
RD-A149 427 THE FEASIBILITY OF A MULTIPROCESSOR ARCHITECTURE FOR i/i.
REAL-TIME CONTOUR SURFACE DISPLAY GENERRTION(U) NAVAL

POSTGRADUATE SCHHOL MONTEREY CA M J ZYDA DEC 84

UNCLASSIFIED NPS52-84-825 F/G 9/2 NEhhhEIIIIhhEIIIIIIIE
EIIl".~IIIIIIII

&:=I1 .08 12.
13.2

11IL25 ,_o ..

MICROCOPY RESOLUTION TEST CHART

NATIONAL BUREAU Of JAN9ARD 19- A

.-
o.

* .°

. .

- .

..
-

.

NPS52-84-02S

NAVAL POSTGRADUATE SCHOOL0
Monterey, California

THE FEASIBILITY OF A MULTIPROCESSOR ARCHITECTURE
FOR REAL-TIME CONTOUR SURFACE DISPLAY

GENERATION

Michael J. Zyda

December 1984

Approved for public release; distribution unlimited

Prepared for:S

Chief of Naval Research
Arlington, VA 22217

85 01 10 0 2 5
.- .

,.. .. ~~~~~~~~~~~~~~~~~~~....--.....-- • ..- - ... "..-.'..-.-... .- '-. -r -.- " " .

NAVAL POSTGRADUATE SCHOOL
Monterey, Cal ifornia

Commodore R. H. Shumaker D. A. Schrady
Superintendent Provost

The work reported herein was supported in part by the Foundation
Research Program of the Naval Postgraduate School.with funds provided by
the Chief of Naval Research.

Reproduction of all or part of this report is authorized.

This report was prepared by:

MICHAEL J. ZYDA "
Assistant Professor of

Computer Science

Reviewed by: Released by:

/BWE J.o McLEINNAN KNEALE T. MARSHALL
/Acting Chairman and Associate Dean of Information and
Professor of Computer Science Policy Sciences

, ..

SECURITY CLASSIFICATION OF THIS PAGE (UP16. Des Z-1.1 d)

REPORT DOCUMENTATIQ'I PAGE g NTU N
I RiEPORT NUMBER 2. GOVT AC :ESSIOMNO S. 2 RECIPIENT'SCATALOG "UNGER

NPS52-84-025S9 q.2
4, TITLE (and Subtitle) I. Type OF REPORT 41 PEIOD~ COVERED
Thbe Feasibility of a Miii itpro' ssor Architecture

for Real-Time Contour Surfacc D~isplay Generation

a. PERFORMING One. REPORT NumSeal

7. AUTHOR(@) I. CONTRACT OnGRANT NMISUER(sJ

Michael J. Zyda

9. PERFORMING ORGANIZATION NAME ANO ADDRESS 10. PROGRAM ELEMENT. PROJECT, TANE
AREA II WORK UNIT MURS

Naval Postgraduate School 611c2N; pP.00-N2-MP
Monterey, CA 93943 J,! 0 14 951q-14 110 (1

1I, CONTROLLING OFFICE NAME ANO ADDRESS 12. REPORT OATE

Chief of Naval Research December 1984
Arlington, VA 22217 13. NUMER OFPAGES

74 -MONITORING AGENCY NAME A AOORIESS(Ii different fin Controlling Office) it. SECURITY CLASS. (at i. roeff

S.. O0ECLASS;FI11CATI 0%7PDOwwGrAo ipe.
SCHEDOULE

16 DISTRIBUTION STATEMENT (of this Report)

Approved for public release; diftciuin.miic

17- DISTRIBUTION STATEMENT (of (As abstract entered In. &fock 20 it_______________________

; Iit r _IE -00RDS (Ceniten.. alm rto~. aide it n eeev an Idenify spy hj.<& 0446w

'oIntoUi ing, coIntotlriiig t ice, contour stinii-c .Ipd) gwration, real-time
kii spi ;iy genezat ion

10 AOSTRACT 'ritinwe an rle side It neosm and IdenII& 6. I'-eb .W")

We present in this study lh1w r' ~' il spec it i.-tion andl fea:~ihiliwy
vc -minfat ion for j rv:i I - time tont our st i 11 spi, C gert. We heg i n by
*I~ it !jng f o a rc:h it e ct iral 1 -MI)lee1nU1 LIt tio ()IIritt -e po rt ed, h igqh Iv dec onfl)0 SO -

')l i lgorithm for cont our surjct isp Ia- v*r on i establIi sh a picce of

tht total algorithm as th. alIgori ithm cPmpoic at . h e algorithm component is that
rt of the algot ithm that cain he executcel in paral le i , indAevendently from the
'T.ttat ions performed onf an) Ither a ipo) ithin -oibiart . wk propose in architectui

ftor the algorithm componit , and mode I that a rch it ctxtre in order to determine

DO , A07 1473 tornos o OF MOv so is ossolavin
/M0102- LF. 014A- 6601 S"CURIrY CL AIICAT11OU @ O T"111 PAR &*a (OM. IN11

unclassified
SECURITY CLASSIFICATION OF THIS PAGE (Whom. DAIS RZaD0,.

- .the real-time capability of the algorithm. We then model the larger system of
multiple algorithm component processors. This modeling effort is performed with
respect to a particular application requiring real-time contour surface display
generation. A VLSI feasibility computation is then performed on the proposed
architecture. The study ends with a look at the impact of real-time contour
surface display generation on the design of the graphics display system.

-

S/N 0102- 1 F. 014- 6601

OCCURITY CLASSIVICATIO04 OF THIS PAGEIWheet 0010 E0seted

.

The Feasibility of a Multiprocessor Architecture for Real-

Time Contour Surface Display Generation

Michaed J. Zyda

Naval Postgraduate School,

Code 52, Dept. of Computer Science,

Monterey, California 93943

ABSTRACT

We present in this study the architectural specification and feasibility deter-
mination for a real-time contour surface display generator. We begin by selecting
for architectural implementation a recently reported, highly decomposable algo-
rithm for contour surface display generation. We establish a piece of the total
algorithm as the algorithm component. The algorithm component is that part of
the algorithm that can be executed in parallel, independently from the computa-
tions performed on any other algorithm subpart. We propose an architecture for
the algorithm component, and model that architecture in order to determine the
real-time capability of the algorithm. We then model the larger system of multi-
pie algorithm component processors. This modeling effort is performed with
respect to a particular application requiring real-time contour surface display gen-
eration. A VLSI feasibility computation is then performed on the proposed archi-
tecture. The study ends with a look at the impact of real-time contour surface
display generation on the design of the graphics display system.

Categories and Subject Descriptors: 1.3.1 [Hardware Architecture 1: architec-
tures, parallel processing, VLSI implementations; 1.3.2 1 Graphics Systems J:
multiprocessing systems; 1.3.3 1 Picture/Image Generation 1: surface visualisa-
tion; 1.3.5 1 Computational Geometry and Object Modeling 1: data struc-
tures, discrete planar contours, modeling molecules, surface approximation, sur-
face generation, surface representation, surfaces, 3D graphics; 1.3.6 1 Methodol-
ogy and Techniques 1: contouring, interactive systems, parallel procming; 1.3.7

Three-Dimensional Graphics and Realism I: line drawings, line generation
algorithms, real-time graphics, surface plotting, surface visualization, surfaces;
1.3.m I Miscellaneous): VLSI;

General Terms: Algorithms, architecture;

Additional Key Words and Phrases: contouring, contouring tree, contour surface
display generation, real-time display generation;

. This work has been supported by the NPS Foundation Research Program.

....

-

". '. .- -- --. . . .- .- ..' .' .. -.-.- . .- .' • •'-. ." .= .' -- - .- .- '. -' '--- '. -' '. .-' '- .- .- '. -.....- .' " .. '.". .- -..'. .. --.-.-." --. .-. -

-2-

1. Introduction

Contour surface display generation is one of the most frequently used graphics algorithms

IBar,19791, [Faber,19791, [Wright,19791, [Zyda,19841a, [Zyda,1984b, lZyda,9S14cl, IZydaBSSS],

IZyda,19821, [Zyda,19811. A contour surface display is a visual representation of a surface by the

collection of lines formed when that surface is intersected by a set of parallel planes. The lines

formed on each of those planes are called contours. A contour represents the set of points that

belong to both the surface and the particular intersecting plane. Contour surface displays are

used in X-ray crystallography, computer-aided tomography, and other applications for which grid

data is collected. Contour surface display generation is generally depicted as a computationally

slow operation whose output is sent to a plotter or film recorder. A number of papers have been

written documenting "breakthroughs" that increase the speed of contour surface display genera-

tion. One author has reported that his contour surface display generation subroutine used one

second of central processor time on NCAR's Control Data 7600 [Wright,1979]. Although a con-

tour surface display generation program of this speed is useful for static situations, it is found to

be lacking for interactive applications that generate a succession of contour surface displays in

response to contour level changes read from a control dial. Such a program requires that a new

contour surface display be generated, distributed, and displayed in real-time, typically one-

thirtieth of a second for current display technology INewman,19791.

One application in which real-time contour surface display generation is important is the

determination of molecular structures from the electron density data generated by X-ray crystal-

lography [Barry;19791. Such an operation is executed interactively by using a computer graphics

program that displays a Dreiding (stick) model of the molecule, inside a contour surface display of

the corresponding region of the molecule's electron density grid. In addition to the graphics func-

tion, the computer program monitors a series of signals generated by the user, while the user is

turning the various knobs on a control console [Zyda,1980]. The values read from these knobs are

interpreted by the program as modifications to either the molecule or the surface display. Modifi-

cations to the molecule take the form of bond rotations or bond lengthenings. Modifications to

'i-. -. '?.;-':'..'. .. - . -- ..-.. ;.. . " ".".. . . :"

-3-

the contour surface display take the form of an increase or decrease of the contour level. The goal

of this process is to produce the stick model of the molecule that best fits inside the given electron

density data set. The user can determine whether or not the model fits the density grid by modi-

fying the contour level, shrinking the contour surface to the molecule. Similarly, the user can

expand the contour surface from the stick model for better visibility. This function requires that

the hardware have the capability to rapidly change the contour display as its contour level

changes.

We know from jZyda,1984a that the generation of a contour surface display, such as those

required by the above application, cannot be accomplished in real-time using a conventional

uniprocessor. This failure is due to the fact that contour surface display generation algorithms

require many more instructions executed per second than can be provided by currently available

uniprocessors. In the past, this limitation of the conventional processor has relegated such appli-

cations to either the non real-time environment (waiting a few minutes for each display), or to the

equally unsatisfying environment of motion picture film. Because of this, this study looks for

multiprocessor solutions to the real-time contour surface display generation problem. At the

present time, efficient multiprocessor solutions generally mean VLSI solutions. Consequently, the

multiprocessor architectures examined in this study are those implementable in the VLSI techno-

logies.

2. Contouring Definitions

A contour surface is a visual display that represents all points in a particular region of

three-space <x,y,&> which satisfy the relation f(<x,y,s>)=k, where k is a constant known as the

contour level. The function f represents a physical quantity which is defined over the three-

dimensional volume of interest. The visual display created by this algorithm is the collection of

lines that belong to the intersection of both the set of points that satisfy the relation

f(<x,y,s>)=k, and a set of regularly spaced parallel planes that pass through the region of three-

space for which the relation is defined.

Ai

Figure 1

Contour Surface Display Generated from a Hydrogen Atom
Wavefunction Squared (3dxy orbital)

p -4-

For this study, the function f is approximated by a discrete, three-dimensional grid created

by sampling that function over the volume of interest. The three-dimensional grid contains a

value at each of its defined points that corresponds to the physical quantity obtained from the

function, i.e. the value associated with point (x0 Y0 ,S0) is v0 , where f(x0 Y0 ,S0)=v 0 . In order to

minimize confusion, we will specify the value at a particular grid point (x,y,s) by a(x,y,s), and

will specify the value at a particular point (x,ys) of the function by f(x,y,s).

A decomposable algorithm for contour surface display generation has been described in

[Zyda,1984b]. That algorithm is constructed from a two-dimensional contouring algorithm that is

used to contour all the possible planar, orthogonal, two-dimensional grids of a larger three-

dimensional grid. The two-dimensional contouring algorithm of that paper is comprised of com-

ponents, called algorithm components, that operate on individual 2 x 2 subgrids of a larger two-

dimensional grid. (Note: a 2 x 2 subgrid is defined to be that portion of the two-dimensional grid

bounded by four adjacent grid points.) In the algorithm, the computations necessary for generat-

ing the contour lines for a single 2 x 2 subgrid are independent from those required for any other

2 x 2 subgrid. If we compute the contours corresponding to contour level k for all 2 x 2 subgrids

of a two-dimensional grid, then we will have determined the complete set of contours for that

grid. If we compute the contours corresponding to contour level k for all possible 2 x 2 subgrids

of the larger three-dimensional grid, then we will have the complete contour surface display for

that grid. The assemblage of the contours created by this process, i.e. the simultaneous display of

all the contours created for all 2 x 2 subgrids of the larger three-dimensional grid, produces a

"chicken-wire-like" contour surface display (see Figure 1). The full development of this algorithm

can be found in jZyda,1984aJ, [Zyda,1984b], and [Zyda,1984c]. We will refer to the results of

those studies, and consequently, will not cover the algorithm here in great detail.

3. Architectural Modeling

The architectural modeling necessary to determine if a VLSI multiprocessor for real-time

contour surface display generation is feasible is accomplished in two steps. The first step is the

modeling of the algorithm component, or 2 x 2 subgrid, level (see Figure 2). The purpose of this

""1"

Time for Single
Input Time + Algorithm Component +. Output Time

Computation

Figure 2
Algorithm Component Architectural Model

Number of Algorithm
Component Computations
Computed in Serial in

One Processor
Input Time + + + Output Time

Number of Such Processors

We Can Use in Parallel
and Still Deliver the

Picture on Time.

Figure 3
Total System Architectural Model

step is to determine if the amount of code specified for the algorithm component computation is

executable in real-time. In this step, an implementation of the algorithm component is analysed.

The analysis is performed in the context of a processor whose characteristics are similar to those

of a general purpose microprocessor, the MCOO0O0. The model constructed is a register transfer

model of the algorithm component. In this model, the memory references that are made for each

instruction's operation and for each operand's retrieval during the execution of the algorithm com-

ponent ase counted and recorded. Since the number of memory references a program makes is

proportional to its run time, we only have to multiply by the amount of time a memory reference

requires in order to obtain a measure of the real-time capability of the algor; Jmk.. nent pro-

cessor (iZyda,1981], lZyda,1982), lZyda,1983, IZyda,1984a1, lAho,1974], anu [Fuller,1977). The

value used in this study is 250 nsec per memory reference. This value is the slowest access time

indicated for dynamic RAM (DRAM), and ROM chips announced over the last year in the IEEE

journals Computer, and Micro (see Figure 4). Since there are access times indicated that are less

than half that value, i.e. 70 nsec, we are conservative in the choice of 250 nsec as the time

required to complete a memory reference.

The second step in the architectural feasibility modeling is the modeling of the total system

of algorithm component processors (see Figure 3). The purpose of this step is to determine the

total number of processors we can use in parallel, the load (number of algorithm components) per

processor, and the total real-time capability of that system, i.e. the size of the largest three-

dimensional grid for which we are able to generate the contour surface display in real-time. This

part of the modeling effort extends the algorithm component modeling results to a model of the

total system architecture for the real-time contour surface display generator. With the structure

and real-time capability of the algorithm component processor established, we determine the

capabilities of a system utilising multiple copies of that processor. The parameters of the com-

plete system modeled are derived from the requirements of the applications. The parameters util-

ised include such factors as the total size of the inputs and outputs, and the total number of algo-

rithm components (and hence, the total number of algorithm component processors).

DRAM Chip Characteristics

Manufacturer Chip Chip Size Access Time Reference
AMD AM9128 18K DRAM 7Ons Micro, Feb. 83

dMostek MK45H64 64K DRAM gone Micro, Aug. 83

ROM Chip Characteristics

Manufacturer Chip Chip Size Access Time Reference
Signetics 23256A 256K ROM 200ns jComputer, Jun. 83
Synertek SY2S128/A 128K ROM 200ns jComputer, Jul. 83

__________SY23256/A 258K ROM 200ns ________

American S23128A 128K ROM 250ns Computer, Jul. 83
Microsystems_________________________T

Figure 4
DRAM and ROM Chip Access Time taken from 1983 issues

of Computer, and IEEE Micro

3.1. Architecture for the Algorithm Component

We begin the description of the architecture for the algorithm component with an overview

diagram (see Figure 5). In that figure the important architectural pieces of the processor and

their interconnections are depicted. The pieces shown are found in most processors. Instead of

giving a detailed specification for those pieces, we will discuss only the important size parameters,

and important uses for that hardware when they differ from the norm found in processors of the

MC68000 class.

In order to detail the sizes of the hardware elements in the figure, we first describe the

operations expected of the algorithm component processor. There are only four: (1) reset th-

entire system of algorithm component processors, (2) accept a 2 x 2 subgrid description into a

particular algorithm component processor, (3) place the coordinates generated for a part,-uja,'

2 x 2 subgrid onto the system bus, and (4) generate the contours for the 2 x 2 subgrid h.id in ti,.

algorithm component processor. The first operation, the reset operation for the entire system

algorithm component processors, is clearly required. Computing systems are never construct.,

without some mechanism for providing a known initial state of the hardware

The second operation, that of accepting a subgrid definition i',to a particular algorithm coi-

pon'nt proc,.ssor, has implications for b',,h the size of the RAM of the processor, and for the per-

formance of its external communication mechanism. For that operation, the qlgorithm c.,--

ponent irocfssor ne,'ds to be able to recognize when a subgrid definition is addressed to it, ana

then needs to be able to store that information into its RAM. From jZyda,1984aj, we flu! that

the size of the input. t:, dhe algorithm component processor is 24 bytes. If we assume 52-bit

transf-r. to thr algorithm coraponcit processor, this is a total of 6 references per 2 x 2 for the

input operation, requiring an equivalent anmount of RAM storage.

The third operation, that of placing the coordinates generated in a particular algorithm

,onponent proc"sor onto the systerm bus, ha;, implications similar to that of the input operation.

For the output operation, the algorithm component processor needs to be able to recognize when

it should deposit its coordinates onto the system bus, and needs to be able to provide RAM

• o%°

rj CellI Control Count
Bus ______Lines 4Enable Out

ROM rMicrocode
Tree Tables -j ROM
2048 x 16 bit 1024 x 32 bi

RAM Decoder

64 x 32 bits

Micro PC

Logic

00

CountEnaleaI

-System Bus

Block Diagram of the Algorithm Compone.nt Processor

-7-

storage for those output coordinates beforehand. From JZyda,1984a], we know that the largest

output that can be generated for a 2 x 2 subgrid is 6 coordinate and drawing instruction quadru-

pies (78 bytes). If we count the byte indicating the number of coordinates output, we need to

perform 20 32-bit transfers for the output operation, and need to provide an equivalent amount

of RAM storage.

The fourth operation, that of generating the contours for the 2 x 2 whose definition is held

in the algorithm component processor, effects the size of all the memories in the algorithm com-

ponent processor. The algorithm in lZyda,1984a] is based upon a data structure, the contouring

tree, that is created for every 2 x 2 subgrid of the larger grid. A pre-order traversal procedure

applied to each tree generates the coordinates and drawing instructions pertaining to the

represented 2 x 2 subgrid for the selected contour level. If we use that algorithm, this means we

need to provide space for the tree traversal list tables (2681 bytes), the algorithm component mis-

cellaneous variables (45 bytes), and the code that performs the algorithm component computation

(3080 bytes). (A comprehensive listing of all the data required in the algorithm component com-

putation can be found in [Zyda,1984a], Figure 3.1.). The estimates for the input, output, tree

traversal tables, and miscellaneous are derived directly from the data and data sizes required for

the computation of the algorithm component. These values represent the space needed for regis-

ters, random-access and read-only memories. Rounding the microcode memory requirement, 3080

bytes, to a power of two, and assuming a horizontal microprogramming for the algorithm com-

ponent processor, we find that a 1024 x 32-bit ROM is required. The tree traversal list memory

requirement, 2681 bytes, becomes a 2048 x 16-bit ROM in the same fashion. The rest of the

memory requirement for the algorithm component processor is shown in Figure 5 as a 64 x 32-bit

RAM, which is used to hold the subgrid definitions, the coordinates generated, and any tem-

poraries required to compute the algorithm component. We note at this point that the ROMs

and RAMs specified are expected to consume the majority of the area on the VLSI chip.

. .--..

...

8.2. Real-Time Capability of the Algorithm Component Processor

In order to determine if the amount of computation specified for the algorithm component is

executable in real-time, one-thirtieth of a second, we need to put together a register trasfer

model of that algorithm and then to execute that model with the worst case inputs for the algo-

rithm. As indicated above, a register transfer model counts the total number of memory refer-

ences made by the algorithm component for both operation executions, and operand retrievals.

There are four parts to the register transfer model of the algorithm component: (I) the input of

the 2 x 2 subgrid to the algorithm component processor, (2) the output from the algorithm com-

ponent processor, (3) the tree construction (traversal list indexing), and (4) the contour genera-

tion (traversal list usage). We obtain the memory reference counts for all four parts from

iZyda,1984a]. We find a total of 2676 memory references are required for (1) the input to the

algorithm component processor (6 memory references), (2) the output from the algorithm com-

ponent processor (20 memory references), (3) the tree construction, or traversal list indexing, for

the 2 x 2 subgrid (602 memory references), and (4) the contour generation from the trees Sen-

erated, or traversal lists indexed, (2048 memory references). We note that the fourth part of the

register transfer model is obtained from the subgrid that generates the maximum number of coor-

dinate and drawing instruction quadruples, 6 quadruples per 2 x 2. We also note that for typical

applications, the average number of coordinate and drawing instruction quadruples generated for

the set of 2 x 2 subgrids that generate coordinates at all is 2.54 quadruples per 2 x 2 [Zyda,1984a].

At 250 nsec per reference, 2676 memory references require about 669 microseconds - clearly

under the one-thirtieth of a second (33,333 microseconds) goal we set for the algorithm component

processor. In fact, given one-thirtieth of a second, we can accomplish about 50 algorithm com-

ponent computations in serial.

4. Larger System of Multiple Algorithm Component Processors

The first issue of importance that must be covered when considering the design of the larger

system is the issue of how operations and data are communicated. Figure 6 contains a view of the

proposed interconnection scheme for the algorithm component processors. In that figure, each

F~1 Count Enable Out
19I Corn Ig Con Ig Corn Ig Corn

*.roc. 1roc. 1roc. 1 roc.1

roc.

Ig Corn Ig Corn 1g Corn 1g Con
roc. roc. roc. roc.

System ount Enable In
Bus ______

Display Controller DslyDvc

Figure 6
Multiple Algorithm Comnponent Processor Interconnections

*processor is depicted as being connected to a system bus, and a serial control line called the

*count-enable line. As indicated in Figure 5, the system bus provides both data and inatructions

to the algorithm component processor. It also provides the pathway for data output back to the

* display controller. Not ao clear in that figure is the function of the count-enable line. The

count-enable line ia a one bit control line that runs in a daisy-chain fashion from one algorithm

component processor to the next. Its function is to provide a processor addressed capability for

* operations indicated to the larger system of processors. Its effect is to serialise the execution of

processor addressed operations such as data input and output. This is accomplished in the follow-

ing manner. Each algorithm component processor uses the logical OR of the global control line

contained in the system bus and the count-enable line to determine if it should gate in the

instruction currently presented on the, system bus. A signal on the global control line indicates a

global operation, and means that all processors of the system should perform the specified opera-

tion. Global operations are used to initiate the highly parallel computations of the algorithm

component. A signal on the count-enable in line for an algorithm component processor indicates

a processor addressed operation, and means that the instruction and any following data on the

* system bus are addressed to that specific processor. Once an algorithm component proceisor has

gated in a processor addressed instruction and its data, it then sets the count-enable out line high.

The setting of the count-enable out line to high indicates to the next processor in the chain that it

should gate in the instruction and data next on the system bus.

It should be noted at this point that other processor interconnection schemes such as multi-

ple buses for parallel data output have not been considered in this study. The reason for this lim-

* itation is that the currently available display devices to which the output is directed, only have a

single, 8 to 32 bit wide pathway for display list modification. The design of a display device with

multiple, parallel pathways for display list modification is outside the scope of this study.

In order to complete our description of the communication mechanism for the system of

multiple algorithm component processors, we need to estimate the widths of (1) the system bus

data and control line., (2) the count-enable lines, (3) the external instruction register, and (4) the

external data register. The system bus and count-enable lines sixes are the moot important

because they extend across VLSI chip boundaries, and hence require package pins. The count-

0
enable lines require two bits, one into and one out of each algorithm component processor. This

requires two pins on the VLSI chip. The system bus specification is more difficult in that we

have both data and control line widths to specify. The width of the data portion of the system

bus is chosen to be 32 bits. This figure is based upon the number of pins we expect to be able to

spare on the VLSI chip, and upon the fact that we assume a S2-bit processor, and 32-bit transfers

in our register transfer models. The control portion of the system bus has the following corn-

ponents: (1) global /processor addressed bit (1 bit), (2) instruction bits (3 bits), (3) data transfer

control lines (6 bits), and (4) miscellaneous control lines (6 bits). The sixes indicated for the data

transfer and miscellaneous control lines are taken from the bus designs for similarly sized proces-

sors and are not exact [Hayes,1978]. The values quoted only serve as an estimate on the number

of control signals expected. Consequently, the total estimate for the control portion of the system

bus is 16 bits for a bus total of 46 bits. Adding the two pins for the count-enable lines, this

means a minimum of 50 pins on the VLSI chip. This is somewhat under the current package

limit of 64 pins, and allows room for additional pin requirements.

The final size specifications we need to make with respect to the system's communication

mechanism arc those of the external instruction register, and the external data register. The

external instruction register needs only three bits, based upon the fact that there are only four

operations we expect to signal the algorithm component processor. The purpose of the external

instruction register is to hold a signaled instruction until the control portion of the algorithm com-

ponent processor is finished with its previous operation and ready to execute a new one. The

external data register is used to transfer data to/from the algorithm component processor from/to

the data portion of the system bus. It is 32 bits wide to match the data width of the system bus.

4. 1. Modeling the Larger System of Algorithm Component Processors

The purpose of the model for the larger system of algorithm component processors is to

answer the question of exactly how many algorithm component computations can be executed in

6 _ -.

parallel in one-thirtieth of a second, with the only limitation being that the coordinates sand draw-

ing instructions must be delivered within that sme time period. For this model, we assume an

infinite capability for processors. We also assume that to obtain the highest processor utilisation,

* the individusl processor may be responsible for multiple, serial algorithm component computa-

tions. hetiming values for this step are obtained by extending the register transfer model

developed for the algorithm component processor.

In order to determine the number of maximal algorithm component computations we can

execute in parallel, we compose a model of that system:

Real-Time = Input Time +- Computation Time + Output Time
Available

The model forms a simple linear equation, with the real-time available on one side and the input,

output, and computation times on the other. For this model, we make the following assumptions:

*(1) the amount of real-time available is 33.333 x 10 -3seconds, (2) all of the algorithm component

computations occur in parallel, so only one maximal computation is added to the model's equa-

tion (2650 references 0250 nsec/reference), (3) the only input is the single 32 bit new contour

level, distributed to all processors via a global command (1 reference 0250 nsec /reference), (4) -

the size of the output from each algorithm component computation is of average size (2.54 coordi-

nates and drawing instruction quadruples, or 9 references, for each 2 x 2 subgrid that generates

* coordinates [Zyda,1984aJ). The model has the following equation:

33.333 msec I ref + 2650 refs + X(9 refs)
0250 nsec 0250 nsec 0250 nsec
per ref per ref per ref

The variable X stands for the maximum number of algorithm component computations that the

modeled system can handle. Solving for X, we find that we can compute in parallel, in one-

thirtieth of a second, 14,520 algorithm component computations, generating a total of 36,880

* coordinate and drawing instruction quadruples. Again, this requires some 14,520 processors, each

* operating in parallel.

-12-

5. Further Applications Details

Once we have an idea of approximately how many algorithm component computations we

can perform in one-thirtieth of a second, we then need to further examine the particular real-time

application in order to determine if we are able to handle the expected maximum input data grid.

Using the molecular modeling program presented above as the typical application, we find that

the largest three-dimensional grid of interest is a cube of 30 units on each side IBan'y,19791. As

discussed, a contour surface display is created for a three-dimensional grid by generating the coor-

dinates and drawing instructions for all possible orthogonal two-dimensional grids of that larger

grid. For the 30 x 30 x 30 grid, this is 90 30 x 30 grids. Specifying this in total 2 x 2 subgrids,

this is 75,690 2 x 2s that must be computed in one-thirtieth of a second. From our architectural

discussion, we found that we have the capability for generating coordinates from 14,520 2 x 2

subgrids in one-thirtieth of a second. Given that this is considerably under the total number of

2 x 2s, there are several questions for which we must provide answers. One question is what is

the maximum number of 2 x 2s (of the 75,690 total) for which we expect to generate coordinates

and drawing instructions for the application of interest? To answer this, we refer to studies of the

application and see that the maximum observed percentage of 2 x 2s that generate coordinates is

13 percent, or around 9900 2 x 29 [Zyda,1984a]. The number of coordinates generated for that

system, the maximum number for our application's purposes, is 25,150 coordinate and drawing

instruction quadruples. Clearly this is within the capabilities shown for the system of algorithm

component processors.

Once we know that not all 2 x 2 subgrids of the 75,690 generate coordinates, a second ques-

tion we need to answer is how do we handle 2 x 2s that do not generate coordinates? One possi-

bility is to double up the algorithm component processors with 2 x 2s of non-overlapping grid

point value range. Non-overlapping 2 x 2s never generate coordinates for the same contour level.

If we keep track of the ranges fur each 2 x 2, and the processor range in each algorithm com-

ponent processor, we have a method for examining and computing coordinates for all 75,690

2 x 2s in roughly the same amount of time it takes to perform the calculation on only those 2 x 2s

• "? -'i,...... ..

that generate coordinates. The only question is can we find enough non-overlapping 2 x 2. in

the typical problem to allow this solution? The answer is certainly we can. From studies of the

value ranges of the grids we expect to encounter, we find that for a system of 75,690 2 x 2s the

maximum number of non-overlapping partitions is about 16,000. This is an average of five 2 x 2

subgrids per partition, with an observed maximum of fifteen 2 x 2 subgrids in a single partition. . "

Extrapolating these figures to the architecture, we find a requirement of 16,000 algorithm com-

ponent processors, with a storage capacity of 15 2 x 2 subgrids in each processor.

A system comprised of 16,000 processors as the above is bound to have a great number of

idle processors. One possibility to reduce this expense is to consider a system of multiple algo-

rithm component computations being performed in serial by a single processor. The model for

such a system is easily composed from the data computed and derived for the highly parallel sys-

tem. We will skip the preliminary considerations and model the system with the following

assumptions. The input subgrids are already loaded into each algorithm component processor.

The output from the total system of algorithm component processors is of average size, i.e. 2.54

coordinate and drawing instruction quadruples are generated from 9900 2 x 2 subgrids, for a total

of 25,146 quadruples, or 89,100 memory references. The output is 32 bits wide, again due to the

design of the display processor. In one-thirtieth of a second, there are 133,333 memory references

using the figure of 250 nsec per memory reference. Subtracting the total number of memory refer-

ences required for the output from the total number of memory references in one-thirtieth of a

second, we find that 44,233 memory references are available for the computation of multiple

subgrids in a single algorithm component processor. Dividing the total available computation

time by the maximum amount of time an algorithm component processor could spend on a single

algorithm component computation, 2650 memory references, we find that each algorithm com-

ponent processor can compute the display for 16 subgrids in serial, with the system still being able

to deliver the output in real-time. Dividing the total number of subgrids considered for our appli-

cations, 75,690 subgrids, by 16, we find that we need 4731 algorithm component processors.

Referring back to the discussion of our ability to coalesce the 75,690 subgrids into 16,000

.. ,..

' ".-._. " .--. , . ,,... ,._ ._ ._ -_.-:- .-- ... -....

-14- 0

partitions, each partition containing a maximum of 15 subgrids of non-overlapping grid values, we

find that we really only have a requirement for 16,000 subgrid computations. If we design each

algorithm component processor to hold 16 of these partitions, i.e. each processor has the capabil-

ity for 15 times 16 subgrids, then we really only need 1000 processors. The only differences from

the algorithm component processor previously described are (1) a larger RAM for the extra

subgrid definitions (2048 x 32 bits), (2) a larger microcode ROM for the value range acceptance

mechanism (1024 x 32 bits), and (3) a wider instruction portion of the system bus (by I bit).

6. VLSI Feasibility for the Contour Surface Display Generator S

The above discussion has left us with an outline of the architecture necessary for real-time

contour surface display generation. An important factor to consider at this point is the actual

feasibility of implementing such a system in the VLSI technology. For this feasibility determina- •

tion, we need to compute a value for the hardware complexity. The chief components of this

complexity are the total number of transistors required, and the total number of VLSI chips.

Once these values are obtained, we can then make a statement as to the feasibility of actually

constructing the real-time contour surface display generator.

From the architectural specification, we can compute a value for the circuit complexity if we

make some fairly simple assumptions. The first assumption is that if we obtain a circuit complex-

ity for the algorithm component processor, then all we have to do to get the total system com-

plexity is multiply by the total number of processors required. The second assumption is that the
S

complexity of the algorithm component processor is less than or equal to the complexity of a

known microprocessor, say perhaps the MC68000 used in our evaluation of the algorithm

component's real-time capability. One paper, IFrank,19811, provides a comparison of the

Motorola MC68000 and the Zilog Z8000 with figures for the total number of transistors. For the

MC68000, the total transistor count is approximately 68,000, with 50,000 of those transistors

being in the microcode ROMs and PLAs and the remaining 18,000 being in the registers and ran-

dom logic. For the Z8000, the total transistor count is specified as 17,500. Consequently, a good

estimate for the circuit complexity of a processor such as the one we propose for the algorithm

i . . - - -'. --.?. i.. -% i /. .. --? -. -- . - - i . / .-- ' --. i- " - . . - ' " . .--. i .. -- .i.-- .-' -" ... - --. . .- ---S .

............. '..-.........."...........'............'..."....... "'..."" .."...."...."".."...... "

(1) RAM space -- (2 devices/bit)
2048 x 32 bits 131,072 device.

j(2) ROM space -- (1 device/bit)

-tree tables
2048 x 16 bits 32,788 devices

-microcode

I1024 x 32 bits 32,768 devices

(3) Rest of processor space -

-ALU

-register block
* -- control section
S -. external registers

-data and control buses

18,000 devices

Device total -214,608 devices (215K devices)

Figure 7
Algorithm Component Processor's Circuit Complexity Estimate

component processor is 18,000 devices, not counting the RAM space, or the ROM space.

Figure 7 is a short table showing the breakdown of the algorithm component processor into
ri

pieces of similar circuit complexity. Using figures of two devices per bit for the random access

memory (DRAM), and one device per b:, for the read-only memory (ROM), we find that 195K

devices are required for the storage alone. Adding that value onto the 18K devices that form the

rest of the algorithm component processor, we note that the total number of devices the proces-

sor requires is on the order 215K. From the literature, we note that two million device VLSI

chips are already being produced in the research lab IMicronews,19841, with ten million device

VLSI chips promised in the time period ranging from the year 1985 to the year 2001 IUhr,1984.

This means 9 algorithm component processors per chip at the two million devices per chip level,

and 48 algorithm component processors per chip at the ten million devices per chip level. For the

1000 processors needed for the contour surface display generator, this means a total system size in

the range of 112 to 21 VLSI chips.

7. Conclusions

This study has focused on the architectural specification and feasibility determination of the

real-time contour surface display generator. The conclusions we draw are that yes, we can put

together such a multiprocessor. Once we have made such an assessment, we then need to con-

sider the next steps in this research effort. Two directions come to mind, the second following

directly from the first. The rust direction concerns the details of how the real-time contour sur-

face display generator is interfaced to a display system. The importance of this research direction

becomes evident if we compute a value for the output data rate of the contour surface display

generator. In Figure 6, the output is shown to be destined for a display device, with that output

passing through a display controller. The assumption for that data transfer has been that it is

accomplished via a DMA transfer mechanism of 32 bits width similar in operation to that of the

DEC Unibus. Assuming that the output display is of average size, 89,100 32-bit memory refer-

ences, this is a data rate of 10.7 megabytes per second. The delivery of data to the display sys-

tem at the rate of 10.7 megabytes per second is somewhat faster than current display system

i". .--: .I:--'. .- . i - : i- . " :-• -; -- .":-", ; ;-""- --'- "- :.' ." : -'; -;- " ,. ,''- - ' ,- -"':': ,- i,.. .

.

technology allows. Compounded with this problem, is the fact that besides being able to deliver

the picture within the given time constraints, we also need to maintain the functionality of tke

display system. This means that if we add the contour surface display generator to a display sys-

tem that we cannot reduce or eliminate the display system's capability for real-time display rota-

tion, scaling, translation, clipping, and other assorted, real-time operations. The full specification

of the architectural changes required for the display system by the contour surface display genera-

tor are left as an area for further study.

Once we have answered the questions with respect to the contour surface display generator's

impact on the design of the display system, the second research direction is to examine other

graphics algorithms for implementation in VLSI. If we then perform the same study of the inter-

facing of those special purpose display generators with the display system, we can see if there are

any general principles we can establish. It is not until this question is answered in the general

case, that we can actually begin the systematic implementation in VLSI of special purpose, real-

time display generators.

8. References
1. Aho, Alfred V., Hopcroft, John E., and Ullman, Jeffrey D. The Design and Analysis of Corm

puter Algorithms. Reading, Massachusetts: Addison-Wesley Publishing Company, 1974, Chapters
1-5.

2. Barry, C.D. and Sucher, J. H. "Interactive Real-Time Contouring of Density Maps," American
Crystallographic Association Winter Meeting, Honolulu, March 1979, Poster Session
3. Faber, D.H., Rutten-Keulemans, E.W.M., and Altona, C. "Computer Plotting of Contour
Maps: An Improved Method," Computers &t Chemistry, Vol. 3, pp. 51-55, Great Britain: Per-
gamon Press Ltd., 1979.
4. Frank, Edward H. and Sproull, Robert F. "Testing and Debugging Custom Integrated Cir-
cuits," Computing Surveys, Vol. 13, No. 4 (December 1981), p. 425.
5. Fuller, S.H. et. al., "A Collection of Papers on CM*: A Multi-Microprocessor Computer Sys-
tem," Technical Report, Pittsburg: Carnegie-Mellon University, Department of Computer Sci-
ence, February 1977.
6. Hayes, J.P. Computer Architecture and Organization, New York: McGraw-Hill Book Company,
1978, p. 408-418.
7. Micronews. "IBM Experimental Million Bit Memory Chip," IEEE Micro, Vol. 4, No. 4 (August
1984), p. 119.
8. Newman, William H., and Sproull, Robert F. Principles of Interactive Graphics. Second Edi-
tion. New York: McGraw-Hill, 1979.
9. Uhr, Leonard. Algorithm- Structured Computer Arrays and Networks, Orlando, Florida:
Academic Press, 1984.
10. Wright, Thomas and Humbrecht, John "ISOSRF -- An Algorithm for Plotting Iso-Valued
Surfaces of a Function of Three Variables," Computer Graphics: A Quarterly Report of
SIGGRAPH-ACM, Vol. 13, No. 2 (August 1979), pp. 182-189.

-17-

11. Zyda, Michael J. Algorithm Directed Architectures for Real- Time Surface Display Generation,
D.Sc. Dissertation, Dept. of Computer Science, Washington Univ, St. Louis, Missouri, January
1984a.
12. Zyda, Michael J. "A Decomposable Algqrithm for Contour Surface Display Generation,"
Technical Report NPS52-84-011, Monterey, California: Department of Computer Science, Naval
Postgraduate School, August 1984b.
13. Zyda, Michael J. "Real-Time Contour Surface Display Generation," Technical Report
NPS52-84-013, Monterey, California: Department of Computer Science, Naval Postgraduate
School, September 1984c.
14. Zyda, Michael J. "A Contour Display Generation Algorithm for VLSI Implementation,"
Selected Reprints on VLSI Technologies and Computer Graphics, Compiled by Henry Fuchs, p.
459, Silver Spring, Maryland: IEEE Computer Society Press, 1983.
15. Zyda, Michael J. "A Contour Display Generation Algorithm for VLSI Implementation," Com-

puter Graphics: A Quarterly Report of SIGGRAPH-ACM, Vol. 16, No. 3 (July 1982), p. 135.
16. Zyda, Michael J. "Multiprocessor Considerations in the Design of a Real-Time Contour
Display Generator," Technical Memorandum 42, St. Louis: Department of Computer Science,
Washington University, December 1981.
17. Zyda, Michael J. "Joystick Driven Display Rotation and Control Console Management,"
Technical Memorandum 24, St. Louis: Department of Computer Science, Washington University,
November 1980.

.•.

Distribution List for Paper. Written by Michael J. Zyda

(1) Dr. Henry Fuchs,
208 New West Hall (035A),
University of North Carolina,
Chapel Hill, NC 27514

(2) Dr. Kent R. Wilson,
University of California, San Diego
B-014,
Dept. of Chemistry,
La Jolla, CA 92093

(3) Dr. Guy L. Tribble, III
Apple Computer,
20525 Mariani Ave,
Cupertino, CA 95014

(4) Dr. Victor Lesser,
University of Massachusetts, Amherst

Dept. of Computer and Information Science,
Amherst, MA 01003

(5) Dr. Gunther Schrack,
Dept. of Electrical Engineering,
University of British Columbia,
Vancouver, B.C., Canada V8T IW5

(8) Dr. R. Daniel Bergeron,
Dept. of Computer Science,
University of New Hampshire,
Durham, NH 03824

(7) Dr. Ed Wegman,
Division Head,
Mathematical Sciences Division,
Office of Naval Research,
800 N. Quincy Street,
Arlington, VA 22217

(8) Dr. Gregory B. Smith,
ATT Information Systems,
190 River Road,
Summit, NJ 07901

.. ... ° ,. .,", •"o. • .°
- _," L . . _," " j ._ .. _," " "J " ",] Ja:.e " *" ",° -, " "-"A" "* . ' . *"" " " ''", . " """" f '' ,'."

INITIAL DISTRIBUTION LIST

Defense Technical Information Center 2
Cameron Station
Alexandria, VA 22314

Dudley Knox Library 3
Code 0142
Naval Postgraduate School
Monterey, CA 93943

Office of Research Administrat ion 1
Code 012A
Naval Postgraduate School
Monterey, CA 93943

Chairman, Code 52ML 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Assistant Professor Michael J. Zyda, Code S2Zy 40
Department of Computer Science
Naval Postgraduate School
Monterey, CA 93943

Dr. Henry Fuchs,1
208 New West Hall (035A),
University of North Carolina,
Chapel Hill, NC 27514

Dr. Kent R. Wilson 1
University of California, San Diego
B-014
Dept. of Chemistry
La Jolla, CA 92093

Dr. Guy L. Tribble, 111 1
Apple Computer
20525 Mariani Ave.
Cupertino, CA 95014

Dr. Victor Lesser
University of Massachusetts, Amherst
Dept. of Computer and Information Science
Amherst, MA 01003

Dr. Gunther Schrack
Dept. of Electrical Engineering
University of British Columbia
Vancouver, B.C., Canada V6T 1W5

Dr. R. Daniel Bergeron
Dept. of Computer Science
University of New Hampshire
Durham, NH 03824

Dr. Ed Wegman
Division Head
Mathematical Sciences Division
Office of Naval Research
800 N. Quincy Street
Arlington, VA 22217

Dr. Gregory B. Smith
ATT Information Systems
190 River Road
Summit, NJ 07901

"'

*

'I " '- " o ", 'o- -. , -, * . ."-, ."%"-. % ,","". .".."."°. °""° "" . % °" "-, o° % %

FILMED

2-85

DTIC

