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ABSTRACT 

Recent Experiments on the TMX-U device at LLNL have indicated the 

possibility of a low frequency ( a» « n„ ) drift wave being driven unstable by 

the injection of neutral beams in the thermal barrier region. Nonlocal linear 

theory is performed for this instability using slab geometry and the electrostatic 

approximation. Particle simulations are used to verify the linear theory and to 

recover relevant nonlinear phenomena. Important nonlinear effects include: (1) 

ExB trapping (2) relaxation of the beam density profiles , and (3) weakly non- 

linear electrons ( eS<t>/Te =0.1 ). These nonlocal simulations are compared 

with previous simulations of Ref. 1. which used a local approximation for the 
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1. Introduction 

Drift waves have long been an area of major activity in the controlled fusion community. 

In particular particle simulation techniques have been used many times to examine some drift 

waves in great detail^"^. In this paper a relatively new type of drift wave instability is exam- 

ined. This paper is motivated by some recent experiments on TMX-U that have indicated that 

electrostatic drift waves may be driven unstable by injection of neutral beams in the thermal 

barrier region'. The linear theory and the particle simulations in Ref. 1 were performed using 

the local approximation. The purpose of this paper is to relax the local approximation in both 

the theoretical treatment and in the particle simulations. 

Section 2 describes the model equilibrium which uses a slab model with a uniform mag- 

netic field together with the electrostatic approximation. Section 3 describes the linear nonlocal 



analysis, the simulation techniques, and the linear simulation behavior. Section 4 describes 

the dominant nonlinear behavior from the particle simulations and includes a discussion of the 

dominant effect, which is ExB trapping*.   Section 5 contains a brief summary of the major 

results. 
'1 

2. Model Equilibria 

The geometry for the model is given in Fig. 1. The equilibrium density gradient is per- 

pendicular to the magnetic field. There may be an equilibrium electric field in the x direction. 

The low beta approximation is made, which makes it possible to take Bo as independent of the 

X coordinate. The beam velocity parallel to the magnetic field t/* is taken to be much less than 

the Alfven speed V^. Under these conditions for the beam velocity and the Alfven speed the 

electrostatic approximation may be employed. Finally, quasineutrality, which as shown in Ref. 1 

is valid in the limit tuj, » 0,^,, is used to close the system of equations. As in Ref. 1, finite 

gyroradius effects are ignored. 
i 

The constants of the motion for particles are the guiding center position,      , 

X^x + v^./il,;        . , (1) 

the particle energy, 

c - (l/2)/wv2 + q<t>ix)- (2) 

and the component of the velocity parallel to the magnetic field, 

V.   . (3) 

Equilibria may then be specified using the constants of the motion to form model distribution 

functions for the ions and for the electrons. 

The most basic distribution function is used for the electrons; that is a Maxwellian distri- 

bution in particle energy and a multiplicative factor depending upon the guiding center position. 

The model distribution function is therefore given by 

/;U,e,vJ-g,a)exp((-(l/2)mv2 + e«^(x))/7;j   . (4) 

For the electrons finite gyroradius effects should be completely negligible. Therefore the equili- 

brium spatial distribution function for the electrons is given by 



n,(x) ~N,(x)expie<i>U)/Te\ (5) 

where N^ix) may be arbitrarily specified. 

The ions consist of two populations. One population is treated as a cold background. The 

second population consists of ions counter streaming along the magnetic field. The model dis- 

tribution function for either population may be given by 

/;a,«,v,)-.^,U)exp(-{€-l/2mv,2-co)/r,) (6) 

X cx;?[-.5(v,-vo)Vv,?]+ex/7[-.5(v;+vo)Vv,?] 

where v„ is the thermal velocity parallel to the magnetic field and Tj is a parameter related to 

finite ion gyroradius. For the purposes of this paper ion gyroradius effects are ignored. Finite 

ion gyroradius effects are removed by taking the limit Ti— 0. At that limit the term 

exp(-(e - l/2mv} - €ol/7"i) reduces to a delta function at the minimum value for the perpen- 

dicular kinetic energy at the given value of x ( which is the definition of CQ ). This minimum 

value of perpendicular kinetic energy corresponds to the ExB drift velocity due to any equili- 

brium electric field in the x direction. 

Since finite gyroradius effects are being ignored, the guiding center variable X reduces to 

X "x + Vy{x)l£l,i (7) 

where v^ U) is the ExB drift velocity and is a function of only the x coordinate. Therefore the 

spatial distribution function for the ions becomes 

n,{x) " N^ix) (8) 

where N,{x) is a completely arbitrary function and represents the total ion density including the 

background ions and the beam ions. 

Quasineutrality then determines the equilibrium through the relation 

N,{x) exp(e<t>(x)/T,) - A^,(;c)   . (9) 

In addition, we may require that the equilibrium is field free, that is, the equilibrium electric 

field is zero everywhere. This requirement eliminates the free energy associated with the shear 

in the ExB velocity. In this paper linear theory will be performed only for model equilibria that 

are field free. However, some simulation work is included for the case where an equilibrium 



electric field is present. 

3. Linear Theory and Linear Simulation Results 

Section 3A contains the linear theory for the inhomogeneous slab model of the previous 

section. Particle simulation techniques are used in order to recover linear behavior as described 

in Sec. 3B. The results obtained by linear theory are compared with the results obtained from 

the particle simulations. 

3 A. Linear Theory 

The eigenmode equation for our problem can be obtained from the drift kinetic equation 

since a> « fie, and all finite gyroradius effects are being ignored. The drift kinetic equation is 

then linearized and Fourier transformed for a mode with finite values for both ky and k^. The 

resulting eigenmode equation is then easily obtained from Eq. (10-166) of Ref. 9 by summing 

over the background ion component and the ion beam component. Resonant electron effects, 

which are small corrections for this instability' , are ignored and only Debye shielding is 

retained for the electrons. The resulting eigenvalue equation is given by 

9 <^* * 9<i/( k 
A {x) —-T^ -^Bix) —r-^ - 9{k,.X)<t>k k = 0 (10) 

where 

A(x)'-^ (11) 
k'n} 

(12) 
k^n?,      dx A-^Oc,      Bx 

and &{ky,k;) represents the dispersion relation in the local approximation with k^ '^ 0 and is 

given by ! 

,     81n(A^,) 
o>lk^ '"A- e(^.M.g^.a-25)       ^J, (13) 

,,   31n(7Vj) 

ZiU + Zi^J 
k^ndk:y/2v,i 

kW k^v.i 
Z\U + Z'(f_) 



+ ' 
kh'r 

Here Wp, is the total ion plasma frequency, ,Ni. is the cold background ion density, Ni, is the 

total ion beam density, 8 - Ni,/i2N^) represents the density of one ion beam, k^ -= k^^ + k?, 

Xpe is the electron Debye length, Z is the usual plasma dispersion function, and 

1+ — (fc) ± /C;t/ft)/(\/2v„) with Uh the average beam velocity along the magnetic field. The 

quantities <Op,, Nc, Ni, koe and S are all functions of the x coordinate. 

In order to solve Eq. (10) specific choices for the density profiles and boundary condition 

must be made. The intent of our calculations is only to include the dominant effects of the 

problem in the most straight forward manner possible. Therefore, for the calculations given in 

this paper, we choose the boundary conditions d<i>/dx = 0 at both boundaries. The ion density 

profiles are given the form 

A^, ix) = noil + A cos(iTx/L^)) (14) 

or 

N^ix) - «o(l + BsiniiTx/Lj) (15) 

and may vary for the background ions and the beam ions. The electron density is then deter- 

mined from quasineutrality; that is 

7V,(x)-£^/^>U)    . (16) 
s 

Equation 12 was solved by integrating the equation from both boundaries and matching 

the results in the center of the system. In this fashion it is possible to recover the family of 

complex eigenmodes {<i>k k M] and the corresponding eigenvalues [w]. For those cases where 

the local approximation is valid kyL„»l ( where L„ is the background ion density scale 

length ) the local approximation gives good agreement with the most unstable eigenvalue. How- 

ever, in place of a single value for w a set of eigenvalues is obtained. This fact makes il more 

difficult to isolate linear behavior in the simulation code, as will be discussed in Section 3B. 

For example. Fig. 2. shows the most unstable eigenmode and Fig. 3 shows the second most 

unstable eigenmodes for a test case with the parameters; Wmax/l^o " 003, /c,.pj = 0.74, 

k.L„ " 0.16, f/j/Cj - 3.0, v„/Ui, - 0.0 , and 8\L IJ = 0.1. The wavevector was chosen so that 



the growth rate is close to the maximum growth rate for the given physical parameters. Here Cj 

is the sound speed, p^ "cjClc,-, L„ the the minimum value for the background ion scale 

length, and (a^ix " <:J2L„ represents the maximum drift wave frequency. The density profile 

from Eq. (14) is used with A,, - -1.0 and A^ - 0.5. The growth rates are very close to each 

other and therefore both may be expected to be present is simulations with random excitation. 

The particular eigenmodes shown in Fig. 2 and Fig. 3 have their real and imaginary com- 

ponents almost equal. This fact means that the eigenmode has approximately elliptical potential 

contours in the plane of the electric field with one axis parallel to the x axis . This type of 

eigenmode structure is retained even when thermal effects are added. 

Changing the beam ion density profile to that in Eq. (15) with the value 5* = 1.0 yields 

eigenmodes of a different nature as seen in Fig. 4. For this type of eigenmode the potential 

contours may be considered elliptical about the potential extrema but now neither axis is paral- 

lel to the X axis. Thus virtually any type of mode structure is possible for this problem. 

Keeping ky fixed and varying L^ causes the validity condition for the local approximation 

to be invalid and it is expected that -ymax/wmax would decrease. This is indeed what happens. 

However, fin/<"max ~ l^yl-n'- therefore a decrease in L^ is leads to a larger growth rate. In this 

sense finite length effects do not serve to reduce the growth rate. 

3B. Simulation Techniques and Linear Behavior 

This section describes the simulation techniques and the linear phenomena recovered 

from the simulations. A quiet start technique is necessary to initialize the simulations and 

achieve good agreement with the theoretically calculated mode structures from the previous 

section. 

The simulation code is a 2 - 1/2 dimensional electrostatic particle code with Boltzmann 

electrons. The field solve is quasineutrality as in Ref. 1. The geometry is that of Fig. 1 with the 

simulation plane at a small angle to Ihs x - y plane so as to include a finite value for the paral- 

lel wavevector k.. The code employs periodic boundary conditions for the variation perpendicu- 

lar to the X axis. The code reflects the particles at x - 0 and x -= I^. The electric field 



component E^ is zero at x -0 and x - Z.,. Full ion dynamics are retained. This has the disad- 

vantage of the introduction of ion cyclotron waves. However, since only the guiding center 

motion is important the time step does not have to accurately represent the high frequency 

waves present. Only a single beam will be unstable since only a single value of (oIk, is possible 

using this 2 — 1/2 dimensional model. 

In order to recover the linear behavior with the nonlinear particle code numerical noise 

must be suppressed as much as possible in the choice of initial conditions. Therefore, for the 

purposes of comparing the code results with the results of linear theory we choose a case where 

the initial thermal spread in Vj is zero. In addition, the particles were loaded in a with very spe- 

cial initial conditions. For the equilibrium the particles were loaded uniformly in both the x 

direction and in the y direction. This uniform loading guarantees equivalent particle statistics at 

each location in the simulation. In order to represent the density gradient it is necessary to 

weight the particles according to the exact value of the density at the position they are loaded. 

These techniques are , in general, not enough. As was mentioned in the previous section 

the generic equilibrium has many closely-spaced eigenvalues. Even with the low noise level in 

the equilibrium the most unstable mode will not be able to become dominant before the simu- 

lation becomes nonlinear. Therefore special initial perturbations are required. 

One approach is to integrate the particles in the fields of the most unstable waves. This 

may be done either numerically or analytically. When this was done either way the self con- 

sistent field as computed from the particles was very close to the theoretical field. This does 

suggest that the calculated solutions are indeed self-consistent solutions. 

By using this type of initial condition the simulation can then be carried out in a self- 

consistent manner. Items of interest include the real frequency, the growth rate, and the mode 

structure in the inhomogeneous x direction. The physical parameters are those of Fig. 2 and 

Fig. 3. The simulation parameters are fi„A/ - 0.5 - 1.0, the number of grids in the x direc- 

tion is A';^ = 65, the number of grids in the periodic direction is 32, and roughly six thousand 

particles for the background ions and sixteen thousand particles for each of the beams. Larger 
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time steps can be taken by use of a first order particle integration scheme to remove the time 

constraint caused by the high frequency waves'". In addition, only one mode was kept in the 

periodic direction and only eight modes were kept in the inhomogeneous x direction. The 

equilibrium has no initial electric field. 

Figure 5 shows the the potential as a function of time for a location near the center of 

the mode structure. Notice that due to the approximate normal mode initialization the perturba- 

tion begins growing with a definite frequency almost immediately; i. e. there is only a small 

component present that does not comprise part of the normal mode. The real frequency and 

growth rate are within about 5% of the numerically calculated values. Figure 6 shows the 

recovered eigenmode from the simulation during the linear stage using the Zed analysis pack- 

age". 

The results given in Fig. 5 and Fig. 6 are good. However, the agreement is certainly not 

exact. Sources of discrepancy include (1) retaining only the low frequency response ( i.e. 

ignoring terms of order cu/n„ = 0.025 ), (2) not including all of the Fourier components 

necessary for complete representation of the mode structure (3) the excitation of cyclotron 

modes and (4) the excitation of secondary normal modes due to the sensitivity of the initial 

excitation. These last three effects will now be discused individually. 

Fourier decomposition of the calculated mode structures allows one to determine how 

many modes to keep in the simulations. Unfortunately the mode structures typically have a tail 

of a few percent at wavelengths of 10 - 15 times the primary wavelength. 

These shorter wavelengths give high cyclotron noise unless large numbers of particles are 

being used to represent the ion beams. This noise is due primarily from the extra degree of 

freedom in ion phase space associated with the gyromotion. Thus the particle motion need not ( 

and in general does not) contain just the low frequency drift motion. Since w « fi^, the high 

frequency ion cyclotron waves may randomize portions of the panicle phase space during an e- 

folding time of the instability. 



The initial excitation requires accurate icnowledge of the real frequency and the growth 

rate. Deviation from the true values yields phase errors between the perturbed positions and 

velocities. This then excites other normal modes with a finite amplitude. Some of these other 

normal modes have comparable real frequencies and growth rates, which makes interpretation 

of simulation results more difficult. 

4o Nonlinear Behavior 

This section describes the dominant nonlinear effects as observed in the simulations. 

These effects include (1) ExB trapping of resonant beam ions, (2) modification of the density 

profiles of the different species, and (3) weakly nonlinear electrons. 

4A. Nonlinear Effects 

Some of these effects were discussed in an earlier paper' and the results are summarized 

in Table 1. These results were obtained by assuming a local approximation for the fields, that is, 

that the perturbation electric field is assumed to be zero in the x direction. 

We wish to review some of the analysis for the case of a single wave (^-^oCosC/t^.y + k,z) 

in the local approximation; i.e. there is no x dependence in the problem. The approximate 

scaling law for saturation by particle trapping in the local approximation is given by 

which is obtained by equating the linear growth rate of the instability y to the trapping fre- 

quency of the particle in the wave field given by k.-JTE^fm . ( The factor 3 represents an "e- 

folding" from the onset of nonlinear effects to saturation and is very qualitative in nature ) 

Associated with the trapping in Vj is displacement in the x direction governed by the relation 

^'z - Ur/*>UioJf "Constant       . (18) 

Equation (18) is obtained by using the guiding center equations of motion. Equation (18) 

implies that trapped particle are transported in x. The signs of the various quantities in Eq. (18) 

are such that the trapped ions ( particles that lose energy on the average ) have a net drift up 

the background ion density gradient. 
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One of the goals of this paper is to relax the local approximation. The analysis and simu- 

lations will be limited to the case of a single value for (/ty,*^). As mentioned before, only one 

ion beam will be unstable since only one value for wlk^ is allowed in the simulation model. An 

important change in the nonlocal problem over the local problem is that the local treatment 

assumes that there is no perturbed electric field parallel to the density gradient. Particle orbits 

are constrained so that their ExB drift velocity perpendicular to the density gradient is zero. 

Inclusion of the correct electric field means that particles may have a component of their drift 

velocity perpendicular to the density gradient. A second important feature is that simulations 

using the local approximation employ density profiles that do not change ( since the electric 

fields are independent of the x coordinate ). This is not true for nonlocal simulation models. 

One interesting fact is that the constant of motion given in Eq. (18) is unchanged even 

for the nonlocal problem as long as there is only a single value for the wavevector {ky,k.)\ that 

is, the potential has the form 

</>(xj',2,/) - <i)Q{x,t)cos{kyy + k^z - ojt) (19) 

and the time variation of the potential satisfies d/dt « ila so that the guiding center approxi- 

mation may be made. The polarization drift velocity is very small compared to the ExB drift 

velocity and is therefore neglected in the derivation of Eq. (18). 

As mentioned above, one effect missing entirely in the local approximation is the effect of 

electric field parallel to the density gradient. This may cause ExB trapping. Idealizing the 

problem to the case where the electric field is entirely perpendicular to the magnetic field allows 

a clear intuitive picture of ExB trapping. Consider a resonant particle moving in the plane per- 

pendicular to the magnetic field and retain only the ExB drift velocity. The particle attempts to 

stay on equal potential contours and to drift around them. If the particle may drift around the 

potential contours and change its position significantly ( comparable to the scale lengths of the 

problem ) , then linear theory is no longer valid. 

An estimate for when ExB trapping is important can be obtained from equating the wave 

frequency in the particle frame with the frequency for a particle to drift around one of the 
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potential peaks. This yields 

<U-WExB (20) 

with 

WEXB ~ (k^K) 
e<t> 
T CsVfic, (21) 

where w is the wave frequency in the particle frame.   The condition for importance of this 

effect is then given by 

o \kxCs 
ci 

e<6 
~ cu' (22) 

The analysis is actually far more complicated than is suggested above. The reason is that 

the wave has a nonzero electric field component in all three important directions in this prob- 

lem. The effects of the constant of the motion given in Eq. (18) must be combined with the 

motion produced by £, in determining actual particle orbits. Equation (18) implies that particles 

with circular type motion in the x - >- plane have their v^ changing in a like manner. The par- 

ticle orbits are actually very problem dependent since the orbits depend on the phase structure 

of the eigenmodes. The phase structure of the eigenmode can vary greatly, as shown in Sec. 

2A. 

4B. Simulation Results 

Nonlinear phenomena recovered from the simulations are presented in this section. Con- 

nections will be made to the nonlinear phenomena discussed in the previous section; (1) ExB 

trapping, (2) the final appearance of the density profiles and (3) saturation levels. An exhaus- 

tive parameter search is entirely out of the question. Parameters that will be varied are (1) the 

thermal spread of the beams, (2) the density profile of the ion beams and (3) whether the 

equilibrium has a zero order electric field. 

One set of simulations was performed in order to investigate the effects of the thermal 

spread along the magnetic field on the saturation of the instability. The physical parameters are 

those corresponding to Fig. 2. and Fig. 3 except that At, - 0.0. The simulation parameters are 

ClcAt " 0.5, Nj, - 65 grids in the x direction and 32 grids in the periodic direction and roughly 
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thirty thousand particles. The values for the length in the periodic direction was chosen so that 

{ky,kr) corresponded to the values for the most unstable root in the local approximation. Eight 

modes were kept in the inhomogeneous direction. The thermal spread was varied from 

V/,/t/i -= 0.0 to v„/Ub — 0.25. These were the same simulation parameters used for previous 

simulations using the local approximation'. Typically many orders of magnitude in growth in 

the mode energy was observed in the simulations as shown in Fig. 7. 

The saturation values are shown in Table 2 for the simulations. As can be seen the satura- 

tion level is relatively independent of the beam thermal spread parallel to the magnetic field 

unlike the simulation in Ref. 1. This result is very suggestive of ExB trapping as opposed to 

trapping in the direction parallel to the magnetic field since the saturation lelei does not depend 

much on the growth rate, in conflict to Eq. (17). Had both beams been unstable ( which would 

require a fully three dimensional simulation code ) then one would expect that the peak poten- 

tial energies would be on the order of 20% of the electron thermal energy. 

The estimate for when a resonant particle would become nonlinearly dominated by the 

motion perpendicular to the magnetic field is approximately when the ExB trapping frequency 

is comparable to the residual wave frequency induced by parallel trapping. Expressing this in 

terms of an approximation yields 

kyPsk^\e<i/Te] = k,\^e(l>/TeY^ (23) 

or rewritten as 

ik Vi   1    1^ 
e<^/r, ~   -r^    -f—        . (24) 

This saturation level is approximately independent of the growth rate for this mechanism, 

although a slight dependence still exists because the percent of resonant particles plays a role 

in determination of the final saturated potential. 

More evidence for the saturation mechanism may be presented by a careful examination 

of test particle orbits. In particular particle trajectories in the plane perpendicular to the mag- 

netic fields are informative. A test particle trajectory for one simulation is shown in Fig. 8. 
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Notice that the orbit is consistent with ExB trapping; that is particle motion in both directions 

perpendicular to the magnetic field is significant. Figure 9 shows the potential as a function of 

space near saturation of the instability. 

Particle trajectories may have a different appearance the trajectory shown in Fig. 8. Figure 

10 gives another example of ExB trapping for a different situation. Notice that the particle 

motion in both directions perpendicular to the magnetic field is significant although the exact 

particle motion is quite different from that in Fig. 9. The particle motion depends upon how 

close that particle is to resonance with the wave and upon the spatial mode structure of the 

wave. Also, even with a single value for {ky,k,}, several eigenmodes may be present. Thus the 

exact motion is very complicated in general. 

In order to examine the constant of motion given by Eq. (19) a group of test particles 

with the same initial values of x and v, was followed. Constancy of the entity in Eq. (18) 

implies that the particles should fall on a line in x - v^ plane. This was tried and proved to be a 

useful diagnostic as presented in Fig. U. Notice that particles that lost energy suffered dis- 

placements up the background ion density gradient. Since more ion beam particles lose energy 

than gain energy a net displacement should occur in the ion beam density profiles. This charac- 

teristic is seen in Fig. 12. 

The displacement of the ion beam need not be small. To examine this a very unstable 

case is chosen with A/, = -1.0, v„/£4 - 0.19 and the other parameters the same as the previ- 

ous simulations. This type of ion beam density profile is an idealization of the situation that 

may occur when the injected neutral beam does not penetrate far into the plasma. Figure 13 

displays the changes in the density profiles occurring for the simulation. The situation may be 

clarified further by examination of the particle distribution functions over different portions of 

the simulation region. Those regions that suffered a net density decrease did so at the expense 

of the lower energy beam ions. Those particles were transported up the background ion density 

gradient. These considerations are seen in Fig. 14. 

Finally, a short discussion is included on the effects caused by an equilibrium electric 
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field. First consider the case of a uniform electric field in the x direction. Formal substitution 

into the local or nonlocal dispersion relation shows that the growth rates and wavevectors do 

not change. However, the real frequencies become 

w± = ±k,Ui -kyV^ \ (25) 

where V^ - EQ/B is the zero order drift velocity in the y direction.  For typical parameters of 

this problem kyV^ is not negligible to k^Ub- For the case where the electric field is pointing 

toward the walls, the signs of the quantities in Eq. (25) are such as to decrease the magnitude 

of the frequency in the laboratory frame. In the extreme limit, this effect may cause the per- 

pendicular phase velocity to be in the ion diamagnetic drift velocity rather than in the electron 

diamagnetic drift direction. 

When Kf is spatially dependent the situation is quite different. The phase velocity of the 

wave in the frame of the background plasma then depends upon the location in x. Therefore, 

in principle, any portion of the distribution function may be in resonance. In addition, one 

might expect that spatial dependence of equilibrium quantities such as the electron tempera- 

ture the magnetic field and the zero order electric field would cause the saturation to be more 

mild. Simulation results tend to support this idea. An example is shown in Fig. 15 which shows 

the change in the linear frequency. Figure 16 shows the density profiles at saturation. 

5. Conclusions 

In this paper both linear and nonlinear properties of an ion-beam driven drift instability 

are described using an inhomogeneous slab model. The agreement between linear theory and 

the simulation model is modestly good. The linear effects of some of the parameters are dis- 

cussed. In addition, the particle simulations give insight into the nonlinear saturation of the ins- 

tability. The most relevant nonlinear effects for present experiments are (1) ExB trapping of 

the beam ions, (2) cross field transport of the trapped beam ions and (3) weakly nonlinear elec- 

trons. It is interesting to note that the beam ions are, on average, transported up the back- 

ground ion density gradient. This fact suggests that the instability presented here may actually 

serve to improve confinement of the high energy beam ions. 
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Saturation cnaracteristics 

small 

weak 
ion beam trapping; enhanced 

cross-field motion of trapped 

ions; coherent mode coupling 

strong 

large 

trapping   of   resonant   ions; 

enhanced cross-field motion 

of trapped ions 

nonlinear    electrons;     non- 

linear motion parallel to the 

density  gradient;   ion   beam 

trapping; enhanced cross field 

motion of trapped beam ions 

trapping   of  resonant   ions; 

enhanced  cross-field  motion 

of trapped ions; weakly non- 

linear electrons 

TABLE 1. Nonlinear properties as a function of parameter space. 
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saturation Dependence ol liiermal Spread 
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inr 
ITYT 
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Tntr 
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TABLE 2. Variation of saturation with the parallel thermal spread of the ion beams. The 

very weak dependence of the saturation on the growth rate suggests ExB trapping. 



FIG. 1. Slab geometry for the instability. The magnetic field is uniform in space. 
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FIG. 3. Numerically obtained solutions for the second most unstable solution showing 
(a) the real and imaginary parts and (b) the square of the amplitude. The complex fre- 
quency is given by a>r/wmax ~ O-'^'* and -y/wmax " 0-25- 
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FIG. 4. Numerically obtained solutions using the beam ion density profile from Eq. 
(15) showing the real and imaginary parts for (a) the most unstable mode and (b) the 
second most unstable mode. The complex frequencies are (Or/m^^ - 0.77 
r/t^max - 0.09S and cu,/wmax - 0.75, y/^max " 0.081 respectively. The growth rates are 
separated more than for the previous case considered, presumably because the spatial vari- 
ation in the equilibrium is larger. 
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FIG. 5. Time history of (a) the square of the real component and (b) the square of the 
total perturbed potential for a fixed location XQ. 
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FIG. 6. Mode structures obtained from simulations showing (a) the real and imaginary 
parts and (b) the square of the mode amplitude as functions of the x coordinate. 
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FIG. 7. Time history of the square of the real  part of the potential at a fixed location XQ 
as a function of time for the case v,,/t/j - 0.13. 
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FIG. 8. Test particle time history in the A:,,Ay - Ax/I, plane showing the spiral orbits. 
Initially the particle was in the center of the simulation region. This is from the simulation 
with v„IUh — 0.13. The test particle initially had a parallel velocity slightly larger than the 
parallel phase velocity of the wave. 
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no. 9. Spatial structure of the potential at saturation for the simulation of FIG 7-8 
The contours are equally spaced with the dotted lines indicating a negative value and the 
solid line indicating a positive value. 
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FIG. 10. Test particle time history in the kyAy - Ax/L„ plane showing the spiral orbits. 
Initially the particle was in the center of the simulation region. This is from the simulation 
with Vn/Ut, - 0.25. The test particle initially had a parallel velocity slightly larger than the 
parallel phase velocity of the wave. 
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FIG. 11. Test particle motion in the x - v, plane at saturation of the instability for the 
case v„/Ub - 0.19. Here all of the particles had initial x locations in the center of the sys- 
tem. Their periodic dimension was loaded uniformly. 



FIG. 12. Density as a function of the x coordinate at saturation of the field energy for (a) 
the background ions , (b) the stable beam ions and (c) the unstable beam ions. Only the 
unstable beam suffered nonlinear behavior. The parameters of Fig. 11 are used except 
v„/t/,-0.0. 
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FIG. 12b. 
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FIG. 13. Density as a function of the x coordinate at r — 0 ( the cosine profile ) and at 
saturation of the field energy for (a) the background ions , (b) the stable beam ions and 
(c) the unstable beams ions. Both the unstable beam and the background ions suffer non- 
linear behavior. The saturation value was eh<i>lTg — 0.28. 
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(a) 

FIG. 14. Distribution function of the unstable ion beam averaged over 1/10 of the system 
length at f - 0 ( the smooth curve ) and at saturation (a) at the location XQ/L^ - 0.3 and 
(b) at the location XQ/L^ — 0.7. 
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FIG.14b. 
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FIG. 15. Time history of the square of the real part of the potential at a fixed location XQ. 
The parameters are the same as for Fig. 13 except that the 0"" and 1'" were kept in the 
periodic direction and the initial potential had the profile 
<Ao(x) - (r,/e)( 0.5 + 0.5cos(7rx/Lj). 



FIG. 16. Density as a function of the x coordinate at f - 0 ( the cosine profile ) and at 
saturation of the field energy for (a) the background ion ions, (b) the stable ion beam and 
(c) the unstable ion beam. The parameters are the same as for Fig. 15. The saturation 
value is e5<i)/r(, — 0.13. 
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