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Abstract

This paper ;rez=nZ . pcssible iscmerizations involving the 34

combinatorially distr.t eu-vr1ex 7olyhedra. Such isomerizations

are expressed in the form i 4 22 ,3 in which PI and P3 have the same

number of edges and the intermediate pclyhedron P2 has fewer edges than

P1 or P3. Isomerizations of this type are regarded 4s degenerate if PI

is combinatorialiy equivalent to P- and planar if ?, is a planar polygon.

Non-planar isomerizations can be classified as n-pyramidal processes where

n is the number of edges on the new face of P2 generated by edge removal

from PI; 4-pyra=idal processes also known as diamond-square-diamond

processes are the most favorable energetically, Degenerate

diamond-square-diamond iscmerizaticn prccessas involving the chemically

significant pentagonal bipyramid and capped cctahedron must involve an

intermediate polyhedron P2 having two fewer edges than the starring and

finishing polyhedra P! and P3, respectively. The chemically significant

* 4-capped trigonal prism is a possible intermediate polyhedron for such

degenerate double diamond-square-diamond isomerizations of either the

pentagonal bipyramid or the capped octahedron.
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1. Introduction

A topic of considerable interest to inorganic chemists is the

stereochemical nonrigidity in XLn coordination complexes (M = central

atom, generally a metal; L = ligands surrounding M). Several theoretical

approaches have been used to study such stereochemical nonrigidity. Thus

selected types of possible isomerizations of MLn polyhedra (n = 4 (ref.

2), 5 (ref. 3), 6 (ref. 4), and 8 (ref. 5)] have been represented

topologically2 ,6  as graphs in which the vertices represent different

polyhedral isomers and the edges represent possible one-step isomerizations.

Selected individual polyhedral isomerizations have been described in terms

of processes originally called diamond-square-diamond (dsd) processes 7

but which can be more systematically called 4-pyramidal processes.8

recent paper of this series 8 used Gale transformations9 to find all possible

non-planar isomerization processes for polyhedra having five and six

vertices. Using this approach all degenerate non-planar isomerizations

of five-vertex polyhedra were shcwn to be formulated as sequences of Berry

pseudorotation processes, the prototypical dsd or 4-pyramidal process.

Furthermore, study of the Gale transformations reveals that degenerate

nonplanar isomerizations of the seven combinatorially distinct six-vertex

polyhedra can be expressed in terms of six distinct types of 4-pyramidal

processes and the two prototypical 5-pyramidal processes.

The success of the Gale transformation approach for the study of

polyhedral isomerizations lies in the ability of Gale transformations

to reduce the dimensionality of the problem. Thus the Gale transform

of a (three-dimensional) polyhedron having v vertices can be imbedded

4 into (v-4)-dimensional space. 8  The Gale transform of a tetrahedron is

thus a single point, the Gale transform of a five-vertex polyhedron

(trigonal bipyramid or square pyramid) consists of points on a line, and

the Gale transform of any of the seven six-vertex polyhedra consists of

points in a plane. This dimensionality reduction is the key to the value

of Gale transforms in the study of isomerizations of polyhedra with "few"

vertices9 (i.e.,< 6 vertices).

Polyhedra having more than six vertices are also of interest to

inorganic chemists. However, Gale transformations offer no advantage

for the study of the isomerizations of such polyhedra since they no longer

.
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provide dimensionality reduction (i.e., for v > 6, v-4 > 3). However,

the experience provided by the Gale transformation study of five-and

six-vertex polyhedra8  coupled with the still manageable number of

combinatorially distinct seven-vertex polyhedra, namely 34 (ref. 10),

allows an exhaustive study of isomerizations of seven-vertex polyhedra.

This paper summarizes the results of such a study. Polyhedra having seven

vertices are of interest in representing the coordination polyhedra of

the large variety of known ML 7 complexes.
1 1

i
S2. Background

A polyhedral isomerization step may be defined 6 as a deformation

of a specific polyhedron P1 to the point that the vertices define a new

polyhedron P2" Of particular interest in the context of this work are

sequences of two polyhedral isomerization steps P 1  P2- P3 with the

* following properties:

(a) P3 has the same number of edges as Pl.

(b) P2 has one less edge than PI (or P3 ).

Such a polyhedral isomerization can be considered to result from removal

of one edge from P1 to give P2 followed by adding the edge back to P2

in a different way to give P3-. Note that by definition all polyhedra

involved in a sequence of isomerization steps must have the same number

of vertices. If Pl and P3 are combinatorically equivalent, the polyhedral

isomerization PI-)P 2-).P3 is called a degenerate polyhedral isomerization.

Let us now consider the effects of edge removal from PI on the face

structure of the resulting polyhedron P2. Removal of a single edge will

convert two faces into a single larger face, which can be called the pivot

face. If the pivot face has n edges, then the process P1 -P 2 -)P3 defined

as above will be an n-pyramidal process. Note that for- rearrangements

of polyhedra having v vertices, the admissible values for n are 4 < n

< v. A v-pyramidal polyhedral isomerization of a v-vertex system is a

planar polyhedral isomerization since the intermediate "polyhedron" P2

is actually a planar polygon with v vertices.

These concepts may be illustrated more concretely. A 4-pyramidal

*" process involves removal and subsequent addition of an edge in the following

* *,.- "*



way so that Pi and P3 have .the same number of edges:

P! P2  P 3

This, of course, is the familiar dsd process. 7 , 12  A 5-pyramidal process

merges adjacent triangle and quadrilateral faces into a pentagonal face

in the intermediate polyhedron P2 as follows:

D;
(2)

P I P2 P3

An example of this type of process is described in the Gale diagram paper.8

The 4-pyramidal and 5-pyramidal processes (1) and (2) can be combined

to give the following process:

KZ((3)
PI P2  P3

In this process (3) two edges are removed from P1 to give P2 and those

two edges are. added back to P2 in a different way to give P3. Such a

combination of an m-pyramidal and an n-pyramidal process where n>m is

conveniently classified as an n-pyramidal process since the intermediate

polyhedron P2 has a pivot face having n edges.

This paper also considers parallel polyhedral iscmerization processes.

In a parallel process two or more equivalent edges are removed from PI

to give P2 and the same number of edges are added in a different way to

equivalent sites of P2 to give P3. Examples of parallel processes include

the double dsd interconversion of two eight-vertex D2d-dodecahedra through

a square antiprismatic intermediate5 and the triple dsd interconversion

4
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of two. six-vertex octahedra through a trigonal prismatic intermediate

(the "Bailar twist"). 1 3

The total number of possible rearrangements for polyhedra having

v vertices can rapidly become unmanageably large with increasing v even

for cases where v is still of chemical interest. Energetic and symmetry

considerations can be used to select rearrangements of specific interest

in a chemical context. Thus rearrangements PI- P2-'P 3 involving a pivot

face in P2 having a minimum number of edges are energetically favored

since a minimum number of ligands need to approach coplanarity in the

intermediate polyhedron P2. A large number of coplanar ligands is

definitely unfavorable in terms of interligand repulsion and in extreme

cases (> 6 coplanar ligands) may *require impossible atomic orbital

hybridizations. Such energetic considerations make polyhedral

isomerizations involving dsd processes the most energetically favorable

in accord with the remarkable insight of Lipscomb nearly 20 years ago. 7

Similar considerations lead to exclusion of planar polyhedral isomerizations

for energetic reasons. Use of such energetic considerations appears to

be sufficient to reduce the number of interesting rearrangements of

seven-vertex polyhedra to a manageable number. However, use of a similar

approach to study rearrangements of eight-vertex polyhedra will undoubtedly

require not only such energetic considerations but also restriction to

polyhedral systems having certain symmetry since otherwise the total number

of combinatorially distinct eight-vertex polyhedra is an unmanageable

257 (ref. 10).

In exploring relatively large numbers of seven-vertex polyhedral

isomerizations, it has proven most convenient to consider first the

intermediate polyhedra P2 in rearrangements of the type P1  P2  P3. Such

polyhedra must necessarily have at least one non-triangular face and can

conveniently be called non-deltahedra. The five seven-vertex deltahedra

thus cannot be intermediate polyhedra P2 in polyhedral rearrangements.

* This reduces the number of possible seven-vertex intermediate polyhedra

to the 29 seven-vertex non-deltahedra. Furthermore, one of these

non-deltahedra, namely the hexagonal pyramid, can be the intermediate

polyhedron only in energetically unfavorable 6-pyramidal processes. For

• the remaining 28 seven-vertex non-deltahedra it is feasible to draw

diagonals across the non-triangular faces in all possible ways thereby

o0
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generating all possible transformations Pi -P 2 and P2-P3 involving the

non-deltahedron in question as P2. If two different ways of drawing

diagonals (conveniently called diagonalization) across the non-triangular

"4 faces of a given non-deltahedron lead to combinatorially equivalent

polyhedra P1 and P3 , then the non-deltahedron in question can serve as

the intermediate polyhedron P2 in a degenerate isomerization PI -P 2  -P3 -

3. Results

Federico !0 has described the properties of the 34 combinatorially

distinct polyhedra having seven faces. These polyhedra Pi can be converted

to their duals9 Pi by the following process:

(1) The vertices of P'i are located at the midpoints of the faces of Pi.

(2) Two vertices of Pi are connected by an edge if and only if the

*. corresponding faces of Pi share an edge.

The duals of the 34 polyhedra having seven faces are the 34 possible

combinatorially distinct polyhedra having seven vertices.

The properties of these 34 seven-vertex polyhedra are listed in Table

1 including the following for each polyhedron:

(1) The number of the dual in Federico's paper1 0 so that readers can

relate material in this paper to that earlier work. Federico's paper

contains the Schlegel diagrams9 of all of the polyhedra having seven faces.

* (2) The degrees of the vertices (vertex index) expressed as a four-digit

number v6evv 4v3 where vn is the number of vertices of degree n.

, (3) The sizes of the faces (face index) expressed as a four-digit number

f6 f5 f4 f3 where fn is the number of faces having n edges (and T is used

as a digit for ten).

S(4) The symmetry point group. 14

(5) Other distinctive features such as the number of edges of a particular

type where emen means an edge connecting a vertex of degree m with one

of degree n.

All of the non-deltahedra in Table I have been investigated as

intermediate polyhedra P2  for polyhedral rearrangements of the type

PI - P 2 -P 3. This has been done by the diagonalization process described

in the previous section, i.e., all possible diagonals have been drawn

across vertices of non-triangular faces and the resulting polyhedra have

6
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K

. been determined (and in Table 1 are indexed according to the Federico

number). For non-deltahedra having only triangular and quadrilateral

faces the number of different ways of drawing such diagonals is 2f4 where

f4  is the number of quadrilateral faces. For non-deltahedra having

pentagonal faces (E in Table 1) only diagonalization of the pentagoanl

face has been considered in Table I since diagonalization of a pentagonal

face is assumed to be energetically more favorable than diagonalization

of a quadrilateral face. There are five different ways of drawing a

diagonal across a pentagonal face to split the pentagonal face into a

triangular and a quadrilateral face.

A non-deltahedron P2 can be the intermediate polyhedron in a degenerate

polyhedral isomerization PI - P2 -
" P3  (P1  and P3  are combinatorically

equivalent; P2 has one less edge than PI or P3) if and only if two or

more different ways of diagonalizing a non-triangular face of P2 lead

to the same polyhedron corresponding to P1 in one case and P3 in the other

case. If the non-triangular face of P1 being diagonalized is quadrilateral,

such an isomerization is a single dsd process. Such degenerate

isomerizations are not particularly common and therefore are starred in

Table 1. Interestingly only one of the five seven-vertex deltahedra,

namely the low symmetry (C2 ) 713, can undergo degenerate isomerization

through a single dEd process. The other seven-vertex deltahedra require
multiple dsd processes or energetically relatively unfavorable 5-pyramidal

or 6-pyramidal processes for their degenerate polyhedral iscmerizations.

These considerations allow one to define a dsd rigidity index of

a polyhedron P1 as the number of edges that must be removed from PI in

a dsd manner (i.e., converting two adjacent triangular faces into a single

quadrilateral face) in order to give an intermediate polyhedron P2 , which

upon adding back the same number of edges gives a polyhedron P3

combinatorially equivalent to PI, i.e., P1 +P 2 -P 3  is a degenerate

isomerization involving only dsd provesses. Four of the five seven-vertex

deltahedra including the chemically significant I1  pentagonal bipyramid

and capped octahedron have a dsd rigidity index of 2 which means that a

4
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degenerate isomerization must involve loss of two edges to give an

. intermediate polyhedron having two quadrilateral faces. Four of the 28

seven-vertex polyhedra having only triangular and quadrilateral faces
cannot undergo degenerate isomerizations involving only dsd (4-pyramidal)

processes and therefore have a dsd rigidity index of 0. The degenerate

isomerization of such polyhedra must involve less energetically favorable

n-pyramidal (n>5) processes. None of the seven-vertex polyhedra having

* a dsd rigidity index of 0 has been found to be chemically significant.

The relationships between dsd processes involving seven-vertex

deltahedra are depicted in the dsd-graDhs shown in Figure 1. The vertices

of the dsd graphs represent seven-vertex polyhedra designated by the

Federico numbers of their duals as given in Table 1. The edges of the

dsd graph represent a "diamond-square'" (Pj- P2  in (1) abov-' or a

"square-diamond" (P2 - P 3 in (i) above) isomerization step in a process

depending upon the direction the edge is traversed. Vertice. ar the left

of these dsd graphs represent seven-vertex deltahedra having ten ngular

faces (i.e., Federico numbers #11, #12, 113, #20, and #23), vertices in

the center of these dsd graphs represent seven-vertex polyhedra having

eight triangular faces and one quadrilateral face (i.e., Federico numbers

#14, 7#13, 416, #21, ,22, 24, #25, and #28), and vertices on the right

of these dsd graphs represent seven-vertex polyhedra having six triangular

* and two quadrilateral faces (i.e., Federico numbers #18, #26, #27, #30,

#31, #32, #33, #36, and #37). Degenerate single dsd processes (i.e.,

those corresponding to starred polyhedra in the diagonalization column

of Table 1) appear as double edges in the dsd graphs. Degenerate double

dsd processes are circuits of length 4 including a left vertex corresponding

to the starting deltahedron. In forming these circuits only a double

edge can be traversed twice; a single edge can only be traversed once.

The dsd graphs in Figure 1 clearly indicate the dsd rigidity index

of I for the C2 deltahedron #13 (i.e., through #16 or #21 as an

intermediate) and the dsd rigidity indices of 2 for the other four

seven-vertex deltahedra including the chemically significant pentagonal

bipyramid (#23) and the capped octahedron (#20). Of particular interest

are the degenerate double dsd isomerizations of these two polyhedra through

the route #20 or #23 - #28- #36-#28-#20 or #23 since the intermediate

polyhedron #36 is the capped trigonal prism which is a chemically



significant non-deltahedral seven-vertex coordination polyhedron11  with

* six triangular and two quadrilateral (rectangular) faces. In the case

of degenerate isomerization of the pentagonal bipyramid the subtraction

of two edges to form the capped trigonal prism intermediate and the

subsequent addition of two edges to reform a combinatorially equivalent

pentagonal bipyramid can each be viewed as concerted processes so that

the symmetry of this system never falls below the C 2v symmetry of the

*capped trigonal prism. This is a good example of two parallel dsd processes

. and is feasible since the C2v point group of the capped trigonal prism

is a subgroup of the D5h point group of the pentagonal bipyramid. A similar

concerted view of the degenerate double dsd iscmerization of a capped

octahedron through a capped trigonal prismatic intermediate is not feasible

since the two edges of the capped octahedron which are removed to form

a capped trigonal prism are non-equivalent. This is a consequence of

the fact that the C2v point group of the capped trigonal prism is not

a subgroup of the C3v point group of the capped octahedron. Despite the

attractiveness of the degenerate isomerizations of the pentagonal bipyramid

and the capped octahedron through capped trigonal prismatic intermediates

because of the relatively high symmetry of the key polyhedra and the

chemical significance of the intermediate polyhedron, Figure 1 indicates

a variety of other possible dsd processes for the degenerate isomerization

of the pentagonal bipyramid and the capped octahedron. Distinguishing

between these diverse dsd processes is likely at best to be extremely

difficult experimentally, although differences in s)7=.yetry might be

exploited in very carefully designed low temperature n.m.r. experiments

on specially constructed systems in order to obtain some relevant

information.
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FIGURE 1
DSD GRAPHS FOR 7-VERTEX DELTAHEDRA
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