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ABSTRACT

- The young field of statistical diagnostics has produced an array of

competing statistics for measuring the influence of individual cases. Two of

the most popular measures for linear regression are Cook's (1977) Di and

Belsley, Kuh and Welsch's (1980) DFFITSi. Using the likelihood displacemen

(Cook and Weisberg, 1982) as a unifying concept, these two measures are

compared. ,
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SIGNIFICANCE AND EXPLANATION

-The identification of influential cases seems generally accepted as an

important part of linear regression analysis. Although there are many diag-

nostic methods available for this, two specific diagnostic statistics:2i as

proposed by Cook 1"71 and DFFITSi as proposed by Belsley, Kuh and Welsch

. (1980)--appear to be used most frequently since they are available in many

* widely distributed regression packages. For further progress and a deeper

. . understanding of available methodology, larger perspectives seem necessary.

We have found the likelihood displacement to be particularly well-suited for

this study
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THE LIKELIHOOD DISPLACEMENT: A UNIFYING

PRINCIPLE FOR INFLUENCE MEASURES

R. Dennis Cook*, Daniel Pena** and Sanford Weisberg* Ilk

1. INTRODUCTION

The identification of influential cases seems generally accepted as an

important part of linear regression analysis. Although there are many

diagnostic methods available for this, two specific diagnostic statistics--DI ,

as proposed by Cook (1977), and DFFITS1 as proposed by Belsley, Kuh and Welsch "

(1980)--appear to be used most frequently since they are available in many

widely distributed regression packages.

A number of authors, including Atkinson (1981), Belsley, Kuh and Welsch

(1980), Cook and Weisberg (1982), Hoaglin and Welsch (1978) and Welsch (1982),

use special pleading to justify the use of Di or DFFITS1 , generally

concentrating on isolated characteristics of these statistics. Although

useful, such narrow arguments are not likely to resolve important differences

or even allow bilateral recognition of alternative views. One way to further

understand this is to cast both diagnostics into a common framework so that

they can be judged in a larger perspective. Such a framework is provided by

the likelihood displacement (distance) as developed by Cook and Weisberg

(1982, p. 182).

In section 2 we review the likelihood displacement and the central results

for linear regression. In section 3 we show that both Di and DFFITS fit

conveniently into this framework, and address some of the specific arguments

alluded to above. Section 4 contains our concluding comments.

* Department of Applied Statistics, University of Minnesota, St. Paul, MN
- -55108.

Escuela de Ingenieros Industriales, Universidad Polit6cnica de Madrid,
Madrid, Spain.

Sponsored by the United States Army under Contract No. DAAG29-80-C-0041.
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2. LIKELIHOOD DISPLACEMENT ,

Let 6 be a pxl parameter vector partitioned as 6T TT T hi
- (e1,e2), where 0 is

pxl1 and let L(e;Z) - L(019 2 ;Z) denote the log likelihood function for 0

based on data Z. To help with later ideas, Figure 1 illustrates the contours S

AT AT ;T)i
of L(S;Z) when p-2. The maximum likelihood estimate (mle) 0 - T(0 T  is

indicated in Figure I by the point F.

In influence analysis we often wish to compare the full data mle 0 to the .

AT -T AT
mle(i) (61(i), e2(i)) obtained from the log likelihood L(O;Z(i)) where the

subscript "(i)" means "without case i". One useful and general method for "''.

comparing 0 and 0(i) is based on the likelihood displacement

LD (0) - 2[L(6;Z) - L(0(1);Z)J (1)
PL

In Figure 1, this displacement corresponds to computing twice the difference

In the heights of the full data log likelihood at 0 and at e If this~(i)"

difference in heights is large, case I is called influential since deleting it

may cause a substantial change in important conclusions. The likelihood

displacement judges all cases falling on the same contour of L to be equally

influential. If desirable, this displacement can be transformed to a more

familiar scale by comparing it to percentiles of a chi-squared distribution

with p degrees of freedom. This comparison gives the level of the smallest

likelihood region for 0 that contains 0 (Cox and Hinkley, 197, Chapter 9).

In many problems, a subset of 0 can be regarded as nuisance parameters so

that only the remaining parameters are of interest. Suppose that 0 is of 
1 A

interest while 02 represents the nuisance parameters. Define the implicit

function g(81 ), such that, for fixed 0,, L(01 ,g(81 );Z) is maximized; g(01 ) is

.- 79
,'.,'..,..-.,'." .'-.'...-,,'.', "...,....,-'.-'............................................................... .-..-... '...-......,...'..-,.....

*'' - . " .. . . . . . . . . . . . . .-j - .- "• .* . ." " . . .
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Figure 1. Contours of a log likelihood function L(e8196pZ)
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given as a curved line in Figure 1. The likelihood displacement for 01

Ignoring 02 can now be defined as

LDi(01102) 21L(O;Z) - L6 1e(i),g(e1 (i));ZJI (2)

1• 1102)

In Figure 1, the point P is obtained by moving the point 0(, , parallel to the

02 axis until it reaches the curve g. Then LDi(e102) is just twice the

difference in height of the point F and the point P. Again, LDi(e102) may be

calibrated by comparison to the percentiles of a chi-squared distribution, now

with p1 degrees of freedom.

It Is fairly straightforward to apply the general results (1) and (2) to

the standard linear regression model

- Y X0+ (3)

where Y - (y1 ) is an nxl vector of observable responses, the nxp matrix X is

known and has full rank, B is a pxl vector of unknown parameters and the nxl

vector of unobservable errors E is at least tentatively assumed to follow a

2 a 2multivariate normal distribution with mean 0 and variance a I. Let B and a

denote the maximum likelihood estimators of B and a respectively, and let

* T -1iTaH X(X X) X so that the fitted values Y and the residuals e can be written

* - Hy and e - (I-H)Y. The diagonal elements of H will be denoted by hi.

Cook and Weisberg (1982) show that

.. • °.. .

# ..... . .. ....... • .*...-.....
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ILD (old 2) n log D D 1  (41)ni-p

where D Is the statistic proposed by Cook (1977):
S!

(- )TXTX(
D (- X ps

2 2--,
- II- Y() 2I ps

h- - . .L (5)
1-hi P .:i

2  T 1/2where - e e/(n-p), and rI I el/s (1-h) is the i-th internally

Studentized residual. Since LD (01o2) is a monotonic function of DI, It is

equivalent to D for the purpose of ordering cases based on influence. When
22 2. "'

Is known, LDi(0) Is equal to D1 with ps replaced by v

3. LDi and DFFITS"

All of the statistics considered here depend on the leverages hI and the

residuals e. For later convenience, define

2

bI  -1,2,...,n (6)e e(1-h )

Under model (3) bi has a beta distribution with parameters 1/2 and (n-p-)/2.

Using (4), (5) and (6) It Is immediate that

h
D (n-p) b I
i p i -hi

and thus

- " -,--,, - €~~~.. ... .. .. ...... ... z,. ... _.'.. ..... "_.... .. . " . ."...'.. .. ,'-."



.- '- -

* C.. -..

6

b hbD 1(010 2 ) = n log I l-h- + 1 1 (7)

2We now turn to the statistic DFFITSI which is defined as (Belsley, Kuh and

Welsch 1980)

eh

DFFITS 2

s (1-hl)

Using the relationship (Cook and Weisberg, 1982, eq. (2.2.8))

^2

'2 - -T(-bi (8)

,-*" it follows easily that DFFITS can be expressed in the form r

i

2b i  h i  :: .
DFFITS2 =(n-p-1

LDI I 2  nd ( ) thsI:'":

We shall also require expressions for LDi(0.0 2 and LDI(a 2 1 ); these are

derived in the Appendix to be

b9

LDi(0.0 2 ) - n log( nn + n log('-b 1 ) + (1- 21) - 1 (10)

and

....................................

~~~~.. .......................... *..- -. . .-, . .".- ."-" . .•"''". """"""". -- • "- ""'"' "'-' " ."- - ,".. , "': " -:" . ", '- " ",.'.,," ""."-" " "' "'." "..,' '"
%- %, *
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nbn-1 %S"LDQ( 210) ± oC"-T o(- i  (11

Equation (11) depends only on b1 and not the leverage h,. Since b is a

monotonic transformation of the usual teat statistic for a mean shift outlier,

the study of the likelihood displacement for a ignoring 0 is equivalent to

the study of mean shift outliers.
2P

The full likelihood displacement LD (0,02) is monotonically Increasing In

hi, as is clear from an inspection of (10). In general, hi 0 and for models

with a constant hi I n 1. A sufficient condition for (10) to be monotonic in

bI is hi n 1 . Interestingly, LDi(0.02) reduces to LD1(o2 10) when hi is
replaced with its minimum value h- 0. In other words, when

hi 0, LD1(B o2) -0 and LDl(0.02) - LDi(02 10). L

We now relate DFFITSi to the likelihood displacement by subtracting

2 2
LD ( 0210) from LD1 (ov ),,

2 ( b (n-1) 1 nbl-"LI(u2jB) 1-b 1-h ---b

Comparing (12) and (9) we see that '

LD(0.DFFITS () (13).( . . .. .n--. i
Compfaing (n12)landp(9) wersee n thfnaetlr tinhpsnete

• 2 2•e"'i

.-'%% % % .. % ". . • .. D o "."( " . " ", a-°,. )•D ( 0 ii" D"F. IT . (13).". °."%". .". . "% . . °"."."• . . -. .



likelihood displacement is based on the maximum likelihood estimator of a 2

2while DFFITS is based on the usual bias adjusted estimator of a

3.1 A Simple Illustration 0

For illustration, we consider simple regression through the origin so that

2complete contour plots can be drawn. The log likelihood for ($,a ) given

data Z (X,Y), is

2(~ ;Z) lo(22o 1 y O, x) (14)2 2a

and the value of L at the ale is

n0

L.(B0a2;Z) ( log (2%0) 1 (15)

2p

22

is maximized for each B. Differentiating (14~) with respect to a 2and setting

the result to zero gives

g1(0) 1 Py Ox x 2  (16)

2 2 2Similarly, the function g (a )that maximizes L(B,a ;Z) for each a Is given
2

by
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i2 xiy i  _
92 (a (17)

2 2We see that g2(a) does not depend on a

As a special case or this problem, we take n-4 and (xi.Yi- (0,0).

(.2,.2), (.2,-.2), (/.92, /.92). For these data Ilxil - Illl - 1. and

all points but the third fall on a common line. The all-but-one-point-on-a-

line problem is mentioned by Dempster and Green (1981), and promoted by Welsch

(1982) as a reason for the use of DFFITS1 over Di. The general ±dea is that

DFFITS1 will always find the point that lies off the line to be most

influential since 0, while D may identify a point on the line as most

influential, a circumstance that is evidently counter to Welsch's (1982)

intuition. Although this example is relatively simple, its essential

characteristics are perfectly general.

a a2 a a2
Table 1 lists the maximum likelihood estimates (S,o2 ) and (0

2• %"

1-1,2,3,4. Figure 2 gives a contour plot of L(B,o 2;Z) as defined in (14). In

2addition, g1 (0), equation (16), is indicated by the short dashes, and 92 (a),

equation (17), is indicated by the long dashes. The peak of L(B,2) is

indicated by "F" and has value given by (15). The points CB(),ai)) are

marked by i-1,2,3,4.

The four influence measures given in (7), (9), (10) and (11) correspond to

the differences in heights between various points in Figure 2. Consider case

24, for example. The full likelihood displacement LD 4 (B,o ) is simply twice

the difference in the heights of the points located at "F" and "". For the

measure LD(6 1a 2), the point "4" is moved parallel to the ordinate until it

falls on the curve g1 (0); the final position is indicated by "4A" in Figure 2.

Now LD1 (81a 2 ) is just twice the difference in the heights of the points at "F"!:::::!4



10

Table 1 .

Maximum likelihood estimates for simple regression through the origin

Index Case Deleted 0

F none .920 .0382

*1 (0,0) .920 .0509

*2 (.2,.2) .917 .0511

3 (2.)1 0

* J (/~ v~~)0 .0266

-0



0.4493

a2

0.354510

0.2598 '
4A

0.1647

-0.6258.

-1.000 -8.400 0.200 9.800 1.480 2.008

28

Figure 2. Contour plot of the log likelihood function L(O.a) for
regression through the origin.
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2and "Ue". Similarly, LDle(0 10) is obtained by using the heights at "F" and

Each of the measures LDe(0.0 2) LDle(B 1 2) and LD (a 210) uses the maximum

* ... -

21

*of L. as a reference for assessing influence. In contrast, DFFITS 1 assesses

influence by using the heights of points "4" and "W, both of which lie on

2the side of L.. If DFFITSe is useful then surely the analogous measure

obtained by using point "4" and "UA" is useful also.

An inspection of Figure 2 yields the following qualitative conclusions.

First, cases 1 and 2 are relatively uninfluential. Second, case s is

influential for (B,o 2 and B, but not for a 2alone. Finally, case 3 is

influential for ($,a2) and a but not for alone. Notice that "3" falls

just to the right of the vertical line (17) at h -a o .92 where L - .

Returning to the all-points-but-one-on-a-line problem, we now see that

LD I will not Identify case 3 to be the most influential since "3" will

be moved from -- to the g1 (0 curve prior to the computation of LD IsB.0..

This movement loses all information on changes In 0y but is essential if we

are to isolate changes in location as LD o is designed to do.

3.2 Contour Comparisons

Further insights can be obtained by comparing the contours of the four

measures in the (bihi) plane. The contours for LD ( e0 LD hand

DFFITS 2  w given in Figures 3-5, respectively. Recall that

LDi(a - LDi (82) when hi u 0; thus the contours for LD (a2  ()) are

parallel to the x-axis and they Intersect the y-axis at the same points as the

contours of LDoi(, 2 in Figure 3.n uta

According to Welsch (1982), DFFITS is designed to measure changes in

location and scale simultaneously. With this in mind, we first compare

. %~%*.~,%*..-.~.*v..,. X%..-"

2 ... -'-.,.
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0.000

b.0

0.4100

0.00

0.000 0.200 6.400 10.600 0.88 1.00 7

2
Figure 3. LD,(B.a )as a function of (h1,b1). Contours are

drawn at .1, .25, .5, 1, 1.5, 2, 3, 4, 5, 10, 15, 20, 50,

100.
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0.80

8.8088 8.288 0.408 8.8508 8.800 1.888

h6

Figure 4. LDi(oa) as a function of (hi~bi). Contours are as*.*..
given in Figure 3.



b1

0.800

0.4000

8.280

0.888 0.200 10.400 0.6808 0.880 1.00

Figure 5. 101i(S.c, - Di(a lo) as a function of (h1,b1). Contours

are as given in Figure 3.
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Figures 3 and 5. The contours in these two figures are remarkably similar

when b < hi; when this condition holds we can expect DFFITS 2 LD( 2

When b1 > hi, the two sets of contours are quite different and LD (B.0) is

considerably more sensitive to increases in bi. Evidently, DFFITSI is not

sufficiently sensitive to changes in scale. Numerical illustrations of this

insensitivity are easily constructed. Suppose, for example, that b .99 so

2* 2
that from (8) 2  .01 a2. With bi fixed at .99, DFFITS can be made

arbitrarily small by letting hi * 0. Under these same conditions, however,

LD(B,a) * LD (a I). This example can be used to formulate a more realistic

all-points-but-one-nearly-on-a-line problem in which DFFITSi may fail to find p

the point that is far from the line.

A variety of other useful insights can be obtained by comparing Figures 3-

5. For example, LDt(Ila 2) responds primarily to hI while LDI(a 
2 1) is

independent of hi . Clearly, leverage is more important for changes in

coefficients while outliers (as reflected by bi) are important for changes In

scale. When examining Figures 3-5 it should be remembered that only DFFITS 2

2and LD (B,o ) are directly comparable since the other measures concentrate on

selected aspects of the problem.

Atkinson (1981) indicates a preference for measures like DFFITS since_

they emphasize outliers more than Di . Relative to the likelihood

2
displacement, such emphasis is insufficient if both B and a are of interest

and is oversufficient if interest centers on 6 alone. Generally, Figures 3-5

2 lisbten2 2show that DFFITS lies between LD (B,o ) and LD (Olo 2) when b > hi.

Welsch (1982) favors yet another measure of influence that can be written

& 0

2... . .. .. . " .* " . ".. .* .. *.. . . . . . . . . . . .. :*. . . . . . .".. . . .".. . . . ... . . . . . . . . . . . . . . . . ..: : ' " :- : i~~i  iiI.-.........'. )-; ".-...,-..-,.'~~~.......... .'..............-... "... ....-... ..... ... '.5
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(k-i) 2
w - DFFITS (14)

1 1-h ,IT

This measure is intended to reflect the influence of oases on location, scale

and the shape of the covariance matrix. From the above discussion It seems -

clear that the shape information is coming at the substantial expense of

information on coefficients and scale. Perhaps it is unwise to expect so much

information from a single number. 6 O

DISCUSSION

Many of the initial developments in the area of influence assessment are . _

based on ad hoe reasoning, as often happens during the infancy of any new

methodology. For further progress and a deeper understanding of available

methodology, larger perspectives seem necessary. We have found the likelihood

displacement to be particularly well-suited for the study of Influence, -. '

although other reasonable frameworks are possible, of course. For example,

Johnson and Geisser (1983) adopt a predictivist view.

2Within the likelihood framework, we conclude that LDi(0.0 )is the most

useful one-number summary of influence in the absence of more specific

concerns. This conclusion follows from two observations. First, LD1 (010 2 )

2 2and LD (a 10) are bounded above by LDi(0, . Cases that are uninfluential

2 2for (0,v ) must therefore be uninfluential for 0 and o considered separately.

The specific concerns reflected by LDi(01o2) and LD (0 21 ) need to be t

addressed only when LD1(B.02  is sufficiently large. Second, DFFITS and

related measures like Atkinson's (1981, 1982) modified Cook statistic will be

essentially equivalent to LD (so ) when hi > b1 ; otherwise these measures are

not sufficiently sensitive to changes in scale. " - -'

*-. .**.*.-.. -* -.... *,

* ***.*. **-.*,-*. *. . •
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Since coefficients are often a major concern in linear regression,

LD (B102) or, equivalently, D1 can be added to give a useful two-number
T T T I t r s ,.-.-.":

summary of influence. If a subset B1 of 
T  (0 , is of special interest,

LD (Bo 2) can be refined further by using the general form given in (2).

Since the three likelihood displacements considered here depend only on n,

b and hi, other summaries might Include various combinations orI

transformations (e.g., to Studentized residuals) of these quantities. Such

mixed summaries require different scales for interpretation and are therefore

somewhat more difficult to comprehend than constant scale summaries. Of

course, bI and hi might be useful for purposes other than an assessment of

influence.

Finally, equations (12) shows one way to generalize DFFITS beyond linear

models.

• -.

9- .

...........

* . * * * .*." *. _.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . .
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APPENDIX

Derivation of Equations_(10) and (1-1)

By definition,

LD (8.02  2[L(B~o L(

where

n2 ~ n n
L(; , ) log # -- log 2v

2 22

^2 n ;2 I 4 4 ()
L log lo 222v

Since

( TA )2 ;2 2

Sji ( 1)i 0 (1) ()

It follows that

A2 2

L(O,a )-n log

Now, using (8)
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* LD (o)- n log + n log (1-b) + . 1
a n(1-b)

b (n-1)
n log- -1 og(-n e lo (1) (1-b )(1 -h)

as given by (10).

To derive (11), by definition,

LD (a 10) -2[L(O.
2  - g M)(i,

Since the maximum likelihood estimator of B does not depend on a2 g~2 M

and thus

V.DOf) liog no - log 2w0~u 2a~i

Then, we obtain

LD 2 18) 0(i) 0LD(0 n log 2 n (72- -

Equation (11) now follows from this and equation ()

%.
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