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SECTION 1

INTRODUCTION

Equation of state data (pressure, total energy,

specific heat and other thermodynamic properties) for

plasmas in a wide range of conditions is a problem area

of considerable importance. For a low density fully

ionized plasma at very high temperatures, classical EOS-

results are available and are generally valid. However,

EOS-properties for high density, low temperature plasmas

(including the "cold" compressed matter phase) are much

more complicated, particularly for partially ionized

* conditions. In this domain, available EOS-data is scanty,
1

and, in cases where it is available, the models used do

not adequately take into account the physics of the inter-

acting plasmas. This is particularly true for the elec-

tronic contribution to the EOS. Depending on the density

and temperature, quantum effects are very significant for

electron-electron and electron-ion interactions. At

intermediate densities and temperatures, plasmas can be

"strongly coupled" as well as partially ionized. Both of

these aspects need careful consideration and have not been

properly included in previous models. In addition, for

improved accuracy, the "cold" compressed matter phase needs

* consideration of solid-state effects.

Plasmas in the above-mentioned conditions occur in a

variety of experimental conditions--shock-compressed

materials, the superdense core of laser-fusion plasmas,

* laser-imploded solid targets or multi-layered materials,

etc. The ongoing research on these processes requires a

knowledge of the appropriate EOS-properties. Improved EOS-

data is also needed for more realistic hydrodynamical

5
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calculations (including radiation transport), for study-

ing implosion characteristics of cylindrical radiating

plasmas, as well as for a variety of atomic calculations.

This need motivated a more realistic EOS-model

suitable for a wide range of plasma conditions, densities

and temperatures. The present report provides such a

comprehensive EOS-model, justifies the theoretical basis

and presents numerical results obtained. This model is

based on the density functional method2 generalized to

arbitrary temperatures. This method enables a systematic

incorporation of the above-mentioned effects. In Section

2, physical considerations for this model are outlined,

its theoretical basis is justified and the implications

Ug of the numerical results are discussed. The specific

mathematical details of the scheme are given in Appendix

I.

In Section 3, research on problems involving polari-

zation shifts in dense, hot plasmas is presented. This

is an important effect that affects atomic processes in

plasmas, particularly the radiation characteristics.

These atomic processes involve consideration of the number

and spacing of ionic energy levels, level populations,

transition probabilities, etc. These parameters as well

as radiation transport through hot plasmas are known to

be drastically affected by a dense plasma environment.

The plasma polarization shift (PPS) plays a significant
r" role in this context. The dense plasma environment

produces significant lowering of the ionization potential

which can eliminate excited atomic energy levels and

possibly entire stages of ionization. Although previous

work has been done to include this "lowering" in atomic
1

calculations , the majority of these models are semi-

6



I

empirical. Detailed investigation of the PPS over a wide

range of plasma densities and temperatures is important

for understanding the radiation characteristics of hot

plasmas as well as for a variety of atomic calculations.

A systematic study of plasma polarization effects

is outlined in Section 3. Our model is discussed and

compared with other commonly used static screening models.

The improvements of the present model are that it treats

nonlinear screening effects exactly and quantum many-body

effects are included via a self-consistent scheme. This

model is applied to Neon and Argon impurities in dense,

hot plasmas and results are compared with those from the

Debye-Hickel model. Drastic differences in the energy-

level structure indicate the usefulness of this nonlinear

self-consistent model for dense plasmas where Debye-

1H ckel-type models are inadequate.

For purposes of plasma diagnostics, specific ioniza-

tion stages (or ionic species) need to be considered. A

scheme suitable for application in a wide range of plasma

conditions is examined. Connections are made to the non-

linear screening model mentioned previously. Implementa-

tion of a computer code incorporating the above algorithm

is currently in progress. This should provide DNA with a

suitable data base for a variety of atomic calculations in

dense, hot plasmas.

I

I.

I7I'



SECTION 2

THE EQUATION-OF-STATE FOR DENSE, HOT PLASMAS

In developing a theoretical model for the computation

of equation-of state (EOS) data and other thermodynamic

properties of plasmas over a wide range of densities and

temperatures, one is faced with the task of properly

describing the physics of vastly different system condi-

tions and properties. In the low density, high temperature

region, the plasma is "weakly coupled"--that , he random

thermal motion dominates over the Coulomb eraction

between charged plasma particles. In this rqii i, many-

body field theoretic methods can. be used to obtain the

EOS-data. However, for high densities and low temperatures

(as obtained for shock-compressed materials, the superdense

core of laser-fusion plasmas, laser-imploded solid targets,

etc.), the plasma is in the "strongly-coupled" condition.

Coulomb interaction dominates over the thermal motion of

the plasma particles and perturbative methods are no

longer applicable.

In this context, the local density functional scheme
3of Kohn and Sham , generalized to arbitrary temperatures

2
by us , offers a very useful and practical method of

calculation of EOS-data. We have developed such a scheme

for two-component systems with arbitrary coupling condi-

tions applicable to both pure plasmas (partially ionizedr- Aluminum, for example) as well as for plasmas seeded with

impurity ions.
4 In this density functional method (DFT), the charge-

density profiles of ions and electrons of the inhomogeneous

plasma play a central role. In a partially ionized plasma

I
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at an arbitrary density and temperature, the positive

ion-centers form an attractive potential for the electrons--

some forming bound states, others occupying continuum

states. In the DFT, both the bound and continuum states

are treated quantum-mechanically via solution of the

Schrodinger equation. This, in turn, accounts for a

significant improvement over other semi-classical approxi-

mations commonly used for plasma calculations The

effective potential in the DFT contains, aside from the

nuclear and electrostatic terms, an exchange-correlation

contribution arising from Coulomb interactions between

charged particles. The appropriate degeneracy effects

are maintained through Fermi-Dirac statistics for the

electrons. The electronic charge-densities are con-

structed from the probability densities obtained from the

wave functions and are weighted by the occupation

probabilities of the various electronic states according

to F-D statistics. The effective potential is then

constructed from the charge dc-nsity profiles (with its

associated exchange-correlation potential) and the

procedure iterated to self-consistency. The self-

consistent electron and ion charge density profiles are

used to calculate various thermodynamic properties and

EOS-data (pressure, total energy, specific heat, etc.).

The mathematical details of the scheme are given inI

Appendix I.

At this point, the following aspects of the scheme

should be noted:

1. The well-known inadequacies of the Thomas-

Fermi method ,4 extensively applied for EOS-calculations,

are removed. That is, the kinetic energy is treated

exactly and, unlike the Thomas-Fermi method, the exchange-

correlation effects are included.

9I9
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2. The exchange-correlation potential Vxc

needed in this scheme can be calculated by many-body

theory techniques. This has been developed and the

relevant Feynman diagrams computed numerically5 '6

These quantities are thus readily available for use

in the above algorithm.

3. Through the effective potential, the scheme also

provides the correct dielectric function for the plasma.

In strongly-coupled plasmas, the usual mean-field approxi-

mations are no longer valid. Thus, complicated nonlinear

methods are needed to calculate the plasma dielectric

function. Moreover, the present scheme is equally valid

for strongly as well as weakly-coupled plasmas. The

dielectric functions obtained through this scheme can be

used for a variety of plasma calculations (energy loss of

fast-charged particles moving through the plasma, pair

distribution functions and structure factors, bulk thermo-

*dynamic properties, etc.).

In the "weakly coupled" domain, it is simpler to use

many-body field theoretic methods to calculate EOS-data.

-The ionic and the electronic contributions can be

-separated as a first approximation and evaluated individ-

ually. Except for very low temperatures, the electronic

contributions dominate the overall EOS-properties. At a

given density and temperature, the interacting electron

system pressure (or total energy) can be calculated by

. evaluating the kinetic energy part exactly and the inter-

action energy part through a many-body perturbation method.

0 The first order exchange term, arising from the Pauli

exclusion principle, is purely quantum-mechanical in nature.

The correlation energy is evaluated in this scheme via

numerical summation of the relevant Feynman (ring) diagrams.

1



The "ring" diagram sum is known to yield the Gell-Mann

and Bucnr8result in the degenerate limit and goes

over to the Debye -Itue for the correlation energy 9in

the non-degenerate (classical) limit. Thus they are

expected to interpolate properly through the intermediate

degeneracy region. The mathematical details are given in

Appendix I.

The numerical results for the electronic pressure

obtained from this scheme for electron densities 10 24

10 20cm- and temperatures 0 - 10 eV are given in Table 1.

The drastic difference from the ideal gas EQS are illus-

trated in Figure 1. The differences progressively reduce

with decreasing density and increasing temperature, but

even for a density as low as 10 20cm- and a temperature

of 1 eV (=l0,000*K), the difference is still more than

50%. This shows that the ideal gas EQS is not valid in

this density-temperature range. At high density and low

temperatures the exchange effect dominates the interaction

energy, whereas in the moderate density and temperature

ranges, the correlation energy is more important. As the

temperature increases, the very slow rise of the pressure-

curve for a fixed density is because the increase in the

correlation contribution is partly offset by the decrease

in the exchange effect.

These results indicate that there exists a wide

range of densities and temperatures where systematic

investigations of the EQS-properties are needed to avoid

drastic errors in the data. Even in the weakly-coupled

domain, many-particle effects are very substantial. For

strongly-coupled plasmas, ion-ion and ion-electron inter-

actions are important in addition to electronic contribu-

tions. Partially ionized plasma conditions present further
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complications. The model outlined here incorporates these

effects in a systematic way. The computer code being

developed based on this algorithm is expected to provide

accurate EOS-data over a wide range of plasma conditions.

* 12
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SECTION 3

THE PLASMA POLARIZATION EFFECT

The screening of a static external charge immersed

in a plasma has been of central importance not only in

plasma physics but also in astrophysics and semi-conductor

physics. Traditionally the static screening has been

described in terms of a shielded potential of the form

Cr) = ? e r/X is the screening parameter). Debye

Huckel and Thomas-Fermi-type models fall under this

category. Physically the electric field of the external

charge polarizes the surrounding medium so tnat unlike

charges pile up around the external charge whereas like

charges are repelled from it. This results in modifying

the bare Coulomb potential to a "screened" potential. A

simple approximate form of the screened potential is given

by V

A general approach to the plasma polarization effect

can be made via an appropriate dielectric response function.

In general, this approach leads to complicated nonlinear
10

methods which are very difficult to apply to plasma

problems. Within linear response theory, however, the

random phase (RPA) dielectric function provides a useful,

practical approach.

In recent years, the RPA dielectric function was

generalized to arbitrary temperatures and densities and

a more complete analysis of static screening was done
I I .

This analysis showed that the effective screened potential

goes over to the Debye potential in the high temperature,

low density region and to the Thomas-Fermi potential in

the low temperature, high density region. The RPA-screened

13
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potential thus provides a natural way to interpolate

between these two limits and provides a scheme to investi-

gate the screening effects in the intermediate range of

densities and temperatures. Here neither the Debye nor

T-F model is applicable. If the temperature of the plasma

is of the order of the Fermi temperature, TF, drastic

differences were obtained in the level spectrum calculated

using the RPA-screened potential as compared to the spec-

trum obtained from the Debye potential. Degeneracy effects

and a correct momentum dependence account for these

differences. This is illustrated in Table 2.

Within linear response theory, the RPA-screened

potential describes the screening effects better than the

Debye or T-F models. The linear response theory, however,

underestimates the charge pile-up around the ions. This

produces smaller screening shifts of the ionic energy

levels than would be obtained from a more accurate model.

A full nonlinear self-consistent model is therefore

required for appropriate treatment of screening effects.

The model we have developed treats the nonlinear screening

effects exactly. The correct charge density profile

around an ion is constructed from the probability densities

obtained from the wave functions and is weighted by the

occupation probabilities of the various electronic states

according to Fermi statistics. The effective atomic

potential contains, aside from the nuclear and electro-

static terms, an exchange-correlation contribution arising

from the Coulomb interactions between charged particles.

These last two quantities depend on the effective atomic

potential via solution of the Schrodinger equation. The

procedure is iterated to self-consistency. Such a

numerical calculation is approximately ten times faster

n
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than a self-consistent Hartree-Fock calculation. The

model has the merit of treating the screening effect

exactly and the many-body effects in an adequate way.

Our model was applied to Neon and Argon impurities

in a dense, hot hydrogen plasma. At the chosen temperatureS123 124 -3

and density (T = 200 eV, ne . 10 - 10 cm ), hydrogen

is fully ionized. A comparison of the results (Table 3)

of the self-consistent calculation with those from the

Debye model show that the energy levels obtained through

the Debye potential are drastically deeper than the self-

consistent spectrum. This is because the linear screening

model (Debye-HUickel) underestimates the charge pile-up

around the ion. The correct charge density profile is

*Q obtained from the self-consistent potential which, in

turn, produces larger screening shifts. The other con-

sequence of this effect is that the Debye potential

incorrectly predicts a larger number of bound states.

Also, the line shifts obtained in the Debye model are

substantially different from the self-consistent model

results. This is important because the bound-bound

transition probability varies as the cube of the level

separation. The usefulness of our model, which yields

the correct screening effect in dense, hot plasmas, is

therefore obvious.

The existence of different ionic species (hydro-

-0 genic, helium-like, etc.) in experimentally observed

spectra from hot plasmas is an additional aspect that

needs to be considered. For determination of the correct

energy-level spectrum of one-, two- or multi-electron
* ions in hot plasmas, the above model needs to be extended.

For purposes of illustration, the case of a 1-electron

hydrogen-like ion immersed in hot plasma is considered

15
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in Appendix IIB. For most practical purposes, the 1-

electron spectrum is within a few percent of the level

spectrum obtained in the self-consistent calculation

discussed above.

Previous calculations by Skupsky 12 and by Davis and

Blaha1 3 utilize two different approaches to the problem

of a 1-electron spectrum in dense, hot plasmas. Davis and
13

Blaha employ an approach similar to a self-consistent

Hartree-Fock method and leave out the self-interaction term

from the screened potential. Also, the exchange-correlation

potential was included only for the continuum electrons and

not for the bound electrons. Calculations were done for

level shifts, coefficients of transition probabilities,
SNe9+

and electron collision cross-sections of: Ne for tempera-

tures 200 - 500 eV and electron densities (1- 6) x 1024 cm- 3

7+and Ar for temperatures 1000- 2000 eV and electron den-
25 - 3sities (2- 8) 10 cm . The general trends of the results

indicate substantial screening effects on those atomic

parameters.

In his scheme, Skupsky solves Poisson's equation

self-consistently to obtain an effective potential which

includes both bound and free electrons. However, the free-

electron density is evaluated in a semi-classical approxi-

mation and many-body effects were neglected. In contrast,

our model constructs the free electron charge density via

solution of the Schrodinger equation and includes exchange-

correlation effects.

In conclusion, we note that our model treats the

nonlinear screening effect in an exact fashion and the

many-body effects adequately. For plasmas in the inter-

'. mediate degeneracy region, as occurs in the dense core

of laser fusion plasmas, shock-compressed material at

L
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elevated temperatures, etc., this model can readily be

applied to investigate screen effects on atomic parameters.

For multi-electron ions in plasmas, however, this model

needs to be extended. Currently we are in the process of

developing such a model. This will provide an important

diagnostic tool.

1

4
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APPENDIX I

THE EOS-MODEL

In this section, we will outline our EOS-model and

the method of calculation. Consider a partially ionized

plasma (say Aluminum or Argon) at a given density and

temperature. Because of the polarization effect, electrons

will tend to pile up around the ions--some forming bound

states, others occupying continuum states. Considering a

central ion, the other positive ions will be repelled

from it whereas electrons will be attracted. A sphere of

radius R around the central ion will be electrically

neutral, i.e.

Z (r)dr + Z (r)dr = 0 (I-1)r_ p
~fi d ZfDpr

r R r R

where e(r) and o (r) are the electron and ion density

profiles around the central ion. Note that Eq. (I-1) really

defines the radius R. If nb is the mean number of

electrons bound to the central ion,

Z = Z - nb (1-2)

represents the average charge per ion. nb is defined by

integrating the R.H.S. of Eq. (I-8g) over all r. According

to density functional theory, the thermodynamic potential

Q of the system is uniquely determined if the correct

density distributions pe (r) and p (r) are known:

Q T ep] + 2e + Q i + 2ei (1-3)

19



where T el is the kinetic energy sum of ions and

electrons, and

S(r)dr + +fFc e dre Pe -X

eVd - l e(r)dr (1-4)

.- ' p = 2~ Pe (r) 0D (r')drdr'

i- pp(r)dr + r)e r'+f q dr
d r 

- .ifo (r)dr (1-5)

S~~~~e (rPe rd' i O

ei +f e l e ,q dr (1-6)

In the above, Fe  is the exchange-correlation free energyxc
of the electrons and v is the electron chemical potential.

~e
The exchange free energy of ions is negligible. Thereforei
only the correlation part F is retained. To simplify

calculations, we will neglect F which is negligiblyc
small ia most cases of interest.

To take into account the charge-neutrality condition

(I-1), we consider the quantity

IT = 2- X4z + T f Pe(r)dr - f Op(r)dr] (1-7)

R R

* where A is Lagrange multiplier. The stationary condition

of 2T leads to the following system of equations for the

electrons and ions to be solved self-consistently:

7 2 Z f e(r') - p (ro') dr' Ve

r+ x (r,p eT)
2 + xc e

-
1e + j 'ir =

0

20
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with

o e (r,T) = Ki .ir) 2 1 (I-8a)

i E(Ei [ 'e + 1

(the sum over i involves the sum over bound and continuum

states) and Ve = xF /PQ (r) is the excndnge-correlationxc xc- e
potential for the electrons.

For the ions, we get a similar set of equations:

2 ZZ e(  )  - f 2 (r') dr'

2 + r P + V (r)r Ir - r'{

- M-Z]¢i(r) = i~ i ( r )

(1-9)

Due to their heavier mass, the ions form a classical sub-

system for most cases of interest. Hence the ion charge

density distribution can be well represented by

6U.

p() = e exp -SVi(r) (I-9b)

where V = ( - R) + ZX
c

1 [f[Pe(r')- Z (r)]dr'
and V. (r) = ( _*

+ Vi(r) - Vi(R) (I-9c)
c

The calculation tn's reduces to obtaining the correct

density distributions P (rT) and p(r:9) self-

consistently.

2
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Defining e = e - e (R) - (I-8b)

Ea. (1-8) is cast into the form
L E-  2  - e °

+ f (r, eT) " i(r) = l1- i(r) (I-8d)

-e (r') - Zo (r' dr'
withV ef(r. ,T) = - - e pI elf ' r f -r

+ Ve (r) -Ve (R) (I-Se)
xc xc

The electron density distribution is the sum of

bound and continuum state contributions:

" (r) = c'"(r) + o (r) + Q(R) (I-8f)
e e e

b 2-where e (r) 2(2Q-+l) Kiz(r)I2 f(i (I-8g)
i , .

.e 72 f(ke (2Z+1) Pk (r) - z jk (r) (I-8h)

0

2(R) is effectively the bulk electron density po and the

j's are spherical Bessel functions. In actual calculations,

it is convenient to work with pe' p(R) and the mean
density o. T-Mat is, we can start off with a given mean

electron density n Z p and a chemical potential c
e e

and adjust (-) to ensure electrical neutrality.

Once the elezctron and ion charge density distributions

le (r,T) and c (7,T) are calculated self-consistently,e o

all the thermodynamic quantities can be rea.-,ily obtained.

For example, tne pressure P of the plas, is given by

I
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P = (I-10)

(V = Volume), with 2 obtained from Eq. (1-3) at any

density and temperature. The total energy E of the

plasma is given b1

E = 2 + e eN + pN + TS (I-ll

where the entropy S is obtained from the set of eigen-

values 's and the occupation probabilities f 's alreadyi1 1

computed;

S = [fi(nf + (l-f i )n(l-fi] (1-12)
0 i

For hydrodynamic calculations, several other quantities

like (dE/dc) , (dP/d:) , (dP/dT) etc. are needed. These

again, are readily obtained from knowledge of the total

energy E and pressure P.

MANY-BODY PERTURBATION METHOD

As mentioned in Section 2, the above scheme is par-

ticularly applicable for strongly-coupled plasmas. However,

in the weakly-coupled domain, it is simpler to use many-

body perturbation theory to calculate EOS-data. This is

discussed below. Of particular importance is the electronic

contribtuion to the EOS. Let us focus our attention to an

interacting electron system of density at a temperature

T. The thermodynamic potential 2[c,T] can be written as

-[ ,T] = o + 2 (1-13)0 xc

where 0 is _no non-interacting part

23



-2T. dx x (1 2  (I-14)

0 e x -;
wth(3-2-2/3

h F 2 (3- ) /2m, the Fermi energy of the elec-

trons, x = k/k ermiI and a = i/KBT is the degeneracy

parameter. For arbitrary densities and temperatures, t is

to be determined Zrom the phase space integral,

f __1________(-

o Le (t x,:)+1

(t = T/Ter) .Ft zero temperature

o ("=0) 2E= E: 1-14a)
V 5F

with the corresponding pressure

P 0 (T=0) 2

E At high temperatures, T--, one recovers the ideal gas

equation of state

P -- ,-K BT (I-14b)
T _o

The interaction part of the thermodynamic potential

xc [3,T] is a dif'icult many-body quantity. The exchange

part arises from thne Pauli exclusion principle whereas the

correlation effects arise from the Coulomb repulsion between

electrons whichI tend to keep them apart. The leading

exchange contribution 2 is

x
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i :,2 2 2.? /
x _e (37

_T3 2 dxdy r -1 2 7r.
473 f[ e(t 2_)+1] [ (  2 -e y +A

nx_ (1-16)

At zero temperature: we have

2 x(T=O) e 4/3Se 4 (3 3) (I-16a)

whereas, in the hiob temperature limit, T-o

1x - e 2 4/3 4cF=- -j-743 (3T 9K T (I-16b)
4r Bm

Since in the weakly-coupled regime, the interaction is

small compared to the average kinetic energy, diagram-

matic perturbation theory can be used to calculate the

correlation energy. The "ring" diagram sum gives the

correlation contribution:

2c(r) KBTd3-- bn[l - 4Te2 ] 4T(e2,"

V (2)3[1 n ](q,v + 2x(q n)

n (1 -1 7 )

where the polarization function is

x(q'vn) n -2f ( f(p+q) - f(p) (I-17a)

n ( p+q p

with vn = 2nrrXBT/., (n = integers). f(;-) is the Fermi

function. In tli- :ii:,h temperature limit, most of the

I2
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contribution comes from the static part (V = 0) ofn

Eq. (1-17) and from the small momentum transfers (q-0).

In this T-- limit,

"(r) 3 3/2
c 0 2 e Q (I-17b)
V T- (KBT) 1/2

which is the usual Debye contribution to the correlation

energy. At the opposite limit of zero temperature and

very high densities, one obtains the well-known Gell-Mann

and Brueckner result.
8

0
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APPENDIX IIA

THE PLASMA POLARIZATION EFFECT

Let us consider a homogeneous plasma of density n

at a temperature T. If an external impurity charge +Ze

is immersed in the plasma, it will polarize the medium

and bring about a redistribution of charge density. Within

linear response theory, the effective potential V eff(r)

at a distance r from the static impurity charge +Ze

is given by

Veff(r,n,T) = 2Ze 2 f0 dq[Sin(2r) 1 (11-1)

0 l--2 X(q,n,T)
q

where X(q,n,T) is an appropriate density and temperature

dependent response fu-nction. The random phase form (RPA)

of x(q,n,T) generalized to arbitrary temperature gives

47e 2  /4kF 1 0 q+2k-
(q,n.m ) .. dk k f(k) n q-2k (11-2)

q 0
0

where q and k are momentum variables, f(k) is the Fermi

function, and k r is the Fermi momentum; kF = (3 2n) I

Veff satisfies the consistency condition that the total

induced charge density must compensate the external charge,

efur n id(r) = +Ze (11-3)

Unlike the Thomas-Fermi theory, this induced charge density

is finite everywhere, including the origin.

One can show, that the q-0 limit of Eq. (II-1) is

the static screened Coulomb potential (SSCP):

27



2Ze2 e r c(n T )  (I4

Vff(r, nT) q-o- e rnT)(11-4)Veff~rnT q-o r

where the parameter is defined by

-2 2 2 4kF
(n,T) = ' ,rFf dk f(k)h (11-5)

Tr f"TF ira 0
0

Further, as T--, Eq. (II-1) yields the Debye-Huckel

potential

Ze2  r 2 47ne 2

Ve(rnT) - - e-r D; D 4 (11-6)
eff r'- o r 'D KB' T1-

T-+0

In the opposite limnit of T = 0, one obtains the T-F
screened potential

2
- -Ze2 e-rZTF (II-7)

eff r,n,T )  o r
T=o

Thus, the Deb,1e an&i the Thomas-Fermi screening lengths

are seen to be limiting forms of the generalized screening

parameter r(n,T) TIlich contains the appropriate degeneracy
effects. The Jull momentum (q) dependence of Veff(r) in

Eq. (II-1) yields a further difference from the Debye or the

T-F potential.

Level shifts of bound electronic energy levels,

supported by an attractive impurity potential in a plasma,

* has been investigated extensively. The radiation from

" electronic transitions between these shifted energy levels

is used as a plasma diagnostic. The problem requires the

solution of the Schrodinger equation

,2 d2  Z(Z+l)h2  efrn )
+2m dr+ + e ' R (r) =E R (r) (11-8)

2
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where R (r) represents the radial part of the electron

wave function with energy eigenvalue cnZ" Many previous

calculations have used the Debye potential in Eq. (II-8).

Our results utilizing the R.P.A. screened potential in

Eq. (11-8) and obtaining the energy levels by numerical

solution of the Schrldinger equation is given in Table 2.

The linear screening method, however, underestimates

the charge pile-up around a given ion. A full treatment

therefore requires a nonlinear self-consistent method to

investigate plasma screening effects. We will illustrate

our method for tne aeneral case of a partially ionized

plasma at an arbitrary temperature T.

If e(r,T) and pp (r,T) represent the appropriate

electron and ion Censity profiles, then the requirement of

self-consistency ir.plies the following set of coupled

equations:

F 2- +r[er',T) - ZP (r',T)]dr' Ve[-T TZ Q + + x (r,T) q)i (r)
[ 2 r I - ' xc )]ir

= E i (r) (11-9)

with c (rT) = Ji Iti (r)1
2 12 ee(i (II-10)

ie +1

(the sum over i iiilies the sum over bound and continuum

_4 states) , and,

r2 Z- F[P( ' ,T) - Z ( ' ,T)1d ' vi
7+ -2 - p + (r) Ji(r)

= £i~i (r) (II-ll)

29
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In the above, Ve (r,T) is the exchange-correlation
xc i

potential for electrons, V (r) is the correlation
C

potential, and Z is the effective charge of a partially

ionized ion. In most practical cases of interest the ions

can be treated classically because of their heavier mass.

Thus the solution of Eq. (II-1) becomes:

0 (r,T) = o eVi (11-12)

p 0

with pTd 0e r' ,T) - p(r' ,T) dr' v

Vi (r) = T)r + (r) (11-13)
r- r''(r

In settinc! up tie above equation many-body effects

have been included via V e (r,T) for the electrons and
xc

V for the ions. ITote that the induced charge displace-
c

ment does compensate the nuclear charge over a large

distance, thus accounting for complete screening. The

above method was applied to Neon and Argon impurities in

a fully ionized hydrogen plasma. The results are shown

in Tables 3 (a) and 3 (b) .

3

I

I
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APPENDIX IIB

RHYDOGENIC IONS IN PLASMAS

For purpose of illustration, we consider the specific

case of a hydrogen--like ion (i.e., an ion with a single

electron bound to it) in a plasma. (The extension to

multi-electron ions is straightforward but the details will

not be given here). A rigorous approach would require the

self-consistent solution of a non-local integro-differential

equation of the following form:

[72 Z +/ (r',,T)dr j r, ( '  C

S _ If'( ). + Z dr' (r,rE) (r') i(r)2 ~i r r i

where Z (r,r',E) is the non-local, energy-dependent "mass"

operator which involves knowledge of {ej, j(r)1, the

energy-levels, and the orbitals of interest. The following

scheme substantially reduces the complexity of such a

calculation wiile still retaining most of the many-body

effects.

Let n (r) be the bound-state wave function of the

electrons bound to the ion Z. n(r) could be any of the

ls, 2s, 2p ... sequence of states. Based on physical

considerations, -7e invoke the argument that the screening

term affectinq the bound electron does not include the

part associated with the bound electron itself. In other

words, we exclude the self-interaction effect. The energy

level spectrum is then determined by the solution of

31
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.-- - - . - . - - • -" ° .. h . . . " .' L~r - . .'° w - - ,o ,

" 2 Z ('T) -2~ (' dr'

+ 2 d + V (r,T)2r r r' I  xc

2

- (r) n(r) = nn(r)

Note that one has a different equation for each of the

nZ states (is, 2s, sp ... etc.). The advantage of this

scheme is that p(r,T) is the self-consistent charge

density profile already obtained from previous nonlinear

screening calculations for the same density and tempera-

ture. Note that the continuum charge density o (rT)c
satisfies the requirement

* c (r,T)dr = (Z - 1)

Since p(,T) = c (rT) + InZ r

and all nZ (r) are normalized to unity:

1n 2 dr = 1

- 32
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TABLE 1

Electronic Contribution to Ecruation of

State Pressure in Ryd/cm3

(The difference from ideal gas EOS shown in parenthesis)

Temperature (eV)-

Electron
density
(CM-3 )0 0.0316 0.316 3.16 10

124 j2.003E24 2.004E24 2.006E24 2.025E24 2.275E24
10 (2.003E24) (2.002E24) (1.983E24) (1.793E24) (1.540E24)

123 10.7074E23 0.7076E23 0.7085E23 0.8225E23 1.142E23
10 )(0.7074E23) (0.7053E23) (0.6853E23) (0.590E23) (0.407E23)

122 )0.2 97E22 0.299E22 0.302E22 0.443E22 0.889E22
10 (0.297E22 (0.296E22 (0.279E22) (0.211E22) (0.154E22)

-11 C.140E21 0.155E21 0.175E21 0.321E21 0.784E21
1(0.140E-11) (0.153E21) (0.151E21) (0.089E21) (0.049E21)

O.2>:0 0.078E20 0.095E20 0.259E20 0.750E20
>'ti2 0 (0.076E20) (0. 071E20) (0.027E20) (0. 016E20)
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TABLE 2

is, 2s, 2p Energy Levels for a Neon Impurity in a
Hydrogen Plasma at T = 100 eV for Three Different
Electron Densities.
(The numbers in parenthesis show the percentage
differences from corresponding Debye results.
Units in Rydbergs.)

Electron Potential

Density Used in Line
(cm 3 ) Eq. (II-8) is 2s 2p Shift

24 VD  -72.816 -5.316 -4.076 6.260
4.54XI2 V -75.499 -6.623 -5.560 5.061(3.7%) (24.6%) (36.4%)

Veff -78.695 -7.383 -6.591 2.896
(8.1%) (38.9%) (61.7%)

VD -79.369 -8.747 -7.939 3.570
242.47xi0 V -80.605 -9.487 -8.759 3.154

(1.6%) (8.5%) (10.3%)

Veff -82.800 -9.930 -9.330 1.530
(4.3%) (13.5%) (17.5%)

VD  -86.482 -13.406 -13.022 1.540
1.0x1024 V -86.842 -13.668 -13.302 1.460

(0.4%) (2%) (2.2%)

V. -88.043 -14.037 -13.781 0.738
Vff (1.8%) (4.7%) (5.8%)
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Figure 2. Total electronic exchange-correlation contribution

to the thermodynamic potential Q as a function of

temperature for two different electronic densities.

The dotted curve indicates the rapid decay of the

exchange effect with increasing temperature. The

high temperature part of Q xc is completely domi-

nated by correlation effects.
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(a) (b) I
1.0 T = 200 eV 2p

n = 1024 -3 °
2.0 - 2s 12.C

I

3.0 3.C
' I

4.0- 2 4.C

5.0- 1 s2S 5.C

SI T = 2C eV

6.0 e 5Y'10 24 -m 6. C0 Ii

7.0 - 7.C
Is

8.0- 8.C

9.0 9.0

30 30
is

is

40 a40

45 VDH V ff V DH V ff 4

01

Figure 5. Energy-level spectrums for a Neon ion in a
hydrogen plasma. Self-consistent results
using V eff yield drastic differences from the

corresponding Debye spectrum. This emphasizes
4 the importance of the nonlinear screening

method used in our model.
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