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ABSTRACT

After considering the concept of effect sparsity as a justification for

the use of unreplicated fractional factorial designs, we discuss the situation

where factors may influence not only the location but also the dispersion of

the data. The aliasing of location and dispersion effects is explored and

methods for identifying an appropriate location - dispersion model are L

considered.
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SIGNIFICANCE AND EXPLANATION
/- .

')Unreplicated fractional factorial designs are frequently employed as

screening designs when it is believed that a condition of effect sparsity will

ensure that only a few of the possible effects are likely to be large. -',- - A 2

Suppose it is believed that only an (unidentified) few of a number of

candidate design variables such as temperature x1 , pressure x2, .".-

speed xk affect a quality characteristic y such as observed tensile

strength. In the past the emphasis has been on determining the effect of such

variables on the mean value or location of y in terms of the usual main

effects and interactions which we will here call location effects. We

consider in this paper the possibility of also determining the effect of

variables on the variance or more generally the dispersion of y. We call

such effects dispersion effects. The nature of the alias relationships

between location and dispersion effects is discussed and a method developed

for identification of dispersion effects when location effects are also

present. An example is used to illustrate these ideas.
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ANALYZING TWO-LFVFL FRACTIONAL FACTORIAL EXPERIMENTS
FOR POSSIBLE DISPERSION EFFECTS

George R.P. Box and R. Daniel Meyer

1. INTRODUCTION

Table 1 shove in sumary a highly fractionated two-level factorial design employed*

as a screening design in an off-line welding experiment performed by the National Railway

Corporation of Japan (Taguchi and Wu, 1980). In the column to the right of the table is

shown the observed tensile strength of the weld, one of several quality characteristics p
measured.

The design was chosen on the assumption that in addition to main effects only the

two-factor interactions AC, AG, AN, and GH were expected to be present. On that

supposition, all nine min effects and the four selected two-factor interactions can be

separately estimated by appropriate orthogonal contrasts and the two remaining contrasts

corresponding to the columns labelled e, and e2 measure only experimental error.

Below the table are shown the grand average, the fifteen effect contrasts, and the effects

plotted on a dot diagram. When the effects are plotted on normal probability paper,

thirteen plot roughly as a straight line but the remaining two, corresponding to the main

effects for factors B and C, fall markedly off the line, suggesting that over the

ranges studied, only factors B and C affect tensile location by amounts not readily

attributed to noise.

If this conjecture is true, then, at least approximately, the sixteen runs could be

* regarded as four replications of a 22 factorial design in factors B and C only.

However when the results are plotted in Figure I so as to reflect this, inspection sug- S

gests the existence of a dramatic effect of a different kind - when factor C is at its

h*To facilitate later discussion we have set out the design and labelled the levels

somewhat differently from Taguchi.

Sponsored by the United States Army under Contract No. DAAC29-80-C-0041.
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plus level the spread of the residuals appears much larger* than when it is at its minus

level. Thus in addition to detecting shifts in location due to B and C, the

experiment may also have detected what we will call a dispersion effect due to C. The

example raises the general possibility pursued in the remainder of this paper of analyzing

unreplicated designs for dispersion effects as well as for the more usual location

eff,!ctS.
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2
Figure 1. Tensile data as four replicates of a 2 factorial

design in factors B and C only.

p-°

'Data of this kind might be accounted for by the effect of one or more variables other
than B that affected tensile strength only at the "plus level* of C (only when the L
alternative material was used). Analysis of the eight runs made at the plus level of C
does not support this possibility, however.
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2. RATIONALE FOR USING SCREENING DESIGNS 0

Before proceeding we need to consider the question. "In what situations are screening

designs, such as highly fractionated factorials, useful?" 

2.1. Effect Sparsity

A common industrial problem is to find from a larger number of factors those few that

are responsible for large effects. The idea is comparable to that which motivates the use

in quality control studies of the "Pareto diagram." (See, for example, Ishikawa 1976).

The situation is approximated by postulating that only a small proportion of effects will

be "active" and the rest "inert". We call this the postulate of effect sparsity. For

studying such situations, highly fractionated designs and other orthogonal arrays (Tippet

(1934) Finney (1945), Plackett & Burman (1946), Rao (1947), Taguchi and Wu (1980)) which

can screen moderately large numbers of variables in rather few runs are of great 0

interest. Two main rationalizations have been suggested for the use of these designs;

both ideas rely on the postulate of effect sparsity but in somewhat different ways.

2.2. Rationale Based on Prior Selection of Important Interactions

It is argued (see for example Davies, 1954) that in some circumstances physical

knowledge of the process will make only a few interactions likely and that the remainder

may be assumed negligible. For example, in the welding experiment described above there

were 36 possible two-factor interactions between the nine factors, but only four were

regarded as likely, leaving 32 such interactions assumed negligible. The difficulty with .. .

this idea is that in many applications the picking out of a few "likely" interactions is

difficult if not impossible. Indeed the investigator might justifiably protest that, in

the circumstance where an experiment is needed to determine which first order (main) S

effects are important, it is illogical that he be expected to guess in advance which . . -

effects of second order (interactions) are important.

2.3. Projective Rationale Factor Sparsity

A slightly different notion is that of factor sparsity. Thus suppose that, of the 5

k factors considered, only a small subset of unknown size d, whose identity is also

-4-
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unknow, will be active in providing main effects and interactions within that subset.

Arguing as In box and Hunter (1961) a two level design enabling us to study such a system

is a fraction of resolution R - d + I (or in the terminology of Rao (1947) an array of

strength d) which produces complete factorials (possibly replicated) in every one of the-

(k) spaces of d - R - i dinensions. For example, we have seen that on the assumption

that only factors a and C are important, the welding design could be regarded as four

replicates of a 22 factorial in just those two factors. But because the design is of

resolution R - 3 the same would have been true for any of the 36 choices of two out of

the nine factors tested. Thus the design would be appropriate if it were believed that

not more than two of the factors were likely to be "active."

For further illustration we consider again the sixteen-run orthogonal array of Table

1. In Table 2 adopt a roman subscript to denote the resolution R of the design, which I
associates factors with the dotted columns in the manner shown.

Columns 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15

(a) 215-11 * * * * * * . * * . * * * .

-4I

(b) 2 . . .. .. " *-*
IV

(c) 2
5
V
1  

"

(d) 24 .. ..

TABLE 2. Some alternative uses of the orthogonal array of Table 1.

It will be seen that,

(a) if we associated the fifteen contrast columns of the design with fifteen

factors we would generate a 15- design providing four-fold replication of 22

factorials in every one of the 105 two-dimensional projections.

(b) if we associated only columns 1, 2, 4, 7, 8, 11, 13, and 14 with eight factors

8-4 design providing two-fold replication of 23 factorials in

every one of the 56 three-dimensional projections.

-5-.
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(c) if we associated only columns 1, 2, 4, 8, and 15 with five factors we would

generate a 2 -1design providing a 24factorial in every one of the four-dimensional
V

projections.

Md if we associate only columns 1, 2, 4 and 8 with four factors we would obtain the

complete 24 design from which this orthogonal array was in fact generated.

Designs (a), Mb & (c) would thus be appropriate for situations where we believed

respectively that not more than 2, 3, or 4 factors would be active'*. Notice that

intermediate numbers of factors could be accommodated by suitably omitting certain

columns. Thus the welding design is a 2 13 arngmn which can be obtained by omitting

6 columns from the complete 2 Notice finally that for intermediate designs we can

take advantage of both rationales by arranging as was done for the welding design, that

particular interactions are isolated.

2.4. Clues and Leads, Not Final Conclusions

in the past some misunderstanding about the value of fractional designs has occurred

because they were not always considered in an appropriate context. For instance, while

the above analysis of the welding data screening design does not lead to unequivocal

conclusions, it does suggest the possibility of location effects in S and C and a

dispersion effect in C which are worth checking out. Typically the experimenter will be

following, with the help of a statistician, an iterative path of investigation which

cannot be forecast at the outset and he must behave very much like a detective

* investigating a mystery. He proceeds by following clues leading to further searchings

(experiments) which provide further clues and so on. The prime objective is to achieve

reasonably rapid convergence of the investigatory process. While it is true that more

*formal statistical procedures may be needed, to confirm finally that the investigation has

* '*The designs give partial coverage for a larger num~ber of factors, for example

(Box a Hunter (1961)) 56 of the 70 four-dimensional projections of the 2 I
yield a full factorial. I
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. . .

really reached the objective claimed, this later confirmatory stage is usually only a

small part of the experimental effort.

A discussion of the iterative model building process by Box & Jenkins (1970)

characterized three steps in the iterative data analysis cycle indicated below.

identification -pfitting --- diagnostic checking'

Most of the present paper is concerned with model identification--that is the selection of

a model worthy to be entertained and fitted more formally by an efficient process such as

maximum likelihood.

The situation we now address, therefore, concerns the identification of factor

effects from fractional designs in the circumstance of effect sparsity, where dispersion

effects as well as location effects may be present.

7
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3. DISPERSION EFFECTS .

We again use the design of Table I for illustration. There are 16 runs from which 16

quantities--the average and 15 effect contrasts--have been calculated. Now if we were

also interested in possible dispersion effects we could also calculate 15 variance

ratios. For example, in column I we can compute the sample variance s2(1_) for those

observations associated with a minus sign and compare it with the sample variance

a 2(1+) for observations associated with a plus sign, to provide the ratio

F1 - s2(1_)/s2(1+). If this is done for the welding data we obtain values for lnFi*

given in Figure 2(a). It will be recalled that in the earlier analysis a large dispersion

effect associated with factor C (column 15) appeared to be present but in Figure 2(a) the

effect for this factor is not especially extreme, instead the dispersion effect for factor

D (column 1) stands out from all the rest. This misleading indication occurs a 

have not so far taken account of the aliasing of location and dispersion efe Since

sixteen linearly independent location effects have already been calculated for the

original data, calculated dispersion effects must be functions of these. The general

nature of the location-dispersion aliasing is explained in the section that follows. For S

illustration equation (1) shows the identity that exists for the dispersion effect that is

the F ratio associated with factor D and hence for column 1 of the design.

In the expression i is used to indicate the usual location effect (contrast)

J
AA2 .. 2 .2 2 2 A 2 2

(2-3) + (4-5) + (6-7) + (8-9) + (10-11) + (12-13) + (14-15)FD  F1 -
D 1 A2 A2 A2 A2 A2 * 2 A. 1

(2+3) + (4+5) + (6+7) + (8+9) + (10+11) + (12+13) + (14+15)

Now (see Table 1) B - 14 = 2.15 and C - 15 - 3.10 are the two largest location

* effects, standing out from all the others. The extreme value of FD associated with an

*In this figure familiar normal theory significance levels are also shown, obviously the •
necessary assumptions are not satisfied in this case, but these percentages provide a
rough indication of magnitude.

-8-
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apparent dispersion effect for factor D is thus largely accounted for by the squared sum

and squared difference of the location effects B and C which appear respectively as

the last terms in the denominator and numerator of equation 1. A natural way to proceed

is to compute variances from the residuals obtained after eliminating large location =.'

effects. After such elimination the alias relations of equation I remain the same except

that location effects from eliminated variables drop out. That is, zeros are substituted

for eliminated variables. Variance analysis for residuals after eliminating effects of B

and C are shown in Figure 2(b). The dispersion effect associated with C (factor 15)

is now correctly indicated as extreme.

-1.
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4. lisPErSIO AND LOCATION ALIASING

4.1. identities Existing Between i.±m -persion and Location Effects

In order to study the identity relations existing between location and disperson

effects consider an n x n orthogonal array with n - 2q columns of +1's and -i's

labelled xLet zo- I be a column of +1's and the remaining columns

delineate the usual contrasts for the main effects and interactions of a 2q factorial

* design. In general we suppose that the array is to be used as a 2k-P fractional or full

factorial to test kc factors, so that q - k- p with p ;0 0.

To illustrate ideas we will employ an eight run orthogonal array although in practice

*this would often be too Small a design to allow variance effects to be studied. Setting

q - 3 the columns of the resulting 2~ design in factors A, B, and C can

alternatively be labelled with numbers or letters as follows:

0 1 2 3 4 5 6 7
I A B AS C AC BC ABC

+1 -1 -1 +1 -1 +1 +1 -1
+1 +1 -1 -1 -1 -t +1 +1
+1 -1 +1 -1 -t +1 -1 +1
+1 +1 +1 +1 -1 -1 -1 -1
+1 -1 -1 +1 +1 -1 -1 +1
+1 +1 -1 -1 +1 +1 -1 -1
+1 -1 +1 -1 +1 -1 +1 -1
+1 +1 +1 +1 +1 +1 +1 +1

AS is well known the array may be used as a full factorial or as a fractional design. For

*example, associating three factors with columns 1, 2, 4 reproduces the 23factorial,

4-1
four factors associated with columns 1, 2, 4, 7 produces a 21 fractional, seven

*factors associated with columns I through 7 produces a 274fractional.III

In general the columns will form a group closed under multiplication

defined such that product column ;Sjhas for its uth element xiju

xiuxju Cu - 1,...,n). Now suppose we are interested in contrasting variances at the lower

and upper levels of factor i. Consider the elements of a column 1/2 (Z. t z *( )

these are



1 /2 (XOU -x ± [ iu~=-
0if x~ +1

(2)

+ x (+0 if xu -

1/2 (xOU + iu) I if xi +1

Thius the elements of a column 1/2 (-x ± ai) re

xif x i
1/2 (xj -Xiju) 1/2xju xo - xi~ l f u

(3)

1 if xU -1
12(ju +xiju) 1/ JU( Ou +xi+x )/ 1 Cx +iuu if x -U+1

Returning for illustration to the 23 design, if for example we wished to compare

variances at the lower and upper level of factor C 34 (i.e. for the first and last

four observations) then setting i - 4 it will be useful to generate the columns

1/2 (; =S 0,1,...,7 thus:

j0 4 1 5 2 6 3 7

+1 -1 -1 +1 -1 +1 +1 -1
+1 -1 +1 -1 -1 +1 -1 +1
+1 -1 -1 +1 +1 -1 -1 +1 -
+1 -1 +1 -1 +1 -1 +1 -1

1/ ( z ) 0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0
0 0 0 0 0 0 0 0

Note that for every i the columns Etc aij) will in general appear in nj 2 2

identical (apart from sign) pairs. Now suppose data x= )are

*available and let j - V4Xj from which the estimated effect of factor i may' be obtained

by dividing by an appropriate constant. Then for every i the quantities

-,E 4i j i:J provide an exhaustive set of n/2 linearly independent

-12-



contrasts of those n/2 observations y. for which -i -1. Correspondingly, the

colums XX+ provide a similar set of contrast@ for the remaining observations for

which xiu -+1. Denote by S~i-) and 8(1+) the mss of squares of the y, for

.o.. V

which xiu -i and +1 respectively. Then

8(U-) ~n- I - x)j 2  I nil (3 __ 2

n J1 02 j -i.j 2

n-1 2

n(+ - 0 P/2Z'%F + ; -i ( +12(

For example, for the 8 x 9 array derived from the 23 factorial,

2 2 2 2
8(4-)- *Y, 2  + Y3  +Y 4

- A (1 2 2 2 2 2 + ( A.) i04 1 5 2 ] .]2

2 2

1- ( 0 41 +,15 + !6-

[(=12 +(AC +(3)(S C)

4 -2 2 2 2+ y4

(L' + + '

2  2

4.2. Zlimination of Location Xffect'

The sums of squares in (4), (5) would be appropriate to compute dispersion effects

only if it could be assumed that all the location effects, including the overall mean,

were known to be zero. If this were not the came then the sums of squares S(U-) and "'"

8(i+) could be inflated by location effects. To remove such effects we can replace the

yu' in (5) by residuals Yu - Yu obtained after eliminating all suspected location

effects including the mean by least squares.

Now the vector of residuals is orthogonal to each column vector corresponding to an

eliminated variable. It follows that sums of squares calculated from Such residuals will

-13-
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have the same form an (4) but with all estimated ef fects which correspond to eliminated

variables set equal to zero.

Further understanding in gained by considering the expected values of B~i-) and

S(I+) under various circumstances. suppose a difference In variance might exist

associated with the level of the single column 4, and the sums of squares S~i-) and

S(i+) are computed from (4) but with yu replaced by residuals after a number of

location effects have been eliminated. Then after setting to zero all the elements j

and i'j in (S) which correspond to eliminated variables, suppose there are I cases

where bracketed pairs (j, i-J) have been eliminated and m cases where only one element

of a bracketed pair has been eliminated so that there remains I a complete
2

bracketed pairs.

now for a bracketed pair

3[~ {- ( -ij)1
2

1 0
2
(i_)(6

and for a single element

g[ 31 ~ 2 j-. (02 (i_) + 02 (1+)) .(7)

It follows that

ztcii -4n - ~ 2 i)+ 00m2 (i+)()2 4 4

u[Sci+)] -4 n - a )c 2 (i+) +2. m52(i-) .(9)
2 4 4

if we define

2
22

then

32 i']- a2 i- + (02 (1+) -0
2 (i_)) (11)

22and similarly for 62(i+) with the roles of a (I-) and a (i+) reversed.

It should be noted that, in the circumstances of effect sparsity here considered, the

bias term in (11) involving 0 2(i+) - a 2Ci-) would be rather small. For example, suppose,

with a design having n -16 runs, that 1 2 and m I1, then the bias term will be

-14-
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102(1+) 0 2c±i_)1/22. it seems reasonable to conclude that for purposes of model

identification the elimination of location effects by simply taking residuals is unlikely

-' to mislead.

4.3. Illustrations with the 8 x 8 Array

The general situation may be better understood by considering a few special cases

*again using for illustration the 8 x 8 factorial array. Setting i - 4 - C, suppose we

*wish to obtain the dispersion effect s (4-)/s (4+) which contrast* the variances of the

first four and last four observations.

* - Elimination of Grand Msan

Elimination of the mean which would usually be unknown results in the removal of 0 .

in equations (4). For the S x 8 arrayi n 8, 1. - 0, a

(4- 16 j + (7 ;)2 + ;)2 + A 7)) /(7/2)

and using (11)

B[52(4-)] 0 (4-) + 14 (4) 2(4-)]

The slight bias in the variance estimate arises because the isolated effect 4 is a

function of all eight observation.

Elimination of the Mean and Effect 4

If now the location effect associated with factor 4 is eliminated as well as the

overall mean then a complete pair is removed in (5) and in this example

5 )2 + (2 ;)2 +(3-;2

No bias now occurs because elimination of 0 and 4 is equivalent to eliminating means

2
separately from the first four and the last four observations, and a (4-) is a function

of only the first four observations. Similar effects are found with all bracketted

-ze-z'



pairs. Thus if we eliminate factor 2 and the interaction 2*4 -6 the bias term does S

not appear because allowance is being made for different effects of factor 2 at the two

levels of factor 4.

4.3. Dispersion Interactions%

Since more than one dispersion effect might be present we need to consider the

possibility of interaction. If the effect of changing from the minus level to the plus

level of a factor i is to multiply the variance by #i irrespective of whether the plus

or vdnus level of factor jis employed we shall say that there is no dispersion

interaction between ± and J. in such a case the variances for the various factor

combinations are as follows

12 2 I 2 2I

(±Ij-) =
2  

(i+,J-) -

Equivalently for the logged variances the dispersion effects will be additive and in this

metric dispersion interactions of all orders may be defined in the usual way. it shall be

noted that when there is no dispersion interaction the ratio of the average variance at .

* the plus and minus levels for factor i is

a 2 (i+,J-) + a 2(i+,J+) - 0 +..)

a (-J)+ 02C(i-,j+) (I + *)0a 2

and similarly for factor j and Thus even when there is more than one dispersion

effect the simple analysis described above could still be of value as a preliminary0

analytical device for indicating which factors needed further study. in particular if two

factors i and jappeared to exhibit dispersion effects, then further analysis would be

appropriate to consider the general evidence for activity of these effects taking account

also of possible interaction. This could be done by considering general differences among P~

%m % °'.. • I' '
. . . . . . . . . . . . . .
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.....................

the sms of squares associated with the four cells S(i-,j-), S(i-,:), S(i+,j-),

8(i+,J ) of the two-way table for the two factors. As before these sums of soueres would

be calculated from residuals after eliminating location effects. The consequences of

doing this is explored in the Appendix which gives a matrix generalization of earlier""-

results.

2 2
A convenient function for comparing a set of variances as2 having V•". S""

degrees of freedom respectively is Bartlett's criterion,

-.~( 1 k 2). k 2 whr k~I

t-I t t1 , It st-1 
t

When, as would frequently be the case, the screening design is of only moderate size one

could not expect to study simultaneously a large number of factors in this way. For

example, for n - 16, the individual calls from which 8(i-,J-) S(i-,J+), etc. would be L

calculated will each contain only four observations. However when, in circumstances of

effect sparsity, only a very few such effects are likely to be of appreciable magnitude,

the above analysis could be of value.

We again illustrate with the welding data. Figure 3(a) shows the 35 distinct values

- -of M computed for the data. There are ~2 -105 ways of choosing two columns from

the 15 columns of the design but these are aliased in sets of three (any column is the

product of two other columns). Thus the largest value is associated with columns 15 - C,

2 - H, and 13 f J. This effect could equally well be attributed to factors C and H

with interaction CH - J or to C and 3 with interaction CJ - H or to H and J

with interaction HJ - C. it is noteworthy that the seven largest values of N which . .

stand out from the rest* all include factor C in their triplets. Also if the dispersion

effect of C is eliminated by rescaling the residuals the plot (Fig. 3(b)) no longer

shows outstanding points.

V,-

*For rough comparison the normal theory St and It significance levels of M are shown

although as before their precise validity is doubtful.

-17-
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Figure 3. Values of 14 for distinct column triplets (a) before
(b) after elimination of the possible dispersion effect
clue to factor C.
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5. MAXIMUM LIKELIHOOD ESTIMATES OF LOCATION AND DISPERSION EFFECTS S

Once a model has been identified a more precise fitting is possible using maximum

likelihood. Hartley and Jayatillake (1973) have shown that the following method will give

convergence to a stationary point of the likelihood. Conditional on the dispersion

effects, location effects may be obtained by weiqhted least squares; the dispersion

effects may now be recomputed from the residuals and the iteration continued until

covergence is achieved. It is often convenient to assume initially that there are no

dispersion effects.

For illustration the following table shows maximum likelihood estimates for the

welding data assuming location effects for B and C and a dispersion effect for C.

The earlier approximate estimates are indicated for comparison.

2 (C+)

u a C 2a(C+) 2(C_) a2(C_)

Maximum likelihood estimates 42.96 2.04 3.10 .469 .021 22.3

Earlier approximate estimates 43.00 2.15 3.10 .564 .031 18.2

Table 3. Estimates of location and dispersion affects: welding data.

°

Appbndix

The results of section 4 can be generalized using matrix algebra. Again, let be

a matrix of t I'm with orthogonal columns 10,.... O. and 6, a column of I's. If

denotes the n x 1 vector of observations, we define j x Suppose we wish to

compute S(i-) - sum of squares of the yu at the minus level of column v,. Without

loss of generality, we assume x (-,- ,...,- ,1,...,1)', and let be the n x n

identity matrix. Define the n x n matrices 11 '2 by

0 0) 12 (01n/2

n n
where is the -x identity matrix.

.~~~~" .. . . ..
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Then Si-) can be written 0

Noting that -X' I - and 1,X - 2. - , - 21 ,)XI
n1 2- -1

we have

S U -) - ( (r 21 ) ,zJl [( x < 2 T x ,x

Now observe that (1 -2,11 )1 is just the matrix with every column multiplied by xi""

Therefore,
( L -21a)y (*-,- , -in-0)'

and

Su-)- 
:J)

2

4n J - ij

as was shown in Section 4, equation (4). Similarly, we can write

n-i -- 2

s(i+) (j + i:j)4n oJ-0

As was also shown in section 4, eliminated location effects will drop out of the above

expressions.

To compute the expectation of S(i-), let 2 (i- ) and F (i+) be the variance of

Yu at the minus and plus levels of xi ,  and let the matrix 7 be those columns of "

corresponding to 12ation effects included in the model (i.e. eliminated to obtain ..

residuals). The least squares estimates of location effects are given by n ' .

Then

S(i-) -( - (X z- )

( I ZZ' I 1 IM, + -L ZZIIZZ,),

-20-
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Assuming R(yl AXj and using the identity

for b syetric,

9[8(1-)) trace [(I I~ L U'l - n ZIa
n 2

(21) + 02 ('+)2 + Zrr'z))

* After some algebraic reduction, we have

-(a. -~ ) 2 (i_) + [4IK2(,_) (n -p 2 i)

where p -number of columns of 7Z and K -trace(U'; 1., 1 ). can be

simplified to give the following expression:

2 2 p 2

u-1 V-1 J-1 ~

Where ju is the uth element of the ith column of 74p Now let I number of pairs

of column j, Ak related by & S* - U~pending the above expression for K gives

u- - ~ ju iv 2 z ju jvkuzkv

n 2n

j k U.I V-I

n n

The sums u- 5jusku and z vk are equal to -1 whenever gj- *z and they

are equal to 0 whenever ZiSk

-21-



Therefore

K- p+ 21

and

2
E[S(i-) I ~ p + p21 2a Ui-) +(ni 11~)0 2 (i+)

- ~ -m )02(i_ + Em2(+

where m p -21.

To extend these derivations to computations involving two variables, define matrices

L3 1 14 15' ~6as

0 0249

/4

I n/44
J-~0 Z,/

where I is the -K-identity matrix. Now suppose we wish to compute the sum of
4/44 4

squares of the Y, at the minus levels of ;iand ;j, S(i-,J-). Without loss of

generality, assumie z= (-1,-1 ....-.. 1,..1 and xj -l..l... , .l.....l I

1,..,1). Then

Now use the facts I =- XX,

2~ z- I-2( 2 II . + 2
13 4(3+ ~W 3+4)) -14 + -15))

-22-
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and

- - + - -2(Z, Z,~)) (I- 2(Z, 1+ -ZI

(0-i: 0 +O i-j.o, 1 i1I -j:i

to obtain

S(i-,J-) T 6 ) (k -ik - k + i-j-k)2

similarly,

in-i 2
S(i-,J+) I (k -ik + J-k -ijk)

1nk-0

S(i+,J-) - ~-~ (k +4 i-k - k - j-k)2

k-0

n-i2
s(i+,+ I ~- ) (k +. i-k + J-k + i-jik)

k-C

To compute the expectation of S(it,jt), let Z be defined as previously, and by the

sam sort of calculations as in the one variable case

-~ i(.,- 4 + [U o(i-,J-) +K i J+

n

02 2
+ X a (i+,j-) + K6a (i+,j+)]

where KiC trace (ZVIZ'i)

To compute Xj, we must divide the columns of 76 into four groups

Group 4: Those columns z k such that Ai.zk' 2SJ*k and Ai*;SJ'7k are also in

Group 3: Those columns z such that exactly two of ~~'ZA'Z~~

are in Z.

-23-



Group 2: Those columns Xk such that only one of AZi'k' ASJ'lk' Zi'Zj~hk

is in Z

Group It Those columns not in previous three groups.

Lest mk = number of columns in group k; note that tmk is a multiple of k. Further

subdivide group 2 into three subsets

Group 2.1: those pairs with g=ik

Croup 2.2: those pairs with xg - x *Z

Group 2.12: those pairs with zg = SiZ.z

Let m2.k be the number of columns in group 2.k, m2 m2.1 + M2.2 + IR2.12-

Thus it can be shown that

2 4n-7p +3m 4 +2m 3 + m2E[Si-j-) =a (i-,J-)[ 16

2

+ 0 2(i.. +)[ ' . 3 -' 2 + 2. 116 21

2

2 P 3-3 m2 + 2.21

2
+ 
2 i+j[ p-n 35T13 '2 + 2m2.216 2.12][ 1

Note that S(i-,J-) will he unbiased (up to a scale factor) if all columns of are in

group 4 (P m i 4 , mn3  m2 ml 0) i.e. for each variable Akeliminated, variables

Si-k, XSj-k' x4j are also eliminated. Similar expressions for expectations of

S(i-,J+), S(i+,j-) and S(i+,J+) can be worked out quite easily from the above formula

by switching signs on ii,j±.
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