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PERIODIC AND APERIODIC BEHAVIOUR IN 
DISCRETE ONEDIMENSIONAL DYNAMICAL SYSTEMS 

by 

Jean-Michel Grandmont* 

C3~        1.   Introduction 

O The theory of onedimensional nonlinear difference equations 

underwent considerable progress in recent years, as the result of the 

efforts of theorists from several fields - in particular from physics - 

to get a better understanding, by making use of the notion of the 

"Hopf's bifurcation," of the appearance of cycles and of the transition 

to aperiodic or "chaotic" behaviour in physical, biological or 

ecological systems. These new developments seem to be potentially very 

useful for the study of periodic and aperiodic phenomena in economics. 

Parts of this theory have been indeed already used in economic or game 

theory by Benhabib and Day I198I, 1982], Dana and Malgrange [l98l], Day 

{1982, 1983], Grandmont [1983I, Jensen and Urban (1982], Rand |l9T8]. 

The aim of this paper is to present some of these new developments 

in a compact form which will be, it is hoped, useable by economic 

theorists. The emphasis will be on the mathematical results of the 

theory, rather than on its possible applications.—' 

Our basic reference will be Collet and Eckmann's book [1980] - 

*This research was sponsored by Office of Naval Research Contract 
N0001U-T9-C-0685 at the Institute for Mathematical Studies in the Social 
Sciences at Stanford University, by the French Commissariat General du 
Plan and by the University of Lausanne. I wish to thank very much Rose- 
Anne Dana and Pierre Malgrange who introduced me to the mathematics of 
the subject. I had also very useful conversations with Philippe Aghion, 
Pierre Collet, John Geanakopoulos and Dominique Levy. 
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thereafter denoted "CE." In order to simplify the presentation, we 

shall use in a few places stronger assumptions than in CE's hook, which 

means that the reader interested in the more general (but more 

complicated) case and who wishes to look for complements will have to go 

hack to their book. The definitions and the statements of the results 

will be self-contained. However, in the proofs of a few facts, we shall 

use freely the concepts introduced by CE, but we shall indicate where to 

2/ find the appropriate definitions in that book.—' 

2.   Onedimensional Nonlinear Difference Equations 

We are concerned thereafter with the difference equation 

x   = f(x ), in which f is a function that maps the interval  [a,b] 

into itself. The object of the theory is the study of the existence 

(and the stability) of periodic solutions of this difference equation. 

To this effect, one defines recursively the iterates of f by 

f°(x) = x for all x (f° is the identity map), f1 = f and 

f1 = f f1"1. The orbit of x is then the set  {x,f(x),f (x),...}, 

which is composed of all iterates of x. The orbit is periodic if the 

cardinality of this set, say k, is finite, and its period is given by 

k. Equivalently, a periodic orbit or a cycle of f with (primitive) 

period k is defined by (x ,...,x ) such that l) f (x. ) = x.  and 
X       K XX 

2) f  (x ) * x. * X-  for i • 2,...,k. This implies that all 

points xi of the cycle are fixed points of f* and that they all 

differ (one says then that x^ is a periodic point of f with period 

k). 
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Of course, if f is arbitrary, there is little hope to get 

interesting results. The simplifying feature of the theory is to assume 

that f is unimodal. More precisely, we say that f is unimodal if 

1) f is continuous 

2) there exists x* in (a,h) such that f is increasing on 

[a,x*l - i.e., f(x) > f(x')  for all x, x'  in  [a,x*]  such that 

x > x' - and decreasing on !x*,b] 

3) f(x») = b 

We shall say that f is C -unimodal if in addition 

k)     f is once continuously differentiable and f'(x) * 0 when 

x *  x*. 

Note that when f is unimodal, then f has a unique fixed point 

x in the interval (x*,b). Moreover, since f is decreasing on 

[x*,bl  one has f(b) < x < b (see Figure l.a). Finally, remark that 

the assumption that f is defined on a closed interval is not as 

restrictive as it may appear at first sight, since one may often go back 

to that case. For instance, if f maps the interval  [a,+°°)  into 

itself and is unimodal with a unique maximum at x* > a, with 

f(x*) > x*, one may restrict attention without any loss of generality to 

the behaviour of f on the interval [a,f(x*)l  since f(x) belongs to 
3/ 

that interval for any x > a (see Figure l.b). 

3.   Sarkovskii's Theorem 

We remarked earlier that when f is unimodal, it has a unique 

fixed point x in the interval (x*,b). This fixed point is thus bound 
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to coexist with any other periodic orbit.  It turns out that one may get 

much more information concerning the coexistence of cycles displaying 

different periods. This is achieved in the following beautiful result, 

which is due to Sarkovskii [196U] - see also Stefan [1977]. 

Theorem 1:  (Sarkovskii). Consider the ordering of the integers 

3 > 5 > 7 ... 

> 2«3 > 2*5 > 2*7 > ... 
• • • 

> 2n»3 > 2n»5 > 2n»7 > ... 
• • • 

>...>2m>...>8>)+>2>l . 

That is, first the odd integers greater than or equal to 3 forward, then 

the powers of 2 times these odd integers, and then the powers of 2 

backward. If f is unimodal and has a cycle with period k then it 

has a cycle of period k' for every k1 < k in the sense of the above 

ordering. 

Proof: This is (CE, Theorem II.3.10, p. 91). Q.E.D. 

U.   Stable Cycle 

The preceding theorem implies that a unimodal map may have a lot 

of different cycles - think of the case in which f has a cycle of 

period 3. Some (or all) of them may be unstable, however, and thus 

essentially irrelevant as far as the dynamic behaviour of the system is 

concerned. It is therefore important to know how many stable cycles - 

if any - the map f possesses. It is only recently that a real 
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breakthrough was achieved on this matter by Singer (1978], who 

discovered that a unimodal map with a negative "Schwarzian derivative" 

could have at most one stable cycle Ju 

Let us first define stability. Given the map f from |a,b] 

into itself, consider a periodic orbit (x.,...,x. ). Since x^ is a 

fixed point of f , we may say that this periodic orbit is (locally) 

stable if there exists an open neighborhood U of x^ such that for 

every x in U, fkt(x) stays in U for all t > 1 and 

kt 
lim f (x) = x.. . When f is continuous, this implies that 
t-*» 
kt i-1 

f (f  (x)) converges to x^ as well for every i • 2,...,k. If f 

is continuously differentiable, this means that the derivative of 

k k 
f  at x      has a modulus less than 1, i.e., |Df (x..)| < 1. Of course, 

in order to make any sense, this definition should not depend upon the 

point chosen on the periodic orbit. As a matter of fact, we have by the 

chain rule of differentiation 

Dfk(xx) = f'(xk)Df
k-1(x1) = ... = f(xk) ... f»(Xl) 

= Dfk(x.) 

When f is continuously differentiable, we may therefore say that 

the cycle (x ,...,x ) is stable if |Df (x.)| < 1. The cycle will be 

said to be weakly stable if |Df (x.)| < 1  (this definition allows for 

"onesided" stability only).!-/ Finally, it will be said to be 

k 1 
superstable if Df (x1) = 0. When f is C -unimodal, this means that 

the critical point x* belong to the periodic orbit. 
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We define next the notion of a Schwarzian derivative. Assume 

that f is thrice continously differentiable. The Schwarzian 

derivative of f at x, denoted Sf(x), is defined by 

st(x)  _ f'"(x) 1  rf"(x)i2 SfU)  f(x)   2 Lf.(x)J 

whenever f'(x) * 0. Direct computation shows that 

Sf = -2|f,|1'2D2[|f,|'1'2]. So the condition that "f has a negative 

Schwarzian derivative" (Sf < 0 at every x such that f'(x) *  0) 

-1/2 
means that  |f'|     is convex on every interval of monotony of f. It 

will be satisfied in particular if |f'|  (or Log |f'|) is concave on 

such intervals. But these sufficient conditions are by no means 

necessary. Finally the reader will note that the concavity of f is 

neither necessary nor sufficient to guarantee Sf < 0. Consider next 

the following conditions 

51. f is C1-animodal 

52. f is thrice continuously differentiable 

S2.  Sf(x) < 0 for all x in  [a,b], x *  x*. 

Then we have 

Theorem 2: Assume that f satisfies SI, S2, S3, f(x) > x for 

all x in (a,x*), and f'(a) > 1 whenever f(a) = a. Then 

l) The map f has at most one weakly stable periodic orbit. 

This periodic orbit lies in the interval  (f(b),b). 
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2) If f has a weakly stable periodic orbit, it attracts the 

critical point x*, that is, it coincides with the set of accumulation 

points of the sequence (f (x*)). 

Proof: We may note incidentally that under SI, S2, S3, one has 

f(x) > x for all x in (a,x*) whenever f*(a) > 1. This follows 

from the fact that since Sf < 0, f• cannot have a positive local 

minimum on that interval (see Step 3 of the proof of Theorem II.U.l in 

CE, p. 97. Indeed, if there existed x in (a,x*) such that 

f(x) < x, then by the mean value theorem there would be y., y_, 

with a < y. < x < y2 < x* such that f*(y.) < 1 < f'(y2) and f 

would be a positive local minimum in (a,y2), a contradiction. 

Remark now that when f is uniraodal, f(x) > x for all x in 

(a,x*) implies that 

(i) f maps the interval  [f(b),bl  into itself (onto if and only 

if f(b) < x») 

(ii) for every x in (a,f(b)), there exists J such that 

r>(x) e lf(b),b]. 

This follows from elementary considerations that are left to the 

reader. This shows that all periodic orbits - with the possible 

exception of an unstable fixed point of f at x = a - must lie in 

[f(b),b]. In particular, any weakly stable cycle belongs to that 

interval. 

Corollary II.U.2 in CE implies therefore that the statements of 

Theorem 2 are valid provided that f satisfies the additional condition 
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SU.  f maps [f(b),b]  onto itself. 

However, a closer look at CE's proof of this Corollary shows that it is 

still valid if SU is replaced by the weaker 

SU'.  f maps the interval  !f(b),b]  into itself. 

But we have seen that this condition was implied by the assumptions of 

Theorem 2. The proof is complete. Q.E.D. 

We shall note for further reference 

SU".  (i)  f(x) > x for all x in (a,x*) 

(ii) f*(a) > 1 when f(a) = a. 

As we have seen, if f is unimodal, then SU" implies SU', while it 

implies SU if and only if f(b) < x*. 

The foregoing result provides an "experimental" way of verifying 

if a particular map satisfying the conditions of the theorem possesses a 

weakly stable cycle.  It suffices indeed to check if the iterates of the 

critical point f (x*) converge to some periodic orbit and then to 

verify that the limit cycle is weakly stable. All these operations can 

in fact be easily achieved by using modern computers. 

Maps that do not posses any weakly stable cycle appear to be good 

candidates to portray "chaotic" (aperiodic) behaviour in onedimensional 

dynamical systems. Theorem 2 provides a way to recognize whether or not 

a particular map is chaotic in the sense.  Indeed, if f satisfies SI, 

S2, S3 and SU", then all cycles of f will be unstable if the iterates 
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of the critical point f (x*) do not converge or if they converge to an 

unstable periodic orbit. Again these conditions are easy to verify with 

the help of modern computers. Of course, since iterations must be 

stopped after a finite time in practice, this experimental way of 

proceeding will be unable to distinguish between chaotic behaviour and 

the presence of a weakly stable cycle that has a long period or that is 

only weakly attracting. 

The next statement provides a condition involving the trajectory 

of the critical point x* of f only, that ensures the existence of a 

(unique) weakly stable cycle. To this effect, we introduce some 

notation.  Given a unimodal map f, for every x in  (a,b], the 

extended itinerary of x describes how the iterates f (x) behave 

qualitatively, i.e., whether or not they fall on the right or on the 

left of the critical point x*. More precisely, this extended itinerary 

I (x)  is an infinite sequence of R's, of L's and of C's obeying the 

following rule.  If (i (x)]  denotes the j-th element of I„(x)  for 
E   j E 

j = 0,1,..., then  [igUJlj = R if fJ(x) > x*, dE(x)l  = C if 

fJ(x) = x*, and  IlE(x)]  = L if fJ(x) < x*. We shall say that  IE(x) 

is periodic with (primitive) period k if  [l_(x)l   = [I (x)]   for 
E   j+k    E   J 

all j  and if k is the smallest integer having this property. 

Proposition 3:  Assume that  f satisfies SI, S2, S3, Sk"  and 

S5.  f"(x*) < 0. 

Then f has a (unique) weakly stable cycle P if and only if the 

extended itinerary of the endpoint b, i.e., I„(b), is periodic.  If the 
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period of I_(b) is k, the period of P is k or 2k. 

Proof: Assume that I„(b) has period k. If f(h) < x*, then Sk 
E = 

is satisfied, and from the "if" part of (CE, Proposition II.6.2), f has 

a weakly stable cycle in  [f(b),b].  If f(b) > x*, then f(b) < fJ(x») 

for all J > 1. But it is then easy to verify that the restriction of 

f to (f(b),b) has a sink in the sense of (CE, p. 107). Therefore 

from (CE, Lemma II.5.1), f has a weakly stable periodic orbit in 

[f(b),b] in that case too (one can alternatively prove directly that 

f  has a weakly stable fixed point  [f(b),b], see the proof of 

Proposition h). In all cases the weakly stable cycle is unique from 

Theorem 2. Finally, the fact that its period is k or 2k is an 

immediate consequence of (CE, Lemma II.3.2). 

Assume conversely that f has a (unique) weakly stable cycle P 

of period k. It mast lie in  [f(b),b]. We wish to apply the "only if" 

part of (CE, Proposition II.6.2). A. close look at their argument shows 

that their result is valid if SU is replaced by SU* - and thus under SU" 

- but that it is correct only when the rightmost point of P, say x, 

satisfies x > x* - which is the case under SI, S2, S3, SU', if and only 

if k > 2 or when the periodic orbit is a fixed point in (x*,b). The 

"only if" part of (CE, Proposition II.6.2) is not correct however under 

their assumptions if P is a weakly stable fixed point x of f such 

that x < x* (counterexamples are provided by making symmetric the 

cases 1-h  of Figure II.8 in CE, p. 102).—' The latter circumstance is 

ruled out however under SU", so the "only if" part of (CE, Proposition 

II.6.2) is valid under our assumptions. Thus ^(b) is periodic, and 
JS 
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from (CE, Lemma II.3.2), its period is k or k/2. Q.E.D. 

The concept of (weak) stability that we have used is only local. 

It is thus important to know how large is the basin of attraction of a 

given weakly stable cycle. The next result states that under the 

conditions of Proposition 3, if there exists a weakly stable periodic 

orbit, which is then unique, the set of points that are not attracted to 

it is "exceptional." 

Proposition h:    Assume that f satisfies SI, S2, S3, SU" and S5, 

and that it has a weakly stable cycle P. Let E be the set of 

points x in [a,b]  such that f (x)  does not tend to P. Then E 

has Lebesgue measure 0. 

Proof:  If f(b) < x*, SU is satisfied.  Then from (CE, 

Proposition II.5.7), the set Ef of points in  ff(b),b]  that are not 

attracted to the weakly stable periodic orbit P, has Lebesgue measure 

0.-1/ Let E* be the set of points x in  (a,f(b)) such that 

f (x) £E  for some t.  Since f is increasing on  Ia,x*), the 

Lebesgue measure of E'  is also 0.  The set of points of  [a,bl  that 

are not attracted to P is E U E*  to which one must add the endpoint 

a whenever f(a) = a, which shows the result in that case. 

The case in which x* < f(b) is even simpler. The unique weakly 

stable cycle P belongs to  [f(b),b]. Moreover, the iterates of any 

point x of A = (x*,b]  lie in A, and oscillate around the unique 

fixed point x of f that belongs to A (whenever x *  x). In 
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particular, I_(b) = R and thus from Proposition 3, the period of P 
E 

2 2 
is 1 or 2. It is clear that Df (x*) = 0 and Df (x) > 0 for all 

p 
x in A, x * x*. Furthermore, f  has a negative Schwarzian derivative 

on (x*,b]  and has finitely many fixed point in  [x*,b] - see steps 2 

and U of the proof of Theorem II.U.l in CE, pp. 97-98. Consider first 

2 
the case in which the period of P is 1. Then since f (x*) = f(b) > x*, 

2 2 - 2 
f (b) < b and Df (x) < 1, one must have f (x) > x for all x in 

-       2 — 
(x*,x) and f (x) < x for all x in (x,b], otherwise there would be 

21 
another weakly stable periodic orbit (of period 2). Thus f (x), and 

thus fMx), converges to x as j tends to +°° for all x in 

(x*,b], see Figure 2.a. The other case in which the period of P is 

2 its dealt with similarly. Let x,  and Xg be the two points of 

P. They satisfy x* < x < x < x? < b. From the uniqueness of the 

2 - 2 
weakly stable cycle, we have Df (x) > 1 and in fact f (x) > x for 

_ o 
all x in  (x*^) or (x,x~), and f (x) < x for every x in 

(x ,x) or (xp,b), see Figure 2.b. Thus f J(x), and thus fJ(x), 

converges to P as j tends to +°°    for all x in  [x*,b]  except 

x = x. 

Thus if the period of P is 1, it attracts the whole interval 

(a,b), except a if f(a) • a.  If the period of P is 2, it attracts 

again the whole interval (a,b], with the exception of the preimages of 

x, i.e., of all points x of  [a,x*) such that f (x) = x for some 

j, and of the endpoint a when f(a) = a.  In the two cases, the excep- 

tional set is finite or countable, which completes the proof.    Q.E.D. 
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Remark:  Proposition U shows that some claims according to which 

"period 3 implies chaos" are not always warranted. For instance, a 

consequence of the results of Li and Yorke [1975] is that if f is 

unimodal and if there exists a cycle of period 3, then there is an 

uncountable set 3 in  [a,b]  and an e > 0 such that for every x 

and y in S 

lim sup |fJ(x) - fJ(y)| > e 

and 

lim inf |fJ(x) - fJ(y)| =0 

Thus trajectories with initial points in S - which may be called the 

"chaotic" set - come arbitrarily close and then noticeably separated 

infinitely often. 

Some theorists have used this result (or a variant of it) to claim 

that the existence of a cycle of period 3 was an indication of chaotic 

behaviour (see in particular in economics Benhabib and Day (l98l, 1982], 

Day [1982, 1983]). Proposition •• shows that such a claim is 

unwarranted, for if there is a stable cycle, then the "chaotic" set S 

may be of Lebesgue measure 0 (think of a Cantor set) and thus 

essentially unobservable. 

A more appropriate definition of chaos or aperiodicity is as we 

have seen, the property that all cycles are unstable. 
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5.   Aperiodic Eynamics 

As we said, maps f that have no weakly stable cycles appear to 

be good candidates to describe turbulent on "chaotic" behavior in one- 

dimensional dynamical systems. There is an obvious reason to look at 

such maps from that viewpoint. For if one considers a map f on (a,b] 

that satisfies Assumptions SI, S2, S3, and if it has no weakly stable 

cycle, then for "most" initial points x the iterates of x, f^(x), 

will not display any periodic behaviour even if we wait long enough. 

Indeed under these assumptions, we know that f  has only finitely many 

fixed points in (a,b] (see steps 2 and h  of the proof of Theorem II.U.l 

in CE, pp. 97-98). Thus f has at most a countable number of 

cycles.—  This implies that if E is the set of all points in (a,b] 

that belong to a periodic orbit of f, E has Lebesgue measure 0, and 

that the orbit of any point x not in E is aperiodic, even if one 

iterates it long enough. 

Among the class of such aperiodic maps, of special interest are 

those which possess a unique invariant probability measure which is 

absolutely continuous with respect to the Lebesgue measure, and which is 

ergodic. The probability measure v on [a,b] (endowed with its Borel 

o-algebra) is said to be invariant with respect to f if 

v(f~ (A)) = v(A) for any Borel set. It is absolutely continuous with 

respect to the Lebesgue measure A (absolutely continuous for short) if 

for any Borel set A, X(A) = 0 implies v(A) = 0 (\> has then a 

A-integrable density with respect to X). Finally, v is said to be 

ergodic if for any v-integrable real-valued function g, 
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i l g(f
J_1(x)) • jgdv 

nJ=l 

as n tends to +00, for v-almost every x. This implies in particular 

that if one considers for each x and every n, the empirical 

distribution  v (x) that is generated by the iterates 

f (x)  for j = 0,..., n - 1, which assigns probability 1/n to each 

f (x), then the sequence v (x) converges weakly to v for v-almost 
n 

9/ every x.—  Thus if v is absolutely continuous and ergodic, although 

a given trajectory may look somewhat erratic since the iterates fill up 

eventually the support of the limit distribution v, empirical 

distributions and time averages become ultimately fairly stable for 

v-almost every initial point. 

The next result gives a sufficient condition for the existence of 

a unique absolutely continuous invariant measure, which is ergodic. 

Theorem 5'     assume that f satisfies SI, S2, S3, S5, that is has 

no weakly stable periodic orbit, and that there exists an open 

neighbourhood V of x* such that r* (x*) £  V for j > 1. Then f 

has a unique absolutely continuous invariant probability measure. It is 

ergodic. 

Proof:  Note first that if all cycles of f are unstable, SI, S2, 

S3 imply SU", otherwise f would have a weakly stable fixed point in 

|a,x*l. Second, one must have f(b) < x*, so that SU is satisfied, 

otherwise f would have a weakly stable cycle in  lx*,b). Thus we may 

apply (CE, Theorem III.8.3). Q.E.D. 
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Corollary 6: If f satisfies 81, S2, S3, SU", S5 and if the 

iterates 

f^(x*) of the critical point converge to an unstable cycle, then f 

has a unique absolutely continuous invariant probability measure. It is 

ergodic. 

Proof; In view of Theorem 2, f has no weakly stable cycle and 

the iterates of x* stay at a finite distance of x*. Thus Theorem 5 

applies. Q.E.D. 

Remark: the foregoing results go in the direction of showing that 

aperiodic maps (having only unstable cycles) may display strong statis- 

tical regularities after all. Another direction of research has been to 

show that some (but not all) aperiodic maps may generate trajectories 

that are very sensitive to a small variation of initial conditions, 

thereby exhibiting the kind of phenomena that are observed e.g. in 

turbulent flows (maps that have a unique weakly stable periodic orbit as 

in Theorem 2 do not have such a sensitivity to initial conditions). For 

an aperiodic and sensitive map, a small error of measurement of the 

initial state, for instance, may result in very large prediction errors 

(relatively speaking) for future dates, even if the forecaster knows 

very well the law of motion of the system (the map f). For various 

definitions of sensitivity and a discussion of their implications, see 

(CE, pp. 15-22, 30-35, and Section II.7). 
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6.   Topologlcal Conjugacy 

There is nothing intrinsic in the representation of a one- 

diraensional dynamical system by a particular difference equation 

x _ = f(x ), since one can always make a change of coordinates. We 

investigate now what happens when one makes a change of variable y = 

h(x), in which h maps  (a,b)  onto  (a',b']» is once continuously 

differentiable, and h'(x) > 0 for all x in  [a,b]. with the new 

variable, the dynamical system is represented by a new function g 

which maps  [a*,b']  into itself and satisfies g(y) = h[f(h~ (y))]. 

Thus g = h°f°h , we say then that f and g are topological 

conjugates.—' 

The maps f and g describe the same dynamics since the iterates 

of f and g are linked by g'' = h t*  j~  for all J > 0. In 

particular (x1,...,x ) is a cycle of f if and only if 

(h(x.),...,h(x )) is a cycle of g. By  differentiation one gets for 

all x 

Dgk(h(x))h'(x) = h'(fk(x))Dfk(x) 

k k 
and thus Dg (h(x.)) = Df (x.) at any point of the periodic orbit. 

Stability or unstability of a periodic orbit is topologically invariant. 

It is now immediate that SI is topologically invariant, in the 

sense that f satisfies this condition if and only if g does. The 

same is true of S2 if h is thrice continuously differentiable. 

Conditions like f(x) > x are also topologically inveriant, as well 

as Sk,  Sk'  or SV. Finally, it is easily seen that the condition 
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f"(x*) < 0 is unchanged through the change of variable provided one 

assumes h to he twice continuously differentiable. Differentiating 

g(h(x)) S h(f(x)) twice and evaluating the expressions at x • x* 

yields indeed 

g"(h(x*))lh'(x»)]2 = f"(x»)h'(f(x»)) 

if one takes into account the fact that g'(h(x*)) = f'(x*) = 0. 

However, the condition S3 - which says in effect that 

D2|f'(x)|~1^2 is positive for all x in  [a,b], x *  x* - is not 

generally invariant (like any convexity statement) through a (nonlinear) 

change of variable. The point of this discussion is that even when a 

particular map f does not satisfies S3, the foregoing results, i.e., 

Theorem 2 through Corollary 6, are still valid provided that one of the 

topological conjugates g of the original map f satisfies the 

assumptions made in anyone of these statements. 

7.   Bifurcations:  Period Doubling and the Transition to Turbulance 

Numerical experimentation with onedimensional nonlinear dynamical 

systems yields remarkable regularities that do not appear to depend much 

upon the maps under consideration. More precisely, consider a family of 

onedimensional unimodal maps f. that depend upon some real number X, 

that may be thought as indexing one of the characteristics of the system 

(the parameter may be for instance under the control of some outside 

observer in a physical experiment).  If we look back at Theorem 1, we 

should expect that the fashion in which cycles appear when X is 
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varying, should display some degree of conformity with Sarkovskii's 

ordering of the integers. Namely, we should expect cycles having a 

period that is a power of 2 to appear first. Numerical experimentation 

shows that this is indeed the case. In fact, this is true for (weakly) 

stable cycles. 

Let us assume that for each X, we iterate the critical point 

x? of f. on a computer.  If each f.  satisfies the conditions of 

Theorem 2 and has in particular a negative Schwarzian derivative, we 

know that this procedure permits discovering (weakly) stable cycles that 

have a small period and that are attracting enough. Suppose now that we 

put  X on an horizontal axis and that above each value of X we plot 

vertically the values taken by the iterates f.(x?)  for, say, t = 200 

to 300. Computer simulations of this type yield typically a very neat 

"bifurcation diagram" which displays first a whole interval in which 

period doubling bifurcations occur more and more rapidly, a stable fixed 

point giving rise to a stable cycle of period 2, which yields then a 

stable cycle of period U and so on. The values of X for which such 

period doubling bifurcations occur tend to some limit value X*, beyond 

which one enters the "chaotic" region for X > X*, one often observes a 

"mess" - meaning that one has either an aperiodic ("chaotic") map or a 

stable cycle with a very long period - in the middle of which windows 

may appear that show stable cycles with low periods like 3, 5, 6 or 7 

(that depends of course of the degree of resolution of the diagram).—' 

The results that follow explain why such an outcome should be 

typically observed. Formally, we consider a one-parameter family of 
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maps f. in which X belongs to  [0,1]. For each X in that 

interval, f. maps the interval  (a.,bj  into itself, is C -unimodal 

with a unique critical point x* in (a.,b. ) and f (x*) = b.. We 

assume that a. and b. depend continuously on X, as well as f. 

and its derivatives. More precisely, for any sequence X  that tends 

to  X in  [0,l], then a = a,  and b • b,  tend to a,  and b, ' n   X       n   X X      X 
n n 

respectively, while for any sequence x  €[a ,b ]  that converges to 

x G |a.,bj, the sequences f, (x ) and f! (x ) converge to f,(x) A A An       An A 
n n 

and f!(x), respectively. 

We shall say that the family if full if 

1. for X = 0, one has f (b ) > x*. In that case, as one can 
00    o 

easily verify, all iterates f (x*) = f^~ (b ) belong to the interval 
0000 

[fo(bo),bQ]  for J > 1. 

2 3 
2. for X = 1, one has f^*?) < x? and f.|(x*) < x*. 

Then we have 

Theorem 7: Consider a full one-parameter family of C -unimodal 

maps indexed by X in  10,1]. Then 

1) Given an arbitrary k > 2, the set of parameters X for which 

the map f. has a superstable cycle of period k is closed and 

nonempty. Given such a X, there is an open interval around X such 

that f., has a stable cycle of period k for all X1  in this 

interval. 

2) Let  X* be the first value of the parameter X for which a 
J 

superstable cycle of period 2^ obtains for J > 1. Then the sequence 

X* increases with J and converges to some value X* < 1 as J tends 
J 
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to +00. For each X in !o,X*), all cycles of the map f. have a 

period that is a power of 2 or are fixed points. The critical point 

x* of f. is attracted to one of these. 

3) If superstable cycles of periods 2  and 2   with 

J' > j +1 occur respectively for the values X and X' in  (0,X*), 

then a superstable cycle of period 2  with j' > i > J must appear 

for some value in the open interval determined by X and X'. 

Proof: As a preliminary remark, CE require that a. = -1, 

b.= 1, x? = 0 for all X, but the proofs of the results we shall use, 

employ only simple continuity arguments that do not depend upon these 

specific assumptions. Second, our assumptions imply that the itinerary 

of b , denoted K(f ), is R , while that of bn, denoted K(f.) 
o o 11 

starts RLL ... (itineraries are defined in CE, p. 6k) 

l) According to (CE, Theorem III.l.l), every maximal admissible 

sequence A satisfying K(f ) < A < K(f.) occurs as the itinerary 

K(f.) of b.  for some X in (0,l) (admissible sequences are defined 

in CE, p. 6U, the ordering between admissible sequences is defined in 

CE, p. 65-66, while maximal sequences are defined in CE, p. 71).  In 

fact, it follows from the proof of this theorem (see CE, p. 175) that 

CO 

the set of such X's is nonempty and closed provided that A *  (BR) 

and A * (BL)°°. 

Choose now an integer k > 2, and consider a maximal sequence BC 

in which the sequence B contains k - 1 elements, such that 

R < BC < RLLL ... 
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Given k, the set of such sequences is necessarily finite. It is not 

difficult to verify that is nonempty. As a matter of fact, we have 

Lemma 8: One has- 12/ 

RLL... > ... > RLR1"3 C > (RLRi-2)°° > RLR1"1 C > 

> ... > R*RLRi_3 C > R*(RLR1"2)00 > R*RLRi-1 C > 

*n   i-3     *n /  i-2,~   *n   i-1 
> ... > R *RLR 3  C > R *(RLR  ) > R *RLR   C > ... 

* (m+1)      * (m+1)  °°   *m ° 
> ... > R V   '*RC > R V   '*R > R *RC > ... > RC > R 

in which i > 3 is odd, n > 1 and m > 1 are arbitrary. 

Proof:  If one ignores the finite sequences in this series of 

inequalities, what has been written is simply the translation of (CE, 

Theorems II.2.8 and II.2.9). What we have done is Just to insert these 

finite sequences. Now the first line of inequalities and the fact that 

the first sequence appearing on the second line satisfies 

R*RLC = RLRRRC < RLR1"3 C 

for every odd integer i > 3 is readily verified by inspection. Then 

all the lines of inequalities except the last one follow by induction 

from the fact that R* is monotone among the set of maximal itineraries 

(see CE, Theorem II.2.5). The last line is in fact (CE, Lemma II.2.12) 

combined with their Theorems II.2.8 and II.2.9. Q.E.D. 

Thus given the integer k > 2, the set of maximal sequences BC in 
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which the sequence B contains (k - l) elements, and such that 

R" < BC < RLL ... 

is nonempty and finite (it is nonempty since one may take 

BC = R *RLR1-3 C if k = 2n»i with n > 0 and i > 3, i odd, and 

BC = R m*RC if k = 2m+  with m > 0). Therefore the set of values 

of X such that the itinerary K(f ) of b. coincides with one such 

BC is closed and nonempty. To show the first part of l), it suffices to 

remark that for any X, the itinerary K(f^) of b.  is maximal (see 

CE, p. 71) and that f. has a superstable cycle of period k if and 

only if K(f.) coincides with one of the BC mentioned above. The last 

of 1) is a straightforward continuity argument that is left to the 

reader. 

2) Lemma II.2.2 in CE states that the sequences appearing in the 

last line of inequalities in Lemma 8 above are consecutive among the 

maximal sequences ("consecutive" is defined in the statement of Lemma 

II.2.2 in CE). It follows then from (CE, theorem III.l.l) that the 

itinerary K(f _) of b1# is R ^"1)*RC, and that X» > X* > 0 
J       J *   J 

whenever i > J  (otherwise X* would not be the minimum value of X 

for which a superstable cycle of period 2^ obtains). The sequence 

X* converges thus towards  X* < 1. By another application of Lemma 

II.2.2 and Theorem III.l.l in CE, one gets that for any X in  (0,X»), 

the itinerary K(f.) of b, is one of the sequences appearing in the 

last line of inequalities in Lemma 8 above. Since there are values of 

X in  [0,1]  such that f. has a superstable cycle with a period that 
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differs from a power of 2, one must have A* < 1. Next remark that the 

sequences appearing in the last line of inequalities in Lemma 8 are 

periodic with a period that is a power of two (see CE, Remark 1, 

p. 79). Thus for any X in  [0,X*), the critical point x* is 

attracted to a periodic orbit the period of which is a power of 2 (see 

Lemmas II.3.1 and II.3.2 in CE).  If the map f.  has another cycle, 

then the itinerary l(x) of the rightmost point x of the periodic 

orbit is maximal (see CE, p. 71) and satisfies l(x) < K(f )  (see CE, 
—     A 

Lemma II.1.3). Again from CE, Lemma II.2.2, this itinerary l(x) is 

one of the sequences appearing in the last line of inequalities of Lemma 

8 that are less than or equal to K(f.), or it is the sequence L  (see 

Lemma II.2.1 in CE). This periodic orbit has a period that is a power 

of 2 or is a fixed point of f.. 

3) This statement follows again from the fact that the sequences 

appearing in the last line of inequalities in Lemma 8 are consecutive 

among the maximal sequences, and from (CE, Theorem III.l.l).     Q.E.D. 

Theorem 9'     Consider a full one-parameter family of C -unimodal 

maps indexed by X in  [0,l], and assume that for each X, the map f^ 

(or one of its topological conjugates g^) satisfies SI, S2, S3, SU" 

and S5. Then 

1) for any X in  [0,X*), the map f  has a (unique) weakly 
*•* A 

stable periodic orbit 

2) there is an uncountable set of values of X in (X*,l]  for 

which f. has no weakly stable periodic orbit. 
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Proof: 

1) We have seen when proving 2) of Theorem 7» that for any X 

in (0,X*), the itinerary K(f.) of b.. was one of the sequences that 

appeared in the last line of inequalities of Lemma 8. Since any one of 

these sequences is periodic, the result follows from Proposition 3. 

2) By the argument of CE, pp. l81+-85, there is an uncountable set 

of values of X for which the extended itinerary of b.  is not 

periodic. By Proposition 3, for each such X, f.  has no weakly stable 

cycle. From l), all these values of X must belong to (X*,l]. Q.E.D. 

Remarks: 

1. Under the assumptions of Theorem 9, it can be shown that there 

is an uncountable set of values of X in (X*,l]  for f.  has 

sensitivity to initial conditions, see (CE, Proposition III.2.1). 

2. A good deal of recent research aimed at showing that the set 

of values of X for which f.  has no weakly stable cycle (has 

sensitivity to initial conditions) (has an absolutely continuous 

invariant probability measure) has positive Lebesque measure. For more 

information, see CE, Section 1.5 and III.2. 

3. For practically all families for which bifurcation diagrams 

have been computed, one observes striking numerical regularities. For 

instance, if X  is the value for which there is a bifurcation from a 
J 

cycle of period 2J to a period 2J  , then (X - X -)/(X . - X ) 

tends very rapidly, as j diverges to +*, to some number 

6 = h.66920 ..., that seems independent of the family f  under 

consideration. For a discussion of this and related points, and a 
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theorem that gives a partial mathematical explanation of this 

"empirical" phenomenon, see CE, Sections 1.6 and III.3. For an 

extension to families of maps on  ]R , with m > 2, see CE, Section 

III.U. 
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Footnotes 

1/   For applications to economics, see the references cited above. 
For an excellent review of the applications in other fields, see 
May (19761. 

2/   Another, more recent review which presents essentially the same 
facts but from a slightly different point of view is provided by 
J. Guckenheimer and P. Holmes (1983]. 

3/   CE requires that a=-l, x*=0, b=l. However, none of their 
arguments depend upon that specification and they are valid for 
the case at hand. We shall use that fact repeatedly without any 
further explicit reference. 

kj        Singer's result is actually more general, since he showed that the 
number of stable cycles of an arbitrary map with a negative 
Schwarzian derivative is bounded above by the number of its 
critical points. 

5/   CE use "stable" to denote what we call "weakly stable." 

6/   These facts have been confirmed to me privately by Pierre Collet. 

7/   To be precise, Proposition II.5*7 in CE is correct under 
assumptions SI, S2, S3, SU, S5 provided that f(b) is not a fixed 
point of f satisfying f'(f(b)) = 1 (this fact has also been 
confirmed to me privately by Pierre Collet). This circumstance is 
however ruled out by SU". We may therefore apply their 
Proposition II.5.7 when f(b) < x*. 

8/   This property is generic, i.e., it holds on a Baire set (a 
countable intersection of open and dense sets) in the space of 
once differentiable maps with the C -topology, if one discards the 

assumption that f has a negative Schwarzian derivative. 

9/   See, e.g. Parthasarathy (I1967], Theorem 9.1). That book contains 
also the definition of the weak convergence of probability 
measures. 

10/  The general definition of topological conjugacy requires only 
that h is an increasing homeomorphism (h is onto, continuous, 
increasing and h   is continuous also). The discussion that 
follows is in fact valid in this general case, we stick never- 
theless to the differentiable case to simplify the presentation. 
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11/  Diagrams of this type are numerous in the literature. See CE, p. 
26, May [1976]. Such bifurcation diagrams have been obtained in 
economic models by Dana and Malgrange (1981], Grandmont [1983], 
Jensen and Urban I1982]. 

*n 
12/  The product A*B is defined in CE, p. 72, the notation A   is 

introduced in CE, p. 76. 
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