
RD-I49 441 CHECKING MICROCODE ALGEBRRICRLLY(U) ROYRL SIGNALS AND i/i
RADAR ESTABLISHMENT MALVERN (ENGLAND) J N FOSTER

OCT 84 RSRE-MEMO-3748 DRIC-BR-93876

UNCLASSIFIED F/G 2/i"'iEEEmmmmm

1.-8

MICROCOPY RESOLUTION TEST CHART
NAT IONAL BUREAU OF STANDARDS -I 93-A

7-71 .-

REPR!WOOf A'UlG~fWM&!NT-nPvW

RSRE
MEMORANDUM No. 3748

ROYAL SIGNALS & RADAR
ESTABLISHMENT

It

00

CHECKING MICROCODE ALGEBRAICALLY

Author: J M Foster

0 PROCUREMENT EXECUTIVE,
* Z MINISTRY OF DEFENCE,

RSRE MALVERN,
N WORCS.

zTC
4 ''LgL4C1

0 ILJ- &JN20

LE

UNLIMITED

0

0 -

ROYAL SIGNALS AND RADAR ESTABLISHMENT

Memorandum 3748

.0

Title: CHECKING MICROCODE ALGEBRAICALLY

Author: J M Foster

Date: October 1984 0

SUMMARY

This Memorandum describes algebraic methods used by a program
which processes microcode based on the AMD 2910 in order to find
some of its properties. The methods could be applied to other
controllers. Examples of the properties which can be found are
given, including checking for timing constraints, ensuring that
interrupts are polled frequently, checking against expression
stack overflow and ensuring the absence of certain sequences of
instruction. The method separates into a part which deals only
with the control structure, for this program that of the AMD 2910,
and a part which deals with the operations performed by the micro-
instructions, in this case those of the ICL Perq. It has been .
used to check many properties of the implementation of Flex on
Perq, which involves more than 4000 microinstructions.-

' -,;i.on For

°'C TA3]:"-

J:'ti l cnt ion.

: [tribution/

,Uv ility Codes
,':il and/or

Special O""

Copyright !
C

Controller HMSO London

1984

* 0°

RSRE MEMORANDUM 3748

CHECKING MICROCODE ALGEBRAICALLY

J M Foster

LIST OF CONTENTS

1 Introduction
2 Evaluation of the Homomorphisms

2.1 Structure of the program
2.2 From control structure to regular expressions

3 Examples of Homomorphisms

3.1 Some regular algebras
3.2 Examples of homomorphisms

4 Conclusions
Acknowledgements
References

APPENDIX 1

1 INTRODUCTION

Many authors have described the use of algebraic methods to discover
properties of programs (1),(2),(3),(4),(6),(7),(9),(10) and (11). These
methods have been most often used for optimisation in compilers but it is
also possible to use them to prove the absence of wide classes of error in
programs, or if these errors are present it may be possible to locate them.

Microcode is a particularly suitable object for such studies. The
correctness of the whole computer depends on the correctness of the micro-
code, so the expense of guaranteeing the absence of certain errors can
easily be borne. Microcode is often written in a very dense and compact
fashion, with many GOTOs and much sharing of code because of the overriding
need for speed and space economy and it is also often subject to unusual -

constraints of timing or impermissible instruction sequences. It is there- ------

fore particularly prone to errors which are difficult to find by visual
inspection but can be found by algebraic methods. Furthermore, microcode
usually has a fairly simple control structure, conditional jumps, some
kinds of switch jumps including one for instruction entry, subroutine

0 calls, returns and exceptions account for most microcode control structure. 0
Procedures with parameters are usually absent and there are a fixed number
of registers, main store being regarded as a peripheral device. All this
makes the algebraic method easy to apply though subroutines and exception
handling do need an extension of the usual technique. *'

* 0

The algebraic methods take account of the control structure of the
program, without usually being able to consider the particular values that
are being manipulated. It is not possible for example, to know which way
a conditional jump will go, we merely know that it will go one way or the
other. Hence the methods are pessimistic. If they say that an optimisation
Is possible, then that is certainly so, but the optimisation might be
possible without being detectable, since the actual values which can
possibly occur might rule out some paths which the method cannot afford to
ignore. Likewise, if the program is said to be free from a certain sort
of error, then that is so, but the presence of an error might be suggested
when in fact it could be ruled out by a more detailed examination of the
semantics.

The method factors into two parts. In one, which is independent of the
particular property being investigated, we calculate an algebraic expression
corresponding to the control structure of the microcode program. In the "-'
other we calculate a function of that algebraic expression which gives us 4

the property we require. So the control structure of the microcode is
entirely processed in the first component and is divorced from the particular
property under investigation which belongs entirely to the second component.

This paper describes the method, shows how it may be used to find various
kinds of error in microcode and gives an account of a program which implements
the method for microcode based on the AMD 2910 microcontroller. It could be
adapted for other controllers.

We start by giving an outline of the method in the rest of this section.
The second describes the program for the AMD 2910 microcontroller. In the
third section are examples of the method applied to finding a number of
apparently quite different and useful properties of microcode. These include 0
ensuring that an expression stack cannot overflow, finding the maximum time
between polling for interrupts, checking that timing constraints on the use of
store are met and making sure that the interrupt routine does not disturb
values in machine registers. The fourth section contains some conclusions.
An appendix gives the formal definition or regular algebras.

We use what is known as regular algebra. We can think of this as being
defined abstractly, by giving the operations of the algebra and saying what
laws they must obey. Such a definition is given in the appendix. We can
also think of various concrete realisations of the algebra. For one such
realisation the values manipulated by the algebra are sets of paths starting
at one point of a program and ending at another. The operations are ways of
combining these to make larger sets of paths and ultimately the whole program.

An elementary regular expression, one instruction of the microcode,
corresponds to a path of one step. One operation of the algebra, denoted by

. and read "followed by", takes two regular expressions and makes a new
one consisting of all the paths going through the first parameter of the
operation and then through the second. A second operation, denoted by "+",
takes two regular expressions and makes a new one consisting of all the paths

through either one or the other. There is a special regular expression,
written "I", which corresponds to a path of zero steps, in other words a
short circuit between the starting and finishing points. A third and final
operator, "W", takes a regular expression, r, and produces the regular
expression

2

I + r + r.r + r.r.r +

that is, the paths in the result are those obtained by going zero times round
r, or once, or twice etc. We may sometimes also use a special value, written
"0" which corresponds to no path, but this is not a necessary part of the
definition, just one which is sometimes useful.

There are various laws which are obeyed by this algebra of sets of paths. *1
For example

a.(b+c) - a.b + a.c

which is a distributive law and

a.(b.c) - (a.b).c

which is the associative law for "followed by". These are examples of the
laws necessary for regular algebras.

It is possible to take microcode and produce from its control structure
a regular expression which describes the possible paths through it. While
this is being done various checks can be made on the structure of the micro-
code. For example, a path from the start which must loop for ever or a dis-
connected piece of microcode can be detected and reported. In such cases a
regular expression is not produced and the programmer is sent back to correct
his microcode. The interpretation of the microcode can be done independently
of its later use for checking and we therefore need just one program to do it.

As well as the realisation of the operations and laws of regular algebras
in terms of paths, we could realise them in terms of other values and opera-
tions. Such a realisation would again define values to be manipulated,
operations +', .' and *' and a unit, 1', all of which obey the laws. A
homomorphism of regular algebras, H, is a mapping which obeys the rules

H(1) - 1'

H(a.b) - H(a) .' H(b)

H(a+b) H(a) +' H(b)

H(a*) H 1(a) *'

In order to obtain a property of the program we will define a homo-

morphism of regular algebras from the path algebra to an algebra devised
especially for determining the particular property. The implication of
the rules for homomorphisms above is that we can calculate the property of
a composite program from the properties of its parts. It may require some
ingenuity to think of a suitable homomorphism, but it is a skill which comes
with practice and the rewards are considerable.

A property of a program will be some sort of value. It may be as simple
as a truth value, saying that the program is good or bad, or an integer giving
the maximum value of something, or it may be quite a complex structure. The
path algebra is such that if we choose how the one-step values are mapped,
that is if we say what is the property of the individual instructions, then
there is only one way of extending this to a homomorphism. If we introduce

3

a function, atom, which takes the one-step values to their properties, then

the rule

H(a) = atom(a), when a is a single instruction

* together with the rules given above, define a recursive program for evaluating
|* the property and if this is applied to the regular expression derived from the

microcode it will tell us the property of the microcode.

Let us take a very simple example to illustrate this. Suppose that some
of the elementary instructions can be wrong. We wish to find out whether a
program contains a wrong instruction on any of its paths. We take the type
of our property values to be truth values, true being interpreted as meaning
that a set of paths has a wrong instruction in it and false as meaning that
it contains no wrong instruction. A short circuit has no error so 1' is
false. The function atom is that which says for each elementary instruction
whether it is good or bad. For .' we choose "or" since we want to detect an
error if there is one in either component and for +' we also choose "or" since
we want to detect an error if there is one in either sequent. The operation

can be deduced to be the identity operation on truth values. We must check
that these operations obey the laws for regular algebras which are set out in

* the appendix. Then we can obtain the truth value which tells us whether there
was an error by evaluating the homomorphism for the regular expression produced
from the microcode.

2 EVALUATION OF THE HOMOMORPHISMS

2.1 STRUCTURE OF THE PROGRAM

A program has been written in ALGOL 68 to implement the method for
microcode written for the ICL Perq computer. The Perq microcode is
based on the AMD 2910 microcontroller and this provides the control
structure of the microcode, with a few special features added which
are peculiar to the Perq. Since the production of the regular
expression depends only on the control structure, this part of the
program depends on the properties of the AMD 2910, though the individual
homomorphisms will depend on the other parts of the microinstructions.
So the major part of the program is dependent on the AMD 2910 rather
than the whole of Perq. Methods used by other authors are described
in (2) and (10).

The program first assembles the text of the microcode into an in-
store representation. This, of course, depends on the form of written
microcode for Perq. It then applies a given homomorphism

hom(assemble(text), unit, dot, plus, star, atom)

the result of which is the value of the homomorphism for the whole
program. The value, unit, and the functions, dot, plus, star and atom
define the particular homomorphism which is to be used and the procedure,
hom, knows the control structure of the machine and evaluates the regular
expression and its homomorphism. So assemble, unit, dot, plus, star and
atom understand about the operations of the Perq microcode, but hom only
knows about the control structure provided by the AMD 2910. It would have
been possible to evaluate the regular expression first, and then the homo-
morphism afterwards, but that would have meant keeping a representation

6 0

4"-- - L-- - P

"I:.

of the regular expression which for a large microcode would have been

very bulky. The program therefore evaluates the homomorphism as it

goes, since this usually takes very much less space.

Since different homomorphisms will map to regular algebras in terms
of different base types (modes in ALGOL 68), the types of unit, dot,
plus, star, atom and hom will be different when calculating different
properties. ALGOL 68 does not permit modes to be parameterised so itis necessary to recompile in order to generate a program which applies .4

a new homomorphism. The structure is, schematically:

BEGIN

Mode M = definition of mode of values produced by hom

PROC atoms = (INSTRUCTION i)M: body;
PROC dot = (M a, b)M: body;
PROC plus = (M a, b)M: body;
PROC star = (M a)M: body;
M unit = value;

PROC hom = (MICROCODE m,
M u,
PROC(M, M)M d,
PROC(M, M)M p,
PROC(M)M s,
PROC(INSTRUCTION)M atom)

body;

hom(assemble(text), unit, dot, plus, star, atom)

END

The first six lines of definition are special to a particular
homomorphism, the remaining lines are always the same. Hom only uses
the control part of the microcode.

Of course it is possible for the control structure of the microcode
to be illegal itself. For example, the AND 2910 chip has only five levels
of subroutine entry available, so exceeding this number must be wrong,
excluding any consideration of regular expressions. Also if we start to
interpret a new macroinstruction when the subroutine stack is not empty
this is likely to be a mistake. These and other errors are detected by
hom while it is evaluating the regular expression and are indicated as
errors to the user.

2.2 FROM CONTROL STRUCTURE TO REGULAR EXPRESSIONS

From the point of view of rapid calculation, the most important
properties of regular algebras are the associative and distributive
laws. These imply that we can calculate the regular expression corres-
ponding to a part of the program and slot it into place in a larger
expression, without any problems about the order in which these things
are done. So we can calculate the regular expression starting from a L __

label in the code up to, say, the points at which we start to decode the
next instruction, and store it, or rather its homomorphic image, together
with the label. Then when we find another jump to that label we can use
the already computed value. Something similar can be done for subroutine
calls by storing the value associated with the subroutine up to the
returns and exception jumps, and re-using this. This is made complex by
the need to treat exceptions (Jump-pop in the AMD 2910) and because of
the explicit manipulations of the subroutine link stack which are -,

possible. Subroutine calls, exceptions and the efficiency of the -

calculation of regular expressions are dealt with in another paper, (5).

Clearly a section of program which continues to another using "next" "-

or an unconditional jump is to be composed using the "followed by" opera-
tor.

A conditional jump brings the + operator into play. Notice that the
operation performed by the instruction before jumping has to be dealt
with, so a conditional jump yields

(effect of instruction) . (destl + dest2)

where destl and dest2 are the regular expressions calculated from the

continuation and the (labelled) destination. Switch jumps are dealt
with similarly.

Microcode typically has a structure

initiate.(insO + insl + ins2 ...)*

where initiate is microcode to set up the system, and insO, insl etc are
microcode to interpret the various macroinstructions. This, therefore,
is how we treat the switch jump to decode the next instruction.

The AMD 2910 has a register S. This is used both for counting,
which can be treated by the same method as conditional jump, and also
to hold a destination for a jump. This opens the possibility of
computed jumps, but if the values which are loaded into S are constants
of the microcode it is possible to calculate the values which can be in
S at any moment and treat a jump using S as if it were a switch jump to
all these places.

We have still to deal with loops caused by jumps. Let us take a
note when we start to process code starting at a label. If, while
processing it, we arrive at a jump to the label again we have in effect
the situation

x - a + b.x

where a is the rest of the regular expression whether complete or not,
and b is the set of paths leading up to the return to the label. For
this we produce the regular expression

b* a

6

It can be shown that this substitution can always be made (see
Appendix), and that although doing things in a different order may lead
to different regular expressions, these are always equivalent under the
laws of regular algebras. It is at this point that loops from which
there is no escape can be detected.

The rest of the features of the AMD 2910 can be dealt with in ways
which are easily deduced from those which have been treated above.

3 EXAMPLES OF HOMOMORPHISMS

3.1 SOME REGULAR ALGEBRAS

We start by considering a few examples of regular algebras in order
to help with the homomorphisms to follow. •

Consider the integers with

a.b + a+b (addition on integers) (3.1)

a+b * max(a,b)

a* + if a >0 then -else 0

1 +0

0 + -c c

This will satisfy the laws for regular algebras with a zero (see Appendix)
provided that we take -0 + c =-.

Dually we can take

a.b + a+b (addition on integers) (3.2)

a+b + min(a,b)

a* + if a< 0 then- else 0

I + 0

0 + *

This will satisfy the laws provided that we take -- + -=

Another simple example is to take truth values, T and F with

a.b + a and b (3.3)

a+b + a and b

a* + T -

I~ + T1 * T :? "

0 + F

7

or its obvious dual.

Several of the examples of homomorphisms below use regular algebras
derived in the following way. Given a regular algebra with a zero defined
on a set R, we can obtain a regular algebra defined on R x R by

(al,bl).(a2,b2) + (a2+al.b2, bl.b2) (3.4)

(al,bl) + (a2,b2) + (al+a2, bl+b2)

(a,b)* + (a.b*,b*)

1 (0,1)

We can see that (0,0) is a right zero for "followed by", but it is not a
left zero. If a zero is needed one may be added consistently to the base
set, but it will not be needed in any example below.

3.2 EXAMPLES OF HOMOMORPHISMS

Consider the following simple example, useful in what follows. We
wish to find whether a path expression contains a path of zero length,
that is, whether there is a possible short-circuit between start and S
finish. Note that the path expressions that we produce from microcode
are slightly different from the sequence of instruction steps through
the program. For the single instruction

label : op, goto label

translates into the path expression

op. op*

since the operation is always obeyed at least once. So a zero length
path in a path expression is quite possible. Let us take R to be truth
values, with

atom(a) - false (3.5)

1- true

a.b - a and b

a+b - a or b

0a* =' true

It can easily be seen that this computes a correct answer and satisfies -

the laws for regular algebras with a zero. It just uses the algebra of
formula 3.3.

8

.4 S

Now let us design a homomorphism which will decide whether an X
instruction is immediately followed by a Y instruction. Thought it
appears that this might be easy to detect by eye, in fact to do so
in 4000 instructions with all the possibilities of interaction which -
are permitted by the AND 2910, and to be certain that no example has
been missed, is no light task. It is something which is useful for
Perq microcode, since there are instructions which can occasionally,
because of interrupts, spoil the effect of the following one. We will
let R consist of quadruples of truth values, (x, y, t, e), in which x
will tell us if any of the paths ends with an X instruction, y will say -
whether any path starts with a Y instruction, t will say whether there
is a path of zero length, and e will tell us whether there is an example
of XY in any of the paths, which is the error we are looking for. Let

atom(X) - (T, F, F, F) (3.6)
atom(Y) - (F, T, F, F) •
atom(a) - (F, F, F, F) otherwise

1 = (F, F, T, F)

(xl, yl, tl, el) . (x2, y2, t2, e2) =

(x2 or (t2 and xl) , 0
yl or (t1 and y2)
tl and t2
el or e2 or (yl and x2))

(xl, yl, t1, el) + (x2, y2, t2, e2) =

(xl or x2
yl or y2
tl or t2
el or e2)

(x, y, t, e)* (x, y, T, e or (x and y)) 0

The t component is just the same as in formula (3.5). The pair x
and t as well as the pair y and t are examples of formula (3.4). The
laws for e can also be easily checked. Inspection will verify that these
definitions are a correct interpretation of what was required. Note that
it might be the case that an instruction X contains a conditional jump -
which, because of extra facts which we know, but the regular algebra does
not know, cannot jump to the Y instruction. In this case we shall be
told that there is an error when there is none. But certainly if this
homomorphism says there is no error, we can be sure that this is so. In
practice we would like, not only to know that the program is free from
this error if it is so, but also if there is an error we would like to be
told where the fault occurred. Such error location can be done in this
case without much difficulty by adding extra components to R, but is has
not been done here, in order to keep the example uncluttered. However,
in general, it is not so easy because the error is not usually easily
attributed to a particular place in the program.

Another example, closely related to formula (3.5), will give us the
shortest path through a program in terms of the number of instructions.
This could easily be modified to give the minimum time. Take R to be
integers and let

atom(a) 1 (3.7)
1 0

a.b a+b (integer addition)
a+b min(a,b)
a* 0
0 go

This is just the regular algebra of formula (3.2), remembering that
the number of steps cannot be negative. From this we can derive a homo-
morphism which will check for the following kind of error. It happens on 0
the Perq that if a certain sort of store instruction is followed within
four instructions by another memory instruction then the memory instruc-
tion will go wrong. Ensuring that this does not happen is clearly both
important and difficult to check. Let us devise a homomorphism to ensure
that an instruction of class X is not followed within n steps by an
instruction of class Y. We take R to consist of three integers and a •
truth value and interpret (x, y, t, e) by letting x be the smallest
number of steps from an X to the end, Y the smallest number of steps
from the start to a Y, t the shortest number of steps through the path
expression not involving X or Y, and e the truth value telling whether
an error has occurred. Let

atom(X) = (0, -, -, F) (3.8)
atom(Y) = (, 0, 1, F)
atom(a) = (®, , 1, F) otherwise

(xl, yl, t1, el) . (x2, y2, t2, e2) =

(min(x2, xl+t2) ,
min(yl, tl+y2) ,

tl+t2
el or e2 or xl+y2 <n+l)

(xl, yl, t1, el) + (x2, y2, t2, e2) = •

(min(xl,x2) ,
min(yl,y2) ,
min(tl,t2) ,
el or e2)

(x, y, t, e)* = (x, y, 0, e or x+y<5)

This is clearly closely related to formula (3.6) and again is an .

example of the use of formula (3.4).

We may find the maximum number of steps (or time) through a program

by using the algebra of formula (3.1) and taking

atom(a) - I

We can use this in a similar way to find the maximum distance between

instances of a particular kind of instruction, X. This is useful, for 0

example if we want to ensure that polling for interrupts occurs sufficiently
frequently to keep up with some peripheral. We take a quadruple of integers,
(a, b, t, m), a being the maximum distance after an X, b the maximum distance
before, t the maximum distance through the path expression not involving an
X, and m the maximum separation between Xs

10

17J

atom(X) - (0, 0, - --) (3.9)
atom(a) (-u, -i, 1, -')

(al, bl, tl, ml) . (a2, b2, t2, m2) .

(max(a2, al+t2)
max(bl, b2+tl)
tl+t2
max(ml, m2, al+b2))

(al, bl, tl, ml) + (a2, b2, t2, m2)

(max(al, a2) ,
max(bl, b2) ,
max(tl, t2) ,
max(ml, m2))

(a, b, t, m)* = (if t>0 then a + - else a
if t> 0 then b + - else b ,
if t> 0 then - else 0
if t> 0 then max(m, a+b+-) else max(m, a+b))

Since any loop is likely to give a value of infinity this will mean
that we must look at every loop which does not poll for interrupts in
order to check by hand that using it will not exceed the permitted
interval. However, the homomorphism can be modified to find such loops,
and it is in any case probably wise to look at them. 0

We will produce a homomorphism to check that any sequence of
instructions starting with an X instruction and ending with a Z
instruction does not contain any Y instructions. This might be
because Y spoils something set up by X for Z to use. Typically Y is
the interrupt poll. We use a septet of truth values •

(x, y, z, xy, yz, t, e)

Let x mean that there is a path from an X to the end of the path expres-

sion not involving a Y or a Z, let y mean that there is a path from start
to finish with one or mo-e Y instructions on it but neither an X nor a Z,
and let z mean that there is a path from the start to a Z instruction
without X or Y. The truth value xy shall mean that there is a path with
an X on it followed by some Ys and dually for yz. Let t mean that there
is a path without X, Y or Z and e shall signify that an error has been

detected. .0.

0

0

atom(X) - (T, F, F, F, F, F, F) (3.10) "
atom(Y) - (F, T, F, F, F, F, F)

atom(Z) - (F, F, T, F, F, F, F)
atom(a) - (F, T F, F, F, F, F) otherwise 0

1 - (F, F, F, F, F, T, F)

(xl, yl, z1, xyl, yzl, tI, el) . (x2, y2, z2, xy2, yz2, t2, e2)

(x2 or (xl and t2)
(yl and t2) or (tI and y2) or (yl and y2),
z1 or (z2 and t1)
xy2 or (xyl and t2) or (xyl and y2) or (xl and y2) ,
yzl or (tI and yz2) or (yl and yz2) or (yl and z2) ,
ti and t2
el or e2 or (xl and yz2) or (xyl and z2)).,-A

(xl, yl, z1, xyl, yzl, t1, el) + (x2, y2, z2, xy2, yz2, t2, e2) -

(xl or x2
yl or y2
zl or z2
lor .2 ,

yzl or yz2 ,
tl or t2,
el or e2)

(x, y, z, xy, t, e)* (x (

xy or (x and y) , ..-'

yz or (y and z) ,
T,
e or (x and yz) or (xy and z) or
(x and y and z))

Finally, we show how we may ensure that the limits of an expression

stack are not exceeded. Suppose we have two instructions, push and pop,
and a stack with is limited to n items. The instructions only change the
number of items in a stack, so we work in terms of change relative to the
start, and will assume that the stack is initialised at the start of the
program. Take a quartet of integers (d, i, s, g), d being the greatest
decrease in stack size from start to finish, i being the greatest increase,
s being the smallest number of items in the stack relative to the start
which occurred anywhere in the paths, and g is the greatest.

* atom(push) - (1, 1, 1, 1) (3.11)
atom(pop) - (-1, -1, -1, -1)
atom(a) W (0, 0, 0, 0) otherwise

1 =(O, O, O, O) .- '

(dl, il, sl, gl) . (d2, 12, s2, g2) =0000

(dl+d2
11+12 ,,'

min(sl, s2+dl)
ax(gl, g2+il)

-12

S o .

(dl, il, sl, gl) + (d2, 12, s2, g2) -

(min(dl, d2) ,
max(il, 12) ,
min(sl, s2) ,
max(gl, g2))

(d, 1, s, g)* = (if d <0 then -" else 0 ,

if i>0 then else 0 ,
if d <0 then else s , 0
if i >0 then m else g)

If the final value of g is greater than n then there is an error,
and if the final value of s is less than 0 there is an error. Pin-
pointing the error can be more difficult since it is not necessarily a
localised mistake, but the area where the maximum or minimum occurred S
can be found. It is more complex to try to find the same kind of mistake
in the presence of a stack-reset operation, because the natural extension
of formula 3.11 does not obey the distributive law. However, a modifica-
tion of this method can be designed which does work.

4 CONCLUSIONS 0

We have given a number of examples of useful diagnostic properties of
microcode that can be computed using the method of homomorphisms and show how
a porogram has been written which separates this calculation between parts
involving the control structure and thus depending only on the AMD 2910 and
parts involving knowledge of the Perq microcode. This program runs fairly S
quickly and has proved its use in removing errors from about 4000 instructions
of Perq microcode implementing the Flex architecture. Most of the tests which
were run found errors, many of which were subtle, involving interrupts or
unlikely combinations of circumstance which would have been difficult to remove
by the usual methods of trial and error.

ACKNOWLEDGEMENTS

I would like to acknowledge many helpful remarks from B D Bramson on an
earlier draft of this paper.

REFERENCES

I Aho A V, "Principles of compiler design", Addison-Wesley, 1977.
2 Backhouse R C and Carre B A, "Regular algebra applied to path-finding

problems", J Inst Math Applic Vol 15, pp161-186, 1975.

3 Bramson B D and Goodenough S 3, "Data use analysis for computer programs".
unpublished RSRE report.

4 Bramson B D, "Information flow analysis for computer programs",
unpublished RSRE report.

5 Foster J M, "Regular expression analysis of procedures and exceptions",
RSRE Memo No 3749.

6 Kam J B and Ullman J D, "Monotone data flow analysis frameworks", -. ' x
Acta Inf Vol 7, pp305-317, 1977.

13 "

.-

7 Rosen B K, "Monoids for rapid data flow analysis", SIAM J Comput Vol 9,
pp159-19 6, 1980.

8 Salomaa A, "Two complete axiom systems for the algebra of regular events",
Journal ACM Vol 13, No 1, pp158-169, Jan 1966.

9 Schaeffer M, "A mathematical theory of global program optimisation",
Prentice-Hall 1973.

10 Tarjan R E, "A unified approach to path programs", J ACM, Vol 28, No 3,
pp5 7 7-5 9 3, July 1981.

11 Wegbreit B, "Property extraction in well-founded property sets",
IEEE Trans Software Eng Vol 1, pp270-2 8 5 , 1975.

0

0

14

LT W.

APPENDIX 1

The definition of regular algebras can be expressed formally(8). A
regular algebra, R, consists of an alphabet, A, of atomic values, a unit
value, 1, and three operations ,,g +,and ""

R :x R +R

+ R x R +R

* R +*R

The following laws are satisfied:

(a.b).c - a.(b.c) associativity of

(a+b)+c -a+(b+c) associativity of +

a+b - b+a commutativity of +

a+a -a idempotence of +

a.(b9c) - a.b + a.c left distribution of *over +

(a+b).c a.c + b.c right distribution of *over +

1.a - a 1 is a left unit for

a.1 = a 1lis aright unitfor.

a* - 1 + a*.a

a* - 1+ a)*

and a b*.c is a solution of a -b.a + c.

A regular algebra with a zero, 0, also satisfies

0.a 0 0 is a left zero for

a.0 -0 0 is a right zero for

0+a a 0Ois aunit for +

It is also true that

i-n

a* ~ a.a.....(factors)

i-0

15

~_7

RFPROntJCFD AT GOVERNMFNT FXPFNSE

..

DOCUMENT CONTROL SHEET

Overall security classification of sheet ..UN CLT SIFAED

(A, far a' oossib)e this sheet should contain only unclassified information. If it is necessary to enter

clas-ified information. the box concerned must be marked to indicate the classification eq (R) (C) or (S)) I

1. 9RIC Reference (if known) 2. Originator's Reference 3. Agency Reference . Report Security
Memorandum 3748 "ICas ~a

• NCLASSIFIEDaif ' i.c

5. Orqinator's Code (if 6. Originator (Corporate Author) Name and Location
known)"

Royal Signals and Radar Establishment

5a. Sconsoring Agency's 6a. Soonsoring Agency (Contract Authority) Name and Location

Code (if known)

7. Title

CHECKING MICROCODE ALGEBRAICALLY

7a. Title in Foreign Language (in the case of translations)

7t. Presented at (for conference napers) Title, place and date of conference

8. Author 1 Surname. initials 9(a) Author 2 9(b) Authors 3,4... 10. Date pp. ref.

Foster J M
11. Contract Number 12. Period 13. Project 14. Other Reference

15. Distribution statement

Unlimited

Descrictors (or keywords)

continue on separate Piece of poer

hbotract

This Memorandum describes algebraic methods used by a program which processes
microcode based on the AMD 2910 in order to find some of its properties. The
methods could be applied to other controllers. Examples of the properties which
can be found are given, including checking for timing constraints, ensuring that
interrupts are polled frequently, checking against expression stack overflow and
ensuring the absence of certain sequences of instruction. The method separates
into a part which deals only with the control structure, for this program that

of the AMD 2910, and a part which deals with the operations performed by the
microinstructions, in this case those of the ICL Perq. It has been used to
check many properties of the implementation of Flex on Perq, which involves

more than 4000 microinstructions.

58 4

*'.---. S---. F.-.1.. -, -4i- ,i .. ' " : "

-. 7. W " - .-..

FILMEDV
I 2-85

* DTIC

