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\ ABSTRACT

o

if ~— The young field of statistical diagnostics has produced an array of

i competing statistics for measuring the influence of individual cases. Two of
the most popular measures for linear regression are Cook's (1977) Dy and

Belsley, Kuh and Welsch's (1980) DFFITS;. Using the likelihood displacemen

- (Cook and Weisberg, 1982) as a unifying concept, these two measures are
a compared. ner
;:
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SIGNIFICANCE AND EXPLANATION C

. - _f}w
“The identification of influential cases seems generally accepted as an \

important part of linear regression analysis. Although there are many diag- f:il

T

nostic methods available for this, two specific diagnostic statistics;;pi as fmj

T

T

proposed by Cook 11937;? and DFEEESI as proposed by Belsley, Kuh and Welsch

oor

(1980) ~~appear to be used most frequently since they are available in many
widely distributed regression packages. For further progress and a deeper
understanding of available methodology, larger perspectives seem necessary. ~__
We have found the likelihood displacement to be particularly well-suited for

this study .
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;i THE LIKELIHOOD DISPLACEMENT: A UNIFYING R
h PRINCIPLE FOR INFLUENCE MEASURES

5 R. Dennis Cook*, Daniel Pena** and Sanford Weisberg® »
N R
A 1. INTRODUCTION O
- AL

The identification of influential cases seems generally accepted as an
important part of linear regression analysis. Although there are many
diagnostic methods available for this, two specific diagnostic statistics--D1
as proposed by Cook (1977), and DFFITS1 as proposed by Belsley, Kuh and Welsch
(1980)--appear to be used most frequently since they are avallable in many
widely distributed regression packages.

A number of authors, including Atkinson (1981), Belsley, Kuh and Welsch
(1980), Cook and Weisberg (1982), Hoaglin and Welsch (1978) and Welsch (1982),
use special pleading to justify the use of D1 or DFFITSi, generally
concentrating on isolated characteristics of these statistica. Although
useful, such narrow arguments are not likely to resolve important differences
:f or even allow bilateral recognition of alternative views., One way to further
understand this is to cast both diagnostics into a common framework so that

they can be judged in a larger perspective. Such a framework is provided by

the likelihood displacement (distance) as developed by Cook and Weisberg

P

o

" .2 B
v e

’
’

(1982, p. 182).

B S

In section 2 we review the likelihood displacement and the central results

g "0—‘.

- for linear regression. In section 3 we show that both D1 and DFFITS1 fit

conveniently into this framework, and address some of the specific arguments

LT e
", vy

alluded to above. Section U contains our concluding comments,
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2. LIKELIHOOD DISPLACEMENT
i Let 8 be a px1 parameter vector partitioned as eT = (ef.e;). where 91 is
p1x1. and let L(6;Z) = L(el.ez;z) denote the log likelihood function for 6

based on data Z. To help with later ideas, Figure 1 illustrates the contours

T

of L(0;Z) when p=2, The maximum likelihood estimate (mle) 6 = (e?,e:) is

indicated in Figure 1 by the point F.

In influence analysis we often wish to compare the full data mle 8 to the

T T o
(1) 1(1)*72(1)

subscript "(1)" means "without case i{". One useful and general method for

mle 6 = (8 ) obtained from the log likelihood L(e;z(i)) where the

comparing 6 and 6(1) is based on the likelihood displacement

Lni(e) = 2[L(06;Z) - L(6(1)=Z)J (1)

In Figure 1, this displacement corresponds to computing twice the difference
in the heights of the full data log likelihood at ; and at 8(1). If this
difference in heights is large, case i is called influential since deleting it
may cause a substantial change in important conclusions. The likelihood
displacement judges all cases falling on the same contour of L to be equally
influential. If desirable, this displacement can be transformed to a more
familiar scale by comparing it to percentiles of a chi-squared distribution
with p degrees of freedom. This comparison gives the level of the smallest

likelihood region for & that contains e(i) (Cox and Hinkley, 1974, Chapter 9).

In many problems, a subset of 6 can be regarded as nuisance parameters so
that only the remaining parameters are of interest. Suppose that 91 is of

interest while 02 represents the nuisance parameters. Define the implicit

function 3(91). such that, for fixed 6., L(61.8(61);Z) is maximized; 3(01) is

. -
. ‘u v
»
Ell




Figure 1. Contours of a log 1ikelihood function L(e],ez;Z)




> 4
; given as a curved line in Figure 1. The likelihood displacement for 6, ;”"
1t HEC R
I ignoring 02 can now be defined as
3
l:‘ .
"t_-
=l . ﬁ. _ ~ ~ . .‘
i LD, (6, 0,) = 2{L(6:2) = Ll6, (.88, ,,):2]] (2) s
57 In Figure 1, the point P is obtained by moving the point e(i) parallel to the ;'f
L
02 axis until it reaches the curve g. Then LD1(61|62) i1s just twice the T
difference in height of the point F and the point P. Again, LDI(°1|°2) may be jff
calibrated by comparison to the percentiles of a chi-squared distribution, now ;Ql_
..

with P, degrees of freedom.

It is fairly straightforward to apply the general results (1) and (2) to

the standard linear regression model . s

‘
“h

Y =XB + ¢ (3)

LSEARY
.
.

where Y = (yl) ifs an nx1 vector of observable responses, the nxp matrix X is
known and has full rank, B is a px1 vector of unknown parameters and the nxi
vector of unobservable errors € is at least tentatively assumed to follow a
multivariate normal distribution with mean 0 and variance 021. Let E and ;2
denote the maximum likelihood estimators of g and 02. respectively, and let
He= X(XTX).1XT so that the fitted values ; and the residuals e can be Hfltten

Y = Hy and e = (I-H)Y. The diagonal elements of H will be denoted by hi'

Cook and Weisberg (1982) show that




LDl(alaz) = n log [-Egs— D, ¢ 1) (4)

where D1 is the statistic proposed by Cook (1977):

~

~ "~ 2 2
- |lY- Ygyl1%/ps
h r

i i
- 1‘h1 ¢ P (5)

172

where 92 - ere/(n-p). and ry = eils(1bhi) is the 1-th internally

Studentized residual. Since LDi(Bloz) is a monotonic function of Di' it is
equivalent to D1 for the purpose of ordering cases based on influence. When

2 replaced by 2.

az is known, LDi(s) is equal to D1 with ps
3. LD1 and DFFITS1
All of the statistics considered here depend on the leverages h1 and the

residuals °1' For later convenience, define

2
1

ere(14h1)

b - 1-1 '2'000." (6)

1

Under model (3) b1 has a beta distribution with parameters 1/2 and (n-p-1)/2.

Using (&), (5) and (6) it is immediate that

and thus
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b,h

2 i
LD, (8}0%) = n log | TRt } (1

l We now turn to the statistic DFFITSf which is defined as (Belsley, Kuh and

Welsch 1980)
-l 2 33“1
. DFFITS, =
: 1 82 (-n)?
: (1) 1
i
i Using the relationship (Cook and Weisberg, 1982, eq. (2.2.8))
N g
§ (1) _n_ .,
l o

: it follows easily that DFFITS1 can be expressed in the form

2 b . M
DFFI‘I‘S1 - (n—p91)(7:5;)(7:"IJ (9)

i,

We shall also require expressions for LDI(B.oZ) and LD1(02|B); these are

derived in the Appendix to be

o e

b
2 n i n-1
LD, (8,0%) = n log(n-—-—_1) +n log(1=b,) + (—-—1_ 1)("“1) -1 (10)
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2 n nb191
LD, (o |8) = n 1°8(E:T) + n log(1=b,) + T:EI- (11)

Equation (11) depends only on b1 and not the leverage hi‘ Since b1 is a
monotonic transformation of the usual test statistic for a mean shift outlier,
the study of the likelihood displacement for 02 ignoring 8 is equivalent to
the study of mean shift outliers,
The full likelihood displacement LDl(B.oz) is monotonically increasing in
hi' as is clear from an inspection of (10). In general, ht 2 0 and for models
1

with a constant hi b5 n- . A sufficient condition for (10) to be monotonic in

b1 is h1 b n-1. Interestingly, LDI(B.oz) reduces to LDl(azla) when h1 is
replaced with its minimum value h1 = 0. In other words, when
h, = 0, LD, (8]0?) = 0 and LD, (8,0%) = L, (¢?[8).

We now relate DFFI'rs1 to the likelihood displacement by subtracting

LDi(azla) from LDi(B;oz).

b nb,~1
2, _ 2,y o4 () . 4
LD, (8,0%) = LD, (¢“|8) b, 1B, 1 5,
h b
~ i i
- (n—1) — ¢ = . (12)
T=h, ~ 1=b,
Comparing (12) and (9) we see that
2, . 2 R 2
LD, (8,0%) = LD, (o°|8) a=p=7 DFFITS| . (1) (13)

The factor (n=1)/(n~p~1) appears in this fundamental relationship since the
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likelihood displacement is based on the maximum likelihood estimator of 02

while DFFITS1 is based on the usual bias adjusted estimator of 02.

3.1 A Simple Illustration

For illustration, we consider simple regression through the origin so that
complete contour plots can be drawn. The log likelihood for (8.02), given

data Z « (X,Y), is

2 n 2, - 1 2
L(B,0°;Z) = = 3 log(2me®) - — ) (v, = Bxy) (1%)
20
and the value of L at the mle is
L(8,0%:2) = - 3 [1log (2r0®) + 1] (15)

To compute LDi(Bloz) we need to find the function 31(8) such that L(B.g,(B);Z)
is maximized for each B. Differentiating (14) with respect to 02 and setting

the result to zero gives

1 2
8,(8) = o Z(y1 - Bx,) (16)

Similarly, the function 32(02) that maximizes L(B,ozzz) for each 02 is given

by o
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g,(0%) = —3 an

We see that 32(02) does not depend on az.

As a special case of this problem, we take n=4 and (x ) = (0,0),

1'Y4
(.2,.2), (.2,-.2), (/.92, ¥/.92). For these data ||X|| = [[Y|| = 1, and

all points but the third fall on a common line. The all-but-one-point-on-a-
line problem is mentioned by Dempster and Green (1981), and promoted by Welsch

(1982) as a reason for the use of DFFITS, over Di’ The general idea is that

i
DFFITS1 will always find the point that lies off the line to be most

influential since ¢ = 0, while D, may identify a point on the line as most

2

(1) 1
influential, a circumstance that is evidently counter to Welsch's (1982)
intuition. Although this example is relatively simple, its essential
characteristics are perfectly general.

Table 1 lists the maximum likelihood estimates (E.Gz) and <§(1).3f1)).
i=1,2,3,4. Figure 2 gives a contour plot of L(B.OZ:Z) as defined in (14), 1In
addition, 31(8). equation (16), is indicated by the short dashes, and 32(02),
equation (17), is indicated by the long dashes. The peak of L<§,32> is

indicated by "F'l and has Value given by (15)0 The pOiﬂtS (8(1)002

(1)) are

marked by i=1,2,3,4,

The four influence measures given in (7), (9), (10) and (11) correspond to
the differences in heights between various points in Figure 2. Consider case
4, for example. The full likelihood displacement LDu(B.oz) is simply twice
the difference in the heights of the points located at "F" and "4", For the
measure LD"(B|02), the point "4" {s moved parallel to the ordinate until it
falls on the curve 31(8); the final position is indicated by "UA"™ in Figure 2.

Now LD“(Bloz) is just twice the difference in the heights of the points at "F"

]




, 10 )
. '
i Table 1 e
. Maximum likelihood estimates for simple regression through the origin
A Index Case Deleted _B _0_2
F none .920 .0382
1 (0,0) .920 .0509 Sl
2 (.2,.2) 917 .0511 L
3 (.2,~.2) 1 0 e

o=

/.92, /.92) 0 .0266
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Figure 2. Contour plot of the log 11kelihood function L(B,az) for
regressfon through the origin.
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and "UA", Similarly, LDn(OZIB) is obtained by using the heights at "F" and

"y,

Each of the measures LDu(B.oz), LDu(Bloz) and LDu(oZIB) uses the maximum
of L as a reference for assessing influence. In contrast, DFFITSﬁ assesses
influence by using the heights of points "i* and "4B", both of which lie on
the side of L. If DFFITS% is useful then surely the analogous measure
pbtalned by using point "4" and "Y4A" is useful also.

An inspection of Figure 2 yields the following qualitative conclusions.
First, cases 1 and 2 are relatively uninfluential. Second, case 4 is
influential for (8,02) and g, but not for 02 alone. Finally, case 3 is

influential for (8,02) and 02

,» but not for 8 alone., Notice that "3" falls
Just to the right of the vertical line (17) at 8 « 8 = .92 where L = - .,
Returning to the all-points-but-one-on-a-line problem, we now see that

LDi(Blaz) will not identify case 3 to be the most influential since "3" will ¢

be moved from ~« to the g,(B) curve prior to the computation of LDI(Bloz).

This movement loses all information on changes in 02, but is essential if we

are to isolate changes in location as LDi(Bfoz) is designed to do.

3.2 Contour Comparisons

Further insights can be obtained by comparing the contours of the four

measures in the (b,,h,) plane. The contours for LDI(B,az), LDi(B'°2) and
DFFITSf are given in Figures 3-5, respectively. Recall that :"?-T

LDi(oZIB) - LDl(B,oz) when h, = 0; thus the contours for LDi(02|B) are jl{i%

i
parallel to the x-axis and they intersect the y-axis at the same points as the S
ST

contours of LDI(B.oz) in Figure 3.

According to Welsch (1982), DFFITS1 is designed to measure changes in

location and scale simultaneously. With this in mind, we first compare
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Figure 4, LD,(BIoZ) as a function of (hy,b;). Contours are as
given in Figure 3,
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Figures 3 and 5. The contours in these two figures are remarkably simjilar

when b1 < hl; when this condition holds we can expect DFFITsf = LDi(B.uz).

When b1 > hi' the two sets of contours are quite different and LDI(S,oz) is
considerably more sensitive to increases in bi' Evidently, DFFI‘rs1 is not
sufficiently sensitive to changes in scale. Numerical illustrations of this
insensitivity are easily constructed. Suppose, for example, that b1 = .99 so
that from (8) ;%1) = .01 0%, With b, 2
arbitrarily small by letting h1 » Of Under these same conditions, however,
LDl(B.oz) » LDi(ozls). This example can be used to formulate a more realistic

fixed at .99, DFFITS, can be made

all-points-but-one-nearly-on-a-line problem in which DFFITS1 may fail to find
the point that is far from the line.

A variety of other useful insights can be obtained by comparing Figures 3-
5. For example, LDi(BIoz) responds primarily to h, while LDi(czls) 1s

independent of h Clearly, leverage is more important for changes in

1'
coefficients while outliers (as reflected by bi) are important for changes in

scale. When examining Figures 3-5 it should be remembered that only DFFITSf

and LDI(B,GZ) are directly comparable since the other measures concentrate on
selected aspects of the problem.

Atkinson (1981) indicates a preference for measures like DFFITS1 since

they emphasize outliers more than D Relative to the likelihood

1.
displacement, such emphasis is insufficient if both 8 and 02 are of interest

and is oversufficient 1f interest centers on 8 alone. Generally, Figures 3-5

2
i i°

Welsch (1982) favors yet another measure of influence that can be written

show that DFFITS; lies between LD, (8,0°) and LD, (8|o°) when b > h




{n=1) 2
{ = “op- ¢ DFFITS] . (14)

1

This measure is intended to reflect the influence of cases on location, scale

and the shape of the covariance matrix. From the above discussion it seems

clear that the shape information is coming at the substantial expense of
information on coefficients and scale. Perhaps it is unwise to expect so much

information from a single number.

DISCUSSION

Many of the initial developments in the area of influence assessment are
based on ad hoc reasoning, as often happens during the infancy of any new
methodology. For further progress and a deeper understanding of available
methodology, larger peraspectives seem necessary. We have found the likelihood
displacement to be particularly well-suited for the study of influence,
although other reasonable frameworks are possidble, of course, For example,
Johnson and Geisser (1983) adopt a predictivist view.

Within the likelihood framework, we conclude that LDI(B.az) is the most
useful one-number summary of influence in the absence of more specific
concerns. This conclusion follows from two observations. First, LDI(BIoz)
and LDl(oZIB) are bounded above by LDI(B.oz). Cases that are uninfluential
for (B.oz) must therefore be uninfluential for 8 and 02 considered separately.
The specific concerns reflected by LDi(Bloz) and LDl(ozls) need to be
addressed only when LDi(B,oz) is sufficlently large. Second, DFFI‘!‘S1 and
related measures like Atkinson's (1981, 1982) modified Cook statistic will be

essentially equivalent to LDl(B.oz) when h, > b,; otherwise these measures are

i
not sufficiently sensitive to changes in scale.




Since coefficients are often a major concern in linear regression,

| LDI(Bloz) or, equivalently, D, can be added to give a useful two-number

i
summary of influence. If a subset 81 of BT - (8?,8;) is of special interest,
LDl(Bloz) can be refined further by using the general form given in (2).

l Since the three likelihood displacements considered here depend only on n,
b1 and hi' other summaries might include various combinations or
transformations (e.g., to Studentized residuals) of these quantities. Such

I mixed summaries require different scales for interpretation and are therefore
somewhat more difficult to comprehend than constant scale summaries. Of

course, b, and h1 might be useful for purposes other than an assessment of

i
influence,
Finally, equations (12) shows one way to generalize DFFITS beyond linear

models.
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APPENDIX

Derivation of Equations (10) and (11)

By definition,

2 A~y -~ Az
LDi(B.U ) = Z[L(Boﬂ ) ~ L(B(l)'q(i))]

where
L(B.oz) - - g log 2 - % - % log 2%
- TS 2
A & - n(y, - x.8,,,)
LB(g)o(yy) = = 3 08 0(yy 7 3 1 — 73 3 log 2
J-l 0(1)
Since

T2 2 gy o2 2
J ;2 o2
(1) (1)

it follows that

2 2
] e
LDI(B.aZ) = n log -4%1 + —;%l -1

g 0(1)

Now, using (8)
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2 -
e(i)(n 1) )

ozn(1-b1)

2 n
LDI(B.a ) = n log ATt h log (1 bl) + 1

n bi(n-1)
-nlogn—_T+nlog (1‘b1)+m’1

as given by (10).

To derive (11), by definition,

2 22 -2 ~2
LD, (o°|8) = 2[L(8,0%) = L(8(o(())o(y,]

Since the maximum likelihood estimator of B8 does not depend on 02. g(ofi)) -8

and thus
o2 n ~2 n;2 n
L(B.Ou)) - = > log 0“) - 2.—2—- - 3 log 2n .
o
(1)
Then, we obtain
;2 -
2 (1) o _
LD, (c“[8) = n log —z3~ + n (x3— = 1) .
0 1)

Equation (11) now follows from this and equation (8).
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