
RD-Rt49 437 ON THE MODIFIED LIKELIHOOD FOR DENSITY ESTIIRTION(U) i/Il
NORTH CAROLINA UNIV AT CHAPEL HILL DEPT OF STATISTICS
J S MARRON ET AL. 1984 MS-i560 N8@@14-81-K-0373

UNCLASSIFIED F/G 12/1 NL

MEl.



~1.

11111L2 3324 111L

1111Ul1 ,______ ,_

MICROCOPY RESOLUTION TEST CHART
NATIONAL BUREAU OF STANDARDS-1963-A

.Q..

"°411'

':r%



MIMEO SERIES #1560

1984

- On the Modified Likelihood for

Density Estimation •I
by

J. S. Marron1

University of North Carolina, Chapel Hill

and

R. L. Taylor

University of Georgia

1 Research partially supported by ONR contract N00014-81-K-0373

C-E L% LIF.-L
L This document has e ppoO

La.... for public relecse and sale; its -A..;I,,,I.. j. , ---tion is unlimitd.""

85 01 10 034

. . ... . . . . . . . . .. . . . ..... *.*** " " ".**** ""'" ""i" , ..." ,' 'O **.*.*.*." .L" I
.. i.. ':.......i"""". i"" .



UNCLASSIFIED w '" 9 ,
UuRITv CLASSIPICArio% OP TIS PAG I

REPORT DOCUMENTATION PAGE
!I1& REPORT* SECURITY CLASSIFICATION lb. RSIRICTIve MAAKiNtGS

UNCLASSIFIED
2g, SECumry cLASSIPICATION AUTHoORIT 3. OISTRIBUI'IOWdAVAILABILITY OP REPORT

2. OECLASIPICATION4/OOWN4GRAOiNWGSCHEDULE Approved for Public Release:
Distribution Unlimited

4, PERPORMING ORGANIZATION RE6PORT NUMSSRISI S. MONITORING ORGANIZATION REPORT NUMOI[RIS)

N. AME OP PIRPORMING0 ORGANIZATION I. OPPICE SYMBOL. 7.. MAUI OP MONITORING ORGANIZATION
0140pikV6b0

Department of Statistics

4w. A00111Mlt. SuM dad ZIP C011111 7b. AGGRSS (City. SION and ZIP Code)

University of North Carolina
Chapel Hill, North Carolina 27514

a&. NAME OP PUN4OINCdSPQNSO1%ING 6Sb. OPPICE SYMBOL S. PROCUREMENT INSTRUMENT IDENTIFICATION NUMBER
ORGANIZAT ION (it apuabt

Office of Naval Research N00014-81-K-0373

Be. ADDRES (cty Stae dad ZIP Co"., 10. SOURCE OP FUNDING NOS.

Statistics & Probability Program PROGRAM~ PROJECT TAS wORK UNIT

Arlington, VA 22217NO
11 ITE do~da ~ent ClinII.tauNR 042 269 SRO 105

)the Modified Likelihood for Density Estirnatiln
12. PERSONAL AUTMORIS)

J.S. Marron and R.L. Taylor
13& TYPE OP REPORT 131L TIME COVERED 14. DATE OP REPORT LV,.. Me.. Do,, 15. PAGE COUNT

* IS ASETRACTOS IS, SUBJECTc TERMSg ldnau onms oqurv demtlj'yw- and idetif byu~ 660E n

It is shown that some recent results of Wong (1983) concerning his version of the
mo~dified likelihood criterion for smoothing paramcter selection in kernel density

*estimation can be very misleading, because the wrong mode of convergence is established.
An example is given to demonstrate that thc results are false when a more reasonable
mode of convergence is used. Slightly stronger conditions are added and valid proofs

* for the correct version of these results are indicated

20. OISTRISUTION/AVAILABILITY OP AUSTRACT 21. ABSTRACT SECURITY CLASSIFICATION

UNCLASSIPIEO/UNLIMITEO ASAME AS APT.a OTric USERtS

22& NAME OP RE6SPONSISLE INOIVIGUAL 22b. TELEPHONE NUMBER 22C. OPFICE SYMBOL

C.R. Baker 1)9228

00 F0110 1473, 83 APR EDITION OP I JAN 73 18 OBSOLETE. UNCLASSIFIED
SECURITY CLASSIPICATION OP TIS PAGE

ORI



Smary -

It is shown that some recent results of Wong (1983) concerning his ver-

sion of the modified likelihood criterion for smoothing parameter selection -

in kernel density estimation can be very misleading, because the wrong mode

of convergence is established. An example is given to demonstrate that the

results are false when a more reasonable mode of convergence is used. Slight-

ly stronger conditions are added and valid proofs for the correct version of

these results are indicated.
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I. Introduction

Let X = {XI,...,X n} be a random sample from a density f. The kernel es-

timator of f is

n
(1.1) f (x,X) n-1  ".'.".".i= 1l'

where

The central problem in the field of density estimation is the choice of the

smoothing parameter or bandwidth, X. As noted in Wong (1983), several authors

have proposed selecting X by maximizing the cross-validation function

(1.2) PCV(X) n- 1  lonxx~(1.2 (A)= n' log fA(XiX(i))

where X. denotes the "leave one out" sample:

-(i) x\{xi1.

Wong (1983) studies the behavior of (1.2) by looking for conditions

under which (letting * denote convolution)

(1.3) jCV(R ) a_. flog(f*K,)dF.

This relationship is then used to establish an asymptotic equivalence of

(1.2) with a Jackknife selector of A given by
-1n f Xi -i + n

Jack (,) n i1 ~ l= l og fx(Xi,)-log f XX )+n' I log f (Xi,XVj]

M j=l 

*
o

* In the present paper it will be shown that Wong's results need very cautious

interpretation for two reasons.

*o ' '". --'•*."'*'
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First, the proof of the pivotal Theorem 1 in Wong (1983) is based on

a Law of Large Numbers for a sequence of independent, identically distributed

random variables in Banach space, which forces the smoothing parameter, X,

to be fixed as n + , Allowing X to vary with n necessitates consideration

of arrays of random variables in Banach spaces where each row is an i.i.d.

sequence (see Taylor (1982) and Taylor (1983) for results of this type).

This type of asymptotics provides a poor model for studying kernel density

estimation because it is well known that, as n , one needs X - 0 to even

have consistency of f (i.e.: convergence to f). In section 2, an example

is presented which demonstrates that this issue is vital to understanding

when (1.3) holds and is not a minor technical detail.

Second, the theorems of Wong (1983) which study the asymptotic behavior

of the functions RCV(,) and R Jack(X) are established only pointwise (in X).

But what is really of interest here is properties of the maximizers of these

functions, and to make such inferences requires theorems which are uniform

in X. The example of Section 2 demonstrates that uniformity over all X > 0

is impossible. However, in section 3 it is shown that, under stronger assump-

tions, (1.3) and the asymptotic equivalence of RCV(X) and RJack (X) are true

uniformly over a very reasonable X, range.

2. Counterexample

In Marron (1984) it is seen that if the cumulative distribution function

of f is

F(x) = e - I /  for x > 0,

if K is compactly supported, and if Xn tends to 0 fast enough that

2
(2.1) (log n) X 0,

n P

. . . . . . . . . . . . . .. . . . . . . . . . . .

u" ° ." " °-" °,I . ° , °- - .° .-..... °.. . ... . ,-. ..- .... . ... ° . . ".-.'-. . '"
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then

(2.2) RCV(xn) -C in probability

To see the implications of this on the maximizer of RnC, note that the

usual (see, for example, Rosenblatt (1971)) optimal bandwidth of X n -1/5
n

easily satisfies (2.1). So the maximizer of RC will be (asymptotically)

very far from optimal, or in other words cross-validation fails in this

setting. The maximizer of RJack can be shown to suffer similar difficulties.

To relate (2.2) to the results of Wong (1983), note that if K is a

probability density which is bounded and positive on a neighborhood of the

origin, then an easy analytic argument shows that there is a constant M > 0

so that

-M < f log(f*K,)dF < M,

for X r (0,1). Thus

RCV(xn)/f log(f*KXn)dF

is probability and so (1.3) no longer holds. This does not contradict

Wong's Theorem 1 because there (1.3) is established pointwise in X > 0,

but it does show one can not have (1.3) uniformly over X > 0 or even for

- 0 (as with the optimal X n-l/), under these assumptions. Hence,

the issues raised in section 1 are crucial to understanding the behavior

of jCV and jJack, and not just technical details.

3. Positive Results

The pathology of the previous section is caused by the fact that

f(x) is "close to 0 on a set of large measure." To avoid this (and thus

have it possible for the maximizer of R or RJack to have some optimality

. ... .. ... ..... ' .
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properties) it will be assumed that f is supported and bounded away from 0

on an interval [a,b]. Gasser and Ailler (1979) (working in the very similar

setting of regression estimation) indicated that the estimator (1.1) does

not perform well near a and b. To avoid technical details which would ob-

scure the issues under discussion here, the "boundary effect" will be ig-

nored. In Marron (1984) it is seen how to modify RCV to overcome this

difficulty.

Two technical points in the proof of Theorem 1 of Wong (1983) relate

to the Banach space of bounded continuous functions, C(--,-). First, con-

tinuity of the estimator may be a problem without additional conditions on

K (for example, the shifted histogram of Rosenblatt (1956) is discontinuous).

However, the choice of K is of secondary importance in the kernel estimate,

and most selections of K are continuous. Here it will be assumed that K

is a probability density which is positive at the origin and is Lipschitz

continuous in the sense that there are positive constants C1 and a so :that

(3.1) IK(x) - K(y)I <

for all x,y. Most commonly used kernel functions satisfy these assumptions.

The second technical point relates to separability, which is required by the

referenced Strong Law of Large Numbers of Revesz (1968), but which does not

hold for C(--,-). However, since the range of the i.i.d. random variables

Xl, X2, (namely R) is separable, condition (3.1) assures that the kernel

estimators reside in a separable subspace of C(--,-).

To see the range of X's to be considered, let 5 be a small positive

constant and define

-3(3.2) n n  X n nn' =n

-n** .- "7- *:.***.. .*... -1**..



Note that for B sufficiently small,

xn1/5  -
i X < n-1/  < ,

where the dependence of X and T on n is suppressed for notational convenience.

The positive results of this paper are:

Theorem 1: Under the above assumptions,

sup IP c'X) f log(f*K,)dFl 0 a.s.

Theorem 2: Under the above assumptions,

sup~R(X -~'ack(~- 0 a.s.

The proofs of these theorems follow the general outline of that of

Wong (1983) but are unfortunately quite technical in nature, in part because

of the "uniform over " improvement. The details which establish the present

version of (9) in Wong's argument are in the appendix.

I.

I

I
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Appendix: Proof of Theorems

Following Wong (1983), the key step is to prove
IfIx X) "'

(A.1) sup 1 0 a.s.

xe[ab] f*KX(x)
X6[X'T]

The consideration of the random variablesin a separable subspace of C(--,-)

with the sup norm neatly answers measurability questions concerning the

a sequence of random variables in (A.1). Consider only n > n0 so that
a

f*KX(x) _ C2 > 0

for all x e [a,b] and all Xe[X,-]. Choose partitions Xl,...,Xjn g [a,b]
n n

and X..., Xn [X,] so that

Ln nn n = ,n =Xn '.
x 1  a, bjn X1 = n = ' T

and so that there is a constant C3 such that

1+ 1/a s~ 1'Zi"
(A .2) J n 5 C , L n 5 C n ....

and so that, for j = 2, ... , Jn' P = 2, ... , Ln,
CA.5)~ ~ x; X_ _n(1-1/t) I n -1 ,n)-1,:.- .

(A.3) X 1 < X 1 - < n- 1/2 a

where a is the constant in (3.1) From here on, the dependence of the above

quantities on n will be suppressed for notational convenience. Moreover,

C1,....C12 will refer to constants (independent of n).

Expand (A.1) into

If'(x 'x)  fx (×x) --
sup - 1 < max . - 1 -.. +

(A.4) xQ[a,b] f*K,(x) j=l,... ,J f*K (x)
XG [_\,W] 9=1,. .. , ~":
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+ max sup J ____

j=2,...,J Xxtx 1 x i] f*K,(x) f*K,9,jx)

3 j=2, ...,PL XrAGlA lxAQ)

The second term on the right hand side of (A.4) can be bounded by writing, for

fx(x,x) f fA ,~X) 1n KX(x-Xi) -KAX(x5-X.)

f*K,(x) f*K (xi) ( i=l f*KX(X) f*K z(x)

But, for i=1, ... , n

(A.5) KAxX. < KAZX-i~ (xX < + IK,(x- -KXZ(xj-Xi)
f*Kx(x) f*K(x) f*KiI~ (x)f*K,,(x i) f*K z) -

But, since K is bounded and f is bounded away from 0 on [a,b],

*IKA(XxXi)l f*K ,(x )f*K (x) C CA-1If*KQ(x )-f*KX(x)i <
f*K (x)f*K (x)

< C 4x f*(K z(x ) -KA X(x)) + f*( (x) x)

And by integration by substitution, (3.1), (3.2) and (A.3)

AK( y-x Y-x (~y

f*(K (x )Kxg(X))I x K'If- K( X)f(

< AfIK(u+-.-- - K(u) f(x+Aiu)du <

<C in x-x jI AZ C 5 n n c 2 n-

In a similar spirit, using also the botndedness and compact support of f,
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Xl f(K,,(x)>Kx(x)) =x~ [' K(X> K &.i-)] f (y) dy~

< - -.- K( u) f(x+Xiu)du <

X- 1- T fK(u)f(x+x, u )du+ f K(u)-K(-, u) f(x+xAu)du <

C n-1/2a + C111 X < C7n /2..
-6 x

It follows from the above that the first term on the right hand side of

(A.5) tends to 0. To check the second term, note that by the boundedness

of f above 0,

KA(x-Xi)-KA(jX) x CR-I(.xx)1 1± i~

f*K (x) .I .i
But, by the boundedness of K and (A.3),

-11 , x-

And by the compactness of the support of f and (3.1),

J- 2- 1

Aj1~~~ ~ KC---- IK--~--~ < Cn ~ -A +

-1K( K n

3(n- - -

It follows from the above that the second term on the right hand side of

(A.4) tends to 0.

To check the almost sure convergence of the first term of (A.4),

• % . * . . .. . . . . . . . ... -- .,....,., .. -i-
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for c > 0 consider

(A.6)

Next pick q, an even positive integer, so that

(A.7) 2 + +2 a - 3q <-1.

Then for each j and k., using a Marcinkiewicz-Zygmlund inequality (see, for

example, Theorem 2 of Section 10.3 of Chow and Teicher (1978))

(A.8) Pjf (.X) - f*Kv (x l) > CC2 1

= ~ -'{K( 9 )- EK(~ EC~

n x.-X.x -X

<c C ncC)-~X IE(1  K 1)jnKzxI/<

-q 12 X_ X1 .X

for each n. From (A. 6), (A. 8), (A.2) and (3.2)
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,7. - E]:-'

<n'+ I 3 nfCn*KC 2 nn2+i~q

n ~ n (xi)

2a 0-2i 11-a-1

f,2 f* (x.

converges completely and consequently a.s. to 0.

The rest of the proofs follow as in Wong (1983), except that the step

spnlIlog fxXiXM 0 a.s.
X i=1 f*Kx(X.)

takes more work to verify. However, since f and f*\are bounded away from

0, this may be easily done using an argument which is similar to (but

simpler than) the preceding arguments.

d"I
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