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SECTION 1

INTRODUCTION

Equation of state data (pressure, total energy,
specific heat and other thermodynamic properties) for
plasmas in a wide range of conditions is a problem area
of considerable importance. For a low density fully
ionized plasma at very higih temperatures, classical EOQOS-

results are available and are generally valid. However,

EOS-properties for high density, low temperature plasmas
(including the "cold" compressed matter phase) are much
more complicated, particularly for partially ionized

°® conditions. In this domain, available EOS-data is scanty,

e B B on A e

and, in cases where it is available, the modelsl used do

not adequately take into account the physics of the inter-

acting plasmas. This is particularly true for the elec-

tronic contribution to the EOS. Depending on the density

and temperature, quantum effects are very significant for
electron-electron and electron-ion interactions. At
intermediate densities and temperatures, plasmas can be
"strongly coupled" as well as partially ionized. Both of

these aspects need careful consideration and have not been

: r q'nfﬁ.v?

properly included in previous models. 1In addition, for

improved accuracy, the "cold" compressed matter phase needs

{
1
- . . .
_® consideration of solid-state effects.
ﬁg Plasmas in the above-mentioned conditions occur in a
- variety of experimental conditions--shock-compressed
P; materials, the superdense core of laser-fusion plasmas,
o laser-imploded solid targets or multi~-layered materials,
r..
e etc. The ongoing research on these processes requires a
knowledge of the appropriate EOS-properties. Improved EOS-
! data is also needed for more realistic hydrodynamical
o
5
o
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calculations (including radiation transport), for study-
ing implosion characteristics of cylindrical radiating
plasmas, as well as for a variety of atomic calculations.

This need motivated a more realistic EOS-model
suitable for a wide range of plasma conditions, densities
and temperatures. The present report provides such a
comprehensive EOS-model, justifies the theoretical basis
and presents numerical results obtained. This model is
based on the density functional method2 generalized to
arbitrary temperatures. This method enables a systematic
incorporation of the above-mentioned effects. 1In Section
2, physical considerations for this model are outlined,
its theoretical basis is justified and the implications
of the numerical results are discussed. The specific
mathematical details of the scheme are given in Appendix
I.

In Section 3, research on problems involving polari-

zation shifts in dense, hot plasmas is presented. This
is an important effect that affects atomic processes in
plasmas, particularly the radiation characteristics.
These atomic processes involve consideration of the number
and spacing of ionic energy levels, level populations,
transition probabilities, etc. These parameters as well
as radiation transport through hot plasmas are known to
be drastically affected by a dense plasma environment.
The plasma polarization shift (PPS) plays a significant
role in this context. The dense plasma environment
produces significant lowering of the ionization potential

which can eliminate excited atomic energy levels and

N possibly entire stages of ionization. Although previous
Ny work has been done to include this "lowering" in atomic

calculationsl, the majority of these models are semi-
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empirical. Detailed investigation of the PPS over a wide
range of plasma densities and temperatures is important
for understanding the radiation characteristics of hot
plasmas as well as for a variety of atomic calculations.

A systematic study of plasma polarization effects
is outlined in Section 3. Our model is discussed and
compared with other commonly used static screening models.
The improvements of the present model are that it treats
nonlinear screening effects exactly and gquantum many-body
effects are included via a self-consistent scheme. This
model is applied to Neon and Argon impurities in aense,
hot plasmas and results are compared with those from the
Debye-Hlckel model. Drastic differences in the energy-
level structure indicate the usefulness of this nonlinear
self-consistent model for dense plasmas where Debye-~
Hﬁckel-type models are inadequate.

For purposes of plasma diagnostics, specific ioniza-
tion stages (or ionic species) need to be considered. A
scheme suitable for application in a wide range of plasma
conditions is examined. Connections are made to the non-
linear screening model mentioned previously. Implementa-
tion of a computer code incorporating the above algorithm
is currently in progress. This should provide DNA with a
suitable data base for a variety of atomic calculations in

dense, hot plasmas.
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SECTION 2

THE EQUATION-OF-STATE FOR DENSE, HOT PLASMAS

In developing a theoretical model for the computation
of equation-of state (EOS) data and other thermocdynamic
properties of plasmas over a wide range of densities and
temperatures, one is faced with the task of properly
describing the physics of vastly different system condi-
tions and properties. In the low density, high temperature
region, the plasma is "weakly coupled"--that . he random
thermal motion dominates over the Coulomb ! <&raction
between charged plasma particles. In this reyi 1, many-
body field theoretic methods can be used to obtain the
EOS-data. However, for high densities and low temperatures
(as obtained for shock-compressed materials, the superdense
core of laser-fusion plasmas, laser~imploded solid targets,
etc.), the plasma is in the "strongly-coupled" condition.
Coulomb interaction dominates over the thermal motion of
the plasma particles and perturbative methods are no
longer applicable.

In this context, the local density functional scheme
of Kohn and Sham3, generalized to arbitrary temperatures
by usz, offers a very useful and practical method of
calculation of EOS-data. We have developed such a scheme
for two-component systems with arbitrary coupling condi-
tions applicable to both pure plasmas (partially ionized
Aluminum, for example) as well as for plasmas seeded with
impurity ions.

In this density functional method (DFT), the charge-
density profiles of ions and electrons of the inhomogeneous

plasma play a central role. 1In a partially ionized plasma
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at an arbitrary density and temperature, the positive

ion-centers form an attractive potential for the electrons--
some forming bound states, others occupying continuum
states. In the DFT, both the bound and continuum states
are treated quantum-mechanically via solution of the
Schradinger equation. This, in turn, accounts for a
significant improvement over other semi-classical approxi-
mations commonly used for plasma calculationsl. The
effective potential in the DFT contains, aside from the
nuclear and electrostatic terms, an exchange-correlation
contribution arising from Coulomb interactions between
charged particles. The appropriate degeneracy effects
are maintained through Fermi~Dirac statistics for the
electrons. The electronic charge-densities are con-
structed from the probability densities obtained from the
wave functions and are weighted by the occupation
probabilities of the various electronic states according
to F~D statistics. The effective potential is then
constructed from the charge density profiles (with its
associated exchange-correlation potential) and the
procedure iterated to self-consistency. The self-
consistent electron and ion charge density profiles are
used to calculate various thermodynamic properties and
EOCS-data (pressure, total energy, specific heat, etc.).
The mathematical details of the scheme are given in
Appendix I.

At this point, the following aspects of the scheme
should be noted:

1. The well-known inadequacies of the Thomas-
Fermi methodl'4, extensively applied for EOS-calculations,
are removed. That is, the kinetic energy is treated
exactly and, unlike the Thomas-Fermi method, the exchange-

correlation effects are included.
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2. The exchange-correlation potential ch

needed in this scheme can be calculated by many-body
theory techniques. This has been developed and the
relevant Feynman diagrams computed numericallys’s.

These quantities are thus readily available for use

in the above algorithm.
3. Through the effective potential, the scheme also
provides the correct dielectric function for the plasma.

In strongly-coupled plasmas, the usual mean-field approxi-

v RN aa e~
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mations are no longer valid. Thus, complicated nonlinear
methods are needed to calculate the plasma dielectric

function. Moreover, the present scheme is equally valid

for strongly as well as weakly-coupled plasmas. The

'rﬁ
]

dielectric functions obtained through this scheme can be
used for a variety of plasma calculations (energy loss of
fast~-charged particles moving through the plasma, pair
distribution functions and structure factors, bulk thermo-
dynamic propeirties, etc.).

In the "weakly coupled" domain, it is simpler to use

YT, Lol on o0 sn s seg
o ]
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many-body field theoretic methods to calculate EOS-data.

The ionic and the electronic contributions can be

separated as a first approximation and evaluated individ-
ually. Except for very low temperatures, the electronic
contributions dominate the overall EOS-properties. At a
given density and temperature, the interacting electron
system pressure (or total energy) can be calculated by
evaluating the kinetic energy part exactly and the inter-
action energy part through a many-body perturbation method.

e

¥

The first order exchange term, arising from the Pauli

: exclusion principle, is purely quantum-mechanical in nature.
. The correlation energy is evaluated in this scheme via

L numerical summation of the relevant Feynman (ring) diagrams.
o

10
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The "ring" diagram sum is known to yield the Gell-Mann

and Brueckner8 result in the degenerate limit and goes
over to the Debye ' ~lue for the correlation energy9 in
the non-degenerate (classical) limit. Thus they are
expected to interpolate properly through the intermediate
degeneracy region. The mathematical details are given in
Appendix I.

The numerical results for the electronic pressure

obtained from this scheme for electron densities 1024 -

1020 cm_3

The drastic difference from the ideal gas EOS are illus-

and temperatures 0 - 10 eV are given in Table 1.

trated in Figure 1. The differences progressively reduce
with decreasing density and increasing temperature, but
even for a density as low as lO20 cm_3 and a temperature
of 1 eV (=10,000°K), the difference is still more than
50%. This shows that the ideal gas EOS is not valid in
this density-temperature range. At high density and low
temperatures the exchange effect dominates the interaction
energy, whereas in the moderate density and temperature
ranges, the correlation energy is more important. As the
temperature increases, the very slow rise of the pressure-
curve for a fixed density is because the increase in the
correlation contribution is partly offset by the decrease
in the exchange effect.

These results indicate that there exists a wide
range of densities and temperatures where systematic
investigations of the EOS-properties are needed to avoid
drastic errors in the data. Even in the weakly-coupled
domain, many-particle effects are very substantial. For
strongly-coupled plasmas, ion-ion and ion-electron inter-

actions are important in addition to electronic contribu-

tions. Partially ionized plasma conditions present further

11
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complications. The model outlined here incorporates these
effects in a systematic way. The computer code being
developed based on this algorithm is expected to provide

accurate EOS-data over a wide range of plasma conditions.
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SECTION 3

THE PLASMA POLARIZATION EFFECT

The screening of a static external charge immersed
in a plasma has been of central importance not only in
plasma physics but also in astrophysics and semi-conductor
physics. Traditionally the static screening has been
described in terms of a shielded potential of the form
Vg(x) = % e_r/K (> is the screening parameter). Debye
Huckel and Thomas-Fermi-type models fall under this
category. Physically the electric field of the external
charge polarizes the surrounding medium so tnat unlike
charges pile up around the external charge whereas like
charges are repelled from it. This results in modifying
the bare Coulomb potential to a "screened" potential. A
simple approximate form of the screened potential is given
by VS.

A general approach to the plasma polarization effect
can be made via an appropriate dielectric response function.
In general, this approach leads to complicated nonlinear
methodslo which are very difficult to apply to plasma
problems. Within linear response theory, however, the
random phase (RPA) dielectric function provides a useful,
practical approach.

In recent years, the RPA dielectric function was
generalized to arbitrary temperatures and densities and
a more complete analysis of static screening was donell.
This analysis showed that the effective screened potential
goes over to the Debye potential in the high temperature,
low density region and to the Thomas-Fermi potential in

the low temperature, high density region. The RPA-screened

13
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potential thus provides a natural way to interpolate

between these two limits and provides a scheme to investi-
gate the screening effects in the intermediate range of
densities and temperatures. Here neither the Debye nor
T-F model is applicable. If the temperature of the plasma

is of the order of the Fermi temperature, T drastic

'
differences were obtained in the level spectium calculated
using the RPA-screened potential as compared to the spec-
trum obtained from the Debye potential. Degeneracy effects
and a correct momentum dependence account for these
differences. This is illustrated in Table 2.

Within linear response theory, the RPA-screened
potential describes the screening effects better than the
Debye or T-F models. The linear response theory, however,
underestimates the charge pile-up around the ions. This
produces smaller screening shifts of the ionic energy
levels than would be obtained from a more accurate model.

A full nonlinear self-consistent model is therefore
required for appropriate treatment of screening effects.
The model we have developed treats the nonlinear screening
effects exactly. The correct charge density profile
around an ion is constructed from the probability densities
obtained from the wave functions and is weighted by the
occupation probabilities of the various electronic states
according to Fermi statistics. The effective atomic
ootential contains, aside from the nuclear and electro-
static terms, an exchange-correlation contribution arising
from the Coulomb interactions between charged particles.
These last two quantities depend on the effective atomic
potential via solution of the Schrgdinger equation. The
procedure is iterated to self-consistency. Such a

numerical calculation is approximately ten times faster

14
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than a self-consistent Hartree-Fock calculation. The

model has the merit of treating the screening effect
exactly and the many-body effects in an adequate way.

Our model was applied to Neon and Argon impurities
in a dense, hot hydrogen plasma. At the chosen temperature
and density (T = 200 eV, n, v lO23 - 1024 cm—3), hydrogen
is fully ionized. A comparison of the results (Table 3)
of the self-consistent calculation with those from the
Debye model show that the energy levels obtained through
the Debye potential are drastically deeper than the self-
consistent spectrum. This is because the linear screening
model (Debye—Hﬁckel) underestimates the charge pile-up
around the ion. The correct charge density profile is
obtained from the self-consistent potential which, in
turn, produces larger screening shifts. The other con-
sequence of this effect is that the Debye potential
incorrectly predicts a larger number of bound states.
Also, the line shifts obtained in the Debye model are
substantially different from the self-consistent model
results. This is important because the bound-bound
transition probability varies as the cube of the level
separation. The usefulness of our model, which yields
the correct screening effect in dense, hot plasmas, is
therefore obvious.

The existence of different ionic species (hydro-
genic, helium-like, etc.) in experimentally observed
spectra from hot plasmas is an additional aspect that
needs to be considered. For determination of the correct
energy-level spectrum of one-, two- or multi-electron
ions in hot plasmas, the above model needs to be extended.
For purposes of illustration, the case of a l-electron

hydrogen-like ion immersed in hot plasma is considered
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in Appendix IIB. For most practical purposes, the 1-
electron spectrum is within a few percent of the level
spectrum obtained in the self-consistent calculation
discussed above.

Previous calculations by Skupsky12 and by Davis and
Blaha13 utilize two different approaches to the problem
of a l-electron spectrum in dense, hot plasmas. Davis and
Blaha13 employ an approach similar to a self-consistent
Hartree~Fock method and leave out the self-interaction term
from the screened potential. Also, the exchange-correlation
potential was included only for the continuum electrons and
not for the bound electrons. Calculations were done for
level shifts, coefficients of transition probabilities,
and electron collision cross-sections of: Ne9+ for tempera-
tures 200 ~ 500 eV and electron densities (1-6) x 1024 en™3;
and Ar7+ for temperatures 1000 - 2000 eV and electron den-
sities (2-8) 102> cm™3

indicate substantial screening effects on those atomic

c . The general trends of the results
parameters.,

In his scheme, Skupsky12 solves Poisson's equation
self-consistently to obtain an effective potential which
includes both bound and free electrons. However, the free-
electron density is evaluated in a semi-classical approxi-
mation and many-body effects were neglected. In contrast,
our model constructs the free electron charge density via
solution of the Schrgdinger equation and includes exchange-
correlation effects.

In conclusion, we note that our model treats the
nonlinear screening effect in an exact fashion and the
many-body effects adequately. For plasmas in the inter-
mediate degeneracy region, as occurs in the dense core

of laser fusion plasmas, shock~-compressed material at

16
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elevated temperatures, etc., this model can readily be

applied to investigate screen effects on atomic parameters.
For multi-electron ions in plasmas, however, this model
needs to be extended. Currently we are in the process of
developing such a model. This will provide an important

diagnostic tool.
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APPENDIX I

THE EOS-MODEL

In this section, we will outline our EOS-model and
the method of calculation. Consider a partially ionized
plasma (say Aluminum or Argon) at a given density and
temperature. Because of the polarization effect, electrons
will tend to pile up around the ions--some forming bound
states, others occupying continuum states. Considering a
central ion, the other positive ions will be repelled
from it whereas electrons will be attracted. A sphere of
radius R around the central ion will be electrically

neutral, i.e.

-> -> -+ ->
Z - §p (r)¥dr + 2 op(r)dr =0 (I-1)

r<R r<R

where oe(r) and op(r) are the electron and ion density
profiles around the central ion. Note that Eq. (I-1l) really

defines the radius R. If n is the mean number of

b
electrons bound to the central ion,

(1-2)

represents the average charge per ion. ny, is defined by
integrating the R.H.S. of Eqg. (I-8g) over all r. According
to density functional theory, the thermodynamic potential

2 of the system is uniquely determined if the correct

density distributions oe(r) and op(r) are known:

= T|; + + 0.+ 0. -

Q T[Qe,cp] Qe Ql Qel (I1-3)
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where T[oe,cp] is the kinetic energy sum of ions and

electrons, and

. s 0, (E)o_(Z')draz"
Ro=-|Z s (ar + 2] & ¢ +[F® o ar
e r ‘e 2 T = %' Xc e

- u%/be(r)dr (I-4)

> > > >
A _ s2fo _(rYo (r')drdr' ) .
'°.=zf§o(§)d§+5 € e +fFlo dr
1 r 'p 2 [?—:_f'l c p
- u%[bp(r)dr (1-5)
(r) _(z') drdr’
0 . N
lei T -7 | = __E_~ +:j}e1 o_,p_dr (I-6)
lr = '] ¢ P

In the above, Fic is the exchange-correlation free energy
of the electrons and Mo is the electron chemical potential.
The exchange free energy of ions is negligible. Therefore
only the correlation part Fl is retained. To simplify

calculations, we will neglect Fil

which is negligibly
small ia most cases of interest.
To take into account the charge-neutrality condition

(I-1), we consider the quantity

RT =Q - X[Z + Z f oe(r)dr - f op(r)dr] (I-7)

R R
where A 1is Lagrange multiplier. The stationary condition
of Q leads to the following system of equations for the

T
electrons and ions to be solved self-consistently:

. o (F') = Z p (P)]d?
Liﬁ.aﬁ/[e P + v (r.p_,T)
r e

2 > >
lr - |
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with

o

e(r,T) = E:!wi(r)zz 1 (I-8a)

(the sum over i 1involves the sum over bound and continuum

e i€ s . : .
states) and Vx :Fxc/ope(r) is the excihange-correlation

o
potential for the electrons.

For the ions, we get a similar set of equations:

e d — > >
_=2 7 & (') = 2 ¢ (r')] dr' .
I+ %2 7 D + vh (r)
r c

It - ']

w

(I-9)

Due to their heavier mass, the ions form a classical sub-
system for most cases of interest. Hence the ion charge

density distribution can be well represented by

Bu,
o (¥) =e exp [-Bvi(r)] (I-9b)
where ., = u, - V;(R) + ZA

oo s - 20 0]z

r -]
+ vin - vim) (1-9¢)

The calculation tnns reduces to obtaining the correct
density distributions oe(r,T) and op(r,w) self-
consistently.
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Defining u, = Ug T VXC(R) -\ (I1-8b)

Eg. (I-8) is cast into the form

2 —
3 e . _ -
-5t Veff(r,oe,T) yi(r) = €iwi(r) (I-8d)
- E (r') - zo_(r")] ar'
with VvS__(r, o ,7) = - Z . € P
eff a r '* -
r - r'|
e e
- ) -
+ ch(r) VXC(R, (I-8e)

The electron density distribution ic the sum of

bound and continuum state contributions:

0 (r) = o2(r) + oS(r) + o(R) (1-8£)
where ob(r) = E: 2{(22+1) |y (r)l2 fle,,u_) (I-8q)
e ’ iR “tTi' e El
i,?

C _ 1 a2 .- L2 N 22 _

Me(r) = ;5- ok kTf(k, e)z: (22+l)[bk2(1) ]kﬂ(r)] (I-8h)
2
o

2(R) is effectively the bulk electron density o5 and the
j's are spherical Bessel functions. In actual calculations,
it is convenient to work with Ee' o(R) and the mean

density 5. That is, we can start off with a given mean

electron density He = Z ¢ and a chemical potential Ee
and adjust {R) to ensure electrical neutrality.

Once the electron and ion charge density distributions
1 pe(r,T) and :D(r,T) are calculated seli-consistently,
all the thermodynamic quantities can be reauily obtained.

For example, tile pressure P of the plasm~ is given by

.- L. P . . N
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P = -3/V, (I-10)

(V = Volume), with = obtained from Egq. (I-3) at anvy
density and temperature. The total energy E of the

plasma 1s given Dby

E=2 4+ uN_ + ulN + TS (I-11)
e e o P

~

where the entropy S5 1is obtained from the set of eigen-
values zi's anu tne occupation probabilities fi's already

computed;

S = E: [f.anf. + (l—f.)?n(l—f.q (1-12)
i i 1 i
i
For hydrodvnamic calculations, several other gquantities
like (dE/d:), (dp/dc), (dP/AT) etc. are needed. These
again, are readily obtained from knowledge of the total

energy E and pressure P.

MANY-BODY PERTURBATION METHOD

As mentioned in Section 2, the above scheme is par-
ticularly applicable for strongly-coupled plasmas. However,
in the weakly-coupled domain, it is simpler to use many-
body perturbation theory to calculate EOS-data. This is
discussed below. Of particular importance is the electronic
contribtuion to the EO0S. Let us focus our attention to an
interacting electron system of density at a temperature

T. The thermodynamic potential Q(c,T] can be written as

P - = »-2 + :\ f -
“le.T] 2q . (I-13)
where lo is the non-interacting part
23
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o _ _5 .
v - "¢ s oax x? L " (1-14)
(e tx%~a)
o) [e X +1
. _ o =2,,.2 .2/3 .

with g T h“(3-72) /2m, the Fermi enercy of the elec-

> - / “y —4 1 ol
trons, x k kfermi’ and u/KBT is tihe degeneracy

parameter. ror arbitrary densities and temperatures, x 1is

to be determined Zrom the phase space integral,

1l _ f - X2 (I-153)
g = [#Dq
-1 2

o [e(t X -a)+l]

). At zero temperature

2
= —S'DS ; (I-14a)
with the corresponding pressure
-0y = 2.
PO(T—O) = zo¢

At high temperatures, T-+«, one recovers the ideal gas

equation of state

PO———+;KBT {I-14b)

m.o
-

The interaction part of the thermodynamic gotential

.....

JXC[J,T] is a difficult many-body guantity. The exchange
part arises from tne Pauli exclusion principle whereas the
correlation effects arise from the Coulomb repulsion between
electrons whicii tend to keep them apart. The leading

exchange contriution Qx is

24
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- 2 dxdy S
\ 3 -12 .
4 oZ0 [e(t X - c)+l] [e(t-lyz—_t)+l]
en | X (I-16)
| x-y
At zero temparature, we have
2.(T=0) 2
X - - & (35%)¥/3 (I-16a)
v 3
47
whereas, in the hich temperature limit, T-«
N {T»») 2 4¢e
= - = = ___e3 (31’1’20)4/3 9KFT (I-16b)
! 4w B
Since in the weakly-coupled regime, the interaction is
small compared to tuie average kinetic energy, diagram-
matic perturbation theory can be used to calculate the
correlation enercy. The "ring" diagram sum gives the
correlation contribution:
2 (r) R_.T 3 2 2
< - B [dg gn|1 - 478 x(q,v )| + dre x(g,v._)
Y 2 3 2 n 2 n
(27) y q q
n (I-17)
where the polarization function is
a3p £(p+q) - £(p)
x(q,vn) = =2 T (I-17a)
(2m) 1hvn - (€p+q - Ep)

with v = 2nﬂKBT/H, (n = integers). f(») 1is the Fermi

function. In tu:z High temperature limit, most of the

25
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contribution comes from the static part (vn = Q) of
Eq. (I-17) and from the small momentum transfers (g~0).

In this T-»~ limit,

(r)
Q 3 3/2
Yo L2 et i}
T 5= 3 /7 172 (1-17b)
(K, T)

which is the usual Debye contribution to the correlation
energy. At the opposite limit of zero temperature and
very high densities, one obtains the well-known Gell-Mann

and Brueckner result.8
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APPENDIX IIA

THE PLASMA POLARIZATION EFFECT

Let us consider a homogeneous plasma of density n
at a temperature T. If an external impurity charge +Ze

is immersed in the plasma, it will polarize the medium

- e e p——————
s — g MoRalion ™ PROLIE IS o0 re o ouiin A','.*.T
A

and bring about a redistribution of charge density. Within
linear response theory, the effective potential Veff(r)
at a distance r from the static impurity charge +2Ze

is given by

M) " pneamc

[so]

2 .
\Y (r,n,T) = -22e dg Sin(gr) L (II-1)
eff 7 qr 4we2
i o 1 - ——x(q,n,T)

s q

where x(g,n,T) 1s an appropriate density and temperature
dependent response function. The random phase form (RPA)

of x(g,n,T) generalized to arbitrary temperature gives

{ 2 4k y
: 4e S i A S on | 22K i
g p) X(qrn.'-~) = Ta 3fdk k f(k) Qn'q_zk (II 2)
N q o/q
o
where q and Kk are momentum variables, £(k) 1is the Fermi
function, and kF is the Fermi momentum; kF = (3n2n)l/3.

Veff satisfies the consistency condition that the total

induced charge density must compensate the external charge,

T Fvvvﬁfr-‘w—,’,

g
2

efld’r rnind(r) = +Ze (I1-3)

Unlike the Thomas-Fermi theory, this induced charge density

is finite everywhere, including the origin.
One can show that the g~0 1limit of Eg. (II-1l) is
the static screened Coulomb potential (SSCP):




Vgp—

i igEcazas -

p—

T
l

i -8

Samm)

._-,_-__,v,-.A-,,,_
S e L e

2 -
o - Zi e—ra(n,T) (II-4)

Veff(r,n,T)

where the parameter ¢ 1is defined by

y ax
-2 .2 .2 _ F _
- (nIT) - L”fF f dk f(k) ¢ ‘>TF ﬂ,ao (II 5)
o
Further, as T-»~, Eg. (II-1l) yields the Debye-Hﬂckel
potential
2 2
_ Ze -rg . .2 _ 4mne _
Vegg (x/neT) 55 T ¢ P sp T xw (11-6)
u B
T—»oo
In the opposite limit of T = 0, one obtains the T-F
screened potentiai
V ..(r,n,T) — - ze? e Thrr (II-7)
eff' """ gro r

T=0

Thus, the Debve an< the Thomas-Fermi screening lengths

are seen to be limiting forms of the generalized screening
parameter £(n,T) which contains the appropriate degeneracy
effects. The full momentum (g) dependence of Veff(r) in
Egq. (II-1l) yields a further difference from the Debye or the
T-F potential.

Level shifts of bound electronic energy levels,
supported by an attractive impurity potential in a plasma,
has been investigated extensively. The radiation from
electronic transitions between these shifted energy levels
is used as a plasma diagnostic. The problem requires the
solution of the Schrddinger equation
(—Ei dz + Q(Q+l)52 + Vv (r n'r) R ,(r) = ¢ R ,(r) (II-8)

2m dr2 2mr2 eff - ni n¢ "n#f
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where RnQ(r) represents the radial part of the electron

wave function with energy eigenvalue ¢ Many previousl
(I1-8).

screened potential in

nf’
calculations have used the Debye potential in Eq.

ey —y——e
. -

Our results utilizing the R.P.A.
(I1-8)

solution of the Schrodinger equation is given in Table 2.

Eqg. and obtaining the energy levels by numerical

SO - ey

our method for tne

general case of a partially

plasma at an arbitrary temperature T.

s The linear screening method, however, underestimates
g the charge pile-up around a given ion. A full treatment
- therefore requires a nonlinear self-consistent method to
? investigate plasma screening effects. We will illustrate

ionized

o If pe(r,T) and op(r,T) represent the appropriate
{
4 electron and ion censity profiles, then the requirement of
3 self-consistency implies the following set of coupled
' equations:
2 [O (;',L) - Zp (r',TW]dr'
:.l. i = + Ve (2P Uy ()
. lr - r'|
) = eiwi(r) (I1I-9)
. _ 2 1
with pe(rlT) == Z !Wl(r)| B Ei-u (II_lO)
i e +1

(the sum over i imwvlies the sum over bound and continuum

N PR i End i ) Ehd

states), and,
2 = [p (F',T) - 20 _(%',T)]aF .
v Z2 - 2 P 1

[ ——2—-+?- 4 ———— +vc(r) fDi(r)
» |l - r'|
b
{
b = -
{ €i¢i(r) (II-11)
M.
L)
&
(
]
[
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In the above, Vic(r,T) is.the exchange-correlation

i" potential for electrons, V(l:(r) is the correlation
potential, and Z is the effective charge of a partially
ionized ion. In most practical cases of interest the ions

can be treated classically because of their heavier mass.

h Thus the solution of Eq. (II-1) becomes:
- -8V, (r)
' 0 (T) = o IT-12
3 p(r ) o8 ( )
: with > > >
|, [o (£',T) - o (r',T)] dr’ .

{ v.(r) = Z|z -2 — P + VLX)  (II-13)

* lr - ']

In settino un the above equation many-body effects

2 hgve been included via Vic(r,T) for the electrons and
Vé for the ionz. 1lote that the induced charge displace-
ment does ccmpensate the nuclear charge over a large
distance, thus accounting for complete screening. The

above method was applied to Neon and Argon impurities in

‘r."'.—‘l*‘i .

a fully ionized hydrogen plasma. The results are shown
in Tables 3(a) and 3(b).

I
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APPENDIX IIB

IIYDROGENIC IONS IN PLASMAS

For purpose of illustration, we consider the specific
case of a hydrogen-like ion (i.e., an ion with a single
electron bounda to it) in a plasma. (The extension to
multi-electron ions is straightforward but the details will
not be given here). A rigorous approach would require the
self-consistent solution of a non-local integro-differential

equation of the following form:

-2 (e My aw

.z elr',T)dr | E:J[AI'E: (r,r',E)o.(r"')|¢.(r)

2 xr = el J 1
|r - r I 3

= €,0,(r)

where 2: (r,r',E) 1is the non-local, energy-dependent "mass"
operator which involves knowledge of {Ej,¢j(r)}, the
energy-levels, and the orbitals of interest. The following
scheme substantially reduces the complexity of such a
calculation wiiile gtill retaining most of the many-body
effects.

Let ®nﬁ(r) he the bound-state wave function of the

electrons bound to the ion 2. ¢_,(r) could be any of the

ls, 2s, 2p ... sequence of stateg% Based on physical
considerations, we invoke the argument that the screening
term affecting the bound electron does not include the
part associated with the bound electron itself. 1In other
words, we exclude the self-interaction effect. The energy

level spectrum is then determined by the solution of
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- ch D¢nl(r)l ”q ¢n2(r) = €n£¢n£(r)

Note that one has a different equation for each of the
n{ states (ls, 2s, sp ... etc.). The advantage of this
scheme is that p(r,T) 1is the self-consistent charge
density profile already obtained from previous nonlinear
screening calculations for the same density and tempera-
ture. Note that the continuum charge density oc(r,T)

satisfies the requirement

o (T, TVEE = (2 - 1)
. > _ > > 2
Since o(r,T) = o _(E,T) + |¢n2(r)[
and all ¢n2(r) are normalized to unity:

o, (r) |2 ar = 1
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TABLE 1

Electronic Contribution to Equation of
State Pressure in Ryd/cm’

(The difference from ideal gas EOS shown in parenthesis)

Temperature (eV)-—
Electron
density
(cm™?) 0 0.0316 0.316 3.16
1024 { 2.003E24 2.004E24 2.006E24 2.025E24
(2.003E24) (2.002E24) (1.983E24) (1.793E24)
1023 } 0.7074E23 0.7076E23 0.7085E23 0.8225E23
1(0.7074E23) (0.7053E23) (0.6853E23) (0.590E23)
Lo 22 { 0.297E22 0.299E22 0.302E22 0.443E22
(0.297E22 (0.296E22 (0.279E22) (0.211E22)
Sl y C.140E21 0.155E21 0.175E21 0.321E21
‘ 110.140E21) (0.153E21) (0.151E21) (0.089E21)
Sl ) 0.067E20 0.078E20 0.095E20 0.259E20
) T.067820)  (0.076E20)  (0.071E20) (0.027E20)
33
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.275E24
.540E24)

.142E23
.407E23)

.8B89E22
.154E22)

.784E21
.049E21)

.750E20
.016E20)
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TABLE 2

ls, 2s,

Hydrogen Plasma at T =

Electron Densities.

2p Energy Levels for a Neon Impurity in a

100 eV for Three Different

(The numbers in parenthesis show the percentage
differences from corresponding Debye results.
Units in Rydbergs.)

Electron Potential
Density Used in Bound States
(en=3) Eq. (I1-3) 1s 2s 2p
v, -72.816 -5.316 -4.076
4.54x10%% v ~75.499 -6.623 -5.560
(3.7%) (24.63%) (36.4%)
Vogg -78.695 ~7.383 -6.591
(8.12) (38.9%) (61.72)
v, -79.369 ~8.747 ~7.939
2.47x10°%4 v, ~80.605 -9.487 -8.759
(1.6%) (8.5%) (10.38%)
Voge =-82.800 -9.930 -9.330
(4.3%) (13.53%) (17.58%)
v,  -86.482 -13.406 -13.022
1.0x10%% v, -86.842 -13.668 ~13.302
(0.4%) (2%) (2.22)
Ve -88.043 ~14.037 -13.781
(1.8%) (4.7%) (5.8%)
3
9
r
°
1
[
=
‘e
L 34
°
f
-
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Line
Shift

[e)]

.260
.061

(%)

2.896

3.570
3.154

1.530

1.540
1.460

0.738
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Figure 2. Total electronic exchange-correlation contribution
to the thermodynamic potential Q as a function of
temperature for two different electronic densities.
The dotted curve indicates the rapid decay of the
exchange effect with increasing temperature. The
high temperature part of Qxc is completely domi-
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nated by correlation effects.
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Figure 5. Energy-level spectrums for a Neon ion in a
hydrogen plasma. Self-consistent results
using Vegs yield drastic differences from the
corresponding Debye spectrum. This emphasizes
the importance of the nonlinear screening
method used in our model.
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