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Summary

It is shown that some recent results of Wong (1983) concerning his ver-
sion of the modified likelihood criterion for smoothing parameter selection
in kernel density estimation can be very misleading, because the wrong mode
of convergence is established. An example is given to demonstrate that the
results are false when a more reasonable mode of convergence is used. Slight-
ly stronger conditions are added and valid proofs for the correct version of

these results are indicated.
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I. Introduction

Let X = {Xl,...,Xn} be a random sample from a density f. The kernel es-

e s
.

timator of f is

—
SIS
.

A
L

I

5

n
(1.1) £(x,X) =n lizl K, (x-X;),

el

where

g
P

K00 = 5 K.

The central problem in the field of density estimation is the choice of the
smoothing parameter or bandwidth, A. As noted in Wong (1983), several authors

have proposed selecting A by maximizing the cross-validation function

~CV -1 n
(1.2) R*'() =n 121 log fx(xi”f(i))

where thdenotes the "leave one out' sample:
X\X ).

Wong (1983) studies the behavior of (1.2) by looking for conditions

under which (letting * denote convolution)
(1.3) RV (1) 282, f1og(£¥K,)dF.

This relationship is then used to establish an asymptotic equivalence of

(1.2) with a Jackknife selector of ) given by f}

RIack(y) = n71 Y [log £, (X, ,X)-log £, (X;,X 1)L § log £, (X; X )] 2
gl A A O L N S €)1 B 2

In the present paper it will be shown that Wong's results need very cautious

interpretation for two reasons.

........................
----------------------
-----
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First, the proof of the pivotal Theorem 1 in Wong (1983) is based on
a Law of Large Numbers for a sequence of independent, identically distributed
random variables in Banach space, which forces the smoothing parameter, A,
to be fixed as n » », Allowing X to vary with n necessitates consideration
of arrays of random variables in Banach spaces where each row is an i.i.d.
sequence (see Taylor (1982) and Taylor (1983) for results of this type).

This type of asymptotics provides a poor model for studying kernel density

ii estimation because it is well known that, as n - <, one needs A - 0 to even
have consistency of fk (i.e.: convergence to f). In section 2, an example
is presented which demonstrates that this issue is vital to understanding

when (1.3) holds and is not a minor technical detail.

Second, the theorems of Wong (1983) which study the asymptotic behavior
of the functions RCV(A) and RJaCk(A) are established only pointwise (in ).
But what is really of interest here is properties of the maXimizers of these
functions, and to make such inferences requires theorems which are uniform
in A. The example of Section 2 demonstrates that uniformity over all A > 0
is impossible. However, in section 3 it is shown that, under stronger assump-

RJack

tions, (1.3) and the asymptotic equivalence of RCV(A) and (A) are true

umformly over a very reasonable ) range.

2. Counterexample

In Marron (1984) it is seen that if the cumulative distribution function
of f is

F(x) = e 1/x

for x > 0,

if K is compactly supported, and if A tends to 0 fast enough that

2.1 (log n)zkn + 0,

v L aal- ne - L aond et o al o L auell aveah el sveds 4 v —w W ™ e, m g - -
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(2.2) RV ) » - in probability .

To see the implications of this on the maximizer of CV, note that the

usual (see, for example, Rosenblatt (1971)) optimal bandwidth of A ~ n"1/5
easily satisfies (2.1). So the maximizer of RCV will be (asymptotically)
very far from optimal, or in other words cross-validation fails in this

setting. The maximizer of RJaCk

can be shown to suffer similar difficulties.
To relate (2.2) to the results of Wong (1983), note that if K is a

probability density which is bounded and positive on a neighborhood of the

origin, then an easy analytic argument shows that there is a constant M > 0

so that

-M< /S log(f*Kx)dF <M,

for A € (0,1). Thus
ACV
R (An)/f log(f*KXn)dF + -

is probability and so (1.3) no longer holds. This does not contradict
Wong's Theorem 1 because there (1.3) is established pointwise in X > 0,

but it does show one can not have (1.3) uniformly over X > 0 or even for

-1/5

A + 0 (as with the optimal An ~n ), under these assumptions. Hence,

the issues raised in scction 1 are crucial to understanding the behavior

cv

of R*" and R ack’ and not just technical details.

3. Positive Results

The pathology of the previous section is caused by the fact that

f(x) is '""close to 0 on a set of large measure." To avoid this (and thus

have it possible for the maximizer of RCV or ﬁJack

to have some optimality
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properties) it will be assumed that f is supported and bounded away from 0
on an interval [a,b]. Gasser and Miller (1979) (working in the very similar
setting of regression estimation) indicated that the estimator (1.1) does
not perform well near a and b. To avoid technical details which would ob-
scure the issues under discussion here, the 'boundary effect'" will be ig-
nored. In Marron (1984) it is seen how to modify RCY to overcome this
difficulty.

Two technical points in the proof of Theorem 1 of Wong (1983) relate
to the Banach space of bounded continuous functions, C(-«~,~). First, con-
tinuity of the estimator may be a problem without additional conditions on
K (for example, the shifted histogram of Rosenblatt (1956) is discontinuous).
However, the choice of K is of secondary importance in the kernel estimate,
and most selections of K are continuous. Here it will be assumed that K
is a probability density which is positive at the origin and is Lipschitz

continuous in the sense that there are positive constants C1 and a so‘that
(3.1) K@) - K| < ¢ lx-y|%,

for all x,y. Most commonly used kernel functions satisfy these assumptions.

The second technical point relates to separability, which is required by the

referenced Strong Law of Large Numbers of Revesz (1968), but which does not i;
hold for C(-~,»)., However, since the range of the i.i.d. random variables ; x
X;s X5, ... (namely R) is separable, condition (3.1) assures that the kernel 22.2
estimators reside in a separable subspace of C(-w,x), E; ]
To see the range of A's to be considered, let B be a small positive ;:‘?
constant and define é
K] _ =33 Sl
(3.2) Tend ., o =ai '*T-T-.:




Note that for 8 sufficiently small,

I )\<n_1/5<'X

’
R where the dependence of A and X on n is suppressed for notational convenience.

- The positive results of this paper are:

Theorem 1: Under the above assumptions,

Sup_ ‘ﬁcvkx) - f 1og(f*KA)dF‘ +0 a.S.
A€ [A,2]

. 1w

Theorem 2: Under the above assumptions,

sup_ RV () - RJaCk(x)l >0 a.s.
Ae[A,A]
The proofs of these theorems follow the general outline of that of
Wong (1983) but are unfortunately quite technical in nature, in part because
- of the "uniform over )" improvement. The details which establish the present

version of (9) in Wong's argument are in the appendix.

) .
.'. _—l
ol 3
- -y
e o
-

.

el

Cod

AR

L

* .




Appendix: Proof of Theorcms

Following Wong (1983), the key step is to prove

£,(x,%)

(A.1) sup ~-1}-+0 a.s.

x€[a,b]

Ae[),R]

f*Kx(x)

The consideration of the random variables in a separable subspace of C(-%,»)
with the sup norm neatly answers measurability questions concerning the

sequence of random variables in (A.1). Consider only n > n, so that

]
a
f*KA(x) 2C, >0
. for all x € [a,b] and all Ae[A,X]. Choose partitions x?,...,xgn € [a,b]
»
g and A’l’xfﬁn e [)7] so that
n _ n _ n _ n _ =
3 Xp =8 X5 = by Ay = A A T A,
]
- and so that there is a constant C3 such that
= (A.2) Jn< e g™t

and so that, for j =2, ..., J , % =2, ..., L

fﬁ n n’

N < n_.n -(1+1/a) n -1 _ ..n-1 -1/2

: (A.3) o8| <n clon oy ot

»

X where a is the constant in (3.1) From here on, the dependence of the above
}; quantities on n will be suppressed for notational convenience. Morcover,
; Cl,...,C]2 will refer to constants (independent of n).

Expand (A.1) into

f, (x,X) f, (x.,X)
sup )‘_...:._. -1 < max _)\—Q‘.__LL - 1! +
(A.4) x¢[a,b] f*K)\ x) i=1,...,Jd f*K)\Q (XJ)
re[),X] 0=1,...,L '




(1

£,06X)  £,0,%)
f*KA(x) f*Kxg(xj)

+  max sup
3224004 yd xe[xj_l,xj]

2=2,...,L e[

g-121¢]

The second term on the right hand side of (A.4) can be bounded by writing, for

§j=2, oo, J3 222, ..., L; xe[xj_l,xj]; Ae[xl_l,xz] K

Kx(x-Xi) ] sz(xj-xi)

BN £,6001  qn
f*KA(x) f*KAg(xj) i=1 f*KA(x) f*KAQ(xj)
But, for i=1, ..., n,
K, (x-X.) K, (x.-X, £*K,  (x.)-£*K, (x) K, (x-X;)-K, , (x:-X:) =
(A.5) A i1 AN 2 < IKA(X'Xi)' ALY A + |2 S e I S
f*KA(x) f*KAQ(xj) f*KA(X)f*sz(xj)

' f*K}\g’(Xj) '

But, since K is bounded and f is bounded away from 0 on {[a,b],

£4K, , (%) - £K, () 0
Ky (x-X;) | . < ¢y f*KM(xj)-f*Kk(x)! <
* *
f KA(x)f hAQ(Xj)
] -1
<ept £ (K, , (%5)-K, ()| + €y f*(KA_Q(x)-KX(x))\.

And by integration by substitution, (3.1), (3.2) and (A.3)

- ) - 1 . Y% -
ey, -5, 00| <7 re kG - kEE)Emw] <

’ ’ £ 4 4

% - 4

1 X-X, :".E’_

<A f'K(U*‘TJ-) - K(u).f(xﬂzu)du < e

! - 1 - 14 Al :
< Clnz‘glx-xj Iakg 1w < Csnz_Bn 1o 3+0/2 Cen B-o/2 1

In a similar spirit, using also the boundedness and compact support of f, ]
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}\-1

<

£ (K, (0K, )| = 27 f% K55 K £y

A, A
A_lflK(u) - 5 KG w) | £(ctAu)du <

A

., M A A
A ’1 - Tlm(u)f(X+>‘2 u )du+ < J K(u)-K(T u) f(x+)\£u)du <

IA

Ay 1o
-1/2 N -1/2
C6n + Cll 1 T f C7n .

A

It follows from the above that the first term on the right hand side of
(A.5) tends to 0. To check the second term, note that by the boundedness
of f above 0,

1 1 i “e X.~X.
pv— < gl - Tﬂ K | b
)\Q,(Xj) X ,Q,
But, by the boundedness of K and (A.3),
-X
-1 -1, Y -1/ 2.
’x - Ay “K( s )| < Cn .

And by the compactness of the support of f and (3.1),

x =X, x.-X.
K52 - K(Jrﬁ)

-1
)

I 1. ] _
< Cgn® ¥ lx L Ay !

-3 (grap o8
S0P SR CHE S A

It follows from the above that the sccond term on the right hand side of

(A.4) tends to 0.

To check the almost sure convergence of the first term of (A.4),




for € > 0 consider
r

P|max
j,t

< Jn'Ln-P{{ka(xj,§) - f*KXQ(xj)[ >e () .

SVACITRY.

K X5)

(A.6)

Next pick g, an even positive integer, so that

e (A.7) 2+ 1w 20 -39 <1,

Then for each j and 2, using a Marcinkiewicz-Zygmund inequality (see, for

example, Theorem 2 of Section 10.3 of Chow and Teicher (1978))

(A.8) P[Ifki(xj,§) - f*K\L(xj)‘ > eC,] =

X
J

IR P
= Plfg L (K
Nigi Mg A

x.-Xi
) - EK(—iE—))

> € Cé} <
X

X. x.—Xi 4
b E‘\Hﬁ‘))l / (€)% <

i n Xj-
E'— Y (KC
I R

n X.-X. x.-X.
<€ (£6,) 3@ )] ( § (KD - mr(OAy)HA2
- 12 2 LN I <
x.-X x.-X 1

tA

Clﬂicz)-q(nxg)-q nﬂ/z E(KC—%;—l) - EKC_%E;E))Q <
<C,.n4 nq/z(h)_q :C (HAZ)-Q/Z

- 12

2 for cach n. From (A.6), (A.8), (A.2) and (3.2)
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3

© 1
no + C§C12 Z nz*a*za'eq <
n=n0+1

A

’

by (A.7). Hence,
f)&, (xj ’X) '
max -1
Js2

£7Ky (%)

converges completely and consequently a.s. to 0.
The rest of the proofs follow as in Wong (1983), except that the step
n B®uXay) o
L .
A i=1 f KA(Xi)
takes more work to verify. However, since f and f*Kiare bounded away from

0, this may be easily done using an argument which is similar to (but

simpler than) the preceding arguments.
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