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SUMMARY

This memo presents a study of the problems involved in the
detection of edge features on high resolution Synthetic
Aperture Radar (SAR) images using gradient operators. An
algorithm, proposed recently as a model of the human visual
system, which embodied these techniques was investigated and
found to give poor performance on SAR images. The reasons for
this poor performance were studied and the conclusion drawn
that edge detection by gradient operators alone was not
appropriate for SAR images.
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* INTRODUCTION

The ultimate goal of this work is the full automatic analysis of SAR

images. The fist essential step in this process is to be able to split the
image into its component parts.

The problem of devising automatic methods of area and boundary segmentation

has been a major area of work in the field of pattern recognitioP over the

last twenty years (1), (2). For all the effort only partial success has been
achieved and this for circumstances that are well controlled. Many different

avenues have been explored: some from the point of view of attempting to
understand the mechanisms at work in animal and human vision and then apply
these algorithms to the computer environment; others have adopted the approach
of finding a technique that works just for the particular problem in hand.

I shall show that the segmentation of SAR imagery presents a greater
challenge than the segmentation of ordinary optical or infra-red images and
furthermore it poses a severe test for any model of the human vision system.
I have focussed the study onto one particular model of human visual edge
detection, that put forward by Marr & Hildreth (3) in 1981. This model was
chosen for three reasons:

a. By inspection we can segment SAR images easily and so the model, if correct,
should be applicable to our particular problem.

b. It uses an edge detection technique that is superficially more capable of
handling SAR speckle (see later) than many others in the literature. See
the review by Chin & Yeh (4), Lee (5) and Suk & Hong (6).

c. It has a methodology that lends itself to adaptive programming. This would
enable information on faint but extended features to be extracted only if

thought necessary.

SAR IMAGERY

The production of high resolution SAR images has been described elsewhere
(7). For the purposes of this study a SAR image is a 2 dimensional array of
real numbers, each number representing the magnitude of the scattered electric

field averaged over the sampling area. Fig I is a typical image being

512 x 512 pixels and having a linear grey scale, peak white being the highest
amplitude. Inspection of Fig 1 shows the most notable difference of SAR imagery

compared to ordinary optical photographs, namely the speckle structure of
4 all parts of the image. This speckle arises from the coherent nature of the

radar system and is the same as the speckle seen when a rough surface is
illuminated with laser light. In both cases it is caused by the interference,
at the detector, of the scattered radiation which has travelled along differing
path lengths due to the rough surface.

SSpeckle on SAR images has a K-distributed structure. This K-distribution

has been shown to arise from an underlying, gamma distributed, radar cross-

section combined with a superimposed Gaussian speckle (8)&(9). Concentrating

on the speckle then the amplitude of the scattered field is represented by a
Rayleigh distribution whose local mean is determined by the underlying gamma

function. The Rayleigh has the form
L
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where p(r)dr is the probability that the resultant amplitude lies in the range
r to r+dr for a distribution of width c.

This speckle phenomenon adds a further twist to the problem of image
analysis by virtue of its multiplicative nature. Most work on image analysis
has assuned that any "noise" component is due to system imperfections, further

, it is both additive to what is essentially a "smooth" structure and has gaussian
statistics. However on a SAR image the speckle "noise" IS the image and not

merely a system imperfection. Figs 2a-c illustrates this difference. Fig 2a
shows a cut through a reflecting/scattering surface taken across the boundary
of two regions of differing mean reflectivity.

Fig 2b shows the boundary as it may be observed with an incoherent imaging
system which adds gaussian noise to the final image. It is obvious that an
appropriately chosen amplitude threshold will segment the image into the two
regions.

Fig 2c shows the same boundary as seen through a coherent system. Here
the intrinsic "noisiness" of the image means that the image cannot be satisfact-

*orily separated into the two regions by means of a simple threshold. However
it is possible, by eye, to decide that there is a boundary present. This
decision relies on the eye being able to average over a region of the image
in such a way that the underlying change of reflectivity is detected.

A detailed examination of fig I for boundaries shows that they can be
detected by eye even when they are markedly discontinuous provided a large
enough fraction of the image is visible at the same time. This ability to

*discern "long range" separated structure with ease is in marked contrast to
most edge detection algorithms which are local in operation. This suggests
that the eye does some form of adaptive area processing. Marr and Hildreths
theory addresses aspects of this point. It may also suggest the use of a
priori knowledge of the form that structures seen on a map may be expected to
take. If this is so then satisfactory segmentation of images may not be
possible using simple stand alone algorithms.

*MARR AND HILDRETHS THEORY

Marr and Hildreth (3) proposed a theory of edge detection which they
considered fitted some physiological findings. Edges are detected in the model
by their spatial coincidence on versions of the original scene that have been
smoothed by differing degrees. Their reasoning is as follows:

Let us consider band-pass filtering an image with non-overlapping filters.
Now the noise present on the original image will have a spatial spectrum

[ :. whose components are independent. Therefore the positions of the noise
structures on the band limited images will be uncorrelated. However, a structure

* like a boundary will have a spectrum whose components are related, so the band
limited images will exhibit spatial correlation.

The spectral extent of the boundary will of course depend upon the
-"sharpness of the transition implying that many filters may be needed to

encompass all possibilities.
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Marr and Hildreth considered that the 2-Dimensional Gaussian

-2

G(r) = (

where r=the radial distance from the origin and o the width, was the optimum
choice of filter function. Further they considered that image segmentation was
possible using just 2 filter widths. The filtered image is produced by
convolving the original image I with the Gaussian (G*I). The edges on these
convolved images are found by applying the orientation independent Laplacian

operator - r r to the convolved images and locating the points

where

V2 (G*I) = 0.

Then the positions of these zero points on the different images are
compared. Finally the points where they coincide are labelled as being part
of an edge.

Marr and Hildreth pointed out that the Laplacian could be taken inside
the convolution and so the original image could be convolved with V 2G directly

V 2  G = -_1 1 - - exp

7ro 02  2a2

thereby saving a step.

This theory has several attractive features. Firstly it can be
considered in a quantitive manner unlike some other operators which are chosen
on an ad hoc basis. Secondly the processing has possibilities for parallel
architecture. Thirdly the widths of the Gaussians can be altered so as to be
able to cope with differing signal to noise levels (for the incoherent case)
in a way that is consistent with our ability to locate edges of faint boundaries
under noisy conditions.

ALGORITHM ASSESSMENT

It was decided to apply the edge detecting algorithm to a synthetic
image. The image chosen, Fig 3a, was 128 x 128 pixels in extent and consisted
of a square of uniform underlying brightness (sigma = 20) and size 47 x 47
surrounded by a background of lower underlying brightness (sigma = 10).
Each pixel value was independent and drawn from a Rayleigh distributed random
number generator with the appropriate value of sigma. No attempt was made to
introduce the effects of real radar systems in terms of range and cross-range
correlations.

Figs 3b and 3c show the result of convolving Fig 3a with Gaussians of sigma
width 2 and 4 units of pixel spacing respectively. The grey boundaries are
those areas for which there is no valid convolution value available.

Figs 3d and 3e show the result of applying the Laplacian operator to
figs 3b and 3'- respectively. Finally figs 3f-3i shows the zero crossing spatial
coincidence results. Here a point is plotted white if the values at that same
point on figs 3d and 3e are both simultaneously within a threshold set about
zero. The thresholds chosen for figs 3f-3i are 1.0, 0.2, 0.1 and 0.05 respectively.

-3-



A study of figs 3d and 3e shows the boundary of the square quite clearly.
However while the same boundary can be seen on figs 3g and 3h it is apparent
that the residual noise dominates the image. Decreasing the zero crossing
threshold reduces both the wanted crossing points as well as the unwanted noise
points. It is worth considering this coincidence operation in more detail.
Fig 4 shows the result of convolving a single dimensional top hat function
with Gaussians of different widths and then taking the second derivative. It
is apparent that the positions of the zero crossing points for the first
Gaussian are displaced relative to those for the second. Hence a simple
coincidence detector will not necessarily work. Moreover the magnitude of this
shift is dependent on the structure of the original image and so it is not
even possible to use offset coincidence. The simple expedient of allowing a

* zero crossing threshold is one way around the problem, but as can be seen on
figs 3f-3i, it has the effect of allowing random zero crossings to be treated
as valid edges.

A better solution would be to use a convolving function that gives
resolution independent second differential zero crossing points. One function
that has this property is the top hat or cyclinder function as is demonstrated
in fig 5.

The results of applying this cylindrical function with radii of 4 and 8
pixel spacing units to the original image, fig 6a, are given in figs 6b to 6i.
Figs 6b and 6c are the convolution results, figs 6d and 6e are the results of
the Laplacian operator on figs 6b and 6c. In these cases the Laplacian had
to be applied explicity since (V2 top hat) has infinities. The form of the
operator was

V 2 _ Ux-l,y - 2Uxy + Ux+l,y + xy - 2Ux,y + Ux,y-l

where U . is the value of the image at coordinates x,y. (It should be noted
that this operator will have errors for functions which change rapidly on scale
sizes of the order of the pixel spacing).

As can be seen from figs 6f to 6i, which are the coincidence results
with thresholds of 1.0, 0.2, 0.1 and 0.05 respectively, there is little
evidence of the detection of the edge.

ASSESSMENT CONCLUSIONS

The principal conclusion that can be drawn from the cylinder result isqthat the Gaussian only gave satisfactory results because it sprse h

small scale structure. We know that the Fourier transform of a Gaussian is
simply another Gaussian, also the Fourier transform of a cylinder is an Airy
function. Therefore the convolution of the image with a Gaussian would result

.in the suppression of the higher spatial frequency structure. However the
convolution with the cylinder still leaves residual small scale structure.

*This is important as the Laplacian operator is very sensitive to small scale
structures because of the large rates of change of gradient implicit in their

, existence.

Clearly we are interested in a detection system that is sensitive to large
*scale changes due to boundaries and not small scale changes due to a residual

noise component. As such the Laplacian would seem to be a poor choice of
*. operator; presumably this is why the original algorithm rvlies heavily on the
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spectral properties of the Gaussian. Fig 7a shows a cut through the image
convolved with the Gaussian (fig 3c). The boundary of the square can be clearly
seen. Fig 7b shows the corresponding cut through the Laplacian operated
image (fig 3e). Here the existence of the edge is by no means as clear.

Fig 8a is a cut through the image convolved with the cylinder (fig 6c).
Note that the boundary can still be easily seen, note also the small scale noise
structure present. Fig 8b is the corresponding cut through the Laplacian
processed image (fig 6e). Here I suggest it is not possible to deduce the
existence of the edge from the data as the second derivative values due to the
small scale structure are dominant.

OVERALL CONCLUSIONS

* -It is apparent from this study that the methodology proposed by Marr
and Hildreth for detecting edges will not be outstandingly good at segmenting
SAR images. This point coupled with our own ability to see these regions on
SAR images casts doubt on the validity of the claim that the human visual
process can be modelled in the manner they proposed. More recent work
by Morgan et al (10) showed that Marr and Hildreths algorithm needed a non-
linear prefilter in order to account for other known physiological effects.
However it is not obvious that such a filter would dramatically improve the
performance in our situation. An analysis of the underlying statistics of
objects on SAR images (11) indicates that all simple edge detecting algorithms of
the type analysed here will give poor results for coherent imagery. Structural
prior knowledge has to be included for segmentation to be successful.

Finally, the work reported here demonstrates yet again both the great
sophistication of the human visual system and also its non-amenability to
analysis into constituent parts by means of simple experiments.
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