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PERIODIC AND APERIODIC BEHAVIOUR IN
DISCRETE ONEDIMENSIONAL DYNAMICAL SYSTEMS

by

Jean-Michel Grandmont*

Qi Introduction

The theory of onedimensional nonlinear difference equations
underwent considerable progress in recent years, as the result of the
efforts of theorists from several fields - in particular from physics -
to get a better understanding, by making use of the notion of the
"Hopf's bifurcation," of the appearance of cycles and of the transition
to aperiodic or "chaotic" behaviour in physical, biological or
ecological systems. These new developments seem to be potentially very
useful for the study of periodic and aperiodic phenomena in economics.
Parts of this theory have been indeed already used in economic or game
theory by Benhabib and Day [1981, 1982], Dana and Malgrange [1981], Day
{1982, 1983], Grandmont [1983], Jensen and Urban [1982], Rand [1978].

The aim of this paper is to present some of these new developments
in a compact form which will be, it is hoped, useable by economic
theorists. The emphasis will be on the mathematical results of the
theory, rather than on its possible applicationsrl/

Our basic reference will be Collet and Eckmann's book [1980] -

*This research was sponsored by Office of Naval Research Contract
NO001k-T79-C-0685 at the Institute for Mathematical Studies in the Social
Sciences at Stanford University, by the French Commissariat General d&u
Plan and by the University of Lausanne. I wish to thank very mich Rose-
Anne Dana and Pierre Malgrange who introduced me to the mathematics of
the subject. I had also very useful conversations with Philippe Aghion,
Plerre Collet, John Geanakopoulos and Dominique Levy.
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thereafter denoted "CE." 1In order to simplify the presentation, we
shall use in a few places stronger assumptions than in CE's book, which
means that the reader interested in the more general (but more
complicated) case and who wishes to look for complements will have to go
back to their book. The definitions and the statements of the results
will be self-contained. However, in the proofs of a few facts, we shall
use freely the concepts introduced by CE, but we shall indicate where to

find the appropriate definitions in that bOOkrg/

2. Onedimensional Nonlinear Difference Equations

We are concerned thereafter with the difference equation
 —_ f(xt), in which f 1is a function that maps the interval [a,b]
into itself. The object of the theory 1s the study of the existence

(and the stability) of periodic solutions of this difference equation.
To this effect, one defines recursively the iterates of f by

t2(x) = x for all x (f° is the identity map), ' =t and

i i-1 2

f- =f f ~. The orbit of x 1is then the set {x,f(x),f (x),...},
which is composed of all iterates of x. The orbit is periodic if the
cardinality of this set, say k, is finite, and its period is given by
k. Equivalently, a periodic orbit or a cycle of f with (primitive)
period k 1is defined by (xl,...,xk) such that 1) fk(xl) = x, and

1-1(

xl) =% # x, for i =2,...,k. This implies that all

points x; of the cycle are fixed points of fk and that they all

2) f

differ (one says then that xy 1s a perlodic point of f with period

k).



Of course, if f 1is arbitrary, there is little hope to get
interesting results. The simplifying feature of the theory is to assume
that f 1is unimodal. More precisely, we say that f 1is unimodal if

1) f 1is continuous

2) there exists x* in (a,b) such that f 1is increasing on
[a,x*] - 1.e., f(x) > £f(x') for all x, x' in [a,x*] such that
x > x' - and decreasing on [x*,b]

3) f(x*) =0

We shall say that f |is Cl—unimodal if in addition

4) f 1is once continuously differentiable and f'(x) # O when
x ¥ x%,

Note that when f 1is unimodal, then f has a unique fixed point
X in the interval (x*,b). Moreover, since f 1is decreasing on
[x*,b] one has f(b) < x < b (see Figure l.a). Finally, remark that
the assumption that f 1is defined on a closed interval is not as
restrictive as it may appear at first sight, since one may often go back
to that case. For instance, if f maps the interval [a,+=) into
itself and is unimodal with a unique maximum at x* > a, with
f(x*) > x*, one may restrict attention without any loss of generality to
the behaviour of f on the interval [a,f(x*)] since f(x) belongs to

3/
that interval for any x > a (see Figure 1.b).

3. Sarkovskii's Theorenm

We remarked earlier that when f is unimodal, it has a unique

fixed point x 1in the interval (x*,b). This fixed point is thus bound
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to coexist with any other periodic orbit. It turns out that one may get
much more information concerning the coexistence of cycles displaying
different periods. This is achieved in the following beautiful result,

which is due to Sarkovskii [1964] - see also Stefan [1977].

Theorem 1: (Sarkovskii). Consider the ordering of the integers

3>5>7---

>2’3>2'5>2.7> s e e

> 23 > o5 5 27 5 L.,

m

D hee 22 > Lie >8>k >2>1

That is, first the odd integers greater than or equal to 3 forward, then
the powers of 2 times these odd integers, and then the powers of 2
backward. If f 1is unimodal and has a cycle with period k then it
has a cycle of period k' for every k' < k 1in the sense of the above

ordering.

Proof: This is (CE, Theorem II.3.10, p. 91). Q:E.Ds

L, Stable Cycle

The preceding theorem implies that a unimodal map may have a lot
of different cycles - think of the case in which f has a cycle of
period 3. Some (or all) of them may be unstable, however, and thus
esgsentially irrelevant as far as the dynamic behaviour of the system is
concerned. It is therefore important to know how many stable cycles -

if any - the map f possesses. It is only recently that a real



breakthrough was achieved on this matter by Singer [1978], who
discovered that a unimodal map with a negative "Schwarzian derivative"
could have at most one stable cyclerE/

Let us first define stability. Given the map f from [a,b]
into itself, consider a periodic orbit (xl,...,xk). Since x; 1is a
fixed point of fk, we may say that this periodic orbit is (locally)
stable if there exists an open neighborhood U of x; such that for
every x in U, t%(x) stays in U for all t >1 and

1lim fkt(x) = x,. When f is continuous, this implies that

1, doo

fkt(fi-l(x)) converges to x4 as well for every i =2,...,k. If f

is continuously differentiable, this means that the derivative of

k
f at x1

in order to make any sense, this definition should not depend upon the

has a modulus less than 1, i.e., |ka(x1)| < 1. Of course,

point chosen on the periodic orbit. As a matter of fact, we have by the

chain rule of differentiation

ka(xl) f'(xk)ka'l(xl) = Le. = f'(xk) Siere f'(xl)

ka(xi)

When f 1is continuously differentiable, we may therefore say that
the cycle (xl,...,xk) is stable if |ka(x1)| < 1. The cycle will be
said to be weakly stable if |ka(xl)| £ 1 (this definition allows for
"onesided" stability only)rzj Finally, it will be said to be
superstable if ka(xl) = 0. When f is Cl-unimodal, this means that

the critical point x* belong to the periodic orbdbit.



We define next the notion of a Schwarzian derivative. Assume
that f 1is thrice continously differentiable. The Schwarzian

derivative of f at x, denoted Sf(x), is defined by

se(x) = Lo _ 3 (£nx))”

£r(x) ~ 2 ler(x)

whenever f'(x) # 0. Direct computation shows that
1/2 2 =1/2
22112072/

Schwarzian derivative" (Sf < 0 at every x such that f'{(x) # 0)
-1/2

st = -2|f'| . So the condition that "f has a negative

means that |f'| is convex on every interval of monotony of f. It
will be satisfied in particular if |f'| (or Log |f'|) is concave on
such intervals. But these sufficient conditions are by no means
necessary. Finally the reader will note that the concavity of f is
neither necessary nor sufficient to guarantee Sf < 0. Consider next

the following conditions

S1. £ is Cl-unimodal

s2. f 1is thrice continuously differentiable
82, Sf(x) <0 for all x in la,b], x # x*.
Then we have

Theorem 2: Assume that f satisfies S1, S2, 83, f(x) > x for
all x in (a,x*), and f'(a) > 1 whenever f(a) = a. Then
1) The map f has at most one weakly stable periodic orbit.

This periodic orbit lies in the interval [£(v),v].
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2) If f has a weakly stable periodic orbit, it attracts the
critical point x®, that is, it coincides with the set of accumlation

points of the sequence (ft(x*)).

Proof: We may note incidentally that under S1, S2, S3, one has
f(x) > x for all x in (a,x™®) whenever f'(a) > 1. This follows
from the fact that since Sf < 0, f' cannot have a positive local
minimum on that interval (see Step 3 of the proof of Theorem II.k.1 in
CE, p. 97. Indeed, if there existed x in (a,x*) such that
£f(x) < x, then by the mean value theorem there would be Yis Yoo
with a < Yy <xg Yo < x* such that f'(yl) $1< f’(yz) and f'

would be a positive local minimum in (a,y,), a contradiction.
2

Remark now that when f is unimodal, f(x) > x for all x in
(a,x*) implies that

(1) f maps the interval [f(b),b] into itself (onto if and only

if £(b) < x*)
(11) for every x 1in (a,f(b)), there exists J such that
2(x) € [£(v),b].

This follows from elementary considerations that are left to the
reader. This shows that all periodic orbits - with the possible
exception of an unstable fixed point of f at x = a - must lie in
[£(b),p]. 1In particular, any weakly stable cycle belongs to that
interval.

Corollary II.4.2 in CE implies therefore that the statements of

Theorem 2 are valid provided that f satisfies the additional condition



sh. f mps [f(b),b] onto itself.

However, a closer look at CE's proof of this Corollary shows that it is

still valid if S4 is replaced by the weaker
Sk'. f maps the interval [f(b),b] into itself.

But we have seen that this condition was implied by the assumptions of

Theorem 2. The proof is complete. Q.E.D.
We shall note for further reference

sk, (i) f(x) > x for all x in (a,x*)

(ii) f'(a) > 1 when f(a) = a.

As we have seen, if f 1is unimodal, then S4" implies Sk', while it
implies Sk if and only if f(b) < x*.

The foregoing result provides an "experimental" way of verifying
if a particular map satisfying the conditions of the theorem possesses a
weakly stable cycle. It suffices indeed to check if the iterates of the
critical point ft(x*) converge to some periodic orbit and then to
verify that the limit cycle is weakly stable. All these operations can
in fact be easily achieved by using modern computers.

Maps that do not posses any weakly stable cycle appear to be good
candidates to portray "chaotic" (aperiodic) behaviour in onedimensional
dynamical systems. Theorem 2 provides a way to recognize whether or not
a particular map is chaotic in the sense. Indeed, if f satisfies S1,

S2, S3 and S4", then all cycles of f will be unstable if the iterates
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of the critical point ft(x*) do not converge or if they converge to an
unstable periodic orbit. Again these conditions are easy to verify with
the help of modern computers. Of course, since iterations must be
stopped after a finite time in practice, this experimental way of
proceeding will be unable to distinguish between chaotic behaviour and
the presence of a weakly stable cycle that has a long period or that is
only weakly attracting.

The next statement provides a condition involving the trajectory
of the critical point x* of f only, that ensures the existence of a
(unique) weakly stable cycle. To this effect, we introduce some
notation. Given a unimodal map f, for every x 1in [a,b], the
extended itinerary of x describes how the iterates ft(x) behave
qualitatively, i.e., whether or not they fall on the right or on the
left of the critical point x¥*. More precisely, this extended itinerary
IE(x) is an infinite sequence of R's, of L's and of C's obeying the
following rule. If [IE(x)]J denotes the j-th element of IE(x) for
3 =0,1,:es; then [IE(x)]J =r if ) > % [IE(x)]J = if
fJ(x) = x*, and [IE(x)]J =ih A fJ(x) < x%. We shall say that IE(x)
is periodic with (primitive) period k if [IE(X)]J+k = [IE(x)]J for

all j and if k 1is the smallest integer having this property.

Proposition 3: Assume that f satisfies S1, S2, S3, Si4" and

ss. V) < 0k

Then f has a (unique) weakly stable cycle P if and only if the

extended itinerary of the endpoint b, i.e., IE(b), is periodic. If the
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period of IE(b) is k, the period of P is k or 2k.

Proof: Assume that I.(b) has period k. If f(b) < x*, then Sk
is satisfied, and from the "if" part of (CE, Proposition I1I.6.2), f has
a weakly stable cycle in [f(b),b]. If f(b) > x*, then f£(b) ¢ £ (x*)
for all > 1. But it is then easy to verify that the restriction of
f to (f(b),b) has a sink in the sense of (CE, p. 107). Therefore
from (CE, Lemma I1.5.1), f has a weakly stable periodic orbit in
[f(b),b] in that case too (one can alternatively prove directly that
f2 has a weakly stable fixed point [f(b),b], see the proof of
Proposition 4). In all cases the weakly stable cycle is unique from
Theorem 2, ¥Finally, the fact that its period is k or 2k 1is an
immediate consequence of (CE, Lemma II.3.2).

Assume conversely that f has a (unique) weakly stable cycle P
of period k. It must lie in [f(b),b]. We wish to apply the "only if"
part of (CE, Proposition II.6.2). A close look at their argument shows
that their result is valid if St is replaced by Si' - and thus under SuL"
- but that it is correct only when the rightmost point of P, say x,
satisfies x > x* - which is the case under S1, S2, S3, Sh', 1if and only
if k 2 2 or when the periodic orbit is a fixed point in (x*,b). The
"only if" part of (CE, Proposition I1.6.2) is not correct however under
their assumptions if P is a weakly stable fixed point x of f such
that x < x* (counterexamples are provided by making symmetric the
cases 1-4 of Figure II.8 in CE, p. 102).§/ The latter circumstance is
ruled out however under SL", so the "only if" part of (CE, Proposition

11.6.2) is valid under our assumptions. Thus IE(b) is periodic, and
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from (CE, Lemma II.3.2), its period is k or k/2. Q.E.D.

The concept of (weak) stability that we have used is only local.
It is thus important to know how large is the basin of attraction of a
given weakly stable cycle. The next result states that under the
conditions of Proposition 3, if there exists a weakly stable periodic
orbit, which is then unique, the set of points that are not attracted to

it is "exceptional."

Proposition 4: Assume that f satisfies S1, S2, S3, Si" and S5,

and that it has a weakly stable cycle P. Let E be the set of
points x 1in [a,b] such that ft(x) does not tend to P. Then E

has Lebesgue measure 0.

Proof: If f(b) € 2H, Sk is satisfied. Then from (CE,
Proposition II.5.7), the set E, of points in [f(b),b] that are not
attracted to the weakly stable periodic orbit P, has Lebesgue measure

J/ 0 Let E% be the set of points x in [a,f(b)) such that
f%(x) €E. for some t. Since f 1is increasing on la,x*), the

F

Lebesgue measure of E. is also 0. The set of points of [a,b] that
are not attracted to P is Ef UE!, to which one must add the endpoint

a whenever f(a) = a, which shows the result in that case.

The case in which x* < f(b) 1is even simpler. The unique weakly
stable cycle P belongs to [f(b),b]. Moreover, the iterates of any
point x of A = [x*,b] 1ie in A, and oscillate around the unique

fixed point x of f that belongs to A (whenever x # x). 1In
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particular, IE(b) = R and thus from Proposition 3, the period of P

is 1 or 2. It is clear that Df2(x*) =0 and Df2(x) >0 for all

x in A, x # x*., Furthermore, f2 has a negative Schwarzian derivative
on (x*,b] and has finitely many fixed point in [x*,b] - see steps 2
and 4 of the proof of Theorem II.4.1 in CE, pp. 97-98. Consider first
the case in which the period of P is 1. Then since f2(x*) = f(b) > x*,
f2(b) < b and Df2(§) < 1, one mst have f2(x) > x for all x in
[x*,x) and f2(x) < x for all x in (x,b], otherwise there would be
another weakly stable periodic orbit (of period 2). Thus f2J(x), and
thus fJ(x), converges to x as J tends to +» for all x 1in
[x*,b], see Figure 2.a. The other case in which the period of P 1is

2 its dealt with similarly. Let Xy and X, be the two points of

P. They satisfy x* < Xy <x< X5 < b. From the uniqueness of the
weakly stable cycle, we have Df2(§) >1 and in fact f2(x) > x for
all x in (x®,xy) or (;,x2), and f2(x) < x for every x 1in

(xl,E) or (x2,b), see Figure 2.b. Thus f2J(x), and thus fJ(x),

converges to P as J tends to +» for all x in [x*,b] except

Thus if the period of P is 1, it attracts the whole interval
a,bl, except a if f(a) = a. If the period of P is 2, it attracts
again the whole interval [a,b], with the exception of the preimages of
X, i.e., of all points x of [a,x*) such that fJ(x) = x for some
J, and of the endpoint a when f(a) = a. In the two cases, the excep-

tional set is finite or countable, which completes the proof. Q.E.D.
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Remark: Proposition 4 shows that some claims according to which
"period 3 implies chaos" are not always warranted. For instance, a
consequence of the results of Li and Yorke [1975] is that if f 1is
unimodal and if there exists a cycle of period 3, then there is an
uncountable set S5 1in [a,b] and an € > 0 such that for every x

and y in S

1in sup |£3(x) - £3(y)]

JM

nv
m

and

|
o

Um inf |£9(x) - fJ(y)l

J-POO

Thus trajectories with initial points in S - which may be called the
"chaotic" set - come arbitrarily close and then noticeably separated
infinitely often.

Some theorists have used this result (or a variant of it) to claim
that the existence of a cycle of period 3 was an indication of chaotic
behaviour (see in particular in economics Benhabib and Day [1981, 1982},
Day [1982, 1983]). Proposition 4 shows that such a claim is
unwarranted, for if there is a stable cycle, then the "chaotic'" set S
may be of Lebesgue measure O (think of a Cantor set) and thus
essentially unobservable.

A more appropriate definition of chaos or aperiodicity is as we

have seen, the property that all cycles are unstable.
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Sl Aperiodic Dynamics

As we said, maps f that have no weakly stable cycles appear to
be good candidates to describe turbulent on "chaotic" behavior in one-
dimensional dynamical systems. There is an obvious reason to look at
such maps from that viewpoint. For if one considers a map f on [a,b]
that satisfies Assumptions S1, S2, S3, and if it has no weakly stable
cycle, then for "most" initial points x the iterates of x, fJ(x),
will not display any periodic behaviour even if we wait long enough.

Indeed under these assumptions, we know that fk

has only finitely many
fixed points in la,b] (see steps 2 and 4 of the proof of Theorem II.h.1
in CE, pp. 97-98). Thus f has at most a countable number of

cycles.ﬁl This implies that if E 1is the set of all points in [a,b]
that belong to a periodic orbit of f, E has Lebesgue measure 0, and
that the orbit of any point x not in E 1is aperiodic, even if one
iterates it long enough.

Among the class of such aperiodic maps, of special interest are
those which possess a unique invariant probability measure which is
absolutely continuous with respect to the Lebesgue measure, and which is
ergodic. The probability measure Vv on [a,b] (endowed with its Borel
o-algebra) 1is said to be invariant with respect to f 1if
v(f_l(A)) = v(A) for any Borel set. It is absolutely continuous with
respect to the Lebesgue measure A (absolutely continuous for short) if
for any Borel set A, A(A) = 0 implies Vv(A) =0 (v has then a

A-integrable density with respect to A). Finally, v 1is said to be

ergodic if for any w-integrable real-valued function g,



==

g(£371(x)) + [gdv

Pl
n s

"~

J

as n tends to +%, for v-almost every x. This implies in particular
that if one considers for each x and every n, the empirical
distribution vn(x) that is generated by the iterates

fJ(x) for J = 0,.¢., n = 1, which assigns probability 1/n to each
fJ(x), then the sequence vn(x) converges weakly to VvV for v-almost
every x.gj Thus if Vv 1is absolutely continuous and ergodic, although
a given trajectory may look somewhat erratic since the iterates fill up
eventually the support of the limit distribution v, empirical
distributions and time averages become ultimately fairly stable for
v-almost every initial point.

The next result gives a sufficient condition for the existence of

a unique absolutely continuous invariant measure, which is ergodic.

Theorem 5: assume that f satisfies S1, S2, S3, S5, that is has
no weakly stable periodic orbit, and that there exists an open
neighbourhood V of x* such that fj(x*) €V for § 21. Then f
has a unique absolutely continuous invariant probability measure. It is

ergodic.

Proof: Note first that if all cycles of f are unstable, S1, S2,
S3 imply SL", otherwise f would have a weakly stable fixed point in
[a,x*]. Second, one must have f(b) < x*, so that Sk i1s satisfied,
otherwise f would have a weakly stable cycle in [x*,b]. Thus we may

apply (CE, Theorem III.8.3). Q.E.D.
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Corollary 6: If f satisfies S1, 52, S3, Si", S5 and if the
iterates
fJ(x*) of the critical point converge to an unstable cycle, then f
has a unique absolutely continuous invariant probability measure. It is

ergodic.

Proof: In view of Theorem 2, f has no weakly stable cycle and
the iterates of x* stay at a finite distance of x*. Thus Theorem 5

applies. Q.E.D.

Remark: +the foregoing results go in the direction of showing that
aperiodic maps (having only unstable cycles) may display strong statis-
tical regularities after all. Another direction of research has been to
show that some (but not all) aperiodic maps may generate trajectories
that are very sensitive to a small variation of initial conditions,
thereby exhibiting the kind of phenomena that are observed e.g. in
turbulent flows (maps that have a unique weakly stable periodic orbit as
in Theorem 2 do not have such a sensitivity to initial conditions). For
an aperiodic and sensitive map, a small error of measurement of the
initial state, for instance, may result in very large prediction errors
(relatively speaking) for future dates, even if the forecaster knows
very well the law of motion of the system (the map f). For various
definitions of sensitivity and a discussion of their implications, see

(CE, pp. 15-22, 30-35, and Section II.T).
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6. Topological Conjugacy

There is nothing intrinsic in the representation of a one-
dimensional dynamical system by a particular difference equation

X = f(xt), since one can always make a change of coordinates. We

t+1
investigate now what happens when one makes a change of variable y =
h(x), in which h maps [a,b! onto [a',b'], is once continuously
differentiable, and h'(x) > 0 for all x in {a,b]. with the new
variable, the dynamical system is represented by a new function g
which maps [a',b'] into itself and satisfies gly) = h[f(h_l(y))].
Thus g = hOth_l, we say then that f and g are topological
conjugateswlgf

The maps f and g describe the same dynamics since the iterates
of £ and g are linked by gJ =h f'j J~1 for al1 j > 0. In
particular (xl,...,xk) is a cycle of f 1if and only if
(h(xl),...,h(xk)) is a cycle of g. By differentiation one gets for

all x
D" (h(x))h' (x) = h'(£%(x))D£"(x)

and thus ng(h(xi)) = ka(xi) at any point of the periodic orbit.
Stability or unstability of a periodic orbit is topologically invariant.
It is now immediate that S1 is topologically invariant, in the
sense that f satisfies this condition if and only if g does. The
same is true of 82 if h 1is thrice continuously differentiable.
Conditions like f(x) > x are also topologically inveriant, as well

as Sh, Sk' or Sh". TFinally, it is easily seen that the condition
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f"(x*) < 0 1is unchanged through the change of variable provided one
assumes h to be twice continuously differentiable. Differentiating
g(h{x)) = h(f(x)) +twice and evaluating the expressions at x = x*

yields indeed
g"(h(x*)) [n' (x*)]% = £"(x*)n' (£(x*))

if one takes into account the fact that g'(h(x*)) = £'(x*) = 0.
However, the condition S3 - which says in effect that
D2|f’(x)|-l/2 is positive for a1l x in [a,b], x # x* - is not
generally invariant (like any convexity statemen®) through a (nonlinear)
change of variable. The point of this discussion is that even when a
particular mmp f does not satisfies S3, the foregoing results, i.e.,
Theorem 2 through Corollary 6, are still valid provided that one of the
topological conjugates g of the original map f satisfies the

assumptions made in anyone of these statements.

Te Bifurcations: Period Doubling and the Transition to Turbulance

Numerical experimentation with onedimensional nonlinear dynamical
systems yields remarkable regularities that do not appear to depend much
upon the maps under consideration. More precisely, consider a family of
onedimensional unimodal maps fA that depend upon some real number A,
that may be thought as indexing one of the characteristics of the system
(the parameter may be for instance under the control of some outside

observer in a physical experiment). If we look back at Theorem 1, we

should expect that the fashion in which cycles appear when A is



varying, should display some degree of conformity with Sarkovskii's
ordering of the integers. Namely, we should expect cycles having a
period that is a power of 2 to appear first. Numerical experimentation
shows that this 1is indeed the case. In fact, this is true for (weakly)
stable cycles.

Let us assume that for each A, we iterate the critical point
x* of f

A A

Theorem 2 and has in particular a negative Schwarzian derivative, we

on a computer. If each fA satisfies the conditions of
know that this procedure permits discovering (weakly) stable cycles that
have a small period and that are attracting enough. Suppose now that we
put A on an horizontal axis and that above each value of A we plot
vertically the values taken by the iterates fi(xi) for, say, t = 200
to 300. Computer simulations of this type yield typically a very neat
"bifurcation diagram" which displays first a whole interval in which
period doubling bifurcations occur more and more rapidly, a stable fixed
point giving rise to a stable cycle of period 2, which yields then a
stable cycle of period 4 and so on. The values of A for which such
period doubling bifurcations occur tend to some limit value X:, beyond
which one enters the "chaotic" region for A > A¥ 6 one often observes a
"mess" - meaning that one has either an aperiodic ("chaotic") map or a
stable cycle with a very long period - in the middle of which windows
may appear that show stable cycles with low periods 1like 3, 5, 6 or T
(that depends of course of the degree of resolution of the diagram)fll/

The results that follow explain why such an outcome should be

typically observed. Formally, we consider a one-parameter family of
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maps €, in vhich A belongs to [0,1]. For each A 1in that

interval, f maps the interval [ak’bkl into itself, is C1 -unimodal

A

with a unique critical point x* 1in (ax,bx) and fx(xi) =b

1 We

A.

assume that a, and b depend continuously on A, as well as f

A A A

and its derivatives. More precisely, for any sequence An that tends

and bn = bA tend to ay and bA

A
n n
respectively, while for any sequence xn e;[an,bn] that converges to

to A in [0,1], then a =8

]
X € [ax,bx], the sequences f (xn) and fA (xn) converge to fA(x)

n n

A
and fi(x), respectively.

We shall say that the family if full if
1. for A =0, one has fo(bo) > x;. In that case, as one can
easily verify, all iterates fi(xg) = fjgl(bo) belong to the interval

[f‘o(bo),bo] for § > 1.

v

2 3
= *® * *® *
2, for A= 1, one has fl(xl) < x} and fl(xl) < xf.

Then we have

Theorem T7: Conslder a full one-~parameter family of Cl-unimodal
maps indexed by A in [0,1]. Then
1) Given an arbitrary k > 2, the set of parameters A for which

the map f, has a superstable cycle of period k 1is closed and

A

nonempty. Given such a A, there is an open interval around A such

that ¢ has a stable cycle of period k for all A' in this

Al

interval.
2) Let AS be the first value of the parameter A for which a

superstable cycle of period 2J obtains for J > 1. Then the sequence

AS increases with J and converges to some value A: <1 as J tends
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to +®, For each A in [0,A*), all cycles of the map f, have a
period that is a power of 2 or are fixed points. The critical point

xa of fA is attracted to one of these.

]
3) 1If superstable cycles of periods 2J and 2J with
J'" >3 +1 occur respectively for the values A and A' in IO,A:),
i
then a superstable cycle of period 2° with J' > 1 > J must appear

for some value in the open interval determined by A and A'.

Proof: As a preliminary remark, CE require that a, = -1,

bA =1, xi =0 for all A, but the proofs of the results we shall use,
employ only simple continuity arguments that do not depend upon these
gspecific assumptions. Second, our assumptions imply that the itinerary

of b_, denoted K(f ), is R, while that of b,, denoted K(r,)

10
starts RLL ... (itineraries are defined in CE, p. 6b4)

1) According to (CE, Theorem III.l.1l), every maximal admissible
sequence A satisfying K(fo) <AL K(fl) occurs as the itinerary
K(fx) of b, for some A in (0,1) (admissible sequences are defined
in CE, p. 64, the ordering between admissible sequences is defined in
CE, p. 65-66, while maximal sequences are defined in CE, p. Tl). In
fact, it follows from the proof of this theorem (see CE, p. 175) that
the set of such A's is nonempty and closed provided that A # (BR)™
and A # (BL) .

Choose now an integer k 2 2, and consider a maximal sequence BC

in which the sequence B contains k - 1 elements, such that

(-
R < BC < RLLL ...
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Given k, the set of such sequences is necessarily finite. It is not

difficult to verify that is nonempty. As a matter of fact, we have

Lemma 8: One haslg/

2 1

3 )* > rert™t o > L.

RLL... > ... > RLRT™S ¢ > (RLRi-

il

3¢5 R*(RLRi'z)°° > R*RLRT Y ¢ > ...

> vu. > R*RLRS™

3 2

*, i - ) -
> s98. > R “*RLRi c > R*n*(RLRi ) > R*“*RLRi 3 C > oo

*(m+1)

* oo
> .. >R *RC > R (m+1)

*m o0
>R *RC > ... > RC >R
in which 1 >3 is odd, n 21 and m > 1 are arbitrary.

Proof: If one ignores the finite sequences in this series of
inequalities, what has been written is simply the translation of (CE,
Theorems I1I.2.8 and II.2.9). What we have done is just to insert these
finite sequences. Now the first line of inequalities and the fact that

the first sequence appearing on the second line satisfies

R*RLC = RLRRRC < RLR' > C

for every odd integer 1 2 3 1is readily verified by inspection. Then
all the lines of inequalities except the last one follow by induction
from the fact that R* 1is monotone among the set of maximal itineraries

(see CE, Theorem II.2.5). The last line is in fact (CE, Lemma II.2.12)

combined with their Theorems II.2.8 and II.2.9. Q.E.D.

Thus given the integer k 2> 2, the set of maximal sequences BC in
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which the sequence B contains (k - 1) elements, and such that

-]
R < BC < RLL LI}

is nonempty and finite (it is nonempty since one may take

i-3

*
R*MRLR - C 1f k =24 with n20 and 1> 3, 1 odd, and

m+l

BC

*
BC = R "®RC if k = 2 with m > 0). Therefore the set of values

of A such that the itinerary K(fx) of b, coincides with one such
BC is closed and nonempty. To show the first part of 1), it suffices to

remark that for any A, the itinerary K(fA) of b is maximal (see

A

CE, p. T1) and that f, has a superstable cycle of period k if and

A
only if K(fA) coincides with one of the BC mentioned above. The last
of 1) is a straightforward continuity argument that is left to the
reader.

2) Lemma II.2.2 in CE states that the sequences appearing in the
last line of inequalities in Lemma 8 above are consecutive among the
maximal sequences ("consecutive" is defined in the statement of Lemma
11.2.2 in CE). It follows then from (CE, theorem III.1.1) that the

*(3-1),

itinerary K(f,,) of b is R RC, and that A% > A* > 0

A; A3 i 3
whenever 1 > J (otherwise AS would not be the minimum value of A
for which a superstable cycle of period 2J obtains). The sequence
AS converges thus towards A% < 1. By another application of Lemma
I1.2.2 and Theorem III.l.1 in CE, one gets that for any A in [O,A:),
the itinerary K(fA) of b, 1is one of the sequences appearing in the

last line of inequalities in Lemma 8 above. Since there are values of

A in [0,1] such that fA has a superstable cycle with a period that
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differs from a power of 2, one must have A* < 1., Next remark that the
sequences appearing in the last line of inequalities in Lemma 8 are
periodic with a period that is a power of two (see CE, Remark 1,

p. 79). Thus for any A in [0,A*), the critical point x} is

attracted to a periodic orbit the period of which is a power of 2 (see

Lemmas II.3.1 and II.3.2 in CE). If the map f has another cycle,

A
then the itinerary I(x) of the rightmost point x of the periodic
orbit is maximal (see CE, p. T1l) and satisfies I(x) < K(fk) (see CE,
Lemma II.1.3). Again from CE, Lemma II.2.2, this itinerary 1I(x) is
one of the sequences appearing in the last 1line of inequalities of Lemma
8 that are less than or equal to K(fk)’ or it is the sequence I~ (see
Lemma IT.2.1 in CE). This periodic orbit has a period that is a power
of 2 or is a fixed point of fA'
3) This statement follows again from the fact that the sequences

appearing in the last line of inequalities in Lemma 8 are consecutive

among the maximal sequences, and from (CE, Theorem III.1.1). Q.E.D.

Theorem 9: Consider a full one-parameter family of Cl-unimodal

maps indexed by A in [0,1], and assume that for each A, the map fA

(or one of its topological conjugates gA) satisfies S1, S2, S3, SL"
and S5. Then

1) for any XA in [0,A*), the map f, has a (unique) weakly

A
stable periodic orbit

2) there is an uncountable set of values of A in (A*,1] for

which fA has no weakly stable periodic orbit.
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Proof:
1) We have seen when proving 2) of Theorem T, that for any A

in [0,A*), the itinerary K(fx) of b, was one of the sequences that

A

appeared in the last line of inequalities of Lemma 8. Since any one of

these sequences is periodic, the result follows from Proposition 3.
2) By the argument of CE, pp. 184-85, there is an uncountable set

of values of A for which the extended itinerary of bA is not

periodic. By Proposition 3, for each such A, f has no weakly stable

A
cycle. From 1), all these values of A mst belong to (A¥,1]. Q.E.D.

Remarks:
1. Under the assumptions of Theorem 9, it can be shown that there

is an uncountable set of values of A 1in (A:,l] for f'A has

sensitivity to initial conditions, see (CE, Proposition IIL.2.1).
2. A good deal of recent research ailmed at showing that the set

of values of A for which f, has no weakly stable cycle (has

sensitivity to initial conditions) (has an absolutely continuous
invariant probability measure) has positive Lebesque measure. For more
information, see CE, Section I.5 and III.Z2.

3. For practically all families for which bifurcation diagrams
have been computed, one observes striking numerical regularities. For

instance, if A is the value for which there is a bifurcation from a

J
J J+1 )

cycle of period 2Y +to a period 2Y ~, then (AJ = AJ_l)/(AJ+l = A

J

tends very rapidly, as J diverges to +%, to some number

8§ = 4.66920 ..., that seems independent of the family £, under

consideration. For a discussion of this and related points, and a
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theorem that gives a partial mathematical explanation of this
"empirical" phenomenon, see CE, Sections I.6 and III.3. For an
extension to families of maps on ]Rm, with mn > 2, see CE, Section

III.4%.
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Footnotes

For applications to economics, see the references cited above.
For an excellent review of the applications in other fields, see

May [1976].

Another, more recent review which presents essentially the same
facts but from a slightly different point of view is provided by
J. Guckenheimer and P. Holmes [1983].

CE requires that a = -1, x* = 0, b = 1. However, none of their
arguments depend upon that specification and they are valid for
the case at hand. We shall use that fact repeatedly without any
further explicit reference.

Singer's result is actually more general, since he showed that the
number of stable cycles of an arbitrary map with a negative
Schwarzian derivative is bounded above by the number of its
critical points.

CE use "stable" to denote what we call "weakly stable."
These facts have been confirmed to me privately by Pierre Collet.

To be precise, Proposition II.5.T in CE 1is correct under
assumptions S1, 52, S3, Sk, S5 provided that f(b) 1s not a fixed
point of f satisfying f'(f(b)) = 1 (this fact has also been
confirmed to me privately by Pierre Collet). This circumstance is
however ruled out by Sh". We may therefore apply their
Proposition II.S5.T when f(b) < x*.

This property is generic, i.e., it holds on a Baire set (a
countable intersection of open and Eense sets) in the space of
once differentiable maps with the C -topology, if one discards the

agsumption that f has a negative Schwarzian derivative.

See, e.g. Parthasarathy ([1967], Theorem 9.1). That book contains
also the definition of the weak convergence of probability
measures.

The general definition of topological conjugacy requires only
that h 1s an increasing homeomorphism (h 1is onto, continuous,
increasing and h~ is continuous also). The discussion that
follows is in fact valid in this general case, we stick never-
theless to the differentiable case to simplify the presentation.



=

11/ Diagrams of this type are numerous in the literature. See CE, p.

T 26, May [1976]. Such bifurcation diagrams have been obtained in
economic models by Dana and Malgrange [1981], Grandmont [1983],
Jensen and Urban [1982].

*
12/ The product A*B 1s defined in CE, p. T2, the notation A " 1is
introduced in CE, p. T6.
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