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TWO PAPERS ON SEQUENTIAL BARGAINING*

by

Peter C. Cramton¥*#*

Paper I: Sequential Bargaining Mechanisms

N Introduction

A fundamental problem in economics is determining how agreements
are reached in situations where the parties have some market power. Of

particular interest are questions of efficiency and distribution:

How efficient is the agreement?
How can efficiency be improved?

How are the gains from agreement divided among the parties?

Here I explore these questions in the context of bilateral monopoly, in
which a buyer and a seller are bargaining over the price of an object.
Two features of my analysis, which are important in any bargaining
setting, are information and impatience. The bargainers typically have
private information about their preferences and will suffer some delay

costs if agreement is postponed. Information asymmetries between

*This research was supported by the Office of Naval Research Grant ONR-
NOO1L4-79-C-0685 at the Institute for Mathematical Studies in the Social
Sciences, Stanford Univerity. I am indebted to my advisor, Robert
Wilson, for his encouragement and inspiration. My thanks to Drew
Fudenberg, Robert Gibbons, and Jean Tirole for their helpful comments.

**Graduate School of Business, Stanford University.
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bargainers will often lead to inefficiencies: +the bargainers will be
forced to delay agreement in order to communicate their preferences.
Impatience will tend to encourage an early agreement and will make the
parties' communication meaningful. Those with high delay costs will
accept inferior terms of trade in order to conclude agreement early;
whereas, patient bargainers will choose to wait for more appealing terms
of trade.

Some authors have examined the bargaining problem in a static
context, focusing solely on the role of incomplete information and
ignoring the sequential aspects of bargaining. Myerson and
Satterthwaite [1983] analyze bargaining as a direct revelation game.

In this game, the players agree to a pair of outcome functions: one
that maps the players' statements of their types into an expected
payment from buyer to seller, and the other that maps the players'
statements into a probability of trade. These outcome functions are
chosen in such a way that truthful reporting is an equilibrium strategy
for the players. An important feature of this game is that it is
static; outcome functions are selected, the players report their true
types, and then dice are rolled to determine the payment and whether or
not trade occurs. In order to insure that the players have the proper
incentives for truthful reporting, the game will end with positive
probability in disagreement even when there are substantial gains from
trade. Thus, in the event the randomization device calls for
disagreement, the players may find themselves in a situation in which it

is common knowledge that there are gains from trade.



Chatterjee and Samuelson [1983] analyze a strategic game in which
both players simultaneously make offers and trade occurs at a price
between the two offers if the seller's offer is less than that of the
buyer. This game 1is closely related to the direct revelation game in
that it is static. Moreover, it can be shown that for a particular
class of examples the simultaneous-offer game implements the direct
revelation game in which the outcome functions are chosen to maximize
the players' ex ante utility. As in the direct revelation game, this
game ends with positive probability in a state in which both bargainers
know that gains are possible (since their respective reservation prices
have been revealed), and yet they are forced to walk away from the
bargaining table. Thus, the bargaining game implicitly assumes that the
players are able to commit to walking away without trading, after it has
been revealed that substantial gains from trade exist.

In situations where the bargainers are unable to make binding
agreements, it is unrealistic to employ a bargaining mechanism that
forces them to walk away from known positive gains from trade. Such
mechanisms violate a broad interpretation of sequential rationality as
discussed by Selten [1976] (in terms of subgame perfection) and later by
Kreps and Wilson [1982], if one applies sequential rationality not only
to the hypothesized game, but to the game form as well. In particular,
one should restrict attention to mechanisms that satisfy sequential
rationality: it must never be common knowledge that the mechanism

induced at any point in time is dominated by an alternative mechanism.
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When there is uncertainty about whether or not gains from trade
exists, any static game will violate sequential rationality. The
players must have time to learn through each other's actions whether
gains are possible. In a sequential game, the players communicate their
preferences by exhibiting their willingness to delay agreement.
Bargainers that anticipate large gains from trade (low-cost sellers and
high-valuation buyers) will be unwilling to delay agreement and so will
propose attractive terms of trade that the other is likely to accept
early in the bargaining process. On the other hand, high-cost sellers
and low-valuation buyers will prefer to wait for better terms of
trade. Static games must use a positive probability of disagreement to
insure incentive compatibility, where the probability of disagreement
increases as the gains from trade shrink. The advantage of delaying
agreement rather than forbidding agreement is that mechansims can be
constructed in which negotiations continue so long as each bargainer
expects positive gains. Thus, the bargaining will not end in a state in
which it is common knowledge that the players want to renege on their
agreed upon outcome.

Two approaches can be taken in the analysis of perfect bargaining
games. The first approach is to examine specific extensive-form (or
strategic) games, which determine the set of actions available to the
players over time. Intrinsic to any bargaining process is the notion
of offers and replies: bargaining consists of a sequence of offers and
decisions to accept or reject these offers. Who makes the offers, the

time between offers, responses, and counter-offers, and the



possibilities for commitment are determined by the underlying
comminication technology present in the bargaining setting. This
commnication technology will imply, in part, a particular bargaining
game in extensive form. Sobel and Takahashi {1983}, Cramton [1983],
and Fudenberg, Levine, and Tirole [1983] illustrate the analysis of
particular extensive forms that are perfect bargaining games.

A second approach and the one adopted in this paper is to analyze
a general direct revelation game, which maps the players' beliefs into
bargaining outcomes. An important distinction between direct revelation
games and strategic games 1s that the direct revelation game does not
explicitly model the process of bargaining. The sequence of offers and
replies that eventually leads to an outcome is not studied in the direct
revelation game as it is in strategic games. However, embedded within
each sequential bargaining mechanism is a particular form of learning
behavior, which can be analyzed. In addition, mich can be learned about
how information and impatience influence the efficiency of the
bargaining outcome and the allocation of gains between players. Thus,
even though bargainers will not play direct revelation games in
practice, their analysis is a useful tool to determine how well the
bargainers can hope to do by adopting an appropriate strategic game.

The difference between the static direct revelation game analyzed
by Myerson and Satterthwaite [1983] and the sequential direct revelation
game considered here is that in the sequential game the outcome
functions not only determine the probability and terms of trade, but

also dictate when trade is to take place. In the static game, trade may
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only occur at time zero; whereas, in the sequential game trade may occur
at different times depending on the players' reports of their private
information. Thus, by analyzing sequential bargaining mechanisms one is
able to infer what the players' learning process is over time.
Furthermore, by analyzing mechanisms that are sequentially rational, one
can study what bargaining outcomes are possible when the bargainers are
unable to make binding agreements.

This introductory paper considers the simplest type of sequential
bargaining games in which the players' time preferences are described by
known and fixed discount rates. I begin by characterizing the class of
perfect bargaining mechanisms, which satisfy the desirable properties of
incentive compatibility (each player reports his type truthfully),
individual rationality (every potential player wishes to play the game),
and sequential rationality (it is never common knowledge that the
mechanism induced over time is dominated by an alternative mechanism).
It is shown that ex post efficiency is unobtainable by any incentive-
compatible and individually-rational mechanism when the bargainers are
uncertain about whether or not they should trade immediately. I
conclude by finding those mechanisms that maximize the players' ex ante
utility, and show that such mechanisms violate sequential rationality.
Thus, the bargainers would be better off ex ante if they could commit to
a mechanism before they knew their private information. In terms of
their ex ante payoffs, if the seller's delay costs are higher than those
of the buyer, then the bargainers are better off adopting a sequential

bargaining game rather than a static mechanism; however, when the



buyer's delay costs are higher, then a static mechanism is optimal.

The methodology of this paper is based on Myerson and
Satterthwaite [1983]. I have freely borrowed from their insightful work
in much of my analysis. Complete proofs to each proposition, even
though many are only slightly different from the proofs found in Myerson

and Satterthwaite, are given as an aid to the reader.

2. Formulation

Two parties, a buyer and a seller, are bargaining over the price
of an object which can be produced by the seller at a cost s and is
worth b to the buyerrl/ The seller's cost s and the buyer's
valuation b are also referred to as their reservation prices, since
they represent respectively the minimum and maximum price at which each
would agree to trade. Both the buyer and the seller have costs of
delaying the bargaining process. Specifically, the value of the object
is discounted in the future according to the positive discount rates
p for the seller and o for the buyer. Thus the payoffs, if the
bargainers agree to trade at the discounted price x at time t, are

ot

Rt for the seller and be - x for the buyer. Should they

s - xe
fail to reach agreement both players' payoffs are zero. Implicit in
this formulation is the assumption that the bargainers discount future
money at the same rate, so at any time t the discounted payment by the
buyer equals the discounted revenue to the seller. Without this
assumption, it would be possible for the players to achieve an infinite

payoff by having the player with the lower discount rate lend an



arbitrarily large amount of money to the other player.

The buyer, though aware of his own valuation b, does not know the
seller's cost of production s, but assesses her cost to be distributed
according to the distribution F(s), with a positive density f(s) on
[s,s]. Similarly, the seller knows her cost s, but can only assess the
buyer's valuation to be distributed according to the distribution G(b),
with a positive density g(b) on [E,S]. Their discount rates and the
distributions of the potential buyers and sellers are common
knowledge. In addition, it is assumed that both the buyer and the
seller are soley interested in maximizing their expected monetary gain.

To summarize, let <F,G,p,0> be a sequential direct revelation

game where

F 1is the distribution of the seller's cost s on [§,§],
G 1is the distribution of the buyer's valuation b on [E,E],
p 1is the seller's discount rate for the object, and

¢ 1is the buyer's discount rate for the object.

In the revelation game, the player's actions consist of reports of their
types, which are mapped into the bargaining outcome by the bargaining
mechanism. Thus, the seller s reports that her cost is s' € [s,s]
and the buyer b reports that his valuation is b' € [P,S]. The
revelation game is said to be direct is the equilibrium strategies of
the players involve truthful reporting: (s',b') = (s,b). The important
role of direct revelation games stems from the fact that one can,

without loss of generality, restrict attention to direct mechanisms.




For any Nash equilibrium of any bargaining game, there is an equivalent
direct mechanism that always yields the same outcomes. This well known

result is called the revelation principle. Given any mechanism M,

which maps reports into outcomes, and a set of equilibrium strategies
x, which maps true types into reported types, then the composition

ﬁ =M o x 1is a direct mechanism that achieves the same outcomes as the
mechanism M.

For the revelation game <F,G,p,0>, a sequential bargaining

mechanism is the pair of outcome functions, T(+|+,*) and x(+,*),

where T(tls,b) is the probability distribution that the object will be
transferred to the buyer at time t and x(s,b) is the discounted
expected payment from the buyer to the seller, given that the seller and
buyer report the reservation prices s and b, respectively.

Typically, randomization of the outcomes over time is not
necessary. Without randomization, the outcome function T can be
replaced by the function t(e,e), which determines the time of trade
given the players' reports. A sequential bargaining mechanism, then, is
the set of outcome functions <t,x> where t(s,b) is the time of trade
and x(s,b) 1is the discounted expected payment, given that the seller
reports s and the buyer reports b. Most bargaining mechanisms seen
in practice require that the exchange of money and goods take place at
the same time. Such a requirement is not restrictive in this model,
because there is no benefit to be gained by exchanging money at a
different time from the exchange of the good, since both players have

identical time preferences for money. For reasns of tractability, I
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will frequently restrict attention to the simplified mechanism <t,x>.

3. Perfect Bargaining Mechanisms

The weakest requirements one would wish to impose on the
bargaining mechanism <T,x> in the direct revelation game are
(1) 4individual rationality, that everyone wishes to play the
game, and
(2) incentive compatibility, that the mechanism induces truth
telling.
In addition, when the bargainers are unable to make binding commitments,
one needs the further restriction of sequential rationality: it must
never be common knowledge that the mechanism induced over time is
dominated by an alternative mechanism. Bargaining schemes that satisfy
incentive compatibility, individual rationality, and sequential ration-

ality are called perfect bargaining mechanisms. The adjective 'perfect"

is adopted, because of the close relationship between perfect bargaining
mechanisms in the direct revelation game and perfect (or sequential)
equilibria in an infinite-horizon extensive-form game. It remains to be
proven that a sequential bargaining mechanism is perfect if and only if
it is a perfect equilibrium for some infinite-~horizon extensive-form
game. This issue will be addressed in future research.

In this section, I derive necessary and sufficient conditions for
the sequential bargaining mechanism to be perfect. The incentive-
compatibility and individuval-rationality conditions were first

established in Myerson and Satterthwaite [1983], and later extended to
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the case of multiple buyers and sellers by Wilson [1982] and Gresik and
Satterthwaite [1983]. It is important to realize that these properties
are actually necessary and sufficient conditions for any Nash

equilibrium of any bargaining game, since every Nash equilibrium induces

a direct revelation mechanism as mentioned in section 2.

Incentive Compatibility

In order to define and determine the implications of incentive
compatibility on the sequential bargaining mechanism <T,x>, it is
convenient to divide each player's expected payoff into two components

as follows. Let

b b e

s(s) = J x(s,b)g(b)ab ; P(s) =) fePPar(t|s,b)g(b)db
b b 0
s 5 ® "

B(b) = § x(s,b)f(s)ds ; Q(b) =J J§ e % ar(t|s,b)e(s)ds
s s 0

where S(s) 1is the discounted expected revenue and P(s) 1is the
discounted probability of agreement for seller s, and B(b) is the
discounted expected payment and Q(b) is the discounted probability of
agreement for buyer b. Thus the seller's and buyer's discounted

expected payoffs are given by

U(s) = s(s) - sP(s) V(p) = bQ(b) - B(b) .

Formally, the sequential bargaining mechanism <T,x> 1is incentive

compatible if every type of player wants to report truthfully his type; that
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is, for all s and s' in [s,s] and for all b and b' in [b,b]:
U(s) >s(s') = sP(s') ; V(b) > vQ(b') - B(p') .

Lemma 1: If the sequential bargaining mechanism < ,x> is
incentive compatible. then the seller's expected payoff U 1is convex
and decreasing, with derivative dU/ds = -P almost everywhere on

[§,§], her discounted probability of agreement P 1is decreasing. and
s _ s

U(s) - U(8) = [P(u)du ; S(s) - s(5) = [ - u aP(u) . (s)
s 8

Similarly, the buyer's expected payoff V 1is convex and increasing,
with derivative dV/db = Q almost everywhere on [b.b], his discounted

probability of agreement Q 1is increasing, and

b b
V(v) - V(b) = [Q(u)du ; B(b) - B(d) = [ u dQ(u) (B)
b b

Proof: By definition, seller s achieves the payoff U(s) =
S(s) - sP(s). Alternatively. seller s can pretend to be seler s' 1in
which case her payoff is S(s') - sP(s'). 1In the direct revelation
game, the seller s must not want to pretend to be seller s', so we

have U(s) » S(s') - sP(s') for all s, s' € [§,§]. or

U(s) > U(s') - (s - s'")P(s")

implying that U has a supporting hyperplane at s with slope

-P(s') € 0. Thus U 1is convex and decreasing with derivative
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du/ds(s) = P(s) almost everywhere and P must be decreasing. Since
P is monotone, it is differentiable almost everywhere and we have
that dS/ds = s(dP/ds), which yields (S). The proof for the buyer is

identical. Q.E.D

Lemma 1 indicates the stringent requirements incentive compati-
bility imposes on the players' utilities. In particular, it suggests
how one can construct an incentive-compatible payment schedule x, given
a probability of agreement distribution T for which the seller's
discounted probability of agreement P(s) is decreasing in s and the

buyer's discounted probability of agreement Q(b) is increasing in b.

Lemma 2: Given the sequential bargaining mechanism <T,x> such
that P is decreasing, Q@ is increasing, and S and B satisfy (S)

and (B) of Lemma 1, then <T,x> is incentive compatible.

Proof: A mechanism is incentive compatible for the seller if for

all s, s' € [s,s],
S(s) - sP(s) » s(s') - sP(s') .
Rearranging terms yields the following condition for incentive compatibility
s[P(s') - P(s)] + S(s) - s(s') »0 . (s')
From (S), we have

S(s) - s(s') = ? - u dP(u)
8
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and from the fundamental theorem of integral calculusg/

S'
s[P(s') - P(s)] = sfdaP(u) .
8

Adding the last two equations results in

'

5
s[P(s') - P(s)] + S(s) - S(s') = (s = u)dP(u) > 0
s
where the inequality follows because the integrand (s - u)dP(u) is
nonnegative for all s, u € [s,gl, since P 1is decreasing. Hence,
<T,x> satisfies the incentive-compatibility condition (S'). An

identical argument follows for the buyer. Q.E.D.

Individual Rationality

The sequential bargaining mechanism <T,x> is individually
rational if every type of player wants to play the game: for all s in

[s,8] and b in [b,b],
U(s) 0 ; Vv(b) >0 .

In light of the monotonicity of U and V proven in Lemma 1, any
incentive-compatible mechanism <T,x> will satisfy individual
rationality if the extreme high-cost seller and low-valuation buyer
receive a nonnegative payoff; that is, an incentive-compatible
mechanism <T,x> is individually rational if and only if U(s) > 0 and

v(v) > o.
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The following lemma describes how one can check whether or not a
sequential bargaining mechanism is individually rational. It is
convenient to state the lemma in terms of the simplified bargaining
mechanism <t,x> rather than <T,x>. Recall that for the sequential

bargaining mechanism <t,x>, we have

b
s(s) [x(s,p)a(d)ab ; P(s) = [eP{ED)o(p)a
b

o’~—0o

?e-ot(s,b)

B(b) = ?x(s,b)f(s)ds ; Q(p) = f(s)ds .
8

[ ]

Lemma 3: If the sequential bargaining mechanism <t,x> is

incentive compatible and individually rational, then

_l-6(e)y -otls,p) _ (o, F(:)]e-pt(s,b)} 5 16

u(s) + v(p) = E{lb - =

where the expectation is taken with respect to s and Y.

Proof: First note that from lemma 1, for (t,x) to be indivi-
dually rational it must be that U(s) > 0 and V(b) > 0. For the

seller, we have

’

(us)



-

7 U(s)f(s)ds = U(s) + ? 7 P(u)du f(s)ds (us)
g Bl
s
= U(s) + [ F(s)P(s)ds
S
_, b= -pt(s,b)
=U(s) + [ [ F(s)e™ P %% g(p)ds ab
b: .8

where the first equality follows from lemma 1 and integration by parts,
and the second equality results from changing the order of integration.

Similarly for the buyer, we have

b
JV(v)g(v)dd = V() +
b

-ot(s,b)

[1 - G(b)le f(s)ds db . (UB)

o'’
10 ~—wni

Rearranging terms in (US) and (UB) and substituting the definitions

for U(s) and V(b), results in the desired expression (IR) for

U(s) + V(b). Q.E.D.

Lemma 4: If the function t(+,*) is such that P 1is decreasing,
Q 1is increasing, and (IR) is satisfied, then there exists a function
x(*,*), such that <t,x> is incentive compatible and individually

rational.

Proof: The proof is by construction. Let

b
x(s,b) = Ju dQ(u) + ?u dP(u) + ¢
b s



e

where ¢ 1is a constant chosen so that V(b) = 0. To compute c, notice

that
s
V(b) = ba(b) - [x(s,b)f(s)ds
S
S s
= bQ(b) - ¢ - [ Ju dP(u)f(s)ds
S s s
s
= bQ(b) - ¢ + [sl1 - F(s)]lar(s) =0 .
S
Thus,

c =bQ(b) + };s[l - F(s)]apr(s) .
S

Incentive compatibility for the seller is verified by showing that

the seller s 1is better off reporting s than s' # s: for all s,

s' € [§,§],

s s
s/ dP(u) - [ u apP(u)

s{P(s') - P(s)] + s(s) - s(s')

s s
s'

= [ [s - ulaP(u) > 0
s

since P 1is decreasing. An identical argument holds for the buyer.

Since V(b) = 0 and <t,x> 1is incentive compatible and satisfies
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(IR), it follows from lemma 3 that U(s) » 0. Thus, the bargaining

mechanism <t,x> 1is incentive compatible and individually rational. Q.E.D.

Sequential Rationality

To understand how learning takes place in a sequential bargaining
mechanism, it is best to interpret the direct revelation game as follows.
At time zero (after the players know their private information), the
players agree to adopt a particular sequential bargaining mechanism
<t,x> that is interim efficient. (Note that any interim efficient
mechanism can be chosen as a Nash equilibrium in an appropriately
defined "choice of mechanism" game.) The players then report their
private information in sealed envelopes to a mediator, who will then
implement the mechanism <t,x>. (Actually, a third party is not
necessary, since the role of the mediator can be carried out by a
computer that is programmed by the bargainers to execute the mecha-
nism.) After opening the envelopes, the mediator does not announce the
outcome immediately by saying something like "Trade shall occur two
months from now at the price of one thousand dollars,” but instead waits
until two months have past and then announces "Trade shall occur now at

' It is necessary that the mediator

the price of one thousand dollars.'
wait until the time of trade in order for the mechanism to be
sequentially rational, since otherwise the bargainers would have an
incentive to ignore the mediator's announcement and trade immediately.
As time passes, the players are able to refine their inferences

about the other player's private information based on the information

that the mediator has not yet made an announcement. Initially, it is
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common knowledge that the players' valuations are distributed according
to the probability distributions F and G, but after 1 units of time
have elapsed the common knowledge beliefs become the distributons F
and G conditioned on the fact that an announcement has not yet been

made:

FT(s) = F(s|t(s,b) > 1) ; Gt(b) = G(blt(s,b) > 1) .

Thus, at any time Tt > O, the mechanism <t,x> induces an outcome
function t(s,b) = t(s,blFT,GT) for all s and b. A mechanism

<t,x> 1s sequentially rational if at every time 1 > 0 the induced

outcome function t(s,b|FT,GT) is interim efficient; that is, there
does not exist a mechanism <t',x'> preferable to <t,x> at some time
T 20 for all remaining traders and strictly preferred by at least one
trader.

The following lemma relates the definition of sequentially

rational to common knowledge dominance.

Lemma 5: A sequential bargaining mechanism <t,x> is
sequentially rational if and only if it is never common knowledge that
the mechanism t(','|FT,GT) it induces over time is dominated by an

alternative mechanism.

Proof: From Theorem 1 of Holmstrom and Myerson [1983], we know
that a mechanism is interim efficient if and only if it is not common
knowledge dominated by any other incentive-compatible and individually-

rational mechanism. Q.E.D.
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A necessary condition for a mechanism to be sequentially rational
is for the bargainers to continue negotiations so long as each expects
positive gains from continuing. For the model here, since there are no
transaction costs (only delay costs), this means that negotiations
cannot end if there exists a pair of players that have not yet come to
an agreement, but for which agreement is beneficial at some point in the
future. Formally, for the bargaining mechanism <t,x> to be sequenti-
ally rational it must be that for all potential players, a failure to
reach agreement implies that there is some point beyond which agreement

is never beneficial: for all s and b,

t(s,b) =® +3 1 >0 suchthat yt>T1T , 8 » be(p_o)-r

be(p-o)r

The condition s » is simply a statement that trade is not

beneficial at time T, since

pT -0T (p-0o)T

-pT -0T
2 ? be « 5 ? be 5

X - se + be - x 2 0 =~ se

Notice that the strength of ths requirement depends on the relative
magnitudes of the players' discount rates. When p > g, then
(p-0)t
e + ™ a5 T * ® g0 for all potential pairs of players it is
never the case that there exists a time at which trade is never bene-

ficial in the future. Thus, when p > ¢, the mechanism <t,x> 1is

sequentially rational only if trade always occurs: t(s,b) < = y s,b.

e(p-d)r

Likewise, when p > o, then + 0 as T #+ o, so for every pair

of players there is always a point at which trade becomes undesirable
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for all times in the future. Finally, if p = 0 then the necessary
condition for sequential rationality becomes t(s,b) = + s > b: trade
must occur whenever the gains from trade are initially positive.

In order to state this necessary condition in a lemma, it will be
useful to define the set B to be the set of potential traders for

which trade is always beneficial at some time in the future:
B ={(s,b)]p >0 or (p=0 and s < D)} .

Lemma 6: Any mechanism <t,x> that excludes trade over a

nonempty subset of B violates sequential rationality.

Proof: Let N CB be the set for which trade never occurs.
Then at some point T the induced mechanism has t(s,bIFT,GT) = o for
all remaining traders, which includes N. But this mechanism is not
interim efficient, since it is dominated by a mechanism that results in
a positive probability of trade for some traders in N (a partially

pooling equilibrium with this property will always exist). Q.E.D.

I claim that sequential rationality is a necessary condition for
rationality in games with incomplete information in which commitment is
not possible. If a mechanism is not sequentially rational, then at some
point in time it is common knowledge that all potential agents would
prefer an alternative mechanism and hence this alternative mechanism
will be adopted by the agents at that point in time. Thus, it would be
inconsistent for the players to believe that the original mechanism

would be carried out faithfully.
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Necessary and Sufficient Conditions for Perfection

Lemmas 1-5 are summarized in the following theorem, which gives
necessary and sufficient conditions for the sequential bargaining

mechansim <t,x> to be perfect.

Theorem 1: A sequential bargaining mechanism <t,x> 1is incentive

compatible if and only if the functions

b -
b

s(s) = [x(s,b)g(b)ab ; P(s) = fe-pt(s’b)g(b)db
b b
s 5

B(v) = [x(s,b)f(s)ds Q(p) = fe-Ot(s’b)f(s)ds
S S

are such that P is decreasing, Q 1is increasing, and

S(s) - s(s) = 7 - u dP(u) ; B(p) - B(p) =
s

u dQ(u) . (IC)

10—l

Furthermore, for t such that P 1is decreasing and Q is increasing,
there exists an x such that <t,x> 1is incentlive compatible and
individually rational if and only if

1 - G(b)]e-at(s,b) i F(s)]e-pt(s,b)}

g(® -

T >0 . (IR)

U(s) + v(b) = e{lv -

Finally, the mechanism <t,x> 1is sequentially rational if and only if
it is never common knowledge that the mechanism it induces over time is

dominated by an alternative mechanism.
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, Efficiency

The set of perfect bargaining mechanisms is typically quite large,
which means there are many extensive-form games with equilibria satis-
fying incentive compatibility, individual rationality, and sequential
rationality. To narrow down this set, it is natural to assumed addi-
tional efficiency properties. Three notions of efficiency, described at
length by Holmstrom and Myerson [1983], are ex post, interim, and ex
ante efficiency. The difference among these concepts centers on what
information is available at the time of evaluation: ex ante efficiency
assumes that comparisons are made before the players know their private
information; interim efficiency assumes that the players know only their
private information; and ex post efficiency assumes that all information

is known.

Ex Post Efficiency

Ideally one would like to find perfect bargaining mechanisms that

are ex post efficient. The mechanism <t,x> 1is ex post efficient if

there does not exist an alternative mechanism that can make both players
better off in terms of their ex post utilities (after all information is
revealed)réj Equivalently, for a mechanism to be ex post efficient, it
must maximize a weighted sum al(s,b)u(s) + ae(s,b)v(b) of the players'
ex post utilities for all s and b, where al(','), ae(-,°) >0 and

the ex post utilities of seller s and buyer b are

e-pt(s,b) e-ot(s,b)

; vis,b) =b

u(s,b) = x(s,b) - s - x(s,b) .
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Since the payoff functions are additively separable in money and goods,
and thus utility is transferable between players, we can assume equal
weights (al(s,b) = a2(s,b) =1y s,b) without loss of generality.

In order to simplify notation, define p(s,b) = e-t(s,b)

, S0 that
p(s,b)p is the discounted probability of agreement for seller s given
that the buyer has valuation b, and p(s,b)0 is the discounted
probability of agreement for buyer b given the seller has cost s.
With this change, a sequential bargaining mechanism becomes the pair of
functions <p,x> where p: [§,§] X [E,S] + [0,1]. The bargaining

mechanism <p,x>, then, is ex post efficient if for all s € [§,§] and

b € [E,gl, the function p(s,b) is chosen to solve the program

o]
max =n{(p) = bp - spp .
pelo,1]
The first-order condition is
am _ - p-1 _
ap - obp - psp =0

or

Checking the boundary conditions and assuming s,b » 0, yields
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(1 if s <bd , ps € 0od

1
p-0
p*(s,b) = J(gs) if p>ad , ps > ob

0 if p<o , 820D

.

The following theorem demonstrates that it is impossible to find
ex post efficient mechanisms, if the bargainers are uncertain about
whether or not trade should occur immediately. This result is shown in

an example in Cramton [1983].

Theorem 2: There exists an incentive-compatible individually-
rational bargaining mechanism that is ex post efficient if it is common
knowledge that trade should occur immediately. However, an ex post
efficient mechanism does not exist if the buyer's delay cost is at least
as great as the seller's and it is not common knowledge that gains from

trade exist.

Proof: Suppose that it is common knowledge that trade should
occur immediately. Then three cases are possible: (1) p < ¢ and
s <b, (2) p>0 and ps < ob, and (3} p == and o < = I need to
show that p*(s,b) =1 for all s,b satisfies (IR). For cases 1

and 2,
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it - L5 o 2

(o '<S§"’} cle + To)

u(s) + v(b)

ksl = 1 o BN ab = |lsrs) « Hia)les
8

n
10—l

= %6(0)|2 - 5 + b - sP(s)]

1w wi

=b-520

vhere the integration is done by parts. In case 3,

U(3) + v(b) = efb - ——j;gggh—} =550
Then by lemma 4, there exists an x such that <p,x> 1is incentive
compatible and individually rational.

Now assume that it 1is not common knowledge that gains from trade
exist and the buyer's delay cost is at least as great as the seller's
(p €< 0). Notice that when p € 0 we get that <p,x> 1is ex post
efficient if trade occurs without delay whenever there are positive
gains from trade:

1 if s <bd

p*(s,b) =
0 if s »bv .

Substituting this function for p 1into (IR) yields
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U(s) + V(b)
b min{b,g b min{b,§
=1 J [bg(b) + G(b) - 1]f(s)ds ab - [ [ sf(s) + F(s)]ds g(b)dp
bs bs
b b
= [[bg(b) + G(b) - 1]F(b)dd - [ min{bF(b),s}g(b)ab
b b

b
1 - ¢(b)IF(b)ab + [(b - s8Tg(b)db
S

[
| o' —\O'I

b
1 - G(b)]F(b)db + [[1 - G(b)]ab

s

]
| O OI

[1 - ¢(u)]F(u)du .

1]
10 —0lI

Thus, any incentive-compatible mechanism that is ex post efficient must

have

u(s) + v(p) = - 7[1 - G(u)]F(u)dau < 0
b

and so it cannot be individually rational. Q.E.D.

When the seller's delay cost is greater than the buyer's and it
is not common knowledge that trade should occur immediately, a general
proof that ex post efficiency is not achievable cannot be given due to

the complicated expression for p*(s,b) in this case. However,
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analysis of examples (see section 5) suggests that ex post efficiency is

typically unobtainable.

Ex Ante Efficiency

The strongest concept of efficiency, other than ex post efficiency
(which is generally unobtainable), that can be applied to games of
incomplete information is ex ante efficiency. A player's ex ante
utility is his expected utility before he knows his type. Thus, given
the sequential bargaining mechanism <p,x>, the seller's and buyer's ex

ante utilities are

s b
0= 7U(s)f(s)ds = 7 [Ix(s,b) - sp(s,b)Plg(b)db £(s)ds
s s b
b b s
7 = [v(v)g(v)dd = [ f[bp(s,b)0 - x(s,b)]r(s)ds g(v)av .
b b s

The mechanism <p,x> 1is ex ante efficient if there does not exist an

alternative mechanism that can make both players better off in terms of
their ex ante utilities. Thus, for a mechanism to be ex ante efficient,
it must maximize a weighted sum al + a2 of the players' ex ante
utilities, where al,ae » 0. For tractability and reasons of equity, I
will assume equal weights (al = a2 = l).ﬁj The use of unequal weights
would not significantly change the results, but would greatly complicate
the analysis.

If the bargainers were to choose a bargaining mechanism before
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they knew their types, it would seem reasonable that they would agree to
a scheme that was ex ante efficient. It is generally the case, however,
that the players know their private information before they begin nego-
tiatons, and therefore would be unable to agree on an ex ante efficient
mechanism, since the players are concerned with their interim utili-
ties U(s) and V(b) rather than their ex ante utilities U and V.
Nevertheless, it may be that the sequential bargaining mechanism is
chosen by an uninformed social planner or arbitrator in which case the
selection of an ex ante efficient mechanism would be Jjustified.
Alternatively, one might suppose that the choice of a bargaining
mechanism is based on established norms of behavior and that these norms
have evolved over time in such a way as to produce ex ante efficient
mechanisms. In situations where the choice of a bargaining mechanism
does not occur before the players know their types or is not handled by
an uninformed third party, such as an arbitrator, ex ante efficiency is

too strong a requirement. The weaker requirement of interim efficiency,

which requires that there does not exist a dominating mechanism in terms
of the player's interim utilities U(s) and V(b), is more appropriate.
The sum of the players' ex ante utilities for the bargaining

mechanism <p,x> 1is given by

O+ 7=/ [[opls,b)? - sp(s,b)°]£(s)g(b)ds db .

10—
10—l

A Yargaining mechanism, then, is ex ante efficient if it maximizes this

sum subject to incentive compatibility and individual rationality:
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m?x )e{bp(s,b)o - sp(s,b)°} such that
P\°*,°
(P)
_1-6(v)

o F(s) P
e{lb _—ETST__]p(S’b) - [s + ?(gy]p(s,b) } >0 ,
where p 1is chosen so that P 1is decreasing and Q 1is increasing.
Multiplying the constraint by A 2 O and adding it to the objective

function, yields the Lagrangian

Lip,A) = e{{(L + A)p - 2 L ; g(b)]p(s,b)o - ({1 +2)s + A%%E%)p(s,b)p}
= (1 + Ne{(d -7 : T ! ;(g§b)]p(s,b)o - (s +3 8 T i(:;)p(s,b)p} !
For any a » 0, define the functions
c(s,a) = s + a gg:g d(b,a) = b - a l‘éfgéhl :

Then the Lagrangian (ignoring the constant (1 + A)) becomes
g P
L(p,A) = e{d(b,a)p(s,b) - c(s,a)p(s,b)"} ,

which is easily maximized by pointwise optimization. The first-order

condition is

or
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Establishing the boundary conditions and noticing that

c(e,°) » 0, yields the optimal solution

f 1 if c(s,a) < d(v,a) , pe(s,a) < od(v,a)
1
(s,b) —J od(b,a),""°
Py'8» - (pc(s :)) if p>o0o , pels,a) > cd(b,a) >0
0 if [p < o,c(c,a) < d(b,a)] or a(v,a) <0 .

-

The following theorem determines how to find an ex ante efficient

mechanism for any sequential bargaining game.

Theorem 3: If there exists an incentive-compatible mechanism
<p,x> such that p =p_  for some o in [0,1] and U(s) = V(b) =0,
then this mechanism is ex ante efficient. Moreover, if c(¢,1)
and d(e,1) are increasing functions on [E,E] and [b,b] respecti-
vely, and ex post efficiency is unobtainable, then such a mechanism must

exist.

Proof: The first sentence of this theorem follows from the fact
that the Lagrangian L(p,A) is maximized by the function P, with
a =X/1 + A, Hence, P, yields an ex ante efficient mechanism provided

the individual-rationality constraint is binding.

To prove the existence part of the theorem, suppose that c(+,1)
and d(e+,1) are increasing, and that the players are uncertain about
whether or not trade should occur immediately. Then for every
a [0,1], e¢(*,1) and d(+,1) are increasing, which implies that

pa(s,b) is increasing in s and decreasing in b. Thus, P is
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decreasing and Q 1is increasing as required by incentive and
compatibility.
It remains to be shown that there is a unique a € [0,1], for

which the individual-rationality constraint is binding. Define

R(a) = efa(b,1)[p (s,6)]1% - c(s,1)[p (5,0)]°}

so that R(a) 1is the value of the integral in the individual-
rationality constraint as a function of a. First, notice that

R(1) > 0, since the term in the expectation is nonnegative for all s
and b. Furthermore, R(0) < 0, since there does not exist an ex post
efficient mechanism. Therefore, if R(a) 1is continuous and strictly
increasing in a, then there is a unique a € [0,1] for which

R(a) = 0.

The continuity and monotonicity of R(e¢) are most easily verified

by considering two cases.

Case 1: (p € ). When p < o, then

1 if c(s,a) < d(b,a)
pa(s,b) =
0 if c(s,a) » d(b,a) .

Thus, pa(s,b) is decreasing in a, since

1 - G(b) F(S))

d(v,a) - c(s,a) = (b - g) - “( g(b) e f(s)

is decreasing in a. Thus, for a < B, R(B) differs from R(a) only

because 0 = pB(s,b) < pa(s,b) =1 for some (s,b) where
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d(b,B) < c(s,B8) and so d(bv,1) < c(s,1). Therefore, R(+) is stictly
increasing.

To prove R(°+) is continuous, observe that, if c(s,1) and
d(b,1) are increasing in s and b, then c(+,a) and d(+,a) are
strictly increasing for any a < 1. So given b and a, the equation
c(s,a) = d(b,a) has at most one solution in s, and this solution
varies continuously in b and a. Hence, we may write

(b,a)

R(a) = (d(v,1) - c(s,1))f(s)g(b)ds db

| o' — Ol
10—

where r(b,a) is continuous in b and a. Thus, R(a) is continuous

in a.

Case 2: (p > o). When p > 0, then

f 1 if pe(s,a) € dd(b,a)
1
(s,b) = nggg*gl)p_o if (s,a) > od(b,a) > 0
paS, —T DC(S,G) pcis, s
0 if d(v,a) <0 .
Since -

1 - G(b) . F(s)
?d - ps - afo o) * F(a) .

gd(b,a) - pe(s,a)

1 - 6(v)
Od(b,(!) _ o (b -G ‘b; )
pc(s,a) ~ o s + o E(8) ’
f(s)

and d(b,a) are decreasing in a, pa(s,b) is decreasing in a. Thus,

for a < B, R(B) differs from R(a) only because pB(s,b) < pa(s,b)
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where od(b,a) < pc(s,a). Therefore, R(*) 1is strictly increasing.
Since c(+,a) and d(+,a) are strictly increasing for any

a < 1, the equation d(b,a) = 0 has at most one solution in b and the

equation pc(s,a) = od(b,a) has at most one solution in s, and the

solutions vary continuously in b and a. Hence, we may write

b
Rla) = | [d(b,1) - c(b,1)]f(s)ds
a

qf

r(b,a)
[
-

-+

o' —ul

d(b,l)[pa(s,b)]o - c(s,l)[pa(s,b)]p)f(s)ds]g(b)db

(
r(b,a)

where qfa) and r(b,a) are continuous in b and a. Therefore,
R(a) is continuous in a.

Since R(+) 1is continuous and strictly increasing with R(0) < (0)
and R(1) > 0, there must be a unique a [0,1] such that

R(a) = 0 and pa(s,b) is ex ante efficient. Q.E.D.

It is worthwhile to point out that the requirement in the
existence part of theorem 3 that c{*,1) and d(+,1) be increasing
functions is satisfied by a large range of distribution functions. A
sufficient condition for c¢(+,1) and d(¢,1) to be increasing is for
the ratio of the distribution and the density to be increasing. This is
a local characterization of the monotone likelihood ratio property and
is satisfied by many distributions, such as the uniform, exponential,

normal, chi-square, and Polsson distributions.
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I now prove that the ex ante efficient mechanism typically
violates sequential rationality, and hence show that bargainers who are
unable to make binding commitments are worse off (in an ex ante sense)

than those bargainers able to commit to particular strategies.

Corollary 1: If ex post efficiency is unobtainable, c(+,1) and
d(+,1) are increasing functions, and d(E,l) <0 if p > o, then the

ex ante efficient mechanism violates sequential rationality.

Proof: By theorem 3, the ex ante efficient mechanism exists and
is given by P, for some a > 0. Consider the set of traders that
never trade under Py but for which trade is always beneficial at some

point in the future:
N = {(s,b)lpa(s,b) =0 and [p=o0 and s <b)l} .

By our hypothesis, this set is nonempty. Thus, from lemma 6, the

mechanism Py violates sequential rationality. Q.E.D.

Sle The Case of Uniform Symmetric Exchange: An Example

In order to illustrate the theory presented in the earlier
sections, it will be useful to look at an example. In particular,
consider the case of uniform symmetric exchange in which both the
seller's cost and the buyer's valuation are uniformly distributed on

[0,1]. Then c(s,a) = (1 + a)s and d(b,a) = (1 + a)b - a, which are

strictly increasing when a 1, so by theorem 3 we know that, for some

a € [0,1], the mechanism p P, 1is ex ante efficient. The desired
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a 1is found by setting R(a) to zero, so that U(s) = V(b) = 0. Again,
it will be useful to consider two cases depending on whether p € ¢ or
p > 0.

Case 1: (p € g). When p € g, then

1 if s<b-%l+a
pa(S,b) =

I
|
+
R
L]

0 if s>b-‘il

Define u = a/(1 + a) Then we wish to find u € [0,1/2] such that

b~y

1 b-
R(a) = [ [[2(b-5s)-1ldsd =0 .
TR 0]

Performing the integration yields
1 2
(b-)u+1)" =0

which has a root in [0,1/2] at w = 1/4. Thus, a = 1/3 and
1 if s < b -'%

p(s,b) =

0 if s ? b - %- g

When p € 0, ex ante efficiency is obtained by a mechanism that
transfers the object without delay if and only if the buyer's valuation
exceeds the seller's by at least 1/4. Perhaps somewhat surprisingly,
the ex ante efficient mechanism in this case does not depend on p or
0. Since the value of the object is declining more rapidly for the buyer
than the seller, it is always better to transfer the item immediately if

at all. Hence, even though the players can reveal information by
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delaying agreement, in the ex ante efficient mechanism they choose to
trade immediately or not at all, so that a static mechanism ex ante
dominates any sequential bargaining mechanism. This static mechanism,
however, is not sequentially rational, which illustrates Corollary 1.

An extensive-form game that implements the ex ante efficient
mechanism, when p € 0, has been studied by Chatterjee and Samelson
[1983]. They consider the simultaneous-offer game, in which the players
simultaneously announce prices and the object is traded if the buyer's
bid exceeds the seller's offer. For this example, the seller's optimal
strategy is to offer the price (2/3)s + (1/4) and the buyer's best
response is to bid (2/3)b + (1/12), which implies that trade occurs
provided (2/3)s + (1/4) < (2/3)b + (1/12) or s <b - (1/4) as in the
ex ante efficient mechanism. For this equilibrium, the price at which

the objJject is sold is

%-(b +8) +1/6 if s <b - %

x(s,b) =
1
o if S>b-'Ec
The sume of the players' ex ante utilities is
1 b-(1/k)
0+9= | [/ (b -s)ds db = %E ,
1/ 0

whereas the total utility from the ex post efficient mechanism is

e \I=]

(b - s)ds db =

O -
O%O‘
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Thus, 15.6% of the gains from trade are lost, when p < 0, due to delays

in agreement.

Case 2: (p > o). When p > 0, then

ag Qa
1 1 & = b =g
o(b - —2—) 1/(p-0)
1 + [}
p (s,b) =1 = %) if s > -p-(b =7 : =)
[+ ]
| 0 i Biea—e

Making the substitution u = af/(1 + a), we wish to find u [0,1/2]

such that
Z(b-u) 5
1 p 1 s
f[ [ (20 -1 - 2s)ds + I [(2b = 13 o(b -~ u) p-o
H 0 o Ps
B(b—u)
SOk
- 2g Ko=) 070 golan 2 0

Let 8 =o0/p and Y = p/(p - o). After this substitution, we have

1 8(b-u) ¥
[l | (-1-28)as+ [ [(z-1)66-u)]"
u 0 §(b-u)

- 2[8(v - u)]1+Y]s_Yds]db 0 @

Performing the inner integration (assuming Yy # 1) yields
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1:
J[8(6 - w(2 - 8)b + 6u - 1]
H

+ 1 i Y[2(1 - G)b + 26u - 1][5(b = U)]Y(l - [5(b _ u)]l-Y)]db
: 2
= [[6((2 = 6)b° - [2u(1 = 6) + 1]b + u(1 - &p))
u
+ 71201 - 8)o + 26u - 1]([8(b - 1Y -8 - w)]av
1 5 "
u

+ 6u% - yu(l - su) + [2(2 - 8)b + 26u - 116 1(b - w)]ab = 0

Since
1 1+Y 1 1+y
Vo o (1= @) " Ve o ML =) 1=
Jb - w)'ab = i and [b(b - u)'db = == - (A = E
u u

after integration we have

o 3 - (6 - v(2 - ) + 31 - WD) (v[1 + 2u(1 - 8)] - 26u]
Y-1 1+y
+ (1 - w(en® - (1 - ew)) + Sl — (o5 2

201 - &)1 - é = $)] =0

Dividing by &(1 - w)/(1 - ), yields
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Figure 1
u as a function of the ratio of the player's discount rates
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Efficiency as a function of the ratio of the players' discount rates.
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21+ + D)8 - vz - 0] + 31+ W ¥(1 + 2u(1 - §) - 26u]

-1
§E 0 - i)
1 +Y

+ &u® - yu(1 - ou) + (26u -1+ 2(1 -8)(1-2=Y))=0 .

2 + Y

Given 8 = o/p, a root u [0,1/2] to (R) is easily found numerically.

The sum of the players' ex ante utilities is computed as follows:

F U™ o ot + ] 8@l |8 = Mg

0+7 =
u 0 8(b-u) = =
- }[5( (1 - 28)b + 1éul
—u b -u -5 50H
1

: [(1 - )b + sul (6> - w1"(2 - (606 - WI*)]av

1-v

T & (1 2
=[5 [15 8@+ v) = yIp™ + [uy - su(1 + Vv
u

+ % 6u2(1 +Y) + GY_ll(l -8 + sul(v - u)Y]db

= 6](.1--Yu)_ [%(1 + U+ ue)léd(l * 'Y) - 'Y] + %(1 + u)[uY s Gu(l F .Y)]
Y-1 Y
rlaften s Sglsi(e s o) TEuET))

The value of u and the efficiency of the ex ante efficient
mechanism relative to the first-best (full information) solution are
shown in Figure 1 and Figure 2, respectively, as the ratio of the
players' discount rates is varied from O to 1. Bargaining efficiency

improves as the seller's discount rate is increased relative to the
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buyer's. When the players' discount rates are equal, 15.6% of the
gains from trade are lost due to delays in agreement. This inefficiency

decreases to zero as p *+ ®, illustrating theorem 2.

B Conclusion

Two important features of any bargaining setting are information
and time. Bargainers typically have incomplete information about each
other's preferences, and therefore mist commnicate some of their
private information in order to determine whether or not gains from
trade exist. One means of communication is for the agents to signal
their private information through their willingness to delay agree-
ment: Dbargainers that anticipate large gains from trade will be
unwilling to delay agreement and so will propose attractive terms of
trade that the other is likely to accept early in the bargaining
process; whereas, bargainers expecting small gains will prefer to wait
for better offers from their opponent. In this paper, I have described
the properties of such a bargaining model, by analyzing a sequential
direct revelation game.

Modeling the bargaining process as a sequential game, where the
agents communicate their private information over time, has two main
advantages. First, from the point of view of realism, one commonly
observes bargaining taking place over time. Second, any static
bargaining mechanism, because it does not permit the agents to learn
about their opponent's preferences, mist end with positive probability

in a situation where gains from trade are possible and yet no agreement



=43

is reached. If both bargainers know that gains from trade exist, what
is preventing them from continuing negotiations until an agreement is
reached? By introducing the time dimension, and hence allowing the
bargainers to comminicate through their actions over time, one is able
to construct perfect bargaining mechanisms, in which the bargainers
continue to negotiate so long as they expect positive gains from
continuing.

When the bargainers discount future gains according to known and
fixed discount rates, it was found that the bargainers may be better off
(in terms of their ex ante utilities) using a sequential bargaining
mechanism than a static scheme. This is because the time dimension
introduces an additional asymmetry into the problem, which may be
exploited in order to construct sequential bargaining mechanisms that ex
ante dominate the most efficient static mechanisms. Even in situations
where a static mechanism is ex ante efficient it is unlikely that such a
mechanism would be adopted by the bargainers, since it necessarily would
violate sequential rationality.

The analysis presented here represents an early step towards
understanding how agreements are reached in conflict situations under
uncertainty. Several simplifying assumptions have been made in order to
keep the analysis manageable. First, modeling the agents' time-
preferences with constant discount rates is an appealing example, but
not an accurate description of all bargaining settings. 2/ Second, the
agents have been assumed to be risk neutral, but in many bargaining

situations the agents' willingness to take risks is an important
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bargaining factor. Third, I have restricted attention to rational
agents who can calculate (at no cost) their optimal strategies.
Certainly, few agents are so consistent and calculating. With less than
rational agents, an agent's capacity to mislead his opponent becomes an
important variable in determining how the gains from trade are divided.
Finally, I have assumed that the players' valuations are independent.

In many settings, the bargainer's valuations will be correlated so, for
example, the seller's willingness to trade may be a signal of the
valuation of the object to the buyer.

Although it would be useful in future research to weaken the
simplifying assumptions made here, perhaps the most fruitful avenue for
future research is in analyzing specific extensive-form bargaining
games. The advantage of looking at specific extensive-form games is
that for such games the bargaining rules are independent of the probabi-
listic beliefs that the players have about each other's preferences. In
a direct revelation game, on the other hand, the bargaining rule depends
in a complicated way on these probabilistic beliefs. Because of this
dependence, direct revelation games are not played in practice.

Can one find a strategic game that comes close to implementing the
ex ante efficient bargaining mechanism over a wide range of bargaining
situations? Initial studies along these lines have been done by
Fudenberg and Tirole [1983], Sobel and Takahashi [1983], and Cramton
[1983]. All three papers consider a model in which only one of the
bargainers makes offers. When the player's reservation prices are

uniformly distributed on [0,1] and their discount rates are equal, it



-45-

was found that this model resulted in 32% of the gains from trade being
lost, as opposed to a 16% loss if the ex ante efficient bargaining
mechanism was adopted (Cramton [1983]). Thus, the players inability to
commit to ending negotiations results in a bargaining outcome that is
significantly less efficient than if commitment were possible.

Perhaps a better candidate for a strategic bargaining game that is
nearly ex ante efficient is the game in which the bargainers alternate
offers. This game was analyzed by Rubinstein [1982] in a setting of
complete information, but an analysis with incomplete information has
yet to be done. Of particular interest is the alternating-offer game as
the time between offers goes to zero, for this strategic game represents
a very general bargaining rule: at any time a bargainer may make a new
offer or accept the most recent offer of his opponent. It would be a
pleasant surprise if such a reasonable bargaining game was nearly ex
ante efficient over a variety of circumstances.

A second promising area for future research is further study on
the implications of sequential rationality to bargaining and to more
general games of incomplete information. I intend to address this issue
in depth in a future research paper entitled "Perfect Bargaining

Mechanisms."
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Footnotes

I hae assumed arbitrarily that the seller is female and the buyer
is male.

Note that P 1is absolutely continuous, since U and S are
absolutely continuous (they can be represented by indefinite
integrals by (S)); thus, the fundamental theorem of integral
calculus applies.

This is often referred to as "full-information efficiency" in the
literature. Holmstrom and Myerson [1981] call this "ex post
classical efficiency" to distinguish it from their concept of ex
post incentive-efficiency, in which incentive constraints are
recognized.

One might think that the assumption of equal weights is made
without loss of generality, because the payoff functions here are
additively separable in money and goods, and thus utility is
transferable between players. Although this intuition is correct
in a setting of complete information, it is false when there is
incomplete information, because an ex ante transfer of utility
will violate individual rationality for some players.

Fishburn and Rubinstein [1982] derive when the discounting
assumption is valid. In particular, they prove that any
preferences over bargaining outcomes that are monotonic,
continuous, and stationary can be represented by discounting
provided the bargainers exhibit impatience over all outcomes
except that of no agreement.
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Paper II: Bargaining With Incomplete Information
An Infinite-Horizon Model With Continuous Uncertainty

1. Introduction

Embedded within nearly every transaction is a bargaining
problem: How should the gains from trade be split among the parties
involved in the transaction? 1In a setting of perfect competition, the
answer is simple: price is set so that the marginal seller and buyer
reap no gains from trade. But in the absence of perfect competition,
determining how to split the pie is a difficult question that has long
been a concern of economists. Edgeworth, in fact, considered bargaining
to be the fundamental problem of economics. Of course he said this at a
time when markets were far less established, and fixing pricing was less
prevalent. But today bargaining is just as important.

Two approaches in economics have been taken in analyzing the
bargaining problem. The first is the axiomatic or cooperative approach,
which focuses exclusively on the bargaining outcome rather than on the
process of bargaining. In the axiomatic theory, a number of assumptions
are made that restrict the bargaining outcome to a unique solution from
among the set of possible agreements. It is generally assumed that each
party has perfect information about the other's preferences, and that an
efficient solution will be reached without delay. The second method,
and the one adopted in this paper, is the strategic approach, which
models the parties' negotiating behavior explicitly as moves in a non-
cooperative game. Each party employs a bargaining strategy based on his

or her beliefs about the other's strategy.
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It is my hypothesis that in any real-life bargaining setting the
relative urgency of the parties to reach agreement, the information each
party has about the other's preferences, and the parties' ability to
commit to particular strategies are all important determinants of the
bargaining outcome. A producer with superior knowledge of a consumer's
preferences may be able to exploit this knowledge to obtain a higher
price for the product. Similarly, a producer supplying a customer who
is in desperate need of a product may be able to get a higher price
because of the customer's reluctance to delay agreement. The objective
of this paper is to explore how information, time, and commitment affect
the bargaining outcome. Of particular interest are questions of

efficiency and distribution:

. What are the sources of bargaining inefficiencies?
. What determines how the gains from trade are split among those

involved in the transaction?

In order to answer these questions, I develop a model of the
bargaining process. In the basic model, two parties, a buyer and a
seller, are bargaining over the price of an object. As they bargain,
their payoffs are discounted over time, so that both the buyer and the
seller have an incentive to come to an early agreement. The process is
complicated by the fact that each agent may have incomplete information
about the preferences of the other agent. In particular, the seller may
not know how much the buyer values the object and the buyer may be

unaware what it will cost the seller to acquire the object. The
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sequential nature of the bargaining process combined with uncertainty
over preferences means that communication between the agents is an
important aspect of their behavior. The seller, when making an offer,
mist evaluate how the offer will reveal information to the buyer.
Likewise, the buyer mist interpret an offer as a signal of the seller's
preferences and hence an indication of what to expect in subsequent
rounds of the bargaining process.

Although I have described the model in terms of a buyer and a
seller negotiating over the price of an object, the model applies to a
much broader class of conflict situations: court settlements between
plaintiff and defendant, contract negotiations between labor and manage-
ment, trade agreements between nation states, and so on.

My approach is to model this bargaining process as a sequential
game with incomplete information. The bargaining game is one of
incomplete information, since one or both of the bargainers has private
information unknown to the other. Rationality is assumed by requiring
that the bargaining strategies of the agents form a Bayesian Nash
equilibrium (Harsanyi [1967]): each player's strategy must be a best
response to the other's strategy given their probabilistic beliefs of
the state of the world. I further require that their behavior be
sequentially rational (Kreps and Wilson [1982b]): at any stage of the
game, the players must play optimally, given their beliefs, for the
remainder of the game. Thus, players are unable to commit to strategies
they would not wish to carry out. For example, the seller cannot

threaten to raise the price should the buyer reject, if it is in the




-51-

seller's best interest to lower the price in the event that the buyer
rejects the offer. A Nash equilibrium that satisfies sequential

rationality is said to be a sequential equilibrium.

In situations where bargainers are unable to make binding commit-
ments, it is unrealistic to end the bargaining exogenously after any
finite number of periods - the bargaining should continue so long as the
bargainers expect positive gains from continuing. Thus, even when the
players are better off (ex ante) restricting negotiations to a finite
number of periods, if they are unable to commit to walking away from the
bargaining table, then they must adopt strategies that assume
negotiations could potentially continue indefinitely. To allow the
bargainers to cut off negotiations when there are positive gains from
continuing would violate sequential rationality, since the players would
be better off continuing and receiving a positive expected gain than

ending negotiations and receiving a payoff of zero.

Related Research. Much has been written on bargaining. The work,

both applied and theoretical, spans several disciplines, most notably
labor relations, economics, psychology, and law. A discussion of all
the approaches to the bargaining problem is not possible here. Instead,
I will 1imit my discussion to the three strands of current economic
research upon which my work is based: sequential bargaining, strategic
information transmission, and bilateral trading.

Its closest connection is with the sequential bargaining
literature, which models the bargaining process as a noncooperative game

in which a sequence of offers is made over time. As time passes, delay
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costs are incurred by both players, thus providing an incentive to reach
an early agreement. Many of the papers on sequential bargaining examine
the game in which the players have complete information about each
other's preferences. Rubinstein [1982] considers the problem of how a
fixed pie is split between two fully informed players. Players
alternate making offers until an offer is accepted. When the players'’
payoffs are discounted over time, the game has a unique sequentially
rational equilibrium in which trade occurs in the first period. This
efficient bargaining outcome is due to the assumption of complete
information: the players, being fully informed, are able to unravel
what would happen in the course of the game, and thus are prepared to
make and accept a reasonable initial offer and thereby avoid any costs
of delay. Binmore [1980, 1982], McLennan [1982a], and Mori [1982]
generalize the Rubinstein model to bargaining over a set of possible
outcomes. In addition, they show that as the time between offers goes
to zero (so that the person making the initial offer no longer has an
advantage), the bargaining outcome approximates the Nash solution of the
axiomatic theory, thus providing a noncooperative justification for the
Nash solution.

In all these models, the following result typically holds:
complete information implies an efficient bargaining outcome. One
explanation for the common occurrence of inefficient outcomes (strikes,
wars, costly delays) is that bargaining rarely occurs in an environment
of complete information. Players will typically use the early rounds of

the bargaining game to communicate their preferences to their
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opponent. For example, a seller with high costs will try to persuade or
signal to the buyer that he has high costs by making higher offers than
he would if he had lower costs.

The papers of Binmore [1981], Cramton [1983b], Fudenberg and
Tirole [1983], Fudenberg, Levine and Tirole [1983], Sobel and Takahashi
[1983], Perry [1982], and Rubinstein [1983] analyze both the incomplete
information and sequential aspects of bargaining games, and thus are
most closely related to my work. Fudenberg and Tirole characterize
rational behavior of agents in a two-period model when there are two
potential types of buyers and two potential types of sellers. Sobel and
Takahashi focus mainly on an infinite-period model with one-sided
uncertainty. I have freely borrowed from their insightful work in my
analysis of this problem in section 4. Fudenberg, Levine, and Tirole
continue the analysis of infinite-horizon bargaining with one-sided
uncertainty. Rubinstein analyzes an infinite-horizon game with
alternating offers in which there is one-sided uncertainty about a
player's delay cost. Binmore explores the validity of the generalized
Nash bargaining solution by comparing it with the outcome of a non-
cooperative game with incomplete information. Perry considers an
infinite-horizon game with two-sided uncertainty in which the players
have fixed transaction costs of making offers. In contrast to the
models with complete information, it is found in these models that
incomplete information leads to inefficient bargaining outcomes. In all
but Perry's model, agreement is delayed as a result of incomplete

information. The players are able to communicate their private
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formation through their willingness to delay aggrement. No such
communication is possible in Perry's model, since every type of each
player has the same willingness to delay agreement. As in the Spence
signalling model [19T4], a requirement for there to be communication
through delayed aggreement is that delay be more costly to those who
expect large gains from trade. It seems plausible that this requirement
would be met in most situations. Cramton [1983b] considers a sequential

direct revelation game and characterizes the class of perfect bargaining

mechanisms, which are incentive compatible, individually rational, and
sequentially rational.

Sequential games with incomplete information have also been
analyzed in areas other than bargaining. In the industrial organization
literature, several pioneering studies have sought to explain
oligopolistic behavior that cannot be accounted for in a world of
complete information (Kreps-Wilson [1982a]; Kreps-Milgrom-Roberts-Wilson
[1982]; Milgrom-Roberts [1982a], [1982b]; Saloner [1982]). Closely
related to these studies are models of information transmission, in
which agents with divergent interests transfer information prior to
making a decision (Crawford-Sobel [1981]; Green-Stokey [1981];

McLennan [1982]).

Finally, there are a number of bilateral trading models that
ignore the sequential aspects of bargaining, concentrating on incomplete
information alone (Chatterjee [1982]; Chatterjee-Samuelson [1981]; Green-
Honkapohja [1981]; Myerson [1979]; and Myerson-Satterthwaite [1983]).

These studies focus on the choice of an efficient mechanism for
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resolving the conflict among traders. A weakness of these papers is
that by ignoring the time dimension the bargainers are unable to learn
through past actions whether or not gains from trade exist. Hence,
trade will frequently not occur even in situations where trade is

profitable.

Outline.

Here I analyze an infinite-horizon model with two-sided
uncertainty in which there is a continuum of potential buyers and
sellers. My main interest is in the effects of incomplete information
on the behavior of the agents; thus, most of the paper is spent
analyzing the bargaining game in which each agent is unsure of the
preferences of the other agent. Equilibrium behavior is also determined
for the game with one-sided incomplete information. Although this game
is of less general interest, due to the less realistic informational
assumption, its analysis provides a convenient stepping stone to the
more intricate case of two-sided uncertainty. In Section 6, I examine
how information, uncertainty, and timing influence the bargaining
behavior of rational agents. The fundamental results are that:

* Incomplete information leads to bargaining inefficiency.

¢ Inefficiencies increase as preferences become more uncertain.

* Bargainers with high delay costs are at a disadvantage.

* Information is revealed more quickly, the higher the delay costs.

Although these intuitive results are all derived for the special
case in which the potential gains from trade are uniformly distributed,

many of the results are true in more general settings as well. For
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example, the conclusion that incomplete information leads to bargaining
inefficiency has been observed in numerous economic models with
incomplete information. On the other hand, the result that bargainers
with high delay costs are at a disadvantage does not hold true for all
distributions of the gains from trade. Fudenberg and Tirole [1981] have
shown that at least in a two-period model it is possible for a player to
benefit from a high delay cost. Perhaps the most novel result is the
form of the equilibrium I derive, in which information is revealed
gradually ove time and the rate of revelation depends on the players'
costs of delay. In previous bargaining models with incomplete
information, the commnication process was either not modeled (as in the
static models) or the learning was cut short due to a restricted

bargaining horizon (as in the two-period models).

2. The Model

Two parties, a buyer and a seller, are bargaining over the price
of an object which can be produced by the seller at a cost s and is
worth b +to buyerfl/ The seller's cost s and the buyer's valuation
b are also referred to as thelr reservation prices, since they repre-
sent respectively the minimum and maximum price at which each would
agree to trade. At every stage of the game, the seller makes an offer
p, whch the buyer may accept or reject. should the buyer prompts the
seller to make another offer in the next stage of the game. Both the
buyer and the seller have costs of delaying the bargaining process.

Specifically, their payoffs in the subsequent rounds are discounted



-5T-

according to the discount factors § for the buyer and GS for the

b
seller, with O < Gb, GS < 1. Thus the payoffs, if the buyer accepts
n-1 n-1
the n-th offer p, are Gb (b - p) for the buyer and GS (p - s) for

the seller. ©Should they fail to reach agreement both players' payoffs
are zero.

The buyer, though aware of his own valuation b, does not know the
seller's cost of production s, but assesses her cost to be distributed
according to the distribution F(s), with a positive density f(s) on
[§,§]. Similarly, the seller knows her cost s, but can only assess the
buyer's valuation to be distributed according to the distribution G(b),
with a positive density g(b) on [P,B]. The discount factors, the
distributions of the potential buyers and sellers, and the structure of
the game are common knowledge. In addition, it is assumed that both the
buyer and the seller are solely interested in maximizing their expected
monetary gain.

Throughout this paper I deal primarily with the example in which
the seller's cost is distributed uniformly on the interval [§,§], and
the buyer's valuation is distributed uniformly on [E,S] and is inde-
pendent of the seller's cost. It is natural to assume that s <b
and s < b, for a seller with s > b or a buyer with b < s would have
no hope of gaining anything from trade. It will be shown that a cutoff

strategy, in which the buyer accepts p if and only if his valuation

t
b exceeds an indifference valuation bt(pt)’ is optimal for the buyer
in every period t.gj The buyer's use of a cutoff strategy together

with the fact that a truncated, uniformly distributed random variable is
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still uniformly distributed implies that the seller's problem takes on a
simple form: at each stage, the seller selects a price given that the

-

buyer's valuation is uniformly distributed on the interval [b,b] where

-

b is the most recent indifference valuation. This results in a
stationary solution to the seller's dynamic programming problem, making
the problem tractable.

I derive an equilibrium in which the bargainers reveal gradually
their private information over time. At each stage of the game, the
buyer accepts the seller's offer p if his valuation is greater than
some cutoff valuation g(p). Thus, a rejection by the buyer indicates
to the seller that the buyer's valuation is less than g(p). Similarly,
the extreme low-cost sellers (sellers with costs less than ;) make an
offer p(s), which completely reveals their information; whereas, high-
cost sellers (s > ;) pool together by making an offer that no buyer
will accept.

In sequential games with incomplete information, players typically
have an incentive to hide their private information. Thus, the seller
would like to tell the buyer, "My costs are high, so you better expect

' regardless of whether or not the seller's costs

to pay a high price,’
are in fact high. The buyer, of course, is aware of the seller's
incentive to deceive and hence will not believe statements that are not
backed up by actions. The seller, in order to convince the buyer that
she has high costs, must take actions that a low-cost seller would be

unwilling to take (as in a signalling problem such as Spence [19Th]).

Likewise, a low-cost seller must take actions that no high-cost seller
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would find attractive. Intuitively, this is why the seller reveals her
private information in the way she does. Since low-cost sellers are
unwilling to delay agreement by making high offers, a high-cost seller
signals that her costs are high by making high offers. As the seller's
cost increases, she will make higher and higher offers, which are
accepted by fewer and fewer buyers. At some point (s = ;),

the seller makes an offer that no buyer will accept, since every buyer
is better off waiting for lower prices in the future. All sellers with
costs s > ; are then unable to reveal their private information in the
current round: a seller with cost sg' > ; cannot convince the dbuyer
that she has a cost s', since she has no way to back up her statement
with actions that other sellers with costs s > ; would be unwilling to
take. These high-cost sellers must pool together, revealing only that
their costs are greater than ;.

Exactly how much information is revealed in each round of
negotiations will depend on the bargainers' costs of delay. If delay
costs are high, more information will be revealed because the punishment
to low-cost sellers of pretending to have higher costs is greater;
whereas, if the seller's delay cost is low (GS close to one), then

less information will be revealed by the seller, since she is more

willing to delay agreement by offering higher prices.

3. General Characterization of Equilibria

A sequential equqilibrium consists of functions that determine the

players' optimal strategies given their information about how the game
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has evolved for each information set, including information sets off the
equilibrium path. The seller beings by choosing an optimal price
schedule po(s) given her cost s and her belief that the buyer's
valuation is distributed on [E,S] with density g.éj Next, the buyer
decides to accept or reject the offer given the initial price p and
his own valuation b; i.e., the buyer chooses a binary function

ao(p;b) € {accept, reject}. This strategy can be simplified to an
indifference valuation go(p),since a cutoff strategy in which a buyer
accepts the offer if and only if b » go(p) is optimal for the buyer
(as deerived in Theorem 1 below). When determining whether or not to
accept or reject the offer p, the buyer must make an inference about
the seller's cost: what informatin does the offer p reveal about the
seller's cost? This inference then determines what prices the buyer
expects in the future, which enables him to calculate whether he should
accept the price p now or wait for lower prices in the future. Should
the buyer observe a price p 1in the range of the equilibrium price
schedule po(s), then the buyer will update his prior belief of the
seller's cost using Bayes' rule. If, however, the buyer observes a
price p not in the range of the price schedule po(s), then he cannot
use Bayes' rule to update his prior. Rather he mist update his prior
based on conjectures he has about the seller's cost when he is surprised
by nonequilibrium behavior. These conjectures are needed to determine
the buyer's best response to behavior off the equilibrium path, which in
turn is used to evaluate the seller's benefits from deviating from the

equilibrium. Of course, in equilibrium, the seller is better off
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offering po(s) than deviating, since the seller's price schedule is a
best response to the buyer's strategy.

At every stage of the game, the strategies are similar: the
seller chooses an optimal price schedule p; given the history of
events, and the buyer maintains a set of conjectures ut that determine
his beliefs about the seller's cost should he observe nonequilibrium
behavior. No such conjectures are necessary for the seller since in
equilibrium both possible actions for the buyer (accept or reject) occur
with positive probability: the seller is never surprised by observing
an event with prior probability zero. A sequential equilibrium, then,

in the infinite-horizon bargaining game with two-sided uncertainty is

the collection
o ()b () (DX 4

where ut[slptez pt([§,§])] is a probability distribution representing
the buyer's conjectures about the seller's cost, conditioned on the
event that the seller offered a price pt that is not in the range of
the equilibrium price schedule pt(s). The equilibrium strategies pyg
and gt and the conjectures ut mst be such that at time +t:

(1) the buyer gt(p) is indifferent between accepting or
rejecting the price p given his expectations of future prices based on
his inference of the seller's cost,

(2) the offer pt(s) of seller s 1is optimal for the geller

given that the buyer's valuation is distributed according to the

distribution G(b) with support [E,bt], and
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(3) the conjectures My imply that the seller s is better off
offering the equilibrium price pt(s) than deviating by offering a
price not in the range of the equilibrium price schedule p,.

I now summarize a number of necessary conditions that every
sequential equilibrium in the infinite-horizon bargaining game must
satisfy. These properties are quite general, depending only on the fact
that the distributions of the players' reservation prices have positive
densities on an interval. The first condition provides a strong
characterization of the players' expected payoffs. This result was
first derived in Myerson and Satterthwaite [1983]. I present their
proof for completeness.

Let U(s) be the expected payoff to the seller given that her
cost is s and let V(b) be the expected payoff to the buyer that
given his valuation is b. It is convenient to split each player's
equilibrium payoff into two components: the expected cost and the
expected benefit of the transaction. Thus, let U(s) = S(s) - sP(s)

and V(b) = bQ(b) - B(b) where

8

th (s)Pr{p, accepted} P(s) =
0 s t t t

S(s) =

GtPr{p accepted} .
% s t

0

Il o~
ne~1 8

which may be interpreted as the expected payment to the seller and the
discounted probability of agreement, respectively. Q(b) and B(b) are

defined in the same fashion.

Theorem 1l: Every sequential equilibrium in the infinite-~horizon

bargaining game with two-sided uncertainty has the following
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characteristics:
(1) The seller's expected payoff U 1is convex and decreasing,
with derivative dU/ds = -P almost everywhere on [s,gl, her discounted

probability of agreement P 1is decreasing, and

U(s) - U(s) = 7P(u)du s(s) - s(s) = 7-udP(u) , (s)
s s

Similarly, the buyer's expected payoff V is convex and increasing, with
derivative dV/db = Q almost everywhere on [E.S]. his discounted

probability of agreement Q is increasing, and
b b
v(b) - v(b) = [Q(u)du B(b) - B(b) = fudQ(u) .
- b - b

(2) At every stage t, the buyer employes a cutoff strategy in
which he accepts an offer p, 1if and only if his valuation b 1is less
than some cutoff valuation ;t(pt)' Thus, the seller's posterior belief
at time t of the buyer's valuation is G(b)/G(gt).

(3) Expected price, conditional on agreement, decline over time;

that is, for all buyers that reject pt,

p, > E(pt+rlagreememt at t + 1) T >O0.

t

(1) By definition, seller s achieves the payoff U(s) = s(s) -
sP(s). Alternatively, seller s can pretend to be seller s' in which
case her payoff is S(s') - sP(s'). In equilibrium, seller s must not

want to pretend to be seller s', so we have U(s) » S(s') - sP(s') for
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all s, s'€ [§,§], or
U(s) > U(s') - (s = s")P(s")

implying that U has & supporting hyperplane at s' with slope
-P(s') < 0. Thus U is convex and decreasing with derivative
(du/as)(s) = -P(s) almost everywhere and P mst be decreasing.
Since P 1is monotone it is differentiable almost everywhere and we have
that (dS/ds)(s) = s(dP/ds)(s), which yields (S). The proof for the
buyer is identical.

(2) Define V(b,Ht) to be the equilibrium expected payoff at
time t + 1 of a buyer with valuation b after a history Ht’ and
let Q(b,Ht) be the discounted probability of trade for the buyer b
after a history Ht' Suppose a buyer with valuation b chooses to
accept the offer Dy Then b - pt b GbV(b,Ht). Now consider a buyer
with valuation b' > b. We wish to show that the buyer b' will prefer
to accept p.; that is, b' - s GbV(b',Ht). Buyer b can follow the
equilibrium strategy of buyer ©b', but it must be the case that buyer
b does at least as well by following his own equilibrium strategy than

that of buyer b'. Thus,
V(b,H ) > V(b',H ) - (o' = p)Q(b',H) > V(b',H ) +b -Db'
and so
b-p >8[V(b'LH) +b-v']

or
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' - - > ! 4
S,b' + (1 Gb)b P, sbv(b ,Ht)
Since b' > be' + (1 - Gb)b, this yields
L, > 1
b P, GbV(b ,Ht) "

which implies that any buyer with valuation greater than b strictly
prefers to accept p, now, rather than wait for future offers.

(3) Suppose buyer b rejects an offer of p, so that the
bargaining continues. Then it must be that buyer b expects to do
better by waiting; that is, he must expect to accept a price suffi-
ciently less than p so as to compensate him for waiting. Since
expectations are confirmed in equilibrium, it must be the case that
expected price decline over time. (Note that this argument does not
imply that every bargaining realization has prices declining over time,
only that on average prices decline. It is not inconceivable that the
sellers could pool together in the first round at a price p and then
gseparate in the next period in such a way that the highest cost seller

offers a price greater than p.) Q.E.D.

A final property that is very reasonable, but which cannot be
proven in general, is that a seller with higher costs offers higher
prices. This is certainly true in the one-shot game, but in the multi-
period game the buyer might have strange beliefs that could sustain an
equilibrium in which price does strictly decrease with s 1in some
period. For example, the buyer might believe in the initial period that

a high offer signals a low-cost seller. Such a belief could in fact
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entice the low-cost seller to make higher offers in the initial period,
but eventually the low-cost seller must make lower offers than a seller
with higher costs. However, I do not allow the buyer to maintain such

beliefs, and so restrict attention to monotonic equilidbria.

L. Equilibrium Behavior with the Seller's Cost Known

In periods following the seller's revelation of her private
information, the players' behavior will be the same as in the game in
which the buyer knows the seller's cost s, and the seller knows only
that the buyer's valuation is uniformly distributed on [E,g(p)]. Thus,
to determine a separating equilibrium for the game with two-sided
uncertalinty, it is necessary to first determine an equilibrium in the
game with one-sided uncertainty.

Assume that the seller's cost s 1s known to the buyer
(g = §), but the seller only knows that the buyer's valuation is
uniformly distributed on [E,S] (without loss of generality, we can
assume that g < E, for any buyers with b < s would not enter
negotiations). I begin by determining the equilibrium for the n-stage
game, and then establish an equilibrium in the infinite-horizon game by
letting n go to infinity. It will turn out that the form of the
infinite-horizon bargaining equilibrium will depend on whether s = E
or s < b. With s = b, prices strictly decrease over time and even-
tually converge to (but never reach) b. With s < b, after some finite

number of periods, the seller offers the price p = b, which is accepted

by the buyer with probability one, thus concluding the bargaining.
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First consider the case with s = E, so the seller will never
offer the price p = b. The players' equilibrium behavior (a sequence
of prices for the seller and a sequence of indifference valuations for
the buyer) is determined by solving a dynamic programming problem in
which the seller chooses the offer that maximizes her present value of
current and future gains, given her knowledge of the buyer's valuation,
and subject to the constraint that the buyer will accept the offer only
if his valuation is sufficiently high that he is better off accepting
now than waiting for lower prices in the future. Namely, with {1
periods remaining in the n-stage bargaining game, define J to be
n+1-1, so the seller chooses pJ to maximize her expected gain

uJ(s,b ) given that the buyer's valuation is uniformly distributed on

J-1
[b,b, 1
i
uj(s’bj-l) = m;x g;:;‘:fg [(p - s)(by_y - b,) + 8 (b, - bluy (85,01
such that bJ -p = Gb(bj = pJ+l)

Theorem 2 (Sobel and Takahashi)ﬂj: When s = E and the buyer's
valuation is uniformly distributed on [E,bn], the n-stage bargaining
game with one-sided uncertainty has a unique sequential equilibrium with

the seller's expected profit uJ(s,b ) and price pJ(s,b ) with 1

J=i -1

periods remaining and J =n +1 -1 given by

= L
uj(s’bj—l) =3 % —
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pj(s’bj-l) = cj(bj-l -8) +s

where A 1/2 and for 1 >1

2
. e Gb + Gch+1)
321 -6+ 8, ) -8y
Moreover, the buyer's indifference valuation bj(s’bj 1) with i -1
periods remaining is given by
1 -6 +468c¢
b b 3+l
b,(s,b, .) = (b -8) +s .
J J-1 2(1 - Gb + Gbcj+1) - Gscj+1 J-1

Proof: The proof is by induction on n. With one period

remaining, the seller wishes to choose p according to the program.

b -p

- n-1
un(s,bn_l) = max (p - s) —
P n-1 =

SO pn(s,bn = (l/2)(bn +8) = (l/2)(bn -s) +s and

-1) -1
= W - )/

-1

un(s,bn_ - b).

l) -1

With 1 periods remaining, the seller's expected profit is given

by

uj(s’bj-l) = max ir-j;jjq; ((p - S)(bj-l = bj) + Gs(bJ - b)

i b (S,bj)l
(1) r J-1

uJ+l

- -
such that bJ P b(bJ pJ+1)

Assume by the induction hypothesis that
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L By -9)f
mgafeoy) =2 e TH T

P +1(s,bj) =c¢c (b -8)+s

&) JHL" )
Then p = (1 - 6 )b + db[cj+1( = s) + s], or
(2) p=(1- & + 6b°3+1)(b3 -s) +s

Substituting into (1) yields

1
= s _6 S ¢ = =
uJ(S,bJ_l) gax 5, -0 [(1 * & Con 1)(bJ s)(bj_1 bj)
(3) J
1 2
+ 5 8y by - 8)7]
which has a unique maximum= 5/ when
[2(1 = & + 6b°3+1) = J+l]bJ = (1 - & + Gbcj+1)(bj_1 +g) - dscj+1s
so,
1—5 + 6 ¢
(4) b, boirl (b -8) +s
= o= 6 + 5b°3+1) - Gscj+1 3-1
Thus by substituting (4) into (2) and (3), we get
R +6cj+1)2
p,(s,b, ) = (b, ,-8)+s , and
3 3-1 2(1 - 6 + 5b°3+1) - scJ+1 3-1
2 2
ailab, g wd o= ) g1 = ®)
d =SS gD S 6b°j+1) =Rgem Py - P

as required. Q.E.D.
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Equilibrium behavior in the infinite-horizon model is derived as

an immediate consequence of Theorem 2 by letting n go to infinity.ﬁj

Corollary: When s =b and the buyer's valuation is uniformly
distributed on [p,ﬁ], then the seller's equilibrium price pi(s,ﬁ) in
period i, her expected profit wu(s,b), and the buyer's indifference

valuation bi 1 in period i are given by

- {1
By = cldb - 8)a* ™ + s

- -1
= b = s)d1 + s

o’
|

where d = c¢/(1 - sb + sbc) and c(ss,sb) is defined implicitly by

2
i (1 - Gb + Gbc)
3 = Gb + Gbc) = Gsc

Cc

The equations for ¢ and d above can be solved simultaneously
to yield

a1 - 6b)

ol 8 = b
d-a(l-/l-ﬁs) e =T F3
s b

(It is easy to see that 0 < c, 4 < 1 whenever 0 < Gb, 68 % 1k
Now assume that s < E so that for sufficiently large n, the
gseller will at some point want to offer a price p = E that will be

accepted with probability one. Then in the last period we have Pn =Dbd
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and un(s,bn 1) =b - s. The equilibrium behavior in this case is

derived as before by induction.

Theorem 3: For the n-stage game with s < b in which the seller
ends the bargaining by offering P = b, the seller's price

pJ(s,b ), her expected profit uJ(s,b ), and the buyer's

J-1 J-1

indifference valuation b, ,(s,b, .) with i periods remaining and

J J-1
J=n+1--1i are given by

bJ(s,bJ_l) =x/b, ) t¥s

p,(s;b, 0=cpb,  +ds+e

uj(s’bj-l) = S;:i;:—g-[adbi_l + (BJS + YJ)bJ-l + szg + on + TJ]
where XJ’ yJ, ZJ’ cJ, dJ, eJ, ad, BJ, YJ, pJ, OJ’ and TJ are

constants depending on b, 65, and Gb.

Proof: The proof is analogous to that of Theorem 2, but much more

tedious and so is done in the appendix.

5 Equilibrium Behavior with Two-Sided Uncertainty

With two-sided uncertainty, the seller must be concerned with the
information her offers reveal to the buyer, and the buyer must carefully
interpret offers as indications of the seller's true cost. Here I will
focus on a separating equilibrium over time in which at each stage, low-
cost sellers (s < ;) reveal completely their cost, while high-cost

sellers pool together by offering a price so high that no buyer will
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accept their offer. The equilibrium is monotonic in that sellers with
higher costs offer higher prices: p(s) is strictly increasing for

s < ; and constant for s > ;. Other equilibria are possible, such as
a partition equilibrium in which p(s) is a step function, but such
partially revealing equilibria are intractable in the infinite-horizon
game. Moroever, analysis of equilibria in the two-period model (Cramton
[1983a]) suggests that the players have very little to gain by only
revealing partially their information (it was found that the seller
could typically increase her payoff by no more than one-tenth of one
percent when she played the optimal partition strategy).

For those sellers that reveal completely their private
information, their price schedule p(s) 1is strictly increasing in s,
so that the buyer is able to infer the seller's cost by inverting p(s);
namely, s = p-l(p). Thus, the players' strategies for the remainder of
the game will be as determined in the previous section where the
seller's cost is known. However, to insure incentive compatitility one
mist give seller s the option of pretending to be some other seller
g' if she so desires. Suppose at some stage of the bargaining the
seller knows she is facing a buyer whose valuation is uniformly
distributed on [b,b] and she chooses to reveal (perhaps falsely) that
her cost is s'. Seller s will choose s' and p = p, so as to
maximize her expected gain given that the buyer infers her cost to be
g'(p) and accepts if b > g(p) =b :

o

max (p - s)(b - g) + ) Gg(pn - s)(bn_

- bn)
P’S' n=1l

1



A

subject to

(1) Sequentional Rationality. The seller's future offers
pl’p2"" are chosen to maximize the payoff of seller s' given the
buyer's future indifference valuations bl’b2""’ which are chosen so
that buyer b, 1is indifferent between accepting p, now or waiting one

period and accepting pn+ next period:

1

= = § - ! P o
bn Py b[bn pn+l(S ’bn)] v on 0

(2) 1Incentive Compatibility. The buyer in equilibrium is not

fooled:
a'(+) = p l(e)

A few comments are in order. First, the above optimization
problem applies only for the range of sellers [g,;] that reveal
completely their information (so that inversion of p(s) is
possible). Second, the problem as stated only allows for deviations
along the equilibrium path; that is, it is initially assumed that a
seller s will imitate the behavior of seller s' forever and hence
never be detected as deviating from the equilibrium. Deviations off the
equilibrium path are considered later in this section, when I establish
conjectures that support the described equilibrium strategies. For

example, a seller s may wish to pretend to be a seller with cost s'

for three periods and then to be a seller with cost g" for two more
periods and then act like herself for the remainder of the game.

Actually, sequential rationality prequires that the seller's future
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offers pl,p2,... be chosen to maximize the utility of seller s, not
s'. However, since the buyer believes that the seller has cost s' and

so expects to see prices that maximize the utility of seller s', if the

buyer observes prices that do not maximize the utility of seller s
then his subsequent behavior will be determined by his conjectures off
the equilibrium path. I have chosen these conjectures in such a way
that the seller is better off offering prices pl,pz,... that maximize
the utility of seller s', rather than surprising the buyer by offering
prices not along the equilibrium path of seller s'. Finally, in

equilibrium the buyer ©b,, who is indifferent between accepting or

ne

rejecting Py will strictly prefer to accept pn+l rather than wait

for p Thus, to determine b, it is sufficient to equate what the

n+2°

buyer b, gets by accepting p, and what he gets if he waits one

iod d t .
period and accepts pn+l

Three cases are possible depending on the position of the seller's
cost s relative to the support [P,B] of the buyer's valuation.
When s (possibly negative) is much less than b, then the seller will
offer p =b initially, so as to be sure to reach agreement immediately
and avoid substantial costs of delayrI/ As s 1increases towards b, at
some point, say s = d2, the seller is indifferent between offering
b in the second period or waiting until the third period to offer

P

P E. It is at this point that the incentive compatibility constraint

becomes binding: 1if the seller's cost is less than d2, then her

behavior in subsequent rounds is not a function of s, so the buyer's

A

behavior b does not depend on s, which implies that the seller has no
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incentive to deceive the buyer into believing she has some cost s' # s;

whereas, if the seller's cost is greater than d_, then her second offer

2’
does depend on s, so the seller does have an incentive to fool the

buyer. Finally, if s » E then the seller never offers the price
P = b, so that the bargaining could potentially continue indefinitely.
Thus, the following three cases are possible:

(1) s < d2: the incentive compatibility constraint is not
binding, because the seller offers p =b in the first or second period
so that the buyer's behavior does not depend on the seller's cost.

(2) s > b: vargaining may continue indefinitely.

(3) d, <8 < b: bargaining ends after a finite number of periods
for all potential buyers, and the incentive compatibility constraint is

binding.

Case 1 (s < d2). The first case is handled easily. Suppose

s < d2 and that the second-period offer is b. Then the seller's

problem 1is

max (p - 8)(5 - b) +6_(b - 8)(b - b)
P

such that b - p = Gb(b - b)

Performing the optimization yields

-6.1
P B

1 -6

p(s) = mx fb, 5 [6 - & (5 - B) + (1 -6) + 6]} ant B(p) =
- - S 8= b
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To compute the seller's cost d, at which the incentive compa-
tibility constraint becomes binding, we simply equate the seller's
utility if she offers b 1in the second period with her utility if she

walts until the third period before offering b:
u2(s,g) = u3(s,g)

2 2
where un(s,bn ) = ll(bn—l = 1_))[anbn + (an + Yn)bn +ps +0s8+ rn].

-1
Thus, we wish to find s such that

aﬁz + (Bx + Y)b + p52 +08s+T1T=0

- P g =0, -0

vhere o = « B=8B,-B,, Y=Y, -Y,, P =0p X 3 X

3 7 %o 3 ~ P 3

13 - Ty Solving for s yilelds

2° 3

and T

s =x + /x2 -y
where x = -(Bb + 0)/2p and y = (agz +Yb + 1)/p,

Case 2 (s > b). Now consider the case in which the incentive
compatibility constraint is binding and s 2 b. Suppose seller s
chooses to pretend to be the seller s8' Yy offering the price p. Then

her expected payoff is given by

-1

u(s'p) = —2—[(5 - b)(p - &) + ] 80y =B, - 9] (@)
n=

where the future prices and indifference valuations are

T c(v - s')dn-1 + s'
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b= (b - s )d" + s’

and
. p - Gb(l - c)s'(p)
Hip) = S+ oc
Thus,
b -b = (b-s)(1 - )™
By, < B = c(g D P Y
SO

(b4 - b )(p - 8) = (b-8)(1-a)

lalh - e ATt & fof = 80d™ 20 -

Substituting into (U) and performing the summation yields

1
-b

u_(s',p) = (5 -5)p - 8) + o (b-5")

i
1 -64d
8

(1 - a)[efd - s")

It can be shown that (1 - d)/(1 - Gsdz) = 1/2 and

(1 - a)/(1 - Gsd) = d, so that

I
b -b

us(s',p) = [ - g)(p - 8)

1

*5

s.c(b - 8%+ 6a(b - s") (s - 8)]
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Taking the derivative of us(s',p) with respect to p yields the
first-order condition

b-b bp(p s) + Gsc(b s )(bp s p)

+ Gsd[(gp - sé)(s' - 8) + sé(g -s")] =0

A

where bp is the derivative of b with respect to p and
sé = (ds'(p))/dp = ds/dp. Making the substitutions s' = s (implied by

(1/v)(p - s) + s, and

incentive compatibility), sé = (ds/dp),b

bp = (1/v)(1 - (ds/dp) + ds/dp where v =1 - Gb(l - ¢) yields the

first-order differential equation
. 2 dp dp 2 dp _
(b - s)v iy = (p - s)[ov ag T ¥¥ = Gs(c(ds -1) +vd)] =0
which in differential form becomes

(ap + Bs + Y)dp + op ~ s)ds = 0

where

<
"

1= Gb(l -c)
a= «2v + § ¢
8
B=v(2 -v) =8¢
s

- 2
Y = bv

g=v(l -v) + Gs(vd -c)
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This differential equation is then solved using the procedure described
in the appendix to yield p(s) given the initial condition P = p(g),
where p, 1s determined to maximize the payoff of seller s (the
incentive compatibility constraint is not binding for the lowest-cost
seller). The differential equation implies that each seller s prefers
offering p(s) than pretending to be any seller s' # s by offering

pls').

Case 3 (d2 < s < b). Finally suppose seller s chooses to
pretend to be seller s' by offering the price p and ending nego-
tiations with the price b after n + 1 periods. Then her expected

payoff is given by

T
les(bi-l - b, )(p; - 8)]

—L [(5-b)(p-s)+

us(s',p) =
b - E 4

where

1
g * BPh g T VS Iy

= + LS
By = by g tEyEt %y

and

g(; p) = P~ Sl4ye + <)
, . .
1 = sb(l - cn)

Performing the optimization of us(s',p) with respect to p subject to
sequential rationality and incentive compatibility results in a first-

order differential equation analogous to that found under Case 2.
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Again, solution of the differential equation assures that seller s
prefers offering p(s) than p(s') for all s' # s.

The analysis thus far has established the best-response strategies
of the buyer and the seller when faced with the hypothesized equilibrium
strategies. To assure that these best-response strategies do indeed
form an equilibrium, one must verify that no player is better off
deviating from these equilibrium strategies. How well a player can do
by deviating will depend on the beliefs an opponent forms when faced
with non-equililbrium behavior. Thus to determine that the seller is
better off playing the equilibrium than deviating, I must posit the
conjectures a buyer makes when faced with an offer off the equilibrium
path.

One has a great deal of freedom in choosing conjectures that
support an equilibrium. Since every seller wishes to be thought to have
high costs, the conjecture most apt to support an equilibrium is "if an
offer p 1is not an equilibrium offer, then s = s with probability
one." However, such an extreme conjecture hardly seems plausible. The
conjecture should be based on reasonable inferences a buyer might make
when faced with an initial offer off the equilibrium path. To determine
what constitutes "reasonable inferences" in particular applications, it
is helpful to look at the equilibrium strategies and have the non-
equilibrium beliefs be in line with the equilibrium beliefs. In the
hypothesized equilibrium discussed here, higher prices signal higher
costs. Thus, it is reasonable for the non-equilibrium conjectures to

satisfy this monotonicity as well.
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Describing conjectures that support an equilibrium is a compli-
cated task in the infinite-horizon model, due to0 the many possibilities
for deviant behavior the miltiple periods afford. A seller could
pretend to be someone else for a few periods and then start acting like
himself or even a third type of seller; the possibilities for non-
equilibrium behavior are practically limitless. However, one can
describe a reasonably simple and intuitive set of conjectures that
supports the equilibrium described here, in which the seller reveals
completely her information over time.

One of the difficulties in establishing conjectures is the
discontinuities in the equilibrium price schedule that arise when the
seller's cost s 1s less than the valuation of buyer E and so the
seller opts to end the bargaining after a finite number of periods. In
particular, a discontinuity in the price schedule occurs at points 4d

n

where seller d, is indifferent between bargaining n periods and

1lim p(s) or bargaining n + 1 periods and

offering the price p(d )
£*n
s+dn

1im p(s). Suppose the buyer observes the
s+dn

offering the price ﬁ(dn)

price p e (E(dn),ﬁ(dn)), then I will assume that the buyer will
believe s = 4, with probability one and that the bargaining will
continue for up to n periods.

Assuming that the discontinuity problem is resolved as described
above, I can now define conjectures inductively that will support an
equilibrium. In the posited conjectures, the buyer's beliefs will be of

the same form whether he has observed behavior on or off the equilibrium

path. Namely, at each stage of the game, the buyer either believes with



-82-

probability one that the seller has cost s or he believes that the
seller's cost is uniformly distributed on the interval [;,El.

The buyer is assumed to have the following conjectures. Just
before the nth period offer, the buyer believes that either
s =8 < ;n with probability one or that s 1is uniformly distributed

on [sn,El. After the nth period offer p,, the buyer revises his

probabilities as follows:

(1) If the buyer believes s ~ U[sn,s] and p_ 2 pn(sn+l),
then s ~ U[sn+l,s].

U[sn,s] and p_ < pn(sml),

(2) 1If the buyer believes s ~
then s = p_l(p ).
n ‘*n
(3) If the buyer believes s = s, and p_ > pn(sn+l)’ then
s = s L ]
n

(4) If the buyer believes s = s_ and P, < pn(sn+l)’ then

s = min {sn,p;l(pn)} .

This set of conjectures has two features tht make it especially
desirable. First, it agrees with the notion that higher offers signal
higher costs. Second, it yields beliefs off the equilibrium path that
are similar to the equilibrium beliefs. Thus, a buyer's behavior
changes continuously with changes in the price offered, whether or not
the infinitesimal changes in price result in behavior off the
equilibrium path.

The basic idea behind these conjJectures is that a high-cost seller

must be encouraged not to offer low prices initially, which are accepted
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by some high-valuation buyers, and then revert to higher offers in later
periods. Certainly if the buyer was naive, a high-cost seller would
have an incentive to adopt such a strategy. The buyer's conjectures,
however, make such an option unattractive, since the buyer when faced
with non-equilibrium behavior always tends towards optimism: when the
buyer is confused by non-equilibrium behavior, he assumes that the most
optimistic information (that the seller has low costs) is valid.

Showing that the posited conjectures support an equilibrium is a tedious
task and is omitted.

Given specific values of §_, § [s,s], and [b,b], it is

b’
possible to compute an equilibrium by the following iterative

procedure. First, compute the coefficients found in Section L, which
determine the offers and indifference valuations that occur after the
seller's cost has been revealed. For the lowest-cost seller (seller

g), determine the price she should offer and her optimal maximum number
of periods of bargaining. This is easily done, since the incentive
compatibility constraint is nonbinding for seller S. Gradually
increase s from s by some small incremental step 4s > 0. At each
iteration, find the price p(s + As) that makes seller s indifferent
between offering p(s) and pretending to be seller s + As by offering
p(s + 8s). As s 1increases, the seller will choose to extend the
bargaining for more and more periods until the point s = E where the
bargaining may continue indefinitely. For each s, the length of the
bargaining is chosen to maximize the expected payoff of seller s. In

-

addition, as s 1increases, there will eventually become a point 8 at
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which no buyer will accept the price p(sl). All sellers with costs

s > S will offer an unacceptable price to signal that their costs are

~

high. In the second round, prices for sellers s to s

s 1 are easily

determined since the incentive compatibility constraint is nonbinding
for those sellers (they have already revealed their private informa-
tion). For sellers s > ;l’ prices are determined as in the first
period: the initial condition p(;l) is easily determined, since the
incentive compatibility constraint is nonbinding at this point; p(s)
then increases so that seller s 1is indifferent between offering p(s)
and p(s + As), up until the point where no buyer accepts the second
round offer p(gz). This process is repeated until the equilibrium
offers of all seller s € [s,s] are determined.

As an example, consider the case when the seller's cost is
uniformly distributed on [0,1] and the buyer's valuation is uniformly

distributed on [1/2, 3/2] with 68 =48 = .75, as shown in Figure 1.

b
[Understanding this complicated figure is helpful to understanding the
form of the equilibrium.] For s < .1h4, the bargaining ends after two
periods and the incentive compatibility constraint is nonbinding. For

s > .14, the incentive compatibility constraint is binding, which
implies that the seller offers higher prices than she would had her
costs been known to the buyer. This is as one would expect: the seller
has an incentive to offer an inflated price to fool the buyer into
believing her cost 1is greater than it actually is. The buyer, however,

recognizes the seller's incentive to overstate her true cost, and so

appropriately discounts the inflated offer. At s = .52 +the seller
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Figure 1. A separating equilibrium over time
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offers a price so high that no buyer accepts. All sellers with higher
costs wait until subsequent periods to reveal their private
information. Thus, sellers s € [0,.52] reveal completely their
jnformation in the initial round of negotiations; seller s € [.52,.67]
reveal their information in the second period; sellers s € [.67,.80]
reveal their information in the third period, and so on. Every seller
reveals her information by the end of the fifth period.

It is interesting to compare the seller's equilibrium price

schedule with two-sided uncertainty in the infinite-horizon model with
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her price schedule int he two-period model, as shown in Figure 2.

First, notice that in the two-period model, the seller is able to reveal
completely her information in the first round regardless of her cost;
whereas, in the infinite-horizon model some sellers take up to five
rounds to reveal their information. This is because when the seller
only makes two offers, the seller's incentive to deceive in the initial
period is reduced. Second, the seller offers higher prices in the two-
period game than in the infinite-horizon game, since she is able to
commit to ending the bargaining with a "take it or leave it" offer in
the second period. In the infinite-horizon model, no such commitment is

possible, so the seller is forced to offer lower prices.

B Effect of Information, Uncertainty, and Time on Bargaining
Behavior

In this section, I examine how information, uncertainty and time
influence the bargaining behavior of rational agents. Throughout the
section, comparisons are made between the infinite-horizon bargaining
model with two-sided uncertainty and three other models:

(1) the infinite-horizon bargaining model with one-sided

uncertaity (the seller's cost known),

(2) the two-period model with two-sided uncertainty analyzed in

Cramton [1983a], and
(3) the simultaneous-offer model studied by Chatterjee and
Samuelson [1983].
Comparisons between the infinite-horizon models with two - and one-gided

uncertainty shed light on how the bargainers cope with the additional
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Figuere 2. Comparison between the two-period and
infinite-horizon models.
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uncertainty; whereas, comparisons between the infinite-horizon model and
the two-period model suggest how the bargaining outcome changes when the
players are able to commit to a shorter bargaining horizon. The simul-
taneous-offer model is of interest because it is the most efficient
static bargaining mechanism (ex ante) that satisfies incentive compati-
bility and individual rationality for the class of examples considered
here (Myerson and Satterthwaite [1983]). It, however, does not address
the time dimension and violates a broad interpretation of sequential

rationality: negotiations may end in a state of disagreement in which
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it is common knowledge that there are substantial gains from trade.

Any comparisons must be made with reservation, due to the presence
of multiple equilibria and the consideration of only uniform distribu-
tions; however, the separating equilibria found in each of the models
seem quite reasonable and are unique among separating equilibria. Most
of the results are sufficiently robust that they would not be affected
by an alternative cholice of equilibria or different distributions. A
further complication in making comparisons is that efficiency is not
well defined in settings of incomplete information, as pointed out by
Holmstrom and Myerson [1981]. Does one make comparisons before the
players know their private information, after they know their private
information, or after all information is revealed? I will focus on ex
ante efficiency, defined to be the ratio of the players' ex ante
expected utilities and the expected gains from trade. Thus I integrate
over the player's types before I divide by the expected gains from
trade. Ex ante efficiency is the efficiency measure an uninformed

social planner would use in deciding among bargaining mechanisms.

Information. I begin by exploring how the information available
to the agents affects bargaining efficiency and the distribution of the
gains from trade. With complete information, the bargaining is
efficient - trade occurs without delay if and only if the seller's cost
is less than or equal to the buyer's valuation. The split of the gains
from trade depends on who is making the offers: when the seller makes
all offers, she gets all the gains from trade; when the buyer makes all

the offers, he gets all the gains; and when the players alternate



~Bo=

offers, the gains from trade are split with (1 - Gb)/(l - Gbﬁs) going
to the seller (assuming she makes the initial offer). In the presence
of complete information, the offeror is at a great advantage, since the
offeror can make an offer that an opponent is just willing to accept,
thus extracting all the consumer surplus.

With uncertainty about an opponent's reservation price, the
bargaining outcome is no longer efficient and the offeror is in a less
dominant position. For example, with the seller's cost uniformly
distributed on [0,1] and the buyer's valuation uniformly distributed
on [1/2,3/2] with Gb = GS = .8, so that the players have equal costs
of delay and there is some overlap in their distributions, then the ex
ante efficiencies and the proportion of the gains going to the seller

are as shown below for the various bargaining settings:

Model Ex ante Allocation
- Efficiency (% to seller)
infinite-horizon with two-sided uncertainty .T5 43
infinite-horizon with one-sided uncertainty .90 L2
two-period with two-sided uncertainty .69 .6k
simultaneous offers .90 .50

Several observations may be gleaned from the data. First, the ineffi-
ciencies causes by incomplete informatin are significant: one-quarter
of the gains from trade are lost in the infinite-horizon bargaining game
and one-tenth of the gains are lost when the players can commit to the
similtaneous-offer game. Efficiency is reduced by 15% when the seller's

cost is unknown, meking both the seller and the buyer worse off.
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Although the simultaneous-offer game 1s more efficient ex ante than the
infinite-horizon game, not every trader prefers the simultaneocus-offer
game. In fact, when both the sellers and the buyers are uniformly
distributed on [0,1], one-quarter of the players in the simultaneous-
offer game receive nothing in equilibrium. In the infinite-horizon
game, almost every seller expects strictly positive gains from trade.
Thus, if the players were to choose which game to play, a naive player's
choice of game would reveal information to the opponent. Moreover,
implicit in the simultaneous-offer game is the requirement that the
bargainers will end negotiations after the first offer. The problem
with this requirement is that the simultanecus-offer game ends with
positive probability in a state of disagreement in which it is common
knowledge that substantial gains from trade exist. 1In the infinite-
horizon game, the bargainers are unable to commit to walking away from
positive gains from trade.

Perhaps somewhat surprisingly, the offeror is at a disadvantage in
the infinite-horizon game, receiving only 43% of the gains. However,
when the bargaining is limited to two periods, then the offeror is at an
advantage, receiving 64% of the gains. This is because in the infinite-
horizon game the seller is unable to commit to high prices in the
future, as she can in the two-period model. It seems in this case that
the structure of the game forces the seller to reveal more information
than she would like to: she would prefer to let the buyer make the
offers. The result that the offeror is at a disadvantage in the

infinite-horizon bargaining game depends critically on the degree of
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uncertainty as discussed below.

Uncertainty. 1In addition to information, the degree of uncer-
tainty the players have about each other's reservation prices will
affect bargaining efficiency. Here uncertainty is measured as the
degree of overlap in the distributions of buyers and sellers: if the
distributions are separated by a large amount so that both the buyer and
the seller are confident of large gains from trade, the uncertainty is
slight; whereas, if the distributions completely overlap, the uncer-
tainty is greatrgf Thus, I test the sensitivity of the bargaining
outcome on uncertainty by changing the support of the distribution of
one of the players (in this case the buyer's distribution).

A plot of efficiency and the allocation of gains is shown in
Figure 3 when the support of the buyers varies from [0,1] to [2,3]
with the sellers on [0,1] and Gb = 68 = .8. Efficiency increases
monotonically in both models as the uncertainty is reduced. The
difference in efficiency between the infinite-horizon model and the
simultaneous-offer model increases as the gains from trade become more
uncertain. Thus, the value of commitment increases with uncertainty.

In the simultaneous-offer game, the gains from trade are split
evenly regardless of the degree of uncertainty. However, in the
infinite-horizon model, the seller's proportion of the gains decreases
monotonically as the uncertainty increases. When the uncertainty is
greatest (complete overlap of the reservation price distributions), the
seller gets only 35% of the gains; whereas, when the gains from trade

are known to be large ((1/2)(b + b) = 2.5), the seller gets 75% of the
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Figure 3

Effect of uncertainty on the Bargaining outcome.
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gains. This result is in agreement with the common wisdom among
negotiators that says that when the gains from trade are highly
uncertain it is best to let your opponent meke the initial offer (and
thus reveal valuable information about his reservation price), but when
the gains from trade are known it is best to go first (Below and Moulton

[1981], pages 104-106).

Impatience. Finally, I consider the effect of varying the
players'costs of delay on the bargaining outcome. A plot of how
relative changes in the players' delay cost influence the bargaining
efficiency is shown in Figure 4. The plot is made assuming the seller's
cost is uniformly distributed on [0,1] and the buyer's valuation is
uniformly distributed on [1/2,3/2] with one of the player's discount
factors held fixed at .8 and the other varied from .5 to .95. 1In
the infinite-horizon model, the effect of delay costs on efficiency is
nearly monotone. As the buyer's delay costs increase the bargaining
becomes less efficient, since the seller, who is controlling the
bargaining, is relatively more willing to wait, so she makes higher
offers and the buyer suffers costly delay. In contrast, as the seller's
delay costs increase, the bargaining becomes more efficient, since with
high delay costs the seller offers lower prices, which are accepted
earlier. The infinite-horizon model, then, is most efficient when the
offeror's delay costs are relatively large. In fact, as GS + 0 and
Gb + 1, the seller loses all of her bargaining power and efficiency goes
to 1. Thus, there exist discount factors for which the infinite-horizon

bargaining game is more efficient than the ex ante efficient static
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mechanism. This reult is quite general and is derived in Cramton [1983b].

The reason the sequential game may be more efficient than the
most efficient static game is that, in the sequential game, time may
introduce an additional asymmetry into the problem (the players may have
different delay costs), which can influence the efficiency of the
bargaining outcome. Thus, although incomplete information in sequential
games typically leads to inefficient outcomes, there exists a range of
parameters for which the sequential game is more efficient ex ante than
the ex ante efficient static game. As the seller's and buyer's discount
factor go to 0 and 1 respectively, the seller loses all her bargaining
pover and is forced to make offers arbitrarily close to her reservation
price. Static mechanisms require that the expected payment between
players and the probability of agreement are identical for any realiza-
tion of the bargaining mechanism. This, however, is not true in a
sequential game: the discounted expected payment and the discounted
probability of agreement may be different due to differences in the
players; discount factors.

Allocation of the gains from trade changes monotonically with
changes in the players' delay costs, as shown in Figure 5. The seller's
proportion of the gains from trade increases monotonically as 65
decreases. As one would expect, patience is a virtue.

Next I consider absolute changes in the players' delay costs by
varying both bargainers discount factors simultaneously (assuming
8§ =46_). As shown in Figure 6, the effect of absolute changes in delay

s b

costs on efficiency depends on the degree of uncertainty. When there is
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a great deal of uncertainty (b ~ U[0,1]), efficiency increases monot-
onically with delay costs. When there is moderate uncertainty
(v ~Ul1/2, 3/2]), then efficiency is roughly constant as delay costs
are varied from .5 to .95. Finally when uncertainty is slight,
efficiency increases as delay costs decrease. Intuitively, when
uncertainty is great, large delay costs improve efficiency by forcing
the bargainers to come to an early agreement; whereas, when uncertainty
is slight, an early agreement 1is reached regardless of the magnitude of
delay costs and so higher delay costs reduce efficiency by increasing
costs of agreement.

Regardless of the degree of uncertainty, increasing delay costs
benefits the seller and hurts the buyer (see Figure T), because with

higher delay costs the seller can force the buyer to accept higher

Figure 5

Effect of delay costs on the allocation of gains
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prices.

Thus, one would expect the seller to choose to lengthen the

time between offers; whereas, the buyer would prefer offers to be made

in rapid succession.

Te

Conclusion

In any realistic bargaining setting the issues of information,

timing, and commitment are of crucial importance.

Informational differ-

ences among agents often lead to inefficient bargaining outcomes and

deadlocked negotiations.

Time pressures tend to force an early

resolution of the bargaining conflict.

And the ability of agents to

commit to particular strategies often determines how the gains from

trade are divided among the agents.

Figure 6.

Effect of absolute changes in delay costs
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Figure T.

Effect of abosolute changes in delay costs on allocation of gains
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infinite-horizon bargaining model that explicitly considers information
and timing in bargaining settings in which the players are unable to
precommit to particular strategies. Rational behavior on the part of
the agents has been characterized for a class of distributions under
various information structures.

The results of the example are intuitively appealing. When the
agents have complete information an efficient agreement is immediately
reached. When only the buyer has complete information, trade frequently

occurs only after costly delay. Moreover, the buyer benefits from his
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superior information. When both the buyer and the seller are unsure of
the other's preferences, the outcome is even less efficient, due to the
seller's incentive to deceive the buyer. How much information the
seller reveals in each round of negotiations depends on the players'
costs of delay: when delay costs are high, much information is revealed
each period; whereas, when the costs of delay are small, less informa-
tion is revealed. Due to the seller's incentive to lie about her costs,
the seller must offer higher prices than she would had the buyer known
her cost. These higher prices lead to significant inefficiencies:
roughly 25% of the potential gains from trade are lost in a typical
example.

Both the degree of uncertainty and the costs of delay affect the
bargaining outocme. Uncertanty has a detrimental effect on bargaining
efficiency - the more uncertainty present, the less efficient the
bargaining outcome. In constrast, costs of delay, as modeled by the
players' discount factors, tend to have a positive effect on bargaining
efficiency - higher costs of delay tend to increase efficiency. The
effect, however, is sometimes ambiguous: higher costs of delay will
increase the probability of an early agreement, but reduce the benefit
of a delayed agreement.

An important feature of the bargaining game presented here, is
that it makes no assumptions about the bargainers' ability to commit to
future strategies: the players continue to negotiate so long as they
expect positive gains from continuing. Implicit in some bargaining

mechanisms is the assumption that the bargainers are able to commit to
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walking away from the negotiating table, even when it is common
knowledge that the gains from trade are positive. The simultaneous-
offer game is an example of such a mechanism. Although this game is
more efficient ex ante, it ends with positive probability in a state in
which both bargainers know that gains from trade exist (since their
respective reservation prices have been revealed), and yet they are
forced to walk away from the bargaining table. Thus, the bargaining
game implicitly assumes that the players are able to commit to walking
away without trading, after it has been revealed that substantial gains
from trade exist. This point is addressed in greater detail in Cramton
[1983b].

It is somewhat disappointing that the bargaining game analyzed
here is not more efficient. When the players' reservation prices are
uniformly distributed on [0,1] and their discount factors are equal,
this game results in at least 32% of the gains from trade being lost, as
opposed to a 16% loss if the ex ante efficient bargaining mechanism is
adopted. An important question to answer in future research is can we
find a strategic game that implements (or comes close to implementing)
the ex ante efficlient perfect bargaining mechanism over a wide range of
bargaining situations? Perhaps a better candidate for a strategic
bargaining game that is nearly ex ante efficient is the game in which
the bargainers alternate offers. This game was analyzed by Rubinstein
[1982] in a setting of complete information, but an analysis with
incomplete information has yet to be done. Of particular interest is

the alternating-offer game as the time between offers goes to zero, for
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this strategic game represents a very general bargaining rule: at any
time a bargainer may make a new offer or accept the most recent offer of
his opponent. It would be a pleasant surprise if such a reasonable
bargaining game was ex ante efficient over a variety of circumstances.

The model presented here is far from being a complete description
of most bargaining situations. Several restrictive assumptions have
been made in order to make the analysis manageable. First, the agents
have been assumed to be risk neutral, but in many bargaining situations
the agents' willingness to take risks is an important bargaining
factor. Second, I have restricted attention to rational agents who can
calculate (at no cost) their optimal strategies. Certainly, few agents
are so consistent and calculating. With less than rational agents, an
agent's capacity to mislead his opponent becomes an important variabdle
in determining how the gains from trade are divided. Finally, I
consider only a bargaining setting in which agents are unable to commit
to particular strategies. In many real-life situations, bargainers will
often have or create a means of commitment. For example, an agent
anticipating that he will be faced with a similar situation in the
future may wish to establish a reputation for toughness, as in the case
of a manager refusing an employee's request for a pay raise on the
grounds that he would have to do the same for everyone else.

Two weaknesses of the noncooperative game-theoretic approach are
worth mentioning. First, even in the case of incomplete information,
the information requirements of the players are severe: some base of

common knowledge must exist. Thus, although neither player need know
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the other's reservation price, they must know (and know the other knows,
and so on) each other's probabilistic beliefs about the other's
reservation price. 1In practice, these beliefs are not common knowledge,
so I am implicitly assuming that their beliefs are sufficiently aligned
that they act as if their beliefs were common knowledge. A second
weakness of the noncooperative approach is that a particular game
structure mist be specified. Why should the agents play the specified
game? Who decides which game to play? These are important questions,
which should be studied. Although it is unreasonable to assume that the
agents are playing the exact game specified, one can often assume that
the game being played is a close enough approximation to the specified
game that useful insights into the agents' behavior can be gained.
Despite these limitations, many of which can be addressed in
future research, I feel that the approach of modeling bargaining as a
noncooperative sequential game has many merits over other approaches,
such as cooperative game theory. Perhaps the most important advantage
of the noncooperative approach is that it explicitly models the behavior
of the bargainers and does not assume at the outset that an efficient
solution will be reached. Cooperative bargaining, on the other hand,
focuses entirely on the bargaining outcome and assumes that the
bargaining will be efficient, contrary to the common occurrence of

inefficient bargaining outcomes in practice.
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Appendix

A.l. Equilibrium Strategies when the Seller's Cost is Known and s < b

Theorem 2: For the n-stage game with s < b in which the seller
)s

), and the buyer's indifference valuation

ends the bargaining by offering pn = E, the seller's price pJ(s,bJ_1

her expected profit uJ(s,bJ_1

bj(s’bj 1) with 1 periods remaining and J =n +1 -1 are given by

bj(s’bj-l) = beJ-l + st + ZJ

pJ(s’bJ-l) = chJ-l + dJS + eJ

5oy ) e L [ajbi-l # (BJs + YJ)bJ_ +p.s°+ o5 +T,]
b-b

uJ(s,b

where By, i 0, dn = 0, e = b, a = 0, Bn = -1, Yn = b, P = 0, cn =D,
and Tn = -b2, and for i > 1

vJ =1 - Gb + Gch+1

wJ = 2(VJ - 6s°j+1)

%5 = T

Yy = (14880 = Syl

zy = (Gst+1 & GbeJ+1)/wJ

c, = v2/w

J 3
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[v (88 +68.d +1) - 28 8. a ] Jw

o
I

IR -1 £ SRS SN B 1 8 B e a1 Ty
e, = [v (GsYJ+1 beJ+1) = 2686baJ+1eJ+1]/wJ
a =v x (1 - x ) + 5 a 2
J J 4 J+1 J
= - - - -6
BJ (1 2xJ)vJyJ (1 xJ)(l de+l) + <S$(2ctJ+liyJ + BJ+1xJ)
Yﬁ = (1 - 2xJ)szJ + (1 - xJ)GbeJ 41t 63(2aJ+1xJzJ + YJ+1XJ)
fJ =1 - de3+1 + 638J+1 + yJ(GsaJ+1 - vJ)
gJ = Gst+1 - Gben-l + zJ(tssol.J+1 = VJ)
Ay = 05
OJ o szJ + gin + 68°J+1
TJ = ngJ + GSTJ+1
Proof: By assumption, with one period remaining, o= b and
u =b - 8.
n -
With i periods remaining and J = n + 1 - i, the seller's
expected profit is given by
uJ(s,nJ_l) = max B——l——: [(p - 8)(b - bJ) + tSs(bJ - 1_>)uJ+1(s,bJ)]
(5) P -

such that bJ -p= Gb(bJ - pJ+1)

Assume by the induction hypothesis that
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p+l(s,bJ)=c b +d s+ e

3 J+173 3+l J+1
uJ+l(s,bJ) = g;l:-g-[ad+lb§ + (8J s + YJ+1) s DJ+132 £y LR TJ+1]
So p=(1- Gb)b + Gb(cJ LS dJ+ls + eJ+l)’ or
(6) = (1 - 5, + Gch l) s Gb(dJ+ls + eJ+1)

Dropping the j + 1 subscripts and substituting into (5), yields

uJ(s,b ) = max -——ij:fE [(1 - 8, + 8,c)b + 6 (ds +e) - s](bn - b)

I | b Py
(1)

+ Gs[db2 + (Bs + Y)b + ps® + o5 + 1]

which has a unique maximum when

(8) T =g = Gbc)bj_l -6 (as +e) + 5+ 6 (Bs + )

2(1 - Gbi + Gbc - Gsa)

Substituting (8) into (6) and (T), yields the derised expressions for

. .E.D.
pJ(S’bJ-l) and uj(s’bj-l) Q

A.2., Differential Equation for a Separating Equilibrium

Here I solve the following differential equation, whch arises when

determining a separating equilibrium

(alp +ays + a3)dp + (blp +b.s + b3)ds =0

2

where ay and bi’ i =1,2,3 are constants. The differential equation

(DE) is solved in three steps.
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1. Transform the variables to make the equation (DE) homogenous
of degree one. Let p =y + p and 8 =x + s, wvhere p and s are

chosen to solve

alp + azs + a3 =0
blp + bzs + b3 =0
which implies
5 - a2b3 - a3b2 R a3b1 - a1b3
%P2 ~ %20 %1Pg = 8Py
Making the substitution
ab_-abdb
2 2
PVt ap ¢ W
172 271
a.b, - a_b
s =x + Eégl—:—;lgi y ds = dx
172 271
results in the homogeneous equation
(aly + a2x)dy + (bly + b2x)dx = 0 (H)

2. Transform the variables to make the equation (H) separable.

Let y = vx and dy = vdx + xdv to get the separable equation
(a v2 s (a, + b,)v + b, )dx + (a,v + a )xdv = 0
1 2 1 2 1 2

or

a,.v + a
d . 5 L 2 dv = 0 (s)
a. v + (a2 —-bl)v +b
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3.

factor the quadratic as follows:

Integrate the separable differential equation (S).

2
a,v + (a.2 + bl)v + b2 = al(v + f)(v + g)
where
£, gt
1
1
8 =25 (ay+b -d)
1
da = ¥(a +b)2-hab
2 i 172
So
a,v + a, _ v + a.2/a.1
] T v+ £)v + g)
alv + (a2 + bl)v + b2
Now find s and t such that
s(lv +f) +tlv+g)=v+a,la
2=
which implies
Ak i:
s--2—a(a.2-bl+d) t--2—a(bl-a.2+d)
S0
e s t
2 T v+g Y+t o
av o+ (a2 + bl)v + b,

First
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Then integrating (S), yields x(v + g)%(v + f)t =K', or

a.-b. +d b.-a.+d
2d( ) e 4 (v + 2) 1 R

x“ (v + g

Substituting back to the original variables results in the primmitive:

(5 = B0 + @ s =k (P)
where
= &Bbl - &1b3
Bgb = 858
5 ) a.2b3 - a3b2
8;b, = 8,0y

2 1 172
e = a2 - b1
£ = _l_.(& + b, +4d)
2a 2 1:
1
1
€= 2a (&2 By = d)
i
h=L:_i
s -8

and K 1is chosen such that p(so) =P,
The primitive equation (P) can easily be solved for p as a

function of s for specific values of the constants a4 and b
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Footnotes

I have assumed arbitralily that the seller is female and the buyer
is male

In order to simplify notation, I will occasionally drop the time
subscript. Naturally, the players' strategies depend on their
current beliefs about their opponent' reservation price. These
beliefs change over time so the functions p and b change over
time as well

For notational simplicity, I omit the functional dependence of the
players' strategies on parameters of the model that are known and
constant throughout the game, such as s’ b b, B, s and s.

This theorem appears in slightly modified form as Theorem 6 in
Sobel and Takahashi [1983]. The difference between the two is
that here the seller has some nonzero cost s +to acquire the
object, and the buyer's valuation is uniformly distributed on
[b b], rather than distributed on [0,1] with the distribution
b™ for m > O.

A necessary and sufficient condition for the strict concavity of
is (1 l) + (1/2) oS 1. This is clearly
sétlsfled, sinceJ s’ b d éJ+l are between 0O and 1.

Actually, I need to show that the limit of the equilibrium
strategies in the finite-horizon game converges to an equilibrium
in the infinite-horizon game. Indeed this is the case for this
game, as shown by Fudenberg and Levine [1981]). Moreover,
Fudenberg, Levine, and Tirole [1983] show that this equilibrium is
the unique equilibrium in the infinite-horizon game.

An offer of b guarantees agreement because the seller makes all

the offers, and thus is able to commit to never offering a price
below b. In an alternating-offer model, prices below b would
have to be considered.

I define increasing uncertainty as a shift to the left of the
distribution of the gains from trade.
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