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-The self-consistent electronic structure of Si, Ge, and zinc-
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blende GaP, GaAs, ZnS and ZnSe Mvebe determined using the linear

combination of Gaussian orbitals method which 4aajust been developed.

A completely general form of the spatial dependence of the potential

-has been used to describe accurately the bonding character in the

tetrahedral environment. The rround state charge densities we have,

determined agree very well with experiment (where available) as do

the locations of the valence bands, energies, and effective masses.

A striking result is that the optical band gaps are underestimated by

approximately 30% or more, although the general conduction-band

topology is good. This is an inherent difficulty of using the local

density approximation for the exchange correlation potential (a theory

of the ground state properties) to describe the excitation energies.

The interband optical properties of Si, Ge, GaP, GaAs, ZnS, and

% ZnSe-have been calculated using our self-consistent energies and wave

_Lj functions. Qualitatively good agreement with experiment is found.

Agreement with experiment with regard to line shapes and peak positions
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can be improved using an empirical energy dependent self-energy

correction as appears in the Sham-Kohn local density theory of

excitation. Our results clearly pointed up to the urgent need of an

improved theory of the excitation energies in semiconductors and

insulators which is being actively pursued.under the current contract.

So far, our work has resulted in four extensive manuscripts, one

invited paper, and three contributed papers which are enclosed.
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"Develop Theory & Computer Programs"
O

Progress/Technical Report

ONR Contract # N00014-79-C-0558

by

C. P. Wang

The theory and computer programs have been developed to calculate

ab initio energies and wavefunctions of solids where the bonding has 0
important directional characteristics. The self-consistent linear

combination of Gaussian orbitals method is used with the exchange and

correlation potential included within the local density functional

formulism. The crystal potential is expressed as a superposition

of spherical Gaussian orbitals centered at each atomic site, plus a

Fourier series expansion to accurately describe the bonding character JR

in the tetrahedral environment. The effect of self-consistency on

the energy band gaps of diamond and zinc blende semiconductors (e.g.

Si and GaAs) is currently under investigation. The application of

this method to more complex crystal structures such as Laves phase

ZrZn2 (6 atoms/unit cell) is also in progress. Results will be reported

shortly at the 1980 APS March meeting.

For the remaining time of the contract major emphasis will be placed

on (1) Application of the method to a series of diamond and zinc blende

semiconductors in order to make an overall evaluation of the linear com-

bination of Gaussian orbital method, and (2) Develop theory and computa-

tional programs necessary to calculate the optical properties and charge

densities of these materials in order to make direct comparison of the

theoretical energies and wavefunctions with the experimental measurements.
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INTRODUCTION

In this paper we present theoretical results of electronic charge densities and x-ray
structure factors of diamond structure Si and Ge, and zinc-blende structure GaP, GaAs,
ZnS and ZnSe. The calculated charge densities result from self-consistent energy band
calculations for these crystals using the method of linear combination of Gaussian orbi-
tals (LCGO), with a local density form of exchange-correlation potential. The calcula-
tions are fully ab initio with the only input being assumed crystal structures and lattice
constants. Further details regarding the method may be found in the next section- and
the interested reader can find a full discussion and results for the energy bands, densi-
ties of states, effective masses and optical properties in Refs. I and 2.

Our results discussed in Section III are in good agreement with the experimental
structure factor measurements and indicate that local density theory gives a good quan-
titative representation of the crystal charge density for these, and presumably other
materials. This is to be expected as the ground state charge density in local density
theory results from a variational principle, with the major uncertainty being the choice
of the exchange-correlation functional. It appears that first-principles calculations are
capable of yielding results of sufficient accuracy so that reliable interpretations of chem-
ical bonding in materials may be made. Where theory and experiment deviate, princi-
ply in the bond density strength and asphericity, improvements may be possible by
using more realistic (non-local) exchange-correlation functionals.
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METHODOLOGY

An effective one-particle equation for wave vector kand band index n can be

obtained within the Hohenberg-Kohn-Sham local density functional formalism:

~~ 7-L-~ 1  + ~ d3r'+ Vxc(p()Jmnk)

-. . o-1s(,7. 1

of "r d 6Fo

Here the first ternm is the kinetic energy, the second the electron-nuclei Coulomb
interaction (nuclei charge Z,), the third the electron-electron Coulomb potential, and
the fourth, the local density exchange-correlatior -potential. The charge density p (7) is
related to the occupied one-particle wave function *, 0 7) by

ocued

which in turn determines the electron-electron Coulomb and exchange-correlation
potentials. Thus Eqs. (1) and (2) need to be solved self-consistently. We have used
the self-consistent linear combination of Gaussian orbitals (LCGO) method 3-s which
has been applied successfully to study the electronic Properties of a wide range of sim-
ple6' 7 and transition metals,$_' 0 and a few covalently bonded materials.""1. 2 Here we
will give a brief discussion of the procedure that we have adopted to calculate the self-
consistent charge density of representative semiconductors.

Linear Combination of Gaussian Orbitals Basis

As in the usual variational treatment, the crystal wave functions 41r,,(k. 7) are

expanded in terms of a Bloch basis set 46 j, 6, 7)

0P- . k ) C,,,(FO, .,7 3

ik I. 1'
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An optimum choice of a basis set [ulT (r)1 which provides maximum variational
freedom yet still maintains a manageable size of the secular equation has been the sub-
ject of numerous discussions. In our study for covalently bonded diamond and zinc-
blende materials we have chosen a linear combination of atomic orbitals minimum basis
set with an additional shell of s, p, and d virtual Gaussian type orbitals (GTO) for
added variational flexibility. The atomic orbitals were solutions to the atomic secular
equation constructed with the self-consistent Herman-Skillman atomic potential 4 and a
basis set of GTO. The Gaussian exponents were varied non-linearly to minimize the
atomic energies as follows: For each orbital quantum number we choose a set of even-
tempered Gaussians that satisfy

( -
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where the two most localized Gaussian exponents a, and 'a2 were varied non-linearly to
minimize the corresponding lowest state atomic energy. Typically 8, 5, and 4 GTO
were used to describe the atomic Is, 2p and 3d states, respectively. Two more extend-
ed GTO were added with their exponents varied to minimize the energies of the next
lowest states. This procedure was continued until all valence states of the atom are
completed. The atomic orbitals were then augmented by an additional s, p, and d shell
of independent GTO for the variational freedom needed to describe the wave functions
in a solid. The presence of these diffuse GTO often leads to approximate linear depen-
dence of the basis set, hence the overlap matrices must be checked carefully against
negative or unphysically small eigenvalues throughout the Brillouin zone. We found it
helpful to truncate the tail of the highest valence atomic orbitals by setting minimum
values for the corresponding Gaussian exponents. Variationally this has little effect be-
cause the long tails of the atomic orbitals-are strofigly modified in a solid by the overlap
of the wave functions on the neighboring atomic sites. These changes can only be
fitted with the aid of the additional virtual orbitals. The resulting basis set is not com-
plete, but does overlap both the bound and low excited subspaces of the wave func-
tions. It leads to a dimension of 36 x 36 for the secular equation for Si, 45 x 45 for
GaP and ZnS, and 54x 54 for Ge, GaAs, and ZnSe.

Crystal Potential

The initial Coulomb potential is constructed as a superposition of overlapping
spherically symmetric atomic potentials. The corresponding overlapping atomic charge
density is used to evaluate the local density exchange-correlation potential which we
chose to be a Wigner interpolation formula is of the form (energies are in Ry):

V. (7) - -2(3/wr ) " 1.0 + (0.0569 pt1 3 + 0.0060) (6)
(p 1/ 3 + 0.079)2  '"

where the charge density p is evaluated at the point f

Due to the analytic properties of the Gaussian orbitals it is customary to expand
the crystal potential in a set of either (1) symmetrized plane waves (SPW)

I [R! Y,;...

where the sum runs over all group operations (R dRI and stars of reciprocal lattice vec-
tors K,; or (2) overlapping GTO,

V (7) V, e (8)

centered at each atomic site.

The plane wave basis has the advantage of being completely general, but the
disadvantage of slowly converging near the nuclei due to the Coulomb singularity. For
example, even with the aid of an Ewald type procedure, it is necessary to include 4000
stars of reciprocal lattice vectors to describe the crystal potential for NiO and Fe. 9 For a
more complex structure with less symmetry, such a procedure can be prohibitively
expensive. The GTO on the other hand, converge rather quickly (less than 20 GTO
are needed to describe an atomic potential to good accuracy). However, overlapping



spherical GTO are too spherical around each atom to describe the directional bond in a
covalent material. Although results can be improved by including higher angular
momentum terms around each atom and/or additional GTO centered at the interstitial
tetrahedral sites, such a procedure is somewhat arbitrary compared to the Fourier series
expansion where the reciprocal lattice vectors are rigorously defined. Thus we chose to
expand our potential in a mixed basis of GTO and SPW as proposed by Euwema. 16 The
self-consistent Herman-Skillman neutral atomic Coulomb and exchange-correlation 0
potentials were each fitted with 18 even-tempered GTO. The four longest range GTO
which can be represented by rapidly converging Fourier series were deleted to avoid
excessive lattice sums in constructing the overlapping crystal potential. The difference
between the exact atomic Coulomb potential and the truncated GTO series was tabu-
lated over a logarithmic radial mesh and their Fourier coefficients calculated numeri-
cally. In general the crystal V., (7) cannot be. expressed as a superposition of atomic
V, (-). However, subtracting out the contribution from the overlaping atomic GTO
series helps to eliminate the cusp behavior near the nuclei to yield a rapidly converging
Fourier expansion for the remainder. Typically 25 independent Fourier coefficients
were evaluated via a three dimensional least-square fitting procedure based on a sam-
piing of 400 random points in the unit cell. Having defined the initial potential and the
basis functions, it is straightforward to evaluate the usual linear variational secular .0
equation:

SHj, (k) - Sj, (k) E (W) Cj,., (k) - 0. (9)
jo

When expanded in terms of the basis orbitals u1, (7), the Hamiltonian and overlap
matrix elements are _

H,VJ((k)~ -Ee ,-' < u,.(7-A 4 -7)IHIuj,,F-7o,)> (10)

A. -,.-S""""
6V., k)- 2e < u,, (7- K, - 7"') 1 u, (7- 7"') >. 011) .." .

The above two-and three-center integrals for a Gaussian type basis can be expressed in
closed form. Results have been published elsewhere.5 17 The secular equation was " -

solved at a set of points in Brillouin zone and a new charge density was calculated
from Eq. (2).

Self-consistency •

The major modification to the charge density due to self-consistency (charge
transfer, change in valence electron s and p occupation, etc.) are expected to occur in
the interstitial region, particularly along the tetrahedral bond. Therefore the Gaussian
expansion describing the atomic potential near the nucleus was kept frozen at their
starting values, only the Fourier coefficients were varied following the procedure of Cal- S
laway and Fry.1 s At each iteration, the Fourier coefficients of the input Coulomb
potential V, (K,) were evaluated from the output charge density p (K) of the previous
iteration, with -

VP(12 (,))

-K



and p (K) calculated analytically from the wave functions:
p (g) c,;.. (W') q, s, ( W . k,.). (13)

Here the sum runs over all occupied bands (index n) and wave vectors , Ci,..()are

the eigenvectors, and the generalized overlap matrices
- (, 7)eX' 'j, (, 7)d 3 r (14)

are simply the matrix elements of the plane waves calculated between the basis func-
tions 0 , (k, 7). Ten special k-points' 9 in the 1/48'th of the irreducible Brillouin zone
were used in our iterations for a self-consistent potential. In order to speed up the con-
vergence, p (k,) was relaxed by mixing with 50% of the input p (K,) from the previous
iteration before it was substituted into Eq. (2). -Once p (K) has been determined it is
straightforward to calculate p (7) and hence the exchange-correlation potential at the
selected points in the unit cell. The contribution from the overlapping GTO are
subtracted-out before the new Fourier coefficients V, (K") are determined by a 3- . -

dimensional least-square fitting procedure. Finally the plane wave contributions of both
the Coulomb and the exchange-correlation potential to the new Hamiltonian were cal-
culated via

=j."V,(, + V"(,)s'. W ,). (5

where S,.j, (W, k,), which needs to be calculated only once, is the same matrix used in
Eq. (13) to evaluate p(K,). We found that p(K) converges to within 10 a.u., and
the energies to 0.02 eV, at the end of 5 iterations.

In the following section we compare our self-consistent p (k5 ) (Eq. (13)) with
experimentally measured structure factors. The valence electron charge density maps
also shown were calculated with a mixed basis of GTO and SPW. The GTO were
obtained by fitting the atomic valence electron charge density p (7), while the effect of
self-consistency was included through Eq. (13). The sum over bands was limited to the
valence electrons only. Deformation densities, 8p (7), were calculated by subtracting a
superposition of spherical neutral-atom valence densities used as starting values in our
SC calculations from the final SC valence charge densities.

RESULTS AND DISCUSSION

In this section we present our results for the valence and deformation charge den-
sities, and the x-ray structure factors calculated according to the procedures described in ' "
the preceding section. All of the experimental structure factors used for comparison
were reduced to zero temperature and corrected for anomalous dispersion in order to
facilitate a meaningful correlation between theory and experiment.

Si and Ge

In Figs. 1-3 we show our calculated valence and deformation density maps and
bond axis densities, respectively, for Si and Ge. Tables I and II compares our calcu-
lated structure factors, F(hkfl, with experiment and other ab initio theoretical results.
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Fig. 1. Calculated self-consistent valence charge density in a portion of the (110) crystal
plane for: a) Si, and b) Ge. The contours are in units of electrons/unit cell, and the
contour interval is 2 electrons/unit cell.
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Fig. 2. Calculated valence deformation charge density in a portion of the (110) crystal
plane for: a) Si, and b) Ge. The contours are in units of electrons/unit cell, and the
contour intervals is I electron/unit cell.
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Fig. 3. Calculated p(r) (solid lines) and 8p(r) (chain-dotted lines) along the (111)
bonding direction for: a) Si, and b) Ge. p (r) is the self-consistent valence charge den-
sity, 8p (r) is the valence deformation charge density (self-consistent minus starting
overlapping atomic charge densities), and r is the fraction of the nearest neighbor
(bond) distance.

Table I. Comparison of Theoretical and Experimental
X-ray Structure Factors F(hkl) for Si

(in Units of Electrons/Unit Cell)

hkl Expt.a  Present Theoryb Theory' Theory_
Results

000 (28.0) (28.0) (28.0) (28.0) (28.0)
111 15.19 15.11 15.07 15.12 15.13
220 17.30 17.26 17.31 17.28 17.14
311 11.35 11.37 11.41 11.33 11.02
222 0.38 0.25 - 0.34 0.38
400 14.89 14.92 14.92 14.88 14.70
331 10.25 10.17 10.15 10.20 9.94
422 13.42 13.37 13.37 13.36 13.30
333 9.09 9.07 9.07 9.02 8.92
511 9.11 9.08 9.08 9.08 8.98
440 12.08 12.04 - 12.04 12.00
aExperimen: Aldred and Hart. Ref. 27., except for (222) which is from

Ref. 28.
bLCAO theory: Heaton and Lafon. Ref. 12.
'SCOPW theory: Raccah. er al., Ref. 29.
dpseudopotentiai theory: Zunger and Cohen. Ref. 21.
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Table II. Comparison of Theoretical and
Experimental X-ray Structure

Factors F(hkl) for Ge
(in Units of Electrons/Unit Cell)

hkl Expt.a Present SCOPWb
Results

000 (62.0) (62.0) (62.0) 0
111 39.42 38.83 38.95
220 47.44 47.23 47.26
311 31.37 31.29 31.21
222 0.26 0.22 0.48
400 40.50 - 40,,56- 40.54 •
331 27.72 27.39 27.53
422 36.10 35.91 36.00
333 24.50 24.35 24.34
511 - 24.35 24.38
440 32.34 32.23 32.23
aMatsushita and Kohra. Ref. 24. 0
bRaccah, et al.. Ref. 29.

Figures 1-3 clearly show the covalent nature of the bonding in Si and Ge, with the
characteristic charge pile-up near the bond center for both materials. It is further
interesting to note from the deformation densities shown in Figs. 2 and 3 how charge is
pulled into the bond compared with the situation for overlapping charge densities-
much of the covalency results from charge redistribution, not merely from wave func-
tion overlap.

The valence and deformation maps are in good agreement with previous ab initio
calculations.0 

2 and the experimental densities constructed by Yang and Coppens2- for
Si. The characteristic features of the valence density being elongated along the bond,
and opposite for the deformation density, are reproduced in the calculated maps. How-
ever. Yang and Coppens 2 find a valence bond maximum of 27.6, while we find 21.3
(electrons/unit cell) for Si. Our value is very close to the theoretical value found by
Hamann 0 (22.2 electrons/unit cell) but somewhat smaller than that found by Zunger
and Cohen (24.0 electrons/unit cell). Recently, Scheringer2 3 has pointed out that the
Yang and Coppens12 value may be overestimated by as much as 3.6 electrons/unit cell 0

due to inaccuracies in four of the measured high momentum structure factors. For Ge,
where experimental structure factor data exists for only a relatively few number of
reflections ' -' (sin 9/X < 0.50 A-'), quantitative results for the bonding have been
limited. - .

Calculated and measured structure factors for Si and Ge are compared in Tables I 0
and II, respectively. For silicon, except for the (222) forbidden reflection, the experi-
mental results of Aldred and Hart2 7 who used the Pendellosung fringe method are
shown in Table I. For the (222) reflection in Si the value shown was chosen from the
work of Roberto, Batterman and Keating,28 corrected to zero temperature (see Ref.
28). The experimental results of Matsushita and Kohra2 4 for Ge were chosen for com-
parison in Table II. These measurements were made using the half-width of the S
Bragg-case diffraction curves measured in the triple crystal arrangement using Cu-Ka

. . . . . . . . . . . . . . . . .. . . .--..- "
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radiation. Tables I and II also show the present theoretical structure factor results,
together with calculated values of: Heaton and Lafont 2 (for Si) who used a self-
consistent LCAO method similar to ours but with a Kohn-Sham (a - 2/3) exchange-
correlation potential and a smaller basis set; Raccah, et a.29 (for Si and Ge) who used a
self-consistent orthogonalized plane wave (SCOPW) approach also with a - 2/3; and
Zunger and Cohen 21 (for Si) who used the first-principles self-consistent pseudopoten- -

tial method with the Hedin-Lundqvist 30 form of local density exchange-correlation
potential.

Our structure factor results for Si compare extremely well with the measurements
of Aldred and Hart. 2

7 Most of the theoretical results also agree very well, especially the
present results and the other SC-LCAO 12 and the SCOPW 29 calculations. There are
more substantial disagreements between the SC-pseudopotential 2

1 results and the other
calculations, and with the measurements. The exception is for the (222) reflection
where the present results are considerably smaller than experiment, while the SC-OPW
and SC-pseudopotential results are much closer. Since the calculations of Heaton and
Lafon 12 and our own were done in a similar manner except for the choice of exchange-
correlation potential and basis functions, the very close agreement between the two sets
of results seems to indicate that (at least for Si) the self-consistent charge density is
rather insensitive to these choices.

Our structure factor results for Ge also compare very well with the measurements
of Matsushita and Kohra24 and with the SCOPW 29 calculations. Here too our calculated
value of F(222) is smaller than the measured value, though closer than was the case for
Si. The SCOPW value of F(222) for Ge is almost a factor of two larger than experi-
ment.

GaP. GaAs. ZnS and ZnSe

Figures 4-9 show our calculated valence and deformation maps and bond axis
densities for the zinc-blende compounds. Tables III-V compare the absolute values of
our calculated structure factors with experiment and with other ab initio results, while in
Table VI we present our results for both the real and imaginary parts of F(hkl) for all
four compounds. It should be noted that the density maps for ZnS and ZnSe include
the 3d-states of Zn and Se, since the Zn 3d-states fall in the upper valence band region
(see Ref. 1), while for the gallium compounds, the much lower-lying Ga and As 3d-
states were kept in the core. Density maps with the Zn and Se 3d-states kept in the
core may be found in Ref. 1.

The valence density maps for all four materials in Figs. 4 and 5 show a charge
build-up towards the anion sites (P, As, S, or Se). However, the deformation maps
and bond axis densities shown in Figs. 6-9 are even more instructive. The deformation
maps clearly show that the bonding induced by the crystalline environment is both ionic
and covalent. In fact, the deformation maps are qualitatively similar to Si and Ge
insofar as they show a bond charge buildup elongated perpendicular to the bond axis,
but with the important difference that the deformation bonding charge is shifted
towards the anion site. From Figs. 8 and 9 it can be seen that the bond axis deforma-
tion charge densities peak towards the anion site, but the bond axis valence densities
are shifted even further towards the anion, indicating that a large part of the valence
charge asymmetry is due to atomic wave function overlap effects.
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Fig. 6. Calculated valence deformation charge density in a portion of the (110) crystal
plane for: a) GaP, and b) GaAs. The contours are in units of electrons/unit cell, and
the contour interval is 1 electron/unit cell.
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plane for: a) ZnS. and b) ZnSe. The contours are in units of electrons/unit cell, and
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Fig. 8. Calculated p(r) (solid lines) and 8p(r) (chain-dotted lines) along the (111)
bonding direction for: a) GaP; and b) GaAs. p(r) is the self-consistent valence charge
density, 8p(r) is the valence deformation charge density (self-consistent minus starting
overlapping atomic charge densities), and r is the fraction of the nearest neighbor
(bond) distance.
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Fig. 9. Calculated p(r) (solid lines) and 8p(r) (chain-dotted lines) along the (111)
bonding direction for: a) ZnS; and b) ZnSe. p(r) is the self-consistent valence charge
density, Sp(r) is the valence deformation charge density (self-consistent minus starting

overlapping atomic charge densities), and r is the fraction of the nearest neighbor
(bond) distance.
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Table III. Comparison of Theoretical
and Experimental Absolute Values

of The X-ray Structure Factors
IF (/kl) I for GaAs

(in Units of Electrons/Unit Cell)

hkl Expt.a Expt. b Present
Results

000 (64.0) (64.0) (64.0)
111 39.44 39.06 38.85
220 47.18 46.66 47.18
311 31.37 31.04 31.25
400 40.84 40.40 40.44
331 27.75 27.45 27.32
422 36.22 35.84 35.80
333 24.37 24.10 24.30
511 24.54 24.27 24.30
440 32.38 32.04 32.15
444 26.94 26.66 26.77

aExperimental results of Matsushita and
Hayashi (Ref. 31) corrected for anomalous
dispersion (7'--1.31) and temperature
( 8- 0.595 A-).
"E xperimental results of Matsushita and
Hayashi (Ref. 31) corrected for anomalous
dispersion f '- - 1.01) and temperature
( - 0.629.4-

Table IV. Comparison of
Theoretical and Experimental

Absolute Values of The
X-ray Structure Factors

IF(hkl)I for GaP
(in Units of Electrons/Unit Cell)

hk" Expt.a Present
Results

000 (46.0) (46.0)
11 28.83 28.84

200 14.40 14.63
220 32.19 31.77
311 22.92 22.89
222 12.79 12.45
400 26.19 26.95
331 19.43 19.69 -

420 10.48 10.44
422 23.86 23.79
333 17.24 17.34
511 17.24 17.35
440 21.01 21.32

alno and lshigakt. Ref. 34.
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Table V. Comparison of Theoretical and
Experimental Absolute Values of the

X-ray Structure Factors IF F(M) I for ZnSe
(in Units of Electrons/Unit Cell)

hki Experimenta Present SCOPW0

000 (64.0) (64.0) (64.0)
111 39.64 38.99 39.06
200 3.72 2.99 2.79
220 47.45 47.16 47.37
311 32.28 31.23 31.38
222 2.91 2.55 2.38
400 40.58 40.27 40.63
331 27.39 27.23 27.59
420 3.02 2.82 2.77
422 35.14 35.63 36.11
440 32.19 32.06 32.55

aRef. 29.

Table VI. Calculated Real and Imaginary Parts of the X-ray
Structure Factors F(hkl) for the Zinc-Blende

Compounds. The origin is at a cation site, and the
units are electrons/unit cell.

GaAs GaP ZnS ZnSe
hkl

ReF ImF ReF lmF ReF ImF ReF ImF P
111 26.65 28.27 26.42 11.57 25.62 12.44 25.91 29.13
200 -1.48 0.00 14.63 0.00 13.06 0.00 -2.99 0.00
220 47.18 0.00 31.77 0.00 31.54 0.00 47.16 0.00
311 21.48 -22.70 21.12 -8.83 20.31 -8.86 20.76 -23.33
222 -1.20 0.19 12.45 0.19 11.21 0.10 -2.55 0.13
400 40.44 0.00 26.95 0.00 26.35 0.00 40.27 0.00 S
331 18.64 19.98 18.20 7.51 17.26 7.77 17.83 20.58
420 -1.39 0.00 10.44 0.00 9.23 0.00 -2.82 0.00
422 35.80 -0.02 23.79 -.03 23.11 -0.04 35.63 -0.04
333 16.40 -17.93 15.92 -6.86 14.98 -7.16 15.57 -18.62 - -

511 16.42 17.91 15.95 6.84 15.00 7.13 15.60 18.59
440 32.15 0.00 21.32 0.00 20.72 0.00 32.06 0.00
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In Table III we compare our calculated values of IF (h k /)I for GaAs with the
experimental results of Matsushita and Hayashi3' corrected for thermal vibrations and
anomalous dispersion. The experimental data were determined using the half-width of
the Bragg-case diffraction curves measured in the triple crystal arrangement using Cu-
Ka radiation (similar to Matsushita and Hayashi's experiments2 ' on Ge described
above). For the case of polyatomic materials it is considerably more uncertain how to
correct for anomalous dispersion (f;) and determine the Debye-Waller correction
(e-1). Different values of fi' exist in the literature for Ga and As, and the value of B
(M - B (sin 9/X)2) depends on the choice of f'. Matsushita and Hayashi 3t discuss
their results in terms of two sets of f , from Cromer 32 and from Cromer and Liber-
man,33 respectively, without making a clear-cut choice between the sets. We have
therefore reduced their experimental data by considering f7 as the Ga and As mean for
both sets: a) 7 - -1.31, B - 0.595 A2, and b) f - -1.01, B - 0.629 A2. Both sets of
reduced experimental data are shown in Table III and compared with our theoretical
results. Given the uncertainty in the f' and B corrections to the experimental data, and
the quoted - 1% accuracy in the measurements, the agreement between theory and
experiment is remarkably good.

Uno and lshigaki 34 have measured the structure factors of GaP using two different
methods: a) the angle dispersive method using monochromatized Cu-Ka x-rays and, b)
the white x-ray diffraction method, both performed on powder samples. The angle
dispersive method results, being more accurate (see Ref. 34), are compared with our
calculations in Table IV. The experimental results shown have been corrected to zero
temperature using a value of B - 0.84 obtained from Fig. 3 of Ref. 34
[a log (IFexpI/IFheo,,,I) plot using Cromer's 32 values for f o and f;]. As for the GaAs
case, there is some uncertainty in the f and B values, and the quoted experimental
accuracy is - 1-3%. Within these experimental uncertainties our results for GaP again
agree very well with the measurements.

For ZnSe we compare our results with the experiments and SCOPW calculations
of IF(hkl) I of Raccah, et aL in Table V. The measurements were done on a powder
sample with the thermal and anomalous diffraction corrections taken into account by
Raccah, et al.29 (they present the corrected results), with a quoted experimental uncer-
tainty of several percent. Our calculations agree quite well with the measurements,
with the most substantial disagreement being for IF(222) I. Our results also agree very
well with those resulting from the SCOPW calculations.

CONCLUSIONS

We can conclude from the theoretical-experimental comparisons made in this
paper that local density theory gives a good description of charge densities in semicon-
ductor systems. The major discrepancy between theory and experiment appears to be
that the theory underestimates the charge density asphericity, as evidenced by the too
small vlaues of F(222) and bond charge for Si and Ge. This seems to be a general
result of many SC calculations for charge and spin densities and is due to the underly-
ing local density approximation. Some examples for metals are shown in Table VII.
Improvements in the exchange-correlation functional (e.g., non-local corrections) may
resolve these subtle but interesting disagreements between theory and experiment.

:2..
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Table VII. Directional Anisotropy of Charge and Spin Densities
for Transition Metals by Comparing the Ratios of Structure

Factors for Wave Vectors of the Same Magnitude.

Structure WaveElement Factor Ve Theory ExperimentFactors Vectors

(3,3,3) 2.17r 3.028bNi Spin (5, , 1) 7

Fe Spin (3,3.0) 2.351c 2.848 d
(4,1,1)

Fe Charge (3,3,0) 1,0025c 1.010e

1.011i

V Charge (3,3,0) 1.00399 1.024h
(4,1,1)

1.0085 i

aRef. 8. bRef. 35. CRef. 9, dRef. 36.
eRef. 37, Ref. 38, 'Ref. 10. ARef. 39,
'Ref. 40.

However, it is clear from the present study that good quality ab initio calculations are
capable of giving useful and reliable results for the bonding and chemistry of covalently
bonded semiconductors.
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