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SYNOPSIS

Advanced combined-cycle (COGAS) steam turbine overall system complexity and
reliability can profit dramatically from low-lecakage seals. The most critical
seal locations are the high speed mainshaft seals at the bearings. The opti-
mum seal system was selected as utilizing the feedwater as a buffer fluid.
It was further shown advantageous from at least seal performance, life and
reliability standpoints to vent the turbine high pressure end also to conden-
ser vacuum. Three candidate late state-of-the-art low/zero leakage face seal
assemblies were selected for manufacture and experimental test in a specially-
modified test rig. Testing demonstrated that leakage rates From zero to 11
liters/day (3 gal/day) at speeds up to 22 m/sec (310 ft/sec) could be achieved
at practical values of buffer pressure. These rates therefore met botih the
program objective of less than 11 liters/day (3 gal/day). Higher than antic-
ipated parasitic drag was measured. A seal design which overcomes this drag
was proposed. Limited cyclic endurance testing was carried out. _
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SUMMARY

Two face seal assemblies, one manufactured by Crane using a spiral groove
configuration and the other by Koppers, met program leakage goals of less than
11 liters/day (3 gal/day) at peripheral speeds up to 90 m/sec (300 ft/sec).
Both used feedwater-supplied buffer water as required by advanced combined
cycle steam turbomachinery. It was shown to be advantageous, at least from
seal performance, life and reliability standpoints, to vent the turbine high
pressure end also to condenser vacuunm.

Limited cyclic endurance testing based on a typical destroyer mission profiie
was carried out.

Higher-than-anticipated parasitic drag and cavitation erosion damage were
encountered at the upper end of the speed range. Both of these effects were
caused by using a flooded runner (in the buffer water). A further design
innovation of the spiral groove seal was proposed to circumvent both problems.
This involved venting the outer area of the seal chamber also to the condenser
vacuum and supplying the buffer water through internal passages in the sta-
tionary seal.

The proposed spiral groove seal design that eliminates flooding of the runner
was not built and tested. However, test results on the present seal config-
urations gave confidence in the design since all cavitation damage encountered
appeared to occur as a result of the runner outer circumference being flooded.
The seal interface of the vacuum sids in the testing showed no indication of
cavitation damage.

The results of this program are illustrated in Figures 1 through 3.
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OBJECTIVE

The objective of this program was to adapt the latest state-of-the-art low
leakage seal technology to seals of advanced combined-cycle (COGAS) steam
turbines for U.S. Navy shipboard application. The purpose was to reduce system
water loss to a minimum and thereby minimize make-up water requirements and
water treatment system complexity. Conduct of this program in advance of the
steam turbine detail design would allow the results to be factored into the
overall design on a timely basis.
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PROGRAM APPROACH

Establish steam turbine seal design criteria including the impact of
projections of leakage rates over the anticipated turbine life on feed-
water make-up system requirements.

Review sealing state-of-the-art.
Establish the most critical seal application.

Design and fabricate low-leakage system(s) and seals in consultation
with recognized leading seal manufacturers. At least three candidate
test seals would be procured.

Establish an experimental test facility by modifying an existing turbo-
machinery test rig for realistic evaluation.

Conduct experimental tests, including performance and endurance running
and acquisition of appropriate data, to determine the best suitable
configuration for the turbine seal system.

Prepare design guidelines to facilitate the incorporation of that sys-
tem in the actual turbine.
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INTRODUCTION

Water treatment complexity and reliability remain primary obstacles to the
introduction of combined cycles in the small (3 to 15 MW) marine, naval and
industrial engines. After 40 years of development "modern steam practice"
still requires complex water chemistry to control pH, 0O, and dissolved
solids in the feed water and boiler steam drum. Figure 4 shows a conven-
tional steam plant. Water chemistry must be carefully balanced to prevent
corrosion in the mild steel system, scale deposits in the boiler and foaming
in the steam drum. Chemicals are often added on a daily basis to maintain
the system within closely monitored and controlled limits. As a consequence
"blowdown" of the boiler water is necessary to keep the total dissolved
solids down to acceptable limits (1500 ppm). If salt water seepage occurs
in the condenser, or the makeup water has high dissolved solids, continuous
blowdown may be required.

In addition to makeup water required to replace blowdown, turbine gland seal
leakage, sootblower steam flow, deaerating feedheater vent losses, feedpump
shaft seals, and air ejector condense. vent losses are common sources of
water loss requiring makeup water. Systems with total leakage of over five
percent of the steam rate have been reported.

Small steam plants incorporating conventional technology have many limitations
that make them less competitive for Naval combined cycle applications. Such
units should ideally have unattended operation capabilities. This would
include no requirements for supplies of chemicals for water treatment and
for specially trained personnel. Further, conventional systems are bulky,
expensive, and have slow start-up characteristics and complex controls,
particularly as compared to the gas turbine units with which they are to be
integrated.

One possibility for an attractive system involves a once-through steam gen-
erator and a water treatment strateqgy requiring no "active" chemical addi-
tions. As a first approximation it can be assumed that most of the dissolved
solids that are in the feedwater of a once-through boiler will deposit on
the tubes. Therefore dissolved solids must be kept at very low levels (<0.1
ppm TDS) to prevent rapid scale build-up. Supercritical boiler practice,
automotive compact boiler development work, and some nuclear power plant
practice have indicated that modern mixed-bed de-ionization (DI) resins can
be used to maintain dissolved solids below this limit. Since no chemicals
are added to the boiler water in this process, it appears to the operator as
a "passive" system particularly if the DI beds do not require frequent regen-
eration or replacement. Water is passed through the bed of resins and dis-
solved solids are removed without any action required of the operator. If
the system leakage can be maintained sufficiently low, a relatively small
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Figure 4. Conventional Steam Systems

volume of {(low cost) resins can be used. As they are used up they can either
be recycled back to the supplier or scrapped. Such an approach should be
feasible for leakage rates as high as one percent of steam flow. Figure 5
illustrates such a system.

With state-of-the-art technology a "tight" system can be obtained in which
once-through shaft leakage causes virtually all of the makeup feedwater
requirements and consequent requirements for evaporators, storage tanks, DI
bottle sizes, and replacement periods can be eliminated or possibly reduced
to negligible factors. By elimination of large quantities of steam mixed
with the air, the seal vent condenser can be eliminated and the problem of
having to deaerate large quantities of water per minute would be eliminated.
A much lower level of dissolved oxygen may also be obtainable with minimal
air to water mixing. Modern closed-cycle refrigeration systems are examples
of large scale systems where "makeup" has become a negligible problem. No

fundamental physical breakthroughs are necessary to achieve these goals with
the steam systems.

10




| aun as 2ea-na

R 7 S RSy — . S

- ¥ e,

s .

PO AL AL B S 2 At rw T v he il Jiaih Al Sl W “V(V‘J-’.w‘— ey

2\ he

Turbine Seals

Air + Steam

SR G e RE——

Air Buffercd
Seals

1.

Vacuum
Pump

Water £
GT Veg;a?nd Return
Exh
xhaust SH Yater- Fondenser
. 0ss in

sat. air 4 {

Cooling Water

— VAP

ECON

Stainlessz}'

Steel
Dt
0.1 ppm [-
—)—
DI
Duplex DI
Sea
L EVAP
Water

Hot Well

Deareation

Face Seal

4

No seepage (all
welded and
vented Ti tube
sheets)

0.1 ppm

]

Duplex
Ol DI

Figure 5.

Make up tank

11

Automatic Water Treatment System for One Percent Make-Up




BB L v el e St M SRt g 6 A i o

i L AEa A Al ek i el Jmna v g S aea US> B B ek TR Al St Al Sl M Sl N -

4

INVESTIGATION

4.1 SEAL SYSTEM DEFININTION

The optimum combined cycle turbine overall seal system configuration was
chosen to be one having a buffer fluid. This is a proven approach in steam
turbines, gas turbine engines, and (natural) gas boost compressors to mini-
mize or eliminate loss and contamination of the process fluid. There are
three logical choices of buffer fluid which, if mixed through leakage with
the process water/steam, would not decompose in the superheater at 480°C
(900°F). One is air which already has to be eliminated from the system
and whose use, therefore, would place an added burden on the deaeration
equipment. The second, process steam, would incur considerable complication,
e.g. insulation requirements, to ensure that the steam did not condense in
the seals and present difficult-to-handle two-phase flow conditions. Fur-
ther, the presence of high-temperature steam in close proximity to the bear-
ings could create adverse heat transfer problems for them as well as raise
the possibility of large temperature gradients in the vacuum-end seals and
associated components. This would render very difficult maintenance of the
degrees of squareness and flatness necessary for proper operation of low
leakage seals. The third, and considered most attractive, is the feedwater
itself. The optimum point in the overall system to obtain the water would be
from the condensate (boost) pump outlet where the pressure would, according
to present system concepts, be more than adequate and the temperature woul.d
be at the system minimum, that is, as low as 33°C (92°F). At this temperature
the potential for cooling is greatest, there would be no need for insulation
of the buffer fluid lines and passages, the potential incorporation of water-
lubricated bearings would be most facilitated, cycle efficiency loss effects
would be minimized, and the technology "jump", compared to the use of steam,
would also be minimal. Items which require attention would be avoidance of
cavitation and boiling of the water at any interface with the condenser
vacuum.

4.2 TEST FACILITY

An available test rig drive unit and speed control used previously for seal
evaluations was nominated for the COGAS steam turbine seal work. A cut-away
drawing of it is shown in Figure 6. Figure 7 shows a schematic of the test
rig. Double face seals are shown since they were considered at least promis-
ing candidates to attain the target values of leakage and they were thought
to require the most space. Figure 8 shows the detail design of the seal
test chamber. 1t was originally intended to endurance test two seal assem-
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Figure 6. Seal Test Rig

blies simultaneously in a tandem rig but during the initial testing the
power requirements were found excessive for the motor.

A closed-loop water circulation system was designed for integration with the
test rig to provide the buffer system. The closed-loop configuration was
selected for several reasons: comparative ease of water chemistry control,
more accurate measurement of flows and leakage rates, and conservation of
water. This system was also integrated with the vacuum pump. System flow and
pPressure was maintained by a two-pump assembly, one of which was powered by a
variable speed drive for overall system flow control. The potential vacuum
pump reguirement to handle (liquid) water leaking past the test seal(s) into
the vacuum chamber dictated that the pump be of the liquid-ring type and,
for the purposes of leakage flow measurement and cooling, that it be wholly
connected into the system. Sufficient flow measurement plumbing connections
to two rotameters were provided to permit, together with collection-type
measurements, accounting for all the system water (volume) and flows.
Pressure and temperature regulators were included as appropriate for system
control and untended operation during the endurance-test phase of the program.
Additional plumbing lines were provided to permit some individual variation
in buffer flow without affecting pressure, as might be required for purposes
of heat rejection studies. In addition, the water tank could be sealed and
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bottled nitrogen bubbled through it at a slight pressure for purposes of
de-oxy3jenation.

The instrumentation employed with the testing comprised:

. Iron-constantan (Type J) thermocouples and a series 400A "Trendica-
tor" acquisition system with Model 405A multi-point selectors.

. International Technical Industries miniature magnetostrictive pres-
sure transducers (which never functioned properly in the water

"environment").

. Bently-Nevada 190 series and special 28918-01 proximity probes and
Model 3106-2800 "proximitors" (driver-detectors).

. Tektronix Model 5103N oscilloscopes with (in varying combinations):

- Model 5A15N amplifiers
- Model 5A18N dual-trace amplifiers
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- Model 5A14N 4-trace amplifier
- Model SB1ON time base

. Ashcroft bourdon-tube, glycerine-filled pressure gages
. Eldorado Model 225 digital frequency counter (speed indication)
. Weksler compound pressure/vacuum gage, 0-30 in. Hg, 0-30 psi

. Brooks Instrument,

Division Emerson Industries Model 1110-09H3B1A

and Model 1110-08H2B1A rotameters

. Mid-West Instrument Company Model 111S differential pressure jage

. Pacific Chromalox Model ARTMS-1000 thermostatically-controlled
heater (in water tank).

. Fluke Model 8000A digital multimeter

DESIGN CRITERIA

The design criteria and constraints established for and by the rig and closed-

loop water system were:

. shaft nominal diameter - 70 mm (2.75 in.)

. nominal rotational speed - 15000 rpm

. seal nominal mean surface speed - 90 m/sec (300 fps)

. vacuum (sealed) - 38 mm (1.5 in.) Hq, abs.

. bearing sumps (sealed) - atmospheric with turbine-type lubricant at
bearing-generated temperatures

. water flow, approximate maximum - 32 liters/min.

(8.5 gpm)

. simulation of actual operating conditions

- intended seal life -

- target leakage,

- starting

- speed range

15000 hours

total - less than 11.5 liters/day (3 gal/day)
steam turbine preactice

from windmilling idle

unloaded

emergency

and changes comparable to prime mover (gas turbine)

power turbine
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= shutdown - steam turbine practice
potential for gas turbine-type practice
- emergency

- static sealing capability

. scalability for potential turbine uprating

4.4 CANDIDATE SEAL DESIGNS

Proposals were obtained from five leading seal manufacturers:

Borg-wWwarner, Temecula, CA

Crane Packing Co., Morton Grove, IL
Koppers Co., Baltimore, MD

Sealol Corp., Providence, RI

Stein Seal Co., Philadelphia, PA

Their submittals are shown in Appendices I-1 through I~-5. After careful con-
sideration of the relative merits of each and a parallel review by NAVSEA
personnel the vendors and configurations below were selected for manufacture
and testing. The candidates selected were double face seals since these
offered the greatest promise for achieving target values of leakage with what
was considered a conservative approach and thereby maximizing reliability
potential. The face seal configuration features a (rotating) runner which is

virtually identical to a hydrodynamic thrust bearing runner. A carbon sta-
tionary member is loaded against it by springs and, during operation, also by
a second force arising from differential pressures and areas. For use in the

buffer seal system selected for investigation here, two stationary seals were
arranged on either side of the runner and the water buffer fluid confined in
the area radially outward of these components, as shown in Figure 9. The
flow of buffer water, obtained from the condensate boost pump, could be
prescribed at any value required for adequate cooling.

Type 1. Crane Packing Co. - double spiral-groove face seals (Crane
design)
- ambient side - "outward-pumping" seal with shallow spiral

4roove pattern on the runner to create a pumping action
and pressure difterential sufficient to oppose radially
inward leakage of the buffer water. Any buffer water
leakage at this seal interface constitutes a loss of
system water.

- other side - "inward pumping” seal with shallow spiral
groove pattern on the runner to create a pumping action
and pressure rise to a value equal to or slightly greater
than the sealed pressure.

18




SECONDARY
('O’-RING)
SEAL

BEARING
SUMP

P
Rl
e N

PRESSURE

B~ Dl

SPRING

(ATMOSPHERIC)

ARSI Sl " S P Ml i Ml Sui Sl Sl AL A Sl S St e Sede R i "Rl Sk Sl Al S A Al

BUFFER FLUID

RUNNER

T

AN

STATIONARY
SEAL

./

I
L7777

> 4—— STEAM/VACUUM

Y
P

Type

e T all T mTw

ol

Figure 9.

-—— |

Example Face Seal Arrangement for Buffer Seal System

Solar source control drawing RSK 230832, pages 1, 2 and
3 (shown in Appendix II-1) show the finalized design in-~
cluding interface details with the rig seal test chamber.
A single runner and two pairs of stationary seals were
procured, one pair of the latter with instrumentation
passages. (This assembly underwent only limited testing
because of a build error and a determination that system
performance and reliability would be greatly enhanced by
venting the seals at both ends of the steam turbine rotor
to the condenser vacuum.

2. Crane Packing Co. - double spiral groove face seals (NASA-Solar
design).

"outward-pumping” seals with slightly deeper spiral groove
pattern than 1. above on both faces of the runner and with
hydrostatic buffer water supply to create a pumping action
and pressure rise to oppose buffer water leakage to atmos-~
phere (external loss from system) and to the vacuum side;
buffer pressure somewhat greater than ambient.

Solar source control drawing RSK 230832 pages 1, 4, and
5 (in Appendix I1I-1) show the finalized design including
interface details with the rig seal test chamber. This
assembly utilized common housing components with 1. above.
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Figure 10.

A single runner and one pair of stationary seals with
instrumentation passages were procured. Figure 10 shows a
labelled cross-section of this assembly complete with
instrumentation.

3. Xoppers Co. - double face seals.

nominally rubbing-contact seals which 1limit radially-
inward leakage of buffer water at a higher pressure than
ambient for both ambient-side and vacuum-side interfaces.

Solar source-control drawing RSK 230833 (Appendix II-2)
shows the finalized design including interface details
with the rig test seal chamber. A single runner and two
pairs of stationary seals with instrumentation passages
were procured. Figure 11 shows a labelied cross-section
of this assembly complete with instrumentation.

COOLING HOLE
(8) PLUGGED PROXIMITY PROBE
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BUFFER WATER SUPPLY
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NASA-Solar Crane Design Spiral Groove Face Seal Assembly
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4.5 DESIGN CHARACTERISTICS OF NASA~SOLAR AND KOPPERS SEALS

Figure 12 shows the generalized pressure profile at the interface between the
runner and the stationary member of the NASA-Solar spiral-groove and Koppers
seals under evaluation. The NASA-Solar configuration (pioneered for liquid
sodium applications in water-lubricated testing by NASA) can produce true
zero leakage at turbomachinery speeds over a wide range of operating condi-
tions, as demonstrated in oil-lubricated testing conducted previously by
Solar at least. Also, operating lubricant film thicknesses can be somewhat
greater than with other face seal types, thereby reducing sensitivity to
foreign material and/or component accuracy requirements and tending to reduce
heat generation. All of these factors, of course, would augur well for the
extended lives intended for these seals.

Within the envelope size of the Crane-design components,
was configured to operate (i.e., produce zero leakage) at least up to a
pressure differential of 345 kPa (50 psi) at 15,000 rpm at a minimum film
thickness (separation of rotating runner and stationary member) of 0.023 mm
(0.0009 in.) and temperature rise of 5.5-11C° (10-20F°) due to shear losses
in the interface water lube film. At 5,000 rpm the pressure differential
capability would be at least 170 kPa (25 psi) at a film thickness of 0.015
mm (0.0006 in.). With a different (higher) spring 1loading, the maximum

the NASA-type seal
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Figure 12. Seal Interface Pressure Profiles
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oressure differential at 15,000 rpm could be increased to at least 5385 xPa
(35 psi) at a film thickness reduced to about 0.017 mm (0.00065 in.) and
with a temperature rise of about 14C° (25F°). Operation at a film thickness

. of 0.017 mm (0.00065 in.) would still be as intended, at values similar to
the minimum film thicknesses in standard oil-lubricated journal bearings.
Figures 13, 14 and 15 and Tables 1, 2 and 3 show sample results from a Solar-
developed computer program for the analysis of this type of spiral 4groove
seal.

The Koppers "rubbing contact" face seal design also features two stationary
carbon members lightly loaded with 96 N (21.6 1lb) against either side of a
rotating runner but with a comparatively narrow annular sealing land on
each. The operating film thickness with this type was expected to be of the
order of 0.0025 mm (0.0001 in.), i.e., in or close to the "boundary" lubrica-
tion ragime. The leakage rate was estimated to be 3.3-5 cc/min (1-2 gal.
per day) at the 586 kPa (85 psig) pressure differential and was the lowest
of all the outside-vendor proposals.

ARG~ o

It is believed that the selected candidate test seals, together with the
water buffer system, provided an excellent spectrum of possible approaches
. to the long-life low leakage sealing requirements of advanced combined cycl=

1 steam turbomachinery. Furthermore, it was anticipated that this investiga-
tion would provide design choices rather than be simply an elimination
process.

4.6 TEST SET-UP

4.5.1 Test Rig

Figure 16 illustrates the test rig drive assembly. Figure 17 snhows the
whole test rig with the 37 kW (50 hp) motor procured for this program when it
was found that the original 10 kW (13 hp) motor was inadequate.

Wetted stationary parts were made of AISI 304 stainless steel and shaft
components of 17-4 PH stainless steel. Other parts were made of black-oxided
AISI 4340 steel.

The variations in test rig speed, simulated condenser vacuum, and buffer water
temperature for untended operation were produced by a Research Inc. Model 73211
microprocessor programmer as follows:

vvry f‘rv‘-‘- =y v_v-_r.v_r.fr.vv Y f'vHT

rig drive motor speed variations by "ramped" millivolt signal to
appropriate input in motor SCR controller.

. vacuum variations by opening and closing solenoid valves in par-
allel lines with vacuum regulators at appropriate settings leading
to vacuum pump 1inl=t.

e o o e
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Table 2

Sample Computer Program Output for NASA-Solar
Spiral-Groove Face Seal
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Figure 16. Test Rig Drive Assembly

® Figure 17. Face Seal Test Rig With Solar-Furnished 37 kW (50 HP) DC Motor
§ (SCR unit on wall in background at right edge of picture)
-
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An automated data acquisition system, Monitor Labs Model 9300 S/N 260 Data
Logger, provided temperature and voltage transducer output records at program-—
mable intervals. An automated shutdown system provided protection against
overspeed, underspeed at high speed, seal and water over-temperature, excess-
ive proximity probe (vibration) amplitude, low oil pressure, low buffer water
pressure, electrical failure. Included in the latter system were Action
Instruments Inc. Model 1200-2253 thermocouple relays (4), a Model 1720-2854L
frequency relay and a Model 1010-7070M voltage relay.

4.5.2 Buffer water Supply System

A schematic of the Solar-furnished water supply system, including flowmeter
connections, is shown in Figure 18. Figure 19 shows the overall system,
notably comprising non-corrodable plastic, nylon, and stainless steel compo-
nents. In addition to provision for automatic control of pressures and
temperatures during untended endurance testing, much of the system complexity
arose because of the necessity to monitor water quantity and flows by diver-
sion of most of the lines through the flowmeters (one visible at the extrewme
right of Figure 19).

4.6.3 Test Plan

Parameters for the experimental testing werz derived from the following data
supplied by NAVSEA:

. "Typical 8000 Ton Destroyer - Power vs Speed Characteristic"
(anon.)

. "Standard NAVSEC Destroyer Profile" NAVSEA Code 614B, 18 March 1975

. "Typical LM-2500 Operating Conditions During Emissions Studies,”
NAVSECPHILADIV Project A-1584 Report Table A-1

Since the steam turbine would be geared to the LM 2500 power turbine, perfor-
mance of the seals was to be established from zero upwards to the rig 100
percent speed of 15,000 rpm, which gave a seal mean surface speed of 88.4
m/sec (300 fps). Inasmuch as an insignificant amount of actual turbine
operating tim> was expected below 10-15 percent speed, the minimum rig speed
at which performance would be established in any detail was 1800 rpm. At
least four speed points would be investigated, at each speed various buffer
supply pressures would be applied, with and without the condenser vacuum
simulated, in order to determine the range of pressures over which satisfac-
tory or minimal leakage rates were obtained. Testing would also 1include
static leakage tests.

The foregoing results were to be used to determine optimum operating param-

eters for each of the two leading seal assembly candidates fnr a subsequent
endurance test. The purpose of this test was to simulate as closely as
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Figure 18. Water System Schematic

possible the actual turbine application for a period long enough to permit
primarily, leakage rate projections over the 15,000 hour intended life so
that water treatment system requirements could be defined. Secondarily,

but of =gual importance, it was desired to determine what =2ffects, if any,
long-term operation had on the seals, e.g., wear.

The above-mentioned ship operating characteristics were used to derive the
endurance-test cycle shown in Figure 20. Once-per-week total shutdown of
adequate duration to allow all components to cool to ambient was included.
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Seal Rig Buffer Water Supply System
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4.7 EXPERIMENTAL TESTING

4.7.1 Crane-Design Seals (Type 1 above)

The stationary seals were instrumented with proximity probes and thermo-
couples. The runner was assembled with the other rotor components and
dynamic-balanced. Figures 21 and 22 illustrate the components also shown in
cross-section in Figure 9.

- During testing the drive torque requirements exceeded anticipated wvalues.
F' The maximum speed run was 7,000 rpm. Test data were obtained at 4,000 and
' 5,000 rpm. Figure 23 shows the leakage at the 4,000 and 5,000 rpm speed
3 points. Variations in pressure differential across the forward seal were
! obtained simply by setting the buffer water pressure (see Figure 9) at values
above ambient. Additional variations in pressure differential across the
{ aft seal (again in Figure 9) were obtained by raising the chamber ('"steam/
: vacuum") pressure to various values above the buffer pressure.
[

Careful calibration of the two proximity probes installed in each carbon
® stationary seal taking into account temperature and "electrical runout”, the
4 latter arising from the chromium plating on the runner, failed to permit dis-
crimination of any constant separation (film thickness) between the runner
and either stationary seal during operation as may be seen in the Figure 24
probe output voltages during running. Any operating film thicknesses would
have resulted in probe output voltages greater than the calibration "bands",
between the straight lines. The maximum seal taemperatures recorded during
testing were consistently at the inner periphery of the seal interfaces.

.4

Figure 21. Seal Testing Rig Rotor Shaft in "Performance Test" Configuration
With Crane-Design Spiral Groove Runner and One Stationary Seal

34

~ N :
D U T T PN | O I P -eadiaia et alefiae PUFCIFEL TP N PN W NP N Yo

MRSt A M SMACIVREIMCI G NSt N SR I P S S C S e i A S P e M e e e T T T S "l S S A




.

p-

rv,w
s

L5
sk

Aas-g
’

T

Figure 22. Crane-Design Stationary Seal and Housing Components
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: It was decided at this point to disassemble the rig for substitution of the
NASA-Solar (Crane-manufactured) spiral groove seal components, bhecause of
‘ the high leakage of the aft seal.
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One contributing factor to the high torque required was the pumping power
losses from the chordal holes through the runner intended to promote cooling.
To overcome the unwanted pumping losses. the identical holes in the NASA-Solar
runner were plugged with a mixture of half epoxy and half pure aluminum
powder .

Total rig operating time at disassembly was 18 hours Disassembly revealed
that the two carbon stationary seals had inadvertently been interchanged
during assembly. They were quite similar in appearance but had a critical
difference in sealing face diameter. It is therefore questionable how
meaningful were the results derived in the foregoing testing.

4.7.2 NASA-Solar Seals (Type 2 above)

As the housing components of the Crane-design seals were utilized with the
NASA-Solar assembly also, installation involved substitution of the station-
ary carbon seals, each with its 32 rather than 8 springs, and of the different
runner. The chordal holes in the runner for cooling were plugged to reduce
the pumping power loss. These components are shown in Figure 25 and also in
cross-section in Figure 10. Re-balance of the rotor was carried out after
installation of the new runner.

Static leakage checks showed initially, rather surprisingly, that slight
leakage occurred at buffer supply pressures as low as 35-70 kPa (5-10 psi).
This indicated minor but significant out-of-flatness at the inner diameter of
the stationary seal-runner interfaces since, allowing for less-than-perfect

Figure 25. NASA-Solar Design Spiral Groove Runner and Stationary
Seals (Manufactured by Crane)

37

[
)

‘ ) - N . . L et L - . PN . L. PO .
P VNS ST S P e U UG WP Wl L . S WL AP Aa T oAl 2 Saemla e e ia a PPN WA WA W . N L RS J




N 2 g

i

A n = Nalng o aou AR At

T Ty
..

™

pr———

T Wy T LT T AT W T e e YT, T
AN el A S R At s o A @ 4R AT AN S SO0 SRR e stk Rt S A R M A S AR LA W . -~

interfaces, leakage would not have been expected below at least 205-240 kPa
(30-35 psi). With increased "running-in", these threshold values increased
somewhat, as would be hoped and expected, but the aft seal threshold dropped
again as testing progressed. Figure 26 shows the static leakages recorded
just prior to disassembly.

The same careful calibration as with the Crane-design seals was carried out
of each pair of proximity probes mounted in the stationary seals. Operating
data shown in Figure 27, over-printed on the calibration curves, indicated
that the atmosphere-side mean seal film thicknesses varied from about 0.008
mm (0.0003 in.) to 0.025 mm (0.001 in.), in the anticipated range, but were
at most about 0.012 mm (0.0005 in.) with the vacuum-side seal, somewhat low.
The results also indicated that slight progressive wear, confirmed at dis-
assembly occurred, particularly on the atmosphere-side seal. The proximity
probes were rendered inoperable during rework of the stationary seals and
could not therefore produce data during the subsequent high speed testing.
Prior to disassembly, a torque of 21.5 N.m (190 1lb-in.) was found required
to rotate the shaft manually against the loading of the stationary seals.
Disassembly of the rig revealed light wear outward from the annular groove
on both carbon stationary seals and outward of the grooved area on both
faces of the runner. Rust deposits were found on each face of the runner
opposite the annular grooves in the stationary seals. As they easily wiped
away, it was concluded that the rust particles had been buffer-water-borne.
Microscopic examination of the worn areas on the stationary seals showed

some embedding of rust particles. After low speed testing the seals were
15
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Figure 26. Static Leakage - NASA-Solar Spiral Groove Seals
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returned to Crane for refurbishment includinjy re-application of the »nlating
to improve the surface flatness of the runner.

Crane also offered the opinion that some of the wear couli have been caused
by residual chrome particles left in the bottom of the grooves after plating.
The source of the rust was traced to buffer water supply system pressure reg-
ulators downstream of the filter. The rust had formed on interior, as-cast
surfaces exposed to system water even though they were 316 stainless steel.
The likely explanation is discussed in the "Design Guidelines" section, item 5.
For the initial high speed testing, in an attempt to reduce the parasitic
drag, the buffer water inlet and outlet flows and housing configuration were
altered as shown in Figure 28.

In the course of high speed testing it was noted that the torque requirements
at each speed were progressively increasing. At 1200 rpm, for example, the
rig power requirement rose from 24.8 kW (33.2 HP) to 32.3 kW (44.0 HP}.
Investigation revealed that the epoxy plugging the runner cooling holes was
coming out in pieces and collecting in the water line strainers. Also, the
atmosphere-side seal leakage rates were, while on the whole within program
goals, considered somewhat high. Disassembly was carried out to remove the
epoxy and raise the spring load on the atmosphere seal by about 220 N (50
lbs). Rather severe cavitation erosion pitting was found on the components
illustrated in figures 21, 22, and 25: on the runner outer diameter between
the cooling holes, as shown in Figures 29 and 30, and on the outer diameter
of the stationary carbon seals, as shown in Figures 31 through 34, particularly
near the outlet ports. The damage extended just onto the seal faces near

BUFFERWATER OUT

=@
TOPAND  p@IN
~< oTOM (=

/R Y //

| Spp———

AMBIENT \
E RUNNER VACUUM

S

Figure 28. Crane (NASA-Solar) Spiral Groove Seal
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Figure 29.

Outer Diameter of NASA-Solar Seal
Runner, Also Shown in Figure 21,
Illustrating the Location of
Cavitation Erosion Damage After
Initial High Speed Testing

(see also Fig. 30).
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Figure 30.

NASA-Solar Seal Runner After
Initial High Speed Testing:
Closeup of the Area Between

Erosion
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Cooling Holes Showing Cavitation
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Figure 31.

NASA-Solar Atmosphere-Side
Stationary Seal Showing Cavitation
Erosion After Initial High Speed
Testing

Figure 32.

NASA-Solar Seal After Initial ’
High Speed Testing. Closeup of

12 o'clock area of atmosphere
side stationary seal showing
cavitation erosion.
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Figure 33.

NASA-sSolar seal After Initial High
Qutlet Speed Testing. Closeup of 12

Pori o'clock area of vacuum-side
stationary seal showing cavitation
erosion.

Figure 34.

NASA-Solar Seal After Initial High
Speed Testing. Closeup of 6
o'clock area of vacuum~-side
stationary seal showing cavitation
erosion
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Figure 35. General Arrangement of Modified Crane Housings and New
Center Housing for NASA-Solar Seal Assembly

these spots. The "plumbing"” was therefore restored to the original configura-

tion and a central housing (Fig. 35) was inserted to shroud the runner in an
effort to suppress cavitation.

Retesting indicated that shrouding of the runner and/or re-routing of the
water flow did suppress the cavitation erosion of the stationary seals but
it did appear that further erosion occurred on the runner, as can be seen in
Figures 36 and 37 (corresponding to Figs. 32 and 33). The power requirement
was reduced somewhat too. It was also noted, however, that the runner had
begun to contact the center housing, as can be seen in Figure 36. Also,
some small pieces of epoxy had remained in the housing and migrated into the
seal face, apparently causing slight scoring wear outboard of the annular
supply groove, as can be seen in Figure 38. The contact of runner and center
housing caused a vibration and noise that prompted disassembly. Experimental
data sheets are shown in Appendix III.

The operating temperatures increased with speed and were greater than theo-
retical estimates at a speed of 15,000 rpm. The buffer water temperature
rises (i.e. heating), could be equated approximately to the rig drive power
levels. Calculations made of the frictional drag on the outside diameter of
the runner arising from its "immersion" in the buffer water explain tempera-
ture rise. For the 19 mm (0.75 in.) wide, 146 mm (5.75 in.) diameter Crane
runner this was found using a Crane-surplied method (included as Appendix
IV) to amount to 8 kW (11 HP) at 15,000 rpm. To improve agreement of theory
with experimental datra a seccond approach to estimating the applicable coeffi-
cient of friction was located (also reported in Appendix IV) in NASA CR1774,
A Review of Confined Vortex Flows. At 15000 rpm the second analysis yielded
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Figure 37.

NASA-Solar Seal After
Testing, Closc~-up of

12 o'clock Area of
Atmosphere Side
Stationary Seal Showing
Cavitation Erosion

(Same Area as Figure 32)
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figure 36.

NASA-Solar Seal Runner After
Testing, Close-up of the Area
Between Cooling Holes Showing
Cavitation Erosion

(same ar:a as Figure 30)
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Figure 338.

NASA-Solar Seal After Testing,
Close~up of Atmosphere-Side Station-
ary Seal Showing Pr.sence of Small
Pieces of Epoxy (Impregnated With
Aluminum)

a frictional drag of about 20 kW (26 HP). 1Inasmuch as these figures accounted
for most of the actual power measured the conclusion can be drawn that most
of the seal power loss was caused by the flooded runner and accounted for
most of the heat generation. By plotting maximum recorded seal temperature
rise over buffer water outlet temperature, values much more in line with
theoretical estimates of about 5-10C° (approximately 10-20F°) resulted as can
be seen in Figure 39. These maximum temperatures always occurred at the inner
diameters of the seals. Figure 40 shows the power levels mentioned above.
Figure 41 depicts the incidence of leakage during operation. It can be seen
that zero leakage occurred over a range of buffer pressure at each speed. At
low buffer pressures the presence of air in the buffer outflow, evidenced by
a "milky" appearance as it passed through the glass tube of the flowmeter,
was detected. This is believed to indicate that air (at the atmosphere=-side
seal) can be "pumped" by the spiral grooves into the buffer chamber when the
buffer pressure 1is sufficiently low. This 1s a speed-related occurrence
and control of buffer pressure can minimize if not eliminate it.

4.7.3 Koppers Seals (Type 3 above)

Figures 42 and 43 show the components prior to assembly. In contrast to the
Crane assemblies the runner had a considerably smaller outside diameter but
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Figure 40. Power Characteristics - Crane NASA-Solar Seals
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Figure 42. Koppers Test Seal Assembly Components Showing Runner,

Figur=a 43.

Housing and One of Two Stationary Seals

C ose-Up of Kopp~rs Carbon 3tationary Seal and Secondary Seal
(Positioned for Illustrative Purposes Only) Comprising L-
Shaped Split Rings and Teflon Sealing Rings
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was about twice as thick and had a large V-notch rather than holes to promote
cooling. The stationary seals each comprised a 400-series stainless steel
ring shrunk over a carbon ring. There were 18 springs per stationary seal
compared to eight with the Crane and 32 with the NASA-Solar designs. The
spring loading at the installed deflection was 96 N (21.6 lb) according to
the vendor. The housing structure comprised a central portion threaded at
either end to accept the end pieces. The latter, in addition to the spring
pockets and groove for the secondary seal assembly, each had two dowels which
fitted into holes in the stationary seal to provide circumferential retention.
The dowels were flatted over the protruding portion in a triangular fashion
so that circumferentially they contacted only the carbon part of the station-
ary seal.

Static leakage tests were carried out prior to running and periodically
thereafter. 1Initially leakage was quite high, especially with the forward
seal at about 100 liters/day (30 gal/day), but decreased with running-in to
values in the target range, below 11 liters/day (3 gal/day). All operating
leakage data are shown in Figures 44 and 45. Proximity probe calibrations
indicated, again, slight progressive wear. Proximity probe oscilloscope
traces showed very little stationary seal motion (instability). Careful
control of temperature is deemed required to avoid boiling of the water in
the seal interfaces at high speeds since the vendor estimated that film
temperature could be up to approximately 30C° (50F°) higher than the seal
temperatures recorded by the imbedded thermocouples.

Figure 46 shows the power characteristics of the Koppers seal assembly.
Comparison with those of the Crane-manufactured seals shows that the Koppers
seals required only about two-thirds the power. The theoretical drag curves
for the Koppers seals, computed with both Crane and NASA analyses, showed
better agreement with the actual results than did those FEor the Figure 40
Crane seals, particularly at high speed.

It can also be noted in the Koppers power characteristic that the vast major-
ity of the power requirement showed up as heat rejection to the buffer water.
Figures 47 and 48 show the maximum seal temperaturas rise over the buffer
outlet water temperature. The previously mentioned dependence of leakage on
temperature would in turn suggest caution in any attempt at substantial
temperature reduction.

Figure 49 shows, overprinted on the proximity probe temperature calibration
data, operating probe output voltages. These show as expected very little
if any (0.005 mm or 0.0002 in. maximum) separation of the rotating and
stationary surfaces, about as estimated.

Total performance-test running time with the Koppers seals was 19.5 hours.
Experimental data sheets are shown in Appendix III. It was judged from the
test results that 140 kPa (20 psi) buffer pressure could be used at all
speeds eliminating the need for any added complexity of buffer pressure
scheduling with changes of turbine speed. The would produce a pressure
differential of up to 240 kPa (35 psi) across the vacuum-side seal.
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Figure 46. Power Characteristics - Kopper Seals

Figures 50 through 58 illustrate the condition of the Koppers seal components
after running. Generally they were in excellent condition. One notable
exception, however, was the corrosion evident on the outer diameter of the
runner as may be seen in Figure 58. The AMS 6322 steel runner was chrome
plated on the faces but corrosion protection on the OD had inadvertently been
omitted. Prior to further testing the components were returned to Koppers
for evaluation and application of electroless nickel plating to the runner OD.

Use of 440 C stainless steel runners has bheen successful in some Koppers
water applications but their experience has indicated that the 6322 material
is preferable for high speed applications because of its higher thermal con-
ductivity, lesser tendency to warp in long term service, and reduced brittle-
ness.

As the parasitic drag power requirement was not insignificant, some effort
was devoted to devising means of reducing it. Revision of water inlet and
outlet flows was carried out as shown in Fiqure 59 prior to endurance tasting
with the intention of promoting freer water outflow particularly.

4.7.4 Endurance Testing

Cyclic endurance testing was carried out on the Koppers seals in accordance
with the schedule shown in Figure 20. Between 68 and 71 hours into the
planned 500 hour test a large increase in leakage of the (aft) vacuum-side
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Figure 50.

Koppers Forward Stationary Seal Components After
Performance Testing

Figure 51.

Close-Up of Koppers Forward Stationary Carbon Seal
Sealing Interface After Performance Testing
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Figure 54.

Aft Side of Koppers Runner After Performance Testing

Fimre 55.

Cluse-Up of Koppers Aft Stationary Seal Sealing
Interface After Performance Testing
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Figure 56. KXoppers Aft Stationary Seal Components and Center
Housing After Performance Testing

Figure 57.

Close-Up of Aft Face of Koppers Runner After
Ferformance feasting
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Figur2 58. Corrosion on Outside Diameter of Koppers Running
After Performance Testing

seal was noted. This seal had been replaced at build-up for the -:»ndurance
test because of assembly damage. Total running time on that seal at test
cessatlion was therefnre 71 hours while the other had 90.5 hours. Table 4

shows a summary of the leakage results recorded during the endurance testing.

Disassembly revealed that both anti-rotation dowels in each housing member
nad failed 1n multi-origin fatique at the runouts between the triangular-
shaped and round sections of the dowels. Without circumferential restraint
the stationary seals rotated, dislodging and damaging some of the loading
springs and thermocouples. Typical views are shown in Figures 60 through 62.
As «an be seen in Figure 63 ...- faces of the seals had suffered cavitation
erosion pitting over short arcs extending (in the direction of runner rotation
and water circulation) from the proximity probes utilized for gap measurements
1uring the performance testing. Evidently the protrusion of the probe tips
provided turbulent wakes which promoted cavitation. Pitting was also noted
on the runner outer diameter as shown in Figure 64. This was located only in
depressions formed by material removal for rotor dynamic balance.

Investigation of the Jdowel failures, unprecedented in Xoppers' experience,
indicated a number of possible causes, in order of greatest 1likelihood:

(1) high torsional vibration due to failure of circuit board in drive
motor SCR during performance testing

(2) excessive torques arising from inadvertent very high acceleration
and deceleration of the rotor during performance testing
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Figure 0.

Koppers Atmosphere-Side (Forward)
End Housing After Failure at 71
Hours of Endurance Test

Figure 61.

li Close-Up of Figure 60 Housing
Showing Failed Anti-Rotation
Dowell and Typical Secondary

Failed Dowel
Damage
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Figure 62.

Close-Up of Figure 60 Housing Showing
Multi-Origin Fatigue on Fracture Surface
of On¢ Failed Anti-Rotation Dowel

Fiqure 63.

Clnse-Up of Figure 61 Seal Showing One
of Two Areas of Pitting on Land Near
Proximity Probe

¥ . Runner D.O.R.
and Water

Circulation
i ; K
x \Cavitation
) Erosion
P
%
A
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E—: . Figure 64.
§

sion and Erosion Pitting at Area of

Koppers Runner Showing Severe Corro- l
Material Removal (for Rotor Dynamic
|

'[i Balancing)
L ;
3
.
k-
2
L. (3) sharp radius on dowels at position of fractures
}
3 (4) radial forces associated with localized cavitation on runner OD
a
= All of the above factors could be eliminated by operating procedures and/or
o . . . .
revised design features. In summation, the dowel failures did not constitute
L an impasse to the satisfactory operation of the Xoppers seal but may be
y op 12
] considered strictly mechanical failures with typical design engineering
solutions.
} |
s Three factors demand mention ri2lative to the cavitation erosion: |
|
|
- . . Y . . ‘
() . The proximity probes, which evidently each provided a turbulent ;
‘ wake to "trigger" cavitation, would not be present in production- }
type seals. f
i
The runner was slightly larger in diameter than otherwise required 3
L»7 so as to present a "target" surface for the proximity probes. :
]
3 . The localized depression where the erosion occurred on the runner
[ outer diameter (material removed for rotor balancing) should be

located on an unwetted surface.

{ Thus, with design modifications, avoidance of cavitation erosion might be
L possible with the Koppers assembly.

The Crane NASA-Solar seals were not endurance tested on the automated cycle
| schedul primarily because cavitation appeared during the Efirst 29 hours of
performance ~valuation. Total running time on these seals was 29 hours.
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4.8 SEAL BISLIOGRAPHY

A partial bibliography,
V.

with emphasis on face seals, is included as Appendix
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DISCUSSION OF RESULTS

The NASA-Solar seal assembly performed about as intended demonstrating zero
leakage or leakage below the target value of 11 liter/day (3 gal/day) over a
range of buffer pressures at each speed tested. At low buffer pressures air
bubbles, of increasing volume as pressure was reduced, wera obs~rved in the
buffer water outlet flow as it passed through the glass tube of the flowmeter.
Zero water leakage was, however, still obtained under these circumstances.
The pressure at which bubbles were no longer formed was found to increase
with speed. While computed seal performance included satisfactory operation
at low buffer pressures at all speeds, it seemed that actual pumping action
of the runner spiral grooves on air was sufficient to overcome low buffer
water pressures. This speed-related effect could in tests be eliminated by
operating at slightly higher buffer pressures. Higher buffer pressures also
aid in suppression of cavitation.

-
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Cavitation-erosion was found to occur at the higher speeds tested. This can
be minimized by keeping all surfaces as smooth as possible and no larger than
necessary (particularly diameter), and minimizing the changes ia direction
the water is required to make, as for example by tangential entry and exit.

Demonstration of operation in accordance with analytical predictions was con-
firmed by measurement of separation of the sealing interfaces (Figure 27).
It is believed that the aft seal 4id operate at somewhat lower film thick-
nesses than the forward seal because of the wear noted at first disassembly, |
particularly at the outer periphery of the runner and the outsr half of the
stationary seal. A cause for the wear could have been waterborne rust par-

ticles, however, the aft seal suffered significantly greater wear than the }
forward seal. Crane offered a possible explanation for this difference,
suggesting hard particles of chrome left in the groove bottoms coming loose

from that side of the runner. The second plating job resulted in much im-

proved grooving with no residual particles.

——

ol

The Koppers seals, once "run-in", produced low leakage rates. Also, separa-
tinon of the sealing interfaces of about the estimated magnitude was detected
1 during operation with the proximity probes.

¢ During all the testing no seal behavior was encountered which would prevent
: turbine operation in the usual gas turbine fashion, i.e., typical start-up and
shutdown acceleration and deceleration. The seal operating temperatures, for
example, were found to reach near-equilibrium values within 2-3 minutes.

The Xoppers parasitic drag losses were somewhat greater than they might
4 otherwise have been with production-type seals. This was because the test
seal runner diameter was slightly larger than necessary to provide target
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surfaces for the 3.2 mm (0.125 in.) diameter proximity probes in the station-
ary seals. (The proximity probes in the NASA~Solar seals were "buried".)
Ignoring other factors and assuming the same seal inner diameter, the differ-
ing radial width requirements of the sealing faces would rank the seals
Xoppers then NASA-Solar 1in order of increasing parasitic losses, mainly
because those losses vary as the fourth power of the diameter of the surface
in contact with the water. Since the losses vary only directly with the
length of that surface, however, a wider but profiled runner such as the
Koppers design should, generally, be considered by evaluation with the anal-
yses in Appendix IV of this report. The Crane runner had chordal holes
intended to promote cooling: they created pumping losses of about 3 W%
(10.5 HP) at 12000 rpm.

Much experience was obtained with the use of water as a lubricant and in the
application of face seals to the turbine. This has been cnollated in a self-
sufficient form and presented in the section entitled "Desiyn Guiilelines".

Finally but very significantly, a development of the ~NASA-Solar seal was
devised which overcomes both the factors which presented difficulties for the
tested seals. The new type is shown in Figure 3 of the Summary. The area at
the outer diameter of tihe runner 1is vented to vacuum rather than flooded
with buffer water. The buffer water for lubrication and cooling is supplied
separately through two sets of internal passages. Confidence that this type
will not suffer cavitation erosion damage is, it is believed, offered by the
test results of both seal assemblies - no erosion was found on the vacuum
side of the sealing interfaces. Additionally, it may be seen by comparison
of Figures 1 and 3 that one of the stationary seals has been e. .minated

further reducing parasitic losses. A similar adaptation of the Koppers seal
would demand addition of a second sealing surface radially outwards of the
first and an intervening annulus for the water buffer supply. Whether such

a drastic revision to the original design, particularly involving as it would
more than doubling the face area which must remain square and flat within very
stringent limits during operation, woulil be viable is considered doubtfual.

In summary, it is believed that the performance of the NASA-Solar and Koppers
3eals was as intended. Leakage rates varied from zero to about 11 liters/day
(3 gal/day) at buffer system pressures which can readily be supplied ani
controlled. The seal static leakages were also low enough to permit contin-
uous, moderate-level buffer system pressurization without exceeding target
leakage even though the turbine is not operating.
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DESIGN GUIDELINE

Seal performance and life can be ennhanced by venting the seal at the
high pressure (steam) end of the turbine rotor also to the condenser
not well (vacuum). The primary advantage of such a configuration is
that it provides an essentially isothermal environment for the seals.
Face seals have stringent requirements for flatness and squareness
which would be difficult to maintain with the potentially large tempera-
ture gradients arising from the close proximity of steam. With the
seals at both ends of the turbine having the same sealing environment
and at least similar requirements, commonality of seal assemblies
might be possible.

Carefully integrate the seal assembly into the turbine detail design.
The seal vendor(s) should be required to submit fully dimensioned com-
ponent and assembly drawings with recognized military, aerospace, or
industry material specifications, including coatings and plating with
thickness(es) and area(s) of coverage, and loading spring data. It
should not be possible for the stationary seal loading springs to be
compressed to their solid height in order to prevent distortion damage
as might occur during build-up. Provision of a retention feature to
hold the stationary seals against the loading springs past the subassem-
bly stage is recommended. Where the stationary seals on either side of
the runner have detail differences, "Murphy-proofing”" to prevent inter-
changing them at assembly is mandatory. Assembly and subsequent in-
service repair/replacement are greatly facilitated by configuring the
;eal assembly as a "plug-in" unit. It is recommended that provision be
made to allow checking after complete assembly that the runner is properly
located axially. That is, the spring deflection must produce loading of
2ach stationary seal against the runner within acceptable (vendor-supp-
lied) limits.

Minimize parasitic friction drag losses resulting from contact of rota-
ting surfaces with the buffer water by minimizing rotating component
exposed diameters (nower x diameter4), speed (power & speed3), axial
dimensions (power & length) and by minimizing the operative coefficient
of friction (power & friction coefficient), consistent with optimum seal
operating temperature requirements. (In the absence of applicable exper-
lmental experience, the theoretical analyses in Appendix IV of this
report may be used.)

Arrange buffer water inlet and outlet flows so as to maintain as uniform
a circumferential temperature distribution as possible in the stationary
seals. 1If possible, avoid porting arrangements, etc. which tend to pro-
mote development of turbulent wakes or require changes in direction of
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flow in favor of tnose which tend to reduc~ the relative velocity of the
water flow and any rotating surfaces the water contacts. Multiple
tangential inlets and outlets, for example, could be considered along
with the absence of protruberances and interruptions in surfaces so as
to minimize the chances for cavitation erosion. This applies particular-
ly to instrumentation and includes 1localized removal of material for
rotor balance.

Eliminate as far as practical the possibility of corrosion of wetted
components. (Corrosion products and any other abrasive foreign material
are extremely detrimental to both seal performance and life.) Machined
AISI 304, 316 and 17-4 PH stainless steels, nylon, and CPVC plastic
components can be recommended, based on successful use in this develop-
ment program, with due consideration of limitations imposed by tempera-
ture and water~induced dimensional change of non-metallics.

During initial turbine build-up minimize seal lube water system contam-
ination by an appropriate scrupulous cleaning procedur=. Provision of
water lube system filtration with capability to remove contamination
including corrosion products is essential.

Ethylene propylene and nitrile material "O"-rings are, based on exper-
ience in this program, considered superior to Viton A for lube system
use with water at temperatures under 90°C (200°F) because of a lesser
tendency to take on a permanent set.

The use of teflon coatings and components and, at assembly, silicone
grease (e.g., Dow Corning Stopcock or #11 silicone greas=zs) as means
to reduce static friction should be considered especially in the secon-
dary seal area. With "O"-ring secondary seals loading hysteresis resul-
ting from turbine rotor axial movements due to thrust bearing clearance
and/or differential thermal expansion may have to be taken into account
or avoided. Greas=, however, must not be allowed to enter the sealing
interface either by handling or, subsequently, in operation when ina-
creased temperatures may allow it to flow more readily.

During development testing of the actual steam turbine provision should
be made for measurement of seal static leakage and, during operation,
for varying buffer water pressure and flow and measuring seal leakages
and temperatures and buffer flows and temperatures. This would permit
optimization of the seal system design. The installation of proximity
probes in each stationary seal to detect the gap between it and the
runner would be desirable. The purpose would be to determine whether
any instability occurred indicating the necessity for greater spring
loading and/or stiffness. Observe guideline 4 above in determination of
transducer location.

The seals in production turbines should be run-in by operating step-wise
at progressively higher speeds.
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CONCLUSIONS

An optimum mainshaft bearing and seal system for advanced US Navy COGAS
steam turbines is a buffered system utilizing as the buffer fluid system
feedwater obtained from the condensate boost pnump and returned via the
condenser hot well.

Face-type seals offer the most promise for achieving target overall sys-
tem external leakage rates of 11 liters/day (3 gal/day) over the intend-
ed 15,000 hour turbine (TBO). Significant overall water treatment system
simplification is feasible and attractive with their use.

Face seal performance and life can be enhanced by venting, through an
appropriate labyrinth seal for example, the turbine high pressure end
also to the condenser wvacuum. This would provide, with no additional
system water external loss, an essentially isothermal environment for
the seals. High thermal gradients which can be detrimental to face seals
and which would accompany sealing of steam would be eliminated.

Experimental evaluation of specially designed and manufactured candidate
seals in a test rig showed that target leakage rates could be achieved
with twe vendor-supplied seal assemblies, Crane and Koppers.

Parasitic friction drag power losses can be substantial. They can be
fairly closely estimated, and therefore minimized, by careful seal assem-
bly design in accordance with existing theoretical treatments.

Cavitation-erosion damage was found to occur at the upper end of the
tested speed range. This can be minimized by ensuring that wetted sur-
faces are as small in diameter and as smooth as possible and that water
trajectories are as straight as possible, with tangential entry and exit
for example.

A modified Crane NASA-Solar spival groove seal was devised with the outer
diameter vented to vacuum, circumventing the parasitic drag and cavitation
problems. A similar approach with the Xoppers seal appearesd to be much
more difficult if possible at all.

The experimental testing also showed that the water-lubricated face seals,
once "run-in", could safely be operated in typical gas turbine fashion,
i.e., 4id not require complex, slow start-up procedures.

Some scoring damage was encountered in the testing of the sealing inter-

faces from foreign material inadvertently admitted to the water system
downstream of the filter.
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RECOMMENDATIONS

Incorporate the modified Crane NASA-Solar spiral groove seal with its
outer diameter vented to vacuum in the RACER COGAS steam turbine. Veri-
fication testing is recommended.

Determine the filtration requirements for the seal lube water supply

system to prevent scoring damage to the seal interface from corrosion
products or other contamination.
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DESIGN DATA Section G408, 5
Fluid Flow DRAG - ROTATING Page 1
Division CYLINDERS - ENCLOSED July 1969

A. ENCLOSED CYLINDERS WITH ZERO AXIAL FLOW IN THE GAP

1. Baaic Concepts and Definitions

The drag torque, or moment, M, produced by fluid friction, often called "windage,” of a rotating cylindrical
surface is generally evaluated in terms of a friction factor, c¢, defined as follows:

T

M
¥ swr,P/ @) " nri Low’/g )

where the symbols are the conventional symbols defined in Section G408,1, p. 2, as well as in item B below.
Subscripts i and o here refer to the rotor (“inner' surface of the rotor-stator gap) and stator (''outer” surface)
respectively,
This relation excludes the contribution of the ends (which can be considered separately as "disks’) and of the
bearings. The power loss from '"drag" or ''windage' of the cylindrical surface is as follows:
in mechanical units: Py * My It l1bs/sec )
or, in watts: Gw = (1.358 Mw) watts )

The evaluation of c¢ is explained below,

B. STEP-BY-STEP PROCEDURE FOR EVALUATING FRICTION FACTOR, ¢f

Step 1. Data

From the given data, or estimates, evaluate the following quantities (one set of consistent units and numerical

values are noted here as an example). For properties of gas and of liquids, see Section G513 and G514, respectively,
but make sure to use, or convert to, the units chosen here,

Numerical
Units Example
Fluid density [ b/t 0.075 (air at 1 atm,
70°F)
Fluid viscosity u Ib/(sec ft) 1.223 x 10™* (air at 70°F)
Radial gap between
rotor and stator b ft 0,03
Radius of rotating
cylinder ry ft 0. 30
Rev, per minute n rpm 3600
Rotational velocity w rad/sec (=2nn/60) 377
Rotor axial length L ft 2.0

Step 2. Taylor Number

Evaluate, from the above data, the rotor Taylor number, (N7g4)i, from its constituent factors, as follows:

Factor or Formula Numerical Example
owrd 0.075x 377x 0.30x 0.03 20,800
" 1.223x 107 ' JOSEF SEDY
b,l“ o. 03/0. 30 = 0.10 79
R AUG 7 19
R G () 20,800 (0. 10)/7 « 6,58 x 10°
Eq. (4)

'!.!.‘lOIl!cr.'c # Supecreedes issue ol
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Step 3, Friction Factor

Evaluate ¢; from whichever of the following formulas for cg applies to the pertinent range of (Nt,);:

Segments

!

L Range Formula in Fig. 5-1
r

1

b

<

0<( )< 41 2 (L eblrg)?
trali °t " Gurdla) {1 + 0. 5b/rp)

Eq. (5) a-b
(Laminar)

41< (Np,); < 63

2(Npa)t-® (LLD Srb °."° Eq. (6) b-c
. \ri
(Transition)

€t * uriblu

83 < (NTa)i < (N}, y-T et 0. ns(;v/-r,)ﬁ'* 0. -:16(bt/’7¢; .
pwrib/u pwrib/u

Eq. (T} c-d
(Vortex Flow)

For (Np.); y_r see Note 1 below, This equation (7) applies when vortex-flow is dominant,

}
f (NTa)y, v-T < (NTa) < = cf in this range is related to (orr;b/u) by the
L {Turbulent) implicit relation:
‘ d-e

({1 +birj R ST d'"-e"” ete
(pwrib/u) = exp {l. el + 0.50/17) loge [m] -8 58} Eq. (8) .

Note 1: ‘(NTa)l v-T is the value of (NT3a); at transition from vortex-dominant flow to turbulence-dominant flow.
Until better test evidence becomes available, the procedure here suggested is to evaluate cf from Eq. (7) and also
from Eq. (8) and use whichever of these values is the higher. The approximate value of (NT3);, v-T. above which
Eq. (8) is then applicable, can be judged, from inspection of Fig. 5-1, as the intersection of segments cd and de,
selected for the chosen value of (b/rj).

1000 M B R LI NI B X 1) L3 4 1087er 2
e £ 2 SE M T R RN K T T:r.' — . T
curves R A - oo
cle »:1:_: . '
a'ede’ - ‘-,.LF;
A" U%e" . N L
2A"h®ed®e" \ { -+‘-i‘:

cpigurplu)/a
rw :

e
%

I T ,3::%' = T
4 ' i S
Joois ‘ L I '

ool e Sces. Rdte 11,02 G L1ns

i f - . N [ oy B [e

)
—t §

- 1\’ ‘ [T ‘ o
: rnylorcNum:r cevpaty e e"u )(L‘" JOSEF SEDY
E %.4) AUG 7 1918

Figure $-1. Friction Factor for Smouth Cylinder Rotating in a Smooth Coaxial Enclosure with Zero

Axial Flow
4
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1 SYMBOLS (with one set of consistent units as an example)

a, Radlus of rotating cylinder, or of edge of a disk, feet

b, Thickness of disk, or radial gap between cylindrical rotor and the cylindrical stator surrounding the

rotor, feet
e, Disk radial-tlp clearance, feet

% Friction factor, defined as t /(pw? rl’ /2g)3 v /(pu? & /2g), l.¢.. based on the peripheral velocity,
wr; Zwa, of the rotor
Note: 1f the force unit were not 1b., but were newton or dyne, the factor g would be deleted.

Cet Disk torque (or moment) coefficient, defined by

M - Coulpw? a®/(2g)] 1b. ft,

Note: The "note’’ on ¢y above applies here also,

£, Friction factor defined as « OV a2 /28). t.e., based on relative velocity, V... between the rotor
surface and the average "bulk’ ve\oclty of the fluld in the rotor-stator gap. (See c¢ for a definitlon of s
different form of friction factor.) The "note’ on c; above applies here also.

' [ Gravitational acceleration, generally used here as a conversion factor between force units and mass
units
K, k = g/ws ratio of angular velocities, called "core rotation coefficient”
L. Axial length, feet
M, Torque or moment in general, b, ft.
r M, Disk frictional torque, for one side, 1b. ft.
. n, Rotational speed expressed as rev. per minate « 80w/(27), rpm
{ Npe. Reynolds number as defined for the pertinent context; If not otherwise defined NRe 8 Reynolds number
[ defined as:
3 wal
\ q NRe* =%
: p. Pressure, 1b/ft? unless otherwise specified
Q. Through flow as may be supplied from an external source, ft’ /sec
U Disk pumnplng capacity, ft'/sec
r, Distance radlally outward from axis. feet
Fe. Radlus st inlet (entrance) of ventilating alr (for disks), ft.
. Radius of a cylindrical rotor, ft.
ro. Radius of cylindrical stator enclosing a rotor. sor, = (r; + b}, ft.
., Axlal clegrance between the disk and side wall, feet
u, Absolute tangential velocity component, ft/sec
upel. Tangential velocity component relative to the Qlk. ft/sec
v, Absolute radlal velocity component, ft/sec
Yo, Reference radial velocity, ft/sec
Veel. Relative radial velocity component, ft/sec
\A Resultant relative velocity, ft/sec
wg,  Reference axial velocity, ft/sec
z, Axial distance, measured from rotating disk surface unless otherwise specified, feet

JREEK LETTERS

8 Angular velocity of fluid In the gep, rad/sec
8, Boundary layer thickness on the disk, feet, subscript t refers to tangential-velocity, subscript r refers
to radial-velocity boundary layer; without subscript these thicknesses are assumed to be the same,

e, Grain size roughness, feet

n, Dimensionless distance from solid boundary, y/s

e, Boundary layer thickness on the end wail adjacent to a disk, (8,, tangential 8 ., radial-velocity

boundary layer thickness when they differ), feet

o, Dynamlic viscosity, Ib-sec/ft?

v, Kinematic viscosity, ft*/sec

o, Density, 1b/ft® -

T, Shear stress of fluid friction (windage), 1b/ft?

v, Q/(wa® = coefficient of through {low based on area a?

", Q/(2vwals) = coefficiert of through flow based on area (27as)

Y. Q/(2¢ wer ) * coefficlent of through flow based on area (hroo)

- Angular velocity of rotor = 2¥n/60, r-d/ﬁ
Subscripts (see also definitions of main symbols having subscripts) s L.
seeerpe ' " Mser Sepy

[ Refers to values at r = &

° Refers to values when Q « 0

r Refers to values at any radius, r AUG 7 19?9 ;

SENERAL @ ELECTRIE  “supersedes isevs of November 1069
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Numerical Example
From the numerical example in Step 2 above:
(N o)y » 6.58 x 10°

By inspection of Fig. 5-1 for this (NTa); and (b/r{) = 0.10, Eq.(7) yields a value of ¢¢ no lower than Eq. (8), so
Eq. (7) is the proper choice. Equation (7) yields:

. 0:476(6. 58 x 10°°-¢
¢ 20,800 * 0. 00184

and this result can also be obtained {rom segment cd of Figure 5-1,

Step 4. 'Windage'' Torque and Power

Evaluate the "windage” torque, M, and power, P, from Eq. (1) and Eq. (2) above:

Numerical Example:
M = edrr'Lor?/p)
* 0.00184 [ x {0.30 x 2 x 0.075 x (3777/32,2]
= 0.0311b ft,
P = Mu #0.031x 377
80 P r 11 71t 1b/sec
and g, * 1.358P » 15. 9 watts

JOSEF SEDY
AUG 7 1979
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N 5.4 Plow in the End-Wall Boundary-layer

‘ Confined vortex flow is usually considerably more complicated than the
flow between rotating cylinders. In particular, the flow is complicated by
the end wall boundary layers which have characteristic instabilities of their
own. Some ideas on the conditions leading to transition in these boundary

nl layers may be obtained by looking at the results of investigations into the

- stability of Ekman layers. The boundary layer on the axial end walls of a

vortex chamber may be viewed as a nonlinear Ekman layer with the Rossby number
of order 1 or larger. Here the Rossby number is defined as

v
R 2%
! o Qr o (5.4-1)

with Vl the difference between the tangential velocity outside the boundary
layer and that of the wall. The principal results of Ekman-layer stability
investigations, as summarized by Greenspan (1968) are given in Fig. 5.5. Two
distinct types of instabilities have been detected. The waves of both families

— v

form a series of horizontal roll vortices whose spacing is related to the depth
of the boundary layer. Transition to general turbulence occurs at a Reynolds

number somewhat higher than that for the onset of instabiltiy.

Classes A, B unstable
140 -
130 |- RM=12454366¢® P
. e bV
> 120
S wop
>"‘ 100 - Class A unstable
[} % - o N0 R&A) - 56'3*"584 3 Ll
- 80k o’

o 70 |- w

0" Stable

50 |- .

i 1

1 1 1 1
02 4 o6 08 10 12
R =

tz Y
o s

-

Fig. 5.5 The critical Reynolds numrer vs. Tossby
aumber for Class A and Class B instabilities in an
Ekman boundary layer. (Tatro and Mollo-Christensen, 1967).
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The results of Fig. 5.5 can be used to estimate the transition Ret for

flow in the end wall boundary layer of a vortex chamber. For a stationary

end wall
~R 21
o
’ v, - T/x (5.4-2)
1/2
v
§ - [F] r
V.35
Therefore _1 2 125 whenever 2
v r V16 2
Re, = 5 =(—) 2 (125) (5.4-3)
i.e.
Re, 2 L.5x10° (5.4-4)
(crit)

This suggests that the end wall boundary layer will transition from laminar to

turbulent flow where Ret is much above 104. N -

It is not surprising to find that the oscillating profile distributions of
the Ekman layer lead to instabilities at lower Reynolds numbers than do the
monotonic profile distributions associated with a rotating disk. The flow
field of a rotating disk becomes unstable when (Schlichting, 1968)

g 5
e 2 1.9x10

and transition occurs when -—

Re, 2 2.8x10°

In terms of the Reynolds number based on the boundary-layer thickness as in
Fig. 5.5 this corresponds to 6V1/v = 550 for the stability limit and 670 for
transition. The instability in the rotating disk boundary layer is of the
same type as the Class B in Fig. 5.5.

5.5 Stability in a Confined Vortex

The general flow pattern for a strong vortex as represented by Fig. 3.13
is too complicated for the prediction of general stability conditions, but some

indication of the expected transition Reynolds numbers can be obtained from the

129
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preceding sections. When the external boundary condition is a rotating, porous

cylinder and there is radial inflow, turbulence probably first appears in the
end wall boundary layers. According to the last section this should occur

when
Re, 2 10% (5.5-1)

Also, transition may be expected at a rather low Ret in the region of r > r when
the necessary condition on the Richardson Number is violated, i.e. transition

should have occurred when

2 2
3 dw dr
(dr) > 4 ar . (5.5-2)

Since the approximate solution discussed in Section 3.5 calls for significant
axial velocities in this region of r > r while at the same time calling for T

to be essentially constant, flow in this region may be expected to be unstable.

These speculations are confirmed by Travers' (1965, 1967) experimental
investigations. By taking microflash pictures of dye filaments in a water
vortex, he was able to observe clear demarcations between regions of turbulence
and apparently laminar regions and to identify the dividing line with the
radial stagnation surface. An example of these photographs is reproduced in
Fig. 5.6. For the conditions of the photograph (Ret = 1x105, N =230, and
L/D = 3) the end wall boundary layer should be turbulent and the r based on
turbulent boundary-layer calculation (see Chapter 6) falls close to the de-
marcation line between the laminar and turbulent region. This division of
turbulent and laminar regions by the radial stagnation surface was observed
for all taﬂéential Reynold; numbers tested (Ret = .5 to 2.5 x 105) whether
the vortex was driven by rotating the peripheral wall, by injecting flow
tangentially through slots, or by injecting through a large number of dis-

crete jets.

.

Travers and Clark (1968) also demonstrated that a vortex with radial

outflow is more unstable than that for radial inflow. A one inch diameter,
porous tube was installed in the center of the vortex discussed in the last para-
graph and also provisions made to rotate either the central tube or the end
walls. For small amounts of outflow (-N < 100) the flow was turbulent for

2 0.3 r, and laminar for smaller radii when both the inner tube and the end
valls were stationary (Ret was varied from 1.2_x 104 to 3.2 x 105 for these
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Fig. 6.9 The circulation ratio as a function of L/D, re/to, and the
boundary layer interaction parameter for incompresgible flows.

6.4 Cylindrical Wall Boundary Layer

Since the confined vortex is usually driven by tangential injection of
fluid near the outer wall it is necessary to consider losses that occur due
to shear on the cylindrical wall. This problem was considered for laminar
flow in Section 3.8. Equation 3.8-1 may be applied to turbulent flow if
T, 1s interpreted as the turbulent wall shear and u in the last term is

replaced by Epe 2r
. = 3 2 - [*] -
ml, =l +2mrit 27t Le, ;;— (6.4-1)

The difficulty in applying this equation, of course, is involved in the uncer-

tainty in these two parameters T, and €qe Most attempts at semi-empirically

determining the jet recovery factor, ro/ri, have neglected the last term

involving € Thus implying that the wall boundary layer can be decoupled

T.
from the vortex core.
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Kendall (1962) estimated values of Fo from end wall pressure distrib-
utions and used Eq. 6.4-1 with the last term neglected to determine T, On
this basis he found T to be only about 10%Z above that which would be 4
predicted for turbulent flow over a flat plate at the same Reynolds number

based on the peripheral path length, 2nro, and the wall velocity, Fo/ro.

With LI Ei o vo2 and the last term neglected, Eq. 6.4-1 may be

written as

-
b r
3 2 . 1 )
g . '—___CE_V;— (6.4-2)
i 1+_-.———
2 u
(o]

Alternatively when all of the flow is introduced tangentially, with no com-

Sk

pressibility effects

vo 2ﬂr°2 Fo Aw Fo
— = -— = — = (6.4-3)
u A Ty AT

- and Eq. 6.4-2 may be written in the form given by Roschke (1966‘

1 172_

F ro [@c a/a) +1}1/2-1 )

- T, = C. AJA (6.4-4)

L . i f 'w'i

Equation 6.4-4 is plotted in Fig. 6.10 with a number of experimental
h points from various investigators reviewed by Rodoni (1969). The general

trend of the curve is supported but a wide variation in Cf is required to

L. explain the scatter in the curve. A correlation of Cf as a function of
I tangential Reynolds number based on a comparison between this figure and

Eq. 6.4-4 shows that it is equivalent to setting

0.29
Ce = @'.275 (6.4=3)

This is substantially different than that which would be predicted by the

Blasius expression for a flat plate of length 2nr , i.e.
. = 0:052 °

f Ret'2

(6.4-6)

The large values of Cf obtained cannot be explained in terms of the €

term which was neglected in reducing Eq. 6.4~1 to 6.4-4. Including this term

would only serve to increase the empirical values of Cf since it represents
angular momentum which is transmitted by shear in the fluid radially outward
to the cylindrical wall layer. One reason for the higher values of C. is

f
that local jet velocities may be much higher than the v, which is used in the
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