspects of the processor. Purely associative regions and edges). Associating this
algorithms are indicated in the Table by a "no" in representation with an image consists of the
the Intercell Communications column. For those following stages of processing:
algorithms with a "yes" in the Intercell
Communications column, if the corresponding entry
in both the Some/None column and the Fast Count 1) An image is loaded into the CAAPP. This
columns is "no", then the algorithm uses purely the involves some portion (18 bits assuming a 512x512 - - -
square grid aspect of the CAAPP. Those algorithms image) of the 128 bit memory of each CAAPP cell.
with a "yes" in the Intercell Communications column
and a "yes" in either or both of the Some/None and 2) Each cell has its coordinates in the CAAPP array
Fast Count columns use both the associative and the computed and stored in another 18 bit portion of
square grid aspects of the CAAPP. its 128 bit memory (required for a 512x512 image).

4.0 ICONIC TO SYMBOLIC PROCESSING 3) A segmentation procedure is applied. We have
experimented with simple segmentation schemes based
upon differences of Gaussian convolutions followed

A basic step in the functioning of autonomous, by thresholding to extract zero-crossings [MAR82]
general purpose vision systems is the association and histogram-guided segmentation techniques. Both ,
of symbolic descriptions with the results of of these procedures are very rapid in the CAAPP and
segmentation, region, and edge extraction can be made selectively sensitive to different
processes. Such a representation acts as a data ranges of contrast and spatial frequency
base which is accessed by recognition and grouping information. The segmentation results are stored
processes to determine the relations between in another portion of each CAAPP cell called the
different image structures. The extraction of such region property field. The size of the property
a representation has been characterized as the field depends on the segmentation technique. For
iconic (or image) to symbolic mapping problem and binary regions resulting from a single threshold
is a critical issue for evaluating proposed only I bit is required. For general segmentation
architectures for real time image processing. techniques, the requirements depend on the number

of labels associated with ranges of the defining
There are several examples of such spatially properties.

tagged, intermediate level symbolic
representations: the primal sketch of Marr 4) Points along the boundaries of regions are
[MAR82], the curvature primal sketch of Asada and determined. This is a local computation over the S
Brady EASA84, the RSV structure of the VISIONS neighborhood of a cell to determine if the values
system [HAN78ab], the patchery data structure of in its region property field are different than "
Ohta [OHT80], Haralick's [LAF82] topographic those in surrounding cells. At this stage local . .
classification of digital image intensity surfaces, edge connectivity and the number of adjacent -
and several others. These representations are regions at a point can be determined. The number .-. -.

organized to be accessed by various processes for of adjacent regions at a point is called the local
the recognition of world objects. Since world connectivity type. For a square pixel grid, the
knowledge and control strategies in vision systems local connectivity values can range from zero to .
are expressed in terms of symbolic, relational four.
structures, these representations act as a
necessary level of interface to the results of low 5) An Operator for extracting points of significant
level image operations, curvature is applied to the extracted boundary

points. This is a local computation over the
We have begun investigating iconic to symbolic immediate neighborhood of a boundary point and

processing on the CAAPP motivated by it's finds points along a contour of distinctive
combination of features from both associative curvature. These points are tagged as being •
processors and square grid array processors as vertices (the V of RSV) and will be treated as the
discussed above. This combination gives it the endpoints of boundary segments.
capability of turning raw images into symbolic
descriptions in the same memory locations where the 6) The vertices extracted in step 5 are then
segmentations from low level processes are stored, treated as seeds in a contour message passing
In this section we will present one example of the process. The message passing involves moving the . . -
many possible iconic to symbolic transformations of coordinates of each vertex along the boundaries
image data possible in the CAAPP. that intersect with it. This propagation continues - S

along a boundary until another interesting point is
The particular representation we have beer encountered. Collisions of these vertex labels at

developing is a version of the RSV representation the mid-points of segments are also tagged. Since
of the VISIONS image understanding system all the message passing is occurring in unison, the
[HAN78a,b] in which the basic entities are Regions number of steps is maintained as a global count and
(connected sets of pixels); Segments (portions of broadcast to the particular cells at which
the contours surrounding regions); and Vertices collisions have occurred. This is a measure of 5
(selected points along contours). Each of these contour length.
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7) After stage 6, each vertex point contains its We now discuss the details of the association

coordinates and those of adjacent vertices to which of these symbolic labels with the raw image in some

it is connected along some boundary. Additionally, detail and also discuss the relational processing

each tagged midpoint contains the coordinates of that can occur with respect to them in the CAAPP.

the endpoints of its associated segment. The
following things are then computed in parallel from 4.1 LOCAL EDGE AND VERTEX REPRESENTATION L

these coordinate values at the vertices and 6
midpoints: the distance between the endpoints, the Images are composed of pixels which are

slope of the line, the deviation of the midpoint separated by edge-links that meet at a point.
from the line determined by the two endpoints, and Associated with each CAAPP processor are the values
the difference between the number of steps and the at the corresponding pixel In the image, the point,
summed absolute difference of the components of the and the four edge links incident with the point

segment endpoints (these correspond to measures of (Figure 7). The redundant storage of local edge

the goodness of the linear fit). These values are link connectivity simplifies massage passing along
stored in unused cells near the extracted vertices, contours.
These cells are tagged as being either midpoint or

segment cells (the S in RSV).

8) Independent of the boundary processing in steps

5-7, a diffusion process is also applied over the
values in the region property fields to determine

connected components. The component labels are
determined from the coordinates of the cells in the
region. Collisions between adjacent cells having
the same values in the region property field are
resolved by letting the one with the least row,col
coordinate be the dominating label in the region Figure?
label field. The particular region cell having the

least row, col component is called the Region Cell

and is the CAAPP location where information about
the corresponding region is stored (The R in RSV).

9) We can then step sequentially through the D
extracted image structures using the Find First
Responder operation of the CAAPP. This operation
selects one of the cells that is currently

responding to an associative query, turning off all
of the other responders. This allows processing to 0
take place on that single cell without affecting
any of the other responders. The cell that is
selected is the one that would first be encountered The 128 bits in each CAAPP cell are initially

if the CAAPP array were to be scanned in normal decomposed into fields indicated in Table 4. Each
raster order. For example, we can proceed processor has its coordinates in the image array

sequentially through each of the region cells, stored with it. The coordinate grid is created in

extract the label of the corresponding region, the CAAPP processing array by a series of

broadcast it, find the responding region cells, and broadcasts from the controller using different

then compute simple region properties such as area, patterns of row and column enable signals, followed

perimeter length, minimum bounding rectangle, and by a series of response shifts using the on-chip
so forth for the corresponding region, These communication network. Loading the complete 512 by

region values are then stored at (or near) the 512 coordinate grid takes 12.7 microseconds. The

corresponding region cell. They can also be storage of these coordinates is ne-essary for

broadcast and then stored in locations associated computing geometric relations among sets of
with other image structures. This distributes the selected pixels and is a source of unique labels

information and makes parallel processing of for connected-components analysis by having the

relational queries possible. This can be done for label associated with a region be the coordinates

each region or only regions having certain of its upper-most, left-most pixel. Note that the
required number of bits for this attribute are aproperties such as particular size, shape, or image fuion of ize The awtimage ale aposition, function of image size. The raw image values"-'".correspond to the actual image which is being

This processing results in attribute lists for operated upon. Again, fewer bits than 18 can be

particular regions, segments, vertices, and labels used, or the raw image can be removed from storage
associated with interior region and boundary once a segmentation has been obtained and
points. The global broadcast and associative processing is restricted to it. The property field

properties of the CAAPP then allow us to make corresponds to the value upon which the
queries to select particular image structures, to segmentation is performed, such as the response totag them. and then determine relations between some texture measure or the domain of some
tathem, adtndehistogram. The region label field is used for the

connected components analysis and must be of the

same dimension as the coordinates of the image.
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Experience has shown that global histograms are

ineffective in images with complex information. We

FIELD BITS have not explored all the requirements for

computing localized histograms and their subsequent

pixel location (rowcol coordinates) 18 remerging in the CAAPP, nor the inherently

raw image value (6 bit RG,B) 18 sequential process of recursive resegmentation.

region property 18 Both of these approaches should be significantly

region label 18 enhanced by incorporating an array of localized

local connectivity 4 controllers in the CAAPP design.

R, S. V or Midpoint 2

working area 50 For the initial experiments described here, we -

have used the segmentations which result from

Table thresholding the difference of Gaussians. Such

segmentations are binary images and allow for 0

simple storage of boundaries since there are only

The working area is used in several different two types of regions (greater or less than the zero

ways. Forkinxample. osuse ipleentain dffentr threshold). For such binary segmentations, there
ways. For example, our implementation of contour-

message passing requires 44 bits (8 for storing are no type 1 or 3 connectivities and those of type

local edge connectivity traversals and 36 for two 4 can be removed by removing region labels around
l o c a ed e c n n e t i v ty r a v e s al a n 3 6 f o r t w o t y p e 4 c o n n e c t i v i t y c e l l s . T h u s , i t i s p o s s i b l e t o

sets of pixel coordinates). The interest operator, type scnetivity rces T it is p e to

depending upon resolution and the number of have single boundaries with only type 2

iterations, can require from 24 to 48 bits. connectivities. The modifications for other types
iteatons cn equre fro 2 t 48 bis, of segmentations require redundant storage for

Several of the queries require multiple tag bits to of adjcntreions q e e atsiolges o

be set in particular combinations. 
Note that all boundaries of adjacent regions. This involves no

these fields are not needed simultaneously. Many new processes in our procedures, but does require

are dependent upon the segmentation being performed the allocation of additional storage in CAAPP

ar eed memory cells so that the boundary of each region is

and need not be used for anything until the uniquely represented. A simple technique for this

segmentation has been obtained. The contour is to remove the outermost pixels from each region

message passing occurs after the interesting points to give each region a unique boundary of type 2

have been extracted. However it is obvious that connectivity only. The type 2,3, and 1 vertices

larger image memory is needed in more complex between these boundaries are then used to store

processing, if memory swapping between host and the region adjacency information. This does, however, ,..

CAAPP array is to be avoided, destroy regions of single pixel widths.

4.2 SEGMENTATION There are three basic steps in Zero-crossing

P extraction using a difference of Gaussians•

As mentioned previously, we have explored two 1) Convolve with Gaussians of different widths and

types of segmentation procedures on the CAAPP: store results separately

Histogram Guided Segmentation and Zero-crossing

extraction using DOGs (Difference of Gaussians). 2) Subtract Results

Histogram based segmentation [OHL75, OHL18, 3) Threshold at zero to yield contour and binary

NAG79, NAG82, KOH83, REY81 on the CAAPP involves regions
to associate with the different ranges in the

friahistogram , deeuo teinin whalegion lael
upon its peaks and valleys, and This is performed on the CAAPP by taking

then broadcasting the determined labels for the advantage of the fact that for Gaussians and other

particular ranges of pixel values. Forming the smoothing operations, convolutions with large masks

histogram uses the Select Less Than and Count

Responders micro sub-routines to select ranges of smaller masks. Thus, processing involves
values (buckets) starting with the lowest range and convolving an image with a mask some number of
working up to the highest range. For example, if times and storing the result, and then continuing

the range of each bucket is taken to be the maximum the convolution further and subtracting the result

range divided by the number of buckets, then the the ion r theruand subtracting the reslt

tiefor the algorithlm is dominated by the time to from the one previously stored. Among the masks

perform the count responders operation for each that could be used are those in Table 5.

bucket. The time is: (Number of Buckets) * 1.6 + On the CAAPP convolution is a "macro" level

0.9 microseconds; A 256 bucket 8-bit histogram oper
would take 410.5 microseconds. The histogram isationoprogrammed in terms of 

the basic "micro"

collected in the central control which collects the CMPP operations. A discrete, two dimensional,

counts for each bucket. The resulting histogram is convolution is based on a mask of multipliers that

a global histogram for the whole image. Labeling each cell applies to its local neighborhood,

the histogram takes place off the CAAPP in the host forming the sum of the pairwise products of the

cell's neighbors with their corresponding mask
proressor, values. Typically the sum is then scaled in some
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Uniform Weighting Burt's Kernel

1 1 1 .0025 .0125 .02 .0125 .0025
1 1 1 .0125 .0625 .1 .0625 .0125 -. _

1 1 1 .02 .1 .16 .1 .02 _
.0125 .0625 .1 .0625 .0125
.0025 .0125 .02 .0125 .0025

Table 5 I _____ _ . -. I

manner, and the resulting value is used to update _ _
the value in the cell. The algorithm for the .
convolution can be described as the actions of a,. - -
single cell with the understanding that each action J 1 -

is performed simultaneously by all of the cells. " ....

For the CAAPP each cell distributes its own . .-

data to every cell in the neighborhood. Because I " .....
every other cell is also doing this, the end result
is that the central cell (and hence all cells) gets
the data it needs from all of the cells In the
neighborhood. The data distribution path is a Figure 8
rectangular spiral out from the center cell. It
should be noted that the time required to perform a
convolution using the CAAPP is independent of the_ _ _ _1

size of the image (assuming the image is no larger
than the array) and only dependent upon the area of '-.
the convolution mask. Since the CAAPP does .

cell-level arithmetic bit-serially, the size of the ~t
data values also affects the speed of the IT
algorithm.

A worst case estimate of the time required for '" '
such convolutions can be obtained from the formula:

T = P*(O.8 * N+0.2 * M+0.1) + -I
0.3 M (N*a2 * P+N+I) l k" A:

where T is the time in microseconds, N is the LAW
number of bits in a pixel value, M is the number of
bits In a mask value and P is the number of pixels
In the mask area. Under normal circumstances T
will be about half of the value obtained from the
formula. For 8 bit pixel values, this would give
times of:

Mask Size Time (milliseconds) Figure 9

3 x 3 0.7 4.3 LOCAL EDGE AND VERTEX PROCESSING 0
5 x 5 2.1
7 x7 4.0
11 x 11 9.9 The next stage of processing determines which - . -

pixels are adjacent to boundaries and what the - -
local edge connectivity is. This operation is

As an example, the binary segmentation based upon the simple comparisons in the following
resulting from the difference between the image in four steps applied to all cells (described with
Figure 8 with the smoothed image derived from it respect to local connectivity of cell A in Figure
after eight successive convolutions with Burt's 10);
kernel [BUR82] is shown In Figure 9.
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SURVEY OF ARRAY PROCESSORS 0

Hong Seh Lion & Thomas 0. Binford

Artificial Intelligence Laboratory, Computer Science Department,

Stanford University, Stanford, CA 94305, USA.

ABSTRACT

because of lack of software development tools and because ofA preliminary survey was conducted on commercially

available array processors. Array processors from each major hardware particularities of array processors. Software

manufacturer were chosen for comparison. The computation environments are a key issue in selection. We hope to provide

more guidance based on our experience with programming one orpowers of these machines range from one mega floating point

more machines in later versions of this document.
operation per second (Mflop) to a hundred Mffops. Prices range
from a few thousand dollars for a single board device to a quarter We have not considered 64 bit floating point operations.

million dollars for a 100 Ml lops machine. A comparison of price, They are important for many applications but not for vision, in our 6
performance, hardware architecture, software availability and

opinion.
input/output interface are summarized. Users' comments on most

of the machines are included. Mainframes and microcomputers are general purpose

machines designed to perform general purpose tasks. Array

INTRODUCTION processors, on the other hand, are designed to handle massive,

complex and repetitive calculations. The essence of array
High porformance array processors are designed to attach processors is streamlining - breaking the operation into small

to a general purpose host computer, The combination of a host
steps, conducting simultaneous opei ations.

computer and an array processor can sometimes provide cost
effective sciontif;c computations. For a minicomputer or a Synchronous, parallel, pipelined architecture is the -

superminicomputor host, processing speeds common only in the mainstream design of array processors. The best representatives •

worid of Cray anid Cyber machines can sometimes be achieved, of the genre are 32-bit machines that perform full floating point

Although thi: performance is restricted to repetitive arithmetic calculations, though the Floating Point Systems, which accounts -". -

functions the array processors come at prices much less than for 70% of the array processors' market, uses a 38-bit

those of general purpose computers. configuration as its standard. Most array processors are designed

to optimize processing speed for tile FFT, which is the most
In evaluating array procesors, two considerations are popular application using array processors. Some manufacturers

important. First. quoted performance is usually exaggerated and choose to use fixed/block floating point processors to gain extra

achievable only for special computations, typically the fast fourier processing speed. " ' o "-

transform (FrT) Quoted operations are not multiply adds, but

multiplies plus adds For the FFT, there are two adds per multiply. Most array processois are designed to work independently _ 9
Thus 15 Mflops means 5 million multiplies for a machine targeted from the host once the program and data are down loaded, thus

for the FFT, with one multiplier and two adders. Such a machine freeing the host for other purposes. Format conversion of data is

would reach only t0 Mflops for convolution. Second, generally implemented on the host interface board. ST 100

programming array processors requires typically one or two chooses to do the format conversion internally so as to maintain -.

orders of magnitude more time than general purpose computers its IOOM byte/sec input/output data transfer rate. 0
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Most of the array processors come with a high level To provide for very high memory bandwidth, two features of

programming language which is compatible with Fortran 77. concurrency were introduced in ST-100 memory. The first feature

These high level languages incur certain inefficiency, perhaps a is a very wide access path and the second is a highly interleaved

factor of two over assembly code. They usually include a library of memory. These give an aggregate data rate of up to 100M 0

pre-coded macros to facilitate process development anJ provide a byte/second.

macro assembly language for users desiring to code their own -..

macros. Added to these, are simulation and debugger facilities for Another significant feature of ST-100 is that it can attach to

macro and process debugging, plus a host computer interface and service multiple host computers concurrently. This is made

which allows transportation of the array processor from one host possible by its production software which allows concurrent

computer to another without reprogramming, staging and execution of processes, enabling subsequent

processors to be loaded and readied for execution while the

Different application software packages are available for current process executes. Its input/output subsystem is

each machine. Most of them include standard mathematics, expandable to include independent input/output processors for

signal processing, image processing, geophysical processing and each host system. Its maintenance software provides off-line and

simulation libraries, remote diagnostic capability.

STAR TECHNOLOGIES INC. The ST-100 software system consists of three major

segments. The Development Software System is a set of Fortran

ST-100 is an array processor from Star Technologies Inc.. It programs residing in the host. It provides the ability to separately

uses synchronous, parallel, pipelined architecture. Its program all elements of the ST-100, allowing multiple levels of

architecture employs multiple processors and a hierarchical high program optimization. These programs can be used to create

capacity data memory system. Bipolar VLSI circuits are used as application library modules. The simulator supports both the

the building blocks. The machine cycle is 40 ns; it can achieve up Fortran and micro code levels simulations while the debugger

to 100 Mflops, which is the fastest comparable machine on the debugs micro codes only. The Production Software System . .

market and almost twice the speed of the second fastest machine couples the array processor to the host application program. It

in this survey. manages the allocation of array processor resources and directs

requests from the user's application program to the control
Its multiple processors design results in a more general processor. It also schedules and controls requests from both

purpose computer code executing in a control processor, which multiple users and multiple hosts. In addition ST-t00 provides a

consists of two Motorola 68000 microprocessors, and specialized Maintenance Software System which includes a set of fault . S
microprocessor code which executes the special purpose identification and isolation routines for diagnostic purposes.

processors. It has an MIMD (multiple instruction, multiple data)

architecture Its multilevel program structure and the hierarchical The VAST software tool (the Vector and Array Syntax

memory structure enable efficient usage of both host computer Translator) is designed to analyze DO loops in standard Fortran

and array processor resources. They allow the array processor to programs and convert those loops for which vectorization is

perform a hierarchy of concurrent arithmetic and data movement possible into array operations. VAST creates a listing of the input " "

operations independently without the need for host computer program with diagnostic comments added to tell the user which

intervention, loops are not vectorized and why. It also creates an enhanced

version of the input program which includes ST-100 processes in

Within the arithmetic processor, there are two add/subtract place of ie vectorized loops. Thus, the source remains

units, two multiply units and a divide/square root unit. rhe adders transportable and readable. Conversion and debugging efforts

and multipliers are three-step pipelines, with each step executing are much reduced and made easier. The gap between the optimal

at the clock rate of 40 ns. The divide/square root section is non- efficiency of hand-coded operations, and total transportability and

pipelined and requires 13 clock periods to compute. When the maintainability of standard Fortran on the host system is filled.

adders and multipliers are all in full operation, for example in

convolution, the machine can operate at 100 Mflops. Star Technology has made large OEM sales with CDC and
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GE. It appears to be a stable company. The FPS-5000 series is the most recent series of array

processors introduced by the Floating Point Systems. It consists
Basic Configurations of the product groups - 5100, 5200, 5300 and 5400 with peak

Base Price : $250,000 (512K word memory, host performance that ranges from 8 Mflops to 62 Mflops.
interface, development software
and standard library)

Additional Memory $51,200/512K word The family utilizes independent floating.point processing
Additional Host Interface $10.000 units, called Arithmetic Coprocessors. Data flow is simultaneously -. -
Additional Host Software $12,500
Unix interface will be available four months managed by a combination of independent Input/Output
after receiving any order. Processors and a central Control Processor. Arithmetic "

Users' comments: Coprocessors can be added as field-installable upgrades. •

The Fortran modules provided are easy to program. The internal structure of !he Arithmetic Coprocessor is
However, setting up a module requires several hundred cycles, optimized for execution of the FFT, by virtue of the double memory

therefore it is only worthwhile to call these modules if the vector is access cycles. Special butterfly addressing hardware directs

of several thousand elements. That is, to fully utilize the machine, memory access during an FFT, in addition to simultaneous 0
the problem to be solved must vectorize very well. As an pipelined operations of the multiplier and two adders. The

alternative, one can use macro programming. Arithmetic Coprocessor architecture includes internal memory,

ALU, DMA communication and diagnostic elements. Using these
It is more tedious to program ST-100 as compare to other parallel control and data path structures, 18 Mflops maximum

array processors. One has to keep track of how the data performance can be achieved with an instruction cycle time of 167
arranged in the cache memory and there are two separate ns. A maximum of three Arithmetic Coprocessors can be added to

processors to be considered, the Arithmetic Control Processor the FPS-5430 model. Adding the eight Mtlops computation power .-

and the Storage Move Processor. Typical speed is 25 Mflops if the from the Control Processor, a peak performance of 62 Mflops can

problem being solved has only one DO loop. The bottle neck be attained. However, data transfer between coprocessors must
which one user experienced is at the interface between the cache take place through the System Common Memory. Different data

memor and thrhe arihmei secttem Somnon thery cacheen memor only
memory and the arithmetic section. Since the cache memory only formats are used for the Arithmetic Coprocessor and the Control
allow two reads and one write per cycle, in some applications, only Processor. Thus efficiency and accuracy are reduced under

one out of four of the arithmetic units can be running at each some applications. """" .-

cycle. Also, if the host is a VAX, one may anticipate another bottle

neck at the 1M byte interface between the host and the ST-100. A Multiple Array Execution Language (MAXL) is provided for

program development. It is a multiple processors control
The manuals are good and extensive. They cover fine language that is a subset of Fortran 77 and it generates code for

details and aim at audience with no previous knowledge on array both Control Processor and the Arithmetic Coprocessor. AP-
processors. Software simulation package can be run on host FORTRAN is another option that provides the capability of . ..-

machine for software development. One test program on developing array processor routines using standard Fortran IV

simulation of equations of motion indicates the speed ratio among statements. AP-FORTRAN only executes on the Control •
ST-100 : MARS-432 : FPS-120B is 14 : 57 : 96. The multi users Processor. Also available for program development are the

facilities is only available at the later version and it works on one assembler, simulator, linker, loader and debugger packages. .-. "..-

job at a time instead of time-sharing between jobs. The debugger
is not available yet. STAR offers good services and responses A programmable bit-slice interface processor (GPIOP)
quickly. They are very conscienctious and helpful to problems provides real time input/output applications. It can be

encounter by users. The users are in general very pleased with programmed to interact with both the control requirements and

the machine. the data transfer protocols of most peripheral devices.

FLOATING POINT SYSTEMS The FPS-5000 series maintains software compatibility with
previous FPS 38-bit processors, and is supported on a wide range S
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of host computers. Thus, the software support developed for NUMERIX CORPORATION

FPS-100 and FPS-120B pruducts is maintained and users are able

to move existing applications on FPS. 120B and FPS-I00 onto the The MARS-432 array processor is the newest addition to the

FPS-5000. The Floating Point Systems offers by far the most product line of Numerix Corporation. The key elements of its 0

complete software libraries. This includes Standard and architecture are the Interface Processor(IP), the Data

Advanced Mathematics, Signal, Image and Geophysical Processor(DP), and a 32-bit wide Data Bus(DBUS).

Processing and Simulation libraries.
The IP controls the transfer of information on the 20M

The FPS-100 has been replaced by model FPS-5105. The byte/sec DBUS. This bus is used to interface both programs and

FPS-120B is the most popular array processor on the market. It data to the DP. Data memory(DM) and Program Memory(PM) are

has been replaced by model FPS-5205. included as part of the computational processor, the OP. This

Basic Conf igurat ions implementation feature allows additional speed to be obtained in

arithmetic processing. If necessary, a data path between the two

Base Price : $99.000 (4K word program memory,
(FPS-5430) 256K System Common Memory, host does exist, thereby allowing the DM to be used as a bulk storage

interface and development area for large program memory.
software)

Additional Program Memory $4,goo/128K byte

Additional Data Memory : $7,800/256K word The primary arithmetic elements are a multiplier and two
Software Library -$1,000 each

Unix interface is available from outside source. ALUs. Again, this is optimized for the execution of the FFT. All

It is not support by FPS. units may execute in parallel and all are interconnected with

Users' comments: multiple data paths. Each of these elements is commanded

independently and may initiate an operation every 100 ns. This

Input/output is fast through the GPIOP but it is linearly produces an arithmetic execution rate of 30 Mflops. Its

addressing. The maximum memory is 1M word with page format throughput rates for vector add and vector multiply are higher

which cannot be crossed. FPS-5205 is more cost effective than than the FPS-5430 because of this shorter cycle time.

FPS-120B since it provides 256K memory at less than half the 0

price. Cares have to be taken for the format conversion between The Fortran Development System provides high-level . -

. host, control processor and arithmetic coprocessor (32-bit to 38- language access to MAR-432. It consists of a Fortran compiler,

bit). One user complains that FPS-t2OB had a hardware problem linker and trace/monitor. The off-line development package

where the back panels do not align properly and thus contacts are includes the macroassembler, Loom and microcode debugger.

loose. Another user comments that the hardware is stable, but The Loom is an utility that provides automatic microcode

* large amount of heat is produced and an air-conditioning room is optimization. It automates the writing of pipelined code at the

a must. A user of the FPS. 100 tried to split old program to run half assembly language level and eliminates the need to hand code -: - - -

- on FPS-5205 control processor and half on the arithmetic pipelined instructions. User interface to the MARS432 at run time

processor, and he obtained twice the speed. FPS runs Fortran on is taken care by AREX. AREX's transactions includes array

the host and calls the array processor by subroutine calls and this processor initialization, input/output operation, and array function

causes a lot of overhead. execution, MARS-432 offers application libraries for mathematic,

signal processing, and geophysical processing.

Extensive manual is provided. Software subroutines are Configurations

useful and complete. The control processor runs on all . . "
Base Price $120,000 (tM word memory, host

subroutines from FPS-120B or FPS-100 model, but the arithmetic interface, Fortran compiler .

coprocessor only runs on a subset of the subroutines. One user fortran development system and - .

said that FPS's debugger is useless and provide no information. Additional Memory : $22,000/Mword
Thesevic fom PSisgoe ad teyresone uiclyto ses' Extended Maths library : $5,000 (includes image I -. '

The service from FPS is good and they response quickly to users' processing routines)

problems. In general, the users interviewed are happy with the Unix interface will be available if Numerix

machines. gets an order for it.

machnes - ,9mment s:
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The Array Processor Run time Executivo(AREX) starts up written in Fortran In addition it includes several commands for

slow, a long data stream has to be fed in to get a worthwhile run. executing a pair of function lists in parallel. The function lists may

The speed of the machine is ten times faster than FPS 120B when contain identical functions so that both APUs can perform the

the whole program is downloaded into the machine. The machine same task on two separate blocks of data at the same time.

has a large memory size and good integration of A/D and D/A Because tasks are carried out in parallel, it is necessary to assure

interfaces but the input/output is slow. Its Fortran 77 compiler synchronization between processors. MAP uses a data driven

has some bugs and is not fully developed yet, but they can be get hardware structure with queues internal to the processors to - .

around, eliminate the need for concern with internal synchronization. "" 
" 

- """

MARS-432's manuals are primitive but total, new manuals For those applications requiring direct analog input or

are coming out every couple months. The software library is not output, MAP provides modules which handle such data in parallel

as fully developed as FPS- 120B but it is extremely useful. It is easy with concurrent arithmetic. It also provides modules which allow

to program the machine. After service is good, Numerix can use direct access to and from disk and bulk memory storage device.

modem to debug the machine without coming to the site. A good Input and output buffers for the two units may reside on the same

3 weeks training course is offered to teach the users how to figure memory bus; however, the work buffers must be defined on

out the configuration according to the users' needs. One user got separate buses to approach a doubling in processing speed.

the machine for 6 months and the down time is more than the up Basic Configurations

time The other two users interviewed are in general happy with Base Price :54.850 (32K program

the machine, memory)
Additional Data Memory $19,500/256K byte
Add itiovaI Program Memory $4,000/4K word

CSPI tlirdware Interface $3.500
Software System: $3,500 (Executive and

Standard Library)
The MAP.400 is the newest member in the MAP's family of

MiniMAP is another fully programmable, 32-bit floating
32 bit floating point array processors. The MAP's family uses a

point array processor from CSPI. It interfaces with DEC
multiprocessor, three buses memory architecture to achieve high c

computers. The basic system consists of 4 hex boards that plug -

speed and high throughput. Its execution is divided among directly into the Unibus.

several specialized processors which operate in parallel. Though

pipelined architecture is not implemented, its peifurmance is One of the major overheads of array processing is passing

comparable to machines of the same category and it better fits a data and commands between the host and the array processor. . -

certain kind of algorithm which is inefficient with pipelined Mini-MAP's memory is designed to share memory with the host. S

architectures. Thus, the host CPU can process and move data in the Mini-MAP

memory in the same way it uses its own Unibus memory. In effect,
MAP.400 provides a choice of memory speeds (170 ns, 300 shared memory makes Mini-MAP a coprocessor.

ns. 500 ns). Its capability can be added to an existing MAP-300

system. The hardware system contains two MAP-300 Arithmetic The cycle of the machine is 125 ns. Each addition requires

Processing Units (APU). MAP's multi-bus memory structure two cycles and each multiplication requires three cycles. It has a

provides parallel data transfer for the APUs during calculation peak performance of seven Mflops and a benchmark testing of 7.8

without interference. The data work buffers for the separate APUs ms for 1024 points complex FFT. It has no local program memory.

may be configured by the user on separate memory buses thereby

enabling both arithmetic units to run in parallel at full 12 Mflops. The Host Support Library is an extension to user's Fortran

runtime library that is used for controlling Mini-MAP programs

The MAP.400 software system is an extension of the from a host Fortran program. Application program can be

MAP 200/300 system, consisting of all operational, utility, and developed by MAP Control Language which is a Fortran subset

diagnostic software. The Operating System software consists of a language. A set of utility programs consisting of an assembler,

set of programs which enables the user to call the supplied library compiler, linker, debugger and board level diagnostics is also

subroutines. The caling programs, executed in the host, are 0
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provided, buffer size. Input/Output speed is slow and is only one third that

of FPS-5205. It take tIp little physical space and consumes much
Bas i c onf i gurat i on less power than FPS- 5205.

Base Price $26,000 (f4K byte memory)
AThe software is immature, but it is being frequently updated.

All the routines have to be preloaded before they are called. It is

ANA LOGIC CORPORATION easy to program despite the fact that the high level language is not ' - . -

in Fortran and there is no Fortran Complier. Service contract is -.. -

Analogic's latest array processor is the AP-500. Its recommended in the west coast since Analogic does not have

architecture combines a Motorola MC68000 based control much service personnel out there. 0
processor with an internal 40-bit full floating point pipelined

arithmetic logical unit This provides better precision than the MERCURY COMPUTER SYSTEM

other 32-bit or 33-bit processors. Externally, it conforms with DEC

32-bit full floating point format. Mercury Computer Systems offers two array processors, the

ZIP-3216 which performs 16-bit and 32-bit fixed point or block

The pipelined ALU consists of an Arithmetic Pipeline, an floating point operations, and the ZIP-3232 which will do 7 Mflops

Address Generator and a Pipeline Sequencer. These three full floating point when available in first quarter 1985. The

elements operate in parallel with the Control Processor and ZIP-3216 is the only machine in this survey which uses block

Input/Output, and fully utilize the AP Data memory bandwidth. floating point format. It is an interesting machine because of its

Upon entry to the Arithmetic Pipeline, data are stored in the cost and much of the vision works can use 16-bit computations.

Pipeline Register Files (PRFs). Depending upon the algorithm,
The dual processors operate concurrently and are

data can be moved between PRFs along the Bypass and
automatically synchronized in hardware. The AMD 29116 basedFeedback Paths of the Multiplier and adder. Flhus, data may "'' "

Control Processor controls data flows. It delivers and extracts data
contirnually circulate within the Pipe•ine until final results are

computed. This eliminates the need for time consuming of virtually any format to and from the Arithmetic Pipeline.

"Pipeline/Data Memory" data exchanges.
Within the ZIP architecture, the Arithmetic Pipeline, which is

AP-500 offers modular subroutines instead of the more a single board, is independent of all other system components. It • " " "
consists of a mL~ltiplier and a full ALU which provides a processing i'° " '

common Fortran compiler for the users. These subroutines are

optimized to take full advantage of the AP-500's architecture, rate of 20 million computations per second in the 16 bit mode and

Applications can be programmed in Host or AP 500-resident High- 5 ilbon compufaticn per second in the 32-bit mode.

Level or Assembly Languages- The AP Executive is available in
ZIP-3216 utilizes C-like instruction language. ZIP/C, which - -

single or multi-tasking versions. It manages internal AP-500
is augmented with special functions to control functional

activities and resources to unburden and offIload the host.
hardware. One of the characteristcs of the language is the writing

Bas i c Cenfiilt iao of arithmetic instructions. Output results can be directed to the
Base Price $35,000 (0.5M word memory, host FIFO and/or any of the accumulators. The compiler supports

interface development software
and standard library) several product terms in the algebraic equation and the

$47.000 (1.01M word memory, host assignment of symbolic names to any variable. The ZIP/C
interface development software

and standard library) compiler is able to distinguish between Control Processor and
Assembler software : $1.500
No Unix iiiterface is available. Arithmetic Pipeline codes contextually. 1t1e outputs are linked

appropriately to create an application task file.Users' comments:"

The ZIP Simulator/Debugger provid.:: timing analysis of "" -
It has a large memory of 0.5M word, twice that of standard

individual algorithm indepenidently of the 1IP haidware. Its
FPS-5205. Data in memory can be accessed readily through the

buffer and no paging is required. The user can create his own d
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defined elements of the ZIP. The user can display any component separated Program and Data Memories allows for parallel fetch

of ZIP. Multiple components can be simultaneously displayed and and execution cycles. Utilizing two buses allows parallel

user-created display formats can be saved and recalled. The operations such as inputing data in the ALU and loading the

Simulator/Debugger allows ZIP programs to be single stepped, multipier from the Data Memory. Its single board design actually -

run until a user.ipecified condition is true, or run to completion. cuts processing time by minimizing physical connection distance.

In addition trace files can be generated. To determine algorithm

execution speed, the Simulation/Debugger generates timing Data Memory is organized as 24-bit words internal to the

statistics as well as utilization efficiencies for different machine. When 32-bit floating point data are moved from host

components. The users can also simulate clock interrupts and memory, the lower 8 bits are dropped. In the reverse direction, 8

Dual Direct Access Channel input/output data flow, bits of zero are appended to the 24-bit memory word.

The algorithm library includes input/output and arithmetic The APB-3000 is fully programmable and is available with an

functions for signal, mage/graphic and scientific processing. optional set of microcode development software. Marinco's

The functions can be called within the user's host computer hierarchical assembler(HIASM) enables microprogramming in a

program or within the ZIP-3216 program. high-level language. Marinco's microassembler (MARASM)

Basic Configuration processes output from HIASM or direct user code, and produces

an object code. Marinco's APB monitor/debugger enables hostBase Price : $8,000 (t28K byte program)

Additional Memory : $3,000/512K byte based debugging of programs developed using HIASM or

Software $2,000 (t)evelopment tools and MARASM. It provides direct access to all APB.3000's registers,
run time software)

Software Library $2,000-5,000 each Data Memory, and Program Memory.
Unix interface is available

Users' comments: The operating microcode is available on flexible diskettes

The Multibus version was first delivered in July, and the for use when the board is supplied with RAM for program memory.

users we talked to only have the machine for a few weeks. They It can be supplied with PROMs containing the necessary

do not have any hardware problem yet. The simulation package microcode to perform operations such as digital filtering and FFT.

for program development is nice and easy to work with. The Basic- Configurations

second and third drafts of the manuals are fairly complete. The Base Price $4,250

manuals are getting to the point where they are usable. Some Assembler $2,500

cosmetic and prettying up of the manuals are desirable. Users' rn""'"i.

MARINCO COMPUTER PRODUCT The storage and retrieval of data require 1 ms. This result is 0

100% overhead when doing floating point operations. The

The Marinco APB-3000 is a single board array processor. machine only supports addition and multiplication. The floating

Its architecture allows a direct plug-in compatibility to the IEEE point format used is not of IEEE standard and its 24 bits

Multibus and is configurable to fit a 64k byte segment of memory. representation causes reduction in precision. It has a small size

The APB-300 actually looks like a random access memory (RAM) program memory of 4K words. One of the user has troubles in

board to the host processor and a high speed auxiliary BUS may reading the software tape and the board did not work properly

be utilized for data transfer It uses 24-bit full floating point and when put on the Multibus on the SUN work station. Another user . - -

16 bit integer arithmetic. This makes it less attractive than other took one and a half month to figure out some hardware problem . -

machines. during first installation.

The APB 300 machine uses a parallel 16-bit AMD29516 There is no software support, and standard subroutine like

multiplier and a 16 bit microprocessor ba:.ed AMD29116 ALU. It multiplication between matrix and vector has to be programmed ... " " "

executes instructions in 125 ns and is capable of up to 8 million by the user. Documentation is definitely not enough though

integer or 1 million floating point operations per second. Its readable. One user commented that he could only figure his way %

out by making some correct guesses from the manual. Marinco
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has promised more documentatiors. Microcoding the machine is Most of the machines use 32-bit floating point

easy. Marinco provides some good service and deals with representation, however, few of them conform to IEEE floating

problems immediately. point standard. Few of the manufacturers support the VAX-Unix

i system at present. However it is likely that most of them will

provide full Unix support in the near future as Unix operating

system is becoming more popular.
Sky Micro Number Krunchers (SKYMNK) is a full 32-bit

floating point array processor designed for use with 16-bit Though the maximum speed in Mflop is a good indication of

,microcomputer systems. These array processors are easy to use the performance of a machine, we have to remember that for most

as plug-in modules. SKYMNK is a pipelined, parallel coprocessor, algorithms this maximum speed cannot be reached. Some array •

which operates internally at speed of up to one Mflops. Its quoted processors try to boost their peak performance by providing more

speed is hard to achieve in reality since it has no local memory. A multiplier and adder units. This increase in speed is partly offset

floating point operation must transfer two 32 bit operands, or four by the communication time required between computational units.

16 bit words at about 4 microseconds minimum. Designed as a Finally, the ease of programming is another important factor to be

tightly-coupled coprocessor. the SKYMNK operates directly on considered. This usually can only be learned through actual 0
data residing anywhere in host memory . Thus, separate Fortran experience with the machines.

calls which transfer data to and from the array processor are not

necessary. Also, its DMA architecture eliminates the need for a ACKNOWLEDGEMENTS

costly additional memory. Overlap of DMA input/output with

processing is automatic and user transparent while maximizing This work was supported by the Defense Advanced

output. Research Projects Agency under Contract Number N00039-
84-C-0211.

Each SKYMNK is supplied with software support including FURTHER INFORMATION

inline driver, subroutine library, software simulator, and test

diagnostic. The subroutine library contains routines for vector Star Technologies, Inc. (503-227-2052)
1200 Benjamin Franklin Plaza, One S.W. Columbia

mathematic and signal processing. They can be called from either Portl and OR 97258.

Fortran or Macro user program. The software simulator allows Floating Point Systems, Inc. (503-641-3151) " 
"  

-

users to develop code for the SKYMNK without hardware actually P.O.Box 23489, Portland OR 97223.

installed. Numerix Corp. (617-964-2500)

Basic Configurations 320 Needham Street, Newton MA 02161.

Base Price $5,990 CSPI (617-272-6020) 0
Software $I,200 (Simulator, diagnostic and 40 Linnell Circle, Billerica MA 01821.

documentation)

$4,000 (Assembly language source Analogic Corporation (617-246-0300)

code) Audubon Road, Wakefield MA 01880.

Mercury Computer System Inc. (617-458-3100)

CONCLUSION Wannalancit Technology Center, 600 Suffolk StreetCONCLSIONLowell MA 01854.

Marinco Computer Product (619-453-5203)
ST 100 from Star Technologies is by far the fastest array 11760 Sorrento Valley Road, San Diego CA 92121.

processor in this study. The FPS-5000 series from the Floating
Sky Computer, Inc. (617-454-6200)

Point Systems has the most software support because of its P.O.Box 8008, Lowell MA 01852.

compatibility with previous models. The highest 5
price/performance ratios are offered by ZIP 3216 from Mercury

and FPS 5430 from the Floating Point Systems. It is likely that the

introduction of ZIP 3232 will lower the price/performance ratio

further.
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Table of Comparison

ST100 FPS5430 MARS432 MAP400 AP500 ZIP3216 AP133000 SKY fPS1OO IPS1208

* Configurations

Base Price(l) 250000 99000 120000 55000 35000 8000 4250 5990 45000 550000
(dollar)
Max. Speed 100 62 30 24 9.4 5 1 1 8 12
(Mf lops)
Price/Speed 2500 1600 4000 2300 3700 1600 4250 5990 5600 4600
Ratio
float Point Full Full Full Full Full Block Full Full Full Full
Format
Number of 32 38(2) 32 32 40 32 24 32 38(2) 38(2)0
bits
Integer 32 28(2) 32 32 32 32 16 - 28(2) 28(2)
fo rmnat
Max. Program 256k 128k 16k 224k 128k 10k 12k host 32k 64k
Memory (byte)
Max. Data 8M4 512k 512k 312k 912k 16M 16k host 64k 512k
Memory (word)

Hardware

Machine cycle 40 167 100 200 125 200 125 143 250 167
( s)
1/0Ochannel 100 12 20 36 25 20 20 4 8 12
(Mbyte/sec)

A rithmetic Unit

Adder/Subtract 2 7 2 4 1 1 1 1 1 1
Lin i t
Multiplier 2 4 1 4 1 1 1 1 1 1
L1n1it
Adder Cycle 3 5 5 1(3) 1(4) 1 - - 2 2

Multiplier 3 5 5 2(3) 2(4) 1 - - 3 3
Cycle

Software

*II igh level F01 OiAl I RA OIITIAN FOIIlAM 10111 1AN Yes C F01l1]11AN 10111 1AM 10111 11AM FORTRAN
l anguage
Macro Yes Yes Yes Yes Yes - Yes Yes Yes Yes
Assembler
Simulator Yes Yes - Yes - Yes - Yes Yes Yes
Debugger - - Yes Yes - - Yes Yes
(11 gh Level)
Debugger Yes Yes Yes - - - Yes Yes
(low level)
Linker Yes Yes Yes - Yes Yes - ---

Library Yes Yes Yes Yes Yes Yes Yes Yes Yes Yes
Math - Yes Yes - - Yes - - Yes Yes
Signal Proc. - Yes Yes - - Yes - - Yes Yes
Image Proc . - Yes Yes - - Yes - - Yes Yes
Geophysical - Yes Yes - - - - - Yes Yes
Simulation - Yes Yes - - - - - Yes Yes
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Table of Comparison (Cont.) 0

ST100 FPS5430 MARS432 MAP400 AP500 ZIP3216 APB3000 SKY ll'SlOO FPS1208

Performance

Vector Add 0.04 0.25 0.2 0.3 0.49 0.4 -1.1 -' .

(us)
Vector Multiply 0.04 0.25 0.2 0.3 0.49 0.4 - 1.0 -

(us)
Vector Divide 0.56 1.92 0.5 0.8 1.12 - - 14.0 -

(us)
Complex 1024 0.864 2.56 1.7 2.7 4.7 13.0 4.5 53.1 - -
pt. FFT (ms)
Complex 2D FFT 400.0 500.0 - - - 4200 - - 5100 3400
512X512 (ms)
Matrix Multiply 44.4 71.0 - 365.0 800.0 - 660 439
100X100 (Ms)
Convolution 0.044 - 0.168 - -
128 by 8 (ms)
Convolution 0.782 5.803 - 9.9
1024 by 32(ms)

I/0 Interface

VAX-UN[X(5) - Yes - Yes - Yes Yes
VAX-VMS(DEC) Yes Yes Yes Yes Yes Yes - Yes Yes
PDP-11-RSX-11M - Yes Yes Yes Yes Yes - Yes Yes Yes

SPIO00 Yes - Yes Yes -- Yes Yes

Eclipse(DGC) - Yes - Yes Yes - - Yes "
PE 3200 Yes Yes - Yes - Yes Yes
SEL(GOULD) Yes Yes - - - Yes Yes
Harr is Yes - - - Yes Yes .
Prime Yes - - - Yes Yes
IBM4331,3081 Yes Yes - - - Yes -

Multibus - - Yes Yes Yes Yes - -'
Unibus Yes Yes Yes Yes Yes - - Yes Yes '

Q-bus - - Yes Yes - Yes " '"
Versabus - - Yes - Yes T '-
RS232 - - Yes - -- ,

IBM-PC - - Yes Yes -

Notes

(1) detail configurations in the paper
(2) FPS5XXX Arithmetic Coprocessor uses 32-bit floating point and 24-bit

integer
(3) one cycle is 240ns
(4) one cycle is 160ns
(5) full descriptions in the paper
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