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PREFACE

Those attending G.F.D. 1984 were introduced to the novel topic of

Geological Fluid Mechanics by our Principal Lecturer, Herbert Huppert. He
presented his studies both as a discipline with recent fascinating successes,
and as a challenge to his listeners to further isolate mathematically

tractable examples of these multi-component flows. Geological Fluid Mechanics .-

has been the responsible process for the formation and modification of most of
the geological objects studied today. The dynamics of fluid mixtures in magma
chambers, the changing fluid boundary conditions and composition during
selective crystallization of parts of the melt, and the separation of fluid
fractions of different density and viscosity all represent areas in which
quantitative theories are currently being tested. However, equally many
areas, including convection mechanisms in the Earth's core and quantitative
predictions for upper mantle motion, resist simplistic modeling.

The following pages also contain abstracts of a symposium by
geophysicists on observed fluid-like geological phenomena. It became clear
that the most accessible phenomena would not be quantified soon by the models

currently available. Equally clear was the prospect that the limits of S
validity of current quantitive theory soon would necessitate theories based on
more detailed properties of the materials.

The Fellowship lectures reflect the interests of the Principal Lecturer . " ...
more than at any time in the recent past. Five of these involve
double-diffusive processes in one way or another. Members of the staff also .

explored this phenomenum. The manuscript by L. N. Howard (aided by G.
Veronis) clarifies an important new aspect of double-diffusion. These reports
are to be treated as unpublished manuscripts. Readers desiring to quote from ---.--

the material should seek the permission of the author. As in past years,
these reports are often reworked for publication or are incorporated into
doctoral theses.

We are indebted to the Office of Naval Research and to four branches of

the National Science Foundation for financial support of the program. The
initial editing and final assembly of this report are due to the firm and
skillful hand of Florence Mellor. We are also grateful to A. L. Peirson for
his thoughtful administration of our program. S

Willem V. R. Malkus - -

The death of Mary Cobb Thayer on August 27, 1984 at age ninety-two, is

reported with sorrow. Mary will be remembered by previous Fellows as the
spirited coordinator of our G.F.D. program during its first twenty years. 0
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GEOLOGICAL FLUID MECHANICS

Herbert E. Huppert

LECTURE 1

I. INTRODUCTION

In this lecture we will introduce the subject of Geological Fluid 0

Mechanics and describe the material to be covered in the lectures. Adopting a
musical metaphor, the sequence will be:

Program Notes: What is Geological Fluid Dynamics?

Overture: Description of the course. 0

Divertimento: Physical properties of molten rock, and the idealiza-

tions thereof that we shall use in our analysis.

What is Geological Fluid Mechanics?

It is difficult to sharply delineate what constitutes the new subject of

Geological Fluid Mechanics. It overlaps branches of geology, applied mathe-

matics, and geophysical fluid mechanics -- and is without doubt another part

of science. The subject matter can be partly determined by example.

A) The Route of Magma from the Mantle to the Surface 0

Geological fluid dynamical processes can be considered to begin with

the melting of rock at grain boundaries in the upper mantle. Blobs of liquid

surface

magma chamber

deep mantle S

coagulate and, because they are lighter than the surrounding 'solid' rock, tend
to rise. The rising of light, liquid magma through a conduit in heavier,

solid rock, is a fluid mechanical phenomenon of considerable interest. The

pipe terminates at a magma chamber, which acts as a large storage reservoir.
Chambers can be up to 10 km in horizontal dimensions, and a few kms in verti-

cal dimensions. The magma may remain for a considerable time in these
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chambers. Within the chamber, the magma flows, convects, crystallizes, and

may even solidify. There are plenty of interesting fluid mechanical problems

here. The magma chamber that has been most extensively observed is the one

under Kilauea in Hawaii, which has a very convoluted structure. 
There is an 0

extinct magma chamber on the island of Rhum (off the northwest coast of

Scotland) from which the surrounding rock has been eroded away, so that its

internal structure is easily observed.

B) Mid-Ocean Ridge Spreading

Below the ridge that exists at the separation point between two

diverging oceanic plates, there is an upwelling of hot material from the

mantle to form the rear of the plates. The dynamics of mid-ocean ridge

spreading are not understood at present, particularly in a predictive sense.

Magma chambers are predominately located in the spreading zone.

*-77~77 7/ / 7- i

C) Eruptions

From a magma chamber, a conduit may lead to the surface where it

becomes the source for a volcano. Sequence of shots of Ngaurahoe shows the -

L0
Li

77

Schematic Picture of Ngaurahoe Sequence

first few seconds of the eruption, which is described as the following order
of events. First, a sudden overpressure of three atmospheres developed inside

the volcano, and a rush of ash-laden gas moving at "-' 400 m/sec (supersoni-

cally) was ejected into the atmosphere. The hot ash at the edge of the cloud,

• .-... .. ~~~~~~~~. ....... ........... ,. ......... ,............ .............. '..-..'.."............-.



in contact with the outside air, caused the latter to expand rapidly. Thus
the outer layers of the ash cloud became buoyant and rose, while the inner
regions of the ash cloud remained heavier than the surroundings and fell down
the mountain, developing into a hot gravity current travelling at . 45 miles/
hour. The dynamics of these hot ash flows contain many unsolved problems.
(It was suggested by a member of the audience that there may be some simi-
larity between ash flows and fluidized bed dynamics; this suggestion was
strenously debated.)

D) Geological Fluid Dynamics also includes such diverse topics as mud
flows, sand transport by waves, rock mechanics (rheology), geothermal systems,
plate tectonics, and the dynamics of flows in the core. Most of these topics
will not be discussed in these lectures.

Description of the Lectures

Lecture 2 Review of thermal convection, double-diffusive convection and
and applications (e./g. iceberg melting), convection from
point sources (e.g. black smokers).

Lecture 3 Crystallization in cooled saturated solutions of different
constitutions.

Lecture 4
and 5 The internal dynamics of replenished magma chambers. This

will be discussed from a fluid-dynamical perspective, with
reference to the blue, green, red, brown, and yellow exper-
iment, each of which display unique fluid mechanical
phenomena.

Lecture 6 Cooling of a magma chamber from the side: crystallization and
the formation of layers. Also, the effects of replenishing
chamber with hot, light magma.

Lecture 7 Steve Sparks will talk about the physics of eruptive columns
and starting plumes from eruptions like Mt. St. Helens.

Lecture 8 We will dramatically switch Reynolds numbers, and look at
viscous gravity currents -- on level surfaces, with viscous 9
application to lava domes, and on slopes, which may model 5
lava flows.

Lecture 9 What happens when hot fluid flows down a surface which it can
erode (e.g. hot water flowing down a wax bed)? The stream
beds thus created look remarkably similar to certain channels 0
observed in the nickel-sulphide fields of Kambalda.

Physical Properties of Molten Rock

Rheology: Well beyond the liquidus (crystallization) point, laboratory
Investigations indicate that liquid rock is approximately Newtonian. 0

.-... * -. . .. , . . . .
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Figure 1: Stress/strain-rate curve for simple shear
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Field evidence shows that magma (plus crystals) on the liquidus has a yeild.

strength, ioe.for shear stress less than a critical value, the material.,,_

appears to resist like a solid. Above this value the relationship between .O_

stress and rate of strain is quite closely linear. In the discussions to

follow the shear stress is typically well above the critical value and we"'..-

shall assume that the fluid can be considerd to be Newtonian.
6 /
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The fluid viscosity varies considerably with temperature and with
silicate contents as shown in Fig. 3 . While there may be some phenomena

3B associated with the variation of viscosity with temperature, they have not yet S
been considered in the situations discussed in these lectures. There are,
however, some interesting effects due to the mixing of magmas of greatly

* . differing viscosities, which will be considered a number of times during the
lectures. One aspect which is of relevance to oceanographic situations but
generally geological situations because of the different time scales is the
distinction between stirring and mixing.

[ mals suil-11

2.8

2.7 -

26-

P 2.6 1O(q/cc) '- ,,

X t atm. epir mntswnf er e f -.1
* eiduol glaasiShibato et al.)
* MoA%, Picrifc bps011s, mod~i parent. Iipulds

2.4

Figure 3: Temperature Dependence of Magma Density.

Having eliminated some inessential complications, we now consider an

essential feature of the magmatic fluid -- the temperature-dependence of its
density. At temperatures on the liquidus, the density of the magma is
determined mainly by its content of various dissolved minerals. As the
temperature is lowered and crystallization takes place, first a mineral
crystallizes out, to be followed at lower temperatures by possibly another and
then another. Thus the temperature-density curve may have quite a wiggly
shape. The Prandtl number for molten rock is usually very large, so we shall
suppose it is infinite in calculation.

NOTES SUBMITTED BY
Bruce Bayly and
Andre Gorius

... . .. . . . . . . . . . . . . . . ... . . .. . . .... .. . .. . . . . . .

". .. . % .-. '.. .. "..." - " .'.-'-.-... ". .•.. -- '..-.'. ... ,.'- .. " ., . .- '.'. ..- ". . .'.-•-.-'.' '%'-'-", " S
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LECTURE 2

REVIEW OF THERMAL CONVECTION AND DOUBLE-DIFFUSIVE CONVECTION 0

Herbert E. Huppert

In this lecture we present a brief survey at some of the results for
thermal, and then double diffusive, convection.

1. Thermal Convection

Consider the idealized case of convection between two infinite, hori-
zontal perfectly conducting flat plates with the upper plate held at tempera-

tute 0 and the lower plate at L8 T. There exists a solution to the governing 0
equations with a linear temperature gradient and the fluid between the plates
stationary.

If a small parcel of fluid is raised then it will find itself in a region
of cooler, denser fluid and will continue to rise if it can overcome the
effects of viscosity and not dissipate its heat too quickly. Any motion will 0
be driven by the relative density difference between the upper and lower
boundaries given by

The only quantities that affect the motions are (kinematic

viscosity), K (thermal diffusivity), H (fluid depth). These give two
independent nondimensional parameters by which the whole system can be

described.
'94C H3

The Rayleigh number Ra K -

The Prandtl number -

The linear stability of the conduction solution can be investigated by

linearizing the equations and finding the marginally stable solutions.

This occurs for steady motions ( -- 0 ) and leads to

with six boundary conditions.

i S

. - , .

'-. -... . . . . . . . . . .
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This equation is independent of the Prandtl number and from it the
minimum value of the critical Rayleigh number for convection to occur can be
found.

The values of the Rayleigh number for the onset of convection are

Ra = 27 7 for the stress free boundaries

Ra - 1708 for rigid boundaries.
0

In the stress-free case this corresponds to a horizontal wave number for
the first unstable mode of n 1 . However, linear theory does not tell us
about the planform that is expected, to find this we have to resort to non-
linear theory(see, for example, Busse 1978).

When a flow is strongly nonlinear the observed motions can be summarized S
in the diagram below (Krishnamurti, 1973).

0

~~--fW -4- vi- IV

Mno. •-. sue Ft.d

No. me"i
1mmMi n. ...

The nondimensional heat transfer is given by the Nusselt number

Nu f =(, a-

CK

This is the ratio of the true heat flux FH to the expected conductive heat

flux. This will be a function of the parameters of the system, Ra and OC . •

When the fluid is heated strongly (i.e. for large Rn), it is found that

Nu- C Ral/ 3

"'0 "

1
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This result can be described by noting that at high Ra the fluid in

between the plates will be strongly turbulent and that the heat flux FH will
be dependent on conditions at the boundaries only and not on the depth of the
layer. This requires the Ral/3 dependence. 0

2. Double-Diffusive Convection (Huppert and Turner, 1981)

The conditions for double-diffusive convection are that there are two or

more components to the fluid, of different molecular diffusivities, that con-

tribute in opposing senses to the vertical density gradient. Some examples of
this are heat and salt, two different salts, or heat and helium. Here we will
adopt the terminology of heat and salt with diffusivities KT > KS. We
will also assume a linear density relation

* - ~o (1- X~ T + S )

There are two cases of particular interest,

Case A

/ x.
/

The contribution of heat to the vertical density gradient is stabalizing . .

and that of salt destabalizing, while the total density gradient is stable.

Case B -S
/ __

*~ L)L

The contribution of heat to the density gradient is destabalizing and that of

salt stabalizing, while the total density gradient is stable.

. .. . . . . . ." .*

,0

p 0 . •".i ." ''i. .- . . " .. : "> . ... .".- -, .",. ,> - .. " .- " .. -< ",i: , .'--,-i,'.> i,
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In Case A, if a small parcel of fluid was displaced downwards, it would
find itself in a colder, fresher environment. Since heat diffuses much more
rapidly than salt the parcel of fluid will lose its heat quickly to the 0
surrounding fluid while remaining saltier. The parcel of fluid will then find
itself denser than its surroundings and so will continue to fall. This case
is called salt fingering because the fluid tends to form tall, thin vertical
convective cells. Away from the case of marginal stability it is found that
the horizontal wave number a of the fastest growing mode is given by

I SF

Similar motions can also occur between layers of fluids of very different
viscosities. An example of this would be when a layer of a salt dissolved in

water lies over a layer of glycerine and water.

The relative diffusivity of a substance A into g is given by the relation

K 0X

The diffusion rate is inversely proportional to the product of the
molecular size of substance A and the kinematic viscosity of fluid B.

In the case of glycerine and sugar dissolved in water, the molecules do
not differ very much in size compared to the very large difference in vis-
cosity between glycerine and water. Since glycerine is much more viscous than
water, glycerine will diffuse much more quickly into the water than either the
water or the sugar will dissolve into the glycerine.

If a small parcel of the sugary water is displaced downwards into the
glycerine, the glycerine will diffuse into it making the parcel denser. How-
ever, a mixture of water and glycerine is less dense than pure glycerine and
so the fluid parcel will only continue downwards if there is a sufficiently
large sugar content to make it denser.

The physical argument for the heat-salt case is symmetrical so fingers
grow upwards and downwards in a symmetrical fashion, but for sugary water and
glycerine this is no longer true and so the motions seen are asymmetric.

The diagram below gives the results of some experiments looking at the
formation of fingers between a layer of sugar and water over a layer of 0
glycerine and water. It is interesting that the transition from nothing
happening to fingering seems to depend only on the density of the upper layer
and not on the ratio of glycerine and water in the lower layer. The reason
for this is not understood.
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fields it will be warmer and less dense than the neighboring water and tend to
continue rising, overshooting its initial position. This process may be re-
peated leading to an overstable oscillatory growth of the initial disturbance.

As with the purely thermal convection, we can perform a linear analysis

to find the cases of marginal stability for a fluid between two infinite hori-
zontal perfectly conducting stress-free boundaries.

This time there will be a Rayleigh number associated with the salt
gradient as well as the temperature gradient. The nondimensional numbers that
characterize the motion are

Thermal Rayleigh number 7 Kr~ V

Solutal Rayleigh number .K,

Prandtl number 0 6 00

oKT

Salt/heat diffusivity ratio - o < -C

oo"v

o
° S



The case of marginal stability for the nonoscillatory instability is

found by setting 3, - 0 and for the oscillatory instability by setting

W- . The results are summarized in the following diagram.
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(Huppert and Linden, 1979)
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*If a stable salinity gradient, which is initially at a uniform tempera-

ture, is heated from below it will cause the fluid next to the boundary to

rise. rthis fluid cannot rise indefinitely since, because of the vertical salt

tgradient, it would find itself in less dense fluid. The heated fluid then

S -
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forms a well mixed layer at the bottom with a diffusive temperature profile
above it. Eventually the region above the mixed layer will also become
unstable and another distinct mixed layer will form on top of the original
layer. This process is repeated, forming a series of distinct mixed layers.
Eventually the lower layers breakdown and merge. The evolution of these
layers is shown in the results of an experiment below.

30

240

I'.@

* 460 0

120 7J"''IlZlll 11771111711111111111111

I A A L L L L - . L Lo 2 4 0 I IO 12 4 16 II 30 2 M 3. XW

This motion will depend on the nondimensional numbers 0

Q - KT S*/H* , ,

where the buoyancy flux H* -ng FH and S* -l/2gfds.

ec dZ
It is found that the top layer forms at a height Zf given by O

Zf - (4Kt)
1/2

where
K - 0.72 Q-IKT

It is also found that the depths of the convective layers formed are
independent of the height at which they are formed (and so independent of the
heat flux) and have a depth h given approximately by

h = 51 (KT/N)
1 /2

where N is the buoyancy frequency.

These layers have been recorded below an ice island; this case is the
analagous situation of cooling a stable salinity gradient from above.

*...................-
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2nd Application - Heating a salinity gradient from the side. (Huppert and
Turner, 1980)

If a stable salinity gradient is heated from the side then the fluid in
the layer next to the wall will rise. As before it does not rise indefinitely
and so moves out forming almost horizontal layers. The thickness of these
layers is found by experiment to have a depth h given approximately by

h - 0.65

where 6 is the horizontal density difference due to the temperature
difference.

These layers are also seen when a vertical ice wall melts into a stable
salinity gradient. This injects cold fresh water into the boundary layer
which (if density of the salty water is high enough) tends to rise, absorbing

salt on its way. But the thermal anomaly, due to the horizontal temperature
difference, dominates and forms horizontal convective layers just as with side
wall heating. The thickness of the layers scales as the above formula.

Both of these applications show how horizontal layers can be formed in

double diffusive situations. Layering seems to be a feature in all double
diffusive phenomena. The visual similarity between double-diffusive layers ..7
observed in rocks first suggested that double-diffusive layering may have
important geological consequences.

1 14
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LECTURE 3

THE COOLING AND CRYSTALLIZATION FROM ABOVE OR BELOW
OF A FLUID WITH A SIMPLE PHASE DIAGRAM S

Herbert E. Huppert

Consider a typical phase diagram at constant pressure for a binary system
composed of two chemical components A and B (Fig. 1). It shows which phases 0
exist for various temperatures and concentrations, under thermodynamic
equilibrium.

T

oSOLUTOLON

so50 i A + soio 8 V-
-j 40s 

4~ / :

! 0 "501D A A oSOLIO B

A Ce B

C (wt. 1)
FIGURE 1

Solution temperature T is plotted on the vertical axis while the
horizontal axis represents its concentration C, given by weight percent of
component B.

Above the liquidus the two components exist in solution; at the liquidus
crystallization occurs producing solid A if the concentration of the solution
is less than the eutectic concentration (C < Ce), solid B if C > Ce and 0

solid of composition Ce if C = Ce.

In Figure 1 the solidus lines, which determine the concentration of the
solid in equilibrium with the solution, are vertical.

Below the eutectic temperature Te the system is completely solid. The 5
components A and B may be H20 and NaCl (in the ocean), Sn and Pb (in metal-
lurgy) or FeS1O 3 and Fe (in the earth's core). In each case component B is
chosen so that the density of the solution increases with increasing weight
percent B. As a specific example we show the phase diagram (Fig. 2) of the
water-sodium carbonate system. On this diagram contours of constant solution
density are drawn. These contours are almost vertical, illustrating that
composition plays a much larger role than temperature in determining the
density of the solution. Given that the (initially homogeneous) solution can

..- .
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be cooled from above or below, and the solution concentration may be less
than, equal to or greater than the eutectic concentration, six cases are
possible:

COOLING FROM

ABOVE BELOW

C Ce T unstable T stable
C stable C unstable 0

C - Ce T unstable T stable
C uniform C uniform

C Ce T unstable T stable
C unstable C stable S

The stabiity of the temperature and concentration profiles of the
solution is given above for each case. For example, when a solution of concen-
tration C > Ce is cooled from above the temperature profile is unstable and
the concentration profile is stable.

Case 1 Cooling a eutectic solution from below

This situation has been considered by Carslaw and Jaeger (1959) in a
chapter entitled "Changes of State". The temperature profile is shown below:

• ....I

T.

SOI- 0
ZwO S'' ' """"""""""'

where T is the initial solution temperature, Te is the eutectic tempera-
ture at which solidification occurs and TB is the imposed temperature at the
base of the solution. In the solid and solution, the equations of thermal
diffusion are

Tt = Ks Tzz (1)

and

Tt - Km Tzz (2)

where Ks and Km are the thermal diffusivities in the solid and solution,
respectively.

The interfacial condition is

fLht - ks TzLkm TzI,=, (3)

where h is the (assumed uniform) height of the crystal block, and k. and
k. are the thermal conductivities of the solid and the melt.

,. .. o.
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The solution to equations (1) - (3) can be written in the form

h s2 t J , (4) •

where the thermal eigenvalue XT is found from an equation of the type .

:: ( r) D (5)

In this problem for typical parameter values the rate of crystal growth is
controlled by heat diffusion through the solid as indicated in equation (4). 0
The solid interface is stable because there are no compositional effects and
no convection here. The theoretical calculations are in very good agreement
with the results of several experiments using aqueous NaN03 which were
performed to test the theory.

66 Case 2 Cooling from below a solution whose concentration Is less than the 0

eutectic concentration

In this situation, described in more detail in Worster (1983), solidi-
fication produces stable profiles of both temperature and concentration.
These profiles are shown below: -"

Zw~~ LIcQUO

) SOLi 0

In addition to thermal diffusion equations (1) and (2) in the solid and the
solution, we also have the equation for compositional diffusion in the
solution:

Ct = D Czz. (6)

Compositional diffusion in the solid is neglected. The interfacial conditions
are equation (3) and the additional equations

(C + Co - C, ) h t  -D Cz  z=h+ (7)

and 0
T = - mC + constant. (8)

Equation (7) specifies conservation of mass (assuming the melt and solid

densities are equal), and equation (8) specifies thermal equilibrium at the
growing interface. The linearization in equation (8) is assumed because it
enables a similarity solution of the equations to be found.

The solution can be written in the form

"- (9)

,.- .. : 0
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where the compositional eigenvalae ? c is found from an equation of the type

SCL) 0. (10)

If TB is sufficiently large, the crystal growth is controlled by
compositional diffusion. This solution is morphologically stable if, at the
interface,

dC > - m ,(i

a situation which will occur for TB sufficiently small for given T.o . For
example, Figure 3 illustrates the region of morphologically stability in
the H20 - NaNO3 system, for T __ - 150C and T c - 300 C. The region
of stable growth is seen to be quite narrow. Note that as C --* 0, we approach
the morphologically stable Case 1, and the range of TB for which stable
crystal growth occurs is rapidly increased.

A series of experiments was performed to determine the growth rate of the
dendritic crystal mush produced when TB was well below the morphologically
stable value. The results for one experiment are shown in Figure 4, indicating
that the thickness is proportional to tl/ 2 , but the growth rate is consider-
ably greater than that predicted for the flat interface controlled by composi-
tional diffusion. The ratio of these growth rates as a function of the initial
solution composition Coc, is plotted in Figure 5.

The reason for the enhanced growth rate is due to the morphological
instability, which removes the constraint that the crystal growth is control-
led by compositional diffusion. Experimental measurements at undercoolings
greatly (about 150C) below the morphological stability limit indicate that
the dendrites grow with interfacial thermal and compositional values not very
different from those in the far-field. In solidifying, the dendrites reject -.- -

heavy, compositionally enriched fluid which descends into the spaces between _
the dendrites, where the temperature is lower. Further crystallization can
take place in these spaces, which also releases heavy fluid. The overall
process suggests that the dendrite growth can be modelled by assuming it is
controlled by thermal diffusion only and by using the purely thermal theory
outlined in Case 1. Such a procedure leads to results in good agreement with
the experimentally determined ones (Fig. 6). Worster (1983) has developed a
more complete theoretical model of the process, an abstract of which appears
in this volume (page 98).
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LECTURE 4

REPLENISHED MAGMA CHAMBERS

Herbert E. Huppert

Let us motivate the geological study by a chemical investigation of what -

happens when we have a layer of hot, heavy, KNO3 below a layer of light,
cool NaNO3 ?

A. The Blue Experiment (Huppert and Turner, 1981)

The hot heavy input of KNO3 is rapidly introduced under the colder
and lighter layer of NaNO3 in a perspex tank measuring 40 cm x 20 cm x 40 cm
high. The initial KNO3 solution is undersaturated to avoid crystallization
in the filling tubes. Note that if the fluids were simply mixed together, the 0
temperature would reach a weighted mean and there would be no crystallization
because the solution would be undersaturated in both salts. The diffusivities
of the two salts are almost equal.

Temperature (C)

70 60 50 40 30 20 10 S

1 40

EU S
130

C

20

1 60 50 40 30 20

KN03

After the initial input phase there is a strong transfer of heat across
the interface which drives convection in both the upper and lower layers. .

Because of the small diffusivity of chemical species, there is very little
transport of mass across the interface. Crystallization begins in the lower
layer and its density changes, approaching that of the upper layer. The
crystals form mainly on the sides and bottom of the box. After a time the
densities become equal and the layers overturn, mixing the fluids. On a time
scale of days to weeks the crystals gradually dissolve because the mixed 0
solution is undersaturated.

. .- -. .
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B. Theory

h6

1'
h T 0 0

t
h T T AS

From thermal convection theory we have

t4L- c .

In the double diffusive extension of this argument

~A *T9*

where &M is the density ratio across the surface,

r is the Prandtl number,

and is the ratio of the diffusivities.

The salt flux is nondimensionalized by the heat flux and expressed as a
bouyancy flux ratio. It should be a function of the same quantities:

-- 4-A I

While there is no verification of this relation from first principles,
*an empirical form suggested by Huppert (1971) has been widely accepted

f =.32
-OA")

'r - - - - - - - - - - . .-.-
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For purely diffusive transport through the interface

g- for

The heat and salinity flux fits have been verified on a large scale in
Lake Vanda (Huppert and Turner, 1972).

The equation for the temperature of the lower and upper layers are:

hLTL - -A(TL - TU)10/3

huTU - +A(TL- TU)10/3

Latent heat effects are neglected. These equations may be solved to S

give TU and TL as a function of time, physical properties, and initial
conditions. The time behavior of temperature is well predicted as shown below.

TL T,

-~I OI41

LAMM*

Upon LAVE

- -. -

I1.32 I

1.31-

1.30/

u 1.29 -

1.28 -

C 1.27 . .... I -

1.261.
20 25 30 35 40 45 50

T (C)

It is not possible to predict the composition or density because in any

experiment the degree of supersaturation the system achieves cannot be pre-

dicted.

* 0

.
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Geological Applications

Consider what happens when there is an influx of magma containing 18% MgO

at a temperature of 14000C into a magma chamber typically at 12000C. The S

influx is of order 1% by volume. The change in volume is accomplished either

by the expansion of the country rock or by magma forcing its way into fissures

(dykes). The hotter, compositionally heavier magma ponds at the chamber base,

2 to 3 km below the volcano.

h 2  72

I INFLUX

By assuming the idealized geometry on the right, some effects due to

geometry may be lost (e.g. rapid sedimentation can occur at sloping wall, the

"Boycott Effect"). It will be assumed that the system is always on the

liquidus.

Temperature (C)

1.400 1.350 1.300 1,250

2.72-

2.701

18 1. 12~

MgO

Ofivine

,S" " " ,S

. .*O *..
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This was a big dispute in the geological community: How was it possible
to have an input of 18% MgO and an output of only 9% MgO. The model of Huppert
and Sparks (1980a,b), which I will describe, shows how fluid mechanics acts as
a buffer between this high input and low output. 0

In the model there is an input at A which will spread across as a gravity
current quite quickly and form two layers. The input will follow the same
time history as the experiment, so the same basic calculations can be used.
We assume supersaturation and pressure effects are minimal. We do not know
how to scale the flux laws, hence we use the same flux laws. It is admittedly •
a large extrapolation from heated salt to magma, but you either do that or you
do nothing and the lecturer said that he gets bored doing nothing.

The salt equations work for magma, but we must now allow for latent heat
effects in crystal formation which are much greater in the magma case. Recall
that the system is saturated all the way -- it is on the liquidus all the
time: if you know the temperature then you know the crystal content. You
know all about the system if you know the temperature.

- A L ( TL.

The value of A changes with different magmas.

The additional term in the TL equation varies in a nonlinear manner.
Good applied mathematical tradition would suggest replacing this term by its
mean value. Once this function, (1 - h f'(T ), is approximated by its
mean value the thermal evolution equations may be solved analytically to
obtain a time/temperature history (a cooling curve). The solution agrees
quite well with the numerical solution of the original nonlinear problem.

Dimensional analysis would give you a time scale that would be almost
sufficient. This is partly because geologists previously thought magma
chambers cooled almost entirely by conduction which would lead to a very long
cooling time for a chamber of order Km cubed in volume.

lHour IDay IMonth IYear
1400 1 1 0

UI n,hol lower layer lemp 1365'C

uj1350
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C. Crystal Settling vs Suspension
(Or: A Little Side Step and a yes or no Question)

This is a proper question, no tricks, gravity is there, it is a real
fluid, small does not mean not negligible, just small. Imagine you have a
steady two-dimensional flow - if you like a series of convective rolls - in a
real, incompressible fluid and let us say it is between horizontal boundaries.
Place some small spherical particles into this uniform, steady 2-D flow. The
particles are heavier than the fluid, they do not interact. There is no
brownian motion. They are sufficiently small so they sink like low Reynolds
number particles with terminal velocity less than the maximum fluid velocity.
If they hit the boundary they stick and effectively disappear. After a
sufficiently long time, do they all settle out on the bottom: yes or no?

Vote: Rather evenly divided.

Incorrect Argument for Fallout:

If you calculate the horizontal average of the velocity, the mean vertical
fluid velocity is zero, hence the particles, with their positive downward
velocity through any horizontal plane, should be able to fall through.

Argument for Suspension:

The correct answer is that some may remain in suspension (Stommel, 1949).

Consider the velocity of the fluid in terms of the stream function

9,- F '- - with . 1.- ]

The particle velocity is clearly equal to that of the fluid in the
horizontal and is just the fluid motion plus terminal velocity in the
vertical. Thus 0

q~s (F r I, v

or F ( * sn) 0

where S Y ."

This shows that the important and only parameter of the problem is some
indication of the terminal velocity of the fluid. The argument goes that
V l' 0 because there is a stagnation point in the fluid flow and, for
sufficiently small s, V4?p - 0 and there will be a stagnation point for the
particle motion as well. Then, by continuity in x and z, if there is a
stagnation point, there must be closed streamlines for the particle
trajectories.

p 0.%.

. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .. . . .
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What will happen in a container with very large unsteady motion (i.e.
turbulent convection)? The equivalent value for s is v /w where v is the
Stokes velocity for particles with low Reynolds number, and w is a measure of

the rms turbulent velocity of the fluid. If s << 1 then the particles will 0
remain in suspension while if s >> 1 they will fall out.

There are two things to talk about. First, what happens in the inter-
mediate range where s is not so much less than one, and second how does

one calculate w?

I) The Intermediate Range of s

For small s all the particles stay up, for large s they all fall down.
We are talking in a mean sense about largely unsteady flow. What we have in

mind, and what experiments indicate, is that some concentration C = f(z) is

produced. In steady state one may use the following eddy diffusivity argument.

The downward flux of particles ( vC) is balanced by an upward flux due
to the concentration gradient. Thus

where the proportionality constant E is identified with eddy diffusion and
is given by the rms velocity measure times the height of the container.

E

Thus

vC-T;'

with solution

rC(z) =Co EXP -

and, by conservation of mass

£ C A - C %-r~

Thus if is very small the concentration profile is flat, while if it is
large there is a sharp concentration gradient. Measurements agree well with

this kind of argument. In a magma chamber the important result is that during
most of the time the crystals are growing and the two layers are stable s < 1.
Thus, the crystals grow in suspension. This can make a difference in crystal
composition and size.

• . - ' . " .
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* a b'1. 300 ft_

E le

03 cmn(

t 2 to1o' o 10 0 1O0 1?

Important Idea:

In the above cartoon we see the olivine crystals forming in turbulent
motion. They grow in suspension in equilibrium which makes a large difference
in the nickel content (which is only a trace element). Geologists can go out
and measure Ni content. The measurements that have been made (and there are
only preliminary measurements) are consistent with this idea.

~Geological Examples

This situation described can be applied to a number of different geologi-

cal areas.

1) The above models what happens at midocean ridges.

2) Island of Rhum. The hill of Hallival represents a 90 million year old 0
magma chamber beneath a volcano which has been eroded. Pulses of ,J?9 rich
liquid entered the chamber and cooled rapidly forming layers of olivine, the .
remainder cooled conductively and formed layers as observed. .

3) Ophiolites are magma chambers which were part of the sea floor and have"

come up above land (it is not understood why they did so -- they should have
been subducted).

-,.,.f-
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LECTURE 5

REPLENISHMENT OF MAGMA CHAMBERS

Herbert E. Huppert

1. The "Green" Experiment (Huppert, Turner and Sparks, 1982)

Let us consider the following extension of the "blue" experiment of
Lecture 4. The initial conditions are: 0

28.4 to 26.7 wt % K2 C03
P= 1.25 to 1.28 g/cm (linear gradient)
T = IL.OOC

43 wt % KNO 3  0
P = 1.31 g/cm 3  (slight green dye)
T = 64.6 0C

The lower layer cools and crystallizes exactly as in the blue
experiment. Associated with the cooling of the lower layer, there is a heat
flux passing through the density gradient in the upper layer, and so layers S
are produced, as explained in Lecture 2. This stable stratification inhibits
the rise of the overturning green fluid which occurs only in the lower part of
the container.

(green) convective motion (thermal
* (~i(('% k% and compositonal)

crystals (KNO3 ) .

The upper (regular) stratification arises from the horizontal thermal gradient
between the container (110 C) and the room (200 C).

2. The "Red" Experiment

a) The Experiment

As another extension of the "blue" experiment, the "red" experiment
consists in introducting slowly (0.86"cm3 /s) hot, heavy fluid (KNO3 ) at
the base of a uniform lighter and colder NaNO3 solution. Explicit initial
conditions are: ,

38 wt % NaNO3
T = 8.5 0 c
=1.31 g/cm 3

input (o.86 cm3/s)

of 46 wt % KNO 3

T = 650C
1.36 g/cm

3

S' "
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One observes quenching of hot fluid and immediate crystallization, which

deposits crystals in a heap on the container bottom, and releases light fluid

(colored in red) which mixes with the upper fluid, in a quasi-steady way.

After a few minutes, the system looks like:

X
_ )e -.X._.--.0

crystals (porous medium)

After a longer time, to the side of the heap a horizontal regular layer of

crystals and red liquid has been formed. On those parts of the container the

conditions are the same as in the blue experiment (heavy and hot under cold

and light fluid), and so the same processes are involved. S

b) Black Smokers

An interesting investigation is to change the motivation of the experi-

ment and to simulate some aspects of "black smokers". These form at mid-ocean

* ridges, where hot water (tV3500 C) is emitted from the seafloor. This outflow S

deposits crystals and forms chimneys, whose growth rate can be as large as

40 cm per day. Their growth stops as the site moves away from the ridges. It

has been possible to simulate this growth in the "red" experiment. The growing

of a crystal tower like a black smoker appeared to be initiated by the with-

drawal of a small amount of fluid from the top of the tank.

fluid rising

tower
S -

heap

red (hot heavy KNO3 )

input

The question of how the growth of this "black smoker" is initiated by the

withdrawal of fluid from above has not yet been satisfactorily answered.

3. Magma Chambers near Subduction (Huppert, Sparks and Turner, 1982)

The "blue" experiment supposedly modelled the mid-ocean ridge magma

chambers. Let us now consider magma chambers near subduction (for example in

Japanese volcanoes).

-... . ... ,. ,



31- 0

plai.

The magma that enters these chambers has water dissolved in it. Consider the
magma family known as the calcalkaline association:

Heavy (IV 2.7g/cm 3 ) BASALT
Mafic (SiO 2 (V 45%)
Low Viscosity ( e*V 10 cm2sec -1 )

gradual variation through
ANDES ITE

DACITE

Light (A/ 2.3 g/cm
3 )

Silicic (SiO2 ^./75%) RHYOLITE

Viscous (IV 106 cm2 S-1 )

Some samples, erutpted from these volcanoes surprisingly appear to contain

different magmas intimately mixed. Furthermore, some thin sections of such
samples showed that there is very little diffusion between such substances,

although they were in very intimate contact. The idea for explaining such a

situation is to suppose that the intrusion of heavy inviscid fluid contains
dissolved water (0 to 5% in weight) •0

magma chamber

heavy inviscid

Consider a parcel of fluid containing some water. As the melt cools it
crystallizes, and the crystals formed are anhydrous. Thus the water concen-
tration in the remaining fluid increases and eventually saturates. At the
relevant temperature and pressure, it comes out as water vapor, which is very

light, and so the bulk density can be reduced by an enormous amount.

. . . . . . . . . .. . . ...
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Quantitatively, let N be the total weight fraction of water in the system,
let n be the saturated fraction of dissolved water. Considering water vapor
as a perfect gas,

1 (N-n) RT + 1- (N-n) (0 n,% N)

bulk melt + crystals + dissolved water

for N = n, this involves

bulk = emelt + crystals + dissolved water

n is a known function of P and T, well fitted analytically by

n - S(l-X)P I / 2 where X is the weight
fraction of the crystals. X X(T) is well fitted by:

T = (1100 - 200 X) + 273

and S is a constant. So, one gets the density curves at P 5 kbar.

270' R --- BASALT

BASALTIC

260- ANOESIrE

E2502

p 2 0  
Q ,ACITE

230 P 0. kAo XI~ct E"

220 • •

i~- I. b &

0 01 02 03 04 05
WIGHT FRACION OF CRYSTALS xa

This is applicable even when some crystals remain in turbulent suspension.
So, one gets the sequence:

. . . . . .- ,

• . ".": '-. '. - .-.... . . . . . .- '-.. .-.--.. . . -.-. .- .--. .- -.-. .- '-. ........... .-. .-.--- .-,--, -. -, -- -.-- - -,-. . -.-
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- influx at the base

1) - cooling and crystallization (crystals remains in suspension)
2) - water saturates and comes out of the solution (probably nucleating on 0

crystals), decreasing the density of the lower fluid.
3) - sudden and violent overturning of the lower layer, with a massive

release of gas.
4) - eruption when the internal pressure build-up drives the outflow from

the vent.

A modelization of these processes has been made using a chemical reaction
between NaCO3 or K2CO3 with HNO3 to release small bubbles of CO2
(Turner, Huppert, Sparks, 1983). A film of an experiment was shown.

The initial conditions were:

NaNO3 + Na2CO3 aqueous solution
= 1.268

T = llOC

4.8e. KN03 aqueous solution
- 1.299 0

T = 550C
300 ml of 70% HN03

Cooling and crystallization took place in the lower layer, producing
strong thermal convection in both layers (as in the "blue" experiment).

As the density in this layer approached that of the upper layer, the
interface rapidly broke down, the lower fluid rose and bubbles of CO2 were
produced by reaction of HNO3 with Na2CO3. This gas facilitated the
convection and the mixing of the fluids. The eruption was modelled by closing
the top of the tank by a domed lid, having a small vent at its top. As CO2
was released, the pressure increase in the tank forced the fluid-gas mixture
through the vent, producing a very nice eruption.

4. The "Yellow" Experiment (Huppert, Sparks and Turner, 1983)

A last extension is to consider the layers of fluid to have very
different viscosity. The experimental situation was the following:

Viscous fluid (glycerine)
(Yellow)

KNO3 solution
(blue)

Here, the released blue fluid is taken up into the yellow one immediately, and
is drawn out into long streaks. Then one again gets cooling and crystalliza-
tion within the carried-up streaks.

The mixing of the two fluids is very small compared to that in the blue
experiment, where the two viscosities were of the same order of magnitude. At
the interface, only convection is seen (no diffusion of blue into yellow
fluid).

. ..
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Laminar plumes go up to the top of the container, and then one has
aqueous KN03 over glycerine, and so one can observe salt-glycerine fingers
descending from the upper layer (after 45 minutes). After a long time, there
remain large unsteady motions in the container. So, this experiment shows S
that the difference in the viscosities of the two fluids plays a significant
role in the processes that take place.

In particular, if OvOL , one has to wait before lower fluid rises, and
if OuY'PI. , lower fluid rises immediately. This can be understood as follows:

If \t4YL , the lower fluid sees a "stress-free boundary" at the
interface and so horizontal movements are allowed and mix the fluid within the
layer. If O->Li. , the lower fluid sees a "rigid boundary" and cannot move
horizontally. If lighter, it can then rise.
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LECTURE 6

COOLING AND CRYSTALLIZING FROM A SIDE WALL
0

Herbert E. Huppert

In Lectures 3, 4 and 5 we were mainly concerned with the one-dimensional
features of multi-component convection. Basically the gradients of the fields . -

are vertical and physical quantities are essentially functions of only time
and the vertical coordinate z. In the first half of this lecture we will deal 0
with cooling and crystallizing from a side wall, where the situation is
inevitably two dimensional.

Flow with a Gradient of One.Component

As an introduction to the subject, let us consider the case of cooling •

(heating) alone (Fig. 1). The temperature is

boundary E

__-_ -To I'est eady boundary flow 0

or
4P

Figure 1 Figure 2

given at the boundary of a semi-infinite reservoir. The equations governing a -

steady state flow are as follows: .

where is the stream function, is a density deviation normalized by 5

*4 (i.e. 9 = &zL ), g' is the reduced gravity (V), his the

viscosity and D is the diffusivity. As we are concerned with a boundary

layer, the z derivatives of friction and diffusion terms were dropped. The

boundary conditions are

00

---- ..to. ...

-, -. 'i' i.i .-...........- ,....." ,... .. ........ "....'-,..,..,,....-...•
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These equations can be solved in terms of a similarity solution
21/2 1/4 -1/4

(ScG) (x/L) (z/L),
T = 2 3/2 D(ScG)1/4 (z/L)3/4 f(00

= g(n),

where Sc I v/D Schmitt number
3 2

G = g'L /V, Grashof number

L = some length scale

This gives equations for f and g:

g" + 3fg' = 0

Sc(f'''+ g) + 3ff" - 2f' 2  0

ff' = 0 and g =1 at n= 0

g,f'-4 0 as n--

The Grashof number is the important parameter which is the measure of the
forcing. It is similar to the Rayleigh number Ra = g'L3 /Dv but D is

replaced by v . In the case of vertical convection thermal diffusion reduces
the buoyancy forcings while in the side wall heating case thermal diffusion
plays a more positive role. The Schmitt number is identical to the Pandtl
number a . A constant n line (which is also a constant density line) is S

shown as a dashed line in Fig. 2.

Typical numerical solutions for various values of Sc are shown in
Figs. 3a and 3b. One of the notable points is that the profiles of scaled -.

velocity u*=u L/vfSC 4z)I vary significantly with Sc, while the profiles of
density (G 4 z)

oA 
to

- °,

106

(or of temperature) do not. High Sc (or large value of v causes penetration ..'""

of upward motion into the outer region due to the larger viscous effect. The. .. "

ratio of the scale of the velocity variation and density variation is given -'.
by* . 0
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In a magma chamber, V is a highly dependent variable oi temperature so

that significant modification of the above features is expected. The order of

the viscosity variation may be by a factor 10
4 - 105 between the wall of

the chamber and the interior in either direction. The following temperature

dependency of viscosity was used by A. McBirney and his coworkers to calculate

the effect of viscosity variation.

p v. exp f-in (P./P w)}

Here V. and U are the viscosities far from the wall and at the wall

respectively.

The Schmitt number and Grashof number are scaled using the ad hoc vis-

cosity measure 0

= ( p smaller)
4 / 5  U p larger)

I/5

where Psmaller is the smaller of V. and and I'larger the larger.

wS

S.

to W 03 2

0.

Figure 4c Figure 4d

/0 . ,o. *0. .. .

K° -J',*.-Op.-i4

Figure 4  Figure 4db

• . - . .. - . . ... .. . . .. . . . . .. . . .. . . . ... . ... .. ... . . . . . ...- .. .- :. . -:

. . . .. .'."• ."'- ,_. -'.- .'. . , .- ..0- 4''- -. , -. I• . . - .,-_ .__ '-'.-';'.k., .,''"-;.. .--.
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The corresponding similarity solutions are summarized above. Figs. 4 a
and 4b show the case where the viscosity at the wall is smaller than the
viscosity at infinity, while Figs. 4c and 4d show the opposite case. In all
these cases the Schmitt number is very large. When the viscosity at the wall 0

is small compared to the interior the compositional profile (or temperature
profile) is not affected significantly by the viscosity variation. On the

other hand, as shown in Fig. 4d, the highly viscous layer at the wall pushes
out not only the velocity profile but also the compositional profile.

So far we have only considered steady flows, but as the flow comes up the 0
boundary layer it becomes unstable because of the increase in local Grashof

number which is roughly similar to the square of the Reynolds number (Fig. 5).

The critical value of G is O(10 6 )that means Re = 0(103). Experiments

with constant viscosity show that the wave caused by the instability grows
with height and eventually becomes "turbulent" when 0

G 0(10 9 ) for = 0(i)
and G N 108 2 for >> 1

S S

A .3

Figure 5

(the validity of this last relationship is not on such a sound base). When

considering the turbulent regime McBirney used an eddy viscosity whose form

has been found by experiments to be as follows:

" effective = 1 + 0.4xT (1- e )
" molecular 0

where
= 0.0017

Y..

)S( molecular

is the wall stress.

This formula is consistent with mixing length theory, since ) effective

is proportional to X (distance from the wall) when X is large. For the
case of viscosity with temperature dependence the effect of turbulence can be
estimated by using the above empirical formula. The results are shown in
Fig. 6 for a large value of Sc and a viscosity which has a large value near -

%
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the wall ( Uw' i04. ). Here x is the vertical distance along the wall.
A larger value of x/L means more intensive turbulent mixing. Turbulence
does not play any significant role near the wall, while it affects the profile
of the inner region. This separation occurs when Sc> G 1/3. 0

0.40

0.35 /

0.30 .90
.i70

0.05 •

0.00
0. - I l i L H l ,I !:h .1 4i:] z t l

10- i0' i0d id' 10 10
Oistan¢c from wall, y Ccmn)

Figure 6

Flow with Both Temperature and Component Gradients

When the density is changed by the effects of more than one component the
structure of the flow is determined by their competition. Since the thermal
diffusivity T is generally much larger than the compositional diffusivity
D, the flow will be upward near the wall and downward in the interior for
cooling and crystallizing from the side. This can be visualized in laboratory
experiments (Fig. 7).

0' composi-

S,,,effect

, Thermal

effect

Figure 7 -r
rO
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The simple similarity solution discussed for one component convection is
not now applicable because of the different effects. When the compositional
effect is dominant, the flow will be totally upward (region (A) of Fig. 8).
When the thermal effect is dominant the flow will be totally downwards (region
(C)). There is also an intermediate parameter region (region (B) or Fig. 7,
right) where both effects are comparable. The hatched region in the diagram
indicates the ranges of parameters found in magma chambers and showing that
both effects are important. Even if varying viscosity is taken into account,
the geological importance of competing effects is still unaffected.

rhermal(y-Dominat J Downflow

<o10umtr
S, Flow w ll

Cry~t*allizationl
* 10-

. i tO Cornposit iona lly- Dom inatcal "

Upflow

10 ",1 , , , ,
1 101 10

4  
100 106

Lcwis Number, LC K,/D

Figure 8

Although no uniformly effective similarity solution can be found for
region (B) when D 4( K .. .\ then the regions dominated by temperature,
solute and viscosity are distinct and solutions in each can be matched. Some
examples of solutions are shown in Fig. 9 in which the effects of variable
viscosity are also included. It indicates that compositional upflow is
basically independent of turbulence while the thermal downflow is noticeably S

affected. As a magma chamber is a finite box it is expected to

too

015
.4*

0.50

025 .

0.00

--0 .5 r•

Viot~6. &e.'. fi, 4.

Figure 9

S ,. . . . . . .
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cause another effect, vertical stratification. This effect has been visualized
in experiments. The upward flux of relatively fresh water caused by crystal-
lizatiun reaches the top of the tank and moves outwards so that a vertical
compositional gradient is set up. In a stratified fluid the convection forms
a layered structure (see Lecture 2, p. 8 ).

Convection from a Point Source

In the previous lectures the driving forces were mainly uniform horizon-

tally. In this section we will consider, paraphrasing the approach of Turner
(1979), the fluid dynamical phenomena due to replenishment by a hot light
magma, where convection is driven by a point source. We will deal mainly with
the motion of buoyant plumes which do not have initial momentum, but the case
of buoyant jets will be briefly mentioned.

When Re >> 1 the fluid motion of the plumes becomes independent of S

molecular properties (i.e., Kr , 0 ) which permits extrapolation of
experimental data into various ranges of parameters.

The important quantities which characterize plumes are:

1) Specific buoyancy flux F = 5wg'di source =L4T-3

where g' = g g = P

2) Specific mass flux Q = wdA source =

3) Specific momentum flux M j w2dA source L4T-2

Although w (vertical velocity), b (radius of plume) and AP (density)
difference) are highly time dependent variables, it is possible to regard them
as functions of z and r by the use of temporal averaging (Fig. 10). Typically,
experiments show that the averaged velocity has the form

w = w(z) er
2 /b2

b = b'z

Figure 10 .m
'.o

:2 -::_.::._. . ._... -. . ._ . . _ -
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Usually a top hat profile is assumed for w when performing any anlaysis.
The plume is also found to be approximately conical, so b is assumed to be a
linear function of z. The evolution of the plume is caused by turbulent
entrainment of the environmental fluid at a rate which can be assumed to be 0
proportional to the mean upward velocity (entrainment rate = , ). These
assumptions were first explored by Batchelor (1954).

The equations for the plume evolution are as follows:

Conservation of mass c ( ) ..
'  

0

Conservation of momentum - (b )

Buoyancy - N,

where -- 5 Wr r,

ov

If there is no stratification (N2 = 0) the buoyancy flux F is constant with
height, and the solution is:

k 0

S

"- ,) (0.1 . F)-, " -'::::

The rate of spreading of the plume depends on the buoyancy and momentum

flux at the source and on stratification

when g' = 0 : nonbuoyant jet

- when N = 0: no stratification

A number of experiments indicate the value of o- as 0

S0.1 + 0.02

This is valid for Re 1. C , = 0.1 is the most used while OL = 0.08 seems
to be the "best". As Re decreases Ot, does have some variation.

0

* S

. . .." .



-43- 0

When the ambient fluid is stratified a buoyant jet will entrain heavier
fluid and will eventually reach a level where it spreads out. Because of
entrainment the density of this level is much greater than the initial jet.

It can be shown that:

the height where there is no buoyancy (g' 0) is z = 1.04 -I/ 2LFN,

the height where the plume stops rising (w 0 0) is z = 1.370l-/2LFN,

where LFN Fl1/4 N3 /4 . It has been determined experimentally that the
height of the spreading out of the plume is 3.47 LFN which is lower than the
height of w' = 0. These results are applicable over a large range of scales
as shown in Fig. 11.

13 Large oil fire /0

4 Oil fire experiments over a desert
103  a Crawford & Leonard (ice rink)

0 Xrorton, Taylor,,/

Turner (laboratory) A

~~ ~~IlfI I I I-": -

td-I oorstSr

5FIG"- 1 (ft)

Figure 11

Finally, if momentum is added at the source to the buoyant jet, the plume
can rise to a lower height. This is because the extra momentum spreads the

., plume and it entraps more fluid. Thus the plume becomes denser more quickly
and spreads out at a lower level.
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LECTURE 7

PHYSICS OF ERUPITVE COLUMNS

R. Steven J. Sparks

Figure 1 illustrates the fundamental fluid mechanical processes which

occur during an explosive volcanic eruption. Such an eruption begins at depth
in a magma chamber in the earth's crust. The magma can contain several weight
percent dissolved volatiles (mostly CO2 and H 20) under pressure. However,
at some height (called the exsolution height), the pressure will be insuf-
ficient to keep these volatiles dissolved, and they will exsolve to form small
bubbles of vapour gas in the magma.

The initial rise of magma from the magma chamber to the volcano is
viscous (low Reynolds number) flow. Eventually, however, the magma reaches
the fragmentation level where the pressure is sufficiently low that the
bubbles burst, resulting in the transition to high Re flow. This flow is
entrains solids, formed either by fragmentation of the magma (and crystals) or

torn from the walls of the vent (xenoliths). The exit velocity of this
mixture of volatiles, and solids, as it leaves the vent of the volcano, is
typically several hundred metres per second. This mixture is usually denser
than the atmosphere. The rise of the volcanic cloud is initially dominated by
its momentum. In this gas thrust region, the cloud entrains surrounding air
and decelerates rapidly. The magma in the cloud is quenched to form ash
particles and pumice. After the cloud has risen a short distance (typically 1
km), it has lost most of its momentum. However, heating of the entrained air

by the hot ash particles rapidly makes the cloud less dense than the atmo-
sphere, enabling it to rise buoyantly for many kilometers as a turbulent plume
(see LECTURE 6). It eventually overshoots its height of neutral buoyancy
(HN) due to its momentum and continues to rise until its momentum is zero
(HM). At this point, it is negatively buoyant and it falls before spreading
out at an intermediate height HF.

Wilson et.al. (1978) have modified the work of Morton, Turner and Taylor

(1956) to obtain the formula

HM - 5.77(1+n)-3 /8 [QS(E a)3 1/4 (1)

where n is the ratio of the environmental to adiabatic lapse rate, Q is the

volume flux, S is the specific heat and 0, and Gx are the eruption and atmo-

spheric temperatures. This agrees with all measured volcanic eruptions to
date (Figure 2; where S79 and MSH indicate the eruptions at Soufriere on April
26, 1979 and the Mount St. Helens on May 18, 1980).

Detailed calculations of the Soufriere eruption can be made for S

comparison with a movie taken of the eruption. If Lc is the cloud velocity,
h is the height of the plume, and K is the entrainment constant (,.O.O92), the
ratio of the plume and atmospheric densities (q) at each height is given by

the equation (Sparks and Wilson, 1982):

- , (2)

* .S.. . . . . . . . . . . - - . ., . _ . .- .. . . _ ,"- _ -'.' . . _ - . . _ . . _
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* ,S

- 'Umbrella Region
- ' " and dispersed

cloud

Convection Plume
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Gas Thrust Region
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Figure I
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If 0 (an assumption which is found to be valid a posteriori),
observations of AA)L and h enable estimates of q for Soufriere (from film
taken on April 22, 1979):

3.0 82 0.938
3.7 77 0.964
5.2 59 0.999
6.5 49 1.012

The bulk density c is made up of hot air of density D( and mass
fraction (I - Nc) and solid particles of density rc and mass fraction Nc):

/ I -,' (3)

The plume temperature is L., and thus the air density in the plume can be
found by making a heat balance calculation:

eI+ Y\
2- (4)

where &_is the eruption temperature ( 1000K ), H is the scale height of the -

atmosphere ( 8 km ), andL1, and & are the air temperatures at heights 0 and
h. Equations (3) and (4) give an estimate of Nc -0.04 at h 3 kms. The
mass flux rate of solids is found from

where b is the radius of the plume (see Sparks and Wilson, 1982 for details).
For Soufriere, calculations of M correspond to Q .- 12,000 m3/sec. Using
this estimate of Q, equation (1) can be used to predict the maximum height of
this eruption as 19.8 kms, which is very close to the observed height of 18.7
kms.

The stability of the gas thrust region in Figure 1 is critical to under-
standing some important volcanic phenomena. In the analysis of this lower
region the velocity is calculated as a function of height by a modified
version of Prandtl Jet Theory is used, in which the effect of the presence of
gas and solids on the total buoyancy is taken into account. The velocity can

* be obtained by integrating

udu = -u2 - g(l - oI ) (6)
dh 8b

where . is the density of air, is the bulk density, and b is the radius of
the vent. Equation (6) is numerically integrated, taking into account heat "-.-
sharing between air, gas, and solid (Wilson, 1976). This equation is only

. .S
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valid for the momentum dominated part of the column. Solutions of this
equation (Wilson, 1976; Sparks et al., 1978) lead to understanding of two
fundamentally different kinds of column behavior. In one the jet region
entrains enough air to smoothly change into a buoyant plume. In the other
kind of behavior the column collapses at a low height to form a gravity
current (pyroclastic flow). For a small enough vent radius the eruption will
form a buoyant plume and will rise, but if the vent radius exceeds some
critical value then the eruptive column will collapse and form a gravity
current flowing down the side of the volcano.

The two parameters which determine whether or not the column will collapse
are the vent radius b and the weight percent gas content n (the exit velocity
is almost linearly related to the gas content n and is therefore not an
independent parameter).

The figure below shows in which regions of the (b,n) plane one gets
convecting plumes or collapsing columns. S

600

500 collapsing columns /
(ignimbrites)

400
b

(meters) 300

200 convecting
plumes -

100 (plinian deposits)

0 L
2 3 4 5
n(%)

Before proceeding to the next topic it is probably useful to make a few
comments about the assumptions made in calculating the above results. The
weakest one is that the plume is assumed to be homogeneous horizontally. Also, . .
the important radius for determining the vent size may not be the physical size
of the vent, but the radius when the jet has expanded to 1-atmosphere exitpres-
sure. Finally one might have to take into account the fact that the vent size
is probably not constant during the eruption, but is widened by erosion.

The last quantity one wants to be able to predict is the height HB at
which the plume starts to spread out. If one uses the theory of Morton,
Taylor and Turner (which was previously found to give considerably accurate
results for the maximum height of the column HT) to calculate HB, one 0
obtains results which consistently exceed the observed values.

* . . .. °. •
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LECTURE 8

VISCOUS GRAVITY CURRENTS

Herbert E. Huppert

A gravity current occurs whenever fluid of one density flows under (over)
fluid of a smaller (larger) density. Typical geophysical examples are the
afternoon sea breeze front and the spreading of oil on water. Most studies of
gravity currents, both experimental and theoretical, have concentrated on high

Reynolds number currents which propagate under a balance of inertia and

buoyancy forces. Dissipation at the breaking nose plays a controlling role
and the important dimensionless parameter is the internal Froude number at the

nose Fr = u/(g'h)l/ 2 , where u is the nose velocity, g' the reduced
gravitational acceleration and h the height of the current at the nose.

At low Reynolds number the current will propagate under a balance of
viscous and buoyancy forces. Currents of this type will be studied in this

lecture with applications to the formation and spreading of lava domes in mind.

Several g. -metries will be considered: 2-d current on a plane horizontal
surface; 2-d cuirent confined between vertical walls; axisymmetric gravity 0

current and 2-d current on a slope. Other interesting geometries could
include wavy walls and a V-shaped valley. A general power law volume flux
will be considered V - qt- , which includes the cases OK 0 0, constant
volume release, c< = 1 steady input.

(1) Two Dimensional Bottom Current

- LX

Figure 1. Sketch of the flow field and coordinate system

5 The theory of two-dimensional viscous bottom gravity currents has been investi- 5

gated by Huppert (1982). Scaling arguments show that the flow regimes where

viscosity dominates over inertia are:

C>. 1-/4- where t I = (v 3 g' 2 /q 4 J )i/(4-1)

O-> S

'4-t-.'

* .!
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With a rapidly varying outflow viscosity will be important initially then

inertia will become dominant. 0< - 7/4 is a critical case where both inertial
and viscous forces increase with time at the same rate.

Fluid is input through an ideal point source with negligible initial
momentum. Consider the case where A(.--e , i.e. there is no fluid above the

current. It can be shomn for a deep environment the fluid above the current
has no role in the dynamics apart from reducing the gravitational acceleration
to g' -

The current is assumed to have a large aspect ratio, h <<t , so the

vertical pressure distribution is close to hydrostatic. The horizontal
momentum equation reduces to:

This equation may be integrated twice with respect to z using the boundary
conditions_ = 0 at z = h and u - 0 at the lower boundary to give the velocity

profile _ S

Lk .z- ( k-e) 2
2(2

The neglect of surface tension (T) in this analysis will be valid
provided the Bond number (etYT) is much greater than 1.

The vertically integrated form of the continuity equation is:

)(3)

Substituting (2) into (3) gives the governing nonlinear differential

equation for the current: S

=0 . (4)

Conservation of volume of the current also gives a global continuity

equation

S ? ,N( -,.K( ) 4a, = 
<  (5)

C

•.. ....-..
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Rather than solve these equations exactly using numerical integration
from initial values it is possible to find a similarity solution in terms of
the variable .,- 3 +.)/

The height of the current h is: q 1/W
where at x = xN(t) i.e. the value at the nose. Using these definitions, - -

(4) anI ) lead to the governing equation for the similarity function +(717)

4~ +1L(3A +I) '- 1  ( 2-4 -1)4=0 (6)

where rL / 7 , and S O

This solution will not be valid at the origin because of the unrealistic
condition that all fluid be input there, nor will it be accurate at the nose
where the lubrication theory approximations must be wrong and surface tension
will be important in determining the angle the nose makes with the boundary.

The function C may be evaluated by integrating (6) from the nose using
the conditions 4 (1) - 0 , and as y.l:

Z4(3 + I)
as starting conditions. Foro< = 0 the equation has an exact solution so it is
possible to check the numerical solution for this value of0< (fig. 2 and 3).

20

I a

1.

0.4 - %~l:

02 04 6 08 1.0 " "

Figure 2. The shape of a two dimensional"' -- o

viscous gravity current for c< 0 , 1 and 2.

" " "
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The solution for the current length as a function of time is:

1. (7)

The presence of an upper layer is unimportant (except in reducing g to g')

because the condition:

(fig 4) is satisfied. This condition states that the vertical scale of motion
induced in the upper layer by the gravity current is much greater than the

thickness of the current. If the viscosity of the upper layer is comparable
with the lower layer viscosity the condition is satisfied for all t for which
the viscous buoyancy balance is valid and it follows that the boundary 0

condition is satisfied at the interface.

10

0 10200 400

hlcm) 0 6O
0 4 2 o o o .,r--

10 3

0 10 20 30 40 5s"-o

r (cm)

Figure 3. The shape of a radially spreading flow for
V = 400 cm

3 V = 10 cm s- I
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ZA

z0

Figure 4. Sketch of the flow in the upper layer

(2) Viscous Gravity Currents between Parallel Walls

For a current confined between two vertical walls viscous drag at the -
sidewalls may be as important as drag at the lower boundary. If the wall
spacing is L the horizontal momentum equation is:

ghx = 'J (Uyy + Uzz)

with the boundary conditions: S

u = 0 at y = 0, L and z = 0

u z = 0 at z = h

Integrating this equation twice leads to the solution for the velocity profile: S

4LO 2 -3 LO A-, 171 -1 -6o nTTt s-4% sly) nWIx
T1 L L

Substituting this relation into the continuity equation gives the governing -

equation:

4-

S LS~k
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There are two limiting cases. If L>h the equations reduce to those

given in section I for a 2-d current. If L<<h then dissipation at the

sidewalls dominates bottom friction and the governing equation is:

ht - (gL2 /12-,)(hhx)x - 0

which gives a solution for the nose position as a function of time

The profile of the gravity current is exactly linear for O<- 2 (fig. 5).

Maxworthy has performed experiments for the case o(= 0 which show that the

shape of the current is similar to the theoretical prediction.

SO

0.6 •.

0.0-

0-2-

0 02 04. 0.6 0.8 1.0

Figure 5. The shape of a viscous gravity current confined between
vertical parallel walls with L<< h for Q(.- 0, 1 and 2.
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16

087

04-

0 02 04 06 08 10

Figure 6. The shape of an axisymmetric viscous
gravity current for O(. = 0, 1 and 2.

(3) Axisymmetric Gravity Current

Solutions for the shape of an axisymmetric viscous curr2nt may be

obtained in a similar manner to those for a 2-d current (fig. 6). The nose
position is given as a function of time as:

The similarity solution goes to ' at the origin for (/0 because a

finite volume flux is being imposed at one point.

Summary

In these currents the viscous stress at horizontal or vertical boundaries

Is the most important force balancing buoyancy. This force balance is very .'"

different to the high Re case where the current is hydraulically controlled at

the nose. If the nose was also dominant in the low Re limit as well, surface
tension effects would be important; the theory, however, predicts that the
nose shape is unimportant, in fact the theoretical predictions are completely
wrong at the nose. Some experiments were considered necessary to convince the

skeptlcq of the usefulness of the theory.

- -* " SL" .- " "-" . . ' -. . . .' i . , - ', . . - ' -. ' -.- ,
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(4) Experiments

A known volume of viscous fluid was released onto a large perspex sheet.
Measurements of the mean radius of the spreading current and its height at the 0
origin were taken. The experiment was initiated either by simply pouring the
fluid onto the sheet or by confining the fluid within a cylinder on the
surface then lifting the cylinder. In either case the fluid front was very
stable and the mode of initiation seemed unimportant. In some experiments a
constant volume flow rate was supplied by dripping fluid from a burette with
the head maintained at a constant level. S

In the constant volume experiments the height of the fluid at the origin
was measured by lowering a probe until it just touched the fluid surface. The
probe caused a perturbation to the fluid surface, probably due to an
electrostatic effect, in the form of concentric ripples on the free surface.
This problem meant that the height measurements were somewhat scattered. 0

For the constant volume release (C)>.=0) q was varied from 220 to 933 cm3

and experiments were carried out at two viscosities \. = 13.2 and
1,110 cm2s-I . The theoretical prediction of radius was

Sr - R7t C

and the experimental results (fig. 7) gave co-efficients of 0.887 (±.002) and
0.122 (±.002). The predicted height at the origin was:

I -o. Z

with c predicted to be 1. The experimentally determined c was 0.94 ± 0.04
(fig. 8).

In the constant flux case q was varied between 0.223 and 0.0493 S
cm3s- I and fluid of viscosity 13.2 cm2s-1 was used. The predicted
radius was:

and measured values (fig. 9) were 0.694 .± .004 and 0.499 + .001.

No experiments were carried out for the two dimensional case, although
experiments by Didden and Maxworthy (1982) using salt solutions flowing under
water verified the expected power law for constant flux and constant volume
releases, although the multiplying coefficients differed slightly from the 0

theoretical predictions in a way consistent with the effect of sidewall

friction.

The results of the experiments validated the theory and showed that a
solution which is completely wrong at the nose is a good description of the
flow simply because the nose shape is not important to the dynamics in the 5
regime of interest.

* 0
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Figure 7. Experimental Values of nondimensionalized current radius as a
function of time for the axisymmetric spreading of constant volumes
of silicone oils into air. Straight line is the best-fit power law.
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* Figure 8. Experimental values of current height as a function of
time for the axisymmetric spreading of constant volumes
of silicone oils into air.
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Figure 9. Experimental values of the nondimensionalized current radius for
the axisymmetric spreading of silicone oils into air at constant efflux rate.

An interesting physical question to consider is how the gravity current S

approaches the similarity solution from its initial shape when released from
the container. Is there some "waiting time" during which the current redis-
tributes itself to the shape predicted by theory, then moves off or is there a

gradual approach to the correct shape? Experiment did not reveal the answer.

(5) Application to the Spreading of a Lava Dome S

After the 1979 eruption of Mount Soufriere a flat crater floor of diameter

1.6 km was formed. Over a 120 day period a lava dome was extruded onto the

crater floor. Measurements of the dome were made and its volume, maximum
diameter and height determined.

. .. -. ..
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Fitting the volume as a function of time to a power law (fig. 10) gave

V = 273t 0-7 4 m3

ITOI

5.03

V(cM
3
)

5.1012

1 2

I I I I

L5 L

10 5.10' 106 510 0 T
S (s) S

Figure 10. The volume of the 1979 lava dome as a function of time. The

straight line is the best fit power law including all experimental points.

The maximum diameter could be fitted to the power law

rN = 225tO. 3 3m.

Thus V(t), rN(t) and constants g, q were known so the known solution for rN
(equation 9) could be used to determine %. The process was not very sensitive 0

since rNc>-( r\ -1/8. A large variation in the viscosity had only a small

effect on rN .

For O< = 0.74 with XN" t( 3 ,'+1)/8 gives an exponent of 0.40 to

compare with 0.33 determined from the fit to the observations. If the first
point (fig. 10) was neglected then o(= 0.66 and the calculated exponent was

0.36, a reasonable comparison with the field observations. Although this first
point was deleted on purely arbitrary grounds it was later discovered that it

had been evaluated from an aerial photograph rather than ground measurements

like the other points. Using the theoretically determined solution this

suggests a magma viscosity of 1012 poise.

Is it justified to apply this model to a lava dome which has a solidified

shell over liquid lava? There are possible effects due to cooling and solidi-

fication and the resultant latent heat release. In fact the thermal boundary
layer is dominated by latent heat release and there is an increase in tempera-

ture at both upper and lower boundaries, although after 90 days a calculation

of the cooling shows that the thickness of the crust will be typically 5m

which is negligible compared to the 133m depth of the dome. Since the skin
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thickness is so small and it is not rigid it should not be important to the

dynamics, especially since the theory shows that what is happening at the
upper boundary is not important.

Another possible objection is that a Newtonian rheology is being applied
to a viscous lava flow. Experimental studies of flow of molten rocks show

that at the shear stress levels found in the lava flow the liquid's behaviour
will be closely Newtonian.

(6) Viscous Gravity Currents on a Sloping Boundary 0

Experimentally it was found that gravity currents on a plane perpendicular

to the gravity vector had very stable fronts. A different result is found if
the experiment is performed on a sloping boundary.

A fixed volume of viscous fluid was released from behind a dam on a S
sloping perspex sheet (fig. 11). After the current had travelled 25 cm down-

slope it was only .2 cm deep at the nose and the front was quite straight

excltz for some curvature at the walls due to the viscous boundary layer.

Figure 1I. A sketch of the flow field and coordinate system.

After about 55 cm, when the current had been travelling for approximately lOOs
instability at the front developed very rapidly (O(s)). The instability was

periodic with a wavelength, i , of about 5 cm.

The long term form of the instability (fig. 12) was quite different for . .

silicone oil and glycerine even though they had very similar viscosities. A

feature of both instabilities at large amplitude was the very straight boun-

dary. The instability started uniformly across the front; if it had been

generated at the boundaries and diffused inwards it would have developed very

slowly.
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IJ downslope

- I I
/ I

* silicone oil glycerine 0

Figure 12. A sketch of the long term form of the instability of a gravity
current down a sloping bed for two experimental fluids.

(7) Theory: Flow of a 2-d Viscous Gravity Current down a Slope

" The controlling force balance will be between the downslope component of

" the gravitational acceleration and the viscous stress (fig. 11).

+ z= L (10)

This equation is valid provided tana<> hx . There would be an
interesting transition region between this flow and the flow on a flat bed
previously studied where this condition did not hold. Using the usual boun-

dary conditions (10) is integrated twice to give the z-velocity profile which S

may be substituted into the local continuity equation to give the governing

equation:

(11) may be solved using the global continuity equation by either a
similarity solution or using the method of characteristics. The height as a
function of (x,t) is:

Y2. ,

*(12
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At a fixed time ho(xI/ 2 and no nose is formed. The nose position is
found by stopping the solution when the current volume/unit width is conserved.

•0

Zf4~) -L(13)

A is the initial area of the current. The height of the current at the nose 0

is

h - hN(t) = 1.5A/xN

The agreement between theory and experiment was very good (fig. 13) in the
region where the front was stable, showing again that the nose has no effect
on the dynamics in this region. The nose profile may, however, be smoothed by
considering the effect of surface tension on the flow.

30r .

10°

5

1(2 3.102 5.102 103 3.16)510 10

(gA'sino/v)t

Figure 13. Experimental values of the nondimensionalized S
current length as a function of time.

* S
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Stability of the Front

The experiments suggested that the instability could not be explained by
viscosity but suggested other factors were important. The evidence was:

(i) Two silicone oils with viscosities differing by an order of
magnitude but with almost equal surface tensions had equal
wavelengths of instability, X , at the front.

(ii) Experiments using fluids with similar viscosities but different
surface tensions showed that >1 was a function of T.

(iii) With similar fluids but with initial volumes differing by a factor
of 10 the wavelength was found to be weakly dependent on A.

Including terms due to surface tension and the surface slope across and •

along the current leads to the equation:

In the tip region the dominant balance is between the second and fourth terms,
rather than the first and second. The cross slope variations (5th and 6th
terms) should be small. The solution may be written as:

h = hN(t)H(S ) where = (ogsin,(/ThN)I/B(x N - x)

and H(5 ) satisfies the equation

H3H'' + H3 = 1.

The boundary conditions on this equation will be H--(16/15)/
4 5 3/4

as-O, H-1. Ln'. The tip lengthscale is Iti p = (ThN/egsinu<)l/3.

Experiment suggested that the instability occurred at a critical length
or,+ 4a .

A 0

It is plausible that A should be scaled by the tip length evaluated at the
critical length, hence:

Thus N should be independent of ,) , as observed experimentally (fig. 14).

. .

S Lii

• . - =
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A reasonable representation of the experimental results was

- .T/P( ,' A

5-

3 II I I
0-1 0"3 05 0"8 1!0

Jn0

Figure 14. Experimental results for the wavelength of the frontal instability
as a function of the slope angle. The solid line is the line of
best fit with slope 1/3. The dotted lines are plus and
minus one standard deviation from this line.

Several related questions were:

Mi) Why does the instability have such straight downslope edges? "

(ii) For a constant flow rate V = qt the height of the current is

constant. Is the flow unstable in this case? If q is
sufficiently slow might the current be unstable from initiation?

(iii) Downslope lava flows seem to be stable until they hit the sea then
become irregular. What are possible instability mechanisms for
these flows?
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LECTURE 9

THE MOTION OF A HOT, HIGH REYNOLDS NUMBER
GRAVITY CURRENT OVER AN ERODABLE BED. 0

THE FLUID DYNAMICS OF (KOMATIITE) LAVA FLOWS
THREE BILLION YEARS AGO

Herbert E. Huppert

The lava released in recent eruptions of oceanic basalt is typically

silicic. It has a Si0 2 content of about 50%, with an MgO content that is
below 20%. At its eruption temperature of 12000 C, such magma has a viscosity
on the order of 200 cm sec-l, which is relatively high. Because of the
high viscosity, the lava flow is generally laminar (moderate or low Reynolds
number) and heat is transported predominantly by conduction.

In contrast, there is evidence of lava flows from the Archaean age of the
earth - called komatiite flows - in which the viscosity was low, and heat was
transported much more efficiently by turbulent convection. Compared to recent
lava, komatiite has a slightly lower Si0 2 content (-q45%) , a substantially
higher MgO content (-20% to - 35% ), and much smaller viscosity of 0.3 to
3.0 cm2sec - I at the extrusion temperature of 16000 C. Komatilte flows
have been extensively studied because of the information they convey about the
early history of the earth, and also because of the commercial importance of
the nickel sulfide ore deposits frequently found in komatiite beds. The
following is an account of the eruption and emplacement of a typical komatiite
flow (see Huppert et al. in Nature(v309 no5963), 1984, and Huppert and Sparks
"Komatiites I: Eruption and Flow", to appear in J. Petrol., 1985).

Komattite Flow in a Two-Dimensional Fissure

VL

Consider a fissure of width &k containing komatlite magma of density . ..

*within heavier country rock of density ,'2441) . The effective pressure
gradient in the liquid is then 1A4O in the upward direction. Because of
the low viscosity of the komatiite, the channel flow is expected to be fully 0
turbulent, In which case the volume flux Q up the fissure is roughly related
to the width , by

_. re .t e' -.t.

where - k , , is an empirically determined parameter. .

* S % %
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Some representative values are
p " 2.8 g cm-3  0. g cm- 3  ) 1.0 cm2 s-1

d (m) Q (m2 s- 1) v (ms - 1 ) Re 0

0.3 0.56 1.9 5.2*103
1.0 3.4 3.4 3.2*104
3.0 17.8 5.9 1.6*105
10.0 108.0 10.8 1.0*106

Recrit = 2000, confirming that the flows are turbulent.

When the flow reaches the earth's surface, beneath the ocean, it flows
out as an essentially two-dimensional gravity current.

In such a current, the depth ir of the advancing current and the volume
flux are related by

2-,
/ rz, / LA' "

=2.8 g cm 3  = 1.8 g cm- 3  1.0 cm2 s-l

Q (m2 s-) h (m) u (m s- 1 ) Re

1.0 0.4 2.3 9.3*103
10.0 2.0 5.0 9.3*104

100.0 9.3 10.8 9.3*105
S

Recrit= 500

Flow Over an Erodable Bed

When a komatiite current of 16000C flows over the ocean floor (which is
assumed to be a basalt with melting temperature of ccc ) the bed is slowly
melted and assimilated by the komatlite. It is expected that in this situa-
tion the horizontal scales of variation will be much greater than the depth of
the current, so that the heat transfer processes can be treated locally as if
they were homogeneous in the horizontal plane.

,C 5,' Tn.... /,. ¢ tc_ e

.f ,T ,

-'..'
t).
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In the bedrock - '1, I? 2 > s( J)

//

which has the solution

T(T 4

The heat transfer into the fluid at the lower interface is

IT-.

an so, fo tad urn

Lt 4 C 7"JL
*The heat transfer at the lower interface is also related to the liquid tempera-

ture by

where the transfer coefficient hT is approximately given by the empirical
formula

A _ / /,,. j' V )o ,-w.

At the upper surface of the current, a thin solid crust will form. The heat
transfer through the crust is given by

" -T

therefore

1- -T) k ("r - /

* I
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Finally, the problem of determining the time-dependence of the temperature
field is closed by constructing the global thermal energy balance:

r-L X'(T)) dT j) 0 r

,<cP( P dt- ii

X T) is the mass fraction of crystals in the liquid in
equilibrium at temperature T and its inclusion in the energy equation

* reflects the release of latent heat as the crystals form.

Al
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Experiments were done with a stream of 70 0'C water flowing over d bed of poly-
ethylene glycol (PEG), which melts at 5c"C and is solubie in water. The
stream carves channels in the PEG, which develops a characteristic profile
rather like the boundary of n jigsaw-puzzle piece. Cross sections of ancient
komatiite channels at Lne Kambalda nickel-sulfide mine exhibit very similar
profiles on the scale of tens of meters.

0

Aftermath of a Komatiite Flow

When the source of the current ceases, the komatlite on the surface will
drain into whatever depressions and channels are available, where it continues
to cool and crystallize. The cooling is expected to be dominated by conduction
through the upper crust, because of the rapid removal heat by turbulent convec-
tion in the overlying seawater. We shall look at some simple examples of the
cooling and crystallizing of a binary mixture from above.

Cooling a Eutectic Solution from Above S

T. Tx)

.- / ,S-.- ' z ,, /,,

- --~ R -:L lA k _" 'k7-7 T

ro /Lv,

Assuming that the turbulence keeps the lower liquid well mixed, we can
construct coupled ordinary differential equations for suitably nondimension- S
alized versions y , of k (1) and C(;) , that depend on the
parameters (3 and Y , which measure respectively the importance
of the latent 'heat release and the convective heat flux.

I.=/, ,, -....
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STypical solutions are shown below

S0

MC 2 I o--- p-

0/ 0
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A more realistic problem, from a geological perspective, is the cooling
0from above of a solution whose composition is above the eutectic, so that lightliquid is released when crystals form. Experiments on this system reveal a

multi-layer structure. At the top of the experiment there is a quenched solid

layer, immediately above a solid layer of eutectic composition. Below the
solid, there is a region of dendrites and solute-depleted liquid, which has a
large vertical extent; and below the dendritic region, there is a vigorously .
convecting region, just as in the eutectic theory. Eventually, the dendrites
grow to occupy the entire region available to them. The resulting structure
consists of long, thin needle-like filaments criss-crossing in a disorderly
way. The similarity of these structures to the "spinifex textures" character-
istic of the millimeter scales in komatite rocks strongl supports the idea

that the spinifex structure had its origin in just such a process.

NOTES SUBMITTED BY
Bruce Bayly and
Andre Gorius
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A LABORATORY EXCURSION 0

John A. Whitehead

Two experiments were demonstrated in the hydrodynamics laboratory. In the

first experiment, a horizontal tubular line of water whose density is 1 gm/cc
and kinematic viscosity is 0.01 cm/s was produced by injecting the water into
a long rectangular tank of corn syrup whose density is 1.442 and whose kine-
matic viscosity is 1.2 x 1.03cm2 /sec. The tube of water, owing to it's
low density gradually rose through the syrup. It soon developed a gravita-
tional instability which was relatively uniformly spaced along the axis. This
is in spite of the fact that the injection was not completely uniform. It is
a modified Rayleigh-Taylor instability and is characterized by a long unstable
wavelength comparable to the diameter of the tube. The possibility of this
instability occurring in island arcs to produce pockets of magma under island
arc volcanism is suggested by Marsh (1979). We (Whitehead, Dick and Schouten,
1984, in press) have recently suggested that it occurs within a strip of

partially melted mantle under spreading centers and is responsible for the
enhanced volcanism between transform faults.

A second experiment was demonstrated on the two-meter turntable. Following
Flierl, Stern, and Whitehead (1983) a small but turbulent jet of water was
squirted into a homogeneous uniformly rotating fluid. In contrast to Flierl
et al. the bottom of the tank was sloping so a topographic beta effect was

present. Like the above study, an eddy pair (modon) emerged from the disor-
ganized turbulent jet and meandered away from the source. It was explained

that the formation of coherent structures from disorganized sources is one of
the ongoing research projects in our laboratory.

REERENCES

Flierl, Glenn, Melvin Stern and John Whitehead, 1983. The physical U

significance of modons: Laboratory experiments and general integral
constraints. Dynamics of Atmos. & Oceans, 7, 233-263.

Marsh, B. D., 1979. Island arc development: some observations, experiments

and speculation. J. Geol. 87, 687-713.

Whitehead, John, Henry Dick and Hans Schouten, 1984. A mechanism for magmatic
accretion under spreading centers. NATURE (in press).

* S

* 0



-74- 0

MANTLE AND MAGMA DYNAMICS

Andrew Fowler

Convection occurs in the mantles of terrestrial planets due to solid-state
creep processes in silicate rocks. On the earth, this is manifested by the
active motion of the lithospheric plates. However, such active plate tectonics
is not known to occur on other planets.

Turcotte and Oxburgh (1967) analyzed the structure of constant viscosity S
convection with free-slip boundaries at infinite Prandtl number, in the
asymptotic limit Ra-)6 (large Rayleigh number). The flow has an isothermal
interior and thermal boundary layers at the walls. In particular, they
identified the top cold boundary layer with the active oceanic lithosphere,
and deduced the well-known square root of age dependence of surface heat flux.

The direct application of this study to the earth is hindered by the fact
that all experimental studies indicate that the viscosity of the earth's
mantle is a strong function of temperature (and probably also pressure):

AE-~ 1 'L .T ()

- (Kirby, 1983). A typical value of the dimensionless exponent E*/RT is u40,
when T - 1500 K.

The boundary layer analysis of variable viscosity convection, with a S
purely temperature dependent viscosity of the form

-G1
A{t-T >>I (2)

00

has recently been studied by the present author, and independently by S. Morris
at Berkeley. The analysis involves two parameters, F--|/f6r<<i (where AT is
the applied temperature difference) and the Rayleigh number, computed with the
basal viscosity, " Result- of interest are the heat flux:

N A. (3)

where Nu is the Nusselt number. The lean surface velocity is

V 2z.

where a is the aspect ratio, C the thermal diffusivity, d the layer depth.
A measure of the surface stress is the deviatoric longitudinal stress at the
(downwelling) end of the top surface:

(thr

-0.... ..-.. . (5)
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These results are manifestations of the fact that with such a rheology,

the cold (i.e. sticky) parts of the fluid do not want to move, whereas the
warmer parts are more easily deformable. Thus one finds that when Ra >7 1,

IE 1, the system adopts a structure of a vigorous (quasi-isothermal) convec-
ting region overlain by a cold, thick stagnant lid. In particular, V s

(given by (4)) is much less than the conductive velocity aC/d. For
earth-like values Ra 10O, t 1/30, we find V. - 10-6 ( / /d), which is
essentially zero.

On the other hand, the baroclinicity of the thick, cold lid generates S

large stresses within the lid, compared to those in the convecting flow.
With the same values of Ra and E, (5) gives I? 4 x 108 .( 1 C/d
With IC 10-2 cm2s-1 , d -'3000 km, C". 1022 Poise, this is 400
kilobars. This is well in excess of the plastic yield strength of rock.

The point of this study is to show that the fundamental physical nature of •

convection in the earth's mantle is not understood, notwithstanding Turcotte
and Oxburgh's results. The process of subduction urgently needs a qualitative
understanding. The variable viscosity calculation offers a clue to a possible
mechanism, since for the earth-like values above, one should realistically
adopt some kind of visco-plastic rheology. One might then expect that if the
plastic region was as thick as the lid, the whole lid would be weakened, and S

could therefore subduct. If one makes a simple calculation based on the
thickness of a plastic yielding zone required to support the baroclinically
induced slab stress, one finds that this zone is of comparable thickness to
the lid if the yield stress satisfies

_(Y $ -e- (6)

where tlid is some measure of lid stress in the absence of plasticity.
This might make some sense for the earth.

* - *•

Magma is generated within the earth's mantle, primarily at oceanic ridges,

hot spots, and subduction zones. Particularly in the the first two cases, the
melting occurs by pressure release: that is, the solidus temperature decreases
with pressure more rapidly than the adiabat, so that as hot mantle rock 0

ascends, it intersects the solidus, and so begins to partially melt. An
understanding of the subsequent process of magma migration to the earth's
surface is vital in order to make any sensible statements about the relation
of surface rocks to geochemistry (for instance). Various other motivating
phenomena are the occurrence of volcanism, the emplacement of magma chambers,
and the initiation of lithospheric fracture. •

This last topic concerns the problem of how hot magma gets through cold

lithosphere. The idea of diapiric uprise has little to support it, and the
principal mechanism is via fracture from the deep lithosphere. There is then
the problem of initiation of such fracture. Weertman (1971) appealed to a
tensile stress, but it seems unlikely that large enough tensile stresses can S

exist in the asthenosphere. Alternatively, excess pore pressure in the liquid
( 200 bars) can initiate fracture, virtually independently of the local

deviatoric stress.

S<ii
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To examine this question, the model of Turcotte and Ahern (1978) has been
generalized to allow explicitly for different liquid ($) and solid ( 4)
pressures within the partial melt zone. Turcotte and Ahern assumed that the
melt (which is first formed on grain boundaries) forms an interconnected porous 0
network, and that the matrix of solid grains would deform viscously suffici-
ently rapidly to allow any pressure difference to relax. After various
approximations are made, our model can be written in the following form:

(7)
i, "

tA V 4Q

Here ) is the melt velocity, is the melt fraction, U is the matrix
velocity, and p is the liquid pressure. The assumptions involved are that h'i21

<&3l, and that various terms (e.g. viscous heating) are small, as is indeed
the case for pressure release melting. The equations are respectively mass

conservation (note the source term S, which expresses the average volumetric
source term due to melting), Darcy's law, energy conservation, where the
temperature T is the solidus temperature given by T 4P -T ; the last
equation is that of pore closure, and is based on a microscopic description of
grain deformation. In this form, it is precisely analogous to prescribing a
bulk viscosity (- 17C) for the medium, since g is the thermodynamic (equil-
ibrium) pressure, and +, is approximately the dynamic pressure. The Turcotte
limit corresponds to 1, being "small".

Other models including matrix deformation (via a bulk viscosity) are cur-
rently being studied by Scott and Stevenson at Cal Tech, McKenzie at Cambridge,
and Richter (this volume, page 102). The purposes for which these models are
being studied are very different, and it is not possible to seriously compare
them.

For our model, we can approximately solve the equations, if a one-dimen-
sional steady state is assumed. One finds that, in a dimensionless sense,,I(,
is not "small" for normal values of mantle viscosity ( -10 20 p). One could
argue that, when the grains are differentially stressed, the actual viscosity
would be much lower. Then n would be "small". However, one finds that

-i (which is > 0) actually increases as vtdecreases. For lower , the
pores open more rapidly (for given f-.4). n a steady state, this counter-

balanced by increased flow of melt downwards, which requires an increase of
pressure upwards. The arriving melt refreezes (to balance pore opening) and
the latent heat released is advected away by the matrix.

* S
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Provided the analysis of the model is correct, the conclusion is that
fracture of the asthenosphere is inevitable, and consequently there is no
problem initiating cracks to migrate through the lithosphere. To make a speci-
fic statement about the earth, one now needs to adapt the model to cope with
the permeability relevant to a fractured permeable medium. The next step is
to then connect this fractured asthenosphere to a fractured lithosphere. Any
meaningful statement about surface geochemistry lies about four papers away.
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STIRRING AND MIXING

William R. Young

The distinction between stirring and mixing is illustrated by considering
a simple experiment: the release of a spot of dynamically passive dye into a
moving fluid.

At small times the spot is teased into increasingly fine tendrils and
filaments by the motion of the fluid. Thus the gradients of tracer concen- 0
tration are increased. This cascade towards high wavenumbers is eventually
quelled by the action of molecular diffusivity. Thus at large times the
gradients of tracer concentration decrease.

Oceanographers refer to the first process as "stirring" and the second as
"mixing". The distinction can be made more precise by the solution of a simple S

advection-diffusion equation. The idea is to locally analyse the action of
fluid straining by moving in a translating and rotating frame of reference
which reduces the velocity to a pure strain. Thus the concentration, 9, of
the passive scalar satisfies.

* 9 t - axx - by~y - cz6 z = k 7 2 @ (1) 0

a+b+c0O

G(x, y, z, 0) = sin (kox + loy + moz)

The solution of this is discussed by Batchelor (1959), but for our present S

purposes it suffices to note that the mean square gradient is given by

~Te # v -e ] ke.2 (2)

where a>b >c. This function is sketched in figure 1.

I -

Figure 1. The mean square gradient of 0 as a function 0

of time. Initially the gradient increases
exponentially (stirring) but eventually there
is a precipitious decline (mixing).

* S
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Initially the gradients increase because the velocity field increases the

wavenumber exponentially. At a time:

t* (1/2a) ln(a/%lk) (3) 0

the gradients are a maximum and the wavenumber is

kit7 (4)

At larger times the diffusivity takes hold and the gradients of tracer variance
vanish rapidly. The transition between stirring and mixing is abrupt and is
produced by the reduction of the scalar length scale to . In many

geological problems solidification occurs well before the transition scale is
reached.
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DYNAMICS OF VORTICITY FRONTS

Melvin E. Stern

A uniform vorticity layer rests on a rigid boundary and is separated from
an overlying irrotational fluid by a free interface. This vorticity front
intersects the rigid boundary at the "nose" of the front, and the evolution of
the latter is determined using inviscid and two dimensional theory. The
method of contour dynamics is used to eliminate one of the spatial dimensions
and the resulting integro-differential equation is solved numerically. The
results are partially interpreted by earlier approximate theories (Stern and
Paldor, 1983); Stern and Voropaev, 1984) and some new asymptotic approxima-
tions. We find that an initially gently sloping front steepens with time
until it forms a robust blunt nose, which intrusion propagates into the
irrotational fluid at a deterined new speed. The irrotation fluid displaced
up and over the nose eventiually leads to wave breaking on the rear side of the
latter. Later on irrotattonal fluid is engulfed (entrained) in the rear of
the nose by the breaking wave. This process is regarded as an aspect of
transition to turbulence, and therefore the wavebreaking process has been
isolated for further study in a simple piecewise uniform vorticity model that
contains no nose.
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TIMESCALES FOR RELAXATION OF NONCONFORMITIES
IN CONTAINED STRATIFIED FLUID

Leslie Hocking

Consider a container full of stably stratified fluid which is abruptly
moved to a new location. A translation has no effect on the position of the
fluid relative to the container but a rotation alters the constant-density
surfaces. For a container with elliptic cross-section, the density surfaces
remain planar after the rotation is completed but they are tilted from the
horizontal. The angle of tilt can be calculated as a function of the
ellipticity and of the angle of rotation. A special case is where the
container has parallel side walls. When moved so that these are vertical, the
density surfaces are tilted and a sloshing motion is induced. This motion is
damped by viscosity and density diffusion also acts to produce horizontal
density surfaces. The two parameters governing these diffusions are

, .

where j , k are the two diffusivities, a is a length scale, g gravity, (3 is
the relative density gradient and /A>A4 . Analysis shows that the imescale
(relative to the period of the sloshing motion) of the damping of the motion
by viscosity is ,-i but the density surfaces become horizontal in a time
( 1\// )1/2. Hence the motion ceases before the density is equilibrated

when /X >,AL , but if / there is still some motion present after the
density surfaces have become horizontal.

* I
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TESEGANG RINGS AND RECURRENT PRECIPITATION

Joseph B. Keller

In 1896 the chemist Liesegang accidentally discovered colored rings of

silver chromate in a layer of gel upon which he had placed a crystal of silver

nitrate. The rings were formed by silver ions from the crystal which had

diffused into the gel and reacted with chromate ions that were present there

in the form of potassium dichromate. The remarkable feature of the phenomenon

was that the silver chromate had not formed in a continuous zone surrounding

the crystal, but that it formed in separate rings with clear spaces between

them.

In 1897 Ostwald proposed the explanation that the reaction product, silver

chromate, did not precipitate out in the form of visible particles until its

concentration exceeded the saturation concentration. He then argued 0

qualitatively that the depletion of the chromate ions by the reaction would

result in the observed ring structure.

The same phenomenon has been observed in other chemically reacting systems.

It has been proposed as an explanation of the colored rings that occur in rocks

and minerals. Therefore many experimental investigations have been made of

this phenomenon. They are usually performed in a straight capillary tube, with

one reagent A supplied at one end of the tube and the other reagent B initially

distributed throughout the tube. As A diffuses into the tube it reacts with B

to form a product C. The product C then precipitates out in the form of solid

particles D in bands with clear spaces between them.

Measurements have been made of the time tn at which the n-th band begins

to appear, and of its distance xn from the end at which A is supplied. These

values are found to be related by the equation

Xn = o tn ()

This is the kind of relation which occurs in phenomena governed by diffusion.

In addition the tn, except for the first one which is zero, satisfy the

equation

*tn+ = (2)

Theoretical Invest igat ions

Mathematical formnlations -f Ostwald's expl !,,ation have been presented by

Wagner (1950), Barenblatt, Zeldovitch and Sagalnick (1964), Prager (1964) and

Keller and Rohinow (1981). The first three sets of authors analyzed the

diffusion yf the reactants A and , d .ssumcd that i band formed where and

when the product of their concent rat i onS reached a. critical valte. They were

able to derive the relations (1) and (2. Hfiwev'r they could not determine

the absolute spac' or time scals, nor ou] d th-- show why or when any band

stopped growing . Keller and Rubinow (i981) supplemented the prvious analyses

* by taking account explicitlv of the chemic-l reaction rate r and of the

precipitation rate p. By doing so thev were ihle to determine the absolute

scales and Lo show when a band stopped growin n

*" -S - . .- " i "'. ! - - - . • . _
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The equations they used to determine the concentration a(x,t) of A, b(x,t)
of B, c(x,t) of C and d(x,t) of D are:

at = DAaxx - "Ar, (3)

bt = DBbxx - Br, (4)

ct = DCCxx + LCr - p, (5)

dt = p. (6)

These equations are assumed to hold in the tube x>0 for t>0. The initial
and boundary conditions are:

a = 0, b = bo, c = d = 0 at t = 0, x> 0, (7)

a = a0 , bx = c x = 0 at x = 0, t> 0. (8)

The reaction rate, r, and precipitation rate, p, are given by:

r( -,b,c) = k+a"Ab B - k-cC c  (9)

p(c,d) = q(c - cs) +  if c>c*>c s or d>O

-0 if c< c* and d = 0. (10)

Here )A, B and V C are the numbersof molecules of each type involved
in the elementary reaction S

k
AA + ')BB - CC, (11)

k_

while k+ and k- are the rate constants for the forward and reverse reactions
In (10) q is a constant while c* is a fixed concentration exceeding the
saturation value cs, and (c - Cs) + = c - cs if c - cs > 0 but
(c - cs)+ = 0 if c - cs < 0. Thus precipitation starts only when c
exceeds c*, and continues as long as c exceeds cs provided that d > 0.

These reaction-diffusion-precipitation equations were simplified by
assuming that reaction is fast compared to diffusion, and that ao> b0 .
Then (3) - (5) are replaced by two equations for the conservation of A and B
molecules, plus the equilibrium condition r (a,b,c) = 0. This simplification
is justified by an asymptotic analysis based upon bo/a o being small.
Results for the width of the first band as a function of time were obtained. 0
Then the method of the earlier authors was used to find the times and positions
for initiation of the subsequent bands.

Later Experiments and Theories

Ross (1982) and his colleagues have performed experiments in which the S
reactants A and B were premixed, but in which bands still formed. Since the
reactants do not diffuse toward one another, the Ostwald mechanism cannot
explain this occurrence. Furthermore they observed that small precipitate

. . . . , . . " " " i . .. .
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particles formed everywhere at first. Then later they disappeared from some
regions, leaving clear spaces, while larger particles formed in other places,

ji producing visible bands.

The initial formation of small particles everywhere is understandable since
C is produced everywhere in sufficient concentration to produce a precipitate.
The subsequent pattern formation is probably a consequence of the instability
of the uniform state. This is due to the fact that particles smaller than
average will shrink and disappear while particles larger than average will
grow. An analysis of this mechanism, based upon the usual diffusion equation,
shows that it does indeed produce an instability, but the most unstable wave-
length is zero. Therefore another analysis of it, based upon the Cahn-Hilliard
diffusion equation, has been performed by Falkowitz and Keller (1984). That
analysis yields a finite wavelength of maximum instability, and leads to a
steady state with equally spaced bands.

References to the earlier literature can be found in the following:

Falkowitz, M. and J.B. Keller, 1984. Precipitation Pattern Formation,
preprint, Department of Mathematics, Stanford University.

Keller, J.B. and S.I. Rubinow, 1981. J. Chem. Phys., 5000.

Ross, J., S.C. Miller and S. Kaig, 1982. J. Chem. Phys., 76, 1392-1406.

Ross, J. and G. Venzel, 1982. Dept. of Chemistry, Stanford University,
preprint. S
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PATTERNS OF INSTABILITY

Edward A. Spiegel

When several bands of unstable modes can go unstable at once, one gets a
set of nonlinear p.d.e.'s that govern the competition of the various struc-
tures. A scheme for deriving the general form of such amplitude-evolution
equations has been worked out with P. H. Coullet. The work was supported by
the CNRS and the NSF.

0

METALLIC RAIN

Edward. A. Spiegel

In many A-type stars one detects remarkable overabundances of certain
elements (e.g. Hg, Mn) relative to stars of normal composition (Wolff, 1983).
The most widely accepted explanation, given by Michaud (see Wolff, 1983), is
that the overabundance is superficial and is the result of outward diffusion 0

of certain elements on account of radiative forces. It is not yet so clear

why these elements are not driven out of the star.

The overabundant species in question are trace elements and make negligible
contribution to the density of the gas. Yet they do affect the buoyancy since

the photobuoyancy is a significant part of the force on a fluid element.
John Lin and I have computed the static state of the atmosphere seeded by an

element with a strong resonance line. When the line is optically thick, the

static state is unstable and an unusual sort of meteorology occurs.

The National Science Foundation supported the work.

REFERENCE

Wolff, S., 1983. The A-Stars. NASA.

. . . . . . . . . . . . . . . . .

. . . . . . . . . . . . . . . . . . . . . .



-85- 0

THE SALT FINGER ZONE

Louis N. Howard

In double-diffusive convection with the less diffusible substance destabil-
izing and the more diffusible one stabilizing - e.g. hot and salty above, cold
and fresher below - one generally obtains a series of layers of nearly homo-
geneous fluid, separated by zones occupied by salt fingers. A model for such
developed finger zones was given by Melvin Stern, based on a solution of the "

equations which is periodic in the horizontal (x) and independent of the ver- 0

tical (z), except for "background" uniform gradients of salt and temperature.
The relevant equations are:

wt + Pz - g(a T - BS) - v Wxx (la)

Tt + w Tz - Kr Txx (ib)

St W Sz - SSx x  (lc)

Here Tz and Sz are constants, and T and S represent z-independent devia-

tions from these background constant gradients. The vertical velocity w is
also independent of z, and the horizontal velocity components are zero. These
equations have solutions in which p - 0 and the other variables are multiples
(denoted by the same letters) of sin (k x) exp( X t); these multiples satisfy
the equations:

X w - g( aT - BS) - -k2 Vw

XT+wT =z KTT
AS+wS = -k :-:

z m

which may be regarded as determining A (through the condition of existence of

a nonzero solution), or as fixing a relation among the other parameters if X
is given.

' If we introduce the parameters a - v/KT and T = KS
1 KT, nondimensionalize

the variables by

T Tz e/k S - Sz s/k w k KT W, 0

and set

X K KT k2 A, RT cgTz/(k4 VKT ), RS O 8gSz/(k 4 VKT),

the condition for existence of a nonzero solution is .

" (A+ i) (A+r) (A /o'+ 1) - (A+ 1)RS + (A+ T)RT 0.

In particular ' ere is a steady solution (A - 0) if

RS - (RT + 1).

.* . . . * . * . .*. . * " * . *.-.. - .- 7..
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This condition may be used to calculate k if the gradients are given, and
actually gives a reasonable estimate of the horizontal size of salt fingers.
It should be noted that although these calculations involve only very simple
linear equations, this is not a linearized model but an exact nonlinear sulu-
tion of the Boussinesq equations. However, it has the somewhat disturbing
feature that if k is smaller than the value for a steady solution just men-

* tioned then there is also an exact solution, and it grows exponentially in
- time. Various, not altogether conclusive, discussions referring to stability
- considerations etc. have been put forward to try to relate this attractive and

simple solution more closely to real salt finger zones. Here we wish to
discuss a somewhat different idealized model which has perhaps some advantages
as a basis for understanding these zones.

Real salt finger zones cannot increase the speed of flow up and down in
the fingers in the manner of Stern's model because they do not have the in-
finitely extended destabilizing salt gradient which in a sense is the "physi-
cal" basis of the exponential growth. Rather, they are supplied from above
and below by "reservoirs" - the homogeneous regions. They are "driven" by salt
and temperature differences rather than gradients;the model uses gradients
because this is the way to get a z-independent solution and make the problem
tractable. It is also true that the fingers really are much longer than they
are wide, making the idealization plausible, and the horizontal mean tempera- 0
ture is usually quite close to a uniform gradient connecting the reservoir
values. However, particularly when T is small, the mean salt distribution is
more nearly a constant half way between the reservoir values - the salinity is
not much changed from that of the upper reservoir in the descending fingers nor
from that of the lower in the ascending ones. For this reason, the "zero-
order" form of the model to be discussed here is based on a salt difference
and a temperature gradient. It is also going to be independent of z, and to
make such a model consistent we must avoid the fact that a mere salt difference
will eventually be completely "shorted out" by horizontal diffusion - thus the
zero-order model will have T - 0.

Any model in which u - v = 0, w = w(x,t), salinity So + zSz + S(xt),
temperature = To + zTz + T(x,t) and pressure = p(x,t) + (hydrostatic part
balancing the x-independent density field) is described by the same equations
(1) used above. In the present case we have KS = 0 and S = const. (but a
different constant in up than in down fingers), so (1c) is krivially satisfied, ..-

and S in (la) is taken to be AS/2 in descending fingers,-A /2 in ascending
ones. We introduce dimensionless variables as above, except that now we set
RS = g a AS/( VTk3), and the equations become:

(as before p 0)

Wt/O - RT 0 + RS s = Wxx (2a)

0t + W = 0 (2b)

in which x stands for the former kx and t for KTk2 t, and s = -1/2 for
0 < x <r and is otherwise an odd periodic function of x with period 2N It is
easy to show that all solutions of these equations tend to the steady solution
as t-Pro; there is here no question of exponentially growing solutions, and 0
the steady solution is stable to all perturbations which respect the periodi-
city and z-independence. The time-independent forms of these equations are -
analogous to those of the Ekman layer - they are in fact those of the "buoyancy

0
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layer", forced by the s term which represents the weight of the salinity devia-

tion. The two steady equations can be combined in the single complex equation

(W + iRTe )xx iR (W + iR ) RSs (3)

The solution to this equation which is a continuous and continuously differen-
tiable (odd) periodic function is then readily determined; on 0 < x < W it
is given by the formulas:

W RS sin b( ?r- x) sinh bx + sin bx sinh b( 7r- x) 0
cos br + cosh bw

RS cos b(x - w ) cosh bx + cos bx cosh b(x - w
= 2RT ( cos br + cosh bi I

in which b4  RT/4. If RT is large, which may be thought of as small k,
i.e. wide fingers, this structure becomes a row of antisymmetric buoyancy
boundary layers on the interfaces between rising and descending regions. There
is thus a natural horizontal scale in this problem, which in dimensional form
is

L = i/(kb) - (a gTz/VK T)-1/ 4 ,

the thickness of the buoyancy boundary layer. If the fingers are narrow corn-
pared to L the flow becomes essentially a row of Poiseuille flows, alternately
up and down. Of course this model (so far) does not actually select any parti-
cular value of b as the one to use in comparing this idealization to measured
quantities.

The interpretation I should like to give to this model solution is that it
can be expected to give a reasonable description of the flow in a finger zone
connecting two reservoirs when the actual finite thickness of the zone is large
compared to the width of the fingers but not so large that horizontal diffusion
of salt upsets the hypothesis of constant salinity in each finger. It is
naturally to be expected that horizontal salt diffusion will develop some kind
of a boundary layer along the interfaces between the rising and descending "
fingers, but assuming they are not too long this boundary layer (for small T )
should still be thin compared to the buoyancy layer. At the interface between 0
adjacent fingers, the vertical velocity varies linearly with x. After appro-
priate rescaling (which we omit), the salinity boundary layer equation becomes

xSz = Sxx (4)

This equation is to be considered on 0 <z <l and -- < x < -, with the con-
ditions that S - 1/2 for x C 0 at z I 1 and S - -1/2 for x • 0 at z - 0, with
S approaching 1/2 and -1/2 as x goes to - and + -. These somewhat unusual
conditions are seen to be appropriate both by consideration of the physics of
the salinity boundary layer, and by noticing the mathematical structure: the
characteristics of the parabolic equation (4) are directed upward for x .-0,
but downward for x C 0.

To solve this problem, we consider first a simpler version of it: the same
equation (4) but in x > 0, z > 0, with S - 0 on z - 0 and S - f(z) on x - 0.
Invariance of the equation under a scaling transformation leaving x3/z fixed

..................................... ,.... ,................ ..,.- ; .-i



-88-

suggests the existence of similarity solutions depending on this variable (or
its cube root); the latter are readily found and one of them satisfies the
condition S = 0 on z = 0 for x > 0, namely:

000
So(xz) fexp(-u 3/9) dux/zl/3." . ..

The value of this function on x 0 for z> 0 is a constant, which can be shown

to be r (1/3)/31/3; thus So, or a multiple of it, solves the problem in the
special case of a constant for f(z). The case of a general f(z) can be treated
by taking the Laplace transform in z, and using the above special solution to
help in evaluation of the inverse transform. The result is

S(x,z) = (31/3/ r(1/3)) fexO9-u 3/9) f(z - x3/u 3) du

which can readily be checked directly.

By similar methods, the same problem with S - f(z) replaced with
Sx = g(z) can be solved; from this the relation between an f and g which
corresponds to the same solution S can be determined. It is

f(z) = -(r(1/3)/31/3 r(2/3)) Il/ 3(g) (5)

where In denotes the Riemann-Liouville fractional integral
In(f) -. (ViPn)) f P (z -_On-i f (C) d "l.

We now return to our original salinity boundary layer problem. Let
f(z) - S(O,z), and g(z) = Sx(O,z), O< z< 1. Both of these are at present
unknown, but they must be approached from both positive and negative x. The
function S + 1/2 is zero on z - 0 and f(z) + 1/2 on x 0 (and satisfies (4)),
so it can be related to g(z) by the above formula (5). Similarly S(-x, l-z) -

1/2 is zero on z - 0 and f(l-z) + -1/2 on x - 0, and has x-derivative -g(l-z)-
on x = 0. A second use of (5) provides another relation between f and 8, and S
elimination of f between these two finally gives the following integral equa-
tion for g(z): g ( )d C 31/3. . .

0 Iz-J -2/3 3 r (2/3)

Making a slight rescaling, we now consider the integral equation

I 4z - -2/3 G( )d -1 (6)

The solution to this equation is

G(z) - (z(l - z))-1/6/( 2w ) (7) . 0

This fact does not seem to be immediately obvious, but I have found a proof of
it (which is unfortunately somewhat too lengthy to fit into this so-called
abstract). The conjecture that (7) solves (6) was originally obtained by
guessing, on the basis of a partial analytical understanding combined with an
approximate numerical solution of (6). From (7) and the formulas given above
the whole structure of the salinity boundary layer can be determined.

-~ A A A .. ~ ~ A ~ .. A -. . f, ..-*.. .*.-
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Further investigations of the physical and mathematical aspects of this
problem are in progress in collaboration with George Veronis, with whom I have
had many interesting discussions on these topics this summer, and who has 0
contributed a great deal to the ideas discussed here.

FINGER, BUBBLE, TENDRIL, SPIKE

Hassan Aref

An attempt was made to survey instances of interfacial dynamics in fluid
flows, focussing on the structural features that interfaces develop and on the
evolution and interaction of such structures. The limit of completely passive
advection of a line of particles was briefly mentioned, and the possibility of .0
"chaotic advection" was noted. Homoclinic oscillations, called "tendrils" by
Berry and collaborators, are an important feature of passively advecting
curves and lead to dramatic interfacial stretching.

Most attention was paid to examples in stratified flow where a sharp
interface has at any instant a representation as a vortex sheet. Examples
where this property has led to a useful numerical scheme for following the
evolution include the "fingering" seen in stratified flow of immiscible fluids
in a Hele Shaw cell, and the two-dimensional "bubble and spike" of the
Rayleigh-Taylor problem (for incompressible, inviscid, immiscible fluids).
Results for both these cases were discussed.

Most of the author's own work mentioned in this survey appears in the
following publications:

Aref, H., 1984. Stirring by chaotic advection. J. Fluid Mech., 143, 1-21.

Tryggvason, G. and H. Aref, 1983. Numerical experiments on Hele Shaw flow
with a sharp interface. J. Fluid Mech., 136, 1-30.

Tryggvason, G. and H. Aref, 1984. Finger interaction mechanisms in stratified
Hele Shaw flows. J. Fluid Mech. (Submitted).
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OBTAINING VELOCITIES FROM TRACER DISTRIBUTIONS

George Veronis

The justification for gathering an increasing amount of chemical tracer
data on oceanographic cruises is often asserted to be its potential contri-
bution to determining circulation patterns. Such a use requires an inverse
calculation based on some form of the advective-diffusive equation. The
purpose of the work reported in this seminar is to determine the feasibility
of such an inverse study.

The approach is (the direct problem) to calculate tracer distributions
consistent with a known velocity field and given boundary values for a finite
basin and then (the inverse problem) to use the derived tracer distributions
to determine a consistent velocity field for a portion of the basin. This
calculated velocity is compared with the original (known) velocity in the same S
portion of the basin in order to assess the validity of the procedure. The
inverse problem is intended to simulate the type of study that one makes when
gathering tracer data to determine the implied velocity field in a limited
portion (the sampling region) of the ocean.

Our "ocean" is a channel with uniform horizontal inflow at the left and S
outflow at the right. Our "sampling region" is a small (5 gridpoint x 5 grid-
point = 16 gridcell) box with the concentration at the center of each gridcell.
For a 2D system the streamfunction (W) is evaluated at the gridpoints so for a
single tracer the inverse problem leads to 25 unknown values of %P connected
by 16 equations (one for each gridcell). Since 41 needs to be determined only
to within an arbitrary constant, there are really only 24 unknown values of? . - S

The linear algebraic system based on a single tracer is underdetermined
(16 equations and 24 unknowns). All inverse calculations based on an under-
determined system led to a velocity field that bore no resemblance to the
known field. When two tracers were used and the same grid network was used
for the direct and inverse problems (i.e., no truncation error was present),
the known velocity was reproduced exactly. When the tracer data was taken
from alternate grid points (truncation error introduced), the derived velocity
from the overdetermined system (32 equations and 24 unknowns) was a good
approximation to the known flow.

Experiments were made with a single tracer and qualitative velocity infor- 0
mation. For example, suppressing the vertical velocity is consistent with the
original flow but it allows a shear in the horizontal flow. The inverse
analysis of this overdetermined system with truncation error gave good results.
When the auxiliary velocity information was downweighted to 10- 3 of the
normal weight, the derived flow was still a good approximation to the known
flow. When the qualitative information was inconsistent with the known flow 0
(e.g., suppressing horizontal velocity), the derived velocity did not resemble
the known velocity. When this qualitatively incorrect information was down-
weighted, the system rejected it (in contrast to what it did with correct
qualitative information).

.. .- . . .. .'" . .. .... -' .' ' .- - ". . .. "'.-'-. . ,-" "
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FINGER PUZZLES

Raymond W. Schmitt

Results of theoretical and laboratory work on the heat/salt flux ratio in
salt fingers were reviewed. The early laboratory work of Turner (1967) on
heat-salt fingers gave a density flux ratio which was about 0.56 and indepen-
dent of Ro (-COTz/,Sz). In contrast, the data from the sugar-salt system
indicated that the flux ratio was about 0.9 (Lambert and Demenkow, 1972).

Both of these results can be explained by assuming that the fastest growing 0
finger either dominates the finger interface throughout the experiment or
simply sets the scale for later equilibrium states of the system. This is
shown in Schmitt (1979a). More recent experiments (Griffiths and Ruddick,
1980) continue to agree with the theory in the sugar-salt case, but discre-
pancies have appeared in the heat-salt experiments. Both Schmitt (1979b) and
McDougall and Taylor (1984) have found that the flux ratio falls below the 0
curve for the fastest growing finger as RIO increases. However, it remains
above the relation for a simple equilibrium finger in the interface, and does
approach the value of 0.25 given in the theory of Stern (1976) as R1.gets
above 4.0. For Rt* close to one, the data agree with the relation given by
the growth rate maximization criteria. One possible explanation for this is
that growth rate maximization is not strongly selective, since the insta- 0
bility is fairly broad-banded, and the fingers can select a mode which is
still growing fairly rapidly, but has a lower flux ratio in order to maximize
buoyancy flux (Stern, 1976).

Observations of salt fingers in the ocean by Magnell (1976) and Gargett •

and Schmitt (1982) clearly show that the fastest growing finger dominates the
horizontal wavenumber spectrum. However, there is considerable bandwidth to
the observed spectra which is consistent with the Schmitt (1979a) model, but
hard to rationalize with the rather narrow peak of the Huppert and Linden

(1976) spectral model. This poses something of a problem for any attempts to
construct a steady salt finger interface model, for only one size finger can

be in equilibrium once the average T and S gradients have been specified.
This is finger puzzle number one for the GFD group of 1984.

Since geological fluid mechanics is the topic this year, the extension of
the Schmitt (19 79a) model to other Prandtl and Lewis number systems was
reviewed. This has been presented in Schmitt (1983). For magmas, the theory
predicts slow growth rates (like sugar-salt) but lower flux ratios (like heat-

salt). The liquid metal systems appear to be especially interesting with high
growth rates, large bandwidths and very low flux ratios. Some experimental
data from such systems would be very valuable.

Finally, a distinct tendency for the ocean to "avoid" having RI close to
one was noted. Regions with R0 close to unity are found to be rich in fine- S
and microstructure and appear to be actively mixing. Histograms of the distri-
buttons of Rt have a bimodal structure, with a peak on the finger side (R ).-l)
near 1.9, and a peak on the diffusive side (0 RPOCI) near 0.7. This is
what would be expected for the unequal mixing rates of T and S for the two
processes; that is, fingers transport more salt than heat and increase R

diffusive interfaces transport more heat than salt and decrease RD . For the B
fingers this peak corresponds to the density ratio at which the finger

e-folding time is just equal to one local buoyancy period. Thus, a picture

emerges of finger dominance of the mixing processes at density ratios close to

p S
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one. If the process Is to be studied in analogous systems, such as sugar-
salt, then care must be taken to work at Rp close enough to one (Rp = 1.02),
so that the fingers are growing sufficiently fast. Schmitt (1983) gives the
appropriate value of Re in a number of double diffusive systems.
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PETROLOGIC STUDIES OF THE RESIDUES OF MANTLE MELTING

Henry J.G. Dick

The proportion and composition of minerals from some 273 peridotites from
43 dredge stations in the Atlantic, Caribbean, and Indian Oceans have been
compared to each other and to data from alpine-type peridotites to draw a

picture of the conditions at the end of mantle melting along mid-ocean ridges
and beneath island arcs and their adjacent basins. The principal conclusions
to be drawn are that there are systematic differences in the degree of melting 0
along mid-ocean ridges which correlate to proximity to mantle plumes, and that
the conditions of melting in the mantle beneath the island arc and Intra-arc
environments represented by alpine peridotites differ greatly from that beneath

ocean ridges.

Abyssal peridotites dredged from the ocean ridges range from diopside poor 0

peridotites (harzburgite) to diopside rich peridotites (lherzolite) represen-
ting a continuous variation in the proportions of the principal constituents.
The average composition contains 76.9% olivine, 19.2% enstatite, 3.34% diop-
side, and 0.53% spinel. Slightly less than a third of all abyssal peridotites
contain small amounts of plagloclase (• 1%) which has crystallized from
trapped melt. Only rarely do dredged peridotites contain more plagioclase (up
to 17%). Based on certain incompatible elements which are greatly enriched in
the liquid during melting (e.g. Na2 0 and T402) abyssal peridotites con-
tain virtually no basaltic component (- 1%5. Since estimates of the degree of
melting of the mantle required to generate abyssal basalt range from 10 to
30%, it is evident that little, if any, melt is retained in the residual

mantle at the end of melting as a general case. This would also suggest that 6
little melt is actually held with the residue during melting, but must rapidly
pass upwards towards the crust as it forms mixing with new melt forming in the
rocks through which it flows.

Abyssal perldotites dredged in the vicinity of "mantle plumes" or "hot
spots", such as the Azores or Bouvet Island, have the most depleted compo-
sitions, while peridotites dredged at locations removed from such regions are
systematically less depleted. The modal data correlate well with mineral
compositions, with the peridotites most depleted in enstatite and diopside
also having the most refractory mineral compositions. This demonstrates that
they are the probable residues of variable degrees of mantle melting. Further,

there is a good correlation between the modal compositions of the peridotites •
and the major element composition of spatially associated basalts. This demon-

strates that the two must be related as is frequently postulated. The high
degree of depletion of the peridotites in basaltic components in the vicinity
of "mantle plumes" reacquires additional heat providing direct evidence for a
thermal anomaly in such regions - justifying their frequent designation as "hot
spots". The high incompatible element concentrations in these plume basalts, 6
however, are contrary to what is expected for such high degrees of melting, and

thus require selective contributions from locally abundant enriched veins at
the beginning of melting or contamination by another magma from depth.

0
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Although many abyssal peridotites are poor in diopside, with some con-
taining virtually none, enstatite from these same peridotites is always
saturated with respect to diopside. This is a critical point, as it means
that melting of the abyssal mantle is constrained by the thermal barrier 0
represented by the pseudo-invariant point: olivine + enstatite + diopside +
spinel. This is clearly not the case for mantle peridotites found in alpine-
type peridotite complexes.

Alpine-type peridotites overlap the range of compositions found for abyssal
peridotites, but extend to far more depleted and enriched compositions. A
number of alpine-type peridotites are known to be far less depleted than
abyssal peridotites. Typical of these are the Balmuccia, Baldissero, and
Finero bodies in the Alps of Europe which are believed to represent sub-
continental basement. Many alpine-type peridotites, however, contain enstatite
undersaturated with respect to diopside. These same complexes also contain

highly magnesian Al-poor and Cr-rich minerals lying outside the range for 6
abyssal peridotites. Melting of such peridotites, then, has occurred well
into the three phase field where only olivine, enstatite and spinel are lett
in the residue. This requires substantially different melting conditions t'

are present beneath mid-ocean ridges. It is unlikely that the thermal str
ture of the mantle beneath back arc basins and island arcs permits higher
temperatures at a given depth than beneath a mid-ocean ridge. This means th t 0
the melting point of the mantle must be depressed in the arc and intra-arc
environment, most likely due to the introduction of volatiles from a sub-
duction zone. Supporting evidence for this hypothesis is found in the com-

position of late magmatic and pegmatitic veins in alpine-type peridotites.
These suggest that there was incongruent melting of enstatite to olivine plus
melt, leaving behind monomineralic dunites, and conversely a reaction-relation -

between melt and olivine to produce enstatite during crystallization, producing
monomineralic orthopyroxenite pegmatites by reaction of melt with wall rock in
dikes at the end of melting. The introduction of water into peridotite is
known experimentally to both greatly depress the melting point and to induce
incongruent melting of pyroxene at pressures consistent with mantle melting.

0

0

0
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MULTIPLE CONDUCTIVE STATES FOR TWO-FLUID SYSTEMS

Pierre Welander

Consider a system of two immiscible fluids, between two horizontal
boundaries, kept at temperatures T = 0 (lower) and T = AT (upper). The con-
ductive, statically steady stage has a temperature T. at the interface,

i AT-T
determined by the relations K - K' - (continuity of heat flux),

hh
where h, h', K, K' are the layer thicknesses and thermal conductivities of

the lower and upper layer fluids; we find T. = yLT, y = [ + , K (Fig. 1).

If we interchange the two layers and let the system come to its conductive
steady state, we have the new interface temperature Ti y*AT,

[ K' h - I  (Fig. 2). Assume linear equations of state o= 0(l-aT)

0, 0 '1 (I-a'T); then both above cases are statically stable provided

* 0 '

- y aAT o< 1 -yaAT (1)
< - <

I - y &AT o 1 1 ya'AT

This condition arises from the requirements that the original density

step at the interface, p-p', as well as the new step, p'-p, is nonnegative,
at the temperatures Ti and Ti*, respectively. If, for example, c' > q,
h' << h, and p0o' po, we can satisfy these relations and thus have two
statically stable steady states, as exemplified in Figs. 1-2. The more
"expansive", thin layer can stay either at the top as a light layer, or at
the bottom as a heavy layer. We can actually have an infinity of steady
conductive solutions, all statically stable, with part of the original thin
layer at the top and part at the bottom (Fig. 3). It is, however, not
possible to have more than three separate layers. Transitions between
different statically stable states can take place by help of an open conduct- 0
int tube, a "fountain" (Fig. 4). The fountain can only go in one direction,
and only the more "expansive" fluid can run in the tube. It is assumed that
the surrounding fluid adjusts conductively; if the tube flow gives a quick
adjustment, and the interior stays adiabati., during this time, more complex
solutions involving "overshooting" wav occ,.-. Finite amplitude instabili-
ties may provide natural 'rinsitions between different steady states. The 0
transitions may appear as "plumes" or "blobs" breaking off from the more

- pa,"is layvr. The perturbations nay spread laterally from a local area

of perturbation (see Fig. 6). Preliminary laboratory experiments, made with
*-' pthalic acid and salt water, suggest that a natural "fountain" can be

* sustained, even without a tube, if aided by interfacial tension (Fig. 5).
* The phenomenon discussed has similarities with "salt fingers" as well as S

with collectiv cumulus convection. The stability theory needs to be
developed. The system is found to be stable for 'infinitesimal perturbations,
but one should be able to find theoretical examples of growth for suitable
finite amplitude perturbations. Work on this problem, along a line proposed
bv W. Young, is proceeding.

*° -
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T:0- T_-T=O T=~ S

Figure 1: Original two-layer system, Figure 2: The switched state, in con-
stably stratified. In all cases the ductive balance. If the criteria (1)

temperature is T - 0 at the bottom, is satisfied, the fluid is still
T =46T at the top. There may be a statically stable.
density step at the interface.

T= 0 "1"# _ 5

Figure 3: Partial switching, giving Figure 4: Switching by tube convec-
three layers. tion. The tube flow can only go in

one direction, contrary to the "salt

fountain".

46 0

Figure 5: A natural "fountain", as Figure 6: Hypothetical instability
seen in a preliminary experiment which spreads laterally. The problem . . -

* using pthalic acid (PA) and water has similarities with cumulus

* (1% salt dissolved). Vertical convection.
dimension is about 5 cm. Weak

creeping motions occur, the "tube"

is kept together by surface tension.

v . . .. .
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MOMENTUM TRANSPORT IN THERMOHALINE STAIRCASES

Barry Ruddick

Given the buoyancy flux in an actively convecting, sheared thermohaline
staircase, what is the momentum flux? A simple constant stress model for such
a system shows that the appropriate average viscosity <A) , is the harmonic
mean (Keller, 1977):

<A> = <l/A(Z)) -1

This implies that the average viscosity is controlled by the regions of small
eddy viscosity, where the shear and dissipation are high. If the staircase is
idealized as a sequence of interfaces, of thickness H2 , eddy viscosity A2,
and layers of thickness Hl, and large eddy viscosity A1 ( ]. A2), then

<A 5oA2(1 + Hl/H2 )

Thus the average viscosity is proportional to, but much larger than, that at
the interface. Two mechanisms for interfacial momentum transport were
considered; direct salt-finger Reynolds stresses and interfacial internal
waves generated by the motion of convective elements. Because salt fingers
effect downward salt transport by means of lateral heat transport, the effects
of molecular viscosity are at least as important. In a shear, the viscous
stresses annihilate the horizontal velocity difference between up- and
downgoing fingers, so that the Reynolds stresses are small. A model of a
sheared finger interface limits these stresses to less than the molecular
viscosity stress.

A rough dimensional/mechanistic argument for momentum transport by
convectively generated interface undulations was presented. It proposed that
the stress is proportional to the buoyancy flux and the velocity difference.
Both the audience and the speaker noted that these arguments left much room
for future improvement. The results of laboratory experiments were shown
which roughly supported the results for interfacial momentum transport, and
gave an empirical value for an unknown constant in the theory. The final
results imply( y flux)/N 2

<A> 4 (Buoyancy ,

which corresponds to a turbulent Prandtl number of -40. The predictions are

consistent with dissipation measurements in the Bahamas by Larson and Gregg
(1983), and imply eddy viscosities of about 10- 3 m2 s-1 .
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SOLIDIFICATION OF A BINARY ALLOY

M. Grae Worster
0

The solidification of melts which are mixtures of more than one substance
is a process of industrial importance in an age when the casting of alloys is

commonplace, and of geological interest in present discussions of the
evolution of magmas.

The solution of the classical Stefan problem of unidirectional solidifica-
tion of a single-component (pure) melt has long been known (Carslaw and
Jaeger, 1959). I have recently extended this to the case of a two-component
(binary) melt with a simple phase-diagram such as that on page 15 . The
central results of this analysis are: determination of the growth of the
interface b = 2LAM , where D is the solute diffusivity, t is time and b
is a constant for given external conditions; and determination of the 0

conditions under which constitutional supercooling of the melt will occur.
The undercooling at which constitutional supercooling first occurs for the
NaNO3 - H20 system is shown on page 16.

When supercooling occurs the flat interface becomes unstable to the growth

of dendrites. The region of mixed phase (dendrites plus melt) is often called S

a mushy layer and has been the subject of much recent research. I here
present a model of a mushy region in which transport of heat and solute is

purely diffusive. The differential equations governing the mush and the flux
conditions at the interfaces separating solid from mush (x = a) and mush from
melt (x = b) are - ..

L
k < [ + C (i)""2

S C()C
(3)

COC'

6+

where T is temperature, C is concentration of solute in the melt and 40 is the
volume fraction of the solid phase. The physical parameters are the thermal
conductivity and diffusivity k and "A , the specific and latent heats C p and .

L, and the density p . Equation (3) expresses the assumption that the melt
within the mushy region is everywhere at the local liquidus temperature.
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In addition it is assumed that the melt outside of the mush is "marginally
stable" in the sense that it is just saturated near the interface with the
mush. This is expressed by requiring

77 1b,

and it can be shown that (in the present system) this is equivalent to setting

b". -
This system is accessible to the same kind of similarity solution as before

though now the equations are nonlinear and must be solved numerically. The
growth rates of the two interfaces are shown as a function of the undercooling
T1 in figure 1.

MrL.-r -  .

2, o-, *C.

These results ignore the effects of gravity but it should be noted that in
.'0many practical situations convective transport may be important even when the

i bulk density field of the Interstitial fluid is stable. This is because.
... compositional boundary layers on the dendrites can provide a "counter-gradient" 1

flux of both solute and heat. Nevertheless the present model provides a sound
:' ': foundation for the analytical study of mushy regions.• "'
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PATTERN SELECTION IN CELLULAR STRUCTURES
A ONE DIMENSIONAL EXAMPLE

Stephane Zaleski 0

Pattern selection in cellular structures has arisen a renewed interest
since the discovery of a mechanism of wavenumber selection through lateral
boundaries (Cross, Daniels, Hohenberg and Siggia, 1983), (Pomeau and Zaleski,
1981) Consider, for instance, the almost parallel-roll structure in the
thermo-convective Rayleigh-Benard instability in large aspect ratio. The 0
linear analysis predicts a band of stable wavenumbers of width ( ( j 4" ),
where E is the small relative distance to threshold. More refined nonlinear
analysis of the stability of rolls themselves still allow for a broad 0(&/L)
band of stable rolls. (One should except, however, the somewhat particular
case of Benard convection between stress free boundaries).

In the following, we present the basic steps of the derivation of the

selected wavenumber. We take the simple case of an Hele-Shaw cell. This
constrains the structure to be one dimensional, thus avoiding the exciting
mysteries of the full two dimensional problem.

We consider a rectangular, thin box of size d x h x 1 with d << h < L. 0
As d, the thickness of the cell is small, the flow has a parabolic profile in
the corresponding direction y. The mean velocity is conveniently described by
equations involving only the x and z directions. In the Boussinesq approxi-
mation, they read, in nondimensionalized form:

- - : 0 (1) -

41 (2)

(3) 0

L + W Q (4)

where T r ( (L with obvious notations. 0

1.2 , :

Equations (1) and (2) express the linear Darcy Law for the seepage velocity in
a porous media. To (1) - (4) we add the boundary conditions 0

: i - at : 0 I (5)

at (6)

(6) is realized in practice when the end walls are good heat conductors.

0:
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We make the usual Newell, Whitehead, Segel (Newell, Whitehead, 1969),
(Segel, 1969) amplitude expansion. There

where 9"I ) (2U) .

and 0 A.rr z e "r ) . C. .

where A(x,t) is a small, slowly varying complex amplitude. Inserting (7) into
(1), (4), one gets u(I), w(1), and then, at higher order in E 1/2,
Q"', 0"1 etc. The solvability conditions applied on this expansion give 0
conditions for A. At order E2 they can be written as a l-d PDE of second
order (Pomeau, Zaleski, Manneville, 1983):

TrIZ2Ae : .4A iI - - A,
7 (8) '0

1~A 1 A K 3~T A
7~ I.x I ., 3

The boundary conditions at the relevant order are to be deduced using the
expansion for e9 , .w, and (6). We get 9

A 0 + 0( 3/2) at x 0, L/h (9)

To construct a solution of (8) and (9), we match approximately periodic . . .

solutions in the bulk with boundary layers of order E -1/2 near the ends. J
This requires 5.h >> E -1/2. The stationary periodic solutions read

A: ( - .a £ ej. ,, + (f.) (10)

T

They correspond to a wavenumber iT + for the rapid modulation 0La, )
Solutions of the above form are subject to the Eckhaus instability outside the
range -< . This leaves a broad band of stable solutions, of

order "z. If we now include the b.c. (9), we can analyze the matching of
(10) with (9) by using a method of integration of (8) described in Zaleski, 0
1984. We find that the only wavenumbers for which (10) can be distorted to
meet (9) have exactly

::S 0 ;( (11)"" -

In the general case of a 1-d structure with A small at the boundaries (Cross,
* .Daniels, Hohenberg, Siggia, 1983), (Pomeau, Zaleski, 1981), (Zaleski, 1984)

S

. . . * . .. . . . .
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predicted 3&(

where a-, a+ are some constants for a given problem. The particular form

of (11) is thus remarkable, and should allow for an easier experimental verifi- .

cation than in the cases already investigated in real life experiments

(Wesfreid, Zaleski, 1984).

I0
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DYNAMICAL MODELS FOR MELT SEGREGATION

FROM A DEFORMABLE MATRIX

Frank M. Richter •

A mathematical formulation for the buoyancy driven segregation of a light

fluid from a deformable matrix is applied to a geometrically simply system to

illustrate its dynamical and chemical evolution. A layer with initially uni

form fluid content contained above and below by impermeable boundaries, if

sufficiently deep, displays three regimes: a compacting layer at its base, S

a noncompacting interior regime, and a growing 
pure fluid layer at the top.

Various other initial conditions are discussed, 
including cases with linearly

decreasing fluid content and with locally 
large (in relative terms) fluid

content. The chemical evolution of the segregating fluid is also described.

Having illustrated some of the properties of fluid segregation by matrix

compaction, we use it as a framework for discussing the secular changes in

143Nd/1 4 4Nd and Sm/Nd of Hawaiian basalts.

0. . .
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STOCHASTICITY WITH MANY DEGREES OF FREEDOM IN CHAOTIC
PARTIAL DIFFERENTIAL EQUATIONS

Yves Pomeau 0

The analytic description of turbulent flows is still a poorly understood
problem. This is in sharp contrast with the case of equilibrium and near
equilibrium theories. It is interesting to understand the origin of the
differences between the two situations. In usual continuum theory as
describing - say a steady laminar flow, there is a clean scale separation
between the fluctuation degrees of freedom (or molecular motion) and the
macroscopic ones. Furthermore, the thermal fluctuations satisfy a very
special property of time reversal invariance: no statistical study of these
fluctuation allows us to know the arrow of time. The turbulent fluctuations
of flows differ from the thermal noise first because there is no separation 0
between the macroscopic and the fluctuating scales. Further, there is no
chance that the turbulent fluctuations have the time reversal symmetry, except
perhaps for the biggest space scales, where presumably the description is not
very efficient. Owing to their extreme complexity, the Navier-Stokes equations
have not yet been studied from a statistical point of view in computer simula-

tions. So we have studied the statistical properties of the turbulent solu-
tions of an equation looking more or less as the fluid equations, the Kuramoto-
Sivashinsky equation

t+Ox+oxx+¢Xxxx = 0 (i)

It has a sustained turbulent behavior if the x-support of 4 (or length L) is ..
big enough and with the Dirichlet + Neuman boundary conditions (0- x - 0/9),
a thorough integration over very long times by Paul Manneville indicates that,
for periodic b.c., the evolution ends at a nonuniform steady state. For random
initial condition, the solution of (1) defines - through time averages - a
statistical ensemble for *(.,.) that is both space and time invariant, at
least for translations over distances much less than L. We have more specifi-
cally studied two points. The number of degrees of freedom may be defined as
the number of positive Lyapunov numbers and grows linearly as L. The energy
transfer from the unstable (long wavelength) to the stable (short wavelength)
modes does not occur through an Onsoger-Kolmogoroff cascade. This is shown in
two different ways. The time fluctuations of the space power spectrum do not
show any tendency to be peaked at more and more distant times as the wave-
numbers become more and more widely separated. By looking at the mean struc-
ture of the elgenspace associated to the positive Lyapunov numbers, one sees
no tendency of this space to split into independent fluctuations peaked at
different wavenumbers.

D This reports a joint work done with Alain Pumir and Pierre Pelce, and to
be published in J. of Stat. Phys. Paul Manneville has also very much partici-

pated in the elaboration of the ideas and results presented here.

S. ,
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THE EMERGENCE OF DIPOLES FROM INSTABILITIES
ON THE f AND ) PLANE

Glenn R. Flierl 0

The initial growth and large amplitude evolution of perturbations upon
various flow fields have been studied in collaboration with Paola Rizzoli and
Norman Zabusky. Preliminary results indicated that the vorticity often clumps
into relatively strong, discrete eddies and that the evolution of the flow is
often dominated by interactions between these vortices. In some cases, the 0
interactions occur as pairing events and these dipoles transport fluid rapidly
away from the initial region of instability. The beta effect can greatly

modify the vortex structures formed.

I. Breakup of Circular Vortices

Previous studies of the instability of circular vortices have been
'ncerned dominantly with flows having single-signed vorticity (e.g. Howard
and Gupta, Michalke and Timme); however, for application to oceanic flows such
as Gulf Stream rings, the case of zero integrated vorticity appears more
relevant. We have studied the barotropic instability of a vortep with a
circle of vorticity 1 and radius I surrounded by an annulus of vorticity q and 0
outer radius b. Figure 1 shows the parameter relationships which permit
instability for various azimuthal mode numbers m. The dashed curve indicates
the relationship between q and b which gives no net integrated vorticity.
(This is, of course, equivalent to zero basic state flow outside radius b.)
For the relevant case of negative vorticity in the annulus around the central
positive region, the instability first occurs for the m - 2 mode (elliptical .
deformations), in striking contrast to the single-signed case where the higher
modes enter first (fixed b, increasing Jqj). The patterns of instability are
shown in figure 2, along with numerical computations of the fully nonlinear
evolution. The linear phase of the instability draws the interior vorticity
out in an elliptical shape and causes the exterior vorticity to clump into two
pools oriented at about 300 to the major axis. At this point, the vortex
pair forces between the external clumps and the ends of the interior ellipse

become dominant, pulling the structure apart into two dipoles.

A mode 1 (neutral) disturbance apparently generates sufficient mode 2
through the nonlinear terms to initiate the instability; the subsequent
evolution is identical. In contrast, when an equivalent barotropic model is
used, the instability may grow to an equilibrated state of a rotating ellip-
tical vortex; the parameter relations which lead to such a state have not yet
been determined.

If we begin with an axisymmetric vortex and turn on a weak beta effect, we
can find two distinct behaviors. When the initial profile is unstable, j 0
forces an m = 1 perburbation which (apparently) in turn excites an m = 2
instability. However, the resulting pattern remains quite asymmetric
(figure 3). On the other hand, a stable profile simply begins to move and
slowly disperse. Arguments based on small,& suggest that a westward
propagating state exists (it has the form of a modon + a rider, Flierl, 1984),
but that it may not be the final state for arbitrary initial profiles.

A
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Baroclinic vortices constructed like the Rankine vortex with only a single
cylindrical region of at nonzero potential vorticity can be unstable by
baroclinic instability for large enough eddies. Barotropic components can 0

enhance or suppress the instability, depending upon their sign and magnitudes.

" II. Jet Flows

We have also considered the evolution of instabilities of a jet flow for

perturbations of various wavenumbers and with or without . The regimes 0
found are indicated on a linear stability diagram (Fig. 4). For short wave
perturbations, the vorticity clumps into a vortex street, representing an
equilibrated wave. (This is probably long lived but never the less transient;
the street becomes unstable to merger events.) With# , similar things happen
but the final state appears (1) to have a different propagation rate because of
e and (2) to have vortex centers significantly less separated meridionally.
Patches of vorticity are thrown off the sides and apparently propagate
westward.

For longer wave varicose instabiities, the jet evolves by forming dipoles
centered at the jet axis. This seems to occur by north-south extrusion of
vorticity and then a backward breaking and roll-up. Weak 4 effects only S
decrease the final propagation rate.

For long sinuous perturbations, on the other hand, the evolution is
completely different. As the initial wve grows, it puts energy into sub-
harmonics which are themselves able to extract energy from the mean and the
wave develops kinks. The vorticity becomes distributed into a much more
complex pattern and a modon forms. Rapid spread occurs by outwardly-directed
dipoles (Fig. 5).

With ,@, the long wave is stabilized; now nonlinearity feeds some energy

into short waves and these grow at the expense of the mean. Thus a high
wavenumber perturbation appears instead of a long wave.

If many scales are excited simultaneously, the long, slowly growing modes

are not unimportant compared to the rapidly growing short modes (perhaps
because the long modes do not equilbrate). Rather they cause rapid merger
events and cascade of energy back to larger scales. Temporary dipoles can be
seen during this process, again carrying fluid far outward from the jet. S

Similar events occur withA ; indeed merger is visible in the evolution of the

single long (neutral) wave described in the previous paragraph. While the
lateral growth of a turbulent jet has often been ascribed to merger events,
our calculations indicated the dipole formation can also lead to rapid outward
spreading and we suggest that both may play an important role. The beta
effect appears to modify both of these processes and leads to a more 0

merldlonally confined flow.
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Instability of a circular vortex on the f plane.

Left four panels show the streaxnfunction and vorticity at various times in the
fully nonlinear numrical calculation. On the right is the line&- perturbation
solution with an arbitrary aplitude assigned to the perturbation.
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d Growth rates for perturbations on a jet.

'Ial1 sketches show nonlinear evolution for various initial wavenumbers
anid perturbation symmnetries.
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Long wave perturbat ions on a jet.

Panels show the evolution of the streaxnfunction and vorticity fields;

note the breakup of the jet into patches of vorticity which pair to

j for~ dipoles moving away from the center.0

to 0
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FRONT PROPAGATION WITH INTERFACIAL TENSION

Yves Pomeau

0
I consider two problems of front propagation where surface tension plays a

role.

In the Saffman-Taylor instability (Saffman and Taylor, 1958; McLean and
Saffman, 1981; and Vanden-Broeck, 1983), surface tension is important for
removing the degeneracy of the Saffman-Taylor solution for a finger, as well 0

as for suppressing the "generic" cusp singularities that have been shown to
appear after a finite time (Shraiman and Bensimon, preprint) for smooth

initial data.

By the general argument of Birkhoff for the Kelvin-Helmholtz instability,
ii these singularities occur because the growth/rate of unstable fluctuations 0

with the wave vector q is OL(q) = qu at large q. Surface tension supresses
these singularities, as it stabilizes the short scale fluctuations. Surface
tension is important too for this Saffman-Taylor (S.T.) instability, because
it removes (McLean and Saffman, 1981; Vanden-Broecke, 1983; and Pomeau, pre-
print) the degeneracy of the steady S.T. solution for the finger advancing in
a long rectangular channel. Let k be a dimensionless measure of the strength S

of the surface tension [k -(capillary number) -1] , the relative
width A. of the finger in the channel expands as_'&l+bk-i/4 . . . near
k-* 00 (- large surface tension or small velocity). This finger tends to
fill completely the channel in this limit, to lower the interfacial energy
()X -- 1). The computation of b(<o) is a nontrivial numerical problem
involving the solution of a similarity equation of a particularly complicated "
form (Pomeau, preprint).

Another example of front propagation, where surface tension is important
is the dendritic growth (Langer, 1980; Clavin, Pelce and Pomeau, in prep.) If
a solid grows at the expense of an undercooled melt, there is a critical
undercooling tTc such that, if IATI< aTc, no plane solution of the S
Stephan problem exists with a constant speed: if (ATI< ATc there is too

much latent heat generated at the interface.

This critical undercooling 6Tc (usually very difficult, if not impos-
sible, to reach experimentally) is defined by the condition Cp dTc = L,
Cp being the heat capacity of the melt and L the latent heat. For
L&T1 < 6Tc, the displacement of a plane solidification front has a

diffusion-like dependence x(t) -,J tl/2 . This front is unstable against the
Mullins-Sekerka instability (Langer, 1980 and Clavin, Pelce and Pomeau, in
prep.): if a bump of solid on the front reaches cooler region behind it this

bump gets a larger velocity, by the Stephan condition, and grows. The ultimate
evolution of this instability yields the so-called dendritic growth. A partial S

solution of the dendrite structure is given by the Ivantsov parabola (Langer,
1980 and Clavin, Pelce and Pomeau, in prep.): in two dimension, a parabola of
solid of Cartesian equation y ax2 grows in the melt with a constant velo-
city parallel to the y-axis. If D is the heat diffusion coefficient in the
melt and Pe the dimensionless ratio LT/A Tc, this Ivantsov solution
implies a relation between Pe and ua-I/D, that becomes in the Pe"4  0

limit:

ua-l v P2D()"'::

e "
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A similar solution exists for a circular paraboloid, and the relation
between A.a - l and Pe is now, for Pe "- 0:

L!a-l- PeD/ln Pe (2)

This Ivantsov solution is degenerate, because one can change at will the
velocity %_L , if one changes the geometrical parameter of the parabola (a) to

keep the product LAa
- I constant. This degeneracy is due to the fact that

there is not enough dimensionalizing physical quantities in the physical data

(AT/ATc and D). It is removed when one takes care of the Gibbs-Thomson 0
(G.T.) condition: the temperature at the Q/S interface is no longer the

thermodynamic melting temperature, but depends also on the main curvature of

the interface. With this G.T. condition, there are enough physical parameters

to make a velocity and a length. But the Ivantsov parabola (as well as the

paraboloid) is no longer a solution for the equations of the problem. We have

found (Pelce, Pomeau, preprint) similarity equation for the structure of the
tip of the dendrite (both in 2d and 3d) with surface tension near Pe -+0+.
These equations yield the following estimates for the velocity ( A4) and the

curvature (a) at the tip in this weak undercooling limit (0 < LTcd tT):

Sin 2d: 0

Lk T
kA~e)

JS

* in 3d

To get back quantities with a physical dimension, one has to multiply the

dimensionless estimates by combination of thermodynamic parameters so that the

0 absolute velocity scale is quite large (say of the order of the sound velocity)

and the absolute length scale quite small (say an intermolecular distance).

There is also a possibility of existence of hollow axissymmetric dendrite with

a hole along theire axis.
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NARROW-GAP EKMAN FLOW

Willem V.R. Malkus 0

Normal Ekman flow has steady supercritical shear wave solutions. The

individual instabilities can be satisfactorily described by finite amplitude
theory and the small amplitude interaction of the waves by coupled nonlinear

* Schrodinger equations. In contrast, the first disturbances in Poiseuille flow
are subcritical and chaotic. The theory for narrow gap Ekman flow will be 0
described which exhibits these two extremes of initial behavior as a conse-
quence of varying the rotation rate. We determine numerically the parameteric
boundary between single wave initial instabilities and initial instabilities
on which secondary (3 d) modes also appear. This boundary is near the
parameter value at which the first Lindstedt (Landau) constant of the non- - ..
linear theory vanishes. At somewhat small gap-spacing and higher Reynolds 0
number the observed initial disturbances are no longer global. These simpler
prototypes of the inhomogeneous, intense bursts of Poiseuille flow may be
accessible by finite perturbation analysis. Amplitude equations for this
region and their relation to recent experimental results will be discussed.

* 0

*! ,
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STRONG INTERACTIONS BETWEEN
INTERNAL SOLITARY WAVES

Roger Grimshaw 0

The interaction of weakly nonlinear long internal gravity waves is studied.
Strong interactions occur when waves belonging to different modes have phase
speeds that are nearly equal. It is shown that this interaction is described
by a pair of coupled Korteweg-de Vries equations. These equations are inte- 0

grated numerically and, depending on the parameters in the equation, various
kinds of solutions are found. In particular, for parameters corresponding to
a fluid model describing two inversion layers, phase-locked solitary waves are
found. However, when the coupling between the equations is predominantly
through the dispensive terms, leap-frogging solitary waves are found.

0

FINITE-AMPLITUDE INTERFACIAL GRAVITY WAVES: S

WAVE PROFILES AND STABILITY

Roger Grimshaw

We consider finite-amplitude interfacial gravity waves in a two-layer
fluid. Wave profiles and other wave properties are found analytically by a 0

Stokes expansion for small wave amplitudes, and numerically for large wave

amplitudes by solving a nonlinear integral equation. Results are obtained for
a range of basic flow models, including some with velocity shear in the upper
fluid. In some cases, wave profiles near the highest wave develop an S-shape. -

The stability of these waves is investigated analytically for small amplitudes
by deriving a nonlinear Schrodinger equation coupled to a wave-induced mean 0

flow equation to describe long wavelength modulation instability. All waves
are found to be unstable and the instability configuration as a function of
modulation wavenumber is determined as a function of the basic state para-
meters. For finite-amplitude waves the instability regions are calculated -"

numerically and it is found that the modulation instability is part of a
low-order resonance instability. Although higher order resonance instabili- 5
ties exist we find that at small wave amplitudes the low-order resonance
instability dominates, and at higher wave amplitudes a local Kelvin-Helmholtz
instability sets in.

0

0
_ S
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THE STABILITY OF SALT FINGERS

Judy Holyer

There have been many oceanic observations of salt fingers which typically
show salt fingers confined to a region about 20 cm thick, separated by con-
vecting regions several meters thick. This suggests that a field of long salt
fingers is unstable and will break down into layers.

Stern (1969) investigated the stability of long, steady, two-dimensional
salt-fingers to long wavelength, internal-wave perturbations. He showed that
if the fluxes through the salt fingers are large enough then the fingers are
unstable. This instability is known as the collective instability of salt
fingers. Holyer (1981) studied this instability more rigorously and showed
that two-dimensional, salt fingers are unstable to long-wavelength internal-
wave perturbations if

* ,_

where FT and FS are the heat and salt fluxes of the fingers, L" is the
kinematic viscosity, and Tz and Sz are the heat and salt gradients. I
have now extended this work to include two-dimensional perturbations of all
wavelengths, by applying Floquet theory to the basic, periodic, salt-finger
state. As well as being able to find out how the growth rate for the collec-
tive instability varies with the wavelength of the perturbation, a new non-
oscillatory instability is fo nd. For a salt finger with maximum vertical
velocity the growth rate for this new instability is

z - .-4. __ .

where v is the Prandtl number, m is the vertical wavenumber of the pertur-
bation and m is small. For heat-salt and salt-sugar systems this instability
has a larger growth rate than the collective instability and it is possible
that in some experiments it is this instability, rather than the collective
instability, that is being observed. 0

In practice salt fingers are not two-dimensional. They have a square
cross-section. I have therefore looked at the stability of square, salt-
fingers to long, three-dimensional perturbations. There are no qualitative " "
changes - the same instabilities appear as for the two-dimensional case, but
there are quantitative changes. For square fingers the collective instability S

first occurs when

Thus this talk could have been entitled " , not 1/3"

ii . '. L- I .', . .- ' . , ', .,- ' .. , ." - ', , ' -. .' .. . - " i" -. 'f .. : " " .. " i i-2 -' .7 " - IL -I ' - ' -
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HETONIC EXPLOSIONS

Henry Stommel

Nelson Hogg and I have discovered a simple interaction between discrete
geostrophic vortices in a two layer uniformly rotating gravitationally
stratified system that transports heat. This occurs when two nearly vortices
are in different layers, with different sign, but equal algebraic strength. S
Such a pair, called a heton, can be either hot or cold.

Two hetons of opposite temperature attract each other and simple heat

engines can be built for them. Hetons of like temperature repel each other,
unless very close, and hence when assembled in large clouds form explosives.
It is shown that such clouds form a pair of narrow streams around their rims, -.•
the sense of rotation differing by layer. Individual hetons in the rim are
split so rapidly that they cannot escape by radial explosion, but clumps of

them can. The size of these clumps is about 1.25 times the size of an internal
Rossby circle. Hetons thus provide an alternate explanation of the baroclinic -

instability problem. .
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PATTERNS OF SOLUTIONS BIFURCATING FROM SPHERICALLY SYMMETRIC

STATES WITH APPLICATIONS TO CONVECTION IN THE EARTH'S
MANTLE AND TO THE ANISOTROPY OF THE UNIVERSE

Friedrich H. Busse 
0

The problem of the pnitterns that are generated when a spherically symmetric
state becomes unstable with respect to asymmetric disturbances can be con-
sidered without reference to the physical mechanism causing the instability.
Only for the purpose of focussing the imagination it is convenient to discuss
this problem within the framework of convection in a spherical fluid shell.
Other problems that can be used as examples of the theory exposed here are the
buckling of a spherical elastic shell and the Rayleigh-Taylor instability of a

spherically symmetric implosion. These problems have in common that the eigen-
value R of the linear problem is characterized by a 2e + I degeneracy where C
is the degree of the preferred spherical harmonics. The degeneracy is
two-fold in character. First there is the orientational degeneracy caused by
the property that a two-parametric manifold of solutions can be obtained by
translations of a given solution on the spherical surface. For e = I there
exists only the orientational degeneracy. All three independent eigen-
solutions of the linear problem depict the same pattern. The two degrees of
freedom represented by the two independent elgensolutions, in addition to the
first one, correspond to the two independent angles by which a pattern can be

rotated on a sphere. But in the case e - 2 the problem of pattern degeneracy
arises. According to the linear theory, an infinite manifold exists of
solutions which cannot be transformed into each other by a rotation on the
sphere. The solvability conditions, however, which arise when the nonlinear
terms are taken into account as perturbations, restrict the manifold of
solutions to a finite number. The physically preferred solution among this
finite number can be determined by a stability analysis.

It is remarkable that the former problem can be solved independently of
the physics of problem (radial structure of a convecting spherical shell, for
example). The results about possible patterns of bifurcating solutions derived

by Busse (1975) and by Busse and Riahi (1982) are thus general. Even the
stability problem can be solved to a considerable extent with the result that
the axisymmetric solution is preferred in the case e - 2, while solutions
exhibiting the symmetrics of the Platonic bodies are preferred in the cases
4= 3, 4 and 6.

The problem of convection in the Earth's mantle has been the major motiva-

tion for the study of convection in spherical shells. It has long been known

that the Coriolis force is unimportant in this problem because of the high
Prandtl number of the order 10 23 of the mantle. Nevertheless an anisotropy
of plate motions with respect to the axis of rotation can be noticed (mid-
oceanic spreading ridges are mainly north-south). The cause of this cor-
relation is the property that the C- 2 component of convection affects the
moment of inertia tensor of the Earth. It turns out that for a Boussinesq

fluid the stable position of the Earth's axis rotation must be orthogonal to

the symmetry axis of the 0- 2 mode of convection, i.e. the latter axis must
lie in the equatorial plane of the Earth (Busse, 1983a).

. .,. .. . . . . .o
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Another application is concerned with the shape of the possible anisotropy
of the universe. The problem of patterns of solutions bifurcating from a basic

state which is isotropic with respect to a three-dimensional hyper-spherical
surface is analogous to the problem of solutions bifurcating from a basic state
which is isotropic with respect to a two-dimensional spherical surface which we
discussed above. For details see the recent paper (Busse, 1983b).

The analysis of preferred patterns can be generalized by considering the

case when the eigenvalues R and R* corresponding to two different degrees
and C* of spherical harmonics nearly coincide. Patterns of three cells, four
cells, seven cells, etc. can be found in this case in addition to the two-
cell, six-cell, and ten-cell patterns obtained in the case of a single degree
of spherical harmonics. This work done in collaboration with
Dr. N. Riahi is presently in progress.
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INSTABILITIES OF CONVECTION ROLLS IN A FLUID LAYER
WITH STRESS-FREE BOUNDARIES

Friedrich H. Busse 0

Convection in a layer heated from below has become a favored fluid system
for the study of the evolution of turbulence. Experiments and theories on
convection at low to moderate Rayleigh number can answer questions about the
increasing number of degrees of freedom of motion that become occupied as the

fluid approaches a turbulent state through several transitions as the Rayleigh 0
number increases. Moreover, the degeneracy of the problem at the critical
Rayleigh number permits the investigation of competition between different
modes at low amplitudes of motion. In particular, the situation can occur
that an infinite manifold of steady solutions exist, all of which are unstable,
such that a complex time dependence arises as the realized state drifts through
the phase space spanned by the steady solutions. This particular kind of a
weakly nonlinear turbulence is known as phase turbulence.

Stability theory is an important tool for the understanding of these
aspects of the transition to turbulence. Since the different instabilities of

convection rolls are nearly orthogonal to each other, the mechanisms of other
instabilities change relatively little if a given instability produces a S

transition from rolls to a more complex three dimensional form of convection.
Thus the results of the analysis of roll instabilities apply at least qualita-

tively at higher Rayleigh numbers when more complex forms of convection are
realized. The case of convection with stress-free boundaries is of particular
interest, because many of the instabilities that usually occur only at higher
Rayleigh numbers come in already at the critical point (R, ,, ) where Wc is *6
the wave number for onset of convection. Analytical expressions can thus be
derived for the onset of zig-zag-, cross-roll-, Eckhaus-, skewed-varicose-,
and oscillatory skewed-varicose-instabilities. The first three of these in-
stabilities were discussed in the papers by Schlister et al. (1965) and Busse
(1971). But it was not realized at that time that the zig-zag instability
depends strongly the Prandtl number P in the case of stress-free boundaries S
because of the presence of a nearly undamped vertical vorticity mode. As
Siggia and Zippelius (1981) have shown, a component of the disturbance flow of
the form 'Tx '4 (x, y) is generated in connection with zig-zag instability
and decreases its growth rate significantly. Here k is the vertical unit
vector in the direction of the z-axis. In the case of rigid boundaries, the
boundary condition do not permit a z-independent function q (x, y) and a 0
weakly damped flow component of the above form cannot be realized. Zippelius
and Siggia (1982) also found the skewed varicose instability but predicted the
criterionce of for instability while the correct form of this criterion near
the critical point (RI, -c) is given by

R0 > o(/(1) 0

This criterion and a similar criterion

I~R ) J34P (5 +-i Fp l)' (2)

for the newly discovered oscillatory skewed varicose instability have been S
derived by Busse and Bolton (1984). According to criteria (1) and (2) all

steady convection flows are unstable for Prandtl numbers P less than 0.543.
This property presumably will lead to the phenomenon of weakly nonlinear phase
turbulence that has been mentioned above.

..
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The analytical work has been extended and checked by a numerical investi-

gation of the stability of convection rolls. This numerical work exhibits one

additional instability, the oscillatory instability which is well-known from

earlier work (Busse, 1981) and which bounds the region of stable rolls in the 6

(R,OL)-space towards high Rayleigh numbers for 0.86PA 1O. For higher Prandtl

numbers the zig-zag and skewed varicose boundaries cross and the maximum
Rayleigh number at which stable rolls can exist is given approximately by

RmaxZ Rc(l + 192/49P) (3)

It should be mentioned that the growth rate of the skewed varicose instability
vanishes in the limit of infinite Prandtl number. The result (3) thus becomes
irrelevant in that limit. Further details on the results of the numerical
computations can be found in the paper of Bolton and Busse (1984, submitted to
the Journal of Fluid Mechanics).
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GENERATION OF MEAN FLOWS BY CONVECTION

Friedrich H. Busse 0

The generation of mean flows by convection is not found in horizontally
isotropic layers heated from below which are the most studied examples of
convection flow. However, physical conditions introducing small anisotropies
can in principle lead to the new phenomenon of the generation if of mean flow
owning to the Reynolds stresses of the convection velocity field. Many con-
vecting systems observed in nature do indeed exhibit strong mean flows. The
zonal jets of Jupiter and the solar differential solution are but the most
spectacular examples.

The mechanisms of mean flow generation can be divided in three groups:

(i) The generation of a mean flow is an intrinsic nonlinear property of
the realized convection mode.

(ii) The mode at onset of convection is not associated with a mean flow;
but a more complex mode of convection setting in after an insta- 0
bility of the primary mode is associated with a mean flow.

(iii) The instability itself of the primary mode of convection involves a
mean flow. In this case the sign of the mean flow is arbitrary in
contrast to the cases (I) and (ii) in which the sign is determined

because of the quadratic nature of the Reynolds stress terms. 0

The generation of the zonal flows in the major planets in an example for
case (i) (Busse, 1983a). Case (ii) can be realized in a rotating layer heated
from below when the axis of rotation is inclined with respect to the vertical.
Strong mean flows were first observed in this case in the numerical experiment
of Hathaway and Somerville (1983). An analytical theory explaining this pheno-

menon on the basis of the transition to a time-dependent form of convection
owing to the Kuppers-Lortz instability was given by Busse (1982). The third
possibility was first noticed by Thompson (1970) in numerical model of the
moving-flame phenomenon (Stern, 1959). But numerical difficulties prevented
Thompson from exploring the mean flow instability. A simple semi-analytical
model of the mean-flow instability has been described by Busse (1972). 6

The temperature dependence of the viscosity leads to nonlinear terms of
similar nature as the Reynolds stresses. Thus it appears to be possible that
mean flows can be generated by convection even in fluids of infinite Prandtl
number, provided the viscosity depends on temperature. A simple model of
forced convection which exhibits a mean flow generated by this mechanism is 6

described in a recent review of the subject (Busse, 1983b).

0 5
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GROWTH OF THE EARTH'S INNER CORE

David R. Fearn

The core of the Earth is composed predominantly of iron together with a
small mass fraction of some lighter elements. Likely candidates are sulphur
and oxygen in the forms FeS and FeO respectively (Ahrens, 1980; McCammon et
al., 1983). Whatever the identity of the light component it has two roles.
First it must be present in sufficient quantities to give a mean core density
which agrees with seismic observations (some 10% lighter than pure iron), and
it must depress the melting temperature compared with that of pure iron. As

the Earth cools, freezing first takes place at the center of the core since
the liquidus temperature gradient is steeper than the adiabat (Stacey, 1977).
The subsequent evolution of the core is strongly dependent on whether the mass
fraction , of the lighter constituent is greater or less than the eutectic

composition e The simplest picture obtains when the core is iron-rich
( , E,,). Then the solid which freezes is nearly pure iron. This accumu-

lates to form a dense solid inner core while the remaining fluid which is
enriched in the light constituent is buoyant and drives convective motions in

the outer core (see Loper and Roberts, 1983 for a review). The alternative
(iron-poor) regime ( % > -e ) was first considered by Braginsky (1963), and he
discussed how a dense solid inner core might grow in this case. We pursue
this idea here, given motivation from the recent work by McCammon, et al.
(1983). They give arguments for oxygen being the light alloying element and
they estimate that the mass fraction of FeO is greater than that present in an
Fe-FeO eutectic mixture.

In an iron-poor core, the solid which first freezes is composed primarily
of the light constituent (for example FeO). As this is lighter than the
surrounding fluid it floats upward. In this manner the center of the core is
depleted in the light constituent and a variable composition layer (VCL) forms
in which the concentration of iron increases with depth. The VCL is thus
stably compositionally stratified. As freezing continues, the composition at
the center of the core moves towards the eutectic. If the eutectic is reached,
there is the possibility of the growth of a solid inner core of eutectic compo-
sition. Two causes of freezing are considered: (a) slow cooling over the age
of the Earth and (b) the relatively rapid increase in the central pressure
which took place during the accretion of the Earth some 4.5xi09 years
ago. The conclusions of the analysis depend on some very poorly determined
physical parameters but for both cases, there are good reasons to believe that
the presence of the inner core in the Earth is not consistent with an iron-
poor core. In case (a) we argue that because of the stable compositional
gradient, convection is unlikely to be an effective means of removing the
latent heat released by the freezing process and so the rate at which the heat
can be conducted away is the factor limiting inner-core growth (Fearn and
Loper, 1983). In case (b) the latent heat is not a problem since even if no
heat is removed freezing can still take place if the liquidus temperatu:e
gradient ITL / p is steeper than the wet adiabat. The principal problem
is reaching the eutectic. From the available parameter estimates the rate J/Ir
at which the central composition decreases with increasing pressure is small
so unless the initial composition is close to eutectic, the eutectic can never
be reached. This situation is exacerbated by the response of the eutectic
composition to pressure. For the Fe-FeS system e /dp < 0 and it may well
be that 4f./J< d/Jp. In that case, the eutectic can never be reached. Even
if the eutectic is reached there are further impediments to the growth of an

inner core.
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In the Earth, an inner core is present, but this may not be true in the
cores of other planets. It is therefore of interest to calculate the gravita-
tional energy released in the formation of the VCL. The light solid which
floats up out of the VCL will remelt when it finds itself once again above the 0
liquidus. This acts as a source of buoyant fluid and so we expect composition-
ally driven convection in the region above the VCL. Thus, useful gravitational
energy is released even in the case of an iron-poor core and the presence of an
inner core is not a prerequisite for a gravitationally powered dynamo.
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MAGNETIC FIELD GENERATION BY CONVECTION I.
BACKGROUND; WAVES AND INSTABILITIES

David R. Fearn 0

Since convective motions are believed to be responsible for driving the
geodynamo, it is important to understand the properties of convection in the
environment of the Earth's core. The influences of rotation (with frequencyl.)
and of a strong toroidal magnetic field B are certainly important and have
been studied by many authors (see Eltayeb,1981 for a recent review). In 0
models applicable to the core it is found that rotation inhibits convection
because of the geostrophic constraint and the influence of the boundaries.
The effect of a weak magnetic field is to relax the geostrophic constraint and
the critical Rayleigh number Rc is inversely proportional to the Elsasser
number A - B2 /2-ae'rt wherej is the magnetic permeability, e the density

and 7L the magnetic diffusivity. The Elsasser number may be thought of as a
measure of the strength of the Lorentz force compared with the Coriolis
force. When A becomes 0(1), Rc reaches a minimum and for A, 0(1) the
magnetic field adopts an inhibiting role with Rc c A . All this is well
established, but the picture becomes more complicated when we move towards a
more realistic model of the core and include the influence of differential
rotation and allow for instabilities of the magnetic field. S

There are several contributions to the differential rotation in the core
(see for example Braginsky 1975), but for the purposes of an initial investi-
gation, it is sufficient to arbitrarily prescribe a flow and study Jt, influ-
ence on convection. A simple model consists of a rotating Benard layer with
an applied magnetic field B - Bs and flow U - UsJL(z)$ where (s, 1 ,z)
are cylindrical polar coordinates and B and U are constants. This problem
illustrates the inhibiting role of differential rotation. The critical
Rayleigh number increases with the magnetic Reynolds number Rm - UI/YL
(where 1. is a lengthscale) and the convection becomes concentrated in the

narrow region in which diffusion can be effective in counteracting the shear.
The region is a critical layer centered on the location where the phase speed
of the instability equals the differential rotation speed. The details of the
problem depend on the diffusivity ratio q -,/t where , is the thermal

diffusivity. The plane layer model is restricted to q = 0 and, in this case,
only the temperature perturbation is concentrated [typically in a region of
width (Rm/q)-i/3 when (R/q) I ] (Fearn and Proctor 1983b). Less 0
detailed studies are available for nonzero q in a spherical geometry and these
suggest that the perturbations to the magnetic and velocity fields become
concentrated when Rm>> 1. Since this is precisely the limit which is of
interest for the nearly axisymmetric dynamo (see part II of this talk by
Proctor), concentrated convection and hence concentrated generation of

0 magnetic field are likely to be features of a convection driven dynamo, and
may well cause resolution problems when a numerical solution is attempted.

Two mechanisms which act to oppose field growth have already been

mentioned. The critical Rayleigh number increases both with the differential
rotation and the field strength, while the toroidal field strength itself
increases with Rm. Thus whenA>0(1) , if the field grows, it acts to 4
suppress the convection which ultimately generates it. There is a further
mechanism which may be important in limiting the growth of the field;
instability of the field itself. There are many types of instability.
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Some require too high a field strength and others operate on too long a time-

scale to be applicable to the geodynamo, but others may be important. One
example is the field gradient instability. For a field B = B(s)^ , this is
locally unstable where B increases with a faster than si5 (Acheson, 1983),
and the field is strong enough to maintain the instability against diffusive
losses. Numerical work (Fearn, 1983) has confirmed the presence of this
instability and also displayed the presence of another (Fearn, 1983, 1984) . -

which is resistive, and is found in the vicinity of a zero of B(s). These
instabilities have been studied in detail in a cylindrical geometry. Little
is yet known about their behavior in a more realistic spherical geometry nor
about their nonlinear development so any application of these ideas to the
core must remain very tentative. It seems probable, though, the instabilities
deriving their energy from the strong toroidal field must play a role in
determining the shape of the field and its maximum strength.
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MAGNETIC FIELD GENERATION BY CONVECTION II

A SELF-CONSISTENT DYNAMO MODEL

Michael Proctor

Any attempt to construct a self consistent-dynamo model for the Earth must
first address the question of the strength of the toroidal field. If the

toroidal field B Zi(B ), the poloidal field, then the Elsasser number

A -<<i (1)"

where 4I is the rotation rate, ,the permeability and density and & the magnetic
diffusivity. In this case convection is constrained by the Coriolis force, and

has a columnar nature (see Fearn, this volume, page 125). The separation of 0

scales has recently been exploited by Busse to obtain a relatively simple set

of equations describing the evolution of the fields and flows. We, however,
prefer to concentrate on a model in which B ':P( 1 , and A - 0(I). This
corresponds to a zonal field strength which is most favorable for convection,
and to concomitant zonal velocities which seem to be compatible with the

* westward drift of the nondipole geomagnetic field. However, the convection in 0
this regime is of global scale and so a numerical treatment is necessary
(Fearn and Proctor, 1983a,b). We construct the dynamo by finding the most

unstable convective mode for a given axisymmetric toroidal field B (normalized
to have maximum value unity). Then the mean electromotive force E =th5is
calculated, where /.,> denotes a zonal average and L and 6 are the convective
velocity and magnetic fields. Then the vector potential A for the axisymmetric ..
poloidal field =Vx(A )1 can be calculated from the relation

+ =1 )A - -T7SA' (2)

where s is the distance from the rotation axis and U? the mean poloidal

velocity. (2) is derived by taking the average of the induction equation, and

considering its poloidal part. This determines A up to an arbitrary constant

factor (since the magnitudes of W , are arbitrary at this stage). Then B

is calculated from the 41 component of the induction equation, namely

* s~~~pS7(/s) g .91 U/s)L ~ &(3

where the term (Vx)t is neglected in accordance with the scaling 86 >I)8].
The mean velocities 4 andlkp are not determined by the theory as yet, but

will, we hope, emerge-naturally in future extensions of this work. When the

new B field is normalized (by adjusting the amplitudes of A, and AL ) it

will in general differ from the original B. Then the procedure is repeated 0
until successive values of B coincide. This program has been successfully

used for a number of different forms of U and Lt . (See Fearn and Proctor

1984 for a preliminary report.)

The first step towards a more complete theory is to understand the dynamics

of the mean flow. In the magnetostrophic approximation relevant here viscous

and inertial forces are ignored. Then the zonal velocity U is only determined

0 °'S
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up to an arbitrary geostrophic flow UG(S), and a solution is possible if,

and only if, the "Taylor condition"

0() V,(l ) , Ap ( (4)

C103
is satisfied, where C(S) is the surface of a cylinder of radius S coaxial with

the rotation axis and inscribed in the core. Since UG(S) appears in 0

equation (3), one hopes that UG is determined (up to a solid body rota-
tion) by (4). It can be shown by example that there are certain rather special
fields for which such a solution is impossible, but in general a compatible

magnetostrophic state exists. We find solutlons by solving (2) and (3) for

fixedtand &tp (and so fixed A), setting U = U (S,Z) [ prescribed] + UG(S)
and attempting to satisfy (4). The technique employed is to minimize

ZT'S& by varying UG(S), J - I ---- m [m < n) and fitting a smooth
function to U(o(Si) using hebyshev polynomials. This iterative process

will be included in future models.

The procedure described above for finding B says nothing about the sta-

bility of the evolved state. A lumped parameter model has been developed to S

test this, which in its simplest form consists of the three odes

A A-1 (5)
tesEg-M A

where E is measure of the kinetic energy of the convection and R is the S

Rayleigh number. This equation can be shown to have stable steady solutions

in a certain range of R, which goes some way towards justifying the method.
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NONLINEAR OSCILLATIONS IN DOUBLE-DIFFUSIVE CONVECTION

4! Michael Proctor

Double diffusive convection effects can arise in a variety of ways. Apart

from the conventional thermohaline problem of interest in oceanography there
is the situation of convection in a rotating layer and convection in the

presence of a magnetic field. In the last two cases the system would support
waves (respectively inertial and Alfyefh) in the absence of heating or diffu-

sion, and waves of these types can be destabilized by an unstable temperature

gradient provided that the thermal diffusivity is sufficiently great. We con-
centrate on the magnetoconvection problem here, and attempt to answer the

question of the range of parameters in which oscillations can be expected to

occur. A full description of most of the conclusions of this lecture appears
in the review article of Proctor and Weiss (1982). We support the imposed g

magnetic flux to be vertical, and adopt the Boussinesq approximation.

The dynamics depends on the four dimensionless parnmeters

R (Rayleigh No.) proportional to temperature contrast

(Chandrasekhar No.) proportional to the square of the magnetic
flux

L (Prandtl No.) viscosity
thermal diffusivity

magnetic

thermal diffusivity

Oscillations can occur provided S< I and Q exceeds a critical value that
depends on * If we focus on two-dimensional motion we can define scaled

Rayleigh and Chandrasekhar numbers I , q by the relations 0

R = Rot Ro = (T4or /0

- Qoq 0o " r+1 /

where I and b represent the vertical and horizontal wave numbers of the

disturbance field in linear theory. Ro is the critical Rayleigh number for
the onset of convection when 0 =. Then if S.I and -"(I+ff

there is a simple bifurcation of the static state at -.

~• )

* -it) +9/, (2)

.. and a Hopf bifurcation at

It e

weakly nonlinear perturbation theory then tells us that branches of steady and
oscillatory solutions bifurcate at 04) and j-1o) respectively. The steady solu-
tion branch is always unstable at small amplitudes while the oscillatory branch
is typically supercritical and stable locally. Essentially two distinct cases

arise, as expressed in figure 1, showing sketches of amplitude squared
against 1.j S

.. *. .. . . ..- *.. . ... '
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Figure 1

It should be noted that figure 1 shows only behavior for small a 2 : at icTier
amplitudes the steady solution branch may turn back to reach a value lower than(0).

It turns out that the branch of oscillatory solutions always terminates on

the steady solution branch. If, at the point of conjunction the gradient
d(aL )/dl- of the steady solution branch is negative, the termination is via
a heteroclinic orbit of infinite period. If, on the other hand d(')/)I->o
the termination occurs via a Hopf bifurcation.t In the former case if the so
called "Shilnikov" condition or the eigenvalues of the perturbation equations
from the steady branch is satisfied, the oscillations may break down via a
sequence of period doubling bifurcations (See Knobloch, Weiss and DaCosta,
1981). It turns out that in the limit << 1 almost all the interesting
behavior may be described by the following third order system of equations

0. a +a-3)e- .

e (4 e+ 
" "

where Z 1T = 4 7 t/ V) and a represents the velocity amplitude, and d and e the
two most significant spatial components of the magnetic field. These equations
are easily derived from a fifth order system described in Knobloch et al.,
1981. Numerical integrations are not yet complete, but they do show the
existence in some parameter ranges of two branches of oscillations. To find
an even sim.ler description of this phenomena, we may further reduce the
equations when W Z 2 (corresponding to square convection cells). By
setting =2- and rescaling a, d, and e appropriately for small , we ...
arrive at the canonical system

+ a I-a-

(where q is a measure of q and a measure of 1/q) which has been integrated
numerically. The results are reproduced below (fig. 2). For small q, the
oscillatory branch always ends at a Hopf bifurcation, and there is a region of -"--.
stable vacillation near the bifurcation point. As q increases the oscillatory
branch intersects the steady branch, leading to two heteroclinic orbits. The
one marked A in the figure persists for layer q, while the other becomes

* confined to a smaller and smaller region, finally becoming vacillatory and
* vanishing when q =1.

See e.g. Knobloch & Proctor (1981). S

. .. . . . . ..
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Figure 2

,Thus the behavior of the oscillatory modes in this simple Boussinesq problem
is now understood. The next task is to extend the theory to compressible S

convection and thus produce results that can be related directly to convection
in the solar photosphere in the presence of strong magnetic fields.
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PREFACE

The Minisymposium on Geological Fluid Dynamics

All geologists know that every spot on the face of the earth has moved, S

and is presently flowing - but so slowly that the present flow is immeasurable.
If we could stand like the man in H. G. Wells' short story "The Time Machine"
and watch the earth and mountains with a time compression of one second of our
time equal to one hundred thousand years of earth time, and with a space com-
pression so that what is to us ten centimeters Is really ten kilometers, the
earth would look like a vat of boiling pitch. Some important geological pro-
cesses would occur too quickly. Thus erosion would resemble a giant sanding
machine and volcanism would occur, at least on the surface, as instantaneous
eruptions. There would be a new Hawaalan island every ten seconds and the
suggested 20,000 year cycle of volcanic crust emplacement at spreading centers
would occur at the rate of five per second.

But we do not need a miracle machine to see these upheavals. The fluid S

mechanics scaling laws laid out almost a century ago allow such compression to
be realized in vats of sugar/salt solution, in tanks of syrup or in numerical
experiments. Moreover, we can analyze simple problems to sharpen our focus
and dive deep in the earth with no problem.

In our minisymposium on Geological Fluid Dynamics ideas were presented
with full interaction between fluid dynamicists, petrologists, field geol-
ogists, and geophysicists. The studies centered around mixing processes by
magmas and raised the issue of the consequences of large viscosity variation
upon transport processes - a field of fluid dynamics which is virtually unex-
plored and indeed hardly even thought of until now. After three days of dis-
cussion we were refreshed by a field trip to a nearby site where two lavas of
different viscosity merged, but did not mix a "short" time ago (forty to eighty S
million years ago).

Funds for travel by the participants and for participation by R.S.J. Sparks
in the summer program and for a visit to Woods Role Oceanographic Institution
were provided by the Geodynamics program of the Center for the Analysis of
Marine Systems.

................................................ ...................................
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DENSITY VARIATIONS IN MAGMAS:

FLUID DYNAMIC IMPLICATIONS

R. Steven J. Sparks

Both compositional and thermal effects on density influence convection
within magma chambers. Consequently it is important to assess the relative
contributions of composition and temperature to the density of magmas, par-
ticularly during crystallization and melting processes. Recent studies
(Sparks and Huppert, 1984) have shown that during fractional crystallization
of basaltic magmas the compositional changes during an increment of fractiona-
tion are generally much larger than associated thermal effects. Sparks and
Huppert (1984) introduced a parameter called fractionation density, which is
defined as the density of the fluid component being selectively removed by
crystallization:

(1)

where Mc is the gram formula weight and Vc is the partial molar volume of
the components being removed from the melt into the crystals. When <*, is
greater than the melt density, the residual melt decreases in density. When 'C.

is less than the melt density, the residual melt increases in density. In the
case of basaltic magmas olivine and pyroxenes have fractionation densities
greater than the melt. However, plagioclase has a lower fractionation density.
Consequently, density will initially decrease in basalt differentiation, but
can often increase when plagioclase joins in as a crystallizing phase. -

With a quantitative understanding of density variations and present
knowledge of convection in crystallizing fluids, new insights into the
evolution of igneous rocks can be obtained. Compositional stratification can
be caused by repeated replenishment of magma chambers by dense primitive magma
or by sidewall crystallization. Mixing in magma chambers can be caused by
compositional convection and replenishment by low density magma. There is a
wide range of geological applications of these ideas (Huppert and Sparks, 1984;
Sparks et al., 1984).
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THERMAL AND COMPOSITIONAL ZONING
IN THE FAMOUS AREA: •

EVIDENCE FOR A ZONED MAGMA CHAMBER

Wilfred B. Bryan

Precisely located basalt samples from the floor of the median valley in

the FAMOUS area, Mid-Atlantic Ridge, show a systematic pattern of compositional
zonation, from the center to flanks of the valley, over a total width of about
4 km. Contours draw through compositional parameters also close across the
valley, north and south of extrusive volcanic hills represented by Mt. Pluto
and Mt. Venus, over a distance of about 10 km. Ages of the extrusive basalts
are about equal, and range from a few hundred to about 10,000 years, based on
calibrated measurements of manganese oxide coatings on rock samples. Thermal 0
and density variations calculated from compositional data indicate a tempera-
ture of about 12500 C for the central lavas, and about 12000 C for flank
lavas. Magma density ranges from about 2.70 in the valley center to about
2.80 on the flanks. Although many lavas are almost free of suspended crystals
(phenocrysts), some basalts on the west side of the valley are distinctly
enriched in plagioclase (density - 2.72) while some basalts just to the east 0
of the valley axis are enriched in olivine (density - 3.4).

These relationships are interpreted as reflecting compositional and phy-
sical zonation in a shallow (1 - 2 km depth) magma chamber beneath the median
valley. A tectonic event associated with spreading apparently opens fissures
that inject hot, relatively light magma into the base of the chamber, and also 0
causes cracking of the chamber roof and eruption of lava on the valley floor.
Hot, relatively light magma rises as a plume through the center of the chamber
and erupts in the center of the valley; colder, denser magma settles along the
chamber walls and also is erupted from fissures along flanks of the valley. At
least locally, the chamber may have the form of an inclined, asymetrical lens,
allowing plagioclase to float to the high apex on the west, and olivine to "
accumulate by settling to the lower side of the lens on the east; disruption
of these cumulate zones during eruption may create the mineralogical asymetry
in some of the basalts.

Other geochemical complications include an excess enrichment of volatile
4 components (H20, CO2 ) and of certain incompatible trace elements. These

are "in excess" in the sense that they are concentrated in two to three times
the amount predicted by simple, single-stage crystallization of the observed
central magma. One possibility is that the flank magma evolved from a previous
batc' f parental magma that was initially more enriched in volatiles and in
the I.,compatible elements. A second possibility is that these enrichments
developed from the continual rejection of residual liquid from crystal networks 0
accreting to the cooler walls of the chamber. Both the physical and geochemi-
cal constraints on these alternative models are being investigated.

40
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CRYSTALLIZATION AND COMPOSITIONAL
CONVECTION IN POROUS MEDIA:

A MECHANISM FOR PRODUCING ADCUMULATE ROCKS 0

Ross C. Kerr

Huppert and Sparks (1980 a, b) have developed a fluid mechanical model of
a replenished basaltic magma chamber. In order to test this model, Steve Tait S
and I have collected rocks from Unit 10 of the Eastern Layered Series of the
Rhum Intrusion in North-West Scotland. This unit consists of 65 meters of an
olivine cumulate rock called peridotite, overlain by 15 meters of gabbro.
Tait's (1984) analysis of the olivine crystals has shown that they are virtu-
ally uniform in Mg/(Mg + Fe) ratio, Ni content and Sr8 7/Sr8 6 ratio. These
geochemical observations demonstrate that the olivine crystals nucleated and S
grew in suspension (as predicted in the Huppert and Sparks model), before they
settled out to form a porous medium of crystals at the base of the chamber.
If the magma in the porespace had been solidified without any further fluid
mechanical processes occurring, the porespace of the observed rocks would have
consisted of a variety of chemically zoned minerals (orthocumulate texture,
Irvine 1980). The peridotites, however, contain large, unzoned, poikilitic S
porespace crystals of pyroxene and plagioclase (adcumulate texture), which
together do not make up any plausible magmatic composition. A process is
therefore required which can remove from the crystal pile porespace magma
depleted in the chemical components necessary for the growth of these unzoned
porespace minerals.

Kerr (1984) and Tait (1984) propose that the adcumulate textures of the
Rhum peridotites is due to compositional convection in the unconsolidated pile
of olivine crystals. Such compositional convection occurs whenever inter-
cumulus crystallization decreases the density of the porespace magma, and will
result in chemical exchange between the porespace and the overlying magma
chamber. 5

We have modelled this process experimentally by cooling and crystallizing
from below aqueous solutions of CuSO4 and Na2SO4 , partially contained in
porous media consisting of glass spheres. Such cooling resulted in the nucle-
ation and growth of CuSO4 .5H20 and Na2 SO4 .1OH 20 crystals, and the
release of light depleted fluid. Convection takes the form of rising fingers 5
of this depleted fluid in the porous medium. The experiments were performed
with spheres of varying diameters, and hence varying permeability. They
demonstrated that adcumulus growth occurs whenever the convective velocities
in the porespace are significantly greater than the rate of solidification of
the porous medium. Our scaling of these quantitative results to the Unit 10
peridotites shows that this process is consistent with the observed amount of S
adcumu]lus growth.

Experiments have also been performed in order to determine the rate of

convective exchange between a magma contained in a cumulate pile and a large
volume of heavier, possibly less viscous, overlying magma. Descending fingers
of heavier magma descend into the porous medium with a velocity 0

T9-4-So, s
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where 44 is the difference in the density of the two magmas, k is the perme-

ability of the porous medium, g is the acceleration due to gravity, C is the 0
porosity of the porous medium andA.& and,: are the lower and upper layer
viscosities. This velocity is sufficient to enable a layer of replenishing
magma to exchange significantly with the underlying cumulate pile, profoundly
changing its porespace chemistry.
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FRACTIONAL CRYSTALLIZATION
ASSIMILATION AND MAGMA MIXING

Timothy L. Grove

Some of the factors that allow tholeiitic and calc-alkaline differentiation
trends to be generated from a common basaltic parent melt are discussed and
liquid lines of descent for the two divergent trends are calculated. Phase
proportions and compositions measured in 1-atmosphere experiments on natural
basalts are used as input to calculate the tholeiitic trend, and high pressure
phase proportions, inferred from phase equilibrium studies on natural compo-

*sitions, are used to calculate the calc-alkaline trend. An important control
* *on the development of the contrasting tholeiitic vs. calc-alkaline trends is

the proportions of olivine, plagioclase and pyroxene that crystallize from the
basaltic parent melt. The tholeiitic trend is produced by fractional crystal-
lization of a basalt magma at low pressures. The crystallization sequence is

*. olivine, followed by plagioclase, followed by augite, and plagioclase dominates
* the assemblage. The calc-alkaline trend develops when olivine, calcic plagio-
*[ clase and augite crystallize in nearly equal mass proportions. This phase

assemblage precipitates under conditions of moderate pressure and water under-
saturation in the middle to upper crust. Liquids derived by such a process S
can evolve to andesites and dacites by continued crystallization involving
plagioclase, orthopyroxene, pigeonite, augite and magnetite. The assimilation
of a crustal component by a fractionating basaltic melt and the mixing of
basaltic liquids with siliceous residual liquids produced by either fraction-
ation or fractionation aided by assimilation are additional process that assist

* in the production of the calc-alkaline trend.

* . . . . . . . * .* * . * "" *
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A DISCUSSION OF THE DYNAMICS OF PARTIALLY

MOLTEN/SOLIDIFIED SYSTEMS 0

David E. Loper

There are a number of geophysical-fluid-dynamical systems which may be
characterized as partially solidified. The phrase "partially solidified"
means that the fluid is in contact with the corresponding solid phase and that
change of phase can and does occur as the system evolves. Typically the fluid
and solid are in intimate contact throughout a volume rather than at a surface.
There are two configurations for this mixture of solid and liquid that occur
quite often. The first is a "mushy zone" in which the solid crystals form a
(nearly) rigid open network while the fluid fills the voids between the
crystals. The second is a "slurry" in which the solid crystals are dispersed
throughout the fluid. In this discussion, these two configurations will be
described and Boussinesq-like equations governing their dynamical behavior
will be presented. Much of the following is based upon three papers: Loper
and Roberts (1978, 1980) and Hills, Loper and Roberts (1983).

* Although most geophysical systems such as magma chambers are composed of
many constituents, the essential features may be modeled by considering a
simple system of two constituents. We will refer to the principal constituent
as A and the minor or impurity constituent as B. The thermodynamic state of
the system is characterized by three variables: pressure, p, temperature, T,
and mass fraction of B, . The system may be characterized as partially
solidified if the state variables p, T and lie below the liquidus and
above the solidus or eutectic line; that is, within the hatched region of
Figure 1.

p constant

"0
T 5

S"
13?

* --

L = Liquidus
S = Solidus

E - Eutectic

. . . . .. . . . . . . . . .
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A Boussinesq-like set of equations for the flow of fluid in a mushy zone
is:

L (3)

7-CT/D L7 T - Z1-/_ S4)/ (4)* 4

L7_ • L - = (6)

=~~~~. r, - (T- -

In this model the solid matrix is assumed to be rigid and its velocity

is known and prescribed. In this case the familiar continuity equation

S-C)

leads directly to (1) when the barycentric velocity is expressed as

where th = _ is the velocity of the liquid relative to the solid, and
-. is the mass fraction of solid.

Equation (2) governs the conservation of constituent B in the liquid r

phase; L_ is the mass fraction of B in the liquid. The value of L- within a
parcel can change due to the familiar diffusion of B down the concentration
gradient in the liquid (solid diffusion is ignored); this effect is represented
by the first term on the right hand side of (2) with ) being the material
diffusivity. The second term on the right hand side of (2) represents the
change of due to melting and freezing. The parameter is the alloying
fraction:

where is the mass fraction of B in the solid. Clearly 0 :S .'I; we
* assume A = constant. Note that .

-D /_ t t) t S /D> t 4 /3 t + -Y Z _ii::

In the mush, conservation of mass reduces to D'Arcy's Law (3) where t is
a (constant) reference density, L) is the kinematic viscosity, ' is the
permeability, P I is the density of the liquid and is the acceleration
of gravity. The liquid density can vary with temperature or composition (6);

*. isothermal compressibility is n7lected. The permeability is a function
of the mass fraction of solid ; this is equivalent to the usual
permeability - porosity relation. This is an important relation, being the

macroscopic parameterization of the microscopic pore structure. The relation
Y{I) makes the set of equations strongly nonlinear and difficult to solve.

.. i.." ." ." .... '. . . . "... . ". 
o
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The energy equation (4) has a volumetric source term representing the
Ira latent heat released due to solidification, with L being the latent heat; the 0

remaining terms are standard.

Equation (5) is a linearized version of the liquidus relation

with

being the variation of chemical potential with composition and

being the change of specific volume upon melting.

These equations include a number of important physical effects, with
* perhaps the most interesting being the formation of pipes and chimneys. 0

Generally flow toward the source of cooling induces deposition of solid and
flow away induces erosion. The process of erosion changes the permeability
which, in turn, changes the structure of the flow. Often this results in
pipes or chimneys in the mush, through which relatively vigorous flow occurs.
On the other hand, there are several important effects not included. The most
important of these is deformation of the solid which allows for compaction and
expulsion of the liquid from the solid. Also not included are Taylor disper-
sion and the effects of surface tension (e.g., Ostwald ripening). Efforts are
underway to incorporate these into model.

The set of equations (1) - (6) governs the flow of the fluid portion of the
system in the case that the solid forms a rigid porous matrix. If the solid is
in the form of discrete unconnected particles, i.e. a slurry, we must formulate
equations for the system as a whole. These are

(7)

_ (8)

|+ V

..... ...>-_.

_ -(9)

.. V.. - P "T

C, •DT Dt c

-, L- _(10)

-i. .- ,. .- -°..........-"....."".-..".-..."........"...-.............-..... ..-....",............."............."...".....,.............o. -, -'



-142 -

In this model we have set the alloying fraction to zero to avoid the
complications of history dependence. Now the total mass fraction of B is
given by

~L

and, in the limit

4 «1

the material diffusion term takes the form given on the right-hand side of (8).
The last term on the right-hand side of (8) represents the local change of
composition due to sedimentation of solid particles of density /05 in a fluid
of density P,. The sedimentation coefficient is, in the limit 4<1, given by

b--(?Sp 2 ' /t,&z t 2 7( N )

where N is the number of solid particles permit volume.

One unusual feature of a slurry is that several of the familiar coeffi- . -

cients take on distinctly different values with solid particles present.
Specifically

S+

where

010
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BUOYANT MOTIONS WITH LARGE VISCOSITY DIFFERENCES
HAVE LARGE LATERAL MOTION 0

John A. Whitehead, Jr.

The low Reynolds number dynamics of a thin layer of fluid bounded below by
a flat horizontal boundary above by a fluid of another viscosity and greater
density is studied by means of model experiments and linear stability theory. S
Three distinct stages of growth were observed. The first stage is described
by a linearized Rayleigh-Taylor instability, in which disturbances of one
specific wave number grow most rapidly. If E is the ratio of the viscosities
of the thin layer to the viscosity of the thick layer, fastest growth is for
wavenumber E I/3 . In the second stage, distortion of the interface is large
enough to invalidate the linearized analysis. It is found experimentally that S

the fluid moves upward as circular columns surrounded by relatively broad
regions of descending material. In the third stage, fully matured structures
are formed. If the upwelling material has greater viscosity than the sur-
rounding material, the structure is a long vertical column; if the upwelling
material has less viscosity than the surrounding material, the structure

develops a rim syncline and a pronounced overhang and eventually ascends as a S

spherical pocket of fluid fed by a conduit.

Next, a laboratory and theoretical study of the stability of conduits is
reviewed. In some experiments the upper fluid was sheared laterally so that
the conduit gradually rotated to a more horizontal position. The diameter of
the conduit increased with time due to a decreasing component of gravitational 0
force along the axis of the conduit. When the conduit was tilted to more than
600 with the vertical, it began to go unstable by developing bumps which
ultimately initiated a new spherical pocket which rose to a new spot. If the
Reynolds number of the conduit was greater than approximately ten, an axisym-
metric wavy instability appeared in the walls of the conduit and the conduit
had to be tilted less before a new chamber was initiated.

We then discussed the possibilities of such instabilities under spreading
centers. Typically, the formation, ascent and aggregation of magmas along the
mid-ocean ridges is regarded two dimensionally, and modelled in a section
through the crust and mantle across the strike of the ridges. We addressed
the problem with a new three-dimensional model for which we provide supporting S

geologic evidence.

In this model we postulate that a linear region of high-melt content exists

in the mantle below the ridge where melt aggregates from the rising astheno-
sphere. This region could be approximated as a cylindrical body with lower
viscosity and density compared to the overlying mantle. Under such a circum- 0

stance, a fluid will develop a gravitational instability leading to regularly
spaced vertical protrusions. We have conducted some simple experiments in
which a water-glycerine mixture was quickly injected into glycerine along a
horizontal line. Although this line will gradually rise because the water-
glycerine mixture is less dense than the pure glycerine, an instability will

always develop and lead to semi-spherical pockets. It is reasonable to expect S

that a linear region of partially molten mantle in the earth will behave in a
similar manner and will lead to more or less regularly spaced intrusions from
which the melt will ascend to form magma chambers at spreading ridges.
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Effects of viscosity variation in magmatic mixing between conduits and
surrounding fluid were then discussed. Steady state experiments with water
injected below an ambient layer of glycerine indicate that the general
mixing processes can be strongly influenced by the Reynolds number Rie =

(Q3g*/v i ,e5) I/4. Here Q is mass flux of the intruding fluid, g* is

reduced gravity and ) is viscosity of the intruding (Vi) or external (V e)
fluids. At small Ri there is a laminar conduit of buoyant material. As Ri
is increased at small Re, an axisymmetric wave grows (a varicose instability)
and at further increase there is some glycerine stripped off the walls. If S

Re is increased starting from the varicose state with Ri constant, there is
a transition to a nonaxisymmetric meandering state. As both numbers are
increased from any of these states, fine scale entrainment and detrainment get
progressively more intense until at Ri and Re of order 103 there is a
fully turbulent plume.

THE GENERATION AND COMPOSITION OF PARTIAL MELTS
IN THE EARTH'S MANTLE 0

Neil M. Ribe

The generation and composition of partial melts in the mantle are examined
using equations which describe the flow of two interpenetrating Newtonian
fluids which exchange mass, momentum and energy. The equations are applied to

a simple one-dimensional model in which mantle material rises at constant velo-
city Uo and undergoes pressure release melting. The liquid so produced (the
"melt") then migrates upward relative to the more dense crystalline residue
(the "matrix"). Solutions to the equations are obtained for two simple model
problems chosen to illustrate the dynamics of partially molten systems. In

the first model problem, mantle material rises at velocity Uo to a level S

z = 0, where a volume fraction 0 0 of the material melts. Above z = 0, the
melt migrates rapidly upward relative to the matrix, which undergoes a corres-
ponding deformation or "compaction". Solution of the equations for conserva-
tion of mass and momentum shows that compaction of the matrix occurs only in a
thin boundary layer whose thickness (the "reduced compaction length") is of
the order of 10-100 meters in the earth's mantle. Over most of the earth's
mantle, therefore, compaction can be ignored, and the migration of melt can be
accurately described by Darcy's Law.

In the second model problem, the upwelling mantle material is assumed to

comprise only two chemical components (Forsterite, Mg2 SiO 4 , and Fayalite,
Fe2SiO 4 ). Melting begins at some level z = zo where the material reaches S

its solidus. Above z = zo, melt and matrix coexist in chemical equilibrium.
The continuity and energy equations, together with the phase equilibrium rela-

tions, are solved to determine the temperature and composition (weight percent
forsterite) in the melt and the matrix as functions of height above z - zo .

An equation governing the conservation of a trace element is derived, and
solved to give an expression for the concentration in the melt as a function
of z. The solutions obtained are independent of the momentum equations, which
implies that the temperature and composition of the melt are independent of
the mechanics of melt migration.

"* "• S "
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LATE STAGE COMPOSITE DIKES IN THE
GRANITIC ROCKS OF THE SIERRA NEVADA:

CLUES TO THE GENERATION OF THE BATHOLITH ITSELF 0

John B. Reid, Jr.

A combination of field observations, petrography and geochemical data

suggests that mantle-derived basaltic magmas have played an important role in
the generation of the Sierra Neva.a batholith. These melts, traversing upward 0
through the overlying continental crust, provide the heat necessary to par-
tially melt it; subsequent mafic melts contaminate these crustal melts In a
complex series of mixing episodes to create the observed spectrum of granodior-
itic compositions. Injections of basaltic magma may also occur late in a

pluton's cooling history, creating microcosms of crust-mantle interaction that
hold valuable clues to the petrogenesis of the Sierra Nevada batholith itself. 0

Depending largely on the temperature (Ti) of the invaded granitoid,

basaltic injections may create a wide variety of textures. For Ti'T solidus,
the essentially unaffected host quickly chills crack-filling basalt. When
Ti-T liquidus, basaltic injections into large volumes of felsic magma chill
into rounded pillows that are represented in the eventual plutonic rock as 0
mafic inclusions. These inclusions may undergo subsequent dissolution in the
felsic host, contaminating it to intermediate compositions. (In regions
dominated by mafic melts, two-magma interactions lead to direct mixing without

the intermediate chilling event.) If Ti-'T solidus, the felsic host may be
sufficiently crystallized to undergo brittle fracture, and yet may suffer

subsequent partial melting when these fractures are invaded by mafic melts. S
Observations of closely related felsic and mafic materials in composite dikes

in the central Sierra Nevada suggest that many late stage felsic magmas are

created and in some cases contaminated by mantle-derived melts.

The central aim of this work is to understand the petrogenetic details of

these late-stage, small-scale dike systems with the hope that they will shed
light on the evolution of the much larger plutons whose long cooling times
have largely blurred the textural record of their petrologic development. At
Hell Hole Meadow along the periphery of the Mt. Givens granodiorite body is a
system of aplite dikes whose centers were filled with dark finegralned high-Si

andesitic magma prior to the complete solidification of the light colored
melt. In some regions, andesitic melts have chilled as pillows in the felsic
host; in others where less felsic melt was present, the andesite flushed the
still molten aplite with it, creating hybrid compositions by direct mixing.
Major and trace element (Sr, Zn, Zr, V) data for this dike system are strik-
Ingly rectilinear, and mimic trends created in the felsic part of the spectrum

of rocks in the North America Wall of El Capitan, and in the felsic rocks of
three larger plutons (Tuolumne, Mt. Givens and Eagle Peak). Petrographic S

textures within the mafic portions dike record its rapid solidification, and
closely resemble the petrography of the common mafic inclusions of the larger
plutons. The generation of the andesitic melts is not recorded at Hell Hole
Meadow. They are compositionally similar to high-Si andesites from Medicine

Lake Highland, California interpreted by Grove et al. to have evolved from
high-Al basaltic magmas by a combination of fractional crystallization and S
crustal assimilation.
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Although volumetrically insignificant on the scale of the batholith, the
late-stage injections have recorded a series of processes of interaction

g between mantle-derived basaltic melts (and their associated andesites) and
felsic melts created in the crust probably using heat contributed by the mafic
magmas. The dikes appear to provide valuable information about the evolution
of the very much larger plutons with which they share a wide range of texture
and chemical similarities.
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CONDITIONS IN THE MOUNT ST. HELENS MAGMATIC RESERVOIR
AND DYANMICS OF THE 18 MAY 1980 PLINIAN ERUPTION:

EXPERIMENTAL PETROLOGY AND PHYSICAL MODELING 0

Haraldur Sigurdsson and Steven Carey

Pre-eruption conditions in the MSH reservoir have been determined by
combined studies of glass inclusions in plagioclase phenocrysts in the 18 May
1980 dacite pumice and hydrothermal melting and crystallization experiments at
water-saturated and undersaturated (mixed volatiles) conditions from 0.1 MPa
to 320 MPa total pressure. The glass inclusion analyses (Table 1) show a
homogeneous rhyodacite liquid with major and minor oxide total of 95.4 wt. %
in 57 analyses after correction for beam-induced Na-loss. The oxide differ-
ence is taken to reflect 4.6 wt.% volatile content in the inclusions and hence
in the magma. Scandone and Malone (1984) independently estimated 4.6% water S

in the 18 May magma on basis of viscosity increase observed in the MSH
plumbing system during 1980. When glass inclusion compositions and tephra
matrix glass are recalculated to same total, the two are identical in
composition within one standard deviation. Fractional crystallization of the
inclusion liquid or the magma has therefore been insignificant after the
inclusion trapping event. Petrologic evidence thus indicates a rhyodacite S

liquid with 4.6% water, coexisting with 40% crystals of FL-OPX-AMPH-MT-IL in
the magma resevoir at 920-940 0 C and f02 = log -10. Temperature and oxygen
fugacity are calculated from composition of iron-titanium oxides, formulated

according to the technique of Stormer (1983).

Water-saturated melting experiments on the pumice where PTOTAL = PFLUID
do not reproduce the MSH phase assemblage or the glass and plagioclase composi-
tion at the observed temperature in the range 0.1 to 320 MPa. Under these

conditions the experimental glass composition is invariably too primitive com-

pared to the MSH liquid. Water-undersaturated experiments, on the other hand
(Fig. 1), reproduce both glass and plagioclase composition and dissolved water
content at the observed temperature, when PH O/PTOTAL = 0.5 to 0.7. The S
experiments indicate that the MSH dacite evolved in a magma reservoir at 220 +

30 MPa or 7.2 + km depth. This agrees closely with the 7 to 9 km estimate of
depth to the magma chamber (Fig. 2), based on seismic studies (Scandone and
Malone, 1984). These results indicate that the 18 May MSH magma resided in
the cupola of the reservoir. Progressively higher viscosity of magmas erupted

* later in 1980 indicate that the reservoir was zoned with respect to volatile S

content.

Dynamics of the 9-hour plinian phase of the 18 May eruption can be modeled
on basis of these results and field evidence of 1.8 x 107 kg/s magma dis-
charge rate. The water-undersaturated reservoir magma ascended in the conduit

0 at approx. 1 m/s. Saturation occurred at 4560 m depth or 125 MPa and exsolu- S
tion of gas continued as magma rises until 580 m (16 MPa) where the volume of

gas relative to liquid is 75% and where magma fragmentation occurs. Mass erup- ."-

tion rate, magma viscosity and independent estimates of magma ascent velocity

suggest a 94 meter diameter conduit linking the reservoir to the surface. Dis-
persal patterns of pyroclasts indicate a minimum exit velocity of roughly 200
m/s surlng the plinian phase. An upper limit of 310 m/s is obtained from the S
total amount of exsolved volatiles. Model-derived vent diameters based on 0.1
MPa exit pressure, petrologically-inferred magma properties and known mass
eruption rate, range from 98 to 122 meters with a flared vent configuration.
The calculated vent diameter, mass eruption rate and exit velocity define
conditions close to the transition between convective column rise and column* S



-148 -

collapse based on the model of Sparks and Wilson (1976). These results are
consistent with the sporadic generation of pyroclastic flows during a period
characterized mainly by a sustained eruption column. Transitions from
convecting to collapsing column were most likely triggered by slight
variations in eruption parameters, such as mass eruption rate, as is evident
from observed fluctuations in column height. In addition to the volatile
content, the high crystal content (40%) of the dacitic magma was an important
factor contributing to the style and dynamics of the May 18 eruption (Fig. 3).

TABLE 1. Composition of matrix glass inclusions and bulk

composition of May 18, 1980 MSH pumice

A B C H

Si0 69.90 (.87) 73.00 (.72) 73.50 62.81
Al 0 13.86 (.39) 14.60 (.28) 14.57 17.89
FeO* 1.93 (.31) 2.07 (.21) 2.03 3.91
MgO 0.56 (.11) 0.50 (.07) 0.59 1.70
CaO 1.92 (.20) 2.36 (.14) 2.02 5.29
Na20 4.77 (.29) 5.16 (.22) 5.02 4.88
K20 1.87 (.19) 2.18 (.11) 1.97 1.29

TiO 2  0.32 (.08) 0.36 (.04) 0.34 0.60
MnO 0.04 (.03) 0.09 (.03) 0.04 0.07
P 0 0.13 (.05) N.D. 0.13 N.D.
S 0.01 (.01) N.D. 0.01 N.D.
Cl. 0.10 (.03) N.D. 0.10 N.D.

TOTAL 95.41 100.32 100.32 98.40

NO. 57 17 3

A. Average of 57 melt inclusions analyzed in 33 plagioclase phenocrysts
from pumice SH-084.

B. Average matrix glass from SH-084 pumice.
C. Average melt inclusion (A) recalculated to SH-084 matrix glass total (B).
H. Bulk composition of SH-084.

* - Total iron as FeO.
- One standard deviation.

I - Sulphur, phosphorous and chlorine were determined as trace elements by

microprobe analysis at 25 kv, 0.03 A beam current.
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MAGMA MIXING

R. Steven J. Sparks

There are many geological relationships in volcanic rocks and intrusive

complexes, which have been interpreted as the consequence of mixing between
magmas with large contrasts in viscosity and solidus temperature. A method

has been developed in predicting the behavior of such mixing magmas. It is
assumed that the mixing magmas come to thermal equilibrium in a time scale
which is short compared to the time scale for complete mixing by stirring and
chemical diffusion. The physical properties of the magmas thus only depend on

the proportions of the magmas, and their liquidi and solidi. For any two
magmas the hotter and more mafic magma will be in one of three physical states

after mixing: a solid, a fluid with greater viscosity than the acid magma and
a fluid with lower viscosity than the surrounding acid magma. A diagram of
mixing ratio versus composition of the mafic magma can be divided into these
three fields. When conditions are such that the mafic magma becomes a solid,
true mixing cannot occur and mafic xenoliths form. Mixing can only occur when

both magmas are fluid at the same temperature. These ideas provide an explan-
ation for the selective mixing of magma types observed in the field.
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REALISTIC DOUBLE-DIFFUSIVE CONVECTION BETWEEN POROUS MEDIA

Andre Gorius

Abstract: A linear analysis of a general double diffusive problem between
porous slabs is carried out. General equations of thermohaline convection in
porous media and a new set of boundary conditions are considered, which show
significant differences with the ideal case of free-slip boundaries kept at
fixed temperature and salinity.

Introduction

This summer, we heard a lot about double-diffusive convection. Huppert,
e.g., presented us some nice modelizations of magma chambers, involving both
thermally- and compositionally- driven convective motion in a container, the
bottom of which was strewn with crystals (cf. the "Green" Experiment, Lecture
5, p. 29 ). Krishnamurti ( no mms received ) showed a first experimental
investigation of double-diffusive convection in the presence of a stabilizing
salt gradient, achieved by putting the experimental cell in contact with two
reservoirs through a porous membrane.

The monotonic instability has been discussed by Stern (1960) for a
horizontal layer of fluid where top and bottom boundaries were assumed to be
stress-free and at fixed salinity and temperature. Lieber and Rintel (1963)
considered the possibility of overstability for the same case, the only one
a ,itting a complete analytic treatment. Nield (1969) investigated the
influence of thermal and salinity boundary conditions for one free and one
rigid boundary. The present work will be devoted to the investigation of the
influence on the onset of steady convection of both thermal boundary con-
ditions and porosity of the limiting slabs for two rigid boundaries. A linear
analysis is carried out which shows that when the thermal boundary conditions
are close to the so-called "fixed heat-flux" conditions, the marginal stability
curve in the RT-RS plane is no longer a straight line, as in the ideal
cases (fixed T and S), but a curve which is concave towards the origin. The
analysis for porous limiting slabs shows that small porosity does not affect
significantly the results of previous calculations, as long as no salt gradient
is present. The presence of a destabilizing salt gradient then consists of a
significant decrease of both critical Rayleigh and wave numbers, even for
small porosities.

I) The Equations of the Problem.

Let us consider the following situation:

T) S,

N> Flu;cJ

d.h_ __ _ _ _ _ __ _ _ _.

To*A+ T0 & + ° A
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The planes z ± (1/2 + h±)d are assumed to be held at fixed tempera-

j ture and salinity. The porosity T of the solid slabs is defined as the volume 0
fraction of the pores present in those materials.

1) The equations

In the Oberbeck-Boussinesq approximation, the equations in the fluid

(-1/2 . z a/d K + 1/2) are (Chandrasekhar, 1961; Yih, 1965):

f: (o +Lf ; A[-

?e c r v r() 0

-vL 1-

The dependent variables are the velocity v = (u, v w), density , pressure

p, temperature T and salinity S. and 3. are, respectively, the
coefficients of diffusion of heat andsalt in the liquid. The equation of
motion in the porous medium is obtained following Busse and Joseph (1972) -
replacing in equation(3) the frictional force by a term proportional to -V,

where = (U, V, W) is defined according to Darcy< law as an average over the

microscale of the porous medium. Thus, the equation of motion writes:

where P= Po"Af is the density of the liquid filling the pores and thus is

the same as in equation ,T is the pressure field and D is Darcy's law co-
efficient, depending essentially on the dynamic viscosity f of the liquid,
the micrvcale S of the medium and its porosity S . There is no nonlinear

term in V in this equation, according to Irmay (1958).

If e and L are the temperature and salinity fields respectively,

Aj f[ LP~CZ )oG-®o)J t
The derivation of the equation of heat is made via the assumption that

*" there is no temperature difference between the solid itself and the fluid which

it contains.

' More precisely, the timescale of heat exchanges between the solid and
the fluid in the pores is assumed to be much smaller than all other diffusion
timescales.
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We can then define Q as the local temperature in the (solid + fluid)
mixture. The equation of heat then becomes: L

L L 0] .1. L L -64 RT(J ( (g)

wbere the subscripts L and S represent, respectively, the fluid and the solid.
is defined to be the effective heat conductivity of the (solid + fluid)

xture.

- IL
Defining L-- (.pe .+(A-()-c . r-- i _

- ec,, -

and ( (effective heat diffusivity)

This equation takes the form

The equation for the salinity . Is derived in a similar way and leads to

j _q " I r. (AO)
where ;(V is the effective salt diffusivity of the (fluid + solid)
mixture. Adding the continuity equation to the previous ones, we can write
down the set of equations in the solids:

-V -4 o - V.,

~~7 (44)

2) The boundary conditions

Mechanical: We assume continuity of both vertical stress and vertical
velocity at the solid-fluid interface, considered as a rigid boundary. Thus,

* for z= + d/2, S

f~oV L47 + p T[ ::.::.
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Using the continuity equation ( 2 ), the relations ( F? ) involve L4.- 0,
so that these conditions become, for z = ±d/2

In the planes z = + (1/2 + h+)d, we shall assume impenetrability conditions,

so that we have

at z = (1/2 + h±)d, W = 0

Thermal: We assume continuity of temperature fields and fluxes it the
fluid-solid interface: at z = + d/2,

G=T
- ci We = RL DT - fq -9T

the condition (16) then allows us to rewrite the last equation as

At z = ± (1/2 + h+)d, we assume fixed temperatures, so that

at z = +(1/2 + h+)d, =T o

at z = -(1/2 + h-)d, 0 "= To + A To

Salinity: Similar conditions hold for S andZ -'

at z ±d/2, 7 = S

and L&

so that -~ ~

at z = +(1/2 + h+)d, = o

at z = -(1/2 + h_)d, o= SO + As0

3) The steady state solution

The equations ( A-A ) together with the boundary conditions admit 5
the steady state solution

T= To -):- tTT + T in the fluid

+ +To in the upper solid

S-4 Q )- 7 4- To + ATO in the lower solid

/" . " " - ' .. ' o '. . - "j *- " # . " '" . . "-". " " . "° . ' " " . , ' . '. °" . J " -" " "" -". . " -" .-0 "
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*where4.h)

z0

and ATL is the effective temperature difference seen by the fluid

_TL- A4_+ (ISh- 'eSL

The equations for salinity are formally the same, with $ .' I C'4)
and ASL , - "-Ao replacing respectively IT and t TL.

4) The nondimensional equations 0

Let us scale the lengths with d, the pressure with %P!T/dl and the

velocities with r /4 • The temperature and salinity scales will be taken
respectively as ATL and ASL. T, S, 1 ,7- will denote now the deviations
from the linear profiles To, Sooto0 .0 respectively, and all the terms
which can be written as gradients will be included in the pressure terms VfO

* and Vi't'

The equations thus become

-4 - (-P3)...
V. 0 o5

L9 0 - 0,,- 7--:---~+~'II -Vr t4 +(RTT- RsS)~ (20)

T+ VT L&+VT(Z4

SV.V:O

DLE+t~V~ 1)W r / V/ VC) (2.5) h/;

4( IS + 1/s V ()

iV .

In those equations T- and are thermal.--
V___ and nn. A are thra

and compositional Rayleigh numbers respectively. They represent the con-

straints applied to the system.

G"=I /j. and ? .!/ are the Prandtl and Lewis numbers and are intrinsic
properties of the considered fluid. is the nondimensional Darcy
coefficient. -L

S
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In the new definitions of the pressures f and Tr appear three inte-

gration constants, which can be chosen so that the continuity of the pressure

i field leads to the same equation as before: 0

at z ±1/2 PF'=•

so that the boundary conditions become, in dimensionless form

at z - +(1/2 + h+) W: 0

at z - ±1/2 W C&pW" 0 p'wt

T XT; G<XrT

II) The Perturbation Analysis

Let -v- (u, v, w), I= (U, V, W), T, S, (, 7. be infinitesimal
perturbations of the steady state solution. Since we are interested in 0
stationary convection, all these variables will be functions of space only.

We now make a normal mode analysis and write all these quantities
X(x, y, z) as X = X(z) exp i(qxx + qyy). q = (qx + qy)i/2 is the
horizontal wavelength of the disturbances. Using Chandrasekhar's notation
D = d/dz, the system (..- -26) becomes, at leading order in the perturbations
and after elimination of horizontal velocities via the continuity equations:

-c + TT- IR s S) p

)T + pl = o ()

.. . -... . -.
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We are now going to solve these equations in both cases 0 and - 0.

This resolution will introduce several integration constants C4 Replacing
the solution into the boundary conditions equations will lea to a homogeneous
system of linear equations in SC which determinant is denoted by L . The
critical surfaces in the (Rs, T, q) space will then be defined by the con-
dition of existence of a nonvanishing solution: A 0.

1) The case 0

The equations in the liquid are (I - IV) and in the solid, the heat
equation is ci0) O

which solution is

In order to reduce the number of integration constants, we use the variable
zt (introduced lg para. 1.3) in each solid. Then, the condition C)- 0 at
z4 0 involves 3T.); h: I where I are the unknown integration constants.
Elimination of p in equation (I) and (II) involves

(-1') R(T- R s) ai

Taking the Laplacian of both members of this equation and eliminating T
and S via equations (III) and (IV) leads to an equation in w alone:

1-) -- (K) : "S

which solution is (A k j + uLO.S 9;

and (qj) i 1 1, 2, 3, are the solutions of 5
(q2 _ q2 ) 3 - -q2 (RT _ R 5 / ).

The equation for T is

T -

which general solution is

T= C I. +1L[ _ 0142

In the same manner, S writes

S CA 7 p
S S S shqz + S. chqz -l/' 1

. . . _ ,
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T and S must satisfy equation ( ) for all z, and so

RS 0 C RTTO 0
0 0

R5S - RTTO

We are left with ten unknown coefficients (wi, wj, 1, To, To) and the

boundary conditions at z = ±1/2 provide ten equations

(A,9' jL 0

T= " z= )o zT

So, we have to solve a 10 x 10 determinant to get the critical relation
Fo(Rs, RT, q) = 0. In fact, if we choose h+ = h- - h, the effective

boundary conditions seen by the fluid are symmetrical with respect to the
plane z = 0, and we can seek for even solutions with respect to z. In this

case, wi = 0 for i = 1, 2, 3 and the boundary conditions can be written for
z = ±1/2 only. The resulting determinant Is:

.,L 1z •a *
•A 4 A 0-

-4 -4

where we have used the fact that q2* q 3 and defined / I 'c.;,..

Depending on RT and RS , ql is either real or imaginary but the deter-

minant is always real, providing one single relation

Fo(RS, RT, q) 0

2) The case 0

.".S
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The solution in the liquid is the same as before, and the same formal
calculation in the solid leads to the solution:

W -- aI -9, W;I

jai

LLi

where /M4 and /M_ are solutions of

The pressures p and 'Wt are given by

p = (1/q2 ) D(D2 - q2 )w

The boundary conditions then lead to a 14 x 14 determinant in the general case
(h+ h-), which can be reduced to 7 x 7 for h+ s h-. -

-9 -1 0

q2-q q

•~~~X /M , L'

_ q~h qtL coRr T ~ ' I± 'X -R

* ~~~~~ ~ /l .L /MI.) Li-) kLl~j 0_

....... -' --- " '. ---- . .: . . -i ----i .: ". -. -' - ' -- ' '. . - .- ": ': ' - '. - . -' - '. - .: . .' '- . - .' . - ." , , .- ' . ---' -' -c' ' . - .- " - '.k' - --.-c- -?. '
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Both cases qJ - 0 and ( 0 have been solved numerically using an IMSL
routine computing a complex determinant and the equations F = 0 have been

solved by Muller's method (Muller, 1956).

III) The Results

1) Influence of the thermal conductivity ratio T in the case P= 0.

For Ar= and R. = 0, the critical curve in the plane (RT, q) has
its minimum at RT - 720 and qc = 0 (Hurle, Jakeman and Pike, 1967).

Figure 1 shows the shape of the critical curves in the (RT, q) plane
for -= 0 and for different values of RS .

= Rs(o

720 .""°*C 0

Figure 1

We are mainly interested in the case RS <0 (destabilizing salt gradient)

since for RS> 0 overstability may occur. The most important result is that

* a destabilizing salt gradient favors a structure with finite wavelength

(qc # 0) whereas an infinite wavelength is preferred for RS> 0 (as far as

no finite amplitude perturbations are concerned).

It is known, since the earliest results for free boundaries (Stern,

- 1960), that the critical Rayleigh number for the onset of stationary convection

is a decreasing function of RS, but in both rigid-rigid and free-free cases,

the critical curve RT = f(RS ) is a straight line when temperature and

salinity are kept fixed on the boundaries. In figure k, we have plotted the

corresponding curves for different values of T which show that this no

longer holds for values of X T 0."

"- - ."*' - - - - " " " " . .. " " S - . . . ' . . , " ' ' , ' ' - - . - -- ' . ' . " i " - " . ' < -. . L . , - - - . " i
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All the curves crass at the points where RT 0 qc 3.117, and

RS/ = -1708: when no temperature gradient is present, salt plays the role

of the temperature gradient in ordinary convection, but the relevant critical

parameter is -Rs/-6 for our definition of RS, and so takes the usual value

1708. The critical wave number is then qc = 3.117 (Hurle, Jakeman and Pike,

* 1967).

As expected (Nield, 1967), when T 0 0, the critical wave number qc

becomes independent from RS and takes the value qc = 3.117, and the criti-

cal curve in the (RS, RT) plane is the straight line RT = RS/I6 + 1708.

As it has already been shown (Piquemal, 1979) for ordinary convection,

the height h of the solid slabs does not have a crucial importance (as long as

h 0). In fact, for h = 2 or h 0P and -AT>I10 no diffe e can be seen

In the critical curves.
• ,.-. _.-.-.

0 .,
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2) Influence of the porosityA 0

In order to investigate the case 40 0, we had to make a choice con-
cerningT, S and K. It seems reasonable to choose X T = 0(1) since we

are interested in porous media which are bad heat conductors compared to the
liquid they contain, and s q the isotherms are focused in the fluid. For this
reason, we took I T = i. S must be an increasing function of 5 and we
choose the two limits: S

=~o) 0

!5j (A ae
Since we only need a reasonable order of magnitude, we choose z o) -P
so that 0 o 1

Darcy's low coefficient was taken to be that of a package of spheres of S

diameter , , given by:

So, for d = 1 cm and = 0.3 cm, we get K = 10-3 5.5. This gives us
the qualitative behavior of figure 3 for the critical values RT and qc as
a function of P for different heights h of the solid media.

As can be seen on these figures, no significant effect on R is pre-
dicted as long as < 0.5. As if increases, the critical Rayleigh number
decreases by less than 20%. This decreasing can be understood as follows: as
fincreases from 0 to 1 the characteristic length of the velocity variations

is no longer d, but some d' > d. Longer lengthscales being involved, dissipa-
tion is reduced and the critical effective temperature difference aTL is 0

a decreasing function of (f) The increasing of the characteristic lengthscale
with and h is well reflected by the curve qc = f(S).

I ZOO

0. 0-2 CL3 04 6S OC 07 .3 '

Figure 3 a
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As one can see, the critical Rayleigh and wave numbers are signifi-
*cantly affected when the materials are porous so that this effect has to be

taken into account in the interpretation of experimental results.

As a conclusion, let us say that both thermal and mechanical boundary
conditions play a significant role for the onset of stationary convection
driven by thermal and compositional effects. The effect of porosity has been
analyzed with model-laws for IXT,X S and Darcy's law coefficient, and so •
provide merely a qualitative picture of what could happen in real situations.

This work has to be extended to the case of oscillatory instability
(for R s > 0), and the above results let us expect at least qualitatively
different behaviors from the ideal cases. Of course, an investigation of
finite-amplitude effects has to be done since it is known (Veronis, 1965) that 0
the ideal system is unstable to such disturbances for Rs ? O.
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MIXING OF FLUIDS OF DIFFERENT VISCOSITIES:
SALT WATER FINGERS IN GLYCERINE

Bruce J. Bayly

ABSTRACT

A fingering instability has been observed to occir at the interface
between a layer of salt water and an underlying layer of glycerine. The
instability is investigated by calculating the one-dimensional interdiffusion
of the salt water and glycerine, and then considering the local instability of
the instantaneous concentration profiles. The diffusion theory is strongly
nonlinear, and the requirement of material volume conservation implies the
existence of a nonzero velocity field associated with the diffusion processes
whose advection of the concentration fields is an important physical effect.

I. INTRODUCTION

IA. The Experiment

Consider a tank containing two deep layers of fluid, one below the
other. The lower layer is mostly glycerine, with a small amount of dissolved
water, while the upper is water containing a certain amount of dissolved salt
(NaNO 3 was used in these experiments). The upper layer is less dense than
the lower, so that the system is statically stable. With time, however, the
fluid in the neighborhood of the interface develops an instability: "fingers"
of salt water penetrate down into the glycerine body, while glycerine fila-
ments stream upward and mix efficiently with the overlying salt water. S

I S
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IB. Previous related work

r *The design of the experiment and the phenomenon observed are strongly 6
reminiscent of investigations of salt fingering in aqueous solutions. The
study of Huppert and Manins (1973), on necessary conditions for salt fingering
at an interface, is particularly relevant. Huppert and Manins argue that if
there is initially a sharp interface between a body of cold fresh water lying
under a body of hot salty water, the heat and salt fields will diffuse across
the interface. The initial temperature and salinity steps are replaced by
smooth gradients, which spread out self-similarly in time (both density fields
are functions of the similarity variable ztl1/2). If after some
time the instantaneous density profiles satisfy the conditions for the salt-
finger instability, it is expected that the instability will indeed occur and
proceed on a timescale much more rapid than the diffusion. For such self-
similar expanding profiles, the profiles are unstable if

- t (IB 1)

* 1(5 / =K- =inverse Lewis number S

which implies that the initial density contrasts must satisfy

-, 2-> (IB 2)

This criterion is in excellent agreement with experiments (Huppert and Manins,
1973 and Huppert and Hallworth 1984).

IC. Current Strategy 0

The success of the Huppert and Manins stability theory for salt fingers
suggests that we try a similar approach here. Following Huppert and Manins,
we shall consider the problem of the diffusive spreading of the interface
separately from the instability of an instantaneous diffusion profile. The
instability theory for a density profile is fairly well understood, at least 6
in a local theory assuming approximately linear gradients, although it is not
clear a priori whether the first instability to occur will be double-diffusive
or Rayleigh-Taylor (i.e. due to a local density inversion) in character. The
diffusion of the interface itself is a fairly difficult problem, because the
components diffuse at rates that depend very strongly on the local concentra-
tions. Furthermore, it turns out that the strong diffusive fluxes of the 6
components generate a nontrivial velocity field, so that advection of the
concentration fields cannot be neglected. Elucidating the nature of this
velocity field and its effect on the transport processes is considered to be
the major contribution of this investigation, with the stability theory of the
diffusing interface viewed as an interesting application.
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II. BASIC THEORY

IIA. Diffusion of Small Particles in a Fluid.

This section is a review of the derivatPon of the extended Einstein
formula for the diffusion of a species oe of small particles suspended in a
fluid.

+ 67TycL IIA 1)

where ( PId velocil fielc
i = Boltzmann's constant

- fluid viscosity 0
c, mass concentration of
T = temperature
a,= effective radius of particle

Equation (IIA 1) reduces to the usual Einstein formula

:: V rk- Vc ,) (IIA 2)

in the absence of temperature gradients and concentration-dependent viscosity,
or when the concentration variations are very small. Formula (IIA 1) is less
well-known than (IIA 2); for this reason, we consider it worthy of a brief
discussion.

Consider the motion of a small particle of mass Wt in a viscous
liquid. It will be assumed that viscous hydrodynamics remains valid - in an
averaged sense - down to molecular scales, and that the particles do not 0
interact with any long-range forces. Because of the random nature of mole-
cular collisions, the particle executes a highly irregular motion, but "on
average", any impulsively started particle velocity V decays to the local
fluid velocity U& according to Stokes' law

S KX i) cL -rr•.
rn<V A Kr# V t-- (IIA 3)

Therefore, the velocity autocorrelation tensor in equilibrium is

00
V .()4 (IIA 4)

(This is a special case of the Fluctuation-Dissipation Theorem.)

* The particle's displacement from its initial position after time bt is S

415' uL~ ~j,)(hA 5)* S "."i
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so its mean displacement is1b 6

•. (IIA 6)

and the dispersion tensor is

IL

< U 6X 2- JA A T (IIA 7)

provided I>> r 6 = relaxation time for particle

Now consider the evolution of the density field c(, t). At time t+ ;t, the
density field will have changed slightly due to the random migrations of the
particles:

Taking ct so small that the particle displacements contributing to (IIA 8)
are much smaller than the macroscopic scale of variation (but J( still much •0
greater than 7"), we can approximate the tX-dependence of the integrand by
the first nontrivial terms of its Taylor expansion:

X-J

C. +

6 I-, S' _( j, .

where [ _(
is the probability that a particle at i, at time t, is displaced to Yat
later time .
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Using (IIA 6) and (IIA 7) for and < . 'we have

(IIA 10)

which becomes (IIA 1) in the limit of small & .

Note that if the temperature field or viscosity field is nonuniform (eg.
if the viscosity depends on the concentration of a diffusing component) then
cross-diffusive fluxes may be driven by a temperature gradient or a gradient

in the concentration of some component which affects the viscosity. Only in
the absence of such effects can (IA 1) be replaced with the original equation
lEIA 2). For the interdiffusion of water, salt, and glycerine, the viscosity

is a strong function of the glycerine concentration, and it may be that the
modification of Einstein's formula represents an important physical effect.
Since the correction was only discovered toward the very end of the project,
the quantitative conclusions of this report, which are based on the old
formula, will be in error. We believe that this work nonetheless captures the
essential nature of the diffusive processes, and yields the correct quali-
tative description of the physical mechanism of the salt-water-glycerine insta-
bility.

IB. Pure Interdiffusion of Several Substances and Why It is Wrong

In analyzing the diffusive interpenetration of several substances, it is
natural to disregard the flux term in (IIA 2) corresponding to advection of
concentration by a velocity field, and conclude that the diffusion of species
* is described (assuming Einsteinian diffusion) by

C, 7 C - (IIB 1)

where f(T 3tr.A

with suitable initial and boundary conditions. The volume fraction occupied by

X is directly proportional to the concentration

SC V (IIB 2)

where the specific volume V* of species d is constant, to a high degree of
experimental accuracy, for the almost incompressible liquids involved here. So

(hRB 3)

But -- - , therefore summing (liB 1) over d\ yields

. 4)
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which is not true in general for solutions to (liB 1).

IIC. Interdiffusion with Advection

The paradox in IIB is resolved by restoring the advection flux to the
diffusion equation, which then becomes

IV. V o (IIC 1)

C is tacitly a function of ). Summing again over all species gives

-e (IIC 2)

where C is some incompressible velocity field. For simple interdiffu-
sion problems, including the one-dimensional interdiffusion of liquids at rest
at oO vanishes, so (IIC 1) becomes

'V j Vfit ~y ~ f. (IIC 3)

The degree of complication of the diffusion problem has now worsened. The
inclusion of the advection terms has coupled the diffusion of each component
to the gradients of other components, creating nonlinear effective Dufour and
Soret fluxes as well as modifying he single component diffusivities. . -
Together with the strongly nonlinear dependence of the diffusivities on
composition that occurs with water and glycerine, this new effective
cross-diffusion appears to render the problem so complicated as to be
virtually inaccessible.

lID. Water-Salt-Glycerine Interdiffusion

For the system of water, salt, and glycerine, the complications of IIC may

be relieved somewhat by making some simplifying approximations. Salt has a
very small specific volume compared to water or glycerine, so we neglect it,
and also assume that the viscosity of the liquid is independent of the salt
concentration. Then the volume fractions of water and glycerine are f and
(1 -f) respectively, the velocity field is a functional of the water-glycerine
field only

jA+ 'K ~ -j (l1D 1)

and the water-glycerine equation becomes independent of the salt field

--.1 - -, V j (IID 2)

This equation is particularly appealing for two reasons. First, we have re-
covered an equation of the pure diffusion form, with an effective diffusivity

(f')= 1V ) --t (vf)Y ,o(f) (lID 3)
--ff
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Second, it is evident that process of interdiffusion with advection approaches
the linear diffusion of water in pure glycerine as f-)O and the linear diffu-
sion of glycerine into pure water as f-) 1. Thus, the one-dimensional diffu-
sion problems are

( V (lID 4)

where c is the normalized salt concentration (the physical salt concentration
is (Ape)c with Jps being the initial salt density excess in the upper layer.)
The local stability of the profile to double-diffusive fingering depends on the 0
effective Lewis number, which is a function of concentration. A direct conse-
quence of the assumption of Einsteinian diffusivities is that the inverse Lewis
number

"'eff(f) = Ks(f)/Keff(f) takes the simple form

toff ~ V j 3 ; Ifo- A/AO (lID 5)

The profile is then unstable to double diffusive fingers if

- > ]r.f( (IID 6)

at some level. The profile will also be unstable to a Rayleigh-Taylor insta-
bility if

dc -3
~c 'df ~,(IID 7)

We shall therefore proceed as follows: the diffusive spreading of the
initially sharp interface will be calculated as a pair of self-similar profiles
for f and c, as functions of the similarity variable

O 7= Zt-i/ 2  (liD8) 8

The O.D.E.'s for f and c are

z:e (IID 9a)

S- 7 C' = L1 C' - iij (IID 9b)

and we use a polynomial approximation to l<eff(f)

* S

.. •........................................................ ............... -.... •--.. . . .............



-173 -

%eff(f) - .133 + 176.6 f4 (l.0882 - 0)) (Ii) ,o)

(in units of 10-6 cm2 sec - I . See figure 3)
Then we shall calculate the "stability parameter"

- 7/ u (ToF I) (IID 11)

and find its maximum

Q = Qmax at 7 '- where f fo II) o2)

The critical salt density in the upper layer of water is then

c.s.d. = ( e )crit = 2 6/Qmax 3)

and the instability will be double-diffusive or Rayleigh-Taylor depending on
whether

I'eff(fo) < 1 or Teff(fo) ? 1 (ii iq)

respectively.

III. RESULTS S

liA. Methods of Integrating the O.D.E.'s

The most straightforward way of numerically solving the second order
O.D.E.'s for the similarity profiles is to convert them to pairs of first order
equations, which are then integrated directly. The values f = 1 and c - 1 are

specified at a large positive value of * together with representations of the
slopes of f and c, and the equations are then integrated backwards to a large

" negative value of 7 . Some improvement in the numerical behavior is made by
introducing the new independent variable defined by

* ff(IIA 1)

so that (lID 9a) may be converted to the coupled first-order system

',"--"l~l = ( ('&) (IIIA 2a) ;'"

- =uL (IIIA 2b)

which is integrated from t 0 f I at is imposed,

*-ii and we thus obtain a relation between Lj,)and ( ) The velocity field
is simply given by )l/

2.,-
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The salt advection-diffusion equation is more tricky to integrate, due to
the advective flux term. However, it is linear, so we may change variables to

S log c c = exp(S) (lIA 4)

Then

J V-J r -- (IIIA 5) S

Tepf (f')

The ooundary conditions

S -0 (IliA 6)

and r 0 as

almost always lead to

S CO as -

so that the B.C. at - 0 on the salt field is automatically satisfied. Solu-
tions to these equations for two different values of f (- 0 ) are shown in
figures la,b and 2a,b.

IIIB. Conclusions

The strong asymmetry of the f profile reflects the nonlinearity of the
diffusion process, and the pronounced displacement of the salt curve demon-
strates the dramatic effect of the advection of the salt field by the water-
glycerine velocity. It is observed that the salt profile has its maximum
gradient on the far right of the water-glycerine curve, where the volume frac-
tion of water is very close to 1. This indicates that - since 2'eff(f) is S
greater than unity in the neighborhood of f = 1 - the double diffusive insta-
bility might not occur. However, the sheer strength of the salt gradient,
together with the weakness of the water-glycerine gradient, suggests that a
Rayleigh-Taylor instability may develop from a relatively small initial salt
concentration in the upper layer. Plots of the stability parameter Q(7) and
evaluation of T eff(fo) at the most unstable point support this conclusion 0

(figures 1c, 2c).

Plotting the critical salt density in the upper layer vs. the water volume
fraction f(-0) in the lower layer shows that the c.s.d. decreases very slowly
from 8.7867 x 10- 3 as f(- 0) increases from 0 (figure 4). The resolution of
tha numerical integration breaks down as f(-0) increases beyond 0.6 but it is
anticipated that as f(--) approaches 1, the c.s.d. and (l-f(-' )) will tend
toward proportionality

c.s.d. r-1 0.26(1 - f(- )) (liA 7)

as the system approaches the familiar case of a dilute aqueous solution of 0
salt above a dilute aqueous solution of glycerine.

o.S

S

.............................
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In comparing these predictions with the observed critical salt density,
which is approximately 0.15 , decreasing slowly as f(-W) increases from 0.,
it is seen that there is considerable quantitative disagreement between this

theory and experiment. It seems likely that the discrepancy is a consequence
of neglecting the non-Einsteinian effects described in IIA , in which case
the appropriate modification of this theory would be straightforward. In any
case, the qualitative character of the predicted stability criterion is
similar to the observations, so that there is reason to believe that this work
is a substantial first step toward a quantitatively correct theory.
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SALT FINGERS IN A HELE SHAW CELL

John Taylor

Abstract

Several approaches were taken to the investigation of the behaviour of
salt fingers in a Hele Shaw cell. The stability of linear temperature (T)
and salinity (S) gradients maintained between perfectly conducting
boundaries in a vertical Hele Shaw cell was studied. The wavenumber which
maximises the growthrate of periodic disturbances in the cell was:

-I. S

where d is the width of the Hele Shaw cell; T-z the mean T gradient; v the
kinematic viscosity; Kt the molecular diffusivity of T; T=Ks/Kt the
diffusivity ratio and Rp is the ratio of gradients (ciTz/89z). The scale of
fingers in a Hele Shaw cell is not limited by the increase of viscous drag
between up and downgoing fingers with increasing wavenumber as occurs for
fingers remote from rigid boundaries, but by the need for a finger to be
large enough not to lose its S anomaly by lateral diffusion.

Using the results from a model of infinitely long fingers in a Hele
Shaw cell possible parameters for which fingers could be set up in thelaboratory were suggested. The boundary conditions used in these analyses

are not easy to realise in the laboratory so the stability of a sharp
positive salinity jump with a linear stabilising temperature gradient was
analysed. The wavenumber of instabilites which arise from this analysis, at . .
least for the parameters used in the long finger model, is not consistent
with the assumption of Hele Shaw flow.

1.Introduction

If a fluid is stratified by two components so that the contribution to
*the fluid density of the slower diffusing component is increasing upwards
* some of the potential energy of the unstably distributed component may be
- released by an array of tall thin conterflowing fluid columns called salt
• .fingers. Fluid motion is possible even though the overall density

distribution is hydrostatically stable because of the different molecular
diffusivities of the two components. Because the initial interest in this

* phenomenon was in its oceanographical applications the two components of
interest were heat and salt, however, convection can also occur with pairs
of solutes; salt and sugar have been used in many laboratory experiments as
a convenient analogue for the heat salt system with salt now being the
faster diffusing T component. Huppert and Turner (1981) have reviewed salt
fingering and related double diffusive phenomena.

In this paper the instability of an initially sharp salinity interface
in the presence of a linear stabilising temperature gradient will be
considered. To make it possible to treat these property distributions

....... 7
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m - 281 -

analytically the analysis is restricted to considering flow in a Hele Shaw 1
cell. Because the stratification is arranged in the salt fingering sense
the processes which set the scale of fingers in a Hele Shaw cell are of
interest and these will be studied in section 2 by analysing the stability
of linear gradients of T and S between horizontal boundaries maintained at

• -'.constant T and S.

In most experimental investigations of salt fingering fingers which
grow from an interface with initially step-like distributions of T and S
are studied. Theoretical analysis of this situation has been restricted to
finding the condition for marginal stability (Sartory,1969, Huppert and 0
Manins, 1973) which is R <[- '

/2, where Rp=AT/BAS is the ratio of the
density step due to T to tat due to S. This criterion describes a dynamic
instability; no horizontally averaged static instability is necessary for
fingers to occur. However for R <T - /2 the solution to the diffusion
equation shows that at any time after diffusion is switched on there will
be a region which is statically unstable at the interface because of the S
more rapid diffusion of T compared to S. Thus the initial property profiles
adopted for the analysis in this paper could be considered as an
approximation to this state although experimentally the situation would be
realised with a linear gradient of the T-component and a finite step of the
S-component.

One of the major problems of understanding salt finger convection is
how the horizontal scale of the cells is selected. The interface stability
calculations mentioned above give no information about the scale of the
cells since there is no well defined lengthscale in the problem. The linear
stability analysis for the thermohaline Benard problem (Stern,1960) shows
that the horizontal scale at marginal stability is determined by the plate
separation so that the aspect ratio of the convection cells should be one.
For supercritical conditions the cell size which maximises the growth rate
of instabilities found from this analysis correctly predicts the scale of
salt fingers observed in experiments (Linden,1973, Huppert and Manins,1973) "
even when the experiments are near the marginal state. Experiments have not
been conducted which reproduce the conditions of the theoretical
B~nard-type problems which have been studied because of the difficulty of
maintaining the required constant T and S boundary conditions. However, '
recent work by Krishnamurti (this volume, page 00 ) for the inverse
diffusive case has shown that the constant salinity boundary condition may
be closely approximated in the laboratory. The sharp interface analysis
attempts to avoid this problem by dealing with a supercritical initial
state so that the scale of the fingers which grow at the interface should S
be predicted by a linear stability analysis.

There are advantages to experimenting in the Hele shaw cell provided
salt fingers governed by Hele Shaw dynamics can be produced. One advantage
is that a single finger would be observable in an experiment rather than
the horizontally or vertically averaged picture through many fingers which
is seen in a conventional experiment. This would make the determination of S
the finger width simple. Another advantage is the slower evolution time of
flows in a Hele Shaw cell. The component of gravitational acceleration
driving the flow can be varied by tilting the cell away from the vertical
without changing the characteristics of the flow. Piacsek and Toomre
(1980) computed a two-dimensional numerical model of ordinary viscous salt
fingers growing from a sharp interface into constant property layers which S
showed that the fingers tended to form bulbous ends which could break off
from the main finger. Such interesting finite amplitude features should be
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visible in a Hele Shaw cell experiment. Typical experimental parameters
which are needed to produce fingers in a laboratory experiment which
satisfy the conditions that make a description of the flow in the Hele Shaw -

approximation valid will be discussed in section 3.

2.The stability of linear gradients of T and S between parrallel boundaries
in a Hele Shaw cell.

2.1 Flow in a Hele Shaw cell.

A Hele Shaw cell consists of a layer of fluid contained between two
closely spaced plates. For sufficiently small plate spacing or large fluid
viscosity the flow of the fluid will be governed by a balance between the
applied pressure gradient and viscous drag (Batchelor, 1967). In this limit
the mean fluid velocity across the narrow dimension of the cell will be
given by:

.R.?

The flow in a Hele Shaw cell is an exact analogy to flow in a porous
medium governed by Darcy's Law with effective permittivity given by d2 112.

In (1) d is the plate spacing, v the kinematic viscosity of the fluid, _--_

dp/dx the driving pressure gradient and p0 a reference density. A quantity
(T-1 ), the flow resistance, will be defined as 12v/d2.

QIT

Figure 1. A sketch of the T,S and density distributions for this analysis.

.......................
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2.2 The stability problem

The easiest geometry to investigate the double diffusive problem in a
Hele Shaw cell is that of linear T and S gradients between two semi 0
infinite parrallel boundaries maintained at constant temperature and
salinity (fig.1). Nield (1968) has investigated the conditions for the
onset of thermohaline convection in a porous medium for both the
oscillatory (diffusive) and direct (fingering) modes of convection. He
found the marginal stability condition for a range of boundary conditions

but did not discuss the wavenumber which maximises the growthrate under 0
supercritical conditions. The analogous problem for ordinary two component
convection was first discussed by Stern (1960) and later by Baines and Gill
(1969). The problem is discussed here because of the correspondence in the
ordinary case between the fastest growing mode from the linear stability
analysis and the finger wavenumber observed in experiments. This agreement
should carry over to the Hele Shaw problem providing a basis for the S

discussion of finger physics in the Hele Shaw cell and a comparison with
the sharp interface model in section 4.

The linearised equations which describe the behaviour of perturbations
to the T and S fields shown on fig.1 within a Hele Shaw cell are:

W=RT-TX - R5S .0X

(2)
I 0

where the non-dimensional variables t Kt/ (x,z)=(x,z)/D, w'-D/octw,
T'=T/AT, S S/AS, Tz=AT/D, 9z=AS/D, RT=g6TD /pt, Rs=g6 zD2/p t , T=Is/Kt
are used. Given the boundary conditions:

w ,Ts =0 at z'=O,'
solutions to (2) of the form: '

(wI,T',S')=(w,ToSo)ePtcoswkx'sinnnz'
are sought. With the substitution of these functions for w',T',S' into (2)
and defining n2(k2+n2)=A2 a series of algebraic equations (3) are found:

\z.'= k(RT" RsS')

(3)

Eliminating the temperature and salinity perturbations from the S

momentum equation gives a characteristic equation for p:

p+ R Z X* l 4T? RT-R, O. (4

The marginal stability condition is found by setting p=O in (4). The most
unstable vertical mode will be the n-1 mode. By fixing an RT value the

S.%°°

~ ~ *:*::*-:.:.
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minimum horizontal wavenumber for instability is found to be k-1 which then
gives a result for the marginal stability curve:

RT R- " :.

This result, given by Nield (1968), is identical to the marginal stability
criterion for the direct mode in ordinary double diffusive convection .

(Baines and Gill,1969) except that the Hele Shaw cell has a much smaller
critical Rayleigh number 39.5 as opposed to 658. This equation may be
rearranged to show the the maximum value of Rp at which convection will
occur for a given stabilising RT:

. O

-R-S

T• (4- .

0.33
2.0 , 4..:.-,

A.- I. 'a,/

ReT

to I, to! le "-.:

Figure 2. A sketch of the marginal stability curve for the direct mode of
convection.

. . . . .
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2.3 The wavenumber which maximises the growth rate

If the diffusivity of T is much larger than S, as is the case for heat
salt the growth rate term in the T equation may be neglected and (4)
reduces to:

+RTTk

If the growth rate and wavenumber are now scaled by RT, $-p/RT, 2- 2k2/RT 0
the dispersion relationship (5) may be written as:

-ffT (6)

For large RT I 2 /RT is neglected in comparison to 2 and the wavenumber
which maximises the growth rate found by setting df/da2=0. The resulting
wavenumber is:

S_]_ - I (7)

or in dimensional terms:

TT E¢,., = i - (8) - --:

The largest value of 'm will be at Rp-1 where Em2t3 for r0.01, the value

for heat salt and 'm 2 1.4 for -0.33 for salt sugar. To find the maximum
growth rate (7) is substituted into (5) with the result:

-t .(9)
S

The behaviour of the growth rate as a function of wavenumber may be
calculated from (6) for a range of values of RT, Rp and r. The full
quadratic expression (4) may also be rescaled to the new variables and the
corresponding expression for ' is given by (10).

RT

*. . . . . . . . . .. . . . . . .*.... . . . . .

. . . . .
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Figure 3. Graph of wavenumber versus growthrate for T=0.01 RT-1.0x10 3.
Dashed curve is calculated from the full relation (10), solid curve from
the approximate relation (6).

2.4 Discussion

Stern (1960) showed that for tJ and lQrge RT and R. the maximum
growthrate in the normal finger problem occurred for a dimensional

' wavenumber:

• .,.,,.-J "[..::""]

In the Hele Shaw cell there is no corresponding limit since if T+*0, am
and Pm4(Rp)-1 . Clearly the process of the wavenumber selection in the two
problems must be quite different.

Fig.3 is a plot of the wavenumber versus growthrate for T-0.01
(corresponding to heat salt fingers) and for RT= 10. The dashed curve is

," the solution to the quadratic (10) and the solid curve is the approximate -

,". ... . . . . . . . . . .,

-- *- . .- - - -*."".N.'. . .
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result given by (6). For wavenumbers just beyond m the growthrate goes to
zero and any perturbation on these scales would be strongly damped. The
neglect of the growthrate term is well justified for T-0.01 although if T

is increased to 0.33 (fig.4) there is an increase in the maximum growthrate
and a shift of dm to a lower wavenumber if the full expression is used.

1.0

Rewl 0

10.

10,30.0

.- -- Re-I.o " '

W Jz

I0 " r I1' .0 IOL0

Figure 4. Graph of wavenumber versus growthrate for T=0,33 RT=1,0xlO .

Curves are as for fig,3, ..

The physical reason why long thin cells are the favoured mode of
convection for the stratification shown in fig.1 was also first discussed
by Stern. In a downward (upward) going finger the temperature excess
(deficit) of the finger must be diffused sideways at a sufficiently rapid
rate to maintain the finger's negative buoyancy. If the amplitude of the
temperature perturbation stays constant a thinner column increases the
temperature gradient between adjacent fingers. This increases the lateral
heat flux and leads to higher vertical velocites in the fingers. The higher
vertical velocities mean that the potential energy of the salt
stratification is more efficiently released. However, as the finger becomes
thinner shear between adjoining fingers increases, decreasing the
efficiency of the energy release. A wavenumber is selected which balances
the competing effects of the increasing heat flux and viscous drag.

In a Hele Shaw cell the flow is everywhere strongly damped by
viscosity due to the proximity of the sidewalls. In fact for the Hele Shaw
desription of the flow to be accurate the finger scale must be such that
the shear between fingers be negligible compared to the cross channel
shear. It has been shown that if salt diffusion is neglected (t=O) the
growth rate has no maximum value. The slow diffusion of S sets an upper
limit to the wavenumber of a disturbance which can grow before lateral
diffusion fluxes away the driving S anomaly. At a slightly lower wavenumber

Oo S
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there is a maximum p which defines a balance between the need to rapidly
diffuse heat but not to flux away the salinity perturbation.

The problem of realising salt fingers in a Hele Shaw cell is to ensure S
that the fingers will be limited by the diffusivity of the S component
before the motions become three-dimensional, the Hele Shaw approximation
breaks down and viscously limited finger form.

3. Experimental Possibilities 0

As discussed in section 2 the production of salt fingers governed by
Hele Shaw dynamics depends on a limiting wavenumber being less than the
wavenumber implied by the plate spacing. In this section the well known
finit3 amplitude model of long fingers (Stern, 1975) will be used to S
calculate the limiting wavenumbers of Hele Shaw fingers for a set of
typical laboratory parameters as well as the wavenumbers for viscous
fingers in an infinite environment for the same overall parameters.

Under the conditions that there are no vertical variations in the mean
or perturbed quantities the non-linear terms in the momentum equations are
identically zero and there are simple exact solutions which describe S
infinitely long couterflowing fluid columns. These solutions have been
extensively used (Stern,1975, Schmitt,1979) to describe salt fingers. The
solutions are degenerate in the sense that there is a spectrum of finger
wavenumbers which satisfy the equations and the amplitudes of the
perturbation quantities cannot be determined, however, the analysis
predicts a maximum wavenumber beyond which fingers cannot grow. .

The equations governing the fingers in a Hele Shaw cell are:

.W=

1= -J _ SW -

Periodic solutions in x of the form (w,T,S)-(wo,To,So)ePtsin(ax) are sought 0
which lead to the dispersion relationship:

The maximum wavenumber permitted occurs when p=O which gives a finger
width, X',normalised by the transverse plate spacing, d:

' -(13)

t e
The analogous result for viscous fingers where it is assumed that the ..-

Lewis number, V/Kt, is large and hence the growth rate term in the momentum

...................................................... .....

.- --... '-- ... . .. .. ..... ... .... ..... .- "
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equation may be neglected is:

This expression should be valid for salt sugar experiments where the Lewis
number is O(103) but T=0.33 and the diffusion of S is not insignificant
compared to the diffusion of T. The smallest square finger permitted will
have a side of length: 0

~Aiii~(15)

Equation (13) may be rearranged to express the minimum for the S
smallest allowed fingers to have a width equal to the plate spacing:

T- 47ZR (16)

where RT '=gazd2 / PKt has the form of a Rayleigh number. For typical
laboratory parameters in a salt sugar experiment aTz=5.0x10 - , d-O.lcm,
p12v/d2 =12s -1 and fluid properties Kt=1.48x10-5cm2 s-1, t=0.33 RT= 2 7.6 and
R need only be greater than 2.2 for the smallest scale of finger possible
to be equal to the plate spacing. Under the same conditions (15) predicts
that the maximum viscous finger size would be A'=0.66. The fact that a
viscously limited finger can be narrower than a diffusively limited finger
reflects the stronger constraint on the velocity field in the Hele Shaw
cell imposed by the rigid boundaries of the cell.

It seems that the restrictions on the experimental conditions could be
eased by increasing the viscosity of the fluid. This is not the case for a
two solute experiment since the molecular diffusivity of a solute is almost S
inversly proportional to the viscosity of the solution. Mullin (1972)

suggested the empirical relationship:

k 14. k0-s

V,

where n is the solution viscosity (poise) and V, the molar volume of the

solute (cm3 ). Thus an increase in P would leave RT' virtually unchanged
because of the corresponding change in Kt.

It is of interest to compare the the wavenumber growthrate spectrum of S

the Hele Shaw fingers with that to be expected for viscous or ordinary
fingers. Equation (12) and (14) have been solved for several R values with
the other parameters as given above (fig.5). The curves have similar form . -

except in the limit where Rp=1 and the overall density stratification is
neutrally stable. While the Hele Shaw fingers still have a maximum
growthrate at high wavenumbers the growthrate of the viscous fingers

becomes very flat over a large range of wavenumbers. If the constraint of
side boundaries is removed larger scale overturning seems to be the

. . . .
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preferred mode of convection in this limit.
For the conditions used in calculating fig.5 the growthrates of Hele

Shaw fingers are comparable with those of viscous fingers although as

commented previously for Rp")1 the limiting wavenumber is lower.

- - - -- .- I

16

-,

0T

Ill

-4J

1.0 I

(Lct)

* Figure 5. Wavenumber growthrate spectra (a) Hele Shaw fingers
(solid curves) (b) ordinary fingers (dashed curves). Conditions
are as discussed in the text.

4.Linear theory for the evolution of a sharp interface

I0

In the previous sections the possibility of producing salt fingers in a
Hele Shaw cell have been investigated . By reworking the usual stability
calculations for linear gradients between parrallel plates and the

.. .. . . . . . . . . . . . . .

.4. . . . . . . . ..
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infinitely long finger model with Hele Shaw dynamics it has been shown that
high wavenumber cells limited by the diffusivity of the component with the
smaller diffusing will be the favoured mode of convection in a Hele Shaw S
cell stratified in the finger sense. With reasonable experimental
parameters the finger width should be large enough to make the Hele Shaw
description of the flow valid. However these analyses have dealt with
idealised geometries which are not fully realisable in laboratory
experiments. The stability analysis to follow desribes the initial growth
of instability from a sharp S interface with a background linear gradient S
of T. Such an initial system may be realised using a tank with a barrier at
mid-depth which is withdrawn to begin the experiment. This kind of geometry
has been utilised by Wooding (1969) in his experiments on Saffman-Taylor
instability at an interface between two miscible fluids. It will be shown
that in one limit czO, Ks-O, the analysis predicts the correct behaviour
for a Saffman-Taylor instability between immiscible fluids neglecting S

surface tension effects.

4.1 Stability analysis

The initial property profiles in the system to be analysed are shown on
* fig.6. There is a region of static instability close to the interface but 0

the overall density distribution is stable.

z

*-PAS
ZS

Figure 6. A sketch of the vertical T,S and p profiles of the system

Using the Hele Shaw equation (1) the momentum equations for the system
become, after subtracting the hydrostatic part of the the pressure field
from the z equation:

1 LLL P Xe' (17)

fALj > +

where the density has been written as:

. P

; , , , .. , .-. ., - ., . . . -- .. . - . - ,". .. . - . . . - , -.
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and the perturbation quantities are small compared to po. H(z) is the
Heaviside step function. After cross differentiation to remove the pressure
from the equations and using the continuity equation au/ax+aw/az-0 (17) may 0

be reduced to:

Vw= oC (18)

The conservation of T and S are described by (19), neglecting the advection
of the temperature and salinity perturbations by the velocity field.

"bt - (19) 5

A major assumption made in writing the S equation is that the
growthrate of any perturbation is fast enough so that the diffusion of the S
S step is not important. This assumption should be valid if the e-folding
time for the fastest growing disturbance is greater than the characteristic
time for the diffusion of S over a typical lengthscale of the problem
d2/Ks . However the neglect of the term Ks3(ASH(z))/az 2 means that this
analysis cannot be used to investigate the marginal stability of the
system.

Equations (18) and (19) are non-dimensionalised by substituting in the
scaled variables z' =z/d, t'=Itt/d2, w'=dw/Kt, T'=T/Tzd and S'-S/AS. These
substitutions result in the dimensionless equations (20):

Y A - TX R.5S X X-

(~VLA~Cz)(20)

where RT'=gazd2 /UKt, Rs'=gBASd/pIt and 6(z) is the Dirac delta function.
The lengthscale d is the spacing of the walls of the Hele Shaw cell and is
physically significant because it is the lower limit to the scale of motion 0
permitted before the assumption of two dimensional flow breaks down. The
salinity step and plate spacing together define a salinity gradient. As
long as the smallest scale of motion is larger than d then the fluid would
see the salinity change as a discontinuity and its description as a delta
function should be mathematically valid even if it is smeared out over a
distance d. S

Solutions are sought which are periodic in x and exponentially growing
in time so that ¢=¢oePt+iX.Substituting for ¢-(T,S,w) into (20) gives a set
of equations:

0 --
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S

The primes have been dropped from the variables and the growthrate term in
the temperature equation neglected. These equations are Fourier transformed .
in z: 00:

which results in a set of simultaneous equations in the Fourier transformed
variables T,9'"

{0

2) R~i2RS. 2.2 -a . -*

F T 2+ . (22) 4-02 :2

where w is the vertical component of the velocity at the interface
wo=w(xOt). Using the temperature and salinity equations the first
equation of (22) may be reduced to an equation for the Fourier transform of

w

The inverse of this transform is given by the integral:

which may be evaluated by summing the residues at the poles of the
transform in the complex plane. The result of this inversion is after some

manipulation:

z~~f+A3)k v +oct RrJc

RSS
which m6.e alated by summing he. .. rusT hep
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This expression was found by evaluating the residuals in the upper half of
the complex plane and describes the velocity for z1O. A similar expression
for z>O could be found by evaluating the residuals in the lower half of the
complex plane, however (24) contains sufficient information to find the
dispersion relationship for the system. This was found by evaluating w at
z=O (25).

-_ _p = _ _ o_ _ _ _ f L+  (25)

Before proceeding with the analysis its validity in the limit aTz4O,
KsO may be checked. Because the variables have been scaled by the thermal
diffusivity (25) needs to be rewritten in dimensional variables to
investigate this limit. The result of this procedure is:

F-I (26)
P /

This is the correct result for the Saffman--Taylor instability in this limit
(Wooding,1969). The growthrate is directly proportional to the buoyancy
jump across the interface and inversly proportional to the effective
viscosity. In this limit there is no limiting wavelength to the interfacial
instability. If the two fluids are immiscible then surface tension acts to
select a wavelength, for miscible fluids molecular diffusivity has the same O
effect.

Before proceeding (25) is rewritten in terms of the scaled variables
a^2=a2/RT, $ -p/RT and RP-RT/RS. The new expression is:

+l2L
R -* R a ( + (27)

.-- a'. °(- + a 1)...

:Z( I%+T aL
Rather than expand this expression to find a polynomial for as a

function of ',a, and R then solving the polynomial to find the growthrate
" the simpler approach of calculating Rp for a spectrum of $ and'k values at
" the conditions described in section 3 was adopted. The results of these

calculations are shown on fig.7. Here again there is a limiting wavenumber
t-=i/RT' / 2 . If the scale of the motion permitted by the linear stability •

*analysis exceeds this value then the Hele Shaw cell approximation breaks
" down and some other type of 3-dimensional flow occurs. As can be seen from

flg.7 this condition does not appear to be satisfied for the parameters
'. tested although the analysis does predict a high wavenumber cut off and a
. wavenumber that maximises the growth rate. The prediction of this analysis

is that, in contrast to the ideal geometry studied in section 3, the 0
instabilities which grow on the sharp interface with these conditions could

.. not be described as Hele Shaw salt fingers at least in the initial stages
of evolution described by the linear theory.

* .*". .-* . * ..-.
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Figure 7. Wavenumber growthrate spectrum calculated from (27). RT-27.6
The maximum wavenumber for which the Hele Shaw approximation is valid
is shown.

5.Conclusion

The possibility of producing salt fingers in a Hele Shaw cell has been
investigated. A linear stability analysis of linear gradients of T and S
maintained between perfectly conducting boundaries showed that under
supercritical conditions high wavenumber cells were favoured. The limiting
wavenumber was determined by the diffusivity of the slower diffusing
component. Using a model of infinitely long fingers it was shown that
fingers which satisfy the correct limits can exist with feasible laboratory
parameters.

It had been hoped that a model set up with supercritical initial
conditions would also show salt-finger like perturbations. With the same
overall physical parameters which were used in the long finger model the

_ I0 
' 'a

.. ,. - -
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analysis did not support this conclusion. Whether this is a correct
physical result or a mathematical problem is not clear. It is hoped to 0
clarify this problem experimentally. 0
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ZERO POTENTIAL VORTICITY FLOW ON AN EQUATORIAL P-PLANE

Yoshi-Yuki Hayashi

0

I. INTRODUCTION

The dynamics of the equatorial region are of great interest to both

meteorologists and oceanographers, especially because of the recent El
Nino-Southern Oscillation (for instance, Philander, 1983). The usual approach 0
is linear wave theory on an equatorial P-plane, where the familiar Kelvin
waves, mixed gravity-Rossby waves and so on play various important roles.
Hence, for instance, movement of warm water pool on the equatorial ocean is
described, in a linear framework, by combination of those waves. This
involves the assumption that distortion of the stratification does not

qualitatively alter the properties of the waves. .

In the present study, however, we will consider the dynamics of a warm
water pool from a different viewpoint, where the pool alters the wave structure
completely. The method used here is almost parallel to the theory of coastal
fronts (Stern, 1980; Paldor, 1983), where a constant potential vorticity field
is assumed and the long wave approximation is employed. In this study, the 41
equator is analogous to the coast. The configuration considered on the equa-
torial p-plane is shown in figure 1, where a fluid of uniform density flows
above an infinite stationary fluid. From the peculiar nature of the equator,
if the pool is symmetric then the value of the potential vorticity must be
zero. This may also avoid the inertial instability near the equator (cf.
Stevens, 1983).

The assumption of zero potential vorticity, combined with the long wave

approximation, simplifies the mathematics considerably. However, the results
obtained by this simplification are still interesting as an example of the
equatorial dynamics in which the variation of currents and static stability
(equivalent depth) completely changes the wave structure. In section 2, we
will describe basic equations and the current structure. In section 3, linear
stability will be discussed for zonally uniform flows with zero potential

vorticity. In section 4, nonlinear theory for long waves will be considered
and several nonlinear features of the movement of warm water pools will be

derived.

0

0........................ • .-.. ,... . . . . . . . .. !.....-...
• , , .
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(b)*LWJvW 0

1A0

L1~

Figure 1: Three cases of warm water pooi with zero potential vorticity-
on an equatorial P.plane: (a) whole region is covered with
eastward flow, (b) westward flow exists on the equator,
(c) water mass is separated from the equator.

2. BASIC EQUATIONS

The movement of the upper layer is governed by the equatorial shallow.
water equations:

ut + uux + vuy - yv - -hx (2.1a)

vt + UVX + VVy + yu -- hy (2.1b)

ht +(uh)x+ (vh)y 0O (2.1c)
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where u, v are the velocity components in the x (eastward), y (northward)
directions respectively, and h is the thickness of the upper layer (figure 1).
These quantities have been nondimensionalized by some length unic L*, the
reduced gravity g' - g(P2 - P 1)/ , and the north-south gradient of the 0
Coriolis parameter, . The dimensional forms of these quantities are obtained
by

(X~ L(X)
0 L.*

where * means a dimensional value.

The assumption of zero potential vorticity is:

y - Uy + vx  0 (2.2) 0

By using this constraint, the momentum equations (2.1a,b) becomes

ut - -(h + 1/2u 2 + 1/2 v2 )x, (2. 3a)

vt - -(h + 1/2u 2 + 1/2 v2 )y. (2.3b) 0

The long wave approximation which simplifies mathematics of zero potential
vorticity flow is obtained by rescaling the time and x-directional unit as
( L*)--#(P L* C) and L* -. L*(-l and also the northward velocity unit as
PL 2 --4 L*'2 f , where e is a small parameter. Then the lowest order
equations reduced from (2.A) are:

ut + uux + vuy yv = -hx, (2 .4a)

yu -hy, (2.4b)

ht + (hu ) + (hv)y O. (2.4c)

The constraint of zero potential vorticity (2.2) becomes

y - Uy = 0, (2.5)

which means that the zonal velocity should be quadratic in the y-direction;

u 1/2(y 2 
- L2 ) + U, (2.6)

where L is the coordinate of the front of water pool and U is the eastward
velocity of the front (see figure 1). U and L are generally functions of x
and t. From the expression (2.6) and the geostrophic balance (2.4b), the form
of the upper layer in the y direction can be determined as

h = -1/8 [y4 + 2(2U - L2 )y2 + L4 - 4U]. (2.7)

Three typical cases of u and h are shown in figure 1. (a) (U A-1/2L 2) is

the case where no westward flow appears; (b3 (1/2L 2 > V 1 I/4L 2 ) contains

westward flow on the equator, and (c) (1/4L > U >0) is the case where a

negative thickness appear near the equator which means the above profile is

,@ S
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valid within the region I < L (-Eu . Note that those
profiles of u and h determined from zero potential vorticity are symmetric
around the equator.

3. LINEAR STABILITY OF ZERO POTENTIAL ZONAL FLOW

In this section, the linear stability of zero potential zonal flow, whose
meridional profile are shown in figure 1, is investigated. The zonally
uniform steady solution has been derived previously by Salmon (1982). The
basic profiles considered are, from (2.6) and (2.7),

u = 1/2(y2 - l)'jo (3.1)

-- -1/8 [y4 + 2(2* - 1) y 2 + 1 - 4f]. (3.2)

where -il! y S 1 when 1/4, and rl- 4IF 5 yl 1 when 0 < < 1/4.
Since the basic state is independent of x, the length unit L* has been chcjen
such that L - 1 and U was redefined as- ft , where ( ) means the basic
value. Griffiths, Killworth and Stern (1983) discusses the analogous f-plane
stability problem and it is shown below that their results are obtained by
taking the limit i --4 0.

When a small perturbation of the form (d ,f , V, h' ) (,, ') ei(x-ct)
is imposed on the above basic flow, the momentum and continuity equations (2.1)
give the following linearized equations:

(r, c)' = -h, (3.3a) .!.

E21k('g- c)v + y'U Ae- (3.3b) " "

("-C)A +h +- (h = O0 (3.3c)"

where e is a small parameter which is set to be zero for a long wave limit.
(3.3a) and (3.3b) yield the vorticity equations,

- c) (ikEME - Uy) 0 (3.4)

The solutions for - c = 0 are necessary just for the completeness of the
eigenfunctions. Physically interesting solutions are obtained from ike' -Dy-0,
which means that the perturbation vorticity also vanishes. Substituting (3.3a)
and (3.4) into (3.3c), an eigenvalue problem is given as, Sbitn ("

(hu^y)y -'k2[ (u-c21 (3.5)

For the case of long wave limit ( < <C 1), the eigenfunctions and the
eigenvalues are easily obtained. Since u becomes a constant from (3.4), the
eigenvalue c is given by integrating (3.5) with the boundary condition" - 0
at y --+1 for 1/4 or at y - 1 and rF-'7for 0 < < < 1/4.A

0 u c) 2 ]dy for 1/4, (3.6a)

0 u c) 2 ]dy for 1/4 > 0. (3.6b)
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which, with IT and =given by (3.1) and (3.2), yields

I c.- = - 1/3 -4/45 + l/3r for ; - 1/4, (3.7a) -

I E i~k . ~ l +, _f € +T + + ) (3.7b) .._.
-6r 1l+ > .

(3.7a) indicates that, when 1/4: 6 <. 4/15, c becomes complex and perturbation
is over stable. In the expression (3.7b), the term within the square root can
be shown always negative for 0 -C f < 1/4. Figure 2 shows the real part and
the imaginary part of c given by (3.7) as a function of f . When the basic
current is separated from the equator, it is always unstable. There remains •
unstable region when the upper layer is on the equator with sufficiently large
westward flow. Or, in other words, if the thickness at the equator is less
that 1/120, then that profile is unstable.

For ? - 0, (3.7b) gives c - 0, i.e. double roots, which means geometric
instability. The limiting case 7-P 0 can be regarded as the f-plane approxi- 0
mation in the mid latitude where s-effect is neglected. Actually, regarding

and 1-y is small in the expressions (3.1) and (3.2), they are approximated
as,

-(1 - y), (3.8a)

h " (1 - y) - 1/2(1 - y)2  (3.8b)

which are the profiles studied by Griffiths et al. (1983) and Paldor (1983a,b).
Thus, we recover their results in the limit f-- 0.

Griffiths et al. show that the basic state (3.8) is always unstable for
short waves. (3.7) shows that e-effect destabilizes long waves.

There is another double root when = 4/15. For ) 4/15, the flow is
stable (neutral) for long waves. However, there remains a possibility that
(3.6) is unstable for short waves, For a sufficiently large value of j , the
profile of figure la can be shown to be stable. Following the method used by
Paldor (1983a), we define ,Q- C Multiplying (3.5) by '*
and integrating it from -1 to 1, then separating real and imaginary parLs,| 

..

[., " I~n +'k'~l" P,- (- )k tG-F) ',.- l,.' r.'-]=0, (3.9a) "

;.J } I l I (. -')+ llv] = .(3.9b) .:

If 0 * 0, then from (3.9b), (3.9a) becomes

1j , ,e. , .r E F, - Il-i' - r4"- 'Y' ) . (3.10)

By the use of (3.1) and (3.2),

-t - )( 03.- ) (31 4.+ - , (3.11)

which means that when f_ 3/4 (3.10) cannot be satisfied. Hence, JY is zero
for . 3/4.
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*Figure 2: Complex phase speed of disturbance on a zero potential zonal flow at
the long wave limit. Thin lines in the up r f igure indicate the
range of the basic zonal flow VU which is 7- 1/2 f for

;F A 1/4 v*J for1/4
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The long wave structures in the stable region are shown schematically in
figure 3. Since u is constant, the anomaly in thickness,n, is determinedroughly by the sign of - c in (3.3a). It can be seen from figure 2. that

u-c+ < 0 for -l<y< I when " Z 3 /f- •

4 0 Yj<Y*
for when 3/5 > > 4/15,

> 0 i.Xty >Y*

- c > 0 for -l<y< 1 when > 7/ZOP

0 IyI< Y*
for when 7/20> ;> ? 4/15

> 0 1 IYI > Y*

where y* is a certain value determined by c. From the functional form of " S

(3.1), Iu - cI is an increasing (decreasing) function of Jy when U - c > 0
(4 0). Hence, when W > 3/5, the c+ solution has a structure similar to the
equatorial Kelvin wave which is trapped on the equator, while 0 > 3/20
c.solution has the larger amplitude in t at the north and south boundary than
on the equator. It is "trapped" at the free boundaries. The structure for
smallf(but still larger than 4/15) is a mixture of both patterns. S

The basic flow given by (3.1) and (3.2) is marginal for barotropic insta-
bility according to the usual criterion of quasi-geostrophic flow (Gill, 1982).
The necessary condition for shear instability is the existence of inflection
point in the velocity profile (Rayleigh's inflection-point theorem). The .

present basic state does not have an inflection point because it has zero .
potential vorticity. It is also marginal in inertial instability (Charney,
1973). When the effect of gravity is neglected, the necessary condition is
f(f - uy) < 0, where f is the Coriolis parameter. Either criterion, however,
is not applicable, because the disturbance is not quasigeostrophic or the
effect of gravity (variation of thickness) cannot be neglected.

S

Shear instability, in which vorticity disturbance plays an important role,
is not likely to occur, since the basic state is zero potential vorticity and
stretching or shrinking due to the change of thickness does not cause any vor-
ticity anomaly. On the other hand, there may be a possibility of generalizing
the criterion of inertial instability. The simple criterion f(f - uy) 0
does not include the change of angular momentum due to the variation of thick-
ness.

Figure 4d shows the schematic structure of unstable wave for T< 1/4.
Since c is complex, there is a phase lag between u' and h'. The configuration
is similar to O(E ) correction in long wave expansion (Griffiths, et al.,
1982) where undisturbed flow is strictly antisymmetric and undisturbed depth
profile is symmetric. The deformation of symmetry due to -terms has a
similar effect to that of short wave disturbance. ".

...

- . . . . . • ..• .. _.-.-....... .... . .... . .
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4. NONLINEAR WAVE PROPAGATION

In this section we will consider the nonlinear motion of equatorial water

masses with zero potential vorticity within the framework of the long wave 0
approximation. Following the method of Stern (1980) and Stern et al. (1982),
we will derive the equations for U(x,t) and L(x,t) in (2.6) and (2.7). Since,
as mentioned in section 2, the long wave approximation determines the y-depen-
dence of zero potential vorticity flow completely, it remains to determine the
integral constants U and L. From the discussion of the previous section we
will deal with the profile U > 4/15L2 where the zonally uniform solution is 0

neutral to long wave disturbances. In the range 4/15L2 <U< 3/4L 2 there
may be unstable short wave disturbances, but for the moment we ignore this
possibility.

From the y-momentum equation (2.3b), the Bernoulli function is:

~t%+ICU'+LLP -J' Vd *j ~( trb+V)

.. _ ).  (4.1)

where V V vlu = Lt + ULx. From the vorticity constraint (2.2), the x
gradient of Bernoulli function becomes

=4O V L -V, C,, 4 i uV% (4.2)

substituting (4.2) into x-momentum equation (2.3a)",

Ut + UUx - LLt = -VtLx + LtV x - i/2(V 2 )x (4.3)

The right hand side of (4.3) is neglected when long wave approximation is made 0
(V is one order smaller quantity). The lowest order equation for this approxi-

mation is

U t + UUx - LLt = 0 (4.4)

Another equation for U and L is derived from mass conservation (2.
4c). Sub- 0

stItuting the expressions (2.6) and (2.7) for u and h into (2.4c) and inte-
grating with y from -1 to 1, we have

t L"  vJL T3LO3)X 0 . (4.5)"•.

It is essential to have explicit solutions of u and h to obtain (4.5) and it
is easy with the long wave approximations. Note the net transport is given by
the term within the second parentheses which is positive when

U/L 2 > 3/10(1 + JF1'i)

and negative when 0

1/4 < U/L 2 < 3/10(l +J1172-). 'i

• (4.3) can be derived without using the constraint of zero potential vorticity.

*
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For the later convenience, we define M 9 L2 and *- U/L 2  U/M.
Equations (4.4) and (4.5) become

"Ut2t MV - - . (4 .6a) 0

Then, for a given initial condition of the warm water pool U i U(x,o) and
L - L(x,o), its time development can be calculated from (4.6) so long as the
long wave approximation is valid. It is useful to consider Riemann invariants 0
of (4.6) to understand the nonlinear features of this system (Whitham, 1974).
Since (4.6a,b) are quasi-linear first order equations, an appropriate linear

combination gives the equations of the Riemann invariant which is constant on
a characteristic:

where r-L are the characteristic speeds given by

_______(4.8)

and R± are the Riemann invariants given by the differential equation .

u'3- Is -'pL . (4.9)

The characteristic speeds are exactly the same as the phase speeds derived in

section 3 (figure 2) except for the factor M which is set to be 1 in the linear
stability arguments. The values ofAS() are plotted in figure 4 and several
curves RtU,M) = 0 are shown in figure 5. The gross features of the curves
are qualitatively similar to those obtained by Stern (1980), where coastal
fronts on an f-plane are considered. Since the equator plays a role as a .0
coast because of the symmetry of both hemispheres, the similar results are

almost expected.

It is informative to consider the development of warm water whose initial
condition is strictly on a certain Riemann invariant. (This is the case of a
simple wave.) Let RI(U,M) = 0 (1 Is either + or -) at t 0. Then, from 4
(4.7),

(4.10)

+ ,-

~~~..' . .... ........ .. . . .......... .. . . - . "....-..... .. '.-. - . . - , . ' , " - ' - . " . . " . - .-..- ... - . . . - - . - , - , . - ,
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which means that RI(U,M) = 0 is satisfied at subsequent times. There is a
functional relation UYJM), which yields, from the other equation of (4.7),

i.e.

{ (.t*t r,..a) fl-0 ,(4.11)

+ *r~. tr~o

where 2 means the other one of + or -. M and U remain constant along the
other characteristic lines. The shape of warm pool propagates at the speed
r2 , (figure 6). Note that the values of U and M are bounded by the ranges
given by initial condition because they are conserved along dx/dt - r2.
They remain on the segment of Riemann invariant curve determined at t = 0.
From (4 .6a) and (4.9), r2 is given by

TA, (4.12)

L

t.t

Figure 6: Characteristic lines and time evolution of wave patterns.

Particular values of A , 4 , r are summarized in Table 1, from which
qualitative arguments about the behavior of simple waves can be made.

S
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TABLE I

Ro A.

A- > 0 (A >o)

A-=-OO t

Aoo (#<o) r0 > -

I0

¢AT T:<o 0.

A+o r-o..

A>o r-_* "

0
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The condition for the occurrence of wave steepening, and breakdown of long
wave theory, is given by

r< (0 (4.13)

From the expression of r (4.8), (4.13) becomes

[ + rK V,- (4.14)

where r*(# ) z r/M. Figure 7 shows particular structures for which (4.14) is S
easily evaluated.

Figure 7a is the case where the Riemann invariant of the single wave is
the straight line shown in figure 5, that is R_(U,M) = U - f*M. *, is
the solution of k,(# ) - f . There is no solution like that for the other
kind of Riemann invariant. For this wave (4.14) becomes simply S

o. (4.15)

Since r+*>O in the neighborhood of - wave steepening occurs to the
east of the maximum value of M. It is shown later that steepening can be
balanced with the shortwave dispersion in a certain case. 0

Figure 7b is the case where the aximum value of M is on the line t:wfor
R+ (say, P+ in figure 5) or t-o for R_ (say, P- in figure 5).
Figure 2 shows r - 0 on these points P, which means the position of the
maximum value of M does not move. Figure 4 indicatesA= 0 on PA so that
(4.14) becomes

-- rf < (4.16)

As seen from figure 2, r.! 0 in the neighborhood of P, the condition for
wave steepening becomes Mx > 0, that is, steepening occurs to the west of
the maximum value of M. This situation corresponds to the "blocking wave" S
discussed by Stern (1980). However, in the present case (see figure 7),
M - Mmax does not block the net transport. (It is positive for -(5+j/i0
and negative for --(5- /5V10.

.2

• •

.............................................
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the bore wave corresponds to the R- front and the edge wave corresponds to the
LR. front as shown in figure 8.

(Q) ~- bore 4-vllt

M Ii S

uQo
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It is possible to obtain a short wave correction for simple waves. AssumeA
to the first order in the long wave limit, U and M are on a Riemann invariant
RI(U,M) - 0. Since the time development of U and M are given by (4.11) to

this order, the right hand side of (4.10) is calculated iteratively by (4.11) 0
and the functional relation RI(U,M) 0 0. The result is

(4.18)

Since

Vt t xJj j-~ m, 1  up, t r,.,)M 
(4.16) can be written as _*- rL.

(,. t r,'IM ,)M r - X (-241 t 3r*.j. *V * (A')19)@
(4.19)

'(4,- t)
Hence, for a certain parameter range, the right hand side of (4.19) may
balance the steepening caused by the advection due to r2*M.

Actually, for a simple case where the Riemann invariant is the straight
line of figure 5

R M) " Y- rM (4.20)

on which

j. A ( )=-._ A- _ n .(4.21). ,..

(4.19) becomes, for this Riemann invariant, 3-.-,0 ..
Mt + +,MM x = _AMx 3_ BMMxMxx (4.22)

where

= 3.507,

A = 0.2394, S

B = 0.03796,

A travelling wave solution can be obtained by substituting ;t "9 -c x.
Rescaling M, 4x and ;t by

M A 't"r' -

, ~vOcA-'r." ,' (4.23)

D-t K A u  r ,7"

so, (4.22) becomes

(M - C)Mx = 3 B/A MMxMxx (4.24) S

where B/A - 6.31.

- -.. * *4 .. . . . - .

-.- . .. . . . . . . . . . .- ' -
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The first integral of (4.24) is

M -M o  ( 4 . 2 5 a)

or

M'2  
- M M-2A/B + 2A/2A+B M = C (4.25b)

where Mo and 0( are integral constants. Although the solutionsof (4.25b) can
be classified in three types according to o(* 0 (figure 7), the relevant solu-
tion of (4.24) which is appropriate to the present assumption is g • 0 case
with small maximum M'.

• 0 - 0zA M

CI

IA 2AtS .

-0( 0
a Io

C ----- -- ZAS1

-at _ _ J_

. I;

2.A
• 4

C

Figure f: Classification of solutions of (4.25b). For 0 = , M becomes
quadratic in x. For 0( 0, M' is determined by "potential"
2A/2A+B M - 0. M-2A/B with given "energy" c. Schematic shapes

for M are drawn in the right figures of each case. For 0, it

is possible to connect "outer solution" M' 0 (4 .25a).

LS
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Since the equation (4.24) was derived under the assumption that U and M are to
the first order on a Riemann invariant, the wave solution must propagate at
the corresponding characteristic speed which is M by the scaling (4.23). This
means M should be near c (M is almost uniform). Hence, this is the travelling 6
wave solution of a small amplitude disturbance on the zonal current of the
type shown in figure la.

5. SUMMARY

Several behaviors of zero potential vorticity flow on an equatorial P plane
were considered by using long wave approximation.

The linear stability analysis of zonal basic flow (figure 1) revealed the
unstable region for long waves. It was shown that, when the flow is separated
from the equator (U 1 I/4L2 ), it is always unstable because of A-effect.
The limiting case U/L 2 --4 0, which corresponds to f-plane approximation,
causes vanishing imaginary part of c and coincides with the results of former
investigators. For the parameter region UZ 1/4L 2 , there also exists an
unstable region for long waves, that is, 4/15 % U/L 2 0 1/4. The basic flow
In this region has a strong westward flow and a shallow thickness on the
equator. For the parameter range U/L2 -Z 3/4, it was shown that the basic
zonal flow is stable for any linear disturbances. There remains a possibility 5
of short wave instability for the basic state with 3/4 I U/L 2 _. 4/15.

Nonlinear theory employing the Riemann invariants and the characteristic
speeds were also considered. The behaviors of simple waves, which consist of
only a single Riemann invariant, were confirmed to be almost similar to those . .
of coastal zero potential vorticity flow discussed by Stern (1980). Occurrence

of wave steepening was qualitatively shown for idealistic cases. Solutions
corresponding to bore and wedge fronts also exist. It was indicated that the
next order correction of the long wave limit can be carried out along the
characteristic line of the Riemann invariant obtained as a first order solu-
tion. For the particular Riemann invariant R- = U - f4 M, the correction
terms suppress the wavebreaking due to the steepening. 0

The nonlinear theory considered here was restricted to the behavior of -

simple waves. An interesting problem to be solved next may be a time develop-
ment of warm water pool, which is not composed of a single Riemann invariant.

S
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FINITE AMPLITUDE DOUBLE-DIFFUSIVE CONVECTION
CAUSED BY COUPLED MOLECULAR DIFFUSION

Ross C. Kerr

ABSTRACT

This study examines the effect on a double-diffusive system of the combina-
tion of both finite amplitude convection and significant coupled molecular
diffusion. Using a minimum Fourier series representation of the pertubation
fields, we find that steady finite amplitude convection can exist for nonzero
values of the cross diffusion coefficients. We show that the effect of these
coefficients becomes significant when their magnitude is comparable to the
conventional diffusion coefficients. We also show that finite amplitude con-

vection can occur in a fluid where both property gradients are stabilizing for
relatively small and negative values of these cross-diffusion coefficients.

1. Introduction

The phenomenon of double-diffusive convection in a fluid layer, where two

scalar fields (such as heat and salinity concentration) affect the density
distribution in a fluid, has become increasingly important and widely studied
in recent years. Linearized stability theory (Baines and Gill, 1969) shows
that the first occurrence of instability can take the form of oscillations
rather than direct convection if the component with the smaller diffusivity is
stably stratified, provided that R. (a dimensionless measure of the strati-
fication) is sufficiently large. Finite amplitude convection was examined by
Veronls (1965). He showed that when oscillatory convection was possible there
was always an unstable branch of steady solutions bifurcating from the static
state at larger values of R (a measure of the destabilizing gradient of the
component with the larger diffusivities). He then used a truncated Fourier
series representation of the solutions to obtain a guide to the finite-
amplitude behavior of the steady solution branch. The results of his minimal
modal expansion suggested that steady motion at finite amplitude could occur
at values of R much less than that predicted by linearized theory. Subsequent
studies by Veronis (1968) and Huppert and Moore (1976) showed, however, that
this result is only valid if the ratio of diffusivities (r ) is very small
and Rs is large.

Recently, McDougall (1983) has extended the linear stability analysis of
double-diffusive convection by including two cross-diffusion flux terms. He
showed that, with a sufficiently large coupled diffusion effect, that either
the finger or diffusive modes of double-diffusive convection may occur even
when both components make the fluid's density gradient statically stable. His
analysis ignored, however, the po'sibility that stable finite amplitude dif- S
fusive convection might occur in this system. As a first step towards the
understanding of finite amplitude effects in this system, we examine the

effect of cross diffusion on the minimal representation study of Veronis
(1965).

2. Formulation of the Problem •

Following McDougall (1983), we consider a layer of fluid of depth d,
confined between two horizontal boundaries which maintain a contrast in fluid
properties between the boundaries of &T and AS. We consider both T and S

ii::-:• :~........................--:;..............:: :::::_
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to be solute concentrations and that positive AT and AS imply that the

concentrations are greater at the lower boundary. We consider only two-
dimensional instabilities from a rest state which has uniform T and S gradients

between the plates. The equations for the conservation of T and S are S

)jT __ y - TT = 0,, N7T + L) S7'5 (1

T- '5 D V (2) S

where D1 2 and D2 1 are the two cross-diffusion terms and U is the two-
dimensional velocity vector. We assume that T diffuses more rapidly than S,
so that DlI> D2 2 . The Navier-Stokes equation for momentum conservation

is

+ -(3)

Here & is the acceleration due to gravity, Pt is the reference density and/n

is the fluid density, given by

P % ,T +# 5 (4)

Taking a horizontal coordinate x and vertical coordinate z (defined positive
upwards), we define a stream function ' by

&0!~~ (5)

We also introduce nondimensional variables so that deviations of T and S from

the linear vertical gradients (- AT/d and - AS/d) are normalized by AT .

and AS respectively and the timescale is d2Dll -1. Equations (1), (2)

and (3) can then be expressed in dimensionless (dashed) variables:

1 -T - &D.( ,."T7) (6)

'- -rXN 7~soE )- z'- ~ ~ '5')S( ~J (7)

( } ,_, , , , T-'. - S ' '- , ., _,-t ,., : (8)

where the Jacobian i- defined by .'#,)= '- _ " .]--iy I x - -- , .. ;'
and - - O - / , -. /;- -0O/ L: ),' 'R -- D,:. /O , , D "

7-~~~~" D, C), --A - x 51

.7. . .-

4 S
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We choose stress-free boundary conductions so that

0- r -T 1= 5) O 0 1  (9)
ya .

3. Finite Amplitude Solution using a Minimal Representation

In order to examine the finite amplitude solution to equations (6) to (8)

subject to the boundary conditions (9) we expand the variables in a Fourier

series and adopt the minimal representation of Veronis (1965): 0

Tr w - A TV - . : 77 z

7-,7
(10)

The equations that determine the Ai are derived by substituting the set (10)

into equations (6) to (8):

(R A R, A5)

A-'T T7VOilA 1 + j77

Av ---T( .% )E t cQpvt .__ A j--T-o-Au - AAa. (11) -.

A-77 A3, A- TF A~i A-, ~ AA

a.o.

These equations (with no cross-diffusion terms and R negative) were inter-

grated numerically by Veronis (1965). He observed that the system has a
finite amplitude steady state solution which can exist for values of -R much

less than the value required for linear oscillatory instability. After

verifying these observations using a third-order accurate numerical scheme

(with r 1/80, R s 
= 103 and a timestep & t < 10- 4 ) I examined the

effect on the system of varying SORET and DUFOUR. The main conclusion of this

study was that finite amplitude steady state solutions of (11) were found to

exist for some values of R, whatever the values of SORET and DUFOUR. In

particular, solutions exist for positive values of R if either SORET or DUFOUR

is sufficiently negative.

:-:... .: .:-.. ... ....: .. :.. ... -... .. .... . .: : .. .. .... -. . . ..: .- :. . .:.::. :. :.-: ::., ..j :::.:...:S _

S S- " , -- " ' " ' . .-' ' " ' " " " '. . .. . . . . .. - -
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The steady solutions can be found by setting the left-hand sides of

equations (11) equal to zero:

SJrrS

- . - T.r A, R .... ,~cJR

+~ A,

A - r A , E - A" (se='o,, r R/ - (12)-'A, ,<.,

* A" - " o-~o) -A, =  wo

where we define R r- and DET t (DUFOUR)(SORET). The
amplitude A1 is given by an equation which can be simplified by defining

A'-.- A (0' :  , ,>.,ze,) R,-+ .,)--('"
0oo... UFL-4C)E-r E T- r P + ,- , E-- Z. 5, C,,,w) P O. (1)

For finite amplitude solutions to exist, we require the two roots of (13) to

be positive, so that the coefficient of A in (13) must be negative and the
constant term must be positive. If the magnitudes of both R* and R*s are
large, these conditions are satisfied if DET > 0 (see Appendix) and

0 °= 5o (l ' N A/>> 1). (141).

4. Comparison of the Results with those of McDougall (1983)

Equation (14) can be compared with the conditions found from the linear

stability theory of McDougall (1983) (equations (24) and (25)) for the onset

* 0i:i:
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both oscillatory 'diffusive' instabilities

and monotonic 'finger' instabilities

00-ng 4">,,) - (16)

In the case of both T and S stably stratified, equation (14) shows that
finite amplitude diffusive instability requires

-I < -1; -.-,• (17)

This result can be compared with the conditions required from (15) for the
infinitesimal oscillatory 'diffusive' instability

S<)2 ( )-- 0V-i. (18)

Conditions (17) are always less restrictive than condition (18). The negative
sign of both quantities reflects the fact that a stable gradient of one
property must induce a larger unstable gradient of the other property in order
to produce finite amplitude convection. One way of viewing the conditions
(17) is to consider what happens if convection is able to completely mix up
the fluid so that at some point in time, T, S and U are zero. As the
gradients of T and S reestablish themselves due to diffusion from the
perfectly conducting boundaries, the equation for the diffusion of density can
be found by combining equation (4) with equations (1) and (2) (where U- 0):

( +~o,-~~) 2  (#wD, /)t a)V S (19)

This equation can potentially correspond to the negative diffusion of density
(and hence to instability and further convection), if either of the bracketed
coefficients on the right of (19) are negative, i.e. if conditions (17) are

satisfied.

The stability boundaries implied by equations (14), (15) and (16) may be S
compared by plotting them for fixed R*/Rs*, subject to the static stability
constraint R* + R*s > 0. We see immediately that the three stability
boundaries are parallel lines through the points (1, 1), (-- t ) and
(-(.r4-L -g ,)/1- ). These are shown in 4*- :-e 1. Figure l(a) has stable
distributions and T and S and the slope of the stability boundaries is
negative. Figure l(b) has R* > 0 and R*s < 0, the distribution of 0
properties that is normally conducive to fingers, and the slope of the
boundaries is between 0 and V-1. Figure l(c) has R* < 0 and Rs* > 0,
the distribution of properties that is normally conducive to the diffusive
instability, and the slope of the stability boundaries is greater

-
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Figure 1. A sketch of the stability boundaries as a function of
BD 2/aD and aD1 /D., for different ranges of R and 0
R S2 (2 has R > 0 and RS > 0 (i.e. both components

stably distributed); (b) has R > 0 and RS < 0 (i.e. an
apparently "finger" property distribution); (c) has
R < 0 and R > 0 (i.e. on apparently "diffusive"property
distribution). The boundaries (2) and (5) are the respec-
tive linear stability boundaries found by McDougall (1983)
for the finger and oscillatory diffusive instability.
Boundaries (1) and (4) are the instability boundaries
given by the condition DET < 0 (see the Appendix).
Boundary (3) is the instability boundary for finite
amplitude diffusive convection using the minimal repro- 0
sentation (equation (14)). The slope of parallel
boundaries (2), (3) and (5) is equal to Rs/TR.
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than V-1. These stability boundaries show that the two types of
double-diffusive instability never occur together. In addition, these show
that the region of finite amplitude diffusive instability always encloses the
region of infinitesimal oscillatory diffusive instability. In addition, the
stability diagrams in figure 1 have curves plotted corresponding to the
limiting condition found in the Appendix for the fluid to be spontaneously
unstable to the diffusive separation of T and S:

= (20) .

These curves serve to further reduce the range of stable values of the
cross-diffusion coefficients.

5. Comparison of the Results with Veronis (1965)

In this section, we discuss the individual effect of the two cross-
diffusion terms on the finite amplitude results of Veronis (1965). This
comparison can be emphasized by considering the flux of T through the fluid,
which can be expressed in terms of a Nusselt number:

D ,,
0,, i't'/d

(21)

when DUFOUR = 0,

NUT =1 + 2J1 + 87 (.2 + 1)/Ali (22)

(That is, when DUFOUR = 0, the flux of T is due solely to conduction and
convection and 1 4 NUT <" 3). In figure 2(a), NUT is plotted against log
(-R/Rs) for R < 0, t 1/80, Rs ; 108, and various values of the
parameter SORET. In the calculations shown in figure 2 , we have chosen
0<2 = 1/2, which is the most unstable wavenumber for both linear and finite
amplitude double-diffusive convection (Veronis 1965, 1968) and for linear
double-diffusive convection with coupled diffusion (McDougall 1983). We note
however, that we have not proved that it is the most unstable wavenumber for
finite amplitude convection with arbitrary values of R, Rs, , SORET and
DUFOUR. Of the two solution branches, only the upper one corresponding to
NuT 3 is stable. The figure demonstrates equation (14), which can be
rearranged in this case to give

(-R*)critical > R*s/(l + SORET) , (R* and R* >> 1). (23)

Hence, if SORET > 0, the critical Rayleigh number is lowered while if
SORET < 0, it is increased. If SORET < -1, convection can occur for stable
gradients of R* and R*s , as is indicated in figure 2(b).

When only SORET = 0, the DUFOUR effect enables a flux of T to be produced
even when the temperature contrast AT across the fluid is zero. Hence, as
R-3 0 when DUFOUR # 0, INuTI - 0". We therefore define a dimensionless T
flux

HT - -R* NUT (24)
R*s

............. **-.. .................... .. ~
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Figure 2. Plots of the Nusselt number NUT versus R*/Rs* for various
values of the SORET Coefficient, for R5* >> 1, T =1/80,

and DUFOUR - 0. In (a), SORET > -1 and R < 0, which in
(b), SORET > -1 and R > 0. In both cases, only the un-
stable finite amplitude is clearly visible as the stable
finite amplitude branch has NuT Zf3.
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which will remain finite as R*--p 0. Calculations of HT illustrate that
when R* < 0 and Rs* >> I,

(-R)critical - Rs*(-r + DUFOUR) (25)

Hence when DUFOUR< - r, the system is unstable to all destabilizing T
gradients and will be unstable unless a large enough stabilizing T gradient is
applied.

6. Conclusions

The main conclusions of this study are the following:

(A) Steady finite amplitude diffusive convection can occur for nonzero
values of the cross-diffusion coefficients.

(B) When a minimal representation of the convecting system is studied, we
find that cross-diffusion effects are significant when the magnitude of these
coefficients is comparable with the usual diffusion coefficients. In parti-
cular, if SORET 4 -1 or DUFOUR<', finite amplitude convection may occur
when both initial property gradients are stabilizing. We also note that such
large cross-diffusion coefficients have been observed by Cussler and Lightfoot
(1965) in the combination polystyrene-toluene-cyclohexane.

(C) The minimal representation results are only an approximate solution to
the equations (6) and (8) which is likely to be particularly inaccurate for
small tr . The logical extension of this study is to examine the steady
solution of these equations when the full Fourier series representations of 1,# 0.
and S' is used (as was done in the case without cross-diffusion by Veronis
(1968). A study of the time-dependent equations, analogous to that of Huppert -

and Moore (1976), is also possible. However, such studies are probably only . .

justified for particular systems where all the diffusion coefficients are
known and where the possibility of finite amplitude diffusive instability is
suspected.
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APPENDIX- THE SIGN OF DET

Consider an infinite volume of stationary fluid where T and S are
initially uniform. In this fluid, the time evolution of infinitesimal
disturbances is given by the equations

(Al)

In order to examine the stability of this system to arbitrary linear distur-
bances, let

T - To exp (i(lx + my + nz) + -a' t)
s - SO exp (i(lx + my + nz) + d- t). (A2)

Substitution of (A2) into (Al) gives the equations

To - -k2 (Dll To + D 12 So) (A3)

4rS o - -k2 (D2 2 So + D2 1 TO),

where k2  12 + m2 + n2 . Combining equations (A3) gives the equation

.(.-iD,," -) .# /0, D. - D.a £..) 0 , (A4)

We therefore see that both roots of this equation for a are negative (corres- -

ponding to the decay of infinitesimal disturbances) if DET - DlID 2 2 - -
D1 2D2 1 > 0. If DET < 0, we have the apparently unphysical result that the

fluid is unstable to infinitesimal disturbance, resulting in the build-up of
infinite concentrations of T and S throughout the fluid (note
that N-i , so that the fastest growing disturbances are
infinitely close to each other.

3, 0 'q

.i .... -.-..-...o -. ..-.- .- .- .° . • . .... - , ... o , -. .- , ° .* -. ..-. .. . . , . .- • . °
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HEATING A SALT GRADIENT FROM A SIDEWALL
Oliver S. Kerr

I. Introduction

In lecture 2 it was noted that the formation of horizontal layers is often "
found in double-diffusive processes. These layers can be formed, for example,
by heating a salt gradient from below or from the effects of a side wall.

Side walls can generate horizontal interleaving in two ways. If the side
wall is not vertical then the no flux condition at the wall prohibits hori-
zontal isopycnals from existing which leads to motions up and down the wall.
These motions lead to the formation of layers (Linden and Weber, 1977). The
other way is for a temperature and/or salt concentration to be created at the
wall which will drive motions that will lead to the formation of layers. It
is this second care that we will be looking at here.

The case of laterally heating a salt gradient in a vertical slot has been
investigated theoretically and experimentally by Thorpe Hutt and Soulsby (1969)
and Hart (1971). In these cases it was assumed that a linear temperature
profile had been established between the two walls before any horizontal
convective rolls were set up. In this paper we will look at the case of a
semi-infinite body of water, and so there is no steady temperature profile.
This case has been investigated experimentally by Chen, Briggs and Wirtz (1971)
or a fixed temperature difference between the wall and the fluid, and by
Narusawa and Suzakawa (1981) for a constant heat flux. We will only look at
the case of a constant temperature difference.

2. Basic Flow

\T S "

T=AT \ T -:
.-

First we will look at the case of a semi-infinite body of fluid bounded by
a rigid wall at x - 0. We will always take the vertical salt and temperature
gradients to be linear. This removes any explicit z dependence from the
governing equations and so we will be able to work for solution which has no z
dependence. If the fluid only has a temperature gradient causing the strati-
fication and it is then heated, then a steady uniform boundary layer solution

- exists. This steady thermal boundary layer has a balance between the tempera-
ture diffusing away from the wall and the fluid rising into a warmer environ-
ment, so reducing the heat perturbation from the local level.

5:p 5 -

. .. . . . . . . . . . . . .
. . . . . .. . ...... . . . . . . . . . .

. . . . . . . . . . . .. . . . . . . ...- .' -. . . -... .•. .
........................... e...n.n.e.bdyof. lui bundd b .
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We can look for a similar solution with two components causing the strati-

fication. The governing Boussinesq will then be

I C ~ (o~.T + ') -- ~ w

- T Ll

I-) (% T C)

The boundary conditions are

6 at x 0 w 0 T = /T S Z\S 0

as x "X w--O T - 0 S-' 0

These have solutions
T - T cos Mx exp(-Mx)
S = S cos Mx exp(-Mx) 0

W = A sin Mx exp(-Mx)

where fy "- 9 ( ( '

This requires that KTISTM2 - TzA and Ks , SM2  SzA.

The steady boundary layer solution will only exist when the vertical

velocity is at the correct ratp to counteract the increasing thickness of the

layer due to diffusion in both components simultaneously. In general this

will not happen and so we must look for an unsteady motion.

Instead of looking at the full problem with both components contributing

to the vertical stratification we will look at the case where the density

gradient in the resting fluid is due entirely to a vertical salt gradient.

This salinity gradient will then have its side wall's temperature raised at

time t - 0. This simplification has been made for two reasons:

1) This configuration matches the experiments that have been done.

2) It leads to some simplification in the mathematics as the temperature

equation decouples.

The governing equations are now 0

t

St jJ
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The boundary conditions are:

when t = 0 w - 0 T - 0 S - 0 for allx

for t > 0 w - 0 T - G T S - 0 at x 0
w -, 0 T - 0 S -'0 as x -

This gives the solution to the temperature to be

T -Z Ij ( r%-)

The boundary condition at x - 0 for the salt is not very realistic; how-
ever, it makes the mathematics simpler. The effect of a more realistic boun-
dary condition at x - 0 (for example, either taking S L S or JS 0) will B

be discussed later. TI

Taking Laplace transforms with respect to time we get

p K-
Pr -:t f

(x'

AAI

A .A
(( x.

with w 0 T 6 T S 0 when x 0

p

w->0 T -- 0 S -_)0 as x-

A 
A

This gives the equations for w and S of the form

where N is the buoyancy frequency given by

N2 . _g z

S "

-- "- --- " .:--?, - -. ,.-. ?.:- .:- - " "-. : -. ::iii 12 .: *-
;- 5 .. " -i - ?? - i:i .:. . ,- - . . ,- / _ . - _ . - . : -_ . ,, - -. - - - . , . •- . . . . .. . " . .
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A

These give the solutions for w and S

I ZC,- l A; V)')r ,
7 - - '-

, _ ) -" S.-/ f-' '

C Y, L A 1

t

T &T

-d 

)" 

.

*L 

-

i- 

c

/ -, , U I-.<

(. - ) ) - ' l - C ) ,) . -

The Prandtl number V

Diffusivity ratio ! 5 . c . (' I S
Kr

and . -.. --

S(6. - .6-1-

We will assume that we are dealing with heat and salt in water, and so >l.

These Laplace transforms cannot be inverted explicitly. However, their

small and large time behavior can be found (see Appendix).

S -.

'"'S ::
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For small time the leading order asymptotic behavior is

tvz -t(-,j - r) - - ( ,1) ] " 7-
C -1

For large time the leading order asymptotic behavior is

tv , !J x/ -,. -"t-

7- r
- z r 7

•K t

C ...S

7-)C

* where

.. . . . . . ...

....- . ... . ..-.. . . .. . ...-. .- .._..-.... .... : . ... : .-... --...-.. .--.: .... ..--.. ...- ---: : ..: . -..--.. .- . .- .
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The large time solutions have three parts. The first part has the same
length scale as the thermal diffusion. This represents the upwelling of the

water so that the negative buoyancy of the saltier water balances the positive

buoyancy of the temperature.

The first term in the salt equation has a mismatch at x 0 0. The

upwelling water tries to impose a salt boundary condition of S = L-4-Tat x 0
as opposed to the actual condition of S - 0. The second term is the salt -

boundary layer that you would get if you applied a salt difference :, -
to the salt gradient, without any temperature effects (see beginning of this 0
section). Thus this term is the matching of the salt boundary condition to
the thermal layer.

The last term is a decaying oscillation at the buoyancy frequency that

results from the initial disturbance. 4

0
If we had a different salt boundary condition at x = 0 then some of these

results would be changed. If we had the condition that S - AS at x - 0,
then, since the problem is linear, this is equivalent to superimposing the
motion due to adding salt to a salt gradient on the above solution. This
alters the salt boundary layer terms and also the buoyancy frequency terms.
If we had a no flux condition on the salt ( - at x 0) then we would 0
have a decaying salt boundary layer (dying off as t- 1 /2 ) and an altered

buoyancy frequency term. Neither of these alterations to the salt boundary

condition has any effect on the thermal terms.

3. Stability Analysis ..

_0
When a salt gradient is heated sufficiently strongly from the side in

experiments, the fluid develops long thin horizontal layers that grow from the
wall into the interior of the fluid (Chen, Briggs and Wirtz, 1971). In this

section we will look at the stability of the results from the previous section
to small perturbations.

To make any progress analytically we will have to make several assumptions:

(1) Since the instabilities have a small growth rate compared to the
buoyancy frequency, these oscillations have no effect on the motions
over a longer time scale.

0
2) The instabilities are driven by the region of the fluid with the

horizontal temperature and salinity gradients and are not affected by
the salt boundary layer. Hence the salt boundary terms will be
neglected. For this to be true we would want the length scale of the
thermal layer to be much larger than the length scale of the salt
boundary layer, i.e. 0

M-I1 << 2 KTt

For typical experiments (c.f. Chen et al, 1971) this would give

(1 sec)I/ 2 << tl/ 2  0

% i ' _. 5_ _. _ .' ' __' .' ' ' ' ' , " -' " " " " ' :" " . . ', , . ', " ' ' ' ' '_ .' - _ _ . ' . -- ' " .' .' ' ' ' '.,' -' ' '. .',' ',0
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Since the time for the onset of the formation of the interleaving layers
is usually measured in minutes when the system is marginally unstable this
condition is usually satisfied.

(3) We will assume that the thermal boundary layer is quasi-static. This

means that the form of the temperature profile is assumed fixed and is not
affected by diffusion.

(4) The small vertical velocity associated with the thermal layer can be
ignored.

With these assumptions the linearized equations of motion for a small
perturbation are:

I - )5. 4- , 7 r-
Ut is

3T T 4IL T ~ r
jZ 3Z 6>

~ - ~' + 3 K)1r~ \7S
" x PX 7.-

where q is the stream function for the perturbation and

-- nrt ~.~(-c ?: :

2 t 1 t (assumed constant)

(5) For large vertical density gradients the observed motions are very

thin and horizontal. In the diffusion terms the J part will dominate
the Y term, hence we will assume

k7z ,

The order of the system and so we are only left with the one boundary

condition at x - 0 that the wall is a streamline ( ,/ 0 when x 0).

Having made all these assumptions we will look for a marginally stable
mode, ie. one with zero growth rate ( 0). This gives us the following S

* equations:

-. + .. --

- ............... . ~ ~ ~ ~ .. . . .. . . .. .. .. . . .. . . .

,~~~J 6 3 ~x3 Z -

4/-

1%5.-
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If we now nondimensionalize the variables with respect to the following
quantities

T with respect to 6 T

S with respect to

x with respect to L

z with respect to I - -

with respect to K,,

The vertical distance is nondimensionalized with respect to -(l- C) y . since
, is the height to which a fluid element heated by an amount 4 T would

MA have to rise in order to be in an environment of the same density. The (I-F)
factor is for simplification of the resulting equation. 0

We will look for a solution that is periodic in the vertical direction so

Q (xz) - (x) imz etc.

This gives an equation for 0

Q: - :/ *f" u• ~

with ("-) C-

and p > U
t f ' (.-

- .

This equation can be applied to a simple case that has been treated
theoretically before (Thorpe, Hutt and Soulsby, 1969 and Hart, 1971) when the
vertical salt gradient tends to infinity. If we consider an infinite slot
with walls at x - 0 and x - 1 (i.e."ou 1 1), and a linear temperature profile S
(i.e. f l-x) then we get the problem

• o - 4 - c '¢ ( - :' '

S,,.t(, NC -

This is analogous to the approach taken in Linden and Weber, 1977 where they
assumed the streamfunction vanished at the outside edge of the region of
perturbed salt and tempeTature, and that the compositional gradients are
linear across this layer.

.'..

=

°°-p
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This has a solution of the form

where 0

Applying the boundary condition at x 0 gives

A--B

and at x I1 gives

LUj

and so- nzrS

The graph of P plotted against m looks like:

Since P decreases as the temperature difference increases the region of

instability lies below the line, and the point where the system is marginally
stable is the maximum of the P curve. This point occurs when n I at the

following values of m and P

m rv and P -
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When these are expressed in terms of the thermal and saline Rayleigh numbers
used in Hart (1971) this gives the result derived there that

( -1 _ 1) Ra - 5.90 (-Rs) 5 /6

and
k- 1.30 (-Rs)

1 /6

where the thermal Rayleigh number Ra = ! )).'.. L

saline Rayleigh number R. z ' i S L

and k is the vertical wave number nondimensionalized with respect to t.

4. Conclusions

This equation reproduces the results obtained by Thorpe, Hutt and Soulsby
(1969) and Hart (1971) for the case of strong salt gradient in a finite slot.
However, problems were encountered when trying to apply this equation to a
seim-infinite region by integrating the equation for q) using f - erfc (i).
It was found to be hard to satisfy both the boundary condition at infinity and
at zero simultaneously. The reason for this is not known at the moment, but
we hope to be able to overcome them soon.
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APPENDIX
A

To invert the Laplace transforms w and S we use the Bromwich integral

pr -
XN.(%,t ) - , ) l ...

itJ

where c is chosen so that the contour lies to the right of any singularities

or cuts of w in the complex plane.

The Laplace transform of w is

A 5, § IT C

_~~~ -, -C Z7 - / V,,

( C," P , ,- -) I r) E , ') p -r + -f ) "Vn(

/ ( (-(-7 )2 p ( I -7T t-Z-c A,'

i-tiL(L- . Z & I -c-( 1 -)k

Below is a diagram with the cuts and singularities of the w in the complex

plane.

C : "y, /?p . "A'

- - ...

-"C "A ;

, ,,

: C&
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This contour can be deformed to

FA 0

S

t"i

The residue at the pole at p mis zero and so this part of
the contour makes no contribution to w. Also the contribution from the part
of the contour imicircling the cut between zt--- is also zero. This is

tc -

to be expected since the behavior of w at large time is dominated by the parts
of the contour with the largest real part. If any part of the contour in the
right hand half plane made any contribution then w will grow exponentially.
The parts of the contour in the right hand plane are only there because of the
presence of the stabalizing salt gradient and it would be unexpected if the
addition of a stabalizing effect would change the system from algebraic growth
to exponential growth.

For the large time asymptotics the results will be dominated by the
contributions from the parts of the contours rounding the poles and cuts on
the imaginary axis. The leading order terms are found by expanding the parts
of w that do not contain x as a power series in p (or p ±iN) and ignoring all
but the leading order term in p. The remaining part is then inverted by con-
sulting any table of Laplace transforms.

For example to find contribution near p - 0

~ ~ -~- -. l-(- x

9jf fi?. Z/V•)J 1 ,(>

tOI

2 A

k k, evaluated at p - 0. Note this is complex.

The first term in w has a cut because of the square root sign in the
exponential term. So its leading order behavior is the inverse of

-I' ),1 L )

.. . **....
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2 ,- ,'V
This gives the thermal response. If the cut between ! T J, is

deformed away from the origin then the first terms in the t0*(-r,xand
fl(- terms are both analytic at the origin and so make no contribution to

the integral. The second terms consist of a p-i term times an analytic 0

function and so the contributions will just be the residues evaluated at
p = 0. This gives the salt boundary layer contribution. The cuts at p = ±iN
are treated in a similar manner giving the asymptotic behavior for large time
for the oscillatory part of the solution.

For small time the behavior is dominated by large values of p and a S
similar procedure but expanding in powers of p-1 yields the small time
asymptotics.

S'

0 0o

S"°"

0~l~lll

0 .
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-0 - .0-_ .. . .. , ' . " -. - , - . . ." ." . " -. . . • " ," " ' " ' -



-243- 0

PARTICULATE DISPERSAL IN A TIME-DEPENDENT FLOW
Leonard A. Smith

1. INTRODUCTION

Questions concerning the suspension and fall out of negatively buoyant
particles are of central importance in several fields of current research.
They arise in a wide range of phenomena including precipitation formation and
the lifetime of volcanic aerosols in the atmosphere, suspension of plankton in
the sea and geophysical processes such as the suspension of growing crystals
in a convecting magma chamber. As an initial step toward understanding such 0
phenomena, we examine the motion of particles in a simple laminar flow which

is periodic in time. Stommel (1949) developed the theory for the case of
steady rolls. Experimental investigations of a similar steady flow field have
been performed by Tooby et. al. (1977). Aref (1984) has modeled the stirring
of a tank of fluid by point vortices. This paper outlines the analytic treat-
ment of the time-dependent case to third order and presents the results of S
numerical experiments over a wide range of conditions. In addition to regions
of retention and simple fallout, regions of chaotic particle motions, in-
cluding some in which the particle slowly migrates downward through a series
of cells, are observed. Initial observations concerning the stabilization of
particles which would fall out of the steady mean flow are discussed.

The dynamical system representing particle motion is of interest in its
own right. It is a two-dimensional Hamiltonian system, periodic in both space
and time, so the phase space of the system is three-dimensional and of finite
volume, and therefore may be easily visualized. Two-dimensional Poincare
sections of phase space reveal regions in which particle motion is described
by either a simple torus, a twisted torus (islands), the breakup of islands 0
into chaotic regions, sheets which act as barriers to particle motion and the
breakdown of these sheets into islands and then chaotic regions. Which
behavior a particle will display depends on its initial position and the
strength and frequency of the oscillations. Hamiltonian chaos is most
commonly observed in three-dimensional systems. In this system, the role of
the third degree of freedom is played by the explicit time dependence of the
Hamiltonian.

2. STEADY BACKGROUND FLOW

The suspension of negatively buoyant particles in horizontal fluid
rolls is easily observed in the laboratory. The standard apparatus consists 5
of a cylindrical tank filled with a high viscosity fluid and mounted with its

axis horizontal. As the cylinder is rotated about its axis, the fluid quickly
(i0 seconds) reaches solid body rotation. Small spheres placed in the
ascending flow are observed to follow nearly circular orbits about the par-
ticle stagnation point, where the fluid velocity is equal to the negative of
the particle settling velocity. In addition to the negatively buoyant par- ]
ticles, several small, almost spherical air bubbles (positively buoyant) were
observed to execute similar motion in the descending fluid on the opposite
side of the tank. A detailed investigation of this system has been performed
by Tooby, Wick and Isaacs (1977), using a tank 15 cm. in diameter, with test
particles of radius between 0.8 mm. and 3.0 mm. and rotational periods in the
range 5.0 to 40.0 seconds. They find that particle orbits generally have
periods slightly greater than that of the fluid. On longer time scales the

-.-. -. r%.... . . ....-..---.:. .-.:: -::: .*--.*.-.-: .: - - -:% : :.- . : • "
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orbits evolve, the radius changing by a factor of two in 30 to 100 fluid
oscillations. The density and diameter of the test particle determine whether
its orbit grows or contracts. This instability is due to inertial effects and
-he influences of the walls on finite diameter test particles. Particle-
particle interactions are also observed to produce large perturbations in
particle motions (Whitehead, private communication). In the cases of precipi-
tation formation and magma crystal growth, the properties of a single particle
change influencing the particle's motion, which in turn feeds back upon the
particle's growth. None of these complicating effects are considered here.

The effect of steady convective rolls on the motion of a small, slowly

sinking body was first investigated by Stommel (1949). This work was stimu-
lated by the observation that the yield of the plankton tows taken along the
direction of the wind, and therefore parallel to the axis of wind-induced fluid
rolls, were much more variable than those from tows taken perpendicular to the
wind. Stommel considered a particle slowly sinking through fluid rolls with a

stream function.

F (x,y) = A sin x sin y (2.1)

where the subscript F denotes the fluid, x is measured in the horizontal

direction and y in the vertical. The streamlines of this flow are shown in
figure 1. The velocity of the particle is that of the fluid plus a settling
velocity, vs, in the negative y direction. Specifically,

= A sin x cos y

: W y v$(2.2)

y, - - --Acosx sin -v

Thus the particle motion has a stre&m function

P (x,y) = A sin x sin y + vsx (2.3)

Particle trajectories may be classified by the ratio of the settling velocity

to a measure of the maximum fluid velocity:

S3 (2.4)
In the case s = 0 the particles are neutrally buoyant and follow the stream-
lines of the fluid. For s ' 1 (or s < -1), all particles fall (rise) through
the cells, horizontally displaced away from the region of maximum fluid up-
flow. This displacement results from sinking (rising) particles having mini-
mum vertical velocity in regions of maximum upward (downward) fluid velocity.
This increases their residence time in the area, and hence their horizontal
displacement from the background flow.

For an intermediate value, -I - s - = 1 there exists a region of S
retention in which particles will execute closed orbits, and therefore, remain
suspended in the cell. Streamlines of particle motion for several values of s
are shown in figure 2. The boundary of the region of retention is delineated
by the largest closed orbit within the cell. Along this boundary the particle *

stream function has the same value it takes along the cell border. This may
be seen in figure 2. In the steady case, this is the orbit of a particle
which rises (sinks) infinitesimally close to the upward (downward) flow at the

S

* *' * * ~ .* . -- * * ** *. * . *-.:"
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cell boundary. The large variations in yield distinguish tows which sample a
region of retention from those which are taken in relatively plankton-free
region between them. Tows perpendicular to the rolls sample both the plankton-
dense and plankton-free regions.

For the remainder of this paper, we restrict the discussion to nega-
tively buoyant particles in a cell in which the fluid motion is counter-
clockwise. All results apply to positively buoyant particles and clockwise
cells with the appropriate reversal of signs. Speicifically, we will consider
particles initially within the cell with fluid stagnation point at (x
y = W) This cell is the upper right quarter of figure 1. Let us denote the S
stagnation point of the particle motion by x.. At this point the fluid
velocity is directed upward and equal to the settling velocity of the particle
in magnitude (xs . sin- I (s)). For a given value of s, the orbit of a
retained particle may be uniquely identified by the location of -ts right most
crossing of a line of zero horizontal velocity (y = n W , n = 0,1,...). The
value of x at this point is denoted xr. In steady flows, paths of particles S
with different initial positions do not cross unless they follow the same
streamline.

The following observations of the motion of particles in steady flows
were made with the numerical model described in section 4. Consider particles
located within a region at retention. Figure 3 shows the period of the par- S
ticle orbit as a function of xr for several values of s. Near the fluid
stagnation point, xF, the fluid and s = 0 particles are in solid body
rotation with period P = 2W. The period increases with increasing Xr,
becoming infinite for a particle on an ascending cell boundary. For a given
value of s, particles near the particle stagnation point have the minimum xr
and lowest period orbits. As s increases, the period of these tightest orbits S
(xr - Xs) also increases. All particles with xr > x. are retained.

The increase of the minimum period with s may be understood as follows.
To simplify the algebra, shift the coordinate origin to the fluid stagnation
point and let A = 1. The stream function is then

fig (x,y) = cos x cos y + VsX (2.5)

Near the particle stagnation point (xs = sin-l(v), y = 0) the particle
motion may be described by the first terms of a Taylor series

(2.6)

I (KV) V K , A + (~Xx) (Y~ .-,,' ±1

or

-~ (2.7)

0 Y.

S S ;.-
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3) PERIODIC BACKGROUND FLOW

To investigate the effects of allowing the background flow to vary in a
periodic manner, redefine A as

A(t) = 1 + E cos(w.~ ) (3.1)

where E is the magnitude and w the frequency of the oscillations of the
fluid flow. The parameter e. is used to separate time scales in the slowly
varying case. With the coordinate origin at the fluid stagnation point, the

stream function is now

1P (x,y,t) = A(t) cos x cos y + vsx (3.2)

Two cases are considered analytically: first where the fluctuations
about the mean flow are small ( e,, 1, aL = 1); and second, where oscilla-
tions in the flow occur on a time scale long relative to that of orbital
periods ( a- 1). In both cases, the expansions assume small x and y as 0
measured from the relevant stagnation point.

Case A) Small Oscillations (F.'' 1)

Consider small oscillations about the mean flow ( E< 1; cx = 1).
0 Expanding the particle velocity field in x and y and retaining only linear 0

terms yields

S(3.3)

or

Y r K - V0 ) - £ T (3 .4)

where a new time T has been defined such that O

t)

T - + £ "' W (3.5)

Note that IT-ti $ for all t. Solving for x(T), y(T) yields

rCof, T
X( s(T(T QK S' vV

V3 W~ (3.6)
*Y I LOS ( T

where -x. and 4. depend on the initial position of the particle. For W = 0
the motion is that of solid body rotation. For small w , the particle makes
order E oscillations about the circular path centered on the particle stagna-
tion point. This motion is observed in the numerical simulation. Figure 4 a
is a representative trace of particle motion. S

* .5

. . . . . . . . . . . . . j'
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In this case we reduce the third-order problem to one of elliptic
integrals by suitable transformations. Specifically, we first transform from

coordinates relative to the fluid stagnation point to an origin located on the
particle stagnation point while rescaling time as in the small oscillation
case. This transformation removes the constant terms in the velocity equations
but introduces quadratic terms. These quadratic terms are then removed by an
additional transformation so that the lowest order nonlinear terms are cubic.
The resulting equations are solved for (;)2 and the solution presented in

terms of elliptic functions.

Recalling the initial equations

A , - 4 (3.7)

first remove the constant term with the transformation

X Yo

'1 Y (3.8)

where
V- A c , V

(3.9)

to obtain

- ~:(.4,?a - -(3.10)

which, upon rescaling, becomes

(3.11)

*Y r

where
S A,,y) Z

* 0>
(X-Y- X -L + Y4J (3.12).

" -
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The desired form is

4 - -) (3.13)

where the lowest order terms in and 1 are cubic. Define r (, l) and

( , ., ) such that

x = 4 , , ).

(3.14) 0

From equations (3.11) and (3.14)

(3.15)

0)(:; () () ~;~ (3.16)

and the requirement

- 4

S ((3.17)

Expansion of ( ,. ) and ( ( ,i ) in Taylor series

10 1-4~C5, • A,'! * , n C -. ' * .4i,

4 '(51 P) 1) + " (3.18)

q ~ ~ ~ ~ ~ 4 WS'z 0,' (~n ' n) +t

and substitution into equation (3.15) yields, for and

70
(3.19)

00

. . . . . . . . . . . . 'j .
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Determining the quadratic parts of f(x,y) and g(x,y) in terms of and Z

and solving the above equations for #a and V. yields

- (3.20)

With equation (3.20) and the rescaling

equations (3.17) become

--zy - cy + Sy3
= - 3 

(3.22)

Eliminating y yields

S - + 10 Y (k) (3.23)

or

-"C. 4 i (3.24)

Expanding the exponential and solving the truncated system as an elliptic
integral yields (Abramowitz and Stegan (1964))

2~ - 1
x -b sc(t, - ) (3.25)

TOA 0.-.

where

aa = j- ( * (( 4.. K

b- -(3.26)

and sc is a Jacobian elliptic function. The process must now be repeated allowing
the constants of this case to become functions of the slow time, ' .

4) NUMERICAL EXPERIMENTS

In order to explore particle motion outside those areas accessible to

analytic investigation, a numerical model of the tank was constructed. The

model evolves the particle position given the fluid flow field of equation
(2.1) with A(t) as in equation (3.1). We simulate the region 0 4 - x < - 2;
0 < - y C 2 with periodic boundary conditions. Any particle passing

through the bottom (x,0) is reintroduced at the top (x,2 W ). A particle
which passes through the bottom boundary is said to "fall out" of the cell, as

opposed to a "retained" particle which does not cross a horizontal cell
boundary. The horizontal motion of the particles is strictly that of the
fluid, thus contours of zero horizontal fluid velocity, such as the lines

* 0 li
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y - n , n - 0,1,2,..., are barriers which the particles cannot cross. None
were observed to do so. As noted above, all particles were initially placed
in the counter-clockwise cell which is centered at (1.5 W , 1.5 w ).

Observations with a steady fluid flow were noted in Section 2 above.
When the flow becomes periodic, there is a qualitative change in the regions
of retention. In the steady case, negatively buoyant particles arbitrarily
near an upflowing branch are retained, completing closed orbits. This is
apparent in the lower part of figure 2a where the retention regions of two
horizontally adjacent cells appear to merge across the cell boundary, In
periodic flow, each region of retention is separated from the cell boundary by
a finite band. Particles initially in this band will often remain in the cell
for many revolutions, but will fall out. The physical explanation of the
phenomenon is straightforward. For small E , a particle oscillates about
its equilibrium path. As long as these excursions are completely within the
region of retention, the particle will remain in the cell. A particle which
oscillates to a point outside the retention region may remain in the cell for
a time, depending on where in the cell it is when it crosses the boundary. 6
Eventually, most such particles will cross the boundary near the bottom of
their trajectories and fall out of the cell. It is conceivable that, for
certain initial positions, a resonance between the fluid oscillations and the
particle orbital motions occurs which tends to stabilize the particle. While
the stabilization of particles in regions which are unstable in the mean flow
has not been observed, some particles tracing orbits which do not lie entirely 6
within the retention region for the steady flow corresponding to A = (1 - E ),
are retained for the entire observation period (1000 fluid periods) and appear
stable.

Consider the paths of particles near the region of retention which,
after some time in the initial cell, fall out. When these paths are strobed,
chaotic motion is observed. A particle well within the region of retention
will remain in the cell for the entire observation period (over 5000 fluid
periods), while a particle far outside the region will fall through the cell
with an average residence time of approximately one period. A particle in
this intermediate region falls out of the original cell, usually passing
quickly through several cells before being reentrained. The residence time
averaged over a chaotic fall through 500 cells is typically 15 periods per
cell. Figure 9 is a histogram of the frequency of various residence times.
It is clear that these particles take much longer to fall through a series of
rolls than would be predicted from the steady case.

Examples of these motions are shown in figure 10. Particles well S
within the region of retention display two distinct classes of motion. In the
first, a generalization of oscillations about the mean path, the particle
moves within the bounds of the two orbits for the steady flow with A = (1 + E)
and A =(U - E ). The particle track fills in a two-dimensional cross-section
of a donut, oscillating back and forth along a path which does not close on
itself (figures 4 and 5). When the position of the particle is recorded once
per cycle of the background fluid flow, the resulting graph is a cross-section
(an x,y plot at given phase) of the three-dimensional phase space of the
system. Figure 4b is the motion of the particle shown in figure 4a strobed in
this way. By strobing at different phases it is seen that the particle winds
about on a torus in phase space. Since a single point in phase space defines
the future evolution of the system, the particles located within closed curves
on Poincare sections are trapped there.

CS
.14. . . . . .. . . . . ..
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A second behavior is observed when the particle completes an integral
number of revolutions about the stagnation point in an integral number of
fluid oscillations. During each revolution about xs, the particle follows
one of several distinct pathways. Which path is executed depends on the phase
of the flow as the particle crosses the x axis from below (x > x.). An 0
example of this type of motion is shown in figure 6. The clear regions shown
remain clear, with the particle being restricted to and slowly filling the
outlined region. In this example two revolutions about the stagnation point,
one along each branch, occur in three cycles of the background fluid flow. We
shall call this completion of the motion (several revolutions until the
crossing of the x axis occurs at approximately the same position and phase) a
particle orbit. In this case the particle orbital period is three times the
fluid flow period.

When this motion is strobed at the fluid flow frequency, islands are
observed (figure 7). Particle motion on these islands is stable for all times

a observed. The particle visits every island in turn, slowly delineating each.
Poincare sections taken at different phases are shown in figure 8. The
islands slowly deform and rotate in the direction of particle motion until,
one full fluid period later, particles initially on island 1 (2,3) have taken
positions on island 3 (1,2). Recalling that these figures are cross-sections
of a three-dimensional phase space, it is seen that this motion takes place on
a torus which is stretched and twisted, closing on itself in three fluid 0

periods. Particle paths wind around on this torus.

Particles initially just inside or outside the island ring (relative to

the particle stagnation point) wind abut a single torus. Particles within the
boundaries of an island wind about a similarly twisted torus always bounded by
the outer torus (coaxially). Particles initially located between the islands
at the same distance from the stagnation point are observed to display chaotic
motion contained by the tori which bound the island ring.

The strobed paths for a variety of initial positions are shown in
figure 10. Counting from the left, the first particle (1.1 ly , 1.5 tv ) falls
through the cell, oscillating about the strobed path shown. This line presents •
a barrier which other particles do not cross - hence the open region in the
lower left-hand side of the figure. This open area is occupied by the mirror
particles of those plotted. As the initial position of the point is moved to
the right along y = 1.5 W , this curve breaks up into islands, which in turn
becomes part of the chaotic sea shown in the figure. Particles initially in
this area are found to become trapped in a cell for many revolutions and then 0
fall (drifting) through the cell (often several) before becoming reentrained.
Embedded in this chaotic sea are regions avoided by the falling particle. The
largest of such areas is the region of retention containing the particle stag-
nation point. Islands are observed in this and several other of the barren
regions where the particle motion is such that they are stabilized against
fall out by the oscillations. An example of this behavior is the particle
whose motion produces the "ears" 'n figure 10. Here the period of the
particle motion is such that the maximum of the fluid flow occurs twice in " -.. "

each revolution - once at the top of the trajectory and once at the bottom.
Particles following these trajectories travel outside the region of retention
for a steady flow with A - (1- 9). The three islands located within the

retention region ("eyes" and "mouth") are the same islands shown in figure 7.
Also shown are one enclosed and one encompassing torus.

--- "-7
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Whether particles outside the mean region of retention can be stabilized
by the fluid oscillations is a question which deserves further investigation.

Here we briefly note some initial observations with regard to the effect of in-
creasing the magnitude of the f~ow oscillations on the retention of particles
in marginally stable regions. 71gure 11 shows the region of the upper ear in S
figure 10 for several values ot . At small E , a stable orbit is observed.
As E increases this torus breaks up into islands and then disintegrates alto-
gether, the particles falling through the cell after only a few revolutions.
As E is inc-eased further, the region again begins to stabilize - particles
still fall through, however they spend a great deal of time in these quasi-
stable regions between vertical drops.

At very large values of f- a different type of behavior is observed.
Figure 12 displays the strobed trajectories for particles with the same

initial positions as those in figure 10, with F = 8.0. For E '1 , the flow
reverses direction. Quasistable particle motion is observed to be centered
about the stagnation point of the fluid. A large portion of the cell is S

subject to chaotic particle motions. The three island ring and fuzzy inner
and outer elliptical paths are observed to be slowly evolving outward. The
evolution of the islands is much slower than that of either of the simple

tori. It would be interesting to observe how (if) the particles within the
island ring escape. Although their orbits are evolving outward, the inner
particles in figure 10 are still in the initial cell after over 500 periods of •

the fluid flow.

The motion at large E is qualitatively different from that of small E
(see figure 13). Quasistable regions in this flow have been found where the
particle revolution period is slightly less than half the fluid period. Such
a particle, initially near the top of its orbit will be swept around by the S
strong flow, again to near the top of the cell, as the flow weakens it will
sink down toward the cell center and then be swept around in the opposite
direction sense by the second half cycle of the fluid flow. Often the radius

of the particle from the stagnation point will increase until the particle
falls out, however some initial conditions particles have been observed to be
carried up above their initial points and then dropped back near their original •
position (and phase). In this manner the particle is retained in the cell for
a very long time (t )t max observations = 500 fluid periods).

5) CONCLUDING REMARKS

The motion of slowly sinking particles in a simple time dependent flow
has been examined. It is found that this system is quite rich, displaying a
surprising variety of particle motions. In addition to bounded chaotic
motions, particles falling through the cells chaotically are often entrained
and retained for significant periods of time, so that the sedimentation rate
in this case varies substantially from the case of steady rolls. Investiga-
tions of the effects of both small and large fluid oscillations reveal that S
retained particles are more stable than might be expected.

The model may be extended to consider inertial effects. These will not
necessarily be destabilizing, especially In the case of l'rge fluid oscilla-
tions. Inclusion of Brownian motion would allow migration across vertical

* cell boundaries, as well as into and out of regions of retention, with 6

interesting effects on the mean sedimentalon rate. More applied problems,

* .6 .-- 5 . , ,.i:.i i i;i,- -. i i - . .-. -i ; . - i . , . . . 1 . .? - ii -- .i. i ,. j !
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such as precipitation and magma crystal growth may be approached by including
a growth parameter which is a function of location and time. In all, this
type of model provides a foothold into many topics of current interest.
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THE LINEAR INSTABILITY OF CONTINUOUS HETON BAND CLOUDS

Lorenzo M. Polvani

Consider a fluid consisting of two homogeneous layers of equal equi-
librium heights; the upper layer contains a point vortex; the lower layer con-
tains a point vortex of equal and opposite strength; unless the two vortices
are directly above one another, the pair will move in a straight line perpen-
dicular to its axis. Such a pair of vortices has been named "Heton" by Hogg
and Stommel (19 84 a) since it has the important property of transferring heat; 0
a Heton is said to be hot (cold) if the vortex in the upper layer is anti-
cyclonic (cyclonic) in which case, via the thermal wind relation, the inter-
face between the two layers is lowered (raised).

Hogg and Stommel (1984b) have investigated several interesting inter-
actions between Hetons. The explosive behavior of a band cloud of Heton point 0
vortices is the one which we are going to discuss in this work.

A cloud of regularly spaced, untilted Hetons (i.e. with the upper and
lower vortices lying directly above one another) occupy the lower half plane
(y .- 0) as illustrated in Figure 1.

k0

If the Hetons are spaced far enough from one another the cloud is
unstable since the Hetons at the edge of the cloud are split by the baroclinic S
shear flow produced by the Hetons in tl. interior of the cloud, and as they
split they are self-propelled to y> 0. However, an explosion will not occur
in the case where neighboring Hetons are very close; indeed in such a case the
top vortex of the split Hetons at the edge of the cloud will be affected more
by its neighbor's bottom vortex than b, its own, and this will have the effect
of restoring the Hetons to their original positions (Hogg and Stommel, 1984b). 0

The purpose of this work is to investigate the stability of a Heton
band cloud from a somewhat complementary point of view. Instead of con-
sidering a large number of Heton point vortices, we study the stability of a
band cloud in which the vorticity is spread uniformly throughout the cloud.
We will first do the inviscid problem and then add dissipation and see what S
effect it has on the stability of the system.

-i " -. .' --. .--i ' -' / i -..i " i ' ' .- ' . ' • -} - -. . -' -' --- -- i -." / ' -- -' .- -' - ' - -' -, ' " " " .- .' ' .--..' " . ' i -'lSi



-267- 0

1. The Linear Stability of an Inviscid Heton Band Cloud.

Our model for the Heton band cloud is a fluid made up of two homo-
geneous layers of equal equilibrium depths occupying the region - L iL ,OO

with the following vorticity distribution: in the region-Li iO (the S
cloud) the upper layer has uniform potential vorticity Q and the lower layer
has uniform potential vorticity -Q; in the region 0 S y the potential
vorticity is zero in both layers. This situation, illustrated in Figure 2,
simulates a uniform Heton band cloud confined in the region -Lc 4 y 0.

system can be written (Pedlosky, 1979) in nondimensional form

where

The only parameter appearing is F, and it is defined by

F = (Lc/LD))2

where LD Is the radius of deformation. Note that since lengths have been
scaled with Lc, the nondimensional cloud width is 1.

* The first thing we wish to determine Is the basic velocity field
associated with the distribution of potential vorticity illustrated in
Figure 2.

where...
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We need to solve the following system:

0 L >O

A> 0

together with the requirement that I and YZ be continuous at y 0, to
insure continuity of the interface between the two layers. It is easy to show
that the above system requires

'~' 1 ~ )~for all y.

Since we wish to consider a purely baroclinic cloud we simply choose

- -for all y.

Then we only need to solve the problem in one layer, say the upper layer:

The solution which is continuous at y 0, bounded as y->oa- and whose
derivative is continuous at y = 0 is

0S

4F > -

4F

- for all y.

.. .. . ." '
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From this we can now calculate the velocities and the shears induced by the
Heton cloud.

U2 - U I for all y.

a ( u, = 0
0+0

The important thing to note is that while UI and U2 are continuous at
. y -0 the horizontal velocity shear is not..- .

• -. - - foral-.y.

22

1 1 7 0114 77 77

• Uo,. .-

-... L - .U

_- for .all-y
The mporantthin tonoteis tat hileU 1  nd U areconinuos"a

* y 0 he hoizontl velcity hear s not

• o -.S

.o -4

o-,V"
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The basic velocity profile induced by the Heton band cloud is illustrated in
Figure 3. At this stage nothing happens since the potential vorticity is
spread uniformly throughout the cloud; the system is steady.

To test the stability of the cloud, we must now introduce a perturba-
tion on its boundary in order to create some nonuniformity in the vorticity
distribution. As is customary we write

where T, are the perturbations. The equations satisfied by the are

easily found from (i):

~~Vp,+ F (, 3
*e 0

toget-her with the boundary conditions

[=at y =0

(9= at y0

__. ,, = 0 at y = -i

-4>e\ bounded as y -- 4- o •

where we have used the notation

E -> o 1

The first condition follows from the requirement that the boundary of the
Heton cloud be continuous. The second is a linearization of the continuity of
pressure at y 0 0. The third is due to the existence of a solid boundary at

*ym - 1. -

If one tries solutions of the form

. .. .

. . .•
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one finds that

I r- A 4 & e - > 0 0

CP:I
-S, ,.. s,,,K L

provided A and B satisfy

A [(c-U 0)) k~+ c~ + 0( zkk -

where

The dispersion relation for c is obtained by requiring that a nontrivial
solution for A and B exist; this gives S

The second bracket in the numerator is always negative since

4 += + _ (,+ -:- ) for all k.

The condition for instability is then given by the first bracket alone. The
Heton cloud will be unstable when F exceeds the critical value Fc given by

F' - .,, - "1
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The domain of instability is illustrated in Figure 4.

3 .-

F " 6

Two interesting limiting cases can be consideredsk <4 1 and k >> 1. Since
we have scaled lengths with the width of the cloud band Lc  S

where is the dimensional wavelength of the perturbation. In the respec-

tive asymptotic limits the instability condition becomes:

L 1 < .2 fi for

0 and 0

Lib < for

Therefore instability requires that, apart from some 0(l) factors, the radius
of deformation of the two-layer model be smaller than the lesser of Lc
and

From the dispersion relation (iii) it follows that for an unstable

growing wave the real part of c is identically zero: unstable waves are S
stationary.

S Si >-
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Finally, one can easily show that for the marginally stable wave B = 0

in (ii). This means that the velocity field induced by the marginal wave is

totally barotropic, which in turn implies that the wave is extracting no energy

from the basic flow.

2. The Linear Stability of a Heton Band Cloud in the Presence of Dissipation.

In order to investigate the effect of dissipation on the growth of a

perturbation on the boundary of a Heton band cloud it is helpful to consider a
situation which the basic fields W induced by the cloud are time indepen-
dent. We can, for this purpose, assume the presence of a source of potential
vorticity which supplies as much vorticity as is dissipated by friction, so as

to maintain the basic distribution of potential vorticity time independent and
identical to the one shown in Figure 2.

The usual way to represent dissipation in a two-layer model is to intro-

duce a term of the form -rtVz,, on the righthand side of (i); such a term
represents Ekman layers of equal strength located at the top and bottom of the
cloud (friction at the interface between the upper and lower layers can be
neglected). The presence of a term proportional to V would, however,
make the differential equation for the perturbation potential vorticity

* impossible to solve analytically. In order to make the problem more tractable
we have therefore chosen to represent dissipation by a term - o"e1 on the
righthand side of (i). With this choice the dispersion relation becomes:

The second bracket in the numerator is always negative. When

the righthand side is positve and upon taking the square root one gets

For all k, the perturbation is damped by the dissipation and no growth is
possible. Alternatively when

-0J
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the dispersion relation becomes

The curve of marginal stability, which must lie above the inviscid curve 0
is then given by

2+

G1D6 (iv)

In order to solve this equation for Fc as a function of k we have found it
useful to rewrite it as follows:

- (v)
S- S(, $ v

where X and __ and

M 2

This choice of variable is suggested by the limiting case R-- c ; in such a
case the hyperbolic cotangents disappear and M(x,o ) takes the simple form

, I.. .2 O(- x' ( - ) +
,4., 4 x " . -"-

*
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PF G. 5 0

L4)

On Figure 5 we have plotted the curve y = M0 (x) together with the horizontal
line y = o7 /Q2 . The solution of (v) are the points where the two curves
intersect.

IS

The first thing to notice is that for w' > M. no solution exists;

this implies that when dissipation exceeds some maximum value all perturba-
tions will be damped. If, alternatively, the dissipation is not too strong

then, in the limit of large R (i.e. of large F), the marginal curve is made up
of two branches corresponding to the two solutions of

Both of these branches are parabolas given by

C. -

In order to understand the behavior of Fc(k) for small values of

Fc, we must next examine the shape of M(x,R) vs x for values of R 1. In

Figure 6 are illustrated several curves of M(x,R) vs x for different values of

R.

S
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FIG.6

-3
, 

' o
R. .2

2. .

For R - 1/2 the curve collapses to the point 0 (for R < 1/2 M(xR) becomes
negative for all x); as R is increased the curve approaches continuously its
asymptotic shape M. (x). From this it is easy to obtain a qualitative
picture of the marginal curve Fc(k). For a given Oe/cqa < M. the curve

consists of two branches which, as shown above, are parabolas for large values

of Fc. As Fc is decreased two distinct solutions to (v) exist until they
collapse into a single one, for the value of Fc such that the maximum of M
equals atZ/Q-t ; for Fc less than this value no solution exists.

We have calculated numerical solutions of (iv) for a number of values

of OeY. ; they are plotted in Figure 7.

F.
4

F I--:'-

3

20
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The domain of instability is the region enclosed by the curve Fc(k).

We have already shown that when / exceeds the maximum value
No " .0095 the domain of instability disappears. Since Q is the potential 0
vorticity associated with the unperturbed basic state, we can think of 1/Q as
the time scale associated with the vorticity of the Heton band cloud (tQ);
similarly I/at would be the time scale of the dissipation (td). Then
(o(2/2 - I  td/tq can be thought of as a kind of Reynolds number.
With this in mind we can restate the above conclusion as follows: for this
system instability will not occur unless the Reynolds number exceeds a value •
of approximately 10.

Finally, we point out that for the dissipative band cloud the velocity
field induced by the marginally stable perturbation is not purely barotropic
as in the inviscid case. The reason for this is that the marginal wave,
neither growing nor decaying, must extract energy from the basic state in
order to maintain itself against dissipation.

3. Discussion

It is of interest to compare these results with the linear stability ' -

analysis of the Phillips (1954) two-layer baroclinic model, which is somewhat
complementary to the band cloud problem. In Phillips model the gradient of
potential vorticity is constant in each layer, while in the band cloud it is
zero everywhere except at the cloud boundary where it is infinite. In other
words, in the former case the potential vorticity gradient is spread uniformly
through each layer of the fluid while in the latter it is all concentrated in
an Infinitesimally narrow region. The inviscid marginal stability curve for
Phillips model is qualitatively identical to the one in Figure 4; the effect
of dissipation is to stabilize the very long waves (i.e. make Fc-%1P as
k--* 0), while the short waves are essentially unaffected.

In the presence of dissipation, three important differences between the
band cloud and Phillips model should be pointed out. First, given a certain
value of the dissipation it is always possible in Phillips model to find an F
and a k which make the system unstable; this is, however, not true for the
band cloud when dissipation becomes too large. Second, for a given
dissipation and a given wavenumber one can always find F large enough for
Phillips model to become unstable; on the other hand, for a given dissipation
it is always possible to find a wavenumber for which the band cloud is stable,
no matter how large F is. Third, the viscous marginal curve Fc(k) in
Phillips model is a single-valued function of k, but this is not true for the -

band cloud. The reason why F (k) becomes multivalued in the case of the
band cloud model is that the basic velocity profile of the unperturbed cloud
is an exponential function of F (U(y)cc &ex(I Mr%6 ); this implies that for
a given dissipation and a given wavenumber it is always possible to make F
large enough so that the given wavelength appears long compared to the scale
on which U(y) varies.

oo °.9 :
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