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TWO PAPERS ON SEQUENTIAL BARGAINING* 

by 

Peter C. Cramton** 

C>JQ Paper I:  Sequential Bargaining Mechanisms 

\Q       1«   Introduction 
r-Nf 

—^ A fundamental problem in economics is determining how agreements 
v o 
__£>       are reached in situations where the parties have some market power. Of 

O 
particular interest are questions of efficiency and distribution: 

How efficient is the agreement? 

How can efficiency be improved? 

How are the gains from agreement divided among the parties? 

Here I explore these questions in the context of bilateral monopoly, in 

which a buyer and a seller are bargaining over the price of an object. 

Two features of my analysis, which are important in any bargaining 

setting, are information and impatience. The bargainers typically have 

private information about their preferences and will suffer some delay 

costs if agreement is postponed.  Information asymmetries between 

*This research was supported by the Office of Naval Research Grant ONR- 
N001U-79-C-0685 at the Institute for Mathematical Studies in the Social 
Sciences, Stanford Univerity.  I am indebted to my advisor, Robert 
Wilson, for his encouragement and inspiration. My thanks to Drew 
Fudenberg, Robert Gibbons, and Jean Tirole for their helpful comments. 

**Graduate School of Business, Stanford University. 
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bargainers will often lead to inefficiencies: the bargainers will be 

forced to delay agreement in order to communicate their preferences. 

Impatience will tend to encourage an early agreement and will make the 

parties' communication meaningful. Those with high delay costs will 

accept inferior terms of trade in order to conclude agreement early; 

whereas, patient bargainers will choose to wait for more appealing terms 

of trade. 

Some authors have examined the bargaining problem in a static 

context, focusing solely on the role of incomplete information and 

ignoring the sequential aspects of bargaining. Myerson and 

Satterthwaite [1983] analyze bargaining as a direct revelation game. 

In this game, the players agree to a pair of outcome functions:  one 

that maps the players' statements of their types into an expected 

payment from buyer to seller, and the other that maps the players* 

statements into a probability of trade.  These outcome functions are 

chosen in such a way that truthful reporting is an equilibrium strategy 

for the players. An important feature of this game is that it is 

static; outcome functions are selected, the players report their true 

types, and then dice are rolled to determine the payment and whether or 

not trade occurs. In order to insure that the players have the proper 

incentives for truthful reporting, the game will end with positive 

probability in disagreement even when there are substantial gains from 

trade.  Thus, in the event the randomization device calls for 

disagreement, the players may find themselves in a situation in which it 

is common knowledge that there are gains from trade. 
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Chatterjee and Samuelson [1983] analyze a strategic game in which 

both players simultaneously make offers and trade occurs at a price 

between the two offers if the seller's offer is less than that of the 

buyer. This game is closely related to the direct revelation game in 

that it is static. Moreover, it can be shown that for a particular 

class of examples the simultaneous-offer game implements the direct 

revelation game in which the outcome functions are chosen to maximize 

the players' ex ante utility. As in the direct revelation game, this 

game ends with positive probability in a state in which both bargainers 

know that gains are possible (since their respective reservation prices 

have been revealed), and yet they are forced to walk away from the 

bargaining table. Thus, the bargaining game implicitly assumes that the 

players are able to commit to walking away without trading, after it has 

been revealed that substantial gains from trade exist. 

In situations where the bargainers are unable to make binding 

agreements, it is unrealistic to employ a bargaining mechanism that 

forces them to walk away from known positive gains from trade. Such 

mechanisms violate a broad interpretation of sequential rationality as 

discussed by Selten [1976] (in terms of subgame perfection) and later by 

Kreps and Wilson [1982], if one applies sequential rationality not only 

to the hypothesized game, but to the game form as well.  In particular, 

one should restrict attention to mechanisms that satisfy sequential 

rationality:  it must never be common knowledge that the mechanism 

induced at any point in time is dominated by an alternative mechanism. 
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When there is uncertainty about whether or not gains from trade 

exists, any static game will violate sequential rationality. The 

players must have time to learn through each other's actions whether 

gains are possible.  In a sequential game, the players communicate their 

preferences by exhibiting their willingness to delay agreement. 

Bargainers that anticipate large gains from trade (low-cost sellers and 

high-valuation buyers) will be unwilling to delay agreement and so will 

propose attractive terms of trade that the other is likely to accept 

early in the bargaining process. On the other hand, high-cost sellers 

and low-valuation buyers will prefer to wait for better terms of 

trade. Static games must use a positive probability of disagreement to 

insure incentive compatibility, where the probability of disagreement 

increases as the gains from trade shrink.  The advantage of delaying 

agreement rather than forbidding agreement is that mechansims can be 

constructed in which negotiations continue so long as each bargainer 

expects positive gains. Thus, the bargaining will not end in a state in 

which it is common knowledge that the players want to renege on their 

agreed upon outcome. 

Two approaches can be taken in the analysis of perfect bargaining 

games. The first approach is to examine specific extensive-form (or 

strategic) games, which determine the set of actions available to the 

players over time. Intrinsic to any bargaining process is the notion 

of offers and replies: bargaining consists of a sequence of offers and 

decisions to accept or reject these offers. Who makes the offers, the 

time between offers, responses, and counter-offers, and the 
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possibilities for commitment are determined "by the underlying 

communication technology present in the bargaining setting. This 

communication technology will imply, in part, a particular bargaining 

game in extensive form. Sobel and Takahashi [19831, Cramton [1983], 

and Pudenberg, Levine, and Tirole [1983] illustrate the analysis of 

particular extensive forms that are perfect bargaining games. 

A second approach and the one adopted in this paper is to analyze 

a general direct revelation game, which maps the players' beliefs into 

bargaining outcomes. An important distinction between direct revelation 

games and strategic games is that the direct revelation game does not 

explicitly model the process of bargaining. The sequence of offers and 

replies that eventually leads to an outcome is not studied in the direct 

revelation game as it is in strategic games. However, embedded within 

each sequential bargaining mechanism is a particular form of learning 

behavior, which can be analyzed.  In addition, much can be learned about 

how information and impatience influence the efficiency of the 

bargaining outcome and the allocation of gains between players. Thus, 

even though bargainers will not play direct revelation games in 

practice, their analysis is a useful tool to determine how well the 

bargainers can hope to do by adopting an appropriate strategic game. 

The difference between the static direct revelation game analyzed 

by Myerson and Satterthwaite I19831 and the sequential direct revelation 

game considered here is that in the sequential game the outcome 

functions not only determine the probability and terms of trade, but 

also dictate when trade is to take place. In the static game, trade may 
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only occur at time zero; whereas, in the sequential game trade may occur 

at different times depending on the players' reports of their private 

information. Thus, by analyzing sequential bargaining mechanisms one is 

able to infer what the players' learning process is over time. 

Furthermore, by analyzing mechanisms that are sequentially rational, one 

can study what bargaining outcomes are possible when the bargainers are 

unable to make binding agreements. 

This introductory paper considers the simplest type of sequential 

bargaining games in which the players' time preferences are described by 

known and fixed discount rates.  I begin by characterizing the class of 

perfect bargaining mechanisms, which satisfy the desirable properties of 

incentive compatibility (each player reports his type truthfully), 

individual rationality (every potential player wishes to play the game), 

and sequential rationality (it is never common knowledge that the 

mechanism induced over time is dominated by an alternative mechanism). 

It is shown that ex post efficiency is unobtainable by any incentive- 

compatible and individually-rational mechanism when the bargainers are 

uncertain about whether or not they should trade immediately.  I 

conclude by finding those mechanisms that maximize the players' ex ante 

utility, and show that such mechanisms violate sequential rationality. 

Thus, the bargainers would be better off ex ante if they could commit to 

a mechanism before they knew their private information.  In terms of 

their ex ante payoffs, if the seller's delay costs are higher than those 

of the buyer, then the bargainers are better off adopting a sequential 

bargaining game rather than a static mechanism; however, when the 
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buyer's delay costs are higher, then a static mechanism is optimal. 

The methodology of this paper is based on Myerson and 

Satterthwaite [1983].  I have freely borrowed from their insightful work 

in much of my analysis. Complete proofs to each proposition, even 

though many are only slightly different from the proofs found in Myerson 

and Satterthwaite, are given as an aid to the reader. 

2.   Formulation 

Two parties, a buyer and a seller, are bargaining over the price 

of an object which can be produced by the seller at a cost s and is 

worth b to the buyer.-=-'  The seller's cost s and the buyer's 

valuation b are also referred to as their reservation prices, since 

they represent respectively the minimum and maximum price at which each 

would agree to trade. Both the buyer and the seller have costs of 

delaying the bargaining process. Specifically, the value of the object 

is discounted in the future according to the positive discount rates 

p for the seller and a    for the buyer. Thus the payoffs, if the 

bargainers agree to trade at the discounted price x at time t, are 

—pt —0t 
s - xe    for the seller and be   - x for the buyer.  Should they 

fail to reach agreement both players' payoffs are zero.  Implicit in 

this formulation is the assumption that the bargainers discount future 

money at the same rate, so at any time t the discounted payment by the 

buyer equals the discounted revenue to the seller. Without this 

assumption, it would be possible for the players to achieve an infinite 

payoff by having the player with the lower discount rate lend an 
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arbitrarily large amount of money to the other player. 

The buyer, though aware of his own valuation b, does not know the 

seller's cost of production s, but assesses her cost to be distributed 

according to the distribution F(s), with a positive density f(s) on 

[s,s]. Similarly, the seller knows her cost s, but can only assess the 

buyer's valuation to be distributed according to the distribution G(b), 

with a positive density g(b) on  [b,b]. Their discount rates and the 

distributions of the potential buyers and sellers are common 

knowledge. In addition, it is assumed that both the buyer and the 

seller are soley interested in maximizing their expected monetary gain. 

To summarize, let <F,G,p,o> be a sequential direct revelation 

game where 

F is the distribution of the seller's cost s on  [s,s], 

G is the distribution of the buyer's valuation b on  [b,b], 

p is the seller's discount rate for the object, and 

a is the buyer's discount rate for the object. 

In the revelation game, the player's actions consist of reports of their 

types, which are mapped into the bargaining outcome by the bargaining 

mechanism. Thus, the seller s reports that her cost is s' G [s,s] 

and the buyer b reports that his valuation is b' £ [b,bj. The 

revelation game is said to be direct is the equilibrium strategies of 

the players involve truthful reporting:  (s',b') = (s,b). The important 

role of direct revelation games stems from the fact that one can, 

without loss of generality, restrict attention to direct mechanisms. 
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For any Nash equilibrium of any bargaining game, there is an equivalent 

direct mechanism that always yields the same outcomes. This well known 

result is called the revelation principle. Given any mechanism M, 

which maps reports into outcomes, and a set of equilibrium strategies 

x, which maps true types into reported types, then the composition 

M = M ° x is a direct mechanism that achieves the same outcomes as the 

mechanism M. 

For the revelation game <F,G,p,a>, a sequential bargaining 

mechanism is the pair of outcome functions, T(»|»,«) and x(»,#), 

where T(t|s,b) is the probability distribution that the object will be 

transferred to the buyer at time t and x(s,b)  is the discounted 

expected payment from the buyer to the seller, given that the seller and 

buyer report the reservation prices s and b, respectively. 

Typically, randomization of the outcomes over time is not 

necessary. Without randomization, the outcome function T can be 

replaced by the function t(»,«), which determines the time of trade 

given the players' reports.  A sequential bargaining mechanism, then, is 

the set of outcome functions  <t,x> where t(s,b)  is the time of trade 

and x(s,b) is the discounted expected payment, given that the seller 

reports s and the buyer reports b. Most bargaining mechanisms seen 

in practice require that the exchange of money and goods take place at 

the same time. Such a requirement is not restrictive in this model, 

because there is no benefit to be gained by exchanging money at a 

different time from the exchange of the good, since both players have 

identical time preferences for money. For reasns of tractability, I 
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will frequently restrict attention to the simplified mechanism <t,x>. 

3.   Perfect Bargaining Mechanisms 

The weakest requirements one would wish to impose on the 

bargaining mechanism <T,x> in the direct revelation game are 

(1) individual rationality, that everyone wishes to play the 

game, and 

(2) incentive compatibility, that the mechanism induces truth 

telling. 

In addition, when the bargainers are unable to make binding commitments, 

one needs the further restriction of sequential rationality:  it must 

never be common knowledge that the mechanism induced over time is 

dominated by an alternative mechanism. Bargaining schemes that satisfy 

incentive compatibility, individual rationality, and sequential ration- 

ality are called perfect bargaining mechanisms. The adjective "perfect" 

is adopted, because of the close relationship between perfect bargaining 

mechanisms in the direct revelation game and perfect (or sequential) 

equilibria in an infinite-horizon extensive-form game.  It remains to be 

proven that a sequential bargaining mechanism is perfect if and only if 

it is a perfect equilibrium for some infinite-horizon extensive-form 

game. This issue will be addressed in future research. 

In this section, I derive necessary and sufficient conditions for 

the sequential bargaining mechanism to be perfect.  The incentive- 

compatibility and individual-rationality conditions were first 

established in Myerson and Satterthwaite [1983], and later extended to 
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the case of multiple buyers and sellers "by Wilson [1982] and Gresik and 

Satterthwaite [1983I. It is important to realize that these properties 

are actually necessary and sufficient conditions for any Nash 

equilibrium of any bargaining game, since every Nash equilibrium induces 

a direct revelation mechanism as mentioned in section 2. 

Incentive Compatibility 

In order to define and determine the implications of incentive 

compatibility on the sequential bargaining mechanism <T,x>, it is 

convenient to divide each player's expected payoff into two components 

as follows. Let 

b b " 
S(s) = I  x(s,b)g(b)db  ; P(s) = I  Je"ptdT(t|s,b)g(b)db 

b b 0 

s s °° 
B(b) = I  x(s,b)f(s)ds  ; Q(b) =11  e~0tdT(t|s,b)f(s)ds 

s s 0 

where S(s) is the discounted expected revenue and P(s) is the 

discounted probability of agreement for seller s, and B(b)  is the 

discounted expected payment and Q(b) is the discounted probability of 

agreement for buyer b. Thus the seller's and buyer's discounted 

expected payoffs are given by 

U(s) = S(s) - sP(s)    V(b) = bQ(b) - B(b)  . 

Formally, the sequential bargaining mechanism <T,x> is incentive 

compatible if every type of player wants to report truthfully his type; that 
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is, for all s and s'  in  [s,s! and for all b and b'  in  [b,b] 

U(s) > S(s') = sP(s')  ; V(b) > bQ(b') - B(b')  . 

Lemma 1:  If the sequential bargaining mechanism < ,x> is 

incentive compatible, then the seller's expected payoff U is convex 

and decreasing, with derivative dU/ds = -P almost everywhere on 

[s,s], her discounted probability of agreement P is decreasing, and 

s s 
U(s) - U(s) = /P(u)du  ; S(s) - S(s) = / - u dP(u)  .    (S) 

s s 

Similarly, the buyer's expected payoff V is convex and increasing, 

with derivative dV/db = Q almost everywhere on  [b,bl , his discounted 

probability of agreement Q is increasing, and 

b b 
V(b) - V(b) = /Q(u)du  ; B(b) - B(b) = / u dQ(u) (B) 

b b 

Proof: By definition, seller s achieves the payoff U(s) = 

S(s) - sP(s). Alternatively, seller s can pretend to be seler  s'  in 

which case her payoff is S(s') - sP(s'). In the direct revelation 

game, the seller s must not want to pretend to be seller s', so we 

have U(s) > S(s') - sP(s')  for all s, s' G [s,s], or 

U(s) > U(s') - (s - s')P(s') 

implying that U has a supporting hyperplane at  s'  with slope 

-P(s') < 0.  Thus U is convex and decreasing with derivative 
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dU/ds(s) = P(s) almost everywhere and P must be decreasing. Since 

P is monotone, it is differentiable almost everywhere and we have 

that dS/ds = s(dP/ds), which yields  (S). The proof for the buyer is 

identical. Q.E.D 

Lemma 1 indicates the stringent requirements incentive compati- 

bility imposes on the players' utilities.  In particular, it suggests 

how one can construct an incentive-compatible payment schedule x, given 

a probability of agreement distribution T for which the seller's 

discounted probability of agreement P(s) is decreasing in s and the 

buyer's discounted probability of agreement Q(b)  is increasing in b. 

Lemma 2: Given the sequential bargaining mechanism <T,x> such 

that P is decreasing, Q is increasing, and S and B satisfy (S) 

and (B) of Lemma 1, then <T,x> is incentive compatible. 

Proof:  A mechanism is incentive compatible for the seller if for 

all s, s' G Is,s], 

S(s) - sP(s) > S(s') - sP(s')  . 

Rearranging terms yields the following condition for incentive compatibility 

s[P(s') - P(s)] + S(s) - S(s') >  0  . (S') 

From (S), we have 

S(s) - S(s') = / - u dP(u) 
s 



-ik- 

and from the fundamental theorem of integral calculus^/ 

8' 

slP(s') - P(s)] = s/dP(u)  . 
s 

Adding the last two equations results in 

s[P(s') - P(s)] + S(s) - S(s') = /(s - u)dP(u) >  0 
s 

where the inequality follows because the integrand  (s - u)dP(u)  is 

nonnegative for all s, u E (s,s], since P is decreasing. Hence, 

<T,x> satisfies the incentive-compatibility condition (S'). An 

identical argument follows for the buyer. Q.E.D. 

Individual Rationality 

The sequential bargaining mechanism <T,x> is individually 

rational if every type of player wants to play the game:  for all s in 

[s,s]  and b in  [b,b] , 

U(s) >  0  ;  V(b) > 0  . 

In light of the monotonicity of U and V proven in Lemma 1, any 

incentive-compatible mechanism <T,x> will satisfy individual 

rationality if the extreme high-cost seller and low-valuation buyer 

receive a nonnegative payoff; that is, an incentive-compatible 

mechanism <T,x> is individually rational if and only if U(s) >  0 and 

V(b) > 0. 
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The following lemma describes how one can check whether or not a 

sequential bargaining mechanism is individually rational. It is 

convenient to state the lemma in terms of the simplified bargaining 

mechanism <t,x> rather than <T,x>. Recall that for the sequential 

bargaining mechanism <t,x>, we have 

b b ..    .v 
S(B) Jx(s,b)g(b)db  ; P(s) = Je-ptU'%(b)db 

b b 

B(b) = Jx(s,b)f(s)ds  5 Q(b) = /e"at(s''b)f(s)ds  . 

Lemma 3:  If the sequential bargaining mechanism <t,x> is 

incentive compatible and individually rational, then 

U(i) + V(b) = E{[b - i^I,e-«(s,b) _ [s + |U).]e-Pt(s,b)} > Q t     (us) 

where the expectation is taken with respect to s and b. 

Proof: First note that from lemma 1, for (t,x) to be indivi- 

dually rational it must be that U(s) > 0 and V(b) >  0. For the 

seller, we have 
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s s s 
/ U(s)f(s)ds = U(s) + / / P(u)du f(s)ds (US) 
s s s 

s 
= U(s) + / F(s)P(s)ds 

s 

= U(i) + / / F(s)e_pt(s''b)g(b)ds db 
b s 

where the first equality follows from lemma 1 and integration by parts, 

and the second equality results from changing the order of integration. 

Similarly for the buyer, we have 

/V(b)g(b)db = V(b) + / /[l - G(b)]e"CTt(s'lD)f(s)ds db  . (UB) 
b b s 

Rearranging terms in (US) and (UB) and substituting the definitions 

for U(s) and V(b), results in the desired expression (IR) for 

U(s) + V(b). Q.E.D. 

Lemma k:     If the function t(*,»)  is such that  P is decreasing, 

Q is increasing, and (IR) is satisfied, then there exists a function 

x(»,»), such that <t,x> is incentive compatible and individually 

rational. 

Proof:  The proof is by construction.  Let 

b        s 
x(s,b) = /u dQ(u) + /u dP(u) + c 

b        s 
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where c is a constant chosen so that V(b) = 0. To compute c, notice 

that 

Thus, 

s 
V(b) = bQ(b) - Jx(s,b)f(s)ds 

s 

s s 
= bQ(b) - c - / /u dP(u)f(s)ds 

s s 

s 
= bQ(b) - c + /s[l - F(s)]dP(s) = 0 

s 

s 
c = bQ(b) + Jsll - F(s)]dP(s)  . 

s 

Incentive compatibility for the seller is verified by showing that 

the seller s is better off reporting s than s' *  s:  for all s, 

s* G (s,s) , 

s[P(s') - P(s)] + S(s) - S(s') = s/ dP(u) - / u dP(u) 
s       s 

= / [s - u]dP(u) > 0 
s 

since P is decreasing. An identical argument holds for the buyer. 

Since V(b) = 0 and <t,x> is incentive compatible and satisfies 
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(IR), it follows from lemma 3 that U(s) >  0. Thus, the bargaining 

mechanism <t,x> is incentive compatible and individually rational. Q.E.D. 

Sequential Rationality 

To understand how learning takes place in a sequential bargaining 

mechanism, it is best to interpret the direct revelation game as follows. 

At time zero (after the players know their private information), the 

players agree to adopt a particular sequential bargaining mechanism 

<t,x> that is interim efficient.  (Note that any interim efficient 

mechanism can be chosen as a Nash equilibrium in an appropriately 

defined "choice of mechanism" game.) The players then report their 

private information in sealed envelopes to a mediator, who will then 

implement the mechanism <t,x>.  (Actually, a third party is not 

necessary, since the role of the mediator can be carried out by a 

computer that is programmed by the bargainers to execute the mecha- 

nism.) After opening the envelopes, the mediator does not announce the 

outcome immediately by saying something like "Trade shall occur two 

months from now at the price of one thousand dollars," but instead waits 

until two months have past and then announces "Trade shall occur now at 

the price of one thousand dollars." It is necessary that the mediator 

wait until the time of trade in order for the mechanism to be 

sequentially rational, since otherwise the bargainers would have an 

incentive to ignore the mediator's announcement and trade immediately. 

As time passes, the players are able to refine their inferences 

about the other player's private information based on the information 

that the mediator has not yet made an announcement.  Initially, it is 
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common knowledge that the players' valuations are distributed according 

to the probability distributions F and G, but after T units of time 

have elapsed the common knowledge beliefs become the distributons F 

and G conditioned on the fact that an announcement has not yet been 

made: 

F (s) = F(s|t(s,b) > T)  ; G (b) = G(b|t(s,b) > T)  . 

Thus, at any time T > 0, the mechanism <t,x> induces an outcome 

function t(s,b) = t(s,b|F ,G )  for all s and b. A mechanism 
T  T 

<t,x> is sequentially rational if at every time T > 0 the induced 

outcome function t(s,b|F ,G )  is interim efficient; that is, there 

does not exist a mechanism <t',x'> preferable to <t,x> at some time 

T >  0 for all remaining traders and strictly preferred by at least one 

trader. 

The following lemma relates the definition of sequentially 

rational to common knowledge dominance. 

Lemma 5: A sequential bargaining mechanism <t,x> is 

sequentially rational if and only if it is never common knowledge that 

the mechanism t(*,*|F ,G )  it induces over time is dominated by an 

alternative mechanism. 

Proof: From Theorem 1 of Holmstrom and Myerson [1983] , we know 

that a mechanism is interim efficient if and only if it is not common 

knowledge dominated by any other incentive-compatible and individually- 

rational mechanism. Q.E.D. 
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A necessary condition for a mechanism to "be sequentially rational 

is for the bargainers to continue negotiations so long as each expects 

positive gains from continuing. For the model here, since there are no 

transaction costs (only delay costs), this means that negotiations 

cannot end if there exists a pair of players that have not yet come to 

an agreement, hut for which agreement is beneficial at some point in the 

future. Formally, for the bargaining mechanism <t,x> to be sequenti- 

ally rational it must be that for all potential players, a failure to 

reach agreement implies that there is some point beyond which agreement 

is never beneficial:  for all s and b, 

t(s,b) =»+3t > 0 such that V x > T , s >  be p"° 

The condition s > be       is simply a statement that trade is not 

beneficial at time T, since 

-px  . -ax    .  „    -pt . , -ax    . . (p-a)x 
x-se   +be   - x > 0 ~ se   >be   ~ s > be 

Notice that the strength of ths requirement depends on the relative 

magnitudes of the players' discount rates. When p > a, then 

(p-a)x 
e     • °°   as x • 0°, so for all potential pairs of players it is 

never the case that there exists a time at which trade is never bene- 

ficial in the future. Thus, when p > a, the mechanism <t,x> is 

sequentially rational only if trade always occurs: t(s,b) < °° y s,b. 

Likewise, when p > o, then e     • 0 as x + •», so for every pair 

of players there is always a point at which trade becomes undesirable 
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for all times in the future. Finally, if  p = a    then the necessary 

condition for sequential rationality becomes t(s,b) = °° + s > b: trade 

must occur whenever the gains from trade are initially positive. 

In order to state this necessary condition in a lemma, it will be 

useful to define the set B to be the set of potential traders for 

which trade is always beneficial at some time in the future: 

B = {(s,b)|p > o or (p = o and s < b)}  . 

Lemma 6:  Any mechanism <t,x> that excludes trade over a 

nonempty subset of B violates sequential rationality. 

Proof: Let  N C B be the set for which trade never occurs. 

Then at some point T the induced mechanism has t(s,b|F ,G ) = • for 

all remaining traders, which includes N.  But this mechanism is not 

interim efficient, since it is dominated by a mechanism that results in 

a positive probability of trade for some traders in N (a partially 

pooling equilibrium with this property will always exist).       Q.E.D. 

I claim that sequential rationality is a necessary condition for 

rationality in games with incomplete information in which commitment is 

not possible.  If a mechanism is not sequentially rational, then at some 

point in time it is common knowledge that all potential agents would 

prefer an alternative mechanism and hence this alternative mechanism 

will be adopted by the agents at that point in time.  Thus, it would be 

inconsistent for the players to believe that the original mechanism 

would be carried out faithfully. 
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Necessary and Sufficient Conditions for Perfection 

Lemmas 1-5 are summarized in the following theorem, vhich gives 

necessary and sufficient conditions for the sequential bargaining 

mechansim <t,x> to he perfect. 

Theorem 1: A sequential bargaining mechanism <t,x> is incentive 

compatible if and only if the functions 

b s 

S(s) = Jx(s,b)g(b)db  ;  P(s) = Je-pt(s'b)g(b)db 
b b 

B(b) = Jx(s,b)f(s)ds    Q(b) = Sje-at{s^)t(a)i3 

are such that P is decreasing, Q is increasing, and 

s b 
S(s) - S(s) = / - u dP(u)  ; B(b) - B(b) = / u dQ(u)  .  (IC) 

s b 

Furthermore, for t such that P is decreasing and Q is increasing, 

there exists an x such that <t,x> is incentive compatible and 

individually rational if and only if 

u(i) + v(b) = £{[b _L^l]e-«t(».b) . [8 +|U).]e-pt(s,b)} > 0 t (IR) 

Finally, the mechanism <t,x> is sequentially rational if and only if 

it is never common knowledge that the mechanism it induces over time is 

dominated by an alternative mechanism. 



-23- 

U.   Efficiency 

The set of perfect bargaining mechanisms is typically quite large, 

which means there are many extensive-form games with equilibria satis- 

fying incentive compatibility, individual rationality, and sequential 

rationality. To narrow down this set, it is natural to assumed addi- 

tional efficiency properties. Three notions of efficiency, described at 

length by Holmstrom and Myerson [19831, are ex post, interim, and ex 

ante efficiency. The difference among these concepts centers on what 

information is available at the time of evaluation:  ex ante efficiency 

assumes that comparisons are made before the players know their private 

information; interim efficiency assumes that the players know only their 

private information; and ex post efficiency assumes that all information 

is known. 

Ex Post Efficiency 

Ideally one would like to find perfect bargaining mechanisms that 

are ex post efficient. The mechanism <t,x> is ex post efficient if 

there does not exist an alternative mechanism that can make both players 

better off in terms of their ex post utilities (after all information is 

revealed)^-'  Equivalently, for a mechanism to be ex post efficient, it 

must maximize a weighted sum a (s,b)u(s) + a (s,b)v(b) of the players' 

ex post utilities for all s and b, where <*.(•»•), aA*,m)   >  0 and 

the ex post utilities of seller s and buyer b are 

/  , \   / , \    -pt(s,b)     / .;  , -crt(s,b)   /  , v 
u(s,b) = x(s,b) - se        ; v(s,b) = be       - x(s,b; 
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Since the payoff functions are additively separable in money and goods, 

and thus utility is transferable between players, we can assume equal 

weights  (ct (s,b) = ot (s,b) = 1 V s,b) without loss of generality. 

In order to simplify notation, define p(s,b) = e~ ^s'  , so that 

p(s,b)  is the discounted probability of agreement for seller s given 

that the buyer has valuation b, and p(s,b)  is the discounted 

probability of agreement for buyer b given the seller has cost s. 

With this change, a sequential bargaining mechanism becomes the pair of 

functions <p,x> where p:  [s,s] x [b,b] • [0,l]. The bargaining 

mechanism <p,x>, then, is ex post efficient if for all s E [s,s] and 

b E [b,b], the function p(s,b) is chosen to solve the program 

max TT(P) = bp - sp 
PE(O,I] 

The first-order condition is 

dir  _^ a-1     p-1 
^ = dbp   - psp   =0 

or 

tfb  P"° 
P= * 

Checking the boundary conditions and assuming s,b >  0, yields 
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f  1     if s < b , ps < ob 

1 
P-o 

p*(s,b) = ](—)     if p > a    , ps > ob 
ps 

0    if p < a    , s >  b" 

The following theorem demonstrates that it is impossible to find 

ex post efficient mechanisms, if the bargainers are uncertain about 

whether or not trade should occur immediately. This result is shown in 

an example in Cramton [1983]• 

Theorem 2: There exists an incentive-compatible individually- 

rational bargaining mechanism that is ex post efficient if it is common 

knowledge that trade should occur immediately. However, an ex post 

efficient mechanism does not exist if the buyer's delay cost is at least 

as great as the seller's and it is not common knowledge that gains from 

trade exist. 

Proof: Suppose that it is common knowledge that trade should 

occur immediately. Then three cases are possible: (l)  p < a and 

s < b, (2) p > a and ps < rfb, and (3> p » • and a < ». I need to 

show that p*(s,b) = 1 for all s,b satisfies (IR). For cases 1 

and 2, 
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u(i) + v(b) = e{[b-^£^-) - l.+$f}]} 

r 1 - G(b)i r     t F(s), 

b s 
= J[bg(b)  - 1 + G(b)]db - J[sf(s)  + F(s)]ds 

b s 

= bG(b)|*  - b + b - sF(s)|   S 

'b - '   s 

= b - s > 0 

where the integration is done by parts.     In case 3, 

U(5)  + V(b)  = e{b - 1 ~ffi]  = b > 0     . 

Then by lemma k,  there exists an x such that <p,x> is incentive 

compatible and individually rational. 

Now assume that it is not common knowledge that gains from trade 

exist and the buyer's delay cost is at least as great as the seller's 

(p < a).    Notice that when p < o we get that <p,x> is ex post 

efficient if trade occurs without delay whenever there are positive 

gains from trade: 

P*(s,b) = 
1 if s < b 

0 if s >  b 

Substituting this  function for    p    into  (IR) yields 
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U(s)  + V(b) 

b min{b,s} b min{b,s| 
= / / [bg(b)  + G(b)  - l]f(s)ds db - / / lsf(s)  + F(s)]ds g(b)db 

b 8 b s 

b b _ 
/(bg(b)  + G(b)  - l]F(b)db - / min{bF(b),s}g(b)db 
b b 

b b 
- /(I - G(b)]F(b)db + /(b - sTg(b)db 

b s 

b b 
/(l  - G(b)]F(b)db + /[l  - G(b)]db 
b 

s 
/[l - G(u)]F(u)du    . 
b 

Thus, any incentive-compatible mechanism that is ex post efficient must 

have 

s 
U(s) + V(b) = - /(l - G(u)]F(u)du < 0 

b 

and so it cannot be individually rational. Q.E.D. 

When the seller's delay cost is greater than the buyer's and it 

is not common knowledge that trade should occur immediately, a general 

proof that ex post efficiency is not achievable cannot be given due to 

the complicated expression for p*(s,b)  in this case. However, 
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analysis of examples (see section 5) suggests that ex post efficiency is 

typically unobtainable. 

Ex Ante Efficiency 

The strongest concept of efficiency, other than ex post efficiency 

(which is generally unobtainable), that can be applied to games of 

incomplete information is ex ante efficiency. A player's ex ante 

utility is his expected utility before he knows his type. Thus, given 

the sequential bargaining mechanism <p,x>, the seller's and buyer's ex 

ante utilities are 

s s b 
0 = Ju(s)f(s)ds = / /(x(s,b) - sp(s,b)p]g(b)db f(s)ds 

s s b 

b b s 
V = /V(b)g(b)db = / /[bp(s,b)° - x(s,b)jf(s)ds g(b)db . 

b b s 

The mechanism <p,x> is ex ante efficient if there does not exist an 

alternative mechanism that can make both players better off in terms of 

their ex ante utilities. Thus, for a mechanism to be ex ante efficient, 

it must maximize a weighted sum a  + a   of the players' ex ante 

utilities, where CL ,a    >  0. For tractability and reasons of equity, I 

will assume equal weights  (o = a = l).—'    The use of unequal weights 

would not significantly change the results, but would greatly complicate 

the analysis. 

If the bargainers were to choose a bargaining mechanism before 
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they knew their types, it would seem reasonable that they would agree to 

a scheme that was ex ante efficient.  It is generally the case, however, 

that the players know their private information before they begin nego- 

tiatons, and therefore would be unable to agree on an ex ante efficient 

mechanism, since the players are concerned with their interim utili- 

ties U(s) and V(b) rather than their ex ante utilities U and V. 

Nevertheless, it may be that the sequential bargaining mechanism is 

chosen by an uninformed social planner or arbitrator in which case the 

selection of an ex ante efficient mechanism would be justified. 

Alternatively, one might suppose that the choice of a bargaining 

mechanism is based on established norms of behavior and that these norms 

have evolved over time in such a way as to produce ex ante efficient 

mechanisms. In situations where the choice of a bargaining mechanism 

does not occur before the players know their types or is not handled by 

an uninformed third party, such as an arbitrator, ex ante efficiency is 

too strong a requirement. The weaker requirement of interim efficiency, 

which requires that there does not exist a dominating mechanism in terms 

of the player's interim utilities U(s) and V(b), is more appropriate. 

The sum of the players' ex ante utilities for the bargaining 

mechanism <p,x> is given by 

b s 
0 + 7 = / /[bp(s,b)  - sp(s,b)P)f(s)g(b)ds db  . 

b s 

A bargaining mechanism, then, is ex ante efficient if it maximizes this 

sum subject to incentive compatibility and individual rationality: 
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max  e{bp(s,b)  - sp(s,b) } such that 
P(-,0 

(p) 

e{[b - 1 ^ffillp(8,b)
0 - [s • f[|}]p(s,b)

p) >  0  , 

where p is chosen so that P is decreasing and Q is increasing. 

Multiplying the constraint by X > 0 and adding it to the objective 

function, yields the Lagrangian 

L(p,X) = e{((l + X)b - X 1(1)   0p(s,b) - ((1 + X)s + X^-Jj)p(s,b)P} 

/,   >\ U^ X  1 - G(bK , . »a  , X  F(sh , _»pi 
- (1 + Me{(b - 3-^  g(b)  )p(s,b) - (s + ^—^ fOTb(s,b)p} 

For any a >  0, define the functions 

/  ^       F(s)   .,_  v  .    1 - G(b) c(s,a) = s + a jj—y        d(b,a) = b - a —-r^l— . 

Then the Lagrangian (ignoring the constant  (l + X)) becomes 

L(p,X) = e{d(b,a)p(s,b)° - c(s,a)p(s,b)P}  , 

which is easily maximized by pointwise optimization. The first-order 

condition is 

d    , o-l     p-1 
dp" = °dp   " pcp 

or 
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Establishing the boundary conditions and noticing that 

c(#,*) > 0, yields the optimal solution 

1 if c(s,cx) < d(b,a)  , pc(s,a) < ad(b,a) 

1 

Pa(s,b) = < (^^^i)      if P > a , pc(s,a) > ad(b,a) > 0 
pc v s, ay 

0       if  [p < a,c(c,a) < d(b,o)]  or d(b,a) < 0 

The following theorem determines how to find an ex ante efficient 

mechanism for any sequential bargaining game. 

Theorem 3:  If there exists an incentive-compatible mechanism 

<p,x> such that p = p  for some a in  [0,l]  and U(s) = V(b) = 0, 

then this mechanism is ex ante efficient. Moreover, if c(»,l) 

and d(*,l) are increasing functions on  [s,sl and  [b,b]  respecti- 

vely, and ex post efficiency is unobtainable, then such a mechanism must 

exist. 

Proof: The first sentence of this theorem follows from the fact 

that the Lagrangian L(p,X) is maximized by the function p  with 
a 

a = A/1 + X.  Hence, p  yields an ex ante efficient mechanism provided 

the individual-rationality constraint is binding. 

To prove the existence part of the theorem, suppose that c(»,l) 

and d(»,l) are increasing, and that the players are uncertain about 

whether or not trade should occur immediately. Then for every 

a      [0,l], c(*,l) and d(»,l) are increasing, which implies that 

p (s,b)  is increasing in s and decreasing in b. Thus, P is 
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decreasing and Q is increasing as required by incentive and 

compatibility. 

It remains to be shown that there is a unique a €E [0,l], for 

which the individual-rationality constraint is binding. Define 

R(o) = e{d(b,l)lpa(s,b)] _ c(s,l)!pa(s,b)r} 

so that R(a)  is the value of the integral in the individual- 

rationality constraint as a function of a. First, notice that 

R(l) >  0, since the term in the expectation is nonnegative for all s 

and b. Furthermore, R(0) < 0, since there does not exist an ex post 

efficient mechanism. Therefore, if R(a)  is continuous and strictly 

increasing in a, then there is a unique a €E [0,l]  for which 

R(o) = 0. 

The continuity and monotonicity of R(») are most easily verified 

by considering two cases. 

Case 1:  (p < a). When p < a, then 

Pa(s,b) = 
1 if c(s,a) < d(b,a) 

0 if c(s,a) >  d(b,a) 

Thus, p (s,b)  is decreasing in a, since 

„/••_  \    r       \       t-L. \ rl - 0(b)  F(sh d(b,ot) - c(s,a) = (b - s) - a( g(b)  + JJ^J) 

is decreasing in a. Thus, for a < 3, R(B) differs from R(o) only 

because 0 =p (s,b) <p (s,b) = 1 for some (s,b) where 
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d(b,3) < c(s,3) and so d(b,l) < c(s,l). Therefore, R(») is stictly 

increasing. 

To prove R(*)  is continuous, observe that, if c(s,l) and 

d(b,l) are increasing in s and b, then c(»,a) and d(#,a) are 

strictly increasing for any a <  1. So given b and a, the equation 

c(s,a) = d(b,a) has at most one solution in s, and this solution 

varies continuously in b and a. Hence, we may write 

b r(b,a) 
R(o) = / /    (d(b,l) - c(s,l))f(s)g(b)ds db 

b s 

where r(b,a) is continuous in b and a. Thus, R(a) is continuous 

in a. 

Case 2:  (p > a).    When p > o, then 

Pa(s,b) =
H 

Since 

j-ad(b,a)> 
Lpc(s,a)' 

p-a 

if pc(s,a) < od(b,a) 

if pc(s,a) > od(b,a) > 0 

if d(b,a) < 0  . 

A(^    \    t       \       ^ r, 1 - gCb) , F(s)^ ad(b,a) - pc(s,a) = db  - ps - a[a —-^r— + jr^yJ 

ad(b,a) 
pc(s,a) P 

b - a 
1 - G(b) 

g IbT 
5 + ° fTiT 

-) 

and d(b,o) are decreasing in a, p (s,b) is decreasing in a. Thus, 

for a < 3, R(B) differs from R(a) only because p (s,b) < p (s,b) 
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where ad(b,a) < pc(s,a). Therefore, R(') is strictly increasing. 

Since c(#,a) and d(»,a) are strictly increasing for any 

a < 1, the equation d(b,a) = 0 has at roost one solution in b and the 

equation pc(s,a) = ad(b,a) has at most one solution in s, and the 

solutions vary continuously in b and a. Hence, we may write 

b r(b,a) 
R(o) =  / [ /  (d(b,l) - c(b,l)]f(s)ds 

q(ot)  s 

+  / (d(b,l)[p (s,b)]° - c(s,l)[p (s,b)]p)f(s)ds]g(b)db 
r(b,a)       a a 

where q(a) and r(b,a) are continuous in b and a. Therefore, 

R(o) is continuous in a. 

Since R(»)  is continuous and strictly increasing with R(0) < (0) 

and R(l) >  0, there must be a unique a  [0,l]  such that 

R(a) = 0 and p (s,b)  is ex ante efficient. Q.E.D. 

It is worthwhile to point out that the requirement in the 

existence part of theorem 3 that c{",l)  and d(»,l) be increasing 

functions is satisfied by a large range of distribution functions. A 

sufficient condition for c(»,l) and d(«,l) to be increasing is for 

the ratio of the distribution and the density to be increasing. This is 

a local characterization of the monotone likelihood ratio property and 

is satisfied by many distributions, such as the uniform, exponential, 

normal, chi-square, and Poisson distributions. 
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I now prove that the ex ante efficient mechanism typically 

violates sequential rationality, and hence show that bargainers who are 

unable to make binding commitments are worse off (in an ex ante sense) 

than those bargainers able to commit to particular strategies. 

Corollary 1: If ex post efficiency is unobtainable, c(#,l) and 

d(*,l) are increasing functions, and d(b,l) < 0 if p > o, then the 

ex ante efficient mechanism violates sequential rationality. 

Proof: By theorem 3, the ex ante efficient mechanism exists and 

is given by p  for some a  > 0.  Consider the set of traders that 

never trade under p , but for which trade is always beneficial at some 

point in the future: 

N= {(s,b)|p (s,b) = 0 and  (p = a    and s < b)]}  . 

By our hypothesis, this set is nonempty. Thus, from lemma 6, the 

mechanism p  violates sequential rationality. Q.E.D. 

5.   The Case of Uniform Symmetric Exchange: An Example 

In order to illustrate the theory presented in the earlier 

sections, it will be useful to look at an example. In particular, 

consider the case of uniform symmetric exchange in which both the 

seller's cost and the buyer's valuation are uniformly distributed on 

[0,lj. Then c(s,a) = (l + o)s and d(b,ot) = (l + a)b - a, which are 

strictly increasing when a = 1, so by theorem 3 we know that, for some 

o G [0,l), the mechanism p = p  is ex ante efficient. The desired 
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a    is found by setting R(o) to zero, so that U(s) = V(b) = 0. Again, 

it will be useful to consider two cases depending on whether p < a or 

p > a. 
Case 1:  (p < a). When p < o, then 

Pa(s,b) = 

1 if s < b - 

0 if s > b - ?!•. 

Define y = a/(l + a) Then we wish to find y e [0,1/2]  such that 

1 b-y 
R(a) = / / [2(b - s) - l]ds db = 0 . 

y 0 

Performing the integration yields 

(y -^)(y + l)2 = 0 

which has a root in [0,1/2] at y = 1/k.    Thus, a = 1/3 and 

1 

p(s,b) = « 

1 if s < b - 

l 
0 if s > b - i     . 

When p < a, ex ante efficiency is obtained by a mechanism that 

transfers the object without delay if and only if the buyer's valuation 

exceeds the seller's by at least l/k.     Perhaps somewhat surprisingly, 

the ex ante efficient mechanism in this case does not depend on p or 

a.  Since the value of the object is declining more rapidly for the buyer 

than the seller, it is always better to transfer the item immediately if 

at all.  Hence, even though the players can reveal information by 
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delaying agreement, in the ex ante efficient mechanism they choose to 

trade immediately or not at all, so that a static mechanism ex ante 

dominates any sequential bargaining mechanism. This static mechanism, 

however, is not sequentially rational, which illustrates Corollary 1. 

An extensive-form game that implements the ex ante efficient 

mechanism, when p < a, has been studied by Chatterjee and Samuelson 

[1983]. They consider the simultaneous-offer game, in which the players 

simultaneously announce prices and the object is traded if the buyer's 

bid exceeds the seller's offer. For this example, the seller's optimal 

strategy is to offer the price (2/3)s + (l/U) and the buyer's best 

response is to bid  (2/3)b + (l/12), which implies that trade occurs 

provided  (2/3)s + (l/U) < (2/3)b + (1/12)  or s < b - (l/U)  as in the 

ex ante efficient mechanism.  For this equilibrium, the price at which 

the object is sold is 

x(s,b) = - 

•=• (b + s) + 1/6 if s < b - •£ 

0      if B>b-r . 

The sume of the players' ex ante utilities is 

1 b-dA) 
0 + V = /    /  (b - s)ds db = ±r    , 

1/U   0 6k 

whereas the total utility from the ex post efficient mechanism is 

1 b 
/ / (b - s)ds db = 4 
0 0 
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Thus, 15»6%  of the gains from trade are lost, when p < o, due to delays 

in agreement. 

Case 2:  (p > a). When p > o, then 

1 

Pa(s,h) = - i  i        if s > -(b - ^—7—) v   ps     ' p 1 + a' 

if b < 1 + a  ' 

Making the substitution \i  = a/(l + a), we wish to find y  (0,1/2] 

such that 

1 ?*-») 
/[  /  (2b 
M   0 

- 1 - 2s )ds +  /  [(2b - 1) ^~Hl p" 

> 

_  2s o(b - „) p-oj  j  = 
ps       J  J 

Let 6 = a/p and Y = p/(p - a). After this substitution, we have 

1 «(b-y) 1 
/[ /  (2b - 1 - 2s)ds +  /  [(2b - l)(6(b - v)] T 

U  0 «(b-u) 

- 2|5(b - p)]1+Y]s"Yds]db = 0 

Performing the inner integration (assuming y *  l) yields 
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1 
J[«(b - y)[(2 - 6)b + 6M - 1] 

+ 3^-12(1 - 6)b + 26y - l](6(b - u)]Y(l -   [6(b - M)]1-Y)]db 

/[6((2 - 6)b2 -  (2u(l - 6)  + lib + y(l - 6y)] 

+ Y^—[2(1  -  6)b +  26y - l]([6(b  - y)lY  - 6(b  - u))]db 

1       . _ 
/ r

A~  [(« - Y(2  -  5))b2 -  (Y(1  + 2y(l  - 5)1   - 26y)b 
V 

+  6\i2 - Yy(l  -  6u)  +   [2(1  - 6)b +  2&\i -  l]6Y_1(b  - u)Y]db = 0 

Since 

}(b - y)Ydb = ^f    and    }b(b - u)Ydb = \\Vfy  (1 - l-rf)     . 

after integration we have 

j-T^ [3(1 - M3)(« - Y(2 - 5))  + |(l - u2)(y[l + 2y(l - 6)1   - 26y] 

+   (1  -  M)(6y2 - YW(1  -  «»))   + " fT^  ^26lJ  " X 

• a(i-«)[i-r=-f)]-o . 

Dividing by    6(1 - u)/(l - Y), yields 
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Figure 1 

y  as a function of the ratio of the player's discount rates 
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5(1 + v + y2)U - Y(2 - 6)]   + 5(1 + M)[Y(1 + 2y(l - 6))   - 26y] 

+  5y2 - Y»(l -  6M)   •  *T"^ = P)Y  (26y - 1 • 2(l - 5)(l - §-=-£))  = 0     . 

Given     6 = o/p,  a root     M       (0,1/2]     to  (R)   is easily  found numerically. 

The sum of the players'   ex ante utilities is computed as  follows: 

1     6(b-M) 1 *#. v  Y */v x   1+Y 
U + V = /   [/ (b  -s)ds  + /       [h(6(b  - M?)     - s(5(b  - M))       ]ds]db 

U    0 6(b-u) S S 

=  J[«(b  -  |i) 1(1  -|6)b + |fili] 
U 

+ iT^Kl  -  6)b  +  611] («(b  - M)]Y(l  -   [6(b  -  li)]1_Y)]db 

=  / 3-^—  [\\  6(1  + Y)   - Ylb2 +   [MY  -  6M(1  + Y)]b 
M 

+  \   6M2(1   +  Y)   +  6Y_1[(1   -  6)b   +  6M](b   - M)Y]db 

=  5^_"Y
M)   [g(l  +  M +  M2)[g6(l  + Y)   - Yl  +  |(1  +  M)[MY  -  «M(1  + Y)l 

•  \  6M2d  + Y)   •   <T"^ -  ">T(6U •(!-«)  ^f1)]      ' 

The value of M and the efficiency of the ex ante efficient 

mechanism relative to the first-best (full information) solution are 

shown in Figure 1 and Figure 2, respectively, as the ratio of the 

players' discount rates is varied from 0 to 1. Bargaining efficiency 

improves as the seller's discount rate is increased relative to the 
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buyer's. When the players' discount rates are equal, 15.6% of the 

gains from trade are lost due to delays in agreement. This inefficiency 

decreases to zero as P + °°, illustrating theorem 2. 

6.   Conclusion 

Two important features of any bargaining setting are information 

and time. Bargainers typically have incomplete information about each 

other's preferences, and therefore must communicate some of their 

private information in order to determine whether or not gains from 

trade exist.  One means of communication is for the agents to signal 

their private information through their willingness to delay agree- 

ment: bargainers that anticipate large gains from trade will be 

unwilling to delay agreement and so will propose attractive terms of 

trade that the other is likely to accept early in the bargaining 

process; whereas, bargainers expecting small gains will prefer to wait 

for better offers from their opponent. In this paper, I have described 

the properties of such a bargaining model, by analyzing a sequential 

direct revelation game. 

Modeling the bargaining process as a sequential game, where the 

agents communicate their private information over time, has two main 

advantages. First, from the point of view of realism, one commonly 

observes bargaining taking place over time. Second, any static 

bargaining mechanism, because it does not permit the agents to learn 

about their opponent's preferences, must end with positive probability 

in a situation where gains from trade are possible and yet no agreement 
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is reached. If both bargainers know that gains from trade exist, what 

is preventing them from continuing negotiations until an agreement is 

reached? By introducing the time dimension, and hence allowing the 

bargainers to communicate through their actions over time, one is able 

to construct perfect bargaining mechanisms, in which the bargainers 

continue to negotiate so long as they expect positive gains from 

continuing. 

When the bargainers discount future gains according to known and 

fixed discount rates, it was found that the bargainers may be better off 

(in terms of their ex ante utilities) using a sequential bargaining 

mechanism than a static scheme. This is because the time dimension 

introduces an additional asymmetry into the problem, which may be 

exploited in order to construct sequential bargaining mechanisms that ex 

ante dominate the most efficient static mechanisms. Even in situations 

where a static mechanism is ex ante efficient it is unlikely that such a 

mechanism would be adopted by the bargainers, since it necessarily would 

violate sequential rationality. 

The analysis presented here represents an early step towards 

understanding how agreements are reached in conflict situations under 

uncertainty. Several simplifying assumptions have been made in order to 

keep the analysis manageable. First, modeling the agents' time- 

preferences with constant discount rates is an appealing example, but 

not an accurate description of all bargaining settings. 2J     Second, the 

agents have been assumed to be risk neutral, but in many bargaining 

situations the agents' willingness to take risks is an important 
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bargaining factor. Third, I have restricted attention to rational 

agents who can calculate (at no cost) their optimal strategies. 

Certainly, few agents are so consistent and calculating. With less than 

rational agents, an agent's capacity to mislead his opponent becomes an 

important variable in determining how the gains from trade are divided. 

Finally, I have assumed that the players' valuations are independent. 

In many settings, the bargainer's valuations will be correlated so, for 

example, the seller's willingness to trade may be a signal of the 

valuation of the object to the buyer. 

Although it would be useful in future research to weaken the 

simplifying assumptions made here, perhaps the most fruitful avenue for 

future research is in analyzing specific extensive-form bargaining 

games. The advantage of looking at specific extensive-form games is 

that for such games the bargaining rules are independent of the probabi- 

listic beliefs that the players have about each other's preferences. In 

a direct revelation game, on the other hand, the bargaining rule depends 

in a complicated way on these probabilistic beliefs.  Because of this 

dependence, direct revelation games are not played in practice. 

Can one find a strategic game that comes close to implementing the 

ex ante efficient bargaining mechanism over a wide range of bargaining 

situations? Initial studies along these lines have been done by 

Fudenberg and Tirole [1983] , Sobel and Takahashi [1983], and Cramton 

[1983]. All three papers consider a model in which only one of the 

bargainers makes offers. When the player's reservation prices are 

uniformly distributed on  [0,l]  and their discount rates are equal, it 
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was found that this model resulted in 32% of the gains from trade being 

lost, as opposed to a l6% loss if the ex ante efficient bargaining 

mechanism vas adopted (Cramton [1983]). Thus, the players inability to 

commit to ending negotiations results in a bargaining outcome that is 

significantly less efficient than if commitment were possible. 

Perhaps a better candidate for a strategic bargaining game that is 

nearly ex ante efficient is the game in which the bargainers alternate 

offers.  This game was analyzed by Rubinstein [1982] in a setting of 

complete information, but an analysis with incomplete information has 

yet to be done.  Of particular interest is the alternating-offer game as 

the time between offers goes to zero, for this strategic game represents 

a very general bargaining rule:  at any time a bargainer may make a new 

offer or accept the most recent offer of his opponent.  It would be a 

pleasant surprise if such a reasonable bargaining game was nearly ex 

ante efficient over a variety of circumstances. 

A second promising area for future research is further study on 

the implications of sequential rationality to bargaining and to more 

general games of incomplete information. I intend to address this issue 

in depth in a future research paper entitled "Perfect Bargaining 

Mechanisms." 
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Footnotes 

]J        I hae assumed arbitrarily that the seller is female and the buyer 
is male. 

2/        Note that P is absolutely continuous, since U and S are 
absolutely continuous (they can be represented by indefinite 
integrals by (S)); thus, the fundamental theorem of integral 
calculus applies. 

3/   This is often referred to as "full-information efficiency" in the 
literature. Holmstrom and Myerson [1981I call this "ex post 
classical efficiency" to distinguish it from their concept of ex 
post incentive-efficiency, in which incentive constraints are 
recognized. 

hj        One might think that the assumption of equal weights is made 
without loss of generality, because the payoff functions here are 
additively separable in money and goods, and thus utility is 
transferable between players. Although this intuition is correct 
in a setting of complete information, it is false when there is 
incomplete information, because an ex ante transfer of utility 
will violate individual rationality for some players. 

3/        Fishburn and Rubinstein I1982] derive when the discounting 
assumption is valid. In particular, they prove that any 
preferences over bargaining outcomes that are monotonic, 
continuous, and stationary can be represented by discounting 
provided the bargainers exhibit impatience over all outcomes 
except that of no agreement. 
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Paper II; Bargaining With Incomplete Information 
An Infinite-Horizon Model With Continuous Uncertainty 

1.   Introduction 

Embedded within nearly every transaction is a bargaining 

problem: How should the gains from trade be split among the parties 

involved in the transaction? In a setting of perfect competition, the 

answer is simple: price is set so that the marginal seller and buyer 

reap no gains from trade. But in the absence of perfect competition, 

determining how to split the pie is a difficult question that has long 

been a concern of economists. Edgeworth, in fact, considered bargaining 

to be the fundamental problem of economics.  Of course he said this at a 

time when markets were far less established, and fixing pricing was less 

prevalent.  But today bargaining is just as important. 

Two approaches in economics have been taken in analyzing the 

bargaining problem. The first is the axiomatic or cooperative approach, 

which focuses exclusively on the bargaining outcome rather than on the 

process of bargaining. In the axiomatic theory, a number of assumptions 

are made that restrict the bargaining outcome to a unique solution from 

among the set of possible agreements. It is generally assumed that each 

party has perfect information about the other's preferences, and that an 

efficient solution will be reached without delay. The second method, 

and the one adopted in this paper, is the strategic approach, which 

models the parties' negotiating behavior explicitly as moves in a non- 

cooperative game. Each party employs a bargaining strategy based on his 

or her beliefs about the other's strategy. 
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It is my hypothesis that in any real-life bargaining setting the 

relative urgency of the parties to reach agreement, the information each 

party has about the other's preferences, and the parties' ability to 

commit to particular strategies are all important determinants of the 

bargaining outcome. A producer with superior knowledge of a consumer's 

preferences may be able to exploit this knowledge to obtain a higher 

price for the product.  Similarly, a producer supplying a customer who 

is in desperate need of a product may be able to get a higher price 

because of the customer's reluctance to delay agreement. The objective 

of this paper is to explore how information, time, and commitment affect 

the bargaining outcome.  Of particular interest are questions of 

efficiency and distribution: 

What are the sources of bargaining inefficiencies? 

What determines how the gains from trade are split among those 

involved in the transaction? 

In order to answer these questions, I develop a model of the 

bargaining process.  In the basic model, two parties, a buyer and a 

seller, are bargaining over the price of an object. As they bargain, 

their payoffs are discounted over time, so that both the buyer and the 

seller have an incentive to come to an early agreement. The process is 

complicated by the fact that each agent may have incomplete information 

about the preferences of the other agent.  In particular, the seller may 

not know how much the buyer values the object and the buyer may be 

unaware what it will cost the seller to acquire the object. The 
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sequential nature of the bargaining process combined with uncertainty 

over preferences means that communication between the agents is an 

important aspect of their behavior. The seller, when making an offer, 

must evaluate how the offer will reveal information to the buyer. 

Likewise, the buyer must interpret an offer as a signal of the seller's 

preferences and hence an indication of what to expect in subsequent 

rounds of the bargaining process. 

Although I have described the model in terms of a buyer and a 

seller negotiating over the price of an object, the model applies to a 

much broader class of conflict situations:  court settlements between 

plaintiff and defendant, contract negotiations between labor and manage- 

ment, trade agreements between nation states, and so on. 

My approach is to model this bargaining process as a sequential 

game with incomplete information. The bargaining game is one of 

incomplete information, since one or both of the bargainers has private 

information unknown to the other. Rationality is assumed by requiring 

that the bargaining strategies of the agents form a Bayesian Nash 

equilibrium (Harsanyi (1967]):  each player's strategy must be a best 

response to the other's strategy given their probabilistic beliefs of 

the state of the world. I further require that their behavior be 

sequentially rational (Kreps and Wilson [1982b]):  at any stage of the 

game, the players must play optimally, given their beliefs, for the 

remainder of the game. Thus, players are unable to commit to strategies 

they would not wish to carry out. For example, the seller cannot 

threaten to raise the price should the buyer reject, if it is in the 
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seller's best interest to lower the price in the event that the buyer 

rejects the offer. A Nash equilibrium that satisfies sequential 

rationality is said to be a sequential equilibrium. 

In situations where bargainers are unable to make binding commit- 

ments, it is unrealistic to end the bargaining exogenously after any 

finite number of periods - the bargaining should continue so long as the 

bargainers expect positive gains from continuing.  Thus, even when the 

players are better off (ex ante) restricting negotiations to a finite 

number of periods, if they are unable to commit to walking away from the 

bargaining table, then they must adopt strategies that assume 

negotiations could potentially continue indefinitely. To allow the 

bargainers to cut off negotiations when there are positive gains from 

continuing would violate sequential rationality, since the players would 

be better off continuing and receiving a positive expected gain than 

ending negotiations and receiving a payoff of zero. 

Related Research. Much has been written on bargaining. The work, 

both applied and theoretical, spans several disciplines, most notably 

labor relations, economics, psychology, and law. A discussion of all 

the approaches to the bargaining problem is not possible here.  Instead, 

I will limit my discussion to the three strands of current economic 

research upon which my work is based:  sequential bargaining, strategic 

information transmission, and bilateral trading. 

Its closest connection is with the sequential bargaining 

literature, which models the bargaining process as a noncooperative game 

in which a sequence of offers is made over time.  As time passes, delay 
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costs are incurred by both players, thus providing an incentive to reach 

an early agreement. Many of the papers on sequential bargaining examine 

the game in which the players have complete information about each 

other's preferences. Rubinstein [1982] considers the problem of how a 

fixed pie is split between two fully informed players. Players 

alternate making offers until an offer is accepted. When the players' 

payoffs are discounted over time, the game has a unique sequentially 

rational equilibrium in which trade occurs in the first period. This 

efficient bargaining outcome is due to the assumption of complete 

information: the players, being fully informed, are able to unravel 

what would happen in the course of the game, and thus are prepared to 

make and accept a reasonable initial offer and thereby avoid any costs 

of delay. Binmore (1980, 1982] , McLennan [1982a] , and Mori [1982] 

generalize the Rubinstein model to bargaining over a set of possible 

outcomes. In addition, they show that as the time between offers goes 

to zero (so that the person making the initial offer no longer has an 

advantage), the bargaining outcome approximates the Nash solution of the 

axiomatic theory, thus providing a noncooperative justification for the 

Nash solution. 

In all these models, the following result typically holds: 

complete information implies an efficient bargaining outcome. One 

explanation for the common occurrence of inefficient outcomes (strikes, 

wars, costly delays) is that bargaining rarely occurs in an environment 

of complete information. Players will typically use the early rounds of 

the bargaining game to communicate their preferences to their 
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opponent. For example, a seller with high costs will try to persuade or 

signal to the buyer that he has high costs by making higher offers than 

he would if he had lower costs. 

The papers of Binmore [l98l] , Cramton [1983b] , Fudenberg and 

Tirole [1983], Fudenberg, Levine and Tirole [1983], Sobel and Takahashi 

[1983], Perry [1982], and Rubinstein [1983] analyze both the incomplete 

information and sequential aspects of bargaining games, and thus are 

most closely related to my work. Fudenberg and Tirole characterize 

rational behavior of agents in a two-period model when there are two 

potential types of buyers and two potential types of sellers. Sobel and 

Takahashi focus mainly on an infinite-period model with one-sided 

uncertainty. I have freely borrowed from their insightful work in my 

analysis of this problem in section h.    Fudenberg, Levine, and Tirole 

continue the analysis of infinite-horizon bargaining with one-sided 

uncertainty. Rubinstein analyzes an infinite-horizon game with 

alternating offers in which there is one-sided uncertainty about a 

player's delay cost. Binmore explores the validity of the generalized 

Nash bargaining solution by comparing it with the outcome of a non- 

cooperative game with incomplete information.  Perry considers an 

infinite-horizon game with two-sided uncertainty in which the players 

have fixed transaction costs of making offers.  In contrast to the 

models with complete information, it is found in these models that 

incomplete information leads to inefficient bargaining outcomes. In all 

but Perry's model, agreement is delayed as a result of incomplete 

information. The players are able to communicate their private 
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formation through their willingness to delay aggrement. No such 

communication is possible in Perry's model, since every type of each 

player has the same willingness to delay agreement. As in the Spence 

signalling model [197^1, a requirement for there to be communication 

through delayed aggreement is that delay be more costly to those who 

expect large gains from trade. It seems plausible that this requirement 

would be met in most situations. Cramton [1983b] considers a sequential 

direct revelation game and characterizes the class of perfect bargaining 

mechanisms, which are incentive compatible, individually rational, and 

sequentially rational. 

Sequential games with incomplete information have also been 

analyzed in areas other than bargaining. In the industrial organization 

literature, several pioneering studies have sought to explain 

oligopolistic behavior that cannot be accounted for in a world of 

complete information (Kreps-Wilson [1982a] ; Kreps-Milgrom-Roberts-Wilson 

[1982]; Milgrom-Roberts [1982a], [1982b]; Saloner [1982]).  Closely 

related to these studies are models of information transmission, in 

which agents with divergent interests transfer information prior to 

making a decision (Crawford-Sobel [1981]; Green-Stokey [1981]; 

McLennan [1982]). 

Finally, there are a number of bilateral trading models that 

ignore the sequential aspects of bargaining, concentrating on incomplete 

information alone (Chatterjee [1982]; Chatterjee-Samuelson [1981]; Green- 

Honkapohja [1981]; Myerson [1979]; and Myerson-Satterthwaite [1983]). 

These studies focus on the choice of an efficient mechanism for 
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resolving the conflict among traders. A weakness of these papers is 

that by ignoring the time dimension the bargainers are unable to learn 

through past actions whether or not gains from trade exist. Hence, 

trade will frequently not occur even in situations where trade is 

profitable. 

Outline. 

Here I analyze an infinite-horizon model with two-sided 

uncertainty in which there is a continuum of potential buyers and 

sellers. My main interest is in the effects of incomplete information 

on the behavior of the agents; thus, most of the paper is spent 

analyzing the bargaining game in which each agent is unsure of the 

preferences of the other agent. Equilibrium behavior is also determined 

for the game with one-sided incomplete information. Although this game 

is of less general interest, due to the less realistic informational 

assumption, its analysis provides a convenient stepping stone to the 

more intricate case of two-sided uncertainty.  In Section 6, I examine 

how information, uncertainty, and timing influence the bargaining 

behavior of rational agents. The fundamental results are that: 

• Incomplete information leads to bargaining inefficiency. 

• Inefficiencies increase as preferences become more uncertain. 

• Bargainers with high delay costs are at a disadvantage. 

• Information is revealed more quickly, the higher the delay costs. 

Although these intuitive results are all derived for the special 

case in which the potential gains from trade are uniformly distributed, 

many of the results are true in more general settings as well. For 
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example, the conclusion that incomplete information leads to bargaining 

inefficiency has been observed in numerous economic models with 

incomplete information. On the other hand, the result that bargainers 

with high delay costs are at a disadvantage does not hold true for all 

distributions of the gains from trade. Fudenberg and Tirole [1981] have 

shown that at least in a two-period model it is possible for a player to 

benefit from a high delay cost. Perhaps the most novel result is the 

form of the equilibrium I derive, in which information is revealed 

gradually ove time and the rate of revelation depends on the players' 

costs of delay. In previous bargaining models with incomplete 

information, the communication process was either not modeled (as in the 

static models) or the learning was cut short due to a restricted 

bargaining horizon (as in the two-period models). 

2.   The Model 

Two parties, a buyer and a seller, are bargaining over the price 

of an object which can be produced by the seller at a cost s and is 

worth b to buyer.—'  The seller's cost s and the buyer's valuation 

b are also referred to as their reservation prices, since they repre- 

sent respectively the minimum and maximum price at which each would 

agree to trade. At every stage of the game, the seller makes an offer 

p, whch the buyer may accept or reject, should the buyer prompts the 

seller to make another offer in the next stage of the game. Both the 

buyer and the seller have costs of delaying the bargaining process. 

Specifically, their payoffs in the subsequent rounds are discounted 
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according to the discount factors 6  for the buyer and 6  for the 
b s 

seller, with 0 < 6, , 6 < 1. Thus the payoffs, if the buyer accepts 
b  s 

the n-th offer p, are 6,  (b - p)  for the buyer and 6 ~ (p - s)  for 
D S 

the seller. Should they fail to reach agreement both players' payoffs 

are zero. 

The buyer, though aware of his own valuation b, does not know the 

seller's cost of production s, but assesses her cost to be distributed 

according to the distribution F(s), with a positive density f(s) on 

[s,s]. Similarly, the seller knows her cost s, but can only assess the 

buyer's valuation to be distributed according to the distribution G(b), 

with a positive density g(b) on  [b,b]. The discount factors, the 

distributions of the potential buyers and sellers, and the structure of 

the game are common knowledge. In addition, it is assumed that both the 

buyer and the seller are solely interested in maximizing their expected 

monetary gain. 

Throughout this paper I deal primarily with the example in which 

the seller's cost is distributed uniformly on the interval  [s,s], and 

the buyer's valuation is distributed uniformly on  [b,b] and is inde- 

pendent of the seller's cost. It is natural to assume that s < b 

and s < b, for a seller with s > b or a buyer with b < s would have 

no hope of gaining anything from trade.  It will be shown that a cutoff 

strategy, in which the buyer accepts p^ if and only if his valuation 
t 

b exceeds an indifference valuation b. (p ), is optimal for the buyer 
Xt      Xf 

2/ in every period t.—  The buyer's use of a cutoff strategy together 

with the fact that a truncated, uniformly distributed random variable is 
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still uniformly distributed implies that the seller's problem takes on a 

simple form: at each stage, the seller selects a price given that the 

buyer's valuation is uniformly distributed on the interval  [b,b] where 

b is the most recent indifference valuation. This results in a 

stationary solution to the seller's dynamic programming problem, making 

the problem tractable. 

I derive an equilibrium in which the bargainers reveal gradually 

their private information over time. At each stage of the game, the 

buyer accepts the seller's offer p if his valuation is greater than 
OS 

some cutoff valuation b(p). Thus, a rejection by the buyer indicates 

to the seller that the buyer's valuation is less than b(p). Similarly, 

the extreme low-cost sellers (sellers with costs less than s)  make an 

offer p(s), which completely reveals their information; whereas, high- 

cost sellers  (s > s) pool together by making an offer that no buyer 

will accept. 

In sequential games with incomplete information, players typically 

have an incentive to hide their private information.  Thus, the seller 

would like to tell the buyer, "My costs are high, so you better expect 

to pay a high price," regardless of whether or not the seller's costs 

are in fact high. The buyer, of course, is aware of the seller's 

incentive to deceive and hence will not believe statements that are not 

backed up by actions. The seller, in order to convince the buyer that 

she has high costs, must take actions that a low-cost seller would be 

unwilling to take (as in a signalling problem such as Spence [197^1)• 

Likewise, a low-cost seller must take actions that no high-cost seller 
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would find attractive. Intuitively, this is why the seller reveals her 

private information in the way she does. Since low-cost sellers are 

unwilling to delay agreement by making high offers, a high-cost seller 

signals that her costs are high by making high offers. As the seller's 

cost increases, she will make higher and higher offers, which are 

accepted by fewer and fewer buyers. At some point (s = s), 

the seller makes an offer that no buyer will accept, since every buyer 

is better off waiting for lower prices in the future. All sellers with 

costs s > s are then unable to reveal their private information in the 

current round: a seller with cost s1 > s cannot convince the buyer 

that she has a cost s', since she has no way to back up her statement 

with actions that other sellers with costs s > s would be unwilling to 

take. These high-cost sellers must pool together, revealing only that 

their costs are greater than s. 

Exactly how much information is revealed in each round of 

negotiations will depend on the bargainers' costs of delay. If delay 

costs are high, more information will be revealed because the punishment 

to low-cost sellers of pretending to have higher costs is greater; 

whereas, if the seller's delay cost is low (6  close to one), then 

less information will be revealed by the seller, since she is more 

willing to delay agreement by offering higher prices. 

3.   General Characterization of Equilibria 

A sequential equqilibrium consists of functions that determine the 

players' optimal strategies given their information about how the game 
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has evolved for each information set, including information sets off the 

equilibrium path. The seller beings by choosing an optimal price 

schedule p (s) given her cost s and her belief that the buyer's 

valuation is distributed on  [b,b] with density g.—'  Next, the buyer 

decides to accept or reject the offer given the initial price p and 

his own valuation b; i.e., the buyer chooses a binary function 

a (p,b) £ {accept, reject}. This strategy can be simplified to an 
o 

indifference valuation b (p),since a cutoff strategy in which a buyer 

accepts the offer if and only if b >  b (p) is optimal for the buyer 

(as deerived in Theorem 1 below). When determining whether or not to 

accept or reject the offer p, the buyer must make an inference about 

the seller's cost: what informatin does the offer p reveal about the 

seller's cost? This inference then determines what prices the buyer 

expects in the future, which enables him to calculate whether he should 

accept the price p now or wait for lower prices in the future.  Should 

the buyer observe a price p in the range of the equilibrium price 

schedule p (s), then the buyer will update his prior belief of the 
o 

seller's cost using Bayes' rule.  If, however, the buyer observes a 

price p not in the range of the price schedule p (s), then he cannot 

use Bayes' rule to update his prior. Rather he must update his prior 

based on conjectures he has about the seller's cost when he is surprised 

by nonequilibrium behavior. These conjectures are needed to determine 

the buyer's best response to behavior off the equilibrium path, which in 

turn is used to evaluate the seller's benefits from deviating from the 

equilibrium. Of course, in equilibrium, the seller is better off 
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offering p (s) than deviating, since the seller's price schedule is a 
o 

best response to the buyer's strategy. 

At every stage of the game, the strategies are similar: the 

seller chooses an optimal price schedule pt given the history of 

events, and the buyer maintains a set of conjectures y  that determine 

his beliefs about the seller's cost should he observe nonequilibrium 

behavior.  No such conjectures are necessary for the seller since in 

equilibrium both possible actions for the buyer (accept or reject) occur 

with positive probability: the seller is never surprised by observing 

an event with prior probability zero. A sequential equilibrium, then, 

in the infinite-horizon bargaining game with two-sided uncertainty is 

the collection 

(pt(-),bt(.),ut(.)>;=0 

where u [s|p E p.([s,s])]  is a probability distribution representing 

the buyer's conjectures about the seller's cost, conditioned on the 

event that the seller offered a price p  that is not in the range of 

the equilibrium price schedule p (s). The equilibrium strategies p^. 

and b  and the conjectures y  must be such that at time t: 

(1) the buyer b (p)  is indifferent between accepting or 

rejecting the price p given his expectations of future prices based on 

his inference of the seller's cost, 

(2) the offer p (s) of seller s is optimal for the seller 

given that the buyer's valuation is distributed according to the 

distribution G(b) with support  [b,b ], and 
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(3) the conjectures u  imply that the seller s is better off 

offering the equilibrium price p.(s) than deviating by offering a 

price not in the range of the equilibrium price schedule p^. 

I now summarize a number of necessary conditions that every 

sequential equilibrium in the infinite-horizon bargaining game must 

satisfy. These properties are quite general, depending only on the fact 

that the distributions of the players' reservation prices have positive 

densities on an interval. The first condition provides a strong 

characterization of the players' expected payoffs. This result was 

first derived in Myerson and Satterthwaite (1983I. I present their 

proof for completeness. 

Let U(s) be the expected payoff to the seller given that her 

cost is s and let V(b) be the expected payoff to the buyer that 

given his valuation is b.  It is convenient to split each player's 

equilibrium payoff into two components:  the expected cost and the 

expected benefit of the transaction. Thus, let U(s) = S(s) - sP(s) 

and V(b) = bQ(b) - B(b) where 

00 00 

S(s) = £ <S P+(s)
pr{p  accepted}    P(s) = £ <S Pr{p.  accepted} 

t=0 s *     t t=0 s   t 

which may be interpreted as the expected payment to the seller and the 

discounted probability of agreement, respectively. Q(b) and B(b) are 

defined in the same fashion. 

Theorem 1:  Every sequential equilibrium in the infinite-horizon 

bargaining game with two-sided uncertainty has the following 
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characteristics: 

(1) The seller's expected payoff U is convex and decreasing, 

with derivative dU/ds = -P almost everywhere on  [s,s], her discounted 

probability of agreement P is decreasing, and 

s s 
U(s) - U(s) = /P(u)du    S(s) - S(s) = J-udP(u)  .    (S) 

s s 

Similarly, the buyer's expected payoff V is convex and increasing, with 

derivative dV/db = Q almost everywhere on  [b.b] , his discounted 

probability of agreement Q is increasing, and 

b b 
V(b) - V(b) = /Q(u)du    B(b) - B(b) = JudQ(u)  . 

b b 

(2) At every stage t, the buyer employes a cutoff strategy in 

which he accepts an offer pt if and only if his valuation b is less 

than some cutoff valuation b (p ). Thus, the seller's posterior belief 
X  X 

at time t of the buyer's valuation is G(b)/G(b ). 

(3) Expected price, conditional on agreement, decline over time; 

that is, for all buyers that reject p , 
X 

p > E(p  |agreememt at t + x)  T > 0. 
X       X + T 

Proof: 

(l) By definition, seller s achieves the payoff U(s) = S(s) - 

sP(s). Alternatively, seller s can pretend to be seller s'  in which 

case her payoff is S(s') - sP(s').  In equilibrium, seller s must not 

want to pretend to be seller s', so we have U(s) >  S(s') - sP(s')  for 
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all s, s'G ls,s],  or 

U(s) > U(s') - (s - s')P(s') 

implying that U has a supporting hyperplane at s' with slope 

-P(s') < 0. Thus U is convex and decreasing with derivative 

(dU/ds)(s) = -P(s) almost everywhere and P must be decreasing. 

Since P is monotone it is differentiable almost everywhere and we have 

that (dS/ds)(s) = s(dP/ds)(s), which yields (S). The proof for the 

buyer is identical. 

(2) Define V(b,H ) to be the equilibrium expected payoff at 

time t + 1 of a buyer with valuation b after a history H , and 

let Q(b,H ) be the discounted probability of trade for the buyer b 

after a history H+. Suppose a buyer with valuation b chooses to 

accept the offer p.,..  Then b - p. >  6, V(b,H. ).  Now consider a buyer 
« t   b    t 

with valuation b' > b. We wish to show that the buyer b' will prefer 

to accept pt; that is, V - p >  6 V(b',H ). Buyer b can follow the 

equilibrium strategy of buyer V, but it must be the case that buyer 

b does at least as well by following his own equilibrium strategy than 

that of buyer b'. Thus, 

V(b,Ht) >  V(b\Ht) - (V - b)Q(b',Ht) > V(b',Ht) + b - V  , 

and so 

* - pt > Vv(b'>V + b " b'' » 

or 
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fi^b' + (1 - «b)b - Pt > «bV(V,Ht) 

Since b' > 6V + (l - 6,)b, this yields 
b b 

V -pt>«bV(V,Ht)  , 

which implies that any buyer with valuation greater than b strictly 

prefers to accept p+  now, rather than wait for future offers. 

(3) Suppose buyer b rejects an offer of p, so that the 

bargaining continues. Then it must be that buyer b expects to do 

better by waiting; that is, he must expect to accept a price suffi- 

ciently less than p so as to compensate him for waiting. Since 

expectations are confirmed in equilibrium, it must be the case that 

expected price decline over time.  (Note that this argument does not 

imply that every bargaining realization has prices declining over time, 

only that on average prices decline. It is not inconceivable that the 

sellers could pool together in the first round at a price p and then 

separate in the next period in such a way that the highest cost seller 

offers a price greater than p.) Q.E.D. 

A final property that is very reasonable, but which cannot be 

proven in general, is that a seller with higher costs offers higher 

prices. This is certainly true in the one-shot game, but in the multi- 

period game the buyer might have strange beliefs that could sustain an 

equilibrium in which price does strictly decrease with s in some 

period. For example, the buyer might believe in the initial period that 

a high offer signals a low-cost seller. Such a belief could in fact 
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entice the low-cost seller to make higher offers in the initial period, 

but eventually the low-cost seller must make lower offers than a seller 

with higher costs. However, I do not allow the buyer to maintain such 

beliefs, and so restrict attention to monotonic equilibria. 

h.        Equilibrium Behavior with the Seller's Cost Known 

In periods following the seller's revelation of her private 

information, the players' behavior will be the same as in the game in 

which the buyer knows the seller's cost s, and the seller knows only 

that the buyer's valuation is uniformly distributed on  (b,b(p)]. Thus, 

to determine a separating equilibrium for the game with two-sided 

uncertainty, it is necessary to first determine an equilibrium in the 

game with one-sided uncertainty. 

Assume that the seller's cost s is known to the buyer 

(s = s), but the seller only knows that the buyer's valuation is 

uniformly distributed on  [b,b]  (without loss of generality, we can 

assume that s < b, for any buyers with b < s would not enter 

negotiations). I begin by determining the equilibrium for the n-stage 

game, and then establish an equilibrium in the infinite-horizon game by 

letting n go to infinity. It will turn out that the form of the 

infinite-horizon bargaining equilibrium will depend on whether s = b 

or s < b. With s = b, prices strictly decrease over time and even- 

tually converge to (but never reach) b. With s < b, after some finite 

number of periods, the seller offers the price p = b, which is accepted 

by the buyer with probability one, thus concluding the bargaining. 
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First consider the case with s = b, so the seller will never 

offer the price p = h. The players' equilibrium behavior (a sequence 

of prices for the seller and a sequence of indifference valuations for 

the buyer) is determined by solving a dynamic programming problem in 

which the seller chooses the offer that maximizes her present value of 

current and future gains, given her knowledge of the buyer's valuation, 

and subject to the constraint that the buyer will accept the offer only 

if his valuation is sufficiently high that he is better off accepting 

now than waiting for lower prices in the future. Namely, with i 

periods remaining in the n-stage bargaining game, define j to be 

n + 1 - i, so the seller chooses p, to maximize her expected gain 

u (s,b  ) given that the buyer's valuation is uniformly distributed on 

[*>Vi1: 

such that b - p = 6 (h - p  ) 
J      b j   j+1 

Theorem 2 (Sobel and Takahashi)— :  When s = b and the buyer's 

valuation is uniformly distributed on  [b,b ], the n-stage bargaining 

game with one-sided uncertainty has a unique sequential equilibrium with 

the seller's expected profit u (s,b  ) and price p (s,b  ) with i 

periods remaining and J = n + 1 - i given by 

,2 
1    (b1 1 " 8)< 

V'Vl5 =2CJ bj^ - b 
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P
J
(S

'VI
}
 

= cj(bj-i-s) + s 

where c = 1/2 and for i > 1 
n 

Moreover, the buyer's indifference valuation b (s,b  ) with i - 1 

periods remaining is given by 

1-6 + 5 c 
b1(s'b1-l) = 2(1-6 + 6 c b)'1-l6 c  (bJ-l ~ s) + S ' j  j   *\±     ob Yj+r  scj+i J 

Proof: The proof is by induction on n. With one period 

remaining, the seller wishes to choose p according to the program. 

bn 1 " P 

Vs'Vi5 * •" (p"s) b ~, -b p n-1 

so p (s,b ,) = (l/2)(b , + s) = (l/2)(b , - s) + s and 
n   n-1        n-1 n-1 

Vs'Vi) = (1/U)(Vi-s)2/(Vi-b)- 
With i periods remaining, the seller's expected profit is given 

hy 

Uj(s,b x) = max r"~Tb I(P ~ s)(bj-l " V + 6s(bj " b)uJ+l
(s'bJ )] 

(1) p  J_1  " 

such that b - p = 5 (b - p  ) 
J       D J   J+1 

Assume by the induction hypothesis that 
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uJ+l(s'V =|c 
(b,  - s)2 

3+1     b^-b 

PJ+1(8'V = cJ+l(bJ -s) + s 

Then    p =  (1 - 6 )b    + «. Ic,..(b,  - s)  + s], or 
D      j D      j+1      j 

(2) p = (1 - 5    + «.c..-)(b.   - s)  + s 
D D   j+1 J 

Substituting into (l) yields 

v-vi*= r vi^C(1 _ 6b + VW^J • s)(vi - v 
(3) J 

+ l6scJ+l
(bJ-s)^ 

which has a unique maximum^/ when 

(2(1 - 6 + 4c,..) - 60c,.1]b, = (1 - 6 + 6.C.x.)(b,  + s) - 6 e. _s 
b   b J+1    s j+1 J       b   b j+1  J-l       s J+1 

so, 

w        *> - * - sA^'-W (v - •' * • • 
Thus by substituting (U) into (2) and (3), we get 

(1 - 6^ + 6bc  )2 

V'^-l' = 2(1 - 6b + 6bcJ+1) - 5scJ+1 
(bJ-l " S) + S  ' ^ 

(1  - 5V  +  6vc^,)2 (b.   ,   -  s)2 

(    v      \      1 b        b J+1 
YS,Vl)  =2 2(1 -  6^  +  ic..,)   - 

Liz! 
'j—j-l'       2 2(1 -  6b  +  6bCj+]l   - 6scJ+1    bj-1 - b 

as  required. Q.E.D. 
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Equilibrium behavior in the infinite-horizon model is derived as 

an immediate consequence of Theorem 2 by letting n go to infinity.—' 

Corollary:  When s = b and the buyer's valuation is uniformly 

distributed on  [b,b], then the seller's equilibrium price p (s,b) in 

period i, her expected profit u(s,b), and the buyer's indifference 

valuation b    in period i are given by 

p. = c(b - s)d   + s 

b.  = (b - s)d   + s 

1  (b - B)2 

u = 2" c 
b - b 

where d = c/(l - 6+ 6c)  and c(6 ,6 )  is defined implicitly by 
b   b s b 

<! - 6b + V)2 
C
  2(1 - 6V + 6vc) -6c  * 

D     D       S 

The equations for c and d above can be solved simultaneously 

to yield 

d. i_ (1. /rrra)      c - 1 _ 6j 
s b 

(it is easy to see that 0 < c, d < 1 whenever 0 < 6 , 6 < l). 
b  s 

Now assume that s < b so that for sufficiently large n, the 

seller will at some point want to offer a price p = b that will be 

accepted with probability one. Then in the last period we have p = b 
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and u (s,b ,) = b - s. The equilibrium behavior in this case is 
n   n-1 

derived as before by induction. 

Theorem 3: For the n-stage game with s < b in which the seller 

ends the bargaining by offering p = b, the seller's price 

p (s,b .), her expected profit u (s,b  ), and the buyer's 

indifference valuation b (s,b  .. )  with  i periods remaining and 

J = n + 1 - i are given by 

V8,Vi] = xjVi + yjs + zj 

pj(s,Vi°= ?J-I 
+ V + ej 

Vs'Vi} = vT^ [aJbj-i+ (V + VVi+ p/ + V + V 

where Xj, yy  zy cy  iy  ey   ay   Bj , Vy  Py  oy  and Tj  are 

constants depending on b, 6 , and 6 . 

Proof:  The proof is analogous to that of Theorem 2, but much more 

tedious and so is done in the appendix. 

5.   Equilibrium Behavior with Two-Sided Uncertainty 

With two-sided uncertainty, the seller must be concerned with the 

information her offers reveal to the buyer, and the buyer must carefully 

interpret offers as indications of the seller's true cost. Here I will 

focus on a separating equilibrium over time in which at each stage, low- 

cost sellers (s < s) reveal completely their cost, while high-cost 

sellers pool together by offering a price so high that no buyer will 
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accept their offer. The equilibrium is monotonic in that sellers with 

higher costs offer higher prices:  p(s) is strictly increasing for 

s < s and constant for s > s. Other equilibria are possible, such as 

a partition equilibrium in which p(s) is a step function, but such 

partially revealing equilibria are intractable in the infinite-horizon 

game. Moroever, analysis of equilibria in the two-period model (Cramton 

(1983a]) suggests that the players have very little to gain by only 

revealing partially their information (it was found that the seller 

could typically increase her payoff by no more than one-tenth of one 

percent when she played the optimal partition strategy). 

For those sellers that reveal completely their private 

information, their price schedule p(s) is strictly increasing in s, 

so that the buyer is able to infer the seller's cost by inverting p(s); 

namely, s = p~ (p). Thus, the players' strategies for the remainder of 

the game will be as determined in the previous section where the 

seller's cost is known. However, to insure incentive compatitility one 

must give seller s the option of pretending to be some other seller 

s' if she so desires. Suppose at some stage of the bargaining the 

seller knows she is facing a buyer whose valuation is uniformly 

distributed on  [b,b] and she chooses to reveal (perhaps falsely) that 

her cost is s'. Seller s will choose s' and p = p0 so as to 

maximize her expected gain given that the buyer infers her cost to be 

s'(p) and accepts if b > b(p) = b : 

SLX (p - s)(b - b) + I  6^(pn - sKb^ - bn! 
,s' n=l 

max 

P 
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subject to 

(1) Sequentional Rationality. The seller's future offers 

P,>Pp»••• are chosen to maximize the payoff of seller s' given the 

buyer's future indifference valuations b.,bp,..., which are chosen so 

that buyer bn is indifferent between accepting pn now or waiting one 

period and accepting p    next period: 

n   n   b n   n+1    n 

(2) Incentive Compatibility. The buyer in equilibrium is not 

fooled: 

s'(-) = p"1*.) 

A few comments are in order. First, the above optimization 

problem applies only for the range of sellers  [s,s] that reveal 

completely their information (so that inversion of p(s) is 

possible). Second, the problem as stated only allows for deviations 

along the equilibrium path; that is, it is initially assumed that a 

seller s will imitate the behavior of seller s'  forever and hence 

never be detected as deviating from the equilibrium. Deviations off the 

equilibrium path are considered later in this section, when I establish 

conjectures that support the described equilibrium strategies. For 

example, a seller s may wish to pretend to be a seller with cost s' 

for three periods and then to be a seller with cost s" for two more 

periods and then act like herself for the remainder of the game. 

Actually, sequential rationality prequires that the seller's future 
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offers P.,P9,.^ be chosen to maximize the utility of seller s, not 

s'. However, since the buyer believes that the seller has cost s'  and 

so expects to see prices that maximize the utility of seller s', if the 

buyer observes prices that do not maximize the utility of seller s' 

then his subsequent behavior will be determined by his conjectures off 

the equilibrium path. I have chosen these conjectures in such a way 

that the seller is better off offering prices P1,pp,»». that maximize 

the utility of seller s', rather than surprising the buyer by offering 

prices not along the equilibrium path of seller s'. Finally, in 

equilibrium the buyer bn, who is indifferent between accepting or 

rejecting p  will strictly prefer to accept p    rather than wait 

for p 2'    Thus, to determine bn it is sufficient to equate what the 

buyer bn gets by accepting pn and what he gets if he waits one 

period and accepts p 

Three cases are possible depending on the position of the seller's 

cost s relative to the support  (b,b]  of the buyer's valuation. 

When s (possibly negative) is much less than b, then the seller will 

offer p = b initially, so as to be sure to reach agreement immediately 

7/ and avoid substantial costs of delay.—' As s increases towards b, at 

some point, say s = d , the seller is indifferent between offering 

p = b in the second period or waiting until the third period to offer 

p = b. It is at this point that the incentive compatibility constraint 

becomes binding:  if the seller's cost is less than dp, then her 

behavior in subsequent rounds is not a function of s, so the buyer's 

behavior b does not depend on s, which implies that the seller has no 
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incentive to deceive the buyer into believing she has some cost s' *  s; 

whereas, if the seller's cost is greater than d , then her second offer 

does depend on s, so the seller does have an incentive to fool the 

buyer. Finally, if s > b then the seller never offers the price 

p = b, so that the bargaining could potentially continue indefinitely. 

Thus, the following three cases are possible: 

(1) s < d?: the incentive compatibility constraint is not 

binding, because the seller offers p = b in the first or second period 

so that the buyer's behavior does not depend on the seller's cost. 

(2) s > b: bargaining may continue indefinitely. 

(3) dp < s < b: bargaining ends after a finite number of periods 

for all potential buyers, and the incentive compatibility constraint is 

binding. 

Case 1 (s < dp). The first case is handled easily. Suppose 

s < d  and that the second-period offer is b. Then the seller's 

problem is 

max (p - s)(b - b) + 6 (b - s)(b - b) 
P 

A A 

such that b - p = 6 (b - b) 

Performing the optimization yields 

p - 6 b 
p(s) = max {b, \  [b - ^(b - b) + s(l - 6g) + 6gb]} and b(p) = ± _ *~ 

b 
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To compute the seller's cost d2 at which the incentive compa- 

tibility constraint becomes binding, we simply equate the seller's 

utility if she offers b in the second period with her utility if she 

waits until the third period before offering b: 

u2(s,b) = u_(s,b) 

where    u(s,b    _)  = l/(b    ,  - b)[<x b    +  (8 s + Y  )b    +ps    +as + T 
n        n-1 n-1      -Lnn n nn        n n n 

Thus, we wish to find s such that 

-2 -    2 
ab + (Bx + y)b + ps + as + T = 0 

where a = c*3 - o?, 0 = ^ - ^,  y = y^ -  Yg, P = P3 - P2, a = a^ - a^ 

and T = T - i .    Solving for s yields 

,  2 
s = x + /x - y 

- -2   - 
where x = -(Sb + a)/2p and y = (ab + Yb + x)/p. 

Case 2 (s > b). Now consider the case in which the incentive 

compatibility constraint is binding and s >  b. Suppose seller s 

chooses to pretend to be the seller s' by offering the price p. Then 

her expected payoff is given by 

U (S'p) = —i— [(S - b)(p - S) + I   «"<b    - bn)(pn - S)]     (U) 
b - b n=l 

where the future prices and indifference valuations are 

p = c(b - s')d   + s' 
n 
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b = (b - s')dn + , i 

and 

p - 6.(1 - c)s'(p) 
D 

b(P' =—i . <  • b    V 

Thus, 

b , - b = (b - s')(l - d)dn_1 n-i   n 

p - s = c(b - s')d   + s1 - s 

so 

(bn-l " bn)(pn - s) = (b - s')(l - d) 

[c(b - s')(d2)n"1 + (s' - 8)dn_1]  . 

Substituting into (U) and performing the summation yields 

u (s',p) = —— [(b - b)(p - s) + a (b - s') 
3       b - b S 

(1 - d)[c(b - s')  ^ B + (s» - s) ,  1. .]] 
1 - 6 d2 1 ~  6sd s 

It can be shown that (l - d)/(l - 6 d2) = 1/2 and s 

(1 - d)/(l - 6 d) = d, so that s 

u (s',p) = —— [(b - b)(p - s) 
8 b - b 

+ \  6 c(b - s')2 + 6 d(b - s') (s' - s)l 2  s s J 
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Taking the derivative of u (s',p) with respect to p yields the 
s 

first-order condition 

A        A 

b - b - b (p - s) + 6 c(b - s')(b - s' ) 
P 8 P     P 

+ 6sd[(bp - s^Ms' - s) + s^(b - s')] = 0 

where b  is the derivative of b with respect to p and 

s1 = (ds'(p))/dp = ds/dp. Making the substitutions s' = s (implied by 
P 

incentive compatibility), s' = (ds/dp),b = (l/v)(p - s) + s, and 

b = (l/v)(l - (ds/dp) + ds/dp where v = 1 - 6(1 - c) yields the 
P b 

first-order differential equation 

(b - s)v2 -g - (p - s)[2v |^ - v + v2 - «8(c(^ - 1) + vd)] = 0 

which in differential form becomes 

(op + 3s + y)dp + a(p - s)ds • 0 

where 

v = 1 - 6 (1 - c) 
D 

a — -2v + 6 c 
s 

e = v(2 - v)   - 6 c 
s 

Y „ E»2 

a = v(l - v) + 5 (vd - c) 
s 



-79- 

This differential equation is then solved using the procedure described 

in the appendix to yield p(s) given the initial condition p = p(s), 
o    - 

where pQ is determined to maximize the payoff of seller s (the 

incentive compatibility constraint is not binding for the lowest-cost 

seller). The differential equation implies that each seller s prefers 

offering p(s) than pretending to be any seller s' *  s by offering 

p(s'). 

Case 3 (d. < s < b). Finally suppose seller s chooses to 

pretend to be seller s' by offering the price p and ending nego- 

tiations with the price b after n + 1 periods. Then her expected 

payoff is given by 

u (s',p) -—±—  [(b - b)(p - s) + I  6*(b. - - b.)(p, - s)] 
3       b - b i=l S 1_i   X      1 

where 

bi = xiVl + yi3' + Zi 

pi = ciVi+ V + ei 

and 

v    P - Sb(dns + en) 
b(s,p) - 1 _  6 (l _ - j  . 

b     n 

Performing the optimization of u (s*,p) with respect to p subject to 
s 

sequential rationality and incentive compatibility results in a first- 

order differential equation analogous to that found under Case 2. 
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Again, solution of the differential equation assures that seller s 

prefers offering p(s) than p(s') for all s' * s. 

The analysis thus far has established the best-response strategies 

of the buyer and the seller when faced with the hypothesized equilibrium 

strategies. To assure that these best-response strategies do indeed 

form an equilibrium, one must verify that no player is better off 

deviating from these equilibrium strategies. How well a player can do 

by deviating will depend on the beliefs an opponent forms when faced 

with non-equililbrium behavior. Thus to determine that the seller is 

better off playing the equilibrium than deviating, I must posit the 

conjectures a buyer makes when faced with an offer off the equilibrium 

path. 

One has a great deal of freedom in choosing conjectures that 

support an equilibrium. Since every seller wishes to be thought to have 

high costs, the conjecture most apt to support an equilibrium is "if an 

offer p is not an equilibrium offer, then s = s with probability 

one." However, such an extreme conjecture hardly seems plausible. The 

conjecture should be based on reasonable inferences a buyer might make 

when faced with an initial offer off the equilibrium path. To determine 

what constitutes "reasonable inferences" in particular applications, it 

is helpful to look at the equilibrium strategies and have the non- 

equilibrium beliefs be in line with the equilibrium beliefs. In the 

hypothesized equilibrium discussed here, higher prices signal higher 

costs. Thus, it is reasonable for the non-equilibrium conjectures to 

satisfy this monotonicity as well. 
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Describing conjectures that support an equilibrium is a compli- 

cated task in the infinite-horizon model, due to the many possibilities 

for deviant behavior the multiple periods afford. A seller could 

pretend to be someone else for a few periods and then start acting like 

himself or even a third type of seller; the possibilities for non- 

equilibrium behavior are practically limitless. However, one can 

describe a reasonably simple and intuitive set of conjectures that 

supports the equilibrium described here, in which the seller reveals 

completely her information over time. 

One of the difficulties in establishing conjectures is the 

discontinuities in the equilibrium price schedule that arise when the 

seller's cost s is less than the valuation of buyer b and so the 

seller opts to end the bargaining after a finite number of periods.  In 

particular, a discontinuity in the price schedule occurs at points d 

where seller ^    is indifferent between bargaining n periods and 

offering the price p(d ) = lim p(s) or bargaining n + 1 periods and 
" n   I^d 

 n 
offering the price p(d ) = lim p(s). Suppose the buyer observes the 

n   s+d 
n 

price p G (p(d ),p(d )), then I will assume that the buyer will 

believe s = dn with probability one and that the bargaining will 

continue for up to n periods. 

Assuming that the discontinuity problem is resolved as described 

above, I can now define conjectures inductively that will support an 

equilibrium.  In the posited conjectures, the buyer's beliefs will be of 

the same form whether he has observed behavior on or off the equilibrium 

path. Namely, at each stage of the game, the buyer either believes with 
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probability one that the seller has cost s or he believes that the 
A 

seller's cost is uniformly distributed on the interval  [s,s]. 

The buyer is assumed to have the following conjectures. Just 

before the nth period offer, the buyer believes that either 
A 

s = s < s  with probability one or that s is uniformly distributed 

on  [s ,s]. After the nth period offer p_, the buyer revises his 
n " 

probabilities as follows: 

A A 

(1) If the buyer believes s ~ U[s ,s] and p > p (s ,), 
^ n        *n   n n+1 

A 

then s - U(s .,s] . 
A A 

(2) If the buyer believes s - U[s ,s] and p < p (s ..), 
n        rn  fn n+1 

then s = p (p ). 
*n  n 

A 

(3) If the buyer believes s = s  and p > p (s .,), then 
* n     *n  *n n+1 ' 

s = s . 
n 

A 

(U) If the buyer believes s = s  and p < p (s ._). then 
^ n      n  -^n n+1 

s = min (s ,p  (p )} 
n'*n fn 

This set of conjectures has two features tht make it especially 

desirable. First, it agrees with the notion that higher offers signal 

higher costs. Second, it yields beliefs off the equilibrium path that 

are similar to the equilibrium beliefs. Thus, a buyer's behavior 

changes continuously with changes in the price offered, whether or not 

the infinitesimal changes in price result in behavior off the 

equilibrium path. 

The basic idea behind these conjectures is that a high-cost seller 

must be encouraged not to offer low prices initially, which are accepted 
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by some high-valuation buyers, and then revert to higher offers in later 

periods. Certainly if the buyer was naive, a high-cost seller would 

have an incentive to adopt such a strategy. The buyer's conjectures, 

however, make such an option unattractive, since the buyer when faced 

with non-equilibrium behavior always tends towards optimism: when the 

buyer is confused by non-equilibrium behavior, he assumes that the most 

optimistic information (that the seller has low costs) is valid. 

Showing that the posited conjectures support an equilibrium is a tedious 

task and is omitted. 

Given specific values of 6,6,, [s,s], and  (b,b] , it is 
s  b  - - 

possible to compute an equilibrium by the following iterative 

procedure. First, compute the coefficients found in Section k,  which 

determine the offers and indifference valuations that occur after the 

seller's cost has been revealed. For the lowest-cost seller (seller 

s), determine the price she should offer and her optimal maximum number 

of periods of bargaining. This is easily done, since the incentive 

compatibility constraint is nonbinding for seller s. Gradually 

increase s from s by some small incremental step As > 0. At each 

iteration, find the price p(s + As) that makes seller s indifferent 

between offering p(s) and pretending to be seller s + As by offering 

p(s + As). As s increases, the seller will choose to extend the 

bargaining for more and more periods until the point s = b where the 

bargaining may continue indefinitely.  For each s, the length of the 

bargaining is chosen to maximize the expected payoff of seller s. In 

addition, as s increases, there will eventually become a point s1 at 
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which no buyer will accept the price p(s1). All sellers with costs 

s > s. will offer an unacceptable price to signal that their costs are 

high. In the second round, prices for sellers s to sn  are easily- 

determined since the incentive compatibility constraint is nonbinding 

for those sellers (they have already revealed their private informa- 

tion). For sellers s > s. , prices are determined as in the first 

period: the initial condition p(s.) is easily determined, since the 

incentive compatibility constraint is nonbinding at this point; p(s) 

then increases so that seller s is indifferent between offering p(s) 

and p(s + As), up until the point where no buyer accepts the second 

round offer p(s_). This process is repeated until the equilibrium 

offers of all seller s G [s,s]  are determined. 

As an example, consider the case when the seller's cost is 

uniformly distributed on  [0,l] and the buyer's valuation is uniformly 

distributed on [1/2, 3/2] with 6 = 6 = .75, as shown in Figure 1. 

[Understanding this complicated figure is helpful to understanding the 

form of the equilibrium.) For s < .1^, the bargaining ends after two 

periods and the incentive compatibility constraint is nonbinding. For 

s > .lU, the incentive compatibility constraint is binding, which 

implies that the seller offers higher prices than she would had her 

costs been known to the buyer. This is as one would expect:  the seller 

has an incentive to offer an inflated price to fool the buyer into 

believing her cost is greater than it actually is. The buyer, however, 

recognizes the seller's incentive to overstate her true cost, and so 

appropriately discounts the inflated offer. At s = .52 the seller 
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Figure 1. A separating equilibrium over time 
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offers a price so high that no buyer accepts. All sellers with higher 

costs wait until subsequent periods to reveal their private 

information. Thus, sellers s G [0,.52]  reveal completely their 

information in the initial round of negotiations; seller s G [.52,.67] 

reveal their information in the second period; sellers s G (.67,.80] 

reveal their information in the third period, and so on. Every seller 

reveals her information by the end of the fifth period. 

It is interesting to compare the seller's equilibrium price 

schedule with two-sided uncertainty in the infinite-horizon model with 
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her price schedule int he two-period model, as shown in Figure 2. 

First, notice that in the two-period model, the seller is able to reveal 

completely her information in the first round regardless of her cost; 

whereas, in the infinite-horizon model some sellers take up to five 

rounds to reveal their information. This is because when the seller 

only makes two offers, the seller's incentive to deceive in the initial 

period is reduced. Second, the seller offers higher prices in the two- 

period game than in the infinite-horizon game, since she is able to 

commit to ending the bargaining with a "take it or leave it" offer in 

the second period. In the infinite-horizon model, no such commitment is 

possible, so the seller is forced to offer lower prices. 

6.   Effect of Information, Uncertainty, and Time on Bargaining 
Behavior 

In this section, I examine how information, uncertainty and time 

influence the bargaining behavior of rational agents. Throughout the 

section, comparisons are made between the infinite-horizon bargaining 

model with two-sided uncertainty and three other models: 

(1) the infinite-horizon bargaining model with one-sided 

uncertaity (the seller's cost known), 

(2) the two-period model with two-sided uncertainty analyzed in 

Cramton [1983a], and 

(3) the simultaneous-offer model studied by Chatterjee and 

Samuelson [1983]. 

Comparisons between the infinite-horizon models with two - and one-sided 

uncertainty shed light on how the bargainers cope with the additional 
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Figuere 2.  Comparison between the two-period and 
infinite-horizon models. 
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uncertainty; whereas, comparisons between the infinite-horizon model and 

the two-period model suggest how the bargaining outcome changes when the 

players are able to commit to a shorter bargaining horizon. The simul- 

taneous-offer model is of interest because it is the most efficient 

static bargaining mechanism (ex ante) that satisfies incentive compati- 

bility and individual rationality for the class of examples considered 

here (Myerson and Satterthwaite [1983]).  It, however, does not address 

the time dimension and violates a broad interpretation of sequential 

rationality: negotiations may end in a state of disagreement in which 
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it is common knowledge that there are substantial gains from trade. 

Any comparisons must be made with reservation, due to the presence 

of multiple equilibria and the consideration of only uniform distribu- 

tions; however, the separating equilibria found in each of the models 

seem quite reasonable and are unique among separating equilibria. Most 

of the results are sufficiently robust that they would not be affected 

by an alternative choice of equilibria or different distributions. A 

further complication in making comparisons is that efficiency is not 

well defined in settings of incomplete information, as pointed out by 

Holrastrom and Myerson [1981]. Does one make comparisons before the 

players know their private information, after they know their private 

information, or after all information is revealed? I will focus on ex 

ante efficiency, defined to be the ratio of the players' ex ante 

expected utilities and the expected gains from trade. Thus I integrate 

over the player's types before I divide by the expected gains from 

trade. Ex ante efficiency is the efficiency measure an uninformed 

social planner would use in deciding among bargaining mechanisms. 

Information. I begin by exploring how the information available 

to the agents affects bargaining efficiency and the distribution of the 

gains from trade. With complete information, the bargaining is 

efficient - trade occurs without delay if and only if the seller's cost 

is less than or equal to the buyer's valuation. The split of the gains 

from trade depends on who is making the offers: when the seller makes 

all offers, she gets all the gains from trade; when the buyer makes all 

the offers, he gets all the gains; and when the players alternate 
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offers, the gains from trade are split with (l - 6 )/(l - 5  &  ) going 
D D S 

to the seller (assuming she makes the initial offer). In the presence 

of complete information, the offeror is at a great advantage, since the 

offeror can make an offer that an opponent is Just willing to accept, 

thus extracting all the consumer surplus. 

With uncertainty about an opponent's reservation price, the 

bargaining outcome is no longer efficient and the offeror is in a less 

dominant position. For example, with the seller's cost uniformly 

distributed on  [0,l] and the buyer's valuation uniformly distributed 

on  [1/2,3/2] with 6=6 = .8, so that the players have equal costs 
D     S 

of delay and there is some overlap in their distributions, then the ex 

ante efficiencies and the proportion of the gains going to the seller 

are as shown below for the various bargaining settings: 

Model 

infinite-horizon with two-sided uncertainty 

infinite-horizon with one-sided uncertainty 

two-period with two-sided uncertainty 

simultaneous offers 

Several observations may be gleaned from the data. First, the ineffi- 

ciencies causes by incomplete informatin are significant:  one-quarter 

of the gains from trade are lost in the infinite-horizon bargaining game 

and one-tenth of the gains are lost when the players can commit to the 

simultaneous-offer game. Efficiency is reduced by 15% when the seller's 

cost is unknown, making both the seller and the buyer worse off. 

Efficiency a to seller) 

.75 M 
• 90 ,k2 

.69 ,6k 

.90 .50 
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Although the simultaneous-offer game is more efficient ex ante than the 

infinite-horizon game, not every trader prefers the simultaneous-offer 

game.  In fact, when both the sellers and the buyers are uniformly 

distributed on  [0,l], one-quarter of the players in the simultaneous- 

offer game receive nothing in equilibrium.  In the infinite-horizon 

game, almost every seller expects strictly positive gains from trade. 

Thus, if the players were to choose which game to play, a naive player's 

choice of game would reveal information to the opponent. Moreover, 

implicit in the simultaneous-offer game is the requirement that the 

bargainers will end negotiations after the first offer. The problem 

with this requirement is that the simultaneous-offer game ends with 

positive probability in a state of disagreement in which it is common 

knowledge that substantial gains from trade exist.  In the infinite- 

horizon game, the bargainers are unable to commit to walking away from 

positive gains from trade. 

Perhaps somewhat surprisingly, the offeror is at a disadvantage in 

the infinite-horizon game, receiving only 1+3% of the gains. However, 

when the bargaining is limited to two periods, then the offeror is at an 

advantage, receiving 6k%  of the gains. This is because in the infinite- 

horizon game the seller is unable to commit to high prices in the 

future, as she can in the two-period model. It seems in this case that 

the structure of the game forces the seller to reveal more information 

than she would like to:  she would prefer to let the buyer make the 

offers.  The result that the offeror is at a disadvantage in the 

infinite-horizon bargaining game depends critically on the degree of 
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uncertainty as discussed below. 

Uncertainty. In addition to information, the degree of uncer- 

tainty the players have about each other's reservation prices will 

affect bargaining efficiency. Here uncertainty is measured as the 

degree of overlap in the distributions of buyers and sellers:  if the 

distributions are separated by a large amount so that both the buyer and 

the seller are confident of large gains from trade, the uncertainty is 

slight; whereas, if the distributions completely overlap, the uncer- 

tainty is great J—'    Thus, I test the sensitivity of the bargaining 

outcome on uncertainty by changing the support of the distribution of 

one of the players (in this case the buyer's distribution). 

A plot of efficiency and the allocation of gains is shown in 

Figure 3 when the support of the buyers varies from [0,lj to  (2,3) 

with the sellers on  [0,l]  and 6. = 6 = .8. Efficiency increases 
D   s 

monotonically in both models as the uncertainty is reduced. The 

difference in efficiency between the infinite-horizon model and the 

simultaneous-offer model increases as the gains from trade become more 

uncertain. Thus, the value of commitment increases with uncertainty. 

In the simultaneous-offer game, the gains from trade are split 

evenly regardless of the degree of uncertainty. However, in the 

infinite-horizon model, the seller's proportion of the gains decreases 

monotonically as the uncertainty increases. When the uncertainty is 

greatest (complete overlap of the reservation price distributions), the 

seller gets only 35% of the gains; whereas, when the gains from trade 

are known to be large ((l/2)(b + b) = 2.5), the seller gets 75% of the 
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Figure 3 

Effect of uncertainty on the Bargaining outcome. 
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gains. This result is in agreement with the common wisdom among 

negotiators that says that when the gains from trade are highly- 

uncertain it is best to let your opponent make the initial offer (and 

thus reveal valuable information about his reservation price), but when 

the gains from trade are known it is best to go first (Below and Moulton 

[1981], pages 10U-106). 

Impatience. Finally, I consider the effect of varying the 

players'costs of delay on the bargaining outcome. A plot of how 

relative changes in the players' delay cost influence the bargaining 

efficiency is shown in Figure h.    The plot is made assuming the seller's 

cost is uniformly distributed on  [0,1] and the buyer's valuation is 

uniformly distributed on  [1/2,3/2] with one of the player's discount 

factors held fixed at  .8 and the other varied from .5 to .95.  In 

the infinite-horizon model, the effect of delay costs on efficiency is 

nearly monotone. As the buyer's delay costs increase the bargaining 

becomes less efficient, since the seller, who is controlling the 

bargaining, is relatively more willing to wait, so she makes higher 

offers and the buyer suffers costly delay. In contrast, as the seller's 

delay costs increase, the bargaining becomes more efficient, since with 

high delay costs the seller offers lower prices, which are accepted 

earlier. The infinite-horizon model, then, is most efficient when the 

offeror's delay costs are relatively large. In fact, as 6 • 0 and 
s 

6*1, the seller loses all of her bargaining power and efficiency goes 

to 1. Thus, there exist discount factors for which the infinite-horizon 

bargaining game is more efficient than the ex ante efficient static 
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mechanism. This reult is quite general and is derived in Cramton [1983b] 

The reason the sequential game may be more efficient than the 

most efficient static game is that, in the sequential game, time may 

introduce an additional asymmetry into the problem (the players may have 

different delay costs), which can influence the efficiency of the 

bargaining outcome. Thus, although incomplete information in sequential 

games typically leads to inefficient outcomes, there exists a range of 

parameters for which the sequential game is more efficient ex ante than 

the ex ante efficient static game. As the seller's and buyer's discount 

factor go to 0 and 1 respectively, the seller loses all her bargaining 

power and is forced to make offers arbitrarily close to her reservation 

price. Static mechanisms require that the expected payment between 

players and the probability of agreement are identical for any realiza- 

tion of the bargaining mechanism. This, however, is not true in a 

sequential game:  the discounted expected payment and the discounted 

probability of agreement may be different due to differences in the 

players; discount factors. 

Allocation of the gains from trade changes monotonically with 

changes in the players' delay costs, as shown in Figure 5. The seller's 

proportion of the gains from trade increases monotonically as 6 
s 

decreases. As one would expect, patience is a virtue. 

Next I consider absolute changes in the players' delay costs by 

varying both bargainers discount factors simultaneously (assuming 

6 = 6 ). As shown in Figure 6, the effect of absolute changes in delay 
s    D 

costs on efficiency depends on the degree of uncertainty. When there is 
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a great deal of uncertainty (b •* U[0,l]), efficiency increases monot- 

onically with delay costs. When there is moderate uncertainty 

(b *• U[l/2, 3/2]), then efficiency is roughly constant as delay costs 

are varied from .5 to .95* Finally when uncertainty is slight, 

efficiency increases as delay costs decrease. Intuitively, when 

uncertainty is great, large delay costs improve efficiency by forcing 

the bargainers to come to an early agreement; whereas, when uncertainty 

is slight, an early agreement is reached regardless of the magnitude of 

delay costs and so higher delay costs reduce efficiency by increasing 

costs of agreement. 

Regardless of the degree of uncertainty, increasing delay costs 

benefits the seller and hurts the buyer (see Figure 7), because with 

higher delay costs the seller can force the buyer to accept higher 

Figure 5 
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prices. Thus, one would expect the seller to choose to lengthen the 

time between offers; whereas, the buyer would prefer offers to be made 

in rapid succession. 

7.   Conclusion 

In any realistic bargaining setting the issues of information, 

timing, and commitment are of crucial importance. Informational differ- 

ences among agents often lead to inefficient bargaining outcomes and 

deadlocked negotiations. Time pressures tend to force an early 

resolution of the bargaining conflict. And the ability of agents to 

commit to particular strategies often determines how the gains from 

trade are divided among the agents. In this paper, I have presented an 

Figure 6. 
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Figure 7« 

Effect of abosolute changes in delay costs on allocation of gains 
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infinite-horizon bargaining model that explicitly considers information 

and timing in bargaining settings in which the players are unable to 

precommit to particular strategies. Rational behavior on the part of 

the agents has been characterized for a class of distributions under 

various information structures. 

The results of the example are intuitively appealing. When the 

agents have complete information an efficient agreement is immediately 

reached. When only the buyer has complete information, trade frequently 

occurs only after costly delay. Moreover, the buyer benefits from his 
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superior information. When both the buyer and the seller are unsure of 

the other's preferences, the outcome is even less efficient, due to the 

seller's incentive to deceive the buyer. How much information the 

seller reveals in each round of negotiations depends on the players' 

costs of delay: when delay costs are high, much information is revealed 

each period; whereas, when the costs of delay are small, less informa- 

tion is revealed.  Due to the seller's incentive to lie about her costs, 

the seller must offer higher prices than she would had the buyer known 

her cost. These higher prices lead to significant inefficiencies: 

roughly 25%  of the potential gains from trade are lost in a typical 

example. 

Both the degree of uncertainty and the costs of delay affect the 

bargaining outocme. Uncertanty has a detrimental effect on bargaining 

efficiency - the more uncertainty present, the less efficient the 

bargaining outcome.  In constrast, costs of delay, as modeled by the 

players' discount factors, tend to have a positive effect on bargaining 

efficiency - higher costs of delay tend to increase efficiency. The 

effect, however, is sometimes ambiguous: higher costs of delay will 

increase the probability of an early agreement, but reduce the benefit 

of a delayed agreement. 

An important feature of the bargaining game presented here, is 

that it makes no assumptions about the bargainers' ability to commit to 

future strategies:  the players continue to negotiate so long as they 

expect positive gains from continuing. Implicit in some bargaining 

mechanisms is the assumption that the bargainers are able to commit to 
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walking away from the negotiating table, even when it is common 

knowledge that the gains from trade are positive. The simultaneous- 

offer game is an example of such a mechanism. Although this game is 

more efficient ex ante, it ends with positive probability in a state in 

which both bargainers know that gains from trade exist (since their 

respective reservation prices have been revealed), and yet they are 

forced to walk away from the bargaining table. Thus, the bargaining 

game implicitly assumes that the players are able to commit to walking 

away without trading, after it has been revealed that substantial gains 

from trade exist. This point is addressed in greater detail in Cramton 

[1983b], 

It is somewhat disappointing that the bargaining game analyzed 

here is not more efficient. When the players' reservation prices are 

uniformly distributed on  [0,1]  and their discount factors are equal, 

this game results in at least 32% of the gains from trade being lost, as 

opposed to a 16%  loss if the ex ante efficient bargaining mechanism is 

adopted. An important question to answer in future research is can we 

find a strategic game that implements (or comes close to implementing) 

the ex ante efficient perfect bargaining mechanism over a wide range of 

bargaining situations? Perhaps a better candidate for a strategic 

bargaining game that is nearly ex ante efficient is the game in which 

the bargainers alternate offers. This game was analyzed by Rubinstein 

[1982] in a setting of complete information, but an analysis with 

incomplete information has yet to be done. Of particular interest is 

the alternating-offer game as the time between offers goes to zero, for 
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this strategic game represents a very general bargaining rule: at any- 

time a bargainer may make a new offer or accept the most recent offer of 

his opponent.  It would be a pleasant surprise if such a reasonable 

bargaining game was ex ante efficient over a variety of circumstances. 

The model presented here is far from being a complete description 

of most bargaining situations. Several restrictive assumptions have 

been made in order to make the analysis manageable. First, the agents 

have been assumed to be risk neutral, but in many bargaining situations 

the agents' willingness to take risks is an important bargaining 

factor. Second, I have restricted attention to rational agents who can 

calculate (at no cost) their optimal strategies. Certainly, few agents 

are so consistent and calculating. With less than rational agents, an 

agent's capacity to mislead his opponent becomes an important variable 

in determining how the gains from trade are divided. Finally, I 

consider only a bargaining setting in which agents are unable to commit 

to particular strategies. In many real-life situations, bargainers will 

often have or create a means of commitment. For example, an agent 

anticipating that he will be faced with a similar situation in the 

future may wish to establish a reputation for toughness, as in the case 

of a manager refusing an employee's request for a pay raise on the 

grounds that he would have to do the same for everyone else. 

Two weaknesses of the noncooperative game-theoretic approach are 

worth mentioning. First, even in the case of incomplete information, 

the information requirements of the players are severe:  some base of 

common knowledge must exist. Thus, although neither player need know 
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the other'8 reservation price, they must know (and know the other knows, 

and so on) each other's probabilistic beliefs about the other's 

reservation price. In practice, these beliefs are not common knowledge, 

so I am implicitly assuming that their beliefs are sufficiently aligned 

that they act as if their beliefs were common knowledge. A second 

weakness of the noncooperative approach is that a particular game 

structure must be specified. Why should the agents play the specified 

game? Who decides which game to play? These are important questions, 

which should be studied. Although it is unreasonable to assume that the 

agents are playing the exact game specified, one can often assume that 

the game being played is a close enough approximation to the specified 

game that useful insights into the agents' behavior can be gained. 

Despite these limitations, many of which can be addressed in 

future research, I feel that the approach of modeling bargaining as a 

noncooperative sequential game has many merits over other approaches, 

such as cooperative game theory. Perhaps the most important advantage 

of the noncooperative approach is that it explicitly models the behavior 

of the bargainers and does not assume at the outset that an efficient 

solution will be reached. Cooperative bargaining, on the other hand, 

focuses entirely on the bargaining outcome and assumes that the 

bargaining will be efficient, contrary to the common occurrence of 

inefficient bargaining outcomes in practice. 
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Appendix 

A.l. Equilibrium Strategies when the Seller's Cost Is Known and s < b 

Theorem 2: For the n-stage game with s < b in which the seller 

ends the bargaining by offering p -  b, the seller's price p (s,b .), 

her expected profit u (s,b .), and the buyer's indifference valuation 

"b (s,b  ) with i periods remaining and J * n + 1 - i are given "by 

V'V* = xJbJ-i + yJ8 + ZJ 

»>-W = r^r I«j»3-i+ (6
J
8
 

+ Wi + p/ + °is + V b - b J J J    J J- J    J 

where c = 0, d = 0, e = b, a = 0, 3„ = -1, Y = b, p = 0, a    = b, 
n     n     n-n     n      n-n     n  - 

2 
and T = -b , and for i > 1 

n 

v- •1 - 6b+ VJ+i 

= 2(VJ - '. Vl> 

= VJ/VJ 

= (1 + « 3.A1 - $ d  )/w 
s J+l   b J+l  J 

= (Vj+l " VJ+1
)/WJ 

2. 
=VJ/WJ 
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dj= ITJ(*.VI + Wi+1] - 28AVIVII/VJ 

ej= 'V'.Vi * Vj.i' - 2VbViVil/wj 

6j = (1 " VVj " (1 " xj)(1 " 6bdj+i' 
+ V2VixJyJ + VixJ> 

v(1 - 2XJ,VJZJ + (1 - -j'Vjn * V2WJ+ VIXJ> 

eJ • Vj*X - Vn-1 * 'j(8.Vl " TJ 

J J    J 8   j+1 

aj = VJ + gjyi+ 6S°J+I 

T = a z    + 5 T 
J   SJ J   s J+1 

Proof: By assumption, with one period remaining, p = b and 

u = b - s. n 

With i periods remaining and J = n + 1 - i, the seller's 

expected profit is given by 

u (.,») = max -i_ [(p - .)(b ^ - b ) + 6a(b - b)u  U.b >] 

(5) P  J_1  " 

such that b - p = ^A^,  -  P1+l) 

Assume by the induction hypothesis that 
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pj+i(s'bj} = cj+ibj+ Vis + Vi 

W'V  = b^T [«j+1^ + (BJ+1- • Vl)bJ   + PJ+ls2 + °J+1S + TJ+1] 

So    p = (1 - 5b)tj  + ^(cj^bj  + dJ+13 + eJ+1), or 

(6) p - (1 - ^ • Vi+1)^  • 6b(dJ+1s + eJ+1) 

Dropping the    J  + 1    subscripts and substituting into  (5), yields 

u,(s,b,  .)  = max r— r- [(l - 5,   + 6 c)b + 6, (ds + e)  - s](b    - b) 
J j-1 ,     o    ,  - b   L b        b b Jn 

(T) 
P P 

+ 6   fob    +  (Bs  + y)b + ps    + as  + T] 
s 

which has a unique maximum when 

(1  -  6.   +  <Svc)b4   ..   -  <5, (ds  + e)   + s  + 6   (3s + Y) 
(Q\ v  _  b        b      j-1        b s  
(a) b " 2(1 - 5 «    + 6 c  - 6 a) 

b    D D S 

Substituting (8) into (6) and (7), yields the derised expressions for 

p,(s,b  ) and u (s,b  ). Q.E.D. 

A.2. Differential Equation for a Separating Equilibrium 

Here I solve the following differential equation, whch arises when 

determining a separating equilibrium 

Ujp + a2s + a3)dp + (bxp + b2s + b3)ds = 0 

where a. and bj, i = 1,2,3 are constants. The differential equation 

(DE) is solved in three steps. 
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1. Transform the variables to make the equation (DE) homogenous 

of degree one. Let p = y + p and s = x + s, where p and s are 

chosen to solve 

a p + as + a = 0 

bjp + h2s + b3 = 0 

which implies 

-  a2b3 ~ a3b2    -  a3bl - alb3 
P " alb2 " a2bl  ' 8 " aib2 " a2bl 

Making the substitution 

2 3   3 2 
P = y + a b - a b  ; dp = ^ alD2  Vl 

, a3bl - &lb3    .   . s = x + —r r— ; ds = dx 
alb2 ~ a2bl 

results in the homogeneous equation 

(a^ + a2x)dy + (b^y + b2x)dx = 0 (H) 

2. Transform the variables to make the equation (H) separable. 

Let y = vx and dy = vdx + xdv to get the separable equation 

2 
(a..v + (a« + b..)v + b„)dx + (a.v + a„)xdv = 0 

or 

. anv + a„ 
f + — 1 8 dv - o        (s) 

alv + ^a2 _ bl^V + b2 
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3. Integrate the separable differential equation (S). First 

factor the quadratic as follows: 

2 
alv + ^a2 + bl^v + b2 = al^v + f^v + g^ 

where 

f " 2a^ (a2 + bl + d) 

8 = 2a7 (a2 + bl " d) 

d = /(a2 + bx)
2 - 1*^2 

So 

a^r + a2 v + a2/ax 

2~^        :  A v 
= (v + f)(v + g) 

alv   ^a2   l'v   2 

Now find s and t such that 

s(v + f) + t(v + g) = v + a2/a1 

which implies 

s = 2d ^a2 _ bi + d)       * = 2d ^bl ~ a2 + d^ 

so 

av + a_ 
12 s      t 

2  ,    . »   .    v + g  v + f 
alV + ^a2 + *VV + b2 
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Then integrating (S), yields x(v + g)S(v + f) = K', or 

x (v + g)      (v + f)      = K . 

Substituting back to the original variables results in the primmitive: 

(s - i)2d(h + gJ^Ch+f)3"6 = K (P) 

where 

a b - a b 
- _ 3 1   13 
8 " a„b„ - aJb, 12   2 1 

-  &2b3 ~ a3b2 
P " alb2 " a2bl 

2 
d = /(a2 + b1) - ^^2 

e = a2 - bx 

f = 2a^ (a2 + \  + d) 

« " 2^ (a2 + bl " d) 

h -B^-B 
s - s 

and K is chosen such that p(s ) = p . 
o    o 

The primitive equation (P) can easily be solved for p as a 

function of s for specific values of the constants a^ and b. , i = 1,2,3. 
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Footnotes 

1/   I have assumed arbitralily that the seller is female and the buyer 
is male 

2/   In order to simplify notation, I will occasionally drop the time 
subscript. Naturally, the players' strategies depend on their 
current beliefs about their opponent' reservation price. These 
beliefs change over time so the functions p and b change over 
time as well 

3/        For notational simplicity, I omit the functional dependence of the 
players' strategies on parameters of the model that are known and 
constant throughout the game, such as   , , , b, b, s and s. 

s  b -    - 

hj        This theorem appears in slightly modified form as Theorem 6 in 
Sobel and Takahashi [1983]. The difference between the two is 
that here the seller has some nonzero cost s to acquire the 
object, and the buyer's valuation is uniformly distributed on 
[b,b] , rather than distributed on  [0,l] with the distribution 
bm for m > 0. 

3/        A necessary and sufficient condition for the strict concavity of 
u  is   (1 - c  ) + (1/2) c    1. This is clearly 
satisfied, sinceJ   , . , and c.,,  are between 0 and 1. 

s  b      J+l 

6/        Actually, I need to show that the limit of the equilibrium 
strategies in the finite-horizon game converges to an equilibrium 
in the infinite-horizon game.  Indeed this is the case for this 
game, as shown by Fudenberg and Levine [1981]. Moreover, 
Fudenberg, Levine, and Tirole [1983] show that this equilibrium is 
the unique equilibrium in the infinite-horizon game. 

Jj        An offer of b guarantees agreement because the seller makes all 
the offers, and thus is able to commit to never offering a price 
below b.  In an alternating-offer model, prices below b would 
have to~be considered. 

8/   I define increasing uncertainty as a shift to the left of the 
distribution of the gains from trade. 
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