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EXECUTIVE SUMMARY

OBJECTIVE

The objectives of this work were to (1) improve the prediction of
underwater sound propagation in the Arctic Ocean by determining ice reflection
and scattering losses, and (2) develop a computer model of Arctic sound
propagation.

RESULTS

1. A propagation loss model has been developed for the Arctic Ocean that
should be of significant value in predicting Arctic propagation performance.

2. Ice scattering losses have been determined empirically and have given good
fits to three major Arctic propagation loss data sets.

3. Specifications were developed for gathering data that would distinguish
between different theoretical scattering functions.

RECOMMENDATIONS

1 Introduce relative phase into scattered sound fields so that accurately
modeled array performance predictions can be made.

2. Gather under-ice propagation data that will facilitate scattering deter-
mination. This requires closely spaced ranges in the first 60 km with sources
or receivers spaced from above 50 m to below 400 m in depth and frequencies up
to 500 Hz.

3. Use propagation loss data as they become available to update ice
scattering curves used in this Arctic propagation model. Seasonal or ice
condition dependence is needed.

4. Set limits on the ice scattering kernel by comparing computed losses with
data.
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INTRODUCTION

In the Arctic Ocean, if one wishes to compute underwater sound
propagation losses or to create a propagation loss model, the paramount
problem is determining the effect of the overhead ice on the sound. Other
aspects of sound propagation are generally easier to compute in the Arctic
than in other ocean basins due to the stability of the sound speed profile and
the dominance of the upward refracted, surface reflected propagation path.
The acoustic effects of the ice are extremely complicated. The rough and
irregular shape of the ice, its elastic properties, inhomogeneities, and even
its snow cover, all affect the sound. These acoustic effects, including the
parameters of the ice itself, are being ably and energetically investigated.
However, while these studies are in progress, a best-available acoustic de-
scription of the ice is needed. This description can be in the form of re-
flection and scattering losses and scattering directions as functions of the
appropriate variables. A knowledge of which variables are important is also
needed.

The primary purpose of the effort reported here was to develop an acous-
tic description of the ice as outlined above. Our strategy was to model the
non-ice dependent aspects of sound propagation as well as possible. We then
sought ice reflection values that gave the best fit between computed and
observed propagation 1loss. The results provide good general levels of ice
reflection loss as functions of grazing angle, frequency, and ice roughness.
Other, less definitive results that may require more data to determine or
substantiate involve the functional dependence or shape of the reflection loss
for the above parameters, the directional characteristics of the non-specular
scatter, seasonal dependence, and ice loss as opposed to ice scatter.

A second product of this effort is an Arctic propagation 1loss model.
This model with our ice scattering losses incorporated into it agrees well
with all three major sets of data used. Samples from each set are given in
this report. We chose a normal mode model that was reliable and easy to use,
though necessarily range independent. That is, we must assume the environment
is constant in range. The result is an Arctic model that a user can apply
with ease and confidence. It can be used in both deep and shallow water, with
or without ice cover. The model is discussed in the first section of this
report and the input-output for two runs are given in appendix A as an aid to
users in constructing runs.

Because we were interested in ice scattering effects, we chose a model
with both primary and secondary scattering. Primary scattering is the loss of
energy at the surface due to scattering. Secondary scattering is the propaga-
tion of this scattered energy to the source and receiver. A simple Arctic
model with empirical ice loss could be constructed without using secondary
scattering. However, one cannot hope to approach the true physics of the prob-
lem without accounting for the scattered energy. The use of secondary scatter-
ing in the model increases the acoustic parameters that need to be known,
particularly the scattering directions or scattering kernel. It also greatly
increases the information that the model can produce. The relative strength
of the direct and scattered fields is an example. This is treated briefly in
the final section of this report.



The scope of this study was limited by the propagation loss data that
were available. For example, air-dropped explosive sources are by far the
easiest sources to use in the Arctic. The data therefore tend to be sparse
because the data can be gathered only from patches of open water. Also, the
air drops cover long ranges; therefore the higher frequencies are greatly
attenuated and tend to be neglected. We have therefore been most successful
in estimating those ice acoustic effects that control the overall range
dependent attenuation at frequencies of 200 Hz and below. Closely spaced and
more detailed propagation loss data, when available, will permit better
determination of other aspects of ice acoustics.



DESCRIPTION OF THE ARCTIC PROPAGATION MODEL

The Arctic sound field is presented as having two interacting componentse.
There is a coherent sound field that is represented by a finite set of normal
modes and a stochastic component associated with the scattered field. The
normal modes are an exAact solution of the wave equation when the water-ice
boundary does not scatter {(i.e., at very low frequencies). The number of
normal modes required is a linear function of frequency with as few as 110
normal modes needed at a frequency of 100 Hz for a typical Arctic profile for
long ranges.

The stochastic component of the sound field is represented by a set of
integrals that are the result of sound waves interacting with the rough water-
ice boundary. The scattering integrals are associated with ray paths that
direct sound energy from the source to the water-ice boundary or from the
boundary to a receiver (hydrophone).

A single normal mode is made of up- and down-going waves that satisfy a
condition of constructive interference called the dispersion equation (ref.
1) In figure 1, the so0lid lines represent sound energy traveling as a single
normal mode. The dashed lines represent ray paths associated with the
stochastic sound field. At the source, the rays represent sound energy that
travels from the source to the water-ice boundary, where scattering excites
the normal mode (ray to mode exchange of energy). Near the receiver, sound
energy in the normal mode is scattered at the water-ice boundary into rays
that travel from the boundary to the receiver (mode to ray exchange of energy).

ICE

SOURCE

RECEIVER

——NORMAL MODE — ~— RAY PATH

Figure 1. Mode-to-ray and ray-to-mode conversion.



In the Arctic model, the coherent field is represented as a finite set of
normal modes. If PC is the coherent field at horizontal range r and receiver

depth z, then from reference 1

M
P = Z (21r/r)1/2 U (z ) U (z) exp(ik r) <k1/2 N ) (1)
C m (o] m m m m

m=1

In equation 1, r is the horizontal range, zo and z are the source depth and
receiver depth, Um is the depth function which is a solution of the Helmholtz
equation that also satisfies the dispersion equation, km is the horizontal
wave number of mode m, and Nm is a generalized normalization factor. In the

Arctic model, each U (depth function) can have up to 21 depth segments, or
layers. Each segqment of U consists of a sum of two exponential functions with
+. and - arguments when the sound speed is constant, or of a sum of the Airy
functions, Ai and Bi, when the sound speed changes with depth (linear in the
squared index of refraction). Coefficients of the exponential functions, or
of Ai and Bi, are chosen so the sound pressure and the particle velocity of
the sound field are continuous functions throughout the acoustic channel. The
model automatically adjusts the horizontal wave number k until a value km is

found for which U = Um satisfies the boundary conditions at the water-ice

interface and at the bottom of the sound channel. The bottom condition is
either the Summerfeld radiation condition, if the mode does not interact with
the bottom sediments, or a bottom impedance condition if it does. This value
of k (km) is said to satisfy the dispersion equation, and the corresponding

value of U is denoted Um.
To insure efficient computation and to eliminate the problem of not find-
ing a normal mode, it is first assumed the km is real and a real km is found

that satisfies the boundary conditions in terms of phase shifts. The imagi-
nary part of km is then set by the equation (ref. 2)

Im(k ) = (SL_ + BL )/(8.686X ) (2)
m m m m

where SLm and BLm are the boundary losses (in 4B per reflection) at the sur-
face and bottom of the channel, and Xm is the cycle distance {(horizontal dis-

tance between surface reflections of the ray that is associated (i.e., same
phase speed) as mode m.

The scattered field is written in terms of scattering integrals of the

3 —stzt (2Im(k )p)/siny ld (3)
N » o exp(2Im(k )p /51nyr i



The reader should refer to reference 1 for derivation of equation 3 and for
the equations that relate equation 3 to the stochastic sound field. Here, we
shall show the physical interpretation of equation 3 and indicate how the
integral is calculated. In equation 3, T is the grazing angle of ray sound

energy at the water-ice boundary, Yo1 and Y p are the limiting values of rays

that can travel from the interface to the receiver, 0 is the scattering coeffi-
cient, Y, is the angle of the ray at the receiver, and p is the horizontal

distance from the point where the ray is scattered at the surface to the re-

ceiver. There is also a related integral where the source replaces the
receiver.

Several rays with the same Ys contribute to the integral as shown in fig-

ure 2. Point 1 in fiqure 2 represents sound energy scattered at the surface
(at pt. 1) and traveling directly down to the receiver. Point 2 represents
sound energy scattered (at pt. 2) which is refracted back to the surface by
the strong positive gradient of the sound speed in the Arctic, at point 1.
This ray energy has a specular reflection at point 1; then travels directly to
the receiver. Compared to the strength of the enerqgy scattered at point 1,
the energy scattered from point 2 is stronger by the factor exp [ZIm(km(p2 =

p1))], because mode m is that much stronger at point 2 than at point 1. On

the other hand, the contribution from point 2 is weaker because of the specu-
lar reflection loss due to the surface reflection at point 1 and any bottom
interaction loss that may occur along the path from point 2 to point 1. There
are also ray paths from points 3, 4, etc., that must be included. Referring
to figure 2, it is seen that there is also a set of paths with the same Ys

that arrive at the receiver from below, namely from points 1, 2, etc. These
paths must be included in the integral (eqg. 3) with appropriate values of »p
and corrected for specular reflection losses and bottom interaction losses, if
any.

/ RECEIVER

Figure 2. Ray paths from mode m to the receiver.



The scattering coefficient ¢ depends on the angle of the mode (or the ray
of the same wave number) at the surface, the scattering angle W2 and the sur

face scattering loss. This is generally termed the scattering kernel. At
present, the program uses 0 proportional to sin YS, or Lambert scattering.

The mode angle enters only in determining the total energy scattered per re-
flection. Only scattering in the forward direction is used. In future work
we plan to determine the sensitivity of the computer propagation loss to these
assumptions regarding the scattering kernel.

In summary for this section, the sound field is represented as two over-
lapping fields. Thus, at any point in the channel, there will be a coherent
field represented by a finite set of normal modes and a stochastic field con-
sisting of a set of scattering integrals that are associated with ray paths
from the source to the water-ice interface or from the interface to the re-
ceiver. If the water-ice boundary is smooth, (i.e., r.m.s. variations of the
water-ice interface << A, where A 1is the acoustic wavelength), then ¢ in
equation 3 will approach zero and only the coherent field will be observable.
As the frequency of the sound increases, there will be more scattering and a
larger stochastic contribution to that total field. On the basis of our
limited experience, the Arctic model indicates an increasing stochastic field
with frequency until saturation occurs, when the energy is about evenly di-
vided between the stochastic and coherent sound fields.



ICE REFLECTION LOSS DETERMINATION

The purpose of the work reported in this section was to determine ice re-
flection losses due both to scattering and attenuation. The scattering is due
to irreqularities at the ice-water interface. The attenuation is energy that
is lost at reflection and does not re-enter the water. Much of it may be by
absorption of various waves in the ice. Our strategy was to use the propaga-
tion loss program described above to account for as many propagation parame-
ters as possible. The principal unknowns are then the reflection losses. By
comparing computed losses with observed losses, the reflection losses can be
adjusted to give the best comparison. In this section we give the reflection
loss curves that resulted from our investigation, a discussion of the data
used, and finally, a discussion of the limitations that appear to be inherent
in this method of determining coefficients.

REFLECTION LOSS CURVES

Figure 3 shows the reflection loss curves for two frequencies: 100 and
200 Hz. These curves give loss versus grazing angle for angles up to 20°.
The curves over the shaded areas represent the reflection loss due to ice
attenuation. The remainder of the loss represents scattering loss. This
scattering loss is linear in decibel units for grazing angles up to 20°. The
loss is 0 dB at 0° grazing angle. The scattering loss at any frequency 1is
thus a curve of one parameter. A convenient way to express this parameter is
the slope of the curve in dB/degree.

This slope of the scattering curve is a function of frequency. Figure 4
shows the frequency dependence of the slope. Note that the curve is flat
above 200 Hz; i.e., the slope of the scattering loss is approximately O0.33
dB/degree for all frequencies above 200 Hz. This effect is apparently due to
the scattering objects (the ice keels) becoming large compared to an acoustic
wavelength. Diachok (ref. 3) demonstrates this effect and explains it using
Twersky's loss scattering model. These scattering losses are determined for
data from the central Arctic deep water areas. Corrections for other ice
conditions will be discussed later.

ICE ATTENUATION LOSS

In figure 3, the difference between the losses caused by ice attenuation
and those caused by scattering are represented by the shaded area. The ice-
loss curve increases from 0O to 2 dB above the scattering curve over a 2°
interval, and then remains at 2 dB above the scattering curve. These values
are independent of frequency. Here, this additional reflection loss starts at
15° grazing angle. We use this value for winter ice. For summer ice we lower
the starting angle to 13°. This is the only seasonal difference that we use
in our reflection coefficients, and is a purely hypothetical difference. As
will be shown later, it makes only a small difference in propagation loss, and
very accurate data will be needed to test it. Differences in roughness of
summer and winter ice may well overshadow the effect.
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Figure 3. Ice reflection losses as a function of grazing angle at two frequencies as
used in the Arctic propagation programeThe losses are due to scattering except that
part over the shaded area, which is due to ice loss.
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Figure 4. Slope of ice reflection loss curves as a function of frequency.



In the propagation loss model, the only difference in the use of scatter-
ing loss and ice loss is that energy lost to scattering is used in the scatter-
ing integrals and some of it reaches the receiver. The energy lost to ice
attenuation is not accounted for further.

The above hypothesis regarding summer and winter ice is based on the
assumption that ice loss increases abruptly when the phase speed of shear
waves or surface waves (leaky Rayleigh or Sholty waves) is reached., Next, it
is assumed that harder winter ice has a higher shear velocity. The only evi-
dence on hand for these assumptions is an estimate arrived at by Mellen and
Marsh (ref. 4) of a 13° ice cut-off angle. They were observing individual
shot records, most probably from August-September data. Long range propaga-
tion under winter ice arrives from angles up to 17° from the horizontal. This
limit could be imposed by either ocean bottom or an ice cut-off angle. In
deep water, the bottom grazing rays strike the surface at about 18°. In
either case, the winter cut-off angle is higher than the 13° angle of summer.

BOTTOM REFLECTIONS

Above 20°, the reflection loss curves are not important to long range
propagation because rays that strike the surface at this angle also strike the
bottom. These rays strike the ice at relative short range intervals and are
rapidly attenuated. To use our current technique to determine reflection
losses at these angles would require both carefully observed losses along bot-
tom reflected paths and very reliable bottom loss coefficients. Neither of
these requirements have been available in this study.

We have used a reasonable set of bottom reflection loss curves. Those at
four frequencies are shown in figure 5. These curves were determined from
normal mode theory using a fluid bottom with a sound speed gradient of 1.0, a

. 3 . . .
density of 1.8 gm/cm , and sound speed is continuous at the water-sediment
interface. The curves are arbitrarily continued at higher angles that have
little effect on long range propagation.

ICE ROUGHNESS DEPENDENCE

Finally, the reflection coefficients just given must be adjusted for ice
roughness. We have followed Buck in expressing ice roughness in terms of the
standard deviation of ice depth, s. Figure 6, published by Buck (ref. 5) from
LeShack and Chang (ref. 6) shows contours of s on a map of the Arctic Ocean.
Data from which our loss curves were calibrated came from areas of s approxi-
mately equal to 2 meters, and the previously presented loss curves are assumed
to be for s = 2m. Curves for several values of s are given in figure 7.
These curves are based on relatively small samples of data, as will be dis-
cussed later. A simple algebraic form that fits the scant data has been
selected as follows: 1letting the slope of the curve at s = 2 be K(2, f) and
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Figure 5. Bottom reflection loss as a function of bottom grazing angle for
four frequencies.
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Figure 6. Contours of standard deviation of ice depth in meters from
LeSchack and Chang.
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SLOPE OF SCATTERING LOSS (dB/degree)
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Figure 7. SLope of ice scattering loss curves as a function of frequency and of s,
the standard deviation of ice roughness.

the saturation frequency at which scatters are large compared to a wave length
be fo, our curves are expressed as:

1.5 0.
K(s,f) = (s/2) K(2,f) foi 200(2/s) >
(4)
1. 0.5
K(s) = (s/2) . K(z,fo) fo> 200(2/s)
Inserting the value for the slope at s = 2 m from figure 2, the scattering

loss slopes are

5

K(s,f) = 0.000597 fs" dB/degree/Hz f < 2835—0'5

(5)

K(s) = 0.169s dB/degree £ > 2835700

12



FITTING PROPAGATION LOSS DATA

The scattering loss curves of the previous section were derived by select-
ing values of slope which gave best overall fits to certain published Arctic
propagation loss data. The fits to these data are shown next. In determining
all fits, we used the sound speed profile shown in figure 8. Except where
noted, a water depth of 3500 m was used. Sample bottom reflection losses were
shown in figure 5. Thorp volume attenuation was used throughout. Except
where noted, the data are assumed to be April-May data, and hard winter ice is
assumed. That is, the ice loss curves start at 15° grazing angle as in figure
3. Ice depth standard deviation is 2 m.

:

DEPTH (m)

2000 |-

1 | 1 1 1 ] |
1440 1460 1480 1500

SOUND SPEED (m/s)

Figure 8. A five-layer approximation to a typical Arctic sound speed profile.

DIACHOK'S DATA

The most consistent data set available to us was that published by
Diachok (ref. 3) for the "smooth" ice case (tracks 22 and 26). Two frequen-
cies, 50 and 200 Hz, were used. The fits to these data are shown in figures 9
and 10. Because of the consistency of these data, we required a close fit.
The fits were made by eye, by matching the propagation loss curves to the pub-
lished data. The data were not available in digitized form for computer
processing.

13
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Figure 9. Comparison of Arctic shot data at 50 Hz with computed propagation
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Figure 10. Comparison of Arctic shot data at 200 Hz with computed propagation
losses. Data from Diachok.
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BUCK'S DATA

Data published by Buck (ref. 5) were apparently derived from more diverse
observations, but were for a single shot depth and a single receiver depth, as
printed on the figures. Buck states that data for shallow paths have been
excluded from the set. The data include frequencies from 10 to 200 Hz., Fig-
ures 11 to 13 show fits for 50, 100, and 200 Hz. The computed losses differ
from those of the previous figures only in receiver depth. The circles in the
figures represent shot data and the crosses are from cw data.

In these three plots, there is a tendency for the computed losses to be
above the data at intermediate ranges and below the data at longer ranges.
This may indicate a shortcoming in our reflection loss curve, which is linear
in decibels. This will be discussed later. However, this interpretation is
not compelling, and a simple scatter of the data is also a possible inter-
pretation.

MELLEN AND MARSH DATA

The third set of data available to us was that of Mellen and Marsh (ref.
4). These data were taken predominantly in 1959 and 1962 from Fletcher's Ice
Island (T3) and are of a more varied nature than the previous sets. Source
depth, receiver depth, and shot yields varied. The presence of the ice island
at the receiver may have introduced a consistent increase in loss into the
data. This ice island might also have been the source of the 13° ice cut-off
angle that we have attributed to summer ice. The greatest source of variation
in the loss data is almost certainly the ocean depth. The ice island was in
water of less than 1000-m depth when much of the data were gathered. Assuming
that shallow water along the propagation path is more likely to increase loss
than to decrease it, we have chosen to fit our loss curves to the less lossy
data points.

Figures 14 to 16 show fits to the Mellen and Marsh data at frequencies of
100, 200, and 800 Hz. These data are particularly useful in giving us some
higher frequency points to tie down the high frequency end of the reflection
loss curves.

ICE ROUGHNESS

The ice roughness dependence of our reflection loss function was deter-
mined with considerably less precision than the frequency dependence. This is
because fewer data sets were available, and also because knowledge of s (the
ice depth standard deviation) to attribute to the data sets was far from cer-
tain. The following data were employed. Diachok's (ref. 3) "rough" ice cases
(tracks 18 and 20) were used with s = 3.5 m. Buck's empirical fit gave a good
functional relationship between s and propagation loss for frequencies between
10 and 100 Hz. Finally, Milne's (ref. 7) data were tried. These last data
were of little real value to us because the experimental track extends from
water of 500- to 1300-m depth. Our constant depth model cannot be used with
confidence for such a path. Nevertheless, a computation using a depth of 700
m and s = 4.5 m showed good agreement with the slope of the data at 100 Hz.

15



PROPAGATION LOSS (dB)

PROPAGATION LOSS (dB)

60

SOURCE DEPTH 245 m
RECEIVER DEPTH 30 m
FREQUENCY 50 Hz

100 ) | |
0 50 100 150 200

RANGE (km)

Figure 11. Comparison of Arctic shot and cw data at 50 Hz with computed
propagation losses. Data from Buck.
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Figure 12. Comparison of Arctic shot and cw data at 100 Hz with computed
propagation losses. Data from Buck.
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Figure 13. Comparison of Arctic shot and cw data at 200 Hz with computed
propagation losses. Data from Buck.

17



Figure 14. Comparison of Arctic shot data at 100 Hz with computed propagation
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Figure 15. Comparison of Arctic shot data at 200 Hz with computed propagation
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Figure 16. Comparison of Arctic shot data at 800 Hz with computed propagation
losses. Data from Mellen and Marsh.

18



Figure 17 shows the fit using the Milne data points as plotted by Mellen and
Marsh (ref. 4).

The slope of the computed and observed losses agrees well, but there is a
consistent 7-dB offset beyond the first two data points.

The above data represent a small number of points upon which to base the
ice-roughness dependence of our curves. This dependence .should therefore be
considered tentative, pending the availability of more data. Of course, our
overall strategy of determining reflection loss curves is data dependent. The
curves are therefore expected to change as additional data are used to verify
and update them.
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COMPARISON OF REFLECTION LOSS FUNCTIONS

The simple scattering loss functions of figure 7 lead to good agreement
between observed data and computed losses. They give some general information
on the functional dependence of the losses. In the following, we investigate
these dependences further.

PROPAGATION LOSS FOR DIFFERENT SCATTERING FUNCTIONS

We chose a linear function for loss versus grazing angle because of its
simplicity. In this section we will compare this function with other possible
forms. Our ultimate purpose is to determine if the form of the function makes
sufficient difference in the computer losses to permit selection of the best
form by comparison with data. Alternatively, we should determine how good or
how much data is required to distinguish between the different reflection loss
curves. To distinguish, the standard error of estimation of a least squares
fit to the data should be 1less than the differences produced by computing
losses with different forms of the reflection loss curves. Here we will show
one determination of this difference. Making least squares fits to data 1is
left to the future.

Figure 18 shows four forms for the reflection loss curve for 100 Hz.
They are all made equal at 12° gazing angle. Rays near this angle have the
smallest attenuation due to surface loss when the linear reflection loss curve
is used. The curve titled "log 1linear" is our 1linear in decibels curve.
Diachok (ref. 3) uses two forms of Twersky's reflectivity. For low frequen-
cies, the curve is linear in intensity and the curve of this form is the "in-
tensity linear" curve. At high frequencies, Diachok uses a rational expres-
sion which gives the "high frequency" curve. We fit this curve to our common
point at 12° by choosing a value for one of the parameters, x, of 0.7. The
final curve is a constant. The frequency of 100 Hz is an intermediate value
to which neither Twersky's low nor high frequency limits apply.

Figure 19 shows losses computed for these four curves. The modes have
been added in random phase to suppress the mode interference beats so that the
four loss curves can be compared. The difference can be seen more clearly in
figure 20, where the difference between losses for the log linear curve and
each of the other three is plotted. Clearly, the curve of greatest difference
from the log linear curve is the high frequency curve. The greatest differ-
ence between the computed losses at 40 and at 200 km for these two curves is
10 dB. Such differences could be clearly distinguished in an experiment de-
signed to elucidate them.

The losses for the constant reflection curve are intermediate between the
log linear and the high frequency losses. The intensity linear losses differ
little from the log linear, and one can be used as well as the other for prac-
tical computations.

The propagation losses of figure 19 were computed for source and re-
ceiver, both at 50-m depth. When a source depth of 245 m was used, as in much
of the data given here, the differences in propagation loss between the four
functions were much reduced. The reason is that shallow paths that strike the
surface at grazing angles below 8° do not reach the deeper sources. It is
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Figure 18. Four candidate reflection loss curves.
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Figure 19. Losses computed for the four reflection loss curves of Figure 18
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these paths where the different loss functions discriminate most. When these
paths are not included, the discrimination between the different functions is
lost. Figure 21 shows path depth or ray vertexing depth as a function of sur-
face grazing angle for the Arctic profile used here. For a given source or
receiver depth, rays with surface grazing angles less than that shown in the
figure will pass above the source or receiver. Only diffracted or scattered
energy from these shallower paths will be propagated.

This need for shallow source and receiver means that the data given here,
such as that of figure 12, are not effective for distinguishing between dif-
ferent scattering curves. It further indicates that an experiment designed to
indicate something about the scattering curves should have a shallow source
and receivers.
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Figure 21. The depth at which rays of given surface grazing angle vertex
for the Arctic profile of Figure 8. The ray is confined between this
depth and the surface.
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DIFFERENCE IN SUMMER AND WINTER COMPUTATIONS

As stated earlier, this computer model distinguishes between winter and
summer ice by placing the leading edge of a 2-dB ice loss function either at a
13° or 15° grazing angle. The ice loss was illustrated by the shaded area in
figure 3. The ice loss was implemented in hopes that ice cut-off angles could
be elucidated by comparing computer runs with observed data. In the follow-
ing, we compare runs that differ only in this way and show that the difference
is small. It appears that reliable values of ice loss will have to be deter-
mined in other ways, and that their inclusion in the program will not greatly
alter its output.

Figure 22 shows the difference in decibels between computations using
three different values for the leading edge of the ice loss function. They
are expressed as differences in propagation loss from the 15° wvalue that is
the standard used in this report. The exception was 13° for the Mellen and
Marsh data. At 500-km range, the use of the 13° value increases the loss by
2.7 dB. A similar increase in loss could be obtained by changing the s
(standard deviation of ice depth) from 2 m to 2.1 m, and thus altering the
scattering loss by 8 percent. This difference in s is too small to be readily
measured in the Arctic, making an experimental verification unlikely. The
difference in the shape of the 13° curve in figure 20 from a straight line
might be used. As in the previous section, one would compare computed and
observed losses at 40 km with those at some long range to get the greatest
sensitivity. However, only about 1 dB difference is predicted between the 13°
and 15° cases when scattering losses are adjusted to give best fits. Propa-
gation data are not likely to distinguish between such small differences.

The 20° line on fiqure 22 is almost equivalent to removing the ice loss
completely. Rays of 17.6° or greater grazing angle will be bottom reflected
for the 3500-m depth used in these computations. These rays contribute almost
nothing at long ranges. Even at shorter ranges, their ice scattering and bot-
tom loss, compounded by short skip distances, produce a high attenuation rate
and an additional 2 dB per bounce due to ice loss which is difficult to
measure.

REFLECTION LOSSES FOR MODELS WITH FIRST ORDER SCATTERING

Some users may wish to use the reflection coefficients given here in a
program with only first order scattering. That is, energy is lost at the
water-ice interface but is not returned to the sound field by some computation
such as the scattering integrals used here. This returned energy is called
secondary scattering. To obtain equivalent fits to the data, such a program
should use smaller values of reflection loss. Here we show that using a scat-
tering loss in decibels that is 0.75 percent of the losses presented in this
report gives reasonable agreement. However, the two types of computations
have different source-receiver depth dependence and the agreement is only
approximate.

Figure 23 is a repetition of figure 12 with a second loss computation
added. This added computation is the propagation loss using 0.75 percent of
the scattering loss of figure 3 and using no secondary scattering. This is
accomplished in the program by placing all the surface loss in the ice loss
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table and none in the scattering loss table. The surface scattering integrals
therefore make no contribution to the field. The most apparent difference
between the two computations in figure 23 is the much greater fluctuation in
the losses without secondary scattering. This is because the scattering inte-
grals give a rather smooth loss function that fills in the interference nulls
in the coherent mode results.

The source-receiver depth dependence of the computations with and without
secondary scattering is complicated. We have not studied it in detail. Here
we will point out one difference and show one comparison as an introduction to
the topic.

In the Arctic positive gradient sound speed profile, a deep source or
receiver fails to intercept some rays which pass above it. If a shallow
source 1is producing such rays, scattering can direct some energy from them
down to a deeper receiver. By reciprocity, the same thing can happen for a
deep source and shallow receiver. This produces a scattered field that is
relatively strong compared to the direct field. Thus, when source and re-
ceiver are at different depths, the computation with secondary scattering will
show relatively less loss than that without secondary scattering. When source
and receiver are near the same depth, this extra advantage is lost and losses
computed without secondary scattering are relatively smaller.

The above effect is shown in figure 24, Random phase mode losses are
shown for ranges of 100 and 200 km. In general, the losses with secondary
scattering are greater when source and receiver are at the same depth and
smaller when they are at different depths. The two computations are roughly
equal, because of the reduction of the surface loss to 75 percent for the no
secondary scatter case.
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CONCLUSION

A normal mode computer model has been adapted to Arctic underwater sound
propagation. The model integrates over ray paths from the rough surface to
the source and receiver to compute the scattered part of the sound field. Ice
scattering losses have been determined, and with their use the model gives
very good agreement with observed Arctic data. Ice attenuation loss is incor-
porated in the model, but the data available are not sufficient to determine
the small differences in propagation loss caused by ice attenuation.

Available propagation loss data do not permit evaluation of the exact
functional dependence of scattering loss upon grazing angle. However, experi-
mental configurations are discussed that would help determine the functional
dependence.

It is shown that a program which doces not use secondary scattering can
obtain results approximating ours if an ice scattering loss of 75 percent of
our loss in decibels is used. However, the source receiver dependence of the
results cannot be made to coincide exactly.
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APPENDIX A: SAMPLE RUNS

This appendix gives two sample runs to assist users of the Arctic propa-
gation model in setting up run decks. Figure A-1 is an explanation of input
card formats prepared by D. White of NORDA. Following that, two sample runs
are presented, each of which consists of an input deck of ten cards and the
computer printout which results.

The first of the two runs, entitled "First Sample Run" (fig A-2), is a
100-Hz run using 250 modes. Bottom loss, ice scattering, and ice loss tables
are all read in. A five-layer Arctic sound speed profile and two receiver
depths are read in. An additional receiver, at the same depth as the source,
is always added by the program (if not read in by the user.)

The second sample run, entitled "Second Sample Run" (fig. A-2), is a
200-Hz run and only requests modes up to phase velocity 1510 m/sec. (This is
not an adequate number, as one can check by making a run with a larger number
of modes and noting the difference in propagation loss.) This run requests
standard ice roughness losses for ice depth standard deviation of 2.5 m by
placing only this number on the input card for ice scattering loss. The
standard winter ice loss is obtained by using zero (a blank) on the ice loss
card.

The propagation loss on the printouts is given at lines entitled RKM.
The following lines, entitled 10 and 90 percent, give certain expected values
resulting from the random phase relation between the coherent and incoherent
fields, and are not discussed in this report. The lines entitled Coherent SL
give the propagation loss of the coherent or normal mode field only. Finally,
for every tenth range, a random phase loss is given, which is equivalent to
the loss of a range averaged intensity.
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