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ABSTRACT

‘I..arge scale structure and mixing processes are investigated in chemically
reacting wakes and shear layers to which a periodic disturbance is applied. The
experiments employ a diffusion-limited acid-base reaction to directly measure
the extent of mixing. Optical diagnostics used include laser absorption and
laser induced fluorescence. Absorption of laser light by reacted product pro-
vides a measure of crosgs-stream average product. Fluorescence was measured
by a self-scanning linear photodiode array using high speed computer data

acquisition to obtain the product distribution across the layer.

Previous results showing that forcing alters the structure and growth rate of
shear layers are confirmed. Forcing artificially extends the lifetime of vortices
whose size is consistent with the disturbance wavelength. Amalgamation of
smaller vortices is enhanced over that in the natural layer until the frequency
locked scale is achieved. At high Reynolds number product measurements show
reduction of product with forcing. At moderate Reynolds numbers, on the other
hand, there is an increase in product when forced. In one case a five fold
increase in product was observed. The differences are related to the different

eflects of forcing on entrainment, composition ratio and secondary structure. -

A dramatic, order of magnitude increase in mixing was discovered for certain
forced wake flows. This eflect is strongly associated with an interaction between

the spanwise organized wake vortices and the test-section side walls.
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Chapter 1
Introduction

1.1. Historical Background

The experiments reported in this thesis are the latest in a series of investiga-
tions of the mixing layer which began with the discovery by Brown and Roshko
(1971, 1974) that organized vortical structures play a prominent role in those
shear flows, even when they are turbulent at high Reynolds numbers. Another
important step occurred when Oster and Wygnanski (1982) found that those
large structures could be controlled by introducing relatively small periodic per-
turbations into the flow and that the development of the shear layer couid
thereby be drastically altered. In the meantime, Konrad (1976) and Breidenthal
{1978), (1981) had been investigating the relation of those structures to mixing
at the smallest scales, i.e., molecular mixing. It had become evident that the
primary structures play a prominent role in bringing fluids from the two sides

into the mixing layer, the so-called "entrainment’” process, but it was not clear

how the ultimate, ‘‘chemical” mixing is accomplished and how it depends on
Reynolds number. Their principal finding was that. in flows which develop from
laminar boundary layers, the initial Kelvin-Helmholtz instability and the large,
primary vortices which result from it are followed. at some distance down-
stream, by a “mixing transition” where the amount of mixed (or chemicaily
reacted) fluid in the shear layer dramatically increases although the interac-
tions and mechanics of the primary vortices do not appear to be greatly or qual-
itatively altered. The enhanced mixing was attributed to increase of interface
area between fluids from the two sides, created by secondary and smaller scale

motions. Konrad found that after the mixing transition the rate of production

R

' . . . ’ ' o . - . R ' - A )
e e, . . K LT T,
= - : PSSP TS TEFEFOT L v SF T OVETIPETS TETE W v E T SN SRS |




of mixed fluid reached what seemed to be a plateau, remaining independent of

increasing downstream distance, and thus of increasing local Reynolds number,

within the accuracy of the measurements.

The next obvious question following from the measurements of Konrad and of
Breidenthal and the experiments of Oster and Wygnanski is the following: what is
the effect of periodic forcing on the chemical mixing? Is it similar to the effect
on growth rate, which is connected with momentum mixing? Certainly the
development of negative Reynolds stress will not have a counterpart in species

unmixing! The main aim of the present experiments was to study these effects.

1.2. Recent Developments
Experimental investigations more recent than the pioneering ones discussed

above are also relevant to the present work.

Some insights into the structure of the secondary, streamwise vortices, which
precede and contribute to the mixing transition, was obtained by Bernal (1981)
who, in particular, obtained unexpected views of the cross-sections of those vor-
tices, using laser induced fluorescence (LI.F.) techniques developed in this

laboratory by Dimotakis, et al. (1983).

Konrad's measurements through the mixing transition were made in gas
flows while Breidenthal's were in water. The post-mixing-transition plateau in
water was found to be lower by a factor of two than in air (Figure 1.1). Some of
this could be attributed to a systematic experimental effect (see Breidenthal,
1978) but also to the effects of Schmidt number (Broadwell and Breidenthal,
1981) which is about 0.7 for air and 800 for water. More recent measurements
by Mungal (1983) in gas flow, using a chemically reacting shear layer, defined a
somewhat lower post-mixing-transition plateau level than Konrad's: Kooches-

fahani, working in water with a technique different from Breidenthal's,




P O P T —— AP AR et e e St e M e LSt Sl e s BBt e Tt e it e R A A
4

measured a lower post-mixing-transition plateau level than Breidenthal's. The

ratio between the gaseous and aqueous plateau valves is approximately 2 for the
Konrad-Breidenthal set (Figure 1.1) and about the same for the Mungal-
Koochesfahani set, but the latter are about 20% lower than the former. Thus
there is some uncertainty about the correct values for mixing product. What is
not controversial and relevant for our investigations is that there is a mizing

transition.

Returning to the aspects of the problem concerning forcing effects, an impor-
tant contribution was made by Ho and Huang (1982). They forced shear layers
by superimposing periodic perturbations on the free stream; Oster and Wygnan-
ski had utilized an oscillating flap at the trailing edge of the splitter plate.
Whereas Oster and Wygnanski's experiments were at high Reynolds number, and
they observed post-mixing-transition flow, Ho and Huang's were mainly 1n pre-

mixing-transition flows.

1.3. Variables and Parameters of the Problem

In the unforced layer, the mixing eflects are usually expressed in terms of the
growth of a thickness d(z); this may be any measure of the thickness based on
velocity profile or on visual appearance or, especially in this investigation, the

reaction or mixing product thickness d, (Konrad and Breidenthal called it P).

The rate of growth, or of production, %— is then a measure of the mixing
rates. For a self-similar shear layer, growing linearly with z, these rates are
constant. Of interest is how they depend on parameters of the flow and under

what circumstances are they not constant in £, an important point in question

being the mixing transition.

For unforced layers in incompressible, homogeneous flows, the eflect of

U
different velocities in the two streams T]—z- = 7 can usually be normalized by the
1
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ratio

- = Ul - Ug
E U+ U
s

to which the post-mixing-transition growth rates are proportional. This leaves

the possible effects of viscosity, which are sometimes expressed as a local Rey-

(U, - Up)z
v

nolds number to non-dimensionalize the development distance z;

alternatively, the downstream distance can be made nondimensional, -;5-. with
1

an initial length such as the momentum thickness @,, of the splitter-plate boun-
dary layers. With this the role of Reynolds number is expressed somewhat
indirectly, through its role in establishing the value of 6,; in a particular
geometry, the direct effect of Reynolds number should then, in principle, require

U6

another parameter such as . Of course, if the Reynolds number is "high

enough’ it is often assumed that there is no direct effect of Reynolds number.

When periodic perturbation or forcing is applied to the shear layer, additional

parameters are introduced into the flow: the perturbation amplitude, say U’

which could be normalized by U, or U; — Uz . and the forcing frequency F.

This latter was established by Oster and Wygnanski as a very prominent parame-

- ° ter for forced layers. In presenting the effects of /' on growth rates &(z), they

r found that the effects of F on a given shear layer could be correlated by using

- U

{ the normalizing length ?" where U, = -%-( U, + Up) is taken to be the convec-

® . . . . §F . . zF

tion velocity of the large organized vortices. Thus o is a function of N To

) € (-]

_(th=Us)

" correlate the effects of Up/U,. the growth parameter &= -———————= is incor-

> (Ul + Uz)

b

‘e porated so that,

3
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U
= fn[“} = /7 (Xeo) (1.1)

where we have introduced what we call the “Wygnanski-Oster parameter’ Xwo-

Oster and Wygnanski did not actually show such plots; that was done by
Browand and Ho (1983), who incorporated the Oster-Wygnanski and the Ho-
Huang results into a plot which is reproduced in Figure 1.2. The dependent
thickness here is

(UL - U)U - Uy)
o=/ Tw-uyp W

—

This figure displays the dramatic effects of forcing on the growth rate and exhi-
bits the three different response regions of the shear layer, which had already
been introduced by Oster and Wygnanski. The characteristics of these regions

are, briefly, as follows:

I. Xwo < 1 ; the growth rate is enhanced by up to a factor of 2

(reached at a saturating value of forcing amplitude)

I1. 1< Xyo < 2, in this “frequency locked” region growth rate is

inhibited, even reduced to zero; Reynolds stresses are reversed.
111 Xwo > 2; relaxation to unforced growth rate.

The significance of Region II is that the passage frequency of the vortices
{(which are all equally spaced in that region) is equal to the forcing frequency.
The spacing or scale of the vortices entering that region has been detern .ned by
whatever amalgamation processes are needed to accomplish this in region 1.

The forcing wave length is large compared to the scales of region | and this has
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the effect of enhancing growth in that region.

The Browand-Ho plot in Figure 1.2 gives, ideally, a single correlation curve
and it is rather impressive that both pre-mixing-transition and post-mixing-
transition data fall quite well onto it. Nevertheless, one should expect to see, for
a wide range of conditions, some dependence on other (dimensionless) parame-
ters. Indeed, a later plot prepared by Ho and Huerre (1984) have on it other

data which do not all fall onto the ''universal’ curve so well.

On the basis of our experiments to be described, we have chosen as an addi-
tional parameter Fp, the frequency of the initial Kelvin-Helmholtz structure in
the shear layer. This is in liew of the initial paremeter 6; which we discussed
above in connection with unforced layers; in fact, #, is proportional to U, /8,.
Finally, the parameter characterizing direct Reynolds number effects would be

Re,,. so that equation 1.1 generalizes to

The plot of Browand and Ho, which is influenced heavily by the high Reynolds-

number resuits of Oster and Wygnanski, should be appropriate for the asymp-

totic conditions Re,l >> 1 and -Flf-; << 1. The latter may also be expressed as
0

A >> 1, i.e., the forcing wave length is large compared to initial scales.

Ao

In the experiments to be described we attempted to define a corresponding
plot for the distribution of reaction product, é,(z). along the layer at the
asymptotic conditions above, but were somewhat limited by the range of condi-

tions available in the flow facility we used; in fact, a rather large range of condi-

tions extending to low Reynolds number and values of FF- ~ 1 were covered.
0
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1.4. Outline
A brief description of the flow facility and the measurement techniques is

given in Chapter 2.

The major part of the experiments was devoted to mixing layers, the results
for which are presented in Chapter 3. the main body of this repecrt. Here the
eflects of forcing on the large vortex structure, on growth rate, and on mixing

product are described, together with their relation to the mixing transition. -

Chapter 4 is a briefer description of the effects of forcing on the wake of the
splitter plate, i.e., the flow to which the mixing layer degenerates when (' = U,,

which had also been investigated by Breidenthal.

A short discussion in Chapter 5 surnmarizes the observations, measurements

and some of their ramifications.

Appendix A is a short note on some aspects of the laser technique for
measuring product thickness. Appendix B was motivated by the visual pictures
which were obtained. It is a model computation of a mixing layer utilizing point
vortices to represent the spanwise organized, large structures. The main pur-
pose was to compute the patterns produced by the interface between the two
sides of the layer as it is rolled up and distorted by the action of the vortices, for

comparison with those obtained in the laboratory.

D e A e
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t“ Chapter 2

Experimental Facilities and Instrumentation

K 2.1. Breidenthal’s Mixing-Layer Apparatus

.~

" The flow facility constructed by Breidenthal (1978) was used for all the exper-
iments. Some minor improvements were made in the honeycomb and screen

g configuration in an eflort to reduce the freestream turbulence level.

Breidenthal reported a turbulence intensity of 0.5% and our measurements

confirmed this. Prof. Hassan M. Nagib, with his considerable experience in such

matters, suggested some changes that reduced the turbulence intensity to 0.3%

for the high Reynolds number flows we studied.

The screens were replaced with ones made from smaller diameter wire spaced
on a coarser mesh ylelding a 65% open area ratio thereby reducing the
anomalous eflects common to screens possessing 60% or less open area ratio.
The six-inch-long honeycomb section was replaced with a pair of two-inch honey-
combs spaced two inches apart. Each honeycomb had a chopper screen on the
downstream end. The reader is refered to Loehrke and Nagib (1978) for the rea-

soning behind these changes.

A reference scale for the photographs throughout this work is provided by

the test section dimensions; 7 cm high x 11 cm span x 45 cm length.

2.2. The Forcing Mechanism

A considerable part of the eflort in the preliminary phase of the work was
aimed at producing a controllable periodic disturbance. Wygnanski and Oster
(1980) forced the flow with an oscillating flap that was hinged to the trailing

edge of the splitter plate while Ho and Huang (1982) used rotating valves in the




supply lines to each stream to provide periodic disturbances to tl;e free
streams. For the present experiments, it was important that the forcing
mechanism should not limit optical access or add complexity to test section
maintenance. For this reason a flapping splitter plate tip was not considered
viable. Instead, a periodic pressure drop device seemed a better choice. The
forcing mechanism provided a periodic loss in head which produced a periodic

component in the mass flow through the test section.

The periodic pressure drop was produced by a variable area orifice plate. The
drop in pressure across an orifice plate depends on the ratio of area of the
orifice to area of the pipe in which it is placed; the smaller the ratio the greater
the pressure drop. The forcing mechanism emulated an orifice plate whose area
ratio was a periodic function of time. This was accomplished by a fixed stator
which was a thin plate with an off-center circular hole and a rotor which was a
disc with a pie-shaped wedge cut out of it. s the rotor turned at constant
speed, the flow saw an open area that was a periodic function of time. Figure 2.1
shows the rotor and stator viewed from the downstream side looking upstream.
Figure 2.1a shows the largest open area and Figure 2.1b demonstrates the smal-
lest area for the particular rotor and stator shown in the photographs. The
rotor was powered by a DC electric motor and the speed of rotation was moni-

tored with an optical pick-up.

Figure 2.2 shows the complete forcing mechanism with drive motor and opti-
cal pick-up as it appears before installation. The device was inserted from above
into the drain pipe leading to the high speed settling chamber and supported
with angle iron braces as shown in Figures 2.3 and 2.4. The motor was powered
by a DC power supply and the pulse train from the optical pick-up was meoni-
tored with a counter from which frequency was inferred. The frequency was

very easy to change as it was only necessary to literally turn a knob on the
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power supply to change rotation speed and therefore frequency. The amplitude
and shape of the waveform were changed by either changing stators {(different
circular cut-outs with different ofl-center dimensions) or rotors (different size
pie-shaped cut-outs). Trial and error produced a reasonable disturbance with at
least 90% of the total energy, as measured with a spectrum analyzer, in the pri-
mary purely sinusoidal component and amplitudes less than 2% of the frees-
tream high speed velccity. The forcing was always applied to the high speed

stream only.

2.3. Laser Doppler Velocimeter

A Laser Doppler Velocimeter (LDV) and phase-locked-loop processor was con-
structed. complete with three-dimensional traverse and processing electronics
to allow accurate, non-intrusive, velocity measurements. The LDV and phase-
locked loop were copies of successful designs perfected by Prof. Paul Dimotakis

and his students in this laboratory.

A photograph of the LDV, traverse, and test section is included in Figure 2.5.

The short-duration, blow-down nature of the facility did not allow detailed
mean velocity measurements on the high-speed flows. Measurements of this
type were made only on the very low speed laminar shear layer. The LDV was
used mainly for setting the speeds prior to a run and for measurement of the

amplitude of the forcing disturbance.

2.4. Measurements of Structure and Growth Rates from Photographs

Flow visualization was used extensively in these experiments. As found by
past investigators, it is an attractive technique, providing a relatively simple,
almost unique method for seeing and recording detailed spatial structure in the
flow. We used passive dye marking as well as reaction-product marking tech-

niques to obtain either short exposure photographs to “freeze” instantaneous
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spatial structure or long time exposures to give measures of mean growth rates.
Two different visualization techniques were employed. The first was the phenol-
phthalein method of Breidenthal (1978) and the second was the laser induced
fluorescence method of Dimotakis, Miake-Lye and Papantoniou (1982). Both
allow one to visualize the product of a chemical reaction (i.e., mixed fluid) or to

visualize concentration of a particular reactant (i.e., as a passive contaminant).

Simple photographic methods were employed to record the photographs.
Three different 35mm cameras were used; a Nikon Model F, a Pentax ME Super,
and a Konica FS-1. All were essentially equivalent as regards performance.
Ektachrome 180 and Kodachrome 40 color slide fllms were used to photograph
the phenolphthalein experiments. The laser induced fluorescence experiments
required “faster” film so Tri-X black-and-white film gave better results than
color slide film. Time exposures with high contrast were difficult to obtain with
the available lighting. A very dark green filter (Kodak Number 54) and
Panatomic-X black-and-white fllm were used when taking time exposures of the
red reacted phenolphthalein. The fllter passed green and blue-green light while
stopping red light almost entirely. Acceptable time exposures of as long as ten

seconds were obtained by this method.

Because snap shots require only a fraction of a second. lows where measure-
ments could be made only tediously or not at all could at least be photographed.
The many photographs obtained during the course of this research were care-
fully cataloged for future reference. The phenomena documented ranged from
truly laminar flows to turbulent post-mixing transition shear layers. Wake flows
(U, = U) were also studied for a wide range of Reynolds numbers by photo-

graphic means.

Some quantitative information was obtained from time exposures. The edge

of the mixed region in a time exposure was selected and digitized with a Hew .ett-
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Packard 9874A digitizer at several points along the top and bottom of the side
view wedge of reacted fluid. The resulting data were curve fitted to an eight
oarameter function using a least squares method to produce a continuous curve
on top and bottom that represented the long time average edges of the mixed
region. The perpendicular distance between edges was measured and found to be

nearly equal Lo the visual thickness, 8.

2.5. Measurements of Reaction Product by Light Absorption

The absorption technique of Breidenthal (1978) was used to obta:n quantita-
tive information about the mixing. For this technique and the laser induced
fluorescence technique to be described later, the product of a chemical reaction
was measured. A pH sensitive dye was placed in one stream and mixed with an
acid such that the dye was in the “off” state, i.e.,, was transparent. A base was
added to the other stream. Hence, the pure fluids are transparent but when
mixed at a molecular level, the base causes the pH indicator to turn “on" thus

marking the product of the reaction.

For the absorption technique, the pH indicator was phenolphthalein which is
transparent in the "off’ state and red in the “on" state. Breidenthal used a
mercury-argon discharge lamp as a light source and passed a beam through the
test section perpendicular to the plane of the layer, thus measuring the
integrated concentration of product along the line of sight of the beam as a
function of time. The technique was modified for the present work in the follow-
ing way: an argon-ion laser was used as a source and the beam was spread into

a sheet so that a spanwise average was measured.

The exponential relationship between incident and transmitted light was the
basis for calculating the product thickness. For a sheet, it was necessary to
approximate the exponential function if the measurement was to be interpreted

as spanwise average product. The details of how this was done and other

1
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relevant information on the absorption method are discussed in Appendix A.

During the absorption runs, four channels of data were recorded: the output
of the photodiode, the input laser power, the free stream velocity, and a refer-
ence pulse train, were all digitized at a 500 hertz rate and multiplexed. Thirty
seconds of data were taken at sixteen downstream locations for eight different
flows. The data acquisition computer was designed and built by D. Nosenchuck.

The reader is referred to his thesis, Nosenchuck (1982), for details.

2.6. Measurements of Structure and Reaction Product by LL.F.

Koochesfahani, Dimotakis and Broadwell (1983) have shown that fluorescence
intensity can be used to observe product concentration in a turbulent shear
layer. This technique uses a pH sensitive dye, fluorescein, which fluoresces
efficiently in the presence of green laser light (the 5145 angstrom line of a Lexel
Model 95 Argon-ion laser was used). The intensity of fluorescence is linearly pro-
portional to concentration of dye in the measuring volume. The laser beam was
passed through the shear layer perpendicular to its plane and imaged with a
camera lens onto a self-scanning linear photodiode array called a "Reticon
Array”. The end result is that it was possible to measure product concentration
as a function of time at 1024 points simultaneously in an entirely non-intrusive

way. These points were equally spaced along the height of the test section.

The present experiments using this technique were conducted in collabora-
tion with M. Koochesfahani who developed the hardware and data-aquisition
software for this application. The reader is referred to his thesis, Koochesfahani

(1984), for detailed discussion of the limitations of this technique.

One limitation worth mentioning is the resolution problem. Each photodiode
in the array provided a measurement which was an average in two ways. First, it

was an average over space. The optics collected light from a small volume ~t
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fluid and focused it onto the detector which simply added up the total. For this

r.
~

experiment a length scale for the volume was about 0.1 millimeters. Second, it
was an average in time. The current from the diode charged a capacitor which,
in a sense, was a bucket that collected and added up the current flow for a short

period of time and then dumped it out when the measurement was made. The

time scale was the period of the sampling rate which in this case was 2 mil-
liseconds. The smallest length scale in the flow, it turns out, was always smaller

than the measuring volume for conditions in this experiment. For pre-mixing-

v Y T, T

transition flows the, smallest scale was the interface thickness (i.e., molecular
1 diffusion length) which is small for a liquid (estimated to be 0.3um in these
flows). For post-mixing-transition flows the length associated with the fine scale
turbulence, namely the Kolmogorov scale, is small and the interfacial diflusion
scale in even smaller. Both were estimated to be smaller than the measuring
volume for the Reynolds numbers studied in this work. This resolution difficulty

s must be kept in mind when interpreting the fluorescence data.

-

All of the laser induced fluorescence data were taken at a location 25 centim-
eters downstream of the splitter plate tip. This represented about 2/3 of the
test section length. A total of 39 runs were made. Approximately 20 seconds of

data were taken for each run, meaning that 10.000 data points were recorded

PP

for each diode (pixel) on the array. Only every fourth pixel was sampled, so out-
! put from 256 pixels was recorded, implying that over two million data points
were recorded for each 20 second run. The data were stored, temporarily, on
hard disc and later transfered to mag tape for permanent storage. Processing

was conducted on our computer, a PDP 11/44 based systein.

———— s = e . —
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2.7. Measures of Shear Layer Thickness

Throughout this work, reference is made to many different measures of thick-
ness. All of them have been introduced by previous investigators and we have
used the conventicnal symbol for each whenever possible. The following is a list

of the thicknesses along with a description of each.

Symbol Description

6.6, Vorticity thickness of the mean velocity profile. It is computed
from Z(y) as follows:
U, - U,
6= I‘—'E' (2.1)

az
dy

VWithin the assumption of the boundary layer approximation, 6§ is

thus physically the same as the maximum slope thickness.

L] Integral thickness of the mean-velocity profile. It is computed

from #(y) as follows:

_Fle@) - YU~ uly)
"'_[[ U, Uz ][ U, - Us

dy (2.2)
@ is often incorrectly refered to as the momentum thickness
because it appears to be a generalization of the formula for
momentum thickness of a boundary layer appropriate for a shear
layer. For Up =0 it is true that ¢ is momentum thickness. How-

ever, for Up # 0 it can be shown that 6 is unrelated to momentum.

6, Momentum thickness of the high speed boundary layer. This is the

......................
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conventional thickness used to represent initial conditions. It can
be computed from the measured boundary layer mean-velocity

profile in the usual way. In the case of a laminar boundary layer,

'vaw“"\’—f“‘
S, P .

Thwaite’s method can be applied to get an estimate of 6.
Breidenthal computed 6, by this method. Throughout the present
study, §, was computed using

L
2

ve
y = [_“_f_ (2.3

U,

ey T

where z,,, is an effective development length equal to 5 centime-

ters for our facility.

»

6, 1% thickness. The 17% here refers to 1% of the maximum mean

product concentration. 6, is the distance from the 1% level on the

low speed side to the 1% level on the high speed side. Mungal
(1983) and Koochesfahani (1984) have found it is very nearly equal

to the visual thickness.

Sure Visual thickness. Brown and Roshko (1974) introduced this thick-

ness as a means of extracting quantitative information from pho-
tographs. It is the thickness obtained by drawing straight lines
tangent to the top and bottom edges of the structures in a short

exposure photograph. In the present work, the edge in a long time

pan gncr arard SEEM SRS

exposure, taken with the method described earlier, was nearly

v

equal to the visual thickness and is thus refered to as 6, .

. Py Product thickness referenced to free stream conditions on the

high speed side. Mungal (1983) and Koochesfahani (1984) present




bp,. P2. P

their product measurements in terms of this thickness and 6,,.
Mungal used the symbols P, and P; for &, and 6, respectively.
For &, the reference concentration is the high speed free stream

value. It is the width of a top-hat profile whose height is the free-
stream concentration, C,,, and whose area is the same as the

mean product concentration profile.

b= JEW (2.4)

Product thicknass referenced to free stream conditions on the low
speed side. This is the same as &p, except the reference conditions

are on the low speed side.

b= - S W)ty (2.5)

6p, is the same as P in Breidenthal’s work and P in Mungal’s work.
In the present work, the marker fluid in all the shear layer experi-
ments was carried by the low speed fluid so when we speak of pro-

duct thickness we mean 6, .
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Chapter 3

Effects of Forcing on Shear Layer Structure and Mixing

In this chapter several experiments on the mixing layer are presented and
discussed. Emphasis is on the effects of forcing. Changes in the large scale
structure and in streamwise development are discussed for a large range of Rey-

nolds numbers. The effects of forcing on the mixing characteristics of shear

layers are discussed in detail.

Before discussing the effects of forcing, the basic structure and muxing
phenomena in the unforced shear layers studied in this investigation are
described. This provides a necessary reference for the discussion of the results

obtained with forcing.

3.1. Reynolds Number Dependence of the Unforced Layer

A wide range of flow speeds was studied during the course of this work. For a
fixed velocity ratio. the initial Reynolds number of the high speed boundary
layer characterizes changes in flow conditions for changing speeds. This Rey-

nolds number is defined as follows:

(3.1)

where U, is the high speed velocity and 6, is the momentum thickness of the
high speed boundary layer. This Reynolds number is obviously connected with

initial conditions. Also useful is the unit Reynolds number defined as follows:

Re' = &U (3.2)

14
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Re' has dimensions of inverse length and when multiplied by the vorticity thick-
ness becomes the large-structure Reynolds number. The range of unit -Reynolds
number, Re', was from approximately 100cm ™! to 4340cm ™!, Correspondingly,
the range of initial Reynolds number which could be achieved varied over a
range from 30 to 190. Photographs of shear layers at three different Reynolds
numbers within this range are shown in Figure 3.1 (the y dimension of the test
section in these photographs is 7 cm). They provide examples of the three flow
regimes through which a shear layer delvelopes with downstream distance, start-
ing from an initially laminar state: (i) steady laminar flow; (ii) pre-mixing transi-

tion flow; and (iii) post-mixing transition flow,

In Figure 3.1a, the unit Reynolds number is low enough for the laminar part
of the layer to extend over the whole fleld of view. The mixing occurs on a thin
interface separating high speed and low speed fluid. The mean velocity profile
for the flow in Figure 3.1a. measured with the LDV at a location 20cm down-
stream, is shown in Figure 3.2. At this location the maximum slope thickness of
the profile is 8.6 mm and the edge-to-edge thickness is approximately 12 mm,

while the diffusion interface thickness in Figure 3.1a is less than 1 mm..

Of course, the diffusion layer will be much thinner than the vorticity layer
because the former begins at the trailing edge of the splitter plate while the
latter has developed from the boundary layers leaving the plate (estimated to
have an edge-to-edge thickness of 4mm). If the observed thickness of 12mm at
z =20cm were to correspond to a shear layer beginning with zero thickness at
the same origin as the diffusion layer, then the available similarity solution
12mm

T

SCZ

implies a diffusion layer thickness approximately equal to where

Se = —Z— is the Schmidt number; for water, the diffusion layer thickness would

be approximately 0.5mm.

AL
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With increasing unit Reynolds number, instability appears at some point
downstream. In Figure 3.1b that point is at the far left of the picture (a similar
example may be seen in Figure 3.6a). Figure 3.1b displays another feature, the
mixing transition, at about the midpoint of the picture. Thus this picture

displays all three flow regimes defined above.

In Figure 3.1c the mixing transition {not well defined in this picture) is com-
plete by about z =9cm (as estimated from results discussed 1n Section 3.3),
while the transition from the steady regime, if any, has been squeezed into a

small region near the splitter plate.

The above examples show that the unforced shear layer goes through two
transitions. The first is the transition from steady, laminar flow to a two-
dimensional flow with growing instabilities which eventually form vortices (as in
Figure 3.6a). Above the Reynolds number where vortices form, no further
change in primary structure takes place. The first transition is. therefore, a
transition in structure. The second transition is a transition in mixing. The
exact details of how this transition takes place are not well understood but it is
associated with development of three-dimensional structure. It is known that
an order of magnitude increase in mixing occurs in the high Schmidct number

case, e.g., Breidenthal (1978).

The fact that the two transitions occur at different values of the Reynolds
number means that .hree flow regimes exist. The first i1s the laminar shear
layer. This occurs when the Reynolds number is smaller than both transition
values. For the laminar shear layer, simple diffusion of vorticity and mass in the
shear layer are the dominant phenomena. In the second regime the flow is a
turbulent shear layer with Reynolds number smaller than that required for the
mixing transition. i.e., the Reynolds number is larger than the structure-

transition Reynolds number but is smaller than the mixing-transition Reynolds
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number.

We shall refer to this as the "pre-miring-transifion turbulent'' regime.
Growth rate and momentum mixing by Reynolds stress are all well developed.
Mixing is limited by diffusion over an interface in this case. The final case is the
one where both transition Reynolds numbers are exceeded. This is the “post-
mizring-transition turbulent’’ regime. Entrainment by inviscid, large-scale

structures is the limiting process which determines mixing in this case.

3.2. Forced Shear Layer Structure — Visual Resuits

In this section, results obtained from photographs of reacting, forced shear
layers are presented. Photographs provide a way to discern changes in large-
scale structure, and, to a limited degree, changes in mixing that take place due

to forcing.

Prior to discussion of the photographs, some terminology is needed to sim-
plify the discussion. When the Reynolds number is larger than that required for
the transition in structure, discussed above, we refer to the flow as ‘‘turbulent”.
When the Reynolds number is smaller than the structure transition value the
flow is “laminar”. To identify regions of the flow with respect to the m:.xing tran-

sition, we will use the terms "pre-" and 'post-mixing-transition”. Figure 3.1a is
thus a laminar shear layer. Figure 3.1b is primarily a turbulent, pre-mixing-
transition shear layer though the downstream half of the picture is post-mixing

transitional. Figure 3.1c is a turbulent, post-mixing-transition shear layer.

Each shear layer, which is initially laminar when it leaves the splitter plate
has an initial instability and roll-up frequency which will be called the "natural
frequency”. It is the passage frequency of the first, and smallest, organized
structures in the mixing layer. Freymuth (1968) and Ho and Huang (1982)

found that this frequency is predicted well by simple parallel-flow, linear
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stability theory applied to the initial mean velocity profile; c.f., Michalke (1964)
for the classical treatment of a hyperbolic tangent profile. Michalke's temporal
theory implies that the most unstable wavelength, Aq. 15 2B.5 times the momen-

tum thickness. 6,.
Ag = 2B8.5 6 (3.3)

The natural frequency, Fg, is equal to the convection velocity divided by the

most unstable wavelength.

Throughout the present work, the natural frequency was estimated using these

U, + Ua

relationships together with an estimate of 6, from Eq. (2.3) and U, = 5

For the later discussion of the eflects of forcing, it is useful to recall some
characteristics of the spectra of passage frequencies of the large vortical struc-
tures (Winant and Browand, 1974) or, equivalently, the probability distributions
of their spacings (Brown and Roshko, 1974). Near the splitter plate, \n the early
stages of a shear layer developing from laminar boundary layers, the {nearly)
fixed, natural frequency defines a spectral peak (or delta function in the wave-
length or vortex-spacing distributions) (Ho and Huang, 1982). Eventually far
downstream, in the "'well developed’ turbulent shear layer, a broad spectrum
develops. Its maximum corresponds to the most probable passage frequency
{(or vortex spacing); it is close to the mean value (Brown and Roshko, 1974).

Consistent with a linear growth rate for the shear layer. the local passage fre-

H |

quency decreases downstream as

The forced shear layer of Wygnanski and Oster, described in the Introduction,

was in the latter, late stages of development (post-mixing-transition) while the
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forcing experiments of Ho and Huang were mainly on a shear layer 1n its early

stages of development, i.e., pre-mixing-transition.

The work of Ho and Huang (1982) focused mainly on FF- ~ 1 while Oster and
0

Wygnanski (1982) studied -;;,F-;<< 1. The present research covered the entire
0

range and the observed eflects of forcing on structure agree weil with the
findings of the above investigations. Much of what follows, therefore. may be
found in the above works. The aim in this discussion is to unify the results, to
present the necessary background for those unfamiliar with the previous
research and, most important, to provide a reference for the effects of forcing
on the large-scale structure and growth rate of the shear layers for which pro-

duct measurements were made.

First consider the case when the forcing frequency equals the natural fre-

quency, i.e., FF- = 1. In this case, vortices are shed from the splitter plate at the
o

natural frequency and move downstream in an orderly fashion. without amalga-
mation, for an unnaturally long distance. Eventually, the growth of subharmon-
ics of the input frequency causes pairings, triplings, etc., like those observed in
the unforced layer. Figure 3.3 shows an example of a forced, pre-mixing-
transition shear layer. Laser induced fluorescence was used to label pure fluid
from the low speed side for this photograph. The forcing wavelength
corresponds, in Figure 3.3, to the spacing between the initial structures on the
left, i.e., the upstream side. The onset of a pairing is evident on the downstream
end. Even though energy is being put into the flow at the initial roll-up fre-
quency, the growth of subharmonics, available in the background, eventually

causes a pairing.
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Forcing at frequencies larger than the natural frequency, ie . £ > 1, causes

Fo

no change in the behavior outlined above. Vortices form at the forcing fre-
quency and move downstream without amalgamation until subharmonics grow
sufficiently. The flow adjusts itself to the forcing in this case by a simple reduc-
tion of the flow scale to accommodate the input wavelength. There must exist
an upper limit to the forcing frequency at which this is true. Linear stabulity
theory predicts that the neutral-point frequency is roughly twice the natural
frequency. High frequencies were difficult to achieve in the present experiments
so this topic was not pursued.

Forcing at frequencies smaller than the natural frequency, 7:—:-’- < !, on the
other hand, causes a variety of more interesting flow phenomena. In a sense,
this is the more important case from an engineering standpcint since most
shear lavers of technical interest are large Reynolds number flows for which the
natural frequency i1s very high and background, excitation spectra are more
likely to contain lower frequencies; the initial roll-up frequency (F,) can be so

high in fact that forcing it may not be practical. Behavior of the structures for

FF— < 1 is best understood by first considering forcing at integer subharmeonics
0

of the natural frequency, ie., FL = -111— where n is an integer. The first subhar-
‘o

monic corresponds to n = 2, the second subharmonic to n = 3, etc.

If the flow is forced at exactly one-half of the natural frequency . FF- = 72
0

controlled pairing takes place. Vortices are shed from the spiitter plate at the
natural frequency and immediately undergo a pairing to form a larger vortex.
The larger vortex moves downstream without interaction along with other vor-
tices of the same type. In our facility, it was never obvious that these larger vor-

tices would themselves undergo a pairing before they reached the end of the
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test section. Figures 3.4a and 3.4b show the difference between forcing the

o
3
[
:c natural frequency and the first subharmonic.
!
f Amalgamations of more than two vortices can be caused by forcing at higher
E integer subharmonics of the natural frequency. Figure 3.4c and 3.4d show
s examples of controlled tripling and controlled quadrupling. The forcing fre-
3 quency is one-third the natural frequency in Figure 3.4c and one-quarter the

natural frequency in Figure 3.4d.

’g At this point, the effect of forecing on structure has been outlined for forcing
at frequencies larger than or equal to the natural frequency and for forcing at

integer subharmonics. Now consider what happens at intermediate frequencies.

No new types of flow structure occur. Instead, rescaled versions of the flow pat-

La SRR

a8

terns discussed above are the resuit.

This is best explained by example. Consider the case when the input fre-
quency is less than the natural frequency but is greater than the first subhar-
monic. Recall that forcing at the natural frequency causes no amalgamations
and forcing at the first subharmonic causes pairing. For forcing frequencies

between the two, a rescaled version of the flow forced at the natural frequency

v *T.T RN

occurs. This was first observed by Ho and Huang (1982) and is confirmed by the
present research. The '‘response frequency” of the shear layer, a term intro-

duced by Ho and Huang (198R2), is the frequency at which vortices form at the

VW v
L
. .

®
i splitter plate. When the forcing frequency is between the natural frequency and
the first subharmonic, the “response frequency’” equals the forcing frequency.
: All flows forced between the natural frequency and the first subharmonic, i.e.,
L
- %— < FF_ < 1, thus have a flow structure that is a rescaled version of the flow
3 0
resulting from forcing at the natural frequency. The rescaling is such that the
spacing between the vortices shed from the splitter plate is equal to the
]
L‘"
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wavelength of the forcing. Hence, the scale of the flow is increased for

p F
=< —< 1.
2 Fo

In a similar manner. forcing between the first subharmonic and second

subharmonic, -é;—< FF—< %- causes a rescaled pairing flow pattern. In this
0

case, the response frequency is twice the forcing frequency. The rescaling is
such that spacing between the vortices shed from the splitter plate is equal to
one-half the forcing wavelength. Similarly, forcing between the second subhar-

monic and third subharmonic causes a rescaled tripling flow pattern and so on.

From the foregoing discussion, one may be tempted to extend the findings to
infinite subharmonics and, in so doing, develop a recipe for the flow resulting
from any arbitrary frequency smaller than the natural frequency. For example,
the recipe alluded to would imply that forcing at the 19th subharmonic causes a
controlled amalgamation of 20 small vortices into a single large vortex. How-
ever, for large numbers of vortices, the amalgamation does not take place in a
single event as it does when smaller numbers join. Depending on the availability
of disturbances in the background, a series of pairing, tripling, etc., interactions

may take place until a row of large vortices, in tune with the forcing frequency,

is set up. This behavior is characteristic of the —P{E— << 1 regime and was the
0

basic result of Wygnanski and Oster (1980). Ho and Huang (1982) refer to the
case when large numbers of vortices come together in a single event as a “col-
lective interaction’” and state that large amplitudes are required to produce it.
In this work, collective interactions were difficult to generate because the top

and bottom of the test section limit the flow.

If consideration were limited to small amplitudes, which are more important

from a practical standpoint, then the suggested recipe would be misieading




Ul TR A5 S A SAch i et il JnieAamy Sk dagb Sulb S0 Bl g A R £° G A i A S SV Sl N i A~ oA i

- 27 -

when the forcing frequency is very small compared to the natural fréquency.

£ << 1. For this case, the results of Wygnanski and Oster (1980) show that a

Fq

series of amalgamations occurs until vortices in tune with the input frequency
are developed. This occurs at the downstream location where the mean local
passage frequency of the large-scale structures in the unforced flow is, roughly,
equal to the forcing frequency. Browand and Ho (1983) find that the growth
rate upstream, in the interaction region, may be as much as twice that of the
natural shear layer, depending on the amplitude of the forcing (see Figure 1.2).
In this sense, one can say that the forcing causes the early amalgamations to
occur at an unnaturally high rate. The upstream region of enhanced interac-
tion is called Region I by Wygnanski and Oster (1980). The subsequent region.,
where the amalgamated vortices are in tune with the forcing, is referred to as
Region II. The layer possesses basically no growth in Region II. Eventually, again
depending on availability of disturbances in the background, the frequency-
locked vortices begin to interact. Region III, as Wygnanski and Oster (1980) call
it, is this downstream region where a relaxation to the unforced state takes
place. Eventually, at far enough distances downstream, the original growth rate

is achieved (see Browand and Ho (1983) or Figure 1.2).

To summarize, the eflects of forcing on structure described above can be

separated into two categories. The flrst case occurs when FL is near unity but
0

not very small compared to unity. In this case, controlled amalgamations

result. The second case occurs for -FF,—'<< 1. In this case, the flow can be
[

divided into three regions, as shown in Figure 1.2. In the first region (I), the
forcing causes an unnaturally high growth rate due to enhanced interactions of
the vortices. In the second region (II), large scale vortices are locked to the

forcing frequency. No amalgamations and virtually no growth characterize this
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region. Finally, in the third region (Il). the vortices from Region Il begin to

interact and the growth rate returns to the unforced value.

Ezamples of Forced Shear Layers for Various Reynolds Numbers. With the
basic eflects of forcing on structure having been outlined, the remainder of this
section will be devoted to examples of the various flow regimes outlined above.
The examples are taken from the many photographs of the flow recorded during
the course of this research. The range of available forcing frequencies was lim-
ited to approximately 1 Hz to 20 Hz. Low Reynolds-number flows have low

natural frequencies and high Reynolds numbers have high natural frequencies

so, for the most part, low Reynolds-number flows fall into the -FL ~ 1 category
0

while high Reynolds-number flows have F’L << 1. The examples will begin with
0

the smallest Reynolds number studied and end with the largest value.

The first example is the steady laminar shear layer of Figure 3.1a. Figure 3.5
shows photographs of the same flow when forced at # = 0.5Hz. Although the
shear layer in Figure 3.1a is not visibly oscillating, possibly because oscillations
have not yet sufficiently amplified, an estimate of the initially most unstable or

“natural” frequency can be made from equations 2.3, 3.3 and 3 4. Although the

)
Reynolds number is low ( £ x 60) the result from inviscid stability theory is
good enough for our purposes. This gives Fy = 0.35 Hz, thus FL = 1.4. Alterna-
0

tively, using conditions further downstream, at z = 20cm, F‘L = 2.0. Figure 3.5a
0

shows simultaneous plan and side views of the flow while Figure 3.5b shows the
view from above the plane of the layer looking upstream. The photographs show
that forcing produces a wave-like distortion of the diffusion interface. The wave
shape is approximately two-dimensional in the central part of the test section

with wave crests, i.e., the dark sections in the plan view, parallel to the splitter
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plate. Near the side walls, the crests split into symmetric sets of upstx:eam and
downstream tilted crests. The side wall interaction is due to the relatively thick
side-wall boundary layers present in this low speed flow. A simple estimate of
the side-wall boundary layer thickness is consistent with measurements taken

from the photograph.

Figure 3.5 demonstrates that forcing alters the flow and might even enhance
mixing. The fact that the crests are dark in the photograph indicates that pos-
sibly more product is present there. Whether or not forcing increases the mean

product is speculative since product measurements were not made in this flow.

The next example is the previously cited Figure 3.3. The flow speeds for this
case are roughly four times those for the laminar flow discussed above. The
forcing frequency is greater than the first sub-harmonic so vortices form from
the splitter plate at the forcing frequency and move downstream in an orderly
tashion. The visualization technique is a non-reacting one in which pure high
speed fluid is black and pure low speed fluid is white. The nearly vertical black
lines in the white area are shadows caused by bubbles on the upper surface of
the test section. Figure 3.3 shows qui’e clearly that the cores of the structures
contain pure high speed fluid. Appendix B presents a model of this flow which
reproduces many of the features of the photograph. The model is an extension
of a model proposed by Jimenez (1980) in which the vorticity is modeled with
point vortices and the interface is passive, i.e., contains no vorticity. Jimenez
considered the case when the interface intersected the centers of the vortices
and found that the resulting roll-up was symmetric. The model presented in
Appendix B considers an off-center intertace. The roll-up is non-symmetric for
this case and the interface shapes are remarkably similar to Figure 3.3. Appen-
dix B provides a complete presentation of the solution and more, in depth dis-

cussion of the results.
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The next example is a turbulent, pre-mixing-transition shear layer. Figure
3.8 shows photographs of a reacting shear layer for several different forcing fre-
quencies. The high speed velocity is 11.8¢m /sec and the low speed velocity is
5.9cm /sec for all entries in Figure 3.6. From these, estimates of the other
relevant parameters give r = 0.51, U, = B.75cm /sec, 8, = 0.66mm, Fy = 4.7 Hz,

U6
1 - 76, and A—Ug-=570cm“.

Each photograph contains simultaneous plan
v

and side views of the flow. Only two-thirds of the plan view, including one wall, is
shown. An inert dye was added to the lower free-stream so that pure high speed
fluid appears grey in the photographs. Reacted fluid appears black in both side

and plan views.

The changes in primary structure caused by forcing are evident in the photo-

graphs and are consistent with the description given earlier for the {—--w 1.
0

Figures 3.6a, 3.6b, and 3.6d are all rescaled-natural-frequency type flows, i.e.,
vorticies form at the splitter plate at the same frequency as the forcing fre-

quency. This is consistent with the earlier statement that the response fre-

quency equals the forcing frequency for —;— < FL. < 1. Figure 3.6b shows that
0

the frequency-locked vortices eventually begin to interact; a change in scale,
caused by pairing of previously frequency-locked vortices, is evident in the mid-
dle of the side view. Figures 3.8e, 3.6f, and 3.8g are examples of controlled amal-
gamations. It is clear in these cases that the vortices which participate in the
amalgamation are not of equal size. Figure 3.6f, for example, shows pairing of
large vortices with smaller upstream vortices. In Figure 3 8g, the smaller vortex
1s more clearly vigible while in Figure 3.6e, the smaller vortex is a mere kink in

the braid connecting the larger vortices.

The development of three-dimensional instabilities is quite interesting in the

series of pictures in Figure 3.8. The unforced case, Figure 3.8a, has three-
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dimensional structure but it is hard to say whether this is caused by i.n;.eraction
with the thick side-wall boundary layers or if it represents the onset of the ins-
tability that leads to the streamwise vortices. The forced flows show a variety of
interesting three-dimensional structure. In Figure 3.68b, the primary structures
at the upstream end are seen to have a certain waviness even at the start.
Notice also in this figure how the change in scale in the middle of the picture is
accompanied by development of streamwise structures. Figures 3.6¢ and 3.8d
show an interesting side wall effect which occured frequently for the low Rey-
nolds number forced flows encountered during this research. The interaction of
the primary vortices with the side-wall boundary layer produces three-
dimensional motion which separates the flow into a wall region and a central
region. In the central region, the primary structure is spanwise coherent while
in the wall region, the vorticity gets tipped by the velocity defect of the boun-
dary layer. The boundary between the two regions consists of a complicated
three-dimensional motion which apparently mixes the two reactants efficiently.
Another example of this type of flow, taken at similar conditions, is shown in Fig-
ure 3.7. Continuing with the plan views of Figure 3.8, it is seen that the side-wall
influence is not as strong in 3.8e, 3.8f, and 3.8g. It appears, in 3.8g, that the
forced pairing causes the development of streamwise vortices at the down-
stream end of the plan view. This may indicate that pairing of the primary

structures triggers the development of the secondary structures.

In the previous example, the mixing transition is not an issue, i.e., the Rey-
nolds number was small enough that the mixing transition did not occur in the
test section. The next example, shown in Figure 3.8, is at a large enough Rey-
nolds number for the mixing transition to occur near the downstream end of
the test section. The speeds for this flow are U, =174cm/sec and

U, = 8.3cm/sec and implied by them are the following: r = 0.48, 6, = 0.54mm,

Fo=83Hz,

v,e
:’l a !, Black areas in the photographs

= 94, and —"2=905m‘.

v
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indicate regions where mixing occurs. However, the wedge-shaped dark area at
the downstream end of the plan views is a shadow from an optical source. Quan-
titative measurements, presented later, do not extend that far downstream.
Unlike the previous example, the optics were arranged to give the full wali-to-
wall plan view of the test section. Changes in the primary structure for this case
are very similar to those discussed earlier for Figure 3.8. Figures 3.8a, 3.8b, and
3.8c are rescaled natural frequency flows. Figures 3.8d and 3.8Be show controlled
pairing, Figures 3.8f and 3.8g show controlled tripling, and so on for the remain-
ing entries in Figure 3.8. A rough feeling for the way forcing affects growth rate
of the layer can be obtained from these photographs. The unforced layer
demonstrates the expected linear growth rate while the forced layers each con-
tain a region where there is virtually no growth. In each case, this region
corresponds to the location where the passage frequency of the primary vortices
equals the forcing frequency. As the frequency decreases for succesive photo-

graphs in Figure 3.8, the frequency-locked region moves further downstream.

As mentioned above, the mixing transition begins to occur in the unforced
case at the downstream end of the photograph, Figure 3.8a. A picture alone is
not enough to make such an assessment but product measurements. to be
presented shortly. verify that this is the case. The clear presence of the secon-
dary. streamwise vortices is a clue, however, that the mixing transition is
imminent. Figure 3.9 is an enlargement of the photograph in Figure 3.8a which
allows the three-dimensional structure of the unforced case to be more care-
fully scrutinized. Crude measurements of the streamwise structure spacing
were obtained from this photograph and others like it. The result is that the
ratio of the streamwise to spanwise structure spacing varied from 0.3 to 1.0
which is consistent with the range of values measured by Bernal(1981). It is
clear, particularly in Figure 3.8g and 3.8h, that forcing can enhance the secon-

dary vortices. Notice how clearly defined the s'reamwise structures are in these
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Lt two cases. An enlargement of Figure 3.8¢g is shown in Figure 3.10.
r 1

! A final note with regard to the plan views of Figure 3.8 concerns the reduction -

in the side-wall influence compared to the previous example shown in Figure 3.8.

Fus

The reason for this is not entirely clear. The speeds are roughly a factor of two
larger for Figure 3.8 which means the side wall boundary layers are only 30%
smaller than those in Figure 3.8. But the flow near the side-walls in the plan
views is drastically different in the two cases. Perhaps the more fully developed
three-dimensional structure in Figure 3.8 prevents the side-wall interaction

from developing as strongly.

As a final example, a high Reynold-number shear layer will be discussed. This
was the largest Reynolds number at which data were acquired. Figure 3.11
shows four side view photographs of fluorescent product; one unforced and
three forced. Two cylindrical lenses were used to spread the laser beam; one in
the spanwise direction and one in the streamwise direction. This produces a 4
lagser beam, normal to the shear layer, with dimensions Scm spanwise and
40cm streamwise. The spanwise width was the same width used in the absorp-
tion measurements. One observes, in each picture, an instantaneous view of the

spanwise averaged product in the center Scm of the span. The actual height of

the test section in each picture is 7cm and the flow is from left to right with the

high speed side on top.

Figure 3.11a shows the unforced flow. Three forced shear layers and the

value of FL for each are shown in Figure 3.11. Figure 3.11b shows the three
0

L4 regions of growth discussed earlier. At the left of the picture, two small vortices
are pairing; they will later form a larger vortex in the frequency-locked region.

Notice the apparent lack of structure in the recovery region (right side of the

PP

° picture). It is expected that large scale structures would eventually emerge.
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The time scale necessary for this to take place depends on the availability of
background disturbances at long wavelengths and on the growth rate of instabil-
ities associated with those wavelengths. It is not unreasonable for this time
scale to be so long that we were unable to visualize the emergence of larger

scales in the length of the test section.

Conditions in the frequency locked region correspond to the neutral point on
the stability curve (Ho and Huerre, 1984). Figure 3 11b provides the necessary
information to check this assertion. The thickness was measured in the locked-
in region of Figure 3.11b by the method described in Chapter 2. This thickness
along with the known forcing frequency and convection velocity,

Oung

U, =0.5(U, + Uy, imply 2 measured value of dimensionless wavelength, 7
[

approximately equal to 0.62. This value is nearly equal to the value at the neu-

tral stability point and is consistent with the results presented by Ho and
..
Huerre (1984) if one assumes %:—N 8. When the forcing frequency is at the

neutral point, the first subharmonic is thus very near the most unstable fre-
quency and is almost certain to emerge and cause amalgamation of frequency

locked vortices. Such events occur at the begining of Region III

Figure 3.11c shows the locked-in region most clearly. This picture is very
similar to photographs by Wygnanski and Oster (1980) taken at Reynolds
numbers ten times as high. Notice the penetration of unmixed fluid all the way
across the layer in the third vortex from the left. This suggests that the flow is
very nearly two-dimensional at this point. remember the picture is a spanwise
average. The spiral arms of the structures are much longer and wrap around

more of the core than in the unforced case.




——— T -

r'

PP

| anas

Figure 3.11d gives a good example of the collective interaction of Ho and
Huang (1982) which is typical for small forcing frequency and large enough
amplitude. Six vortices, visible at the left of the picture, are wrapped-up into a
single large vortex by the time they reach the downstream end. It is also evident
in this picture that the bottom wall exerts an influence on the flow as the vor-
tices actually run into it at the downstream end. Product measurements were

restricted to the upstream 2/3 of these pictures.

Just below each of the forced flow pictures, a line is drawn to represent the
forcing wavelength, A , for the conditions under which the picture was taken.
Wygnanski and Oster’s scaling argument {see Browand and Ho (1983) or Figure
1.2) is qualitatively apparent. If the pictures were enlarged so as to make the
wavelengths equal, the three forced flows would appear very similar in the
frequency-iocked region. This supports the hypothesis that the thickness of the
forced shear layer scales with the forcing wavelength. One feature which would
not appear similar in such a scaling is the number of vortices which amalgamate

to make up the frequency locked structure. Initial conditions must determine

that number, i.e., the number depends on 7’_,‘5-
0

One-second duration time exposures of the phenolphthalein reaction are
shown in Figure 3.12 for flow conditions identical to those in Figure 3.11. Figure
3.12a, the unforced flow, shows a more or less linear growth as expected while
Figure 3.12b shows very clearly the three regions of growth characteristic of the

forced shear layer.

The edge of the mixed fluid is fairly easy to identify in these photographs.
Several points along these boundaries were selected and digitized as described
in Chapter 2. The points selected for each picture in Figure 3.12 are shown in

Figure 3.13. The horizontal and vertical scales are z and y in centimeters. The
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line connecting the points on each edge is the function resulting from the least
squares fit described in Chapter 2. The y distance between the fitting functions
was measured and found to be roughly the same as the visual thickness, 4., . of
Brown and Roshko (1974). The thickness was measured at sixteen z locations

spaced 1.5cm apart.

The thickness was scaled with forcing wavelength and plotted against Wygnan-
ski and Oster’s non-dimensional downstream distance parameter. The result is
shown in Figure 3 14. The case at the highest frequency, F = 12 Hz, agrees well
with Figure 1.2. The F = B ffz case has acceptable agreement though it is not as
good as the higher frequency case. The F =4 Az data have a smaller growth
rate for small Xy, than Figure 1.2 would predict. If the growth rate were as
large as it *should” be, the structures would exceed the vertical extent of the
test section. Thus, the test section restricts the growth in the Xso < 1 region. It
is possible that initial conditions are responsible for the sme'l growth. However,
the similarity growth hypothesis for the forced shear layer suggests that the
beginning of the frequency-locked region is independent of initial conditions.

Both Wygnanski's and Ho's data are consistent with this observation even

though Wygnanski and Oster used small values of -l'{j— while Ho and Huang
0

worked with values as high as 1. A recent review paper by Ho and Huerre (1984)
presents forced shear-layer data plotted in the same dimensionless coordinates.
There is a considerable amount of scatter in the results. The data in Figure 3.14
fall within the range of values in Ho and Huerre's piot. Another reason for the
variation in the present data could be the use of visual thickness as a measure
of width. In the unforced shear layer, the various rneasures of thickness are all
proportional. The use of visual thickness, 6&. . in the present case instead of
integral thickness, 8, as Ho and Huerre. assumes, without justification, that this

is also true in the forced layer.
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1.‘ Figure 3.14 also shows that flow at the end of the frequency-locked region for
E F = 12 Hz corresponds to conditions at the neutral point in a linear stability
. analysis as pointed out previously.

h 3.3. Product Thickness Heasurements by Absorption

In this section we present the basic measurements of reaction product made

& by the absorption method described in Chapter 2. The first part describes the

format in which the measurements will be presented and the remainder
describes the results. While much of the material in the previous section on
structure was discovered by previous investigators, the contents of the present
section and those that follow represent, to the best of our knowledge, the first
measurements of product in forced shear layers. Prior to these, it was not clear
whether there was any correlation between the effects of forcing on growth rate
and the effects on product production. The basic measurement presented in

this section 1is the streamwise distribution of product thickness

dé
Tiz'z- . which will be called “the product

6p(z) = j; cp(y)dy and its derivative,
growth rate”. These give one measure of the mixing processes. Another and
possibly better measure would be the product flux j;c,(y)—u(y) dy ; its deriva-
tive in the flow direction would give the local rate of chemical production. Since
simultaneous measurements were not made of cp(y.¢) and wu(y.t), it was not
possible to determine this quantity, which can be written as the sum of the two

terms _/;é;ﬁ dy + j; Cp'w’ dy. If the second term is neglected and the first one

is written as upd,, where wu, is a suitable mean velocity, then our product

ds
growth rate, 7}- multiplied by up, would be a measure of chemical produc-

d
tion rate, provided wu, does not vary with z. While the quantity EdzL is not as

precise a measure of chemical production rate, we believe it is a useful indicator

of local mixing rates.
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Eight data sets were recorded and analyzed. The results of each set are
presented in Figures 3.15 to 3.22 in a standard format so that the reader may
compare one set to another or to their own data. The main result of the
analysis of each data set is the mean product thickness as a function of down-
stream distance. This plot appears in the center on the left side in the standard
format. Figure 3.15 may be referred to at this time to better understand this
description. The circles in the product thickness plot are the actual measured
values while the solid line represents what is judged to be a reascnable smooth
fit indicative of the trend of the measurements. Above the product thickness
plot, the derivative of the solid line “fit” is shown. This represents the rate of

change of product thickness with downstream distance or more simply stated,

the product growth rate. Below the product thickness plot, is shown a photo-
graph of the flow for which the measurements were taken. The photograph was
enlarged in such a way that the scales agree with those on the plots, eg.
. z =25cm in the plots is the same as £ = 25cm in the photograph-and the ori-

gin in the plot is the tip of the splitter plate in the picture. In this way, one can

P
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compare the product thickness, its growth rate, and the visual information

along a single vertical line in this standard format.
Finally. in the upper right, the various values of important parameters for ﬁ'i-'
the flow in question are presented. At the top of the list are the three basic

U
parameters of the flow; U,, the velocity of the high speed side; r = U_z the velo- -
1

Sk I}

city ratio; and £, the forcing frequency. The remaining entries in the list are

‘ .
. . :
A S a A b 4

derived quantities. &, is the initial momentum thickness of the high speed

boundary layer in millimeters. This allows, for example, the value of Z. to be ]
\ .

quickly estimated for a given x location. Fg is the most unstable frequency from

linear stability theory, which can be compared to the forcing frequency. The
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next two entries in the list are the initial and unit Reynolds numbers respec-

f‘v—'-v'v Ty

tively. The unit Reynolds number, when multiplied by some measure of the local
thickness of the layer, provides an estimate of the large-structure Reynolds
B number. The last entry provides an estimate of the downstream location where

the frequency-locked region begins. Recall, from Figure 1.2, that the frequency-

locked region ends at roughly twice this value.

s
:‘ Data were recorded at two different Reynolds numbers. These will be referred
{ to in the remainder of this section as simply "‘high’* and “low'’ Reynolds number
cases. In the high Reynolds number case, which will be considered first, the
unforced flow and two forced flows will be presented. For the low Reynolds
t number case, the unforced flow and four forced flows will be considered. The
photographs for the high Reynolds number flows have the high speed side on the
bottom and an inert dye added to the high speed side. The low Reynolds number

photographs have no inert dye and the high speed side is on top in the side view.

The high Reynolds number, unforced flow, Figure 3.15, represents the founda-
tion of the present data since it was as close to the limiting case of an entirely
post-mixing-transition flow as the facility and data acquisition methods would
allow. The growth rate of product thickness is small for small £ and increases
monotonically with increasing z. The derivative plot shows that the slope of the
product curve is constant beyond z ® 9cm with the value of the slope equal to

approximately 0.04. The measurements are consistent with the information in

the photograph. Notice that the begihning of the constant slope section

corresponds well with increased amounts of mixed fluid in the photograph.

L
|
; The beginning of the constant slope region at about x = 9cm in Figure 3.15
¥ apparently represents the beginning of the post-mixing transition region for this
r
f ° flow. The only data available for comparison are the data of Breidenthal (1978)

which were taken in the same facility using the same method. The only
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difference is that Breidenthal measured product at a single spanwise location
while the present measurements gave a spanwise average. Breidenthal's meas-
urements, shown in Figure 1.1, indicate the mixing transition is complete at this
velocity ratio at z & 20cm. Hence, a discrepancy by a factor of two or more
exists between Breidenthal’s and the present measurements. The spanwise
averaging in the present case might account for some of the difference but 1t 1s
hard to believe, looking at the photograph in Figure 3.15, that it makes a
difference of a factor of two. In the present work, it is the eflect of forcing on
mixing that is the main interest and from this stand point it makes sense to
compare forced flows with unforced flows measured in the same way For this
reason, completion of the mixing transition at x = 9cm for this unforced flow
will be used as the reference value for comparison with forced flows in what fol-

lows.

Figure 3.18 shows the result of forcing the above flow at F =3 9H42. The
frequency-locked region begins at z =27.6cm, which is consistent with the
visual information in the photograph. The product distribution, in this case, is
not very different from that in the unforced case except at large z. where a
noticeable increase in mean product and production rate are observed. For
small values of z in this flow, the forcing causes a simple "“flopping" of the layer
from side to side, which does not increase mixing. However, the “flopping’' even-
tually leads to a strong roll-up at approximately z = 20cm which causes twice

the asymptotic product growth rate of the unforced case.

Figure 3.17 shows one of the most interesting data sets obtained during this
research. The forcing frequency in this case is 8 Az which means the frequency-
locked region begins at 13.4cm and ends at 26.8cm. The flow goes through the
mixing transition in much the same way as the unforced case with the asymp-

totic value of production rate achieved by z = 7cm. However, the product
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thickness stops growing at the begining of the frequency-locked region. ~Appr'oxi-
mately half way into the frequency-locked region, the product begins to grow
again at a rate slightly larger than the asymptotic unforced rate. The
frequency-locking phenomenon thus causes a temporary zero product growth
rate. The structures apparently convect and rotate without doing any mixing.
Comparison with the unforced flow shows that forcing creates more product

upstream of z = 15 cm and less product downstream of that point.

This concludes the presentation of the high Reynolds number data. The low
Reynolds number case will now be addressed. The flow speeds for these data
were roughly a factor of four smaller than in the previous flows so the initial
Reynolds number is half the value for the above flows and the unit Reynolds

number is one-quarter the previous value.

Figure 3.18 shows the unforced low Reynolds-number data. In this case, there
is much less product than that measured for the high-Reynolds number case,
which is consistent with pre-mixing transition conditions. At approximately
z =20cm the production rate begins to rise sharply, indicating the beginning

of the mixing transition.

The same flow, when forced at F = 1.8 Az is shown in Figure 3.19. There is
very little mixing until the beginning of the frequency-locked region. This is an
interesting case since the beginning of the frequency-locked region here coin-
cides with the location at which the mixing transition would begin in the
unforced case. The product growth rate and the product thickness increase
sharply at that point for the forced flow. The product growth rate actuaily
exceeds the post-mixing transition value measured for the high Reynolds
number unforced case. This implies that the product growth rate overshoots
since it is expected that the unforced asymptotic value will be approached for

sufficiently large z in Figure 3.18.
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Figure 3.20 shows the low Reynolds number flow for a forcing frequency of
26 Hz. Here, as in the previous forced case, the product and the product
growth rate both increase rapidly at the begining of the frequency-locked
region. Unlike the high Reynolds-number {orced flows, the product growth rate

is largest in the frequency-locked region for these low Reynolds-number flows.

Figure 3.21 for a forcing [requency of 4.5 Hz once again shows the same
behavior as seen in the previous two examples. The product and product growth
rates are both small until the begining of the frequency-locked region. In this
case, however, the product begins to level off and the product growth rate
reduces at about z =20c¢m. This is slightly downstream of the end of the

frequency-locked region which occurs at z = 16.2cm for this case.

Figure 3.22 shows the final low Reynolds number data set. Unfortunately. a
photograph for this forcing frequency of 5.9 Hz was not obtained. The trends
seen in the previous forced, low Reynolds-number flows are also true for this
case. The product thickness and product growth rate increase at the begining
of the frequency-locked region. After this the product thickness levels-off with
corresponding low growth rate. This flow 1s particularly interesting since the
actual product thickness at z = 12¢m is almost 5 times the unforced value at
the same point. With regard to the missing photograph. pictures were obtained
at forcing frequencies both higher and lower than 5.9 A2 and there was nothing
unusual about them. The flow picture would look like a rescaled version of the

photograph in Figure 3.21.

3.4. Product Thickness Fluctuations from Absorption Measurements

In this section, the fluctuating product thickness time series will be dis-
cussed. The mean product thickness, presented in the previous section, is the
long-time average of a fluctuating signal which represents the product thickness

as a function of time at a fixed z location. The product thickness fluctuates, of




AT e [ Rl N i o i TN TS T PR B~ s i g Eadi™) ..'*:"‘.".‘:'".".v_v-'f.--vvuv‘s\“

. < At PEAS NS - -
LY

-43-

course, due to the passage of the large-scale structures (as well as smaller
ones). The shape of the waveforms give a indication, therefore, of the distribu-

tion of product carried by the structures.

Figure 3.23 shows three product-thickness time histories at z locations of

8cm, 15cm, and 24cm for the high Reynolds number, unforced case previously
discussed in Figure 3.15. In the absorption experiments, 32 seconds of data

were recorded. The long-time mean values were computed by taking the mean

Wy yrrTrr
b PP

for the entire run. The time series shown for each z location represent only a 2
second portion of the data recorded at that location. The vertical scale in each

plot is the product thickness in centimeters. In addition to the downstream

:. location, z, and mean product thickness, §p, the root mean square of product

t thickness fluctuations, &', is included in each plot. The signals in Figure 3.23

. show that the presence of the large-scale structures causes a large fluctuation

% in the product thickness. Spectral analysis of these signals showed a rather .
!

broad peak with the frequency corresponding to the maximum decreasing like
o i— as expected. This change in frequency, or period, of the fluctuations is

apparent in the plots of Figure 3.23. Note also that the ratic of rms preduct

thickness to mean product thickness is approximately equal to 0.3 in the post-

S gun
@i

mixing-transition region.

i

Y Figures 3.24 and 3.25 show the time traces corresponding to the data sets
presented in Figures 3.16 and 3.17 respectively. The 3.9 Az forced case, Figure
- 3.24, shows little change from the unforced case which is consistent with the

similarity between the mean product-thickness distributions for the two cases.

4 Figure 3.25, on the other hand, shows a strong response to the forcing frequency 4
>

ff of B Hz. The pericd of the forcing corresponds well with time between peaks in |
: the three traces. Recall that the high Reynolds-number, 8 Hz flow had a zero
@ production rate in the first part of the frequency-locked region, (c.I. Figure

]
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3 17). The three traces in Figure 3.25 correspond to locations upstream, in the
middle, and downstream of the zero growth region. The signals change very lit-

tle through this region.

Figures 3.28 through 3.30 show examples of time traces corresponding to
data sets presented in Figures 3.1B through 3.22 respectively. These are the low-
Reynolds-number data sets. Note the change in the vertical scale from the high-
Reynolds-number plots. Figure 3.28, for the unforced case, shows trends in
mean product, rms product, and passage frequency similar to those discussed
for the high Reynolds number unforced case. The actual values of mean and

rms product are of course smaller.

Figures 3.27 and 3.28, corresponding to forcing frequencies of 1.8 Hz and
2.8 Az respectively, show that large amplitude fluctuations are caused by forcing
the flow in this frequency range. Notice that the ratio ;Jl’ rms to mean product is
almost a factor of two larger, at the x = 2tcm location, than it is for the post-
mixing transition region of the high Reynolds number unforced flow, c.f. Figure
3.23. This is due to the controlled amalgamation which takes place in these
flows. When the vortices merge at the beginning of the frequency-locked region,
their mixing is enhanced (see Figures 3.19 and 3.20) resulting in rather large
regions of mixed fluid separated by large regions of unmixed fluid. c.f. photo-
graphs of the flows in Figures 3.19 and 3.20. This causes the large excursions in

the product thickness seen in Figures 3.27 and 3.28.

Figure 3.29 shows time traces for the low Reynolds-number flow with a forcing
frequency of 4.6 Hz. The z = 6cm trace demonstrates an interesting signature
of the large scale structures. This being a pre-mixing-transition case, the pro-
duct resides in a thin interface which is wrapped up in the large scale vortices.
When the interface is tangent to the laser sheet used for the measurement, the

instantaneous product thickness is large and thus produces a spike in the time




ol

P

R N Py T Pamar s - - " n A Aue st Aat ik ek i TR At et St i S Iael Tt

- 45 -

trace. The number of spikes for a given structure is determined by th;a number
of times the interface has wrapped around the vortex at an given z location.
Another interesting point in Figure 3.29 is the small rms value of product thick-
ness at the 15e¢m location. This is the end of the frequency-locked region for
this flow and, as was demonstrated in Figure 3.21, a location where the rate of
change of product is high. The last trace in Figure 3.29 shows that the rms pro-

duct thickness increases in the recovery region (region III) for this flow.

Figure 3.30 shows the low Reynolds-number, 5.9 Az forced time traces. The
spikes in product thickness, mentioned above, occur for the smallest z location
and the other two traces show the increase in rms product and change in scale

of the structures characteristic of the recovery region.

3.5. Product Measurements by Laser Induced Fluorescence

Results of product measurement by the method of laser induced fluorescence
are presented in this section. The absorption measurements, presented above,
are of integrated values across the layer. The product thickness is, in fact, an
average of the y distribution of product concentration. The laser induced
fluorescence technique, employed in the present experiments, allows the details
of this distribution in ¥ to be measured. In this sense, the present section
presents more detailed information on the flows discussed previously.
Specifically, it is the variation of product concentration in the y direction that

is of interest.

Measurements of laser induced fluorescence were conducted on four high-
Reynolds-number and four low-Reynolds-number shear layers at the conditions
described earlier. For all these measurements, fluorescence of reacted fluid was
measured, i.e.. it was the product of a chemical reaction that was measured. All
of the measurements were made for a single downstream location at z = 25cm.

For the high-Reynolds-number flows, the unforced flow and forced flows with
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F=8Hz,12 Hz, and 20 Hz were studied. For the low-Reynolds-number flows,
the unforced flow and forced flows at # = 1.5Hz,2.5Hz, and 5.0/H4z were stu-
died. Methods described in Chapter 2 were used to compute the product con-
centration at 256 equally spaced points across the layer. A single one of these
points is referred to as a pixel. The concentration time histories were averaged
for the length of the run (approximately 20 seconds of data) to obtain the mean

product concentration profiles.

Product Concentration Profiles. The product concentration profiies for the
high-Reynolds-number cases are shown in Figure 3.31. Only every fifth measure-
ment is shown in this plot. ¥y is expressed in this plot in pixels; one pixel is
0.37mm so Lcm * 25 pizels in this plot. The high speed side is on the left and

the low speed side is on the right.

The width at 1% of the maximum concentration, called §,, is nearly equal to
the visual thickness. 6,4, as defined by Brown and Roshko (1974). Values of §,,
for each profile in Figure 3.31, are presented in Table 3.1 below along with

corresponding values of Xye-

TABLE 3.1
g F Pe
Frequency —_Uc & bp, —51—
unforced - 52cm 72mm 0.14
8 Hz 1.9 42cm 48mm 0.12
12 Hz 2.8 41cm 54mm 0.3

20 Hz 4.6 44cm S56mm  0.:3
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Returning to the proflles in Figure 3.31, it is interesting that the broduct-

concentration proflles appear similar in shape even though the local structure
r. is quite different for the different forcing frequencies. The greatest effect on the
= profiles occurs on the low speed side (high pixel number). Recall that the fore- ]
2
F ing is applied only to the high speed stream.
T":_- The product thickness, §;, in Table 3.1, is the area under the product concen-
i: w tration profile. It is apparent that forcing reduces the amount of product at
fe z = 25cm in this shear layer, for the frequencies measured, which is consistent
{ with results of absorption measurements on the same flows.
{ The mean concentration profiles for the low-Reynolds-number runs are
t.- shown in Figure 3.32. The profiles show that a considerable change in the shape
}
1 results from forcing, in contrast to the situation at high Reynolds number (Fig.
g
3.31) where all profiles are of roughly similar shape. The mean quantities,
;ﬂ implied by the profiles, are collected in Table 3.2 below. y
[
TABLE 3.2
Q
£zl 6?2
1 Frequency —=— 6 é —_—
: Uc ! Pa dl
%6 Unforced -- 42cm 26mm 0.06
| 5.0 Hz 31 30ecm 35mm 0.2
2.5 Hz 18 44cm 3.7mm 008
° 1.5 Hz 09 49cm 37Tmm 0.08
!
[
! In contrast to the high-Reynolds-number results, all of the low-Reynolds-
L ° number forced shear layers had more product than the natural flow. The 5 Hz
t -
]
2
&. .
L
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forcing produced a 297% decrease in visual thickness but a 35% increase in pro-
duct thickness. At 2.5 Az forcing, the product is larger by 42% and the layer 1s

thicker by 5% Finally at 1.5 Az forcing the layver 1s 7% thicker and contains

427% more product.

Time Traces. The signals, whose average values produce the mean concentra-
tion profiles, will now be examined. For the high-Reynolds-number flow, product
concentration as a fuction of time, at five selected pixels on the array. is shown
in Figure 3.33 for the unforced flow and in Figure 3.34 for the 8 Az forced case.
The five pixels selected are spaced 20 pixels apart in each figure, i.e., approxi-
mately 8mm . The center trace in each figure is at the location of the maximum
in the mean concentration profile, which was arbitrarily choosen to be the origin
in y. The value of y /4,4 for each of the other traces in both figures is indicated.
These traces display information equivalent to the temperature time series
obtained by Mungal (1983) in a gas flow and are precisely the same as the pro-

duct time histories obtained by Koochesfahani (1984) in a liquid flow.

The boundaries of structures are identified in these plots by product concen-
tration jumps from relatively low values {(outside the structure) to a higher
value (inside). It is seen, in the traces, that the product concentration within
the structure is independent of y, i.e., the duration of passage of the mixed
areas decreases near the edges of the layer but the concentration level within
the mixed regions does not change significantly with y location. This is true for
forced as well as unforced flow. Mungal (1982) and Koochesfahani (1984) drew
similar conclusions from their data on unforced flows. Comparing the unforced
time histories, Figure 3.33, to the 8 H#z forced case, Figure 3.34, shows that the
product concentration inside the structures is lower for the forced flow indicat-
ing that the composition of mixed fluid is altered by forcing. This point will be

discussed in more detall later.
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In the low-Reynolds-number case, time traces of the measured product con-
centration on the centerline for three of the data sets presented in Table 3.2 are
shown in Figure 3.35. The time series for unforced flow demonstrates that mix-
ing occurs primarily on large-structure interfaces and that there is very little
small-scale structure in this shear layer. Notice how the signal contains many
spikes, each corresponding to an interface passing through the measuring sta-
tion. Comparison of the unforced trace with the traces in the high-Reynolds-
number layer, Figure 3.33, shows that there are more of the spikes in the low-
Reynolds-number flow than in the high-Reynolds-number flow or, more accu-
rately, that the low-Reynolds-number interfaces are more resolvable than are
the high-Reynolds-number interfaces. The time trace of the F =5 Az data has
rather large sections of time when no product is present on the centerline. At
first, it was thought that these blank spots occur between structures and that
the mixed regions correspond to the cores of the structures. It was found that
the opposite is true, i.e., the unmixed regions correspond to the cores of the
structures and the mixed regions occur in the braids. This fact will be obvious
later when the ''flow images™ are introduced. The F = 2.5 Hz data in Figure 3.35
contain the same type of spikes as those observed in the natural case. The

interfaces in this case appear thicker than those in the unforced case.

Flow fmages. Perhaps the best way to display time-series data obtained in
the experiments is with the so-called “flow image”. This is essentially an inver-
sion of the process that was used to take the data. The data were obtained from
intensity information along a line in the flow. The process can be inverted by
translating the data into intensity information along a line on a video screen.
Moreover, since successive scans were recorded, the corresponding intensity
lines on the video screen can be placed in proper sequence to obtain a "picture’”
called the "“flow image'. It is not an instantaneous spatial picture as one would

obtain with a camera in the laboratory but rather it is a y -t diagram of the
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product concentration along a fixed line in the flow as tl e vortices in the shear
layer pass by that line. The difference between the flow image and a photograph
1s best realized by considering the conditions under which the two might be
identical. If the Taylor hypothesis is valid, namely 1f the vortices pass by the
measuring station in a “frozen' state, then the flow image is the same as a spa-
tial photegraph. The structures are, of course, rotating and growing as well as
translating so strictly speaking the Taylor hypothesis does not hoid For more

discussion on the flow image the reader is referred to Koochesfahani {1984).

Once the data are translated into intensity on a video screen in the form of
the flow image, a variety of irnage processing tricks can be performed. One very
llluminating technique is pseudo-color assignment. The idea here is to assign
different colors to different intensity levels such that relative concentration lev-
els are easy to indentify. One could, for example, assign blue to the low intensity
levels and identify blue areas in the resulting image as regions of low product

concentration.

Flow images for the four high-Reynolds-number runs, discussed earlier, are
shown in Figure 3.38. Side-view photographs of the same flows are shown in Fig-
ure 3.5. Time in these flow images increases from 7right to left and each image
contains 5.2 consecutive scans. Thus, approximately a one second portion of
the data for each run is shown. The appearance of the large-scale structure in
the unforced case, Figure 3.36a, is very similar to the structure at z =25cm in
Figure 3.5a:; Le., two-thirds of the distance downstream in Figure 3.5a. Figure
3.36b shows the 7 = 8 Az flow image and it is apparent that the forcing organ-
izes the vortices in this case. Comparing Figure 3.36a and 3. 38b. it is seen that
the unforced flow possesses more small scaie turbulence than the £ = 8 Hz case.
The braids in Figure 3.38b are thicker than those typically found in the natural

case.
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Both flow images in the recovery region (Figures 3.36c and 3.36d) 1501; very
much like the unforced case. The F = 124z case (Figure 3.36c) for which
Xwo = 2.8, appears to be at an intermediate mixed condition between the
frequency-locked structure of Fig. 3.36b and the new, larger-scale structure at
the unlocked conditions of Fig. 3.38d. As regards small scale motion, the 12 Hz
and 20 Hz data look very similar to those in the unforced case but rather

different {rom that in the locked region.

The intensity transformation table, which displays the color assignments for
Figure 3.38, is shown in Figure 3.37. Note that low product concentrations are
labeled blue, medium levels are green, and high levels are red. Comparing the
unforced flow, Figure 3.36a, with the B Hz forced case, Figure 3.36b, indicates
that the forced flow contains more low concentration areas than the natural
flow (i.e., Figure 3.36b has more blue and green area than Figure 3.36a). It is
obvious, in the natural case, that the composition varies from vortex to vortex.
One structure in Figure 3.38a contains a considerable amount of red while
another, at the extreme right, has almost no red and little yellow. The 8 Hz case
does not show as strong a variation; each vo-tex looks more or less like any
other. The 20 Hz image, Figure 3.36d, also shows little variation from structure
to structure but has more red areas than the 8 #z case. Notice the thin braids

in Figure 3.36d compared to those in Figure 3.36b.

Monocolor flow images, in which grey level is proportional to concentration,
for the low-Reynolds-number data are shown in Figure 3.38. Comparing these
images with the high-Reynolds-number images. it is seen how mixing takes place
on a contorted interface in the present case. Comparing the 2.5 4z and 1.5 Az
data (Figure 3.38c and 3.38d) with the unforced flow (Figure 3.38a) suggests that
the increased mixing is due to an increase in the amount of interface. Both

these flows apparently benefit, as regards mixing. from the enhanced vortex
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activity upstream of the measuring station which is responsible for more
stretching of the mixing interface In Figure 3.38¢ the Wygnanski-Oster parame-
ter is Xwo = 1.8. i.e., the data were acquired in the middle of the frequency-
locked region. For 1.5 Hz data (Figure 3.38d) Xy, = 0.9 and a pairing can be
observed. At 5 Hz forcing (Figure 3.38b) the flow has a very unusual structure.
The Wygnanski-Oster parameter for this case is 3.1 so we expect these data to be
in the recovery region. The vortices in this case contain hollow cores, as indi-

cated previously. with no mixed fluid in them while the braids are greatly accen-

tuated and contain most of the product.

Concentration Histograms. The concentration histogram is another method
of displaying the information from the experiments. It is a plot of probability
versus concentration and cross-stream coordinate, y. i.e., the concentration
histogram is a surface in a three-dimensional space in which height is probabil-
ity, width is concentration, and depth is y location. Such a surface is shown for
the unforced, high-Reynolds-number case in Figure 3.39 and for the B Hz forced
case in Figure 3.40. The unforced concentration histogram has little variation
in the y direction. The forced case, Figure 3.40, also shows little variation in the
y direction in the central part of the layer where the vortex cores exist. The
edges, on the other hand, do have ¥y variation which is consistent with the ear-
lier observation that the braids contain a larger amount of low concentration

fluid than does the unforced layer.

A less compiicated form of presentation is obtained by integrating in the y
direction to produce a plot of probabilty versus concentration. Figure 3.4l
shows the y -averaged concentration histogram for each of the high-Reynolds-
number data sets. Averaging in the y direction produces a ‘'total histogram™.
The probability is expressed in thousands of occurences {25 on the plot means

25,000 realizations) and concentration has been normalized so that pure high
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speed fluid is zero and pure low speed fluid is one, i.e., the concentration axis is

C.
—2—  Comparison of Figure 3.41a. the unforced case, with Figure 3.41b, the

CP mas

B8 Az forced case, shows a shift to the left in the forced flow. The probability
peak in the natural case is much less prominent 1n the 8 Hz data. This forced
flow, Figure 3.41b, shows a definite increase in the amount of fluid with normal-
ized concentration between 0.0 and 0.15. This is consistent with the increased
amount of low concentration luid in the braids for the forced flow as discussed
earlier. The histograms for the other forced cases, Figure 3.41c and Figure
3.41d, differ only slightly from the natural concentration histogram. The peak
in Figure 3.41c is not as strong as in the natural case while the one in Figure
3.41d, and the entire histogram for that matter, appears very similar to that for

the natural flow.

The y -averaged concentration histograms for the low-Reynolds-number flows
are shown in Figure 3.42. The peaks observed at high Reynolds numbers do not
occur for these data. It is interesting that all four concentration histograms in
Figure 3.42 look almost the same even though the structure, evident in the flow

images. is so different.

3.6. Summary of Forcing Effects on Mixing

The measurements of product thickness obtained by the absorption method
(section 3.3) and from integration of the laser induced fluorescence concentra-
tion profiles (section 3.5) are collected in what may be called ‘‘enhancement
plots” in Figures 3.43a and 3.44a. The effects of forcing on reaction product are
demonstrated by plotting the ratio of forced product thickness to natural pro-
duct thickness as a function of dimensionless downstream distance, Xy,. Simi-
lar plots for the ratio of product growth rates are given in Figures 3.43b and

3.44b. In these plots a value greater than one indicates that forcing causes
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enhancement in either product thickness or product growth rate.

The high-Reynolds-number enhancement plots are shown in Figures 3.43a
and 3 43b for product and product growth rate respectively. Recall that points
which fall above the dotted line in Figures 3.43 represent flows in which product

was enhanced by forcing. It is clear in Figure 3.43 that product is increased in

s r v
RRRA )
K A .

the region below X,, =1.0 (i.e., the enhanced growth region). The forced-
growth plot of Figure 1.2 suggests that the shear iayer growth rate is twice as

large 1n this region so it might be expected that twice as much product would

.

result. The data show values even greater than two. This is due in part to the
fact that the enhanced growth region in this particular flow is undergoing the
| mixing transition so the natural flow has a small product thickness. The low-
frequency. high-Reynolds-number data are suspect because the visual growth
o rate was smaller than what it should have been indicating that the top and bot-
tom of the test section may have been limiting growth. Figure 3.43b shows that

:‘ ’ the production rate is enhanced in the enhanced growth region with values

greater than two near the splitter plate. More important, however, 1s the result

that forcing stops production entirely in the frequency-locked region.

Broadly speaking, the results show that the frequency-locking phenomencn in

forced shear layers serves to inhibit mixing in high Reynolds-number flows.

The enhancement plots for the low-Reynolds number data are shown in Fig-
ures 3.44a and 3.44b for product and product growth rate respectively. The
trend in these plots is quite different from the high-Reynolds-number case.
Both product and product growth rate are enhanced in the frequency-locked
region. The reason for this is not entirely clear but, since enhancement by the
the primary structures is suppressed, 1t must be connected with the
modification of the secondary structure. The secondary structure is just begin-

ing to form in these flows at the downstream location where the frequency-
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locking occurs. Photographs of the flow (Figure 3.8) show that the sécondary
structure is influenced by the forcing. However, the connection between details

of the secondary structure and improved mixing are not well understood.

To summarize, in contrast to the high-Reynolds-number case, the frequency-
locking phenomenon produced more mixing in the low-Reynolds number flows.
The results indicate that this is caused by the effect of forcing on the secondary

structure rather than the primary, two-dimensional structure.

3.7. Discussion

The dramatic eflect of pericdic forcing on the downstream development of
the thickness of the shear layer is demonstrated by the plot of Browand and Ho,
shown in Figure 1.2. In this plot, both growth rate and downstream distance are
made dimensionless with the forcing frequency, i.e., 6F/U, is taken to be a
function of zaF/U, = Xs - That plot is influenced heavily by the original

results of Oster and Wygnanski, obtained at high values of unit Reynolds

number, i.e., for FF- << 1 and the mixing transition very close to the splitter
(]

plate. In general, however, the Reynolds number (through its effect on initial

thickness). as well as the dimensionless group —Ff— are parameters of the flow
0

as discussed earlier, c.f. section 1.3. Thus one can expect that in the
(6F/U, . zeF/U;) plane there will be a family of curves, as in our Figure 3.14.
The asymptotic condition represented by the Browand-Ho plot provides a useful
reference. In our experiments, the experiment which most closely approaches

the asymptotic, high Reynolds number state and yet displays a sufficiently large

range of Xy, is the one summarized in Figure 3.17, with FL' =0.13. It is com-
0

pared with the Browand-Ho reference curve in Figure 3.14, where the ordinates

é
have been rescaled from SE to vie £
Ue Ue

, assuming 6., = 86. Our results are simi-
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lar to but lie somewhat above the Browand-Ho curve. Part of the discrepancy

j may be connected with the rescaling of the thickness.

One of the main goals of this research was to describe the effects of forcing
b,‘ on the distribution of reaction product along the layer and to compare that with
h the unforced case. It was found that these eflects of forcing could not be
[.: described simply, due to the role of the additional parameters discussed above.

In particular. the upper Reynolds number limit of our facility made it difficult to

isolate the mixing transition effects from the forcing effects. The broad. qualita-
tive results, however, may be summarized as follows: for post-mixing-transition
shear layers, in which the length of the pre-mixing-transition region is small, ini-
tial part of the flow forcing reduces the amount of mixing and of reaction pro-
duct formed; for shear layers which are predominantly pre-mixing-transitional,
forcing appreciably increases the amount of product. In the post-mixing-
transition case, the reduction of product must be due mainly to reduced
entrainment in the locked-in region and beyond. In the pre-mixing-transition
case, the increased product may be partly due to the enhanced growth rate of
the vorticity thickness and whatever enhanced entrainment that produces, but
this cannot account for the increases observed and we conciude that there are

important eflects from changes in the developing secondary structure.

Coming back to the simpler, post-mixing-transition case, the relation of

enhanced growth rate and entrainment to the product can be illustrated as fol-

lows. Dimotakis {1983) has shown that the particular mixture ratio inside the
shear layer, which depends on the ratio of entrainment from the two sides. is a
function of growth rate. In an unforced, linearly growing, self-similar layer this
mixture ratio will therefore be invariant with z. The non-linear growth rate
along a driven layer implies varying entrainment ratio. according to Dimotakis’

model, and thus varying mixture ratio. However, the mixture ratio indicated by
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the amount of product at any downstream station is an integrated measure

dependent on all the events up to that point. Comparing the forced case of Fig-

D G T SRS

ure 3.17, at F =8 Az, with the unforced flow at the same Reynolds number, we

note that the interaction region I, which has twice the unforced growth rate, has

an entrainment ratio of 1.73, compared to 1.31 for the unforced layer, accord-
ing to Dimotakis' theory. Further downstream in the locked-in region (II) the
growth rate is zero and so the entrainment ratio is 1, according to Dimotakis’
model, but the actual level of entrainment is zero. Weighing the contributions
of these two regions (which are of equal length) to the product at the end of the
locked-in region, predicts 34% less product than in the unforced layer. This

agrees well with the measured 32% reduction.

A further demonstration of the effect of forcing on composition mixture is
given in Figure 3.45; a photograph from the "“disappearing vortex” experiment.
The strength of acid in the low speed stream was increased such that a larger
amount of high speed fluid was required before the mixed fluid appeared red;
i.e., before the mixed fluid reached the pH at which phenolphthalein changes
from transparent to red. Figure 3.45 shows photographs of natural flow and of
the 8 Hz flow for condition in which the acid was strong enough to require flve
parts high speed fluid to one part low speed fluid for reaction to occur. Thus,
dark areas in the photographs are mixed regions where there is at least five
times as much high speed fluid as low speed fluid. The unforced flow shows vir-
tually no product, indicating that the composition of mixed fluid never exceeds
five-to-one in favor of high-speed fluid. In the forced flow, on the other hand,
the cores are reacted in the early part of the frequency-locked region but disap-
pear as they move downstream. This experiment was therefore named the
"disappearing vortex' experiment. It shows that the vortices start out with at
least flve times more high-speed fluid than low-speed fluid in the mixed cores

and, furthermore, that the composition ratio of the mixed fluid reduces as the




vortices move downstream.
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Chapter 4

Effects of Forcing on Wake Structure and Mixing

4.1. Structure and Mixing in the Unforced Wake

A wake, in the context of these experiments, is created by setting the flow
speeds of the two streams equal to each other. The shear flow in the test sec-
tion then reflects the fact that the splitter plate has drag and it is, therefore, a

wake in the truest sense. A Reynolds number for the wake can be defined as

U5,
Req, = —2 (4.1)
where
U- = Ul = Uz (42)
and
6y = 6; + 65, (4.3)

8, is the sum of the momentum thicknesses of the boundary layers on the two

sides of the splitter plate.

At very low speeds, the flow is steady with mixing only on a thin interface
between the two fluids. Photographs of the phenolphthalein reaction for
Ue = 2cm/sec (implying &, = 3.2mm and Reg, = 83) are indistinguishable from
the picture in Figure 3.1a of the steady laminar shear layer. A mean velocity
proflle was not obtained for this flow but it is clear that it would show that the
wake thickness is considerably larger than the product thickness as was the

case for the laminar shear layer.




b

-80 -

An example of an unforced wake at a higher Reynolds number, where beriodic
oscillations have appeared in the flow, is shown in Figure 4.1 for

U. = 12rm /sec, implying 6, = 1.3mm and Reo, = 180. The photograph shows

that this wake is strongly affected by the side-walls of the test section (Figure
4.1a). A wedge shaped contamination region observed on both side walls con-
tains most of the mixed fluid. The cross-section view (Figure 4.1b), made with
the laser induced fluorescence technique, shows that the structure along the
center plane of this flow, away from the side-wall regions, looks like a two-
dimensional Karman vortex street with mixing on a thin interface which is dis-
torted by the vortices. The cusped wave pattern produced in the interfacial
boundary by the action of the vortices is similar to those observed experimen-
tally and in a computer simulation for a mixing layer (see Figure 3.3 and Figures
B.1 and B.3 in Appendix B). The mixing mechanism is similar to that in the pre-

mixing transition shear layers discussed in Chapter 3.

At sufficiently high speeds, the wake becomes "turbulent’ as in the example
shown in Figure 4.2, for which U, =50cm/sec, thus &, = 0.64mm and

Reo =320 and it is clear that a transition has occurred. In contrast to the

case at lower Reynolds number, the wake structure here is basically three-
dimensional even at the largest scale, as evident from the plan view in Figure
4.2. This is consistent with results of Cimbala (1984) who found that the far
wakes of circular cylinders appear fundamentally three-dimensional in plan view
at sufficiently high Reynolds number. Also relevant are the experiments of
Breidenthal (1980) who demonstrated the tendency of large vortical structures

to be three-dimensional in wakes, c.f. two-dimensional in mixing layers.

For the flow which comes off a splitter plate, as in Figure 4.2, there would
appear to be less tendency to form an initially two-dimensional vortex street as

in wakes behind bluff bodies. Here the thr- ‘imensional structure appears to
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develop from the beginning.

If the initial wave length and frequency are simply scaled with the rules

1 3

i 1 a
2. AN~ UZ?,F~ Us6~ U? , then the ratios of initial wave

Re~ Uéd~ U
lengths and frequencies in the flows in Figures 4.2 and 4.1 are 0 5 and 8, respec-
tively. Comparing the pho’2s one can discern this change of scale, suggesting
that, as in the examples of Breidenthal and Cimbala, the "vortex street’ scaling
laws may be extended to higher Reynolds number even when the spanwise insta-
bility that contributes to the three dimensionality of the primary structure is

very strong.

The unforced wake of a flat plate, then, has basically three Reynolds-number
regimes: steady laminar flow at low Reynolds number; "“turbulent” flow with
three-dimensional large structure at high Reynolds number; and a transitional,

non-steady, periodic, flow between.

4.2. Effects of Forcing on Structure of the Wake — Visual Results

This section is devoted to presentation of the visual results from forced wake
experiments. The changes in structure brought about by forcing are discussed
as are eflects on mixing (though photographs allow only a qualitative assess-
ment of mixing). The results are presented in order of increasing Reynolds

number.

Forced Laminar Wake. Figure 4.3 shows plan, side, and oblique views of the
steady laminar wake subjected to 0.5 Hz forcing. Like the laminar shear layer,
the laminar wake responds to the two-dimensional forcing with a very three-
dimensional wavy interface. The wake does not respond with as large an ampli-
tude as the shear layer indicating that the shear layer is more unstable than the
wake at these low Reynolds numbers. The finite width of the test section and the

thick side wall boundary layers at low speeds are probably responsible for the

T el
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three-dimensional response. It would be interesting to repeat these low Rey-
nolds number experiments with a wider test section to see if the response is
three-dimensional in the center of the test section, away from side wall

influence.

Structure in a Forced Wake at Reg, = 160. The Reg, = 160 wake showed a

great variety of interesting changes in structure when forced. These flows were
first investigated, in the present work, with the laser induced luorescence tech-

nique. Photographs of the flow field for several forcing frequencies are shown in

Figure 4.4. The acid-quenched fluorescein was slightly fluorescent even in the
“off”” state so pure fluid from one side appears black, pure fluid from the other
side appears grey, and the mixed fluid is white in a black-and-white picture. The
laser sheet was aligned along the center plane of the test section normal to the

shear layer, for these photographs.

The photographs in Figure 4.4 are all for the same flow speed. Only the fre-
quency varies from one case to another. As can be seen, forcing drastically
changes structure and mixing in this flow. The unforced flow is shown in Figure
4.4a. The basic structure is a somewhat tenuous Karman vortex street with mix-
ing occurring on a thin interface. When the flow is forced at a frequency equal
to the naturally occuring frequency ( Fg = 5 Hz ) a more organized version of the
natural flow results as seen in Figure 4.4b. Apparently, the forcing creates
stronger vortices since the interface is wrapped up more in the driven case.
Forcing at less than the natural frequency, F = 1.7 Hz, produces a peculiar

"“double Karman vortex street” as seen in Figure 4.4c. This corresponds to forc-

ing at a subharmonic in the shear layer. The flow forms structures at or near
the natural frequency with a “modulation” at the forcing frequency. In the
shear layer, the modulation leads to an amalgamation but the wake adopts the

double vortex street configuration without any tendency toward amalgamation
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within the length of the test section.

When the wake is forced at frequencies greater than the natural frequency
the initial Karman vortex street which is formed is frequency-locked to the
input disturbance. However, at large downstream distances a breakdown of the
initial street is observed. In Figure 4.4d, which is at a forcing frequency of 6 45
Hz, the breakdown or rearrangement can be seen. Notice the small mushroom-
like blobs of pure fluid from one side that jet out into the opposite stream on
each side. At a forcing frequency of 9.8 Hz (Fig. 4.4e) the breakdown of the 1ni-
tial street is accompanied by a dramatic increase in mixing, which will be dis-
cusse- later. Increasing the frequency further to 1u.75 Hz produced the phote-
graph shown in Figure 4.4f. The emergence of a new, larger scale, Karman vor-
tex street following the breakdown is clearly visible. Notice that vortices of like-
sign contain uniformly mixed cores and those above the wake centerline have a

core concentration different irom those below the centerline.

Close inspection of the photographs in Figure 4.4 reveals that there is a
change in the spacing ratio of the initial vortex street with change of forcing fre-
quency. Figure 4 5 shows how the lengths @ and b are defined for a Karman vor-
tex street. The wavelength, a. was measured from each of the photographs in
Figure 4.4 and compared with the forcing wavelength, U./F. The agreement

was very good in every case. The separation, &, was also measured from each
photograph in Figure 4.4 and values for the spacing ratio, g—. were calculated.

Figure 4.5 shows how the spacing ratio varies with forcing frequency (the
abscissa is forcing frequency made dimensionless by the natural frequency in
the unforced case, Fg =5 Hz). The spacing ratio is close to 0.5 for all forcing
frequencies except the frequency that causes the "highly m.xed wake™ of Figure
4 4e Intriguingly, the spacing ratio for the highly mixed wake is nearly equal to

the theoretical Karman spacing ratio of 0.281.
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Simultaneous side and plan views of the same flow using reacting ‘phenol-
phthalein visualization are shown in Figure 4.8 for several of the frequencies
included in Figure 4.4. It is obvious in these pictures that the side wall influence
is strong at this Reynolds number. The reasons for this will be discussed in
detail latter in connection with a model for the effect. What is seen in Figure 4.8
is that forcing significantly affects the mixing in this particular wake. Notice
that the low frequency forced wakes mix primarily along the side-walls (which
was also the case without forcing as shown in Figure 4.1) while the high fre-

quency forcing causes mixing primarily in the center of the test section.

Sacondary (Streamwise) Structure in Forced Wakes. Photographs of the

phenolphthalein reaction are shown for a Reg, =220 wake in Figure 4.7. The

csidewall influence is not as strong at this Reynolds number as it is for

Reg, = 160. The photographs show that this wake responds to forcing by assum-

ing a two-dimensional Karman vortex street conflguration and that three-
dimensional secondary instabilities form on the spanwise vortices. The secon-
dary instabilities lead to formation of streamwise vortices with a topology

different from the streamwise vortices in the shear layer (Bernal, 1981).

It was found that larger forcing amplitude in a similar flow (Re,w = 200)

caused the formation of strong streamwise vortices. This wake, when forced at
an amplitude of 5% of the free-stream speed, is shown in Figure 48 Thc
unforced flow is shown for refere~ce {n Figure 4.8a: note the side wall induence
at this Reynolds number is similar to the Req, = 180 wake. Figure 4.8b shows
the flow forced near the natural frequency with the larger amplitude. It is seen,
in the central part of the plan view, that the secondary instabilities form strong,
closely spaced, streamwise vortices in this flow. The secondary-to-primary
wavelength ratio is smaller for this forced wake than it is for the natural shear

layer, e.g. Bernal (1981) found a ratio of approximately 0.5 for the mixing layer
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while the secondary-to-primary spacing ratio measured {rom Figure 4 8b is 0.22,

a factor of four smaller.

Structure in a Farced Turbulent Wake. Figure 4.9 shows the flow of Figure 4.2
being forced at an amplitude of 2% at various frequencies which are much lower
than the natural initial frequency {Fy = 40 Hz) as estimated above. The wake
reponds strongly to these low forcing frequencies; in each case the forced wave
length 1s U./F. compared to the natural initial wave length U./40Hz. The
response 18 strongest at #/ = 9.1 Az for which, in the plan view, the wave appears
to have developed 1nto a vortex street at the forcing wave length. The initial
structure at the natural frequency Fy =40AHz appears to be simply incor-
porated into the larger, forced structure, in a process analogcus to the "“collec-
tive wntaraction’ described by Ho for mixing layers forced at low frequencies.
Comparing with the forced-mixing-layer regimes of Figures 3.11 to 3.14 . the
regumes visible in these pictures would appear to correspond to the enhanced
growth region rather than to the later. locked-in region of no growth. The
amount of product is seen to be larger than in the unforced case but, unfor-

tunately. no quantitative measurements of it were made.

4.3. Side-Wall Effects at Moderate Reynolds Number

It has been shown that the side-walls of the test section have a strong
influence on the Re,w = 180 wake fow discussed earlier {see Figure 4 4 and Fig-
ure 4.8). This flow and the side-wall eflect in it will be discussed in detail in this

section.

When this work was begun it was hoped that we would find we could increase
mixing by forcing. This was the case for the flow shown in Figure 4.4e where an
obvious increase in mixing occurs. The same flow, when viewed with the phennl-

phthalein technique, was found to have a highly three-dimensional structure.
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Simultaneous side and plan views of this case with the side-wall interaction
causing strong mixing are shown in ¥igure 4.10. The highly mixed region iz con-
centrated in the center of the test section and the side-wall influence in the
upstream Karman vortex street is substantial. Further insight into the struc-
ture of this flow were obtained by looking at sectional views of the type Bernal
(1981) first obtained. The laser sheet was piaced perpendicular to the free-
stream flow direction and photographed {rom underneath the test section look-
ing upstream. Ideally, a picture of a cross-section through the flow at a fixed =z
location is obtained. The Bernal section at z = 12cm tfor the highly mixed wake
is shown in Figure 4.11. The picture shows that the flow at this downstream
location possesses streamwise vorticity in the form of counter-rotating vortex

pairs,

The photographs suggest that the structure of the highly mixed wake is
caused by the interaction of the Karman vortex street with the side-walls of the
test section. The vortices in the forced street convect with the local velocity so
their ends will be tipped in the upstream direction by the velocity defect in the
side wall boundary layers as shown 1n Figure 4.12. The effect is shown, in Figure
4,12, for only one vortex. This tipping of course also occurs for shear layers,
where vorticity of only one sign exists. But in the wake, which has vortices of
both signs, the tipping has more serious effects. It will set up counter-rotating
vortex pairs in the streamwise direction, along the sides of the test section walls,
whose mirror images and mutual induction will tend to make them lift off the
walls. The vortices are observed in the Bernal section (Figure 4.11). As the vor-
tices propagate toward the center from the two sides they tend to churn up the
fluid they encounter. At the same time, the three-dimensional instability in the
central part of the flow is enhanced. This and possibly smaller-scale structure
greatly enhances mixing. Note, in Figure 4.10. how the vortices propagate

rapidly at first but slow down as the pair from the other side approach until
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they cease to propagate any more in the z direction.

Figure 4.13 demonstrates a simplified model of how this process takes place.
(It was suggested by L. Sigurdson in a private communication). The views in Fig-
ure 4.13 are from downstream looking upstream such that the free stream flow
is perpendicular to and out of the plane of the page, i.e. same as the Bernal sec-
tion view. Figure 4.13a represents an z location near the splitter plate where
the tipping has occured and the streamwise vortices are established. The
images of the streamwise vortices in the side walls are indicated. Actually, the
image system extends cyclically to infinity in both directions though only the
first set of images is shown. The induced velocities on each vortex are indicated.
The counter-rotating pairs lift off the side walls and propagate toward the center
of the test section until the equilibrium condition in Figure 4.13c is reached. At
this point, the configuration is steady. Notice that the spacing between the
strearnwise vortices in the equilibrium conflguration is twice the distance from
either pair to the side wall from which it originated. This is consistent with the
observed equilibrium spacing seen in Figure 4.10 and in the Bernal section (Fig-

ure 4.11).

An experiment was conducted to test the effect of the thickness of the side-
wall boundary layer on the highly mixed wake. A false side-wall was inserted in
the test section. A triangular notch was cut in the false wall into which the
splitter plate fit so that the boundary layer on the false wall had developed over
3cm at the splitter plate tip. This should be compared to the boundary layer on
the real side-wall which had developed over the entire contraction length of
approximately 80cm. The resulting flow, forced at the high mixing frequency
and viewed with the phenolphthalein reaction, is shown in Figure 4¢.14. The flow
is not perfectly symmetric in the wider passage but the tipping process and

inward propagation alluded to above still occurs. Hence, it is only necessary
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that the no-slip condition be present on the side walls for the high-mixing wake
structure to occur. The thickness of the side-wall boundary layers is of secon-

dary impeortance.

4.4. Mixing Neasurements in the Moderate Reynolds Number Wake

In order to quantify the increased mixing in the highly mixed wake, measure-
ments of laser induced fluorescence were conducted. The data were taken for a
non-reacting case in which fluorescein was used to mark pure fluid from one
side. This is referred to as a dilution experiment. Eight different frequencies
were studied at a downstream location z = 25cm. Flow images of the data are
shown in Figure 4.15. The color assignment for the images labels pure fluid
from one side as blue and pure fluid from the other as red. Mixed fluid appears
yellow and green. Figure 4.15a is the unforced case and the weak Karman vortex
street structure is observed, with mixing only on a thin interface. Figure 4.15b
shows the subharmonic forcing with its double Karman street structure. It is
interesting to note that one wavelength in this fow contains five vortices; two
sets of counter rotating pairs and one extra. The reason for this is not clear; it
is possibly connected with weak harmonics in the forcing. The remaining images
display different stages of the frequency-locked Karman vortex street and down-
stream breakdown discussed earlier. Figure 4.15d demonstrates that a nearly
perfect vortex street can be produced by forcing at or near the natural fre-
quency. Figure 4.15e shows the begining of breakdown of the initial street.
Notice how "tongues'” of pure fluid from one side extend into the opposite
stream and also take note of the jet-like flow between the vortex rows. Figure
4.15f demonstrates the reformation process in which small vortices from the
upstream street begin to rearrange themselves into a larger scale Karman vor-
tex street. Figure 4.15g is the highly mixed wake flow discussed earlier; the
increase in mixed fluid is evident in the flow image. Finally, at high frequencies

(see Figure 4.15h), the emergence of a new street from the upstream, small-
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scale street is observed.

The increased mixing in Figure 4.15g was measured from a concentration his-
togram of mixed fluid. Histograms for the natural wake and for the highly
mixed wake are shown in Figure 4 18. It can be shown that the product thick-
ness is the first moment of the histogram from a dilution experiment when the
free stream delta functions are removed, e.g. Koochesfahani (1984). The narrow
spike at the left in Figure 4.16a corresponds to pure fluid from one side and the
broader peak on the right corresponds to pure fluid from the other side. Figure
4.18a shows, therefore, exactly what is obvious in the image: namely, there is
very little measureable mixed fluid in the unforced case. Figure 4.18b, the histo-
gram for the highly mixed wake, has the same peaks corresponding to unmixed
fluid but now has another, broad peak in the middle corresponding to mixed
fluid. Not surprisingly, most of the mixed fluid occurs at a 50-50 mixture of
fluid from the two sides. Computation of the first moment of these histograms
shows that the: 2 is more than an order-of-magnitude increase in mixing on the

centerline due to forcing.

4.5. Discussion

First, as regards the change of flow regime with Reynolds number for the
unforced wakes, it is interesting to compare with corresponding developments in
the wakes of bluff bodies, especially circular cylinders, for which considerable
information is available. For blufl bodies, the reference length is the cylinder
diameter d , which for the flat plate is, ideally, zero. Momentum thickness is

related to d by Cpd =26, where Cp is the drag coefficient of the cylinder.

Thus, if we base the cylinder wake Reynolds number on é—CDd we might expect

to observe a rough correspondence between critical Reynelds numbers in the

two flows.
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For a circular cylinder, it is known that the wake is steady up to about

Req = 40, i.e. Res =34 (calculated with Cp =1.7) while for the splitter plate
the flow was still steady at Re, = 63. For the circular cylinder, the nonsteady
wake is pure periodic from Req = 40 to 180 (Roshko, 1854). i.e., Req, = 34 to

100, then passes an “irregular” or transitional range, and settles down to regu-
lar but “turbulent” vortex shedding at about Req = 300 or Reo, = 180. A simi-
lar course of development is described by Sato and Kuriki (1981) for the wake of
a thin flat plate (but they did not cite specific Reynolds numbers). The splitter-
plate wake in our experiments seems to have settled down to a “turbulent”
regime (Figure 4.2) by Req, =320. Thus the Reynolds-number range in which
the flat-plate wake makes its transition from steady to turbulent, periodic flow

(83 < Req, < 320) differs somewhat from that for the circular cylinder which is

not surprising, considering the considerable differences in initial vorticity distri-
bution. For the flat-plate wake, Breidenthal determined the beginning of the
mixing transition, where product rate begins to increase dramatically, at about

Reo =100, ie. in the middle of the transition range; it probably corresponds to

the onset of "irregular” fluctuation in the cylinder wakes. The end of the mixing
transition observed by Breidenthal for the flat-plate wake was at about

Re,, = 800; thus the flow in Figure 4.2 may still be undergoing the mixing transi-

tion although it appears to have a well developed three dimensional structure.

The wake-flow regimes, then, can also be labelled as “steady”, "pre-mixing-
transition” and “post-mixing-transition”, as for the mixing-layer flows. In the
mixing layer the changes from one regime to the next develop in downstream
distance, which is also the direction of increasing Reynolds number. The wake
Reynolds number, on the other hand, is invariant with downstream distance, to
first approximation, and the regime changes occur over the whole wake, so to

speak, at the appropriate changes of the (uniform) wake Reynolds number.
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Although local Reynolds number does not change with downstream distance
in the wake, a rescaling of the large vortex structure does occur, as seen in the
pictures in Figure 4¢.4. For the unforced case shown in Figure 4.4a, the “break-
down'' or rescaling occurs at z/8, ® 200, which is the same as the values
found by Cimbala for natural, circular-cylinder wakes. When forced at frequen-
cies higher than natural the breakdown occurs earlier, for example, at
r/8, ¥ 70 in Figure 4.4f. This smaller distance corresponds to the smaller ini-

tial scale induced by the higher forcing frequency.

To close this chapter, a note on the case of anomalously high mixing (Figure
4 4e) is in order. First, it is clear from the various photographs in this chapter
that the wake flows are more strongly influenced by side-wall boundary-layer
interference than are the shear layers. The difference is connected with the fact
that in the shear layer the vortices have only one sign while in the wake the
presence of vortices of opposite signs make possible the strong side-wall interac-
tion after their deflection by the no-slip condition. This difference in primary
vortex structure is also thought to be connected with the greater tendency to
form three-dimensional structure in the wake (Roshko, 1978; Breidenthal, 1980;
Robinson and Saffman, 1982). While the details of the mechanism leading to the
greatly enhanced mixing in the central part of the flow, away from tne side-wall
contamination region, are not clear, it seems plausible that the events are asso-
ciated with the susceptibility of the wake vortex system to spanwise instability.
The side wall effects are strongest and enhancement of mixing is greatest for the
flow in which the forced initial vortex spacing has its smallest value, which turns
out to be close to the well known Karman value. Smaller vortex spacing implies,
from the model in Figure 4.13, higher propagation speed away from the wall.
Whether this is the only eflect in the enhanced mixing or whether there are addi-

tional ones, e.g., strengthening of the vortices, is not clear.
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From an engineering stand point, the highly mixed wake may be very useful
in a real combustion situation. Not only does the amount of mixing increase as
a result of forcing, but the mixing occurs in the center of the test section rather
than along the side-walls as it does in the same flow without forcing. This means
that heat generated from combustion can be localized in the center of the

combustor rather than along the sides were heat transfer to the walls may

degrade performance.
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Chapter 5

Conclusions

The eflects of a periodic disturbance, applied to one of the free streams, on
large-scale structure and mixing processes in chemically reacting shear layers
and wakes were investigated. A wide range of Reynolds numbers, encompassing
three diflerent flow regimes was examined. Two different methods were
employed to measure the amount of chemical product and thus the extent of
molecular scale mixing. Absorption by reacted phenolphthalein provided cross-
stream average product thickness and laser induced fluorescence intensity pro-
vided the product concentration distribution. These methods, in addition, pro-
vided very effective flow visualization of the large-scale structures and of their

response to the periodic forcing. Following is a summary of the results.

1. The eflects of periodic forcing on structure of the shear layer may be

summarized as follows. For ;_-,F— << 1 and Rey, large the forced shear
[}

layer possesses a frequency-locked region (1I) in which vortices were
spaced at the forced wavelength and amalgamations do not occur.

Upstream, a region (I) of enhanced interaction exists and downstream.

a region (III) of recovery to the unforced state occurs. For FF—~ by
0

but not small compared to 1, the interaction region (I) consists of con-

trolled amalgamations, i.e. pairings, triplings, etc. , of vortices formed

at the splitter plate. The present measurements of the distribution of

thickness in forced shear layers agree with results obtained by previ-

ous investigators. The results confirm and, to a some degree, unify the




e Iv'

previous results of Wygnanski and Oster (1980) and Heo and' Huang

(1982).

. The effects of periodic forcing on the distribution of mixing product in

shear layers is different at high and low Reynolds numbers. At high
Reynolds number, in post-mixing-transition shear layers, the most
prominent result is that mixing is greatly reduced or even completely
stopped in the frequency-locked region (II). Upstream, in region I, the
mixing is enhanced. The net result is a reduction of product at the

end of region II. The results at low Reynolds number, in pre-mixing-

transition shear layers, are more varied, depending on FL and Re,,.
o

The most prominent result is that for some cases there is a large

enhancement of mixing in the frequency-locked region.

. More limited measurements were made on wake flows, which were

obtained by setting equal flow velocities on the two sides of the splitter
plate. An important difference between the shear-layer and wake flow
was discovered, namely the much greater susceptibility of the wakes to
test-section side-wall influence. The difference is attributed to the fact
that the wake has vortices of both signs which, when swept backward in
the sidewall boundary layers, interact strongly. A model based on this
picture accounts fairly well for the strong sidewall effects observed at
particular forcing frequencies. Less clear is why under these condi-
tions, the mixing is greatly increased, by almost an order of magni-
tude, in the central part of the wake, away from the side-wa. contami-
nation region; it almost certainly is connected with effects on the

secondary structure.
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E‘ The most surprising result was the measured eflect of forcing on mixing
:] in the frequency-locked region of the shear layer at high Reynolds number.
: For a particular frequency it was observed that mixing in that region was
E‘f complete stopped. Oster and Wygnanski had previously demonstrated that
E the growth of the shear layer is stopped and, even more, that Reynolds
[ stresses are reversed in this region, but it was not anticipated that mixing
could be reduced to zero. While large-scale entrainment is stopped, the
secondary and possibly smaller turbulent structure still exists at these Rey-
nolds numbers and it is not clear why it makes no contribution to chemical

mixing product.

In contrast, at low Reynolds numbers, under what would be pre-mixing-
transition conditions in the unforced layer. forcing enhances mixing in the
frequency locked region. In this case the secondary structure must evi-

dently be prominent in contributing to the mixing.

An equally surprising finding was the anomalous structure of forced
wakes under some conditions. The strong side-wall eflects can be explained
but the reasons for the remarkable increase of mixing away from the

sidewalls is not yet clear.
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Appendix A

Notes on Laser Absorption

A.1. Spanwise Average of Absorption in a Sheet

Breidenthal {1978) used absorption of light along a beam to measure product
In a turbulent shear layer. The measurement was an average in the cross-
stream direction {i.e., the y direction) and, when referenced to a free-stream

concentration, was expressed as a length called the product thickness.

In the present investigation, a laser beam was spread into a sheet and passed
through the test section perpendicular to the plane of the shear layer. A bar
photodiode (Quantrad model LL - 4 diffused junction silicon photodiode) was
used as a detector to monitor the transmitted light intensity. The device 1s a
solid piece of semiconductor with a light sensitive area 0.1 inches wide and 4
inches long. Ideally, the current from the diode is proportional to the total
power incident on the sensitive area. As such. the measurement is a spanwise
{ie., z direction) as well as cross-stream average. The relationship., derived

below, between product thickness and - hotodiode current is the basis for the

measurement method

A 2. Relation Between Photodiode Current and Product Thickness

The exponential relationship between incident and transmitted power along a
ray is the basis for calculating the product thickness from absorption. The
input power is a function of spanwise coordinate 2z as is the output power Their

ratio is




Y

? .r YT _rrernr
e ) 1

Pous(2)
Pa(z) ~

- '-CL(I) (A-I)

where a is the absorption coefficient and L(z) is the local value of the product
thickness. The photodiode current is converted to a voltage with a standard
operational amplifier circuit. The output voltage, V., is proportional, therefore,

to the integral of P,y (2) across the sheet.

| 4
v=EL [ Peus(2)ae (A.2)

where W is the width of the sheet, 8 is the conversion constant for the current
to voltage converter with units of volts/amp. and u is the sensitivity of the pho-
todiode in amps/watt. Assuming P,(2) is a constant, Equations (A.1) and (A.2)

imply

4
V= g%—{e"‘")dz . (A.3)

Now, the spanwise average product thickness, L, is the average of L(z);

L=

o'~

17 L(z)dz . (A.4)

A relationship is desired between the measured quantity, V, and the spanwise
average product thickness L. In order to achieve this a linearization in (A.3) is
clearly necessary. Introduce Lma. as the largest value L(z) ever achieves and

non-dimensionalize in the following way:




z':% , a':quu (A.8)
Then L° has a maximum value of 1 and (A.3) becomes
l LR/
§ V = BuPq {e‘“ L'(aqz° (A.7)
s
4
L @ Assume 0 < a’ << 1 and expand the integrand in (A.7).
vl
. 1-a’L’(z") + O(a*®)|dz"* A8
. el i (27 + 0(a’?) (A.8)
_ orintermsof L
- 14 . L 2
=l-a + 0(a’®). A9
p ﬁﬂﬂph Lmax ( ) ( )
o
8
s
b B14Pg, is the voltage when no product is present,; i.e.
i
- Vin = 8P . (A.10)
o
;,. Finally,
é
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Z’=i— 1-7::-+0(a") : (A.11) ﬁ

Since q‘
1 - 7"-: 0(a”) (A.12) |

" |

the error in L is of order a’ i the higher order terms in (A.11) are neglected. In

L AR A, . Ay V.0 Ny
]
Tet e ~'a

the experiment, a molar concentration of 3 X 10™® gave an absorption coefficient

of 0.1 cm™!. One centimeter is a reasonable estimate for Ly, . S0 a’ would be

S il
@

0.1 and the error would be 10%.

A.3. Calibration of Phenolphthalein as an Absorbing Medium

Experiments were conducted to determine the absorption coefficient, a, for

phenolphthalein. Mixtures were prepared according to the recipe given by
Breidenthal (1978); alcohol and soft water plus phenclphthalein for one reac- ;

tant and soft water plus sodium hydroxide for the other. The base was mixed so !

as to produce a pH of 11.7 and the phenolphthalein was mixed to concentrations

E of 1.0x 107%,3.33 x 10™®, and 1.0 x 107% molar to test the effect of concentra-

[ tion on a. A beam of laser light was passed through a test cell consisting of

L: three 1 cm cuvette cells. First, one of the cells was filled with a pH 11.3 mixture

E:( of the two reactants and the other two were fllled with clear water. The output

E voltage of the detector was recorded. Next, two cells were filled with reacted

b; fluid and one with water to obtain absorption for a 2cm path length. Finally. all )
E three cells were filled with reacted fluid. The results are shown in Figure A.1 for ‘
: the three different phenolphthalein concentrations tested. Equation (A.1) is

F" applicable since calibration was done with a beam and, appropriately, Figure A.1

_. shows the natural logarithm of the ratio of output to input power as a function

%

. e, : R
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of path length. Apparently, the absorption coefficient is a linear function of con-

centration. The results in Figure {(A.1) imply the empirical relation

a = (constant) x concentration

where

(constant) = 3.0 x 10* cm ™!

and it is understood that concentration refers to the molar concentration of

phenolphthalein.

Another set of experiments were conducted to determine the effect of base
concentration on the absorption coefficient. Figure A.2 shows the absorption
curves for three different base concentrations. The absorption coefficient is
weakly dependent on base pH for the range of values shown in this plot. The
weak dependence demonstrated in Figure A.2 was not a factor in the experi-
ments since accurate measurement of the volume of concentrated base that
was added to the soft water was not difficult. The volume was of the order of a
liter for a pH 11.7 solution. The range of pH values shown in Figure A2
corresponds to a factor of 25 variation in the volume of concentrated base, i.e., f
from 1/5 liter to 5 liters of concentrate. The pH of the base in all the experi-

ments varied only from 11.8 to 11.8. Each "'batch” of fluids was calibrated at

run time, in the way described above, and the resulting value of a for that

“batch’’ was used to determine the product thickness.

A 4. Data Reduction

The first time the laser sheet power was measured with the bar photodiode, a
substantial 60 Hz component was discovered which was due, most likely, to the
laser power supply. In any case, it was removed by recording both the input and

output power as functions of time. Since the product thickness is proportional
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to the difference between input and output power, within the assumpuohs given

above, the common 80 Az components cancelled each other.

Data were digitized with an 8-bit computer. In order to take advantage of the
full dynamic range of the computer, the D.C. levels were subtracted out and gain
was applied to the remainder. The gains and D.C. levels were recorded for each
run as was the absorption coefficient for the fluids used. Later, with the com-
puter, the original signals were recovered by applying the proper (inverse) gain
and restoring the D.C. levels. The spanwise average product thickness as a func-
tion of time was computed on a point by point basis using equation (A.11) with

higher order terms neglected.
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Appendix B

Roll-Up of a Passive Inierface by Rows of Point Yortices

B.1. Introduction

The motivation for the model presented here was, for the most part, the work
of Jimenez (1980). He presented models for the visual growth of the turbulent
shear layer which bare a striking resemblence to photographs of pre-mixing-
transition shear layers taken during the course of the present study, eg., the

photo of the forced flow in Figure 3.3 .

One of Jimenez’s models concerns the roll-up of a thin vortex sheet. An ini-
tially flat vortex sheet is disturbed and allowed to roll-up under the action of its
own induced velocity. The resulting shape of the vortex sheet is qualitatively
similar to photographs ot a chemically reacting liquid flow; specifically. a spiral

type roll-up occurs.

Another of Jimenez's models concerns the roll-up of a passive interface by a
row of point vortices. In this model all of the vorticity, within a given wavelength
in the initial sheet, is concentrated into a single point vortex. The rest of the
sheet contains no vorticity but still represents a material surface separating
fluid above from fluid below. The interface moves with the fluid and, as such,

will roll-up under the action of a row of point vortices with the given spacing.

Surprisingly, the two models produce similar interface even though physically
the models represent opposite ends of the spectrum, so to speak. All that
matters, apparently, is the net vorticity, not how it is distributed. at least as far
as the distortion of a material surface between high and low speed fluid is con-

cerned. The advantage of the point vortex model is that it is a significantly
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simpler problem to solve. For this reason, we shall investigate Jimenez's point

vortex model more deeply.

When examined in detail, several features of the passive interface solution do
not agree with experimentally observed flow structures. There is difficulty with
an interface that intersects a point vortex since the velocity singularity at the
vortex center causes inflnite distortion. Experimentally, it is known that the
centers of the large-scale structures contain pure high speed fluid for pre-
mixing-transition flow and that there exists a decided asymmetry in the spiral
roll-up. Figure 3.3 shows both features quite clearly: the centers of the stuc-
tures are pure black and the roll-up is not symmetric. Jimenez's point vortex
model is entirely symmetric with equal amounts of high-speed and low-speed

fluid within the spiral.

To alleviate these inconsistencies, it is presently proposed that a passive
interface which does not intersect the vartices, but rather, one that is displaced
intially toward the low speed side will better agree with Figure 3.3 . The infinite
distortion is, thus, obviously eliminated and it is likely that cores of pure high
speed fluid will result. The problem is with justification of such a model. 1t is

hard enough to accept concentration of all the vorticity in a given wavelength

into a single point on the interface but concentrating it to a point off the inter-

W
.
3

3
~
L

face seems even more removed from reality. A simple justification is that the

o
E'. vorticity of the “correct” sign comes from the high speed boundary layer. It
t seemns locigal, therefore, that the emerging vortices should exist above the
E‘; material line originating from the splitter plate.

'." Koochesfahani (1984) made an observation, based on linear stability theory
E . for the spatially growing layer, about the roll-up process. He found that the vor-
;‘ ) ticity contour that is spaced 20% of the boundary layer thickness toward the low

speed side resembles the experimentally observed interface quite closely. This
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confirms the supposition that the center of vorticity is above the material line
separating the two fluids. From a physical standpoint, linear stability theory
preserves more of the physics of the problem than our model but with added
compuational complexity. Linear stability theory is only valid for small distur-
bances to a basically parallel flow so it is not capable of predicting what happens
at downstream distances where substanial vorticity concentration has taken
place. For that regime, some simplifications are necessary. The present model
retains the basic elermnents suggested by Koochesfahani’s observation without

the computational difficulty.

Cantwell (1981) found a difference between vorticity maxima and particle
path spiral singularities. His study of transition in the axisymmetric jet showed
that an off-axis spiral point develops even though the vorticity is a maximum on

the axis of symmetry.

B.2. Statement of the Problem
The fluid motion is assumed two-dimensional, inviscid, and incompressible

and as such satisfles the Euler equations:

ou

v _
a:+ay-0 (B.1)
ou 0w 8w _ 1 3p
at Y3z Yay " oz (B.2)
v 0 __10p
at "V tVay T "o ay (B.3)

The z and y components of the vorticity vector are identically zero and the z

component, w, is given by
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= _u
©= 37 o (B.4)

When the vorticity is concentrated in isolated singularities the complex potential
can be used to obtain solutions to the system (B.1) (B.2) (B.3) in the usual way.
Given the velocity fleld, the interface location is found by seolving an initial value
problem. Denote the coordinates of a point on the interface by (¢(¢).n(¢)). This

point moves with the fluid and is therefore also a fluid particle whose motion is

given by
- 1
;f- =u(¢nt) (B.5)
20 =u(tmst). (B.6)

Initial conditions for (B.5) (B.8) are

€(tg) =& M(to) =Mo . (B.7)

Two different types of interface patterns can be generated from solutions of
the system (B.5) (B.8) (B.7). The two will be referred to as temporal and spatial
interfaces. The temporal interface is the locus of solution points for all possible
values of {g . when o and 7ng are fixed. Physically, this represents the distortion
of an interface which at t = £, is a straight line ¥y = ny. The spatial interface, on
the other hand, is the locus of solution points for all values of ¢; , when ¢y and g
are fixed. As such, it is the streakline originating from the point
(2. v) = (k0. M)
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The goal in the present approach is to take simple, known solutions to the
i Euler equations which contain vorticity and integrate equations {B.5) and (B.8)

to determine the interface distortion.

B.3. Analytical Solution for Stuart’s Velocity Field

E Introduce the streamfunction, ¥, such that
::‘ u(z'y't) ay ' ‘U(:f.‘.y. ) oz (BB)
The Euler equations can then be written as
!
L dw 3y dw _ By dw .

ot "oy 9z 9z oy O (B.9)

2 2
Y, =0, (B.10)

Stuart (1987) found a solution to (B.9) and (B.10) which can be used to model

the coherent structures of the turbulent shear layer. His exact solution is

-U,t
Yzyt)=Uy + Agh’ In | cosh %— + Acos -z—hL- (B.11)

AU is the velocity difference across the layer and A is proportional to the vortex
spacing. The vortices move with speed U/, in the positive z direction. The non-
dimensional parameter, A, is a vorticity concentration parameter. 4 =0
corregponds to a parallel flow with hyperbolic tangent velocity profile and 4 =1
3 corresponds to the flow due to an inflnite row of potential vortices. For further

properties of the solution (B.11), the reader is referred to Stuart’s paper.

.......
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Using (B.11) in (B.8) the velocity fleld is found

sinh[y-]
AU h
u{zyt)=0, + 5 o) (B.12)
cosh[%— +Acos[L-h°—-J
z-U,t
AU A sin T—
v(iz,y.t) = 5 eyl (B.13)
¥ el
cosh[h]+Acos[ h ]

Inserting this velocity field into the particle path equations of the prewni. _. sec-

tion yields the following problem for the interface solution:

sinh ['31-]
%: U, + AzU P (B.14)
cosh [1 + A cos[ ]
h ’
d AU Asm[e—huct]
EEL= > . (B.15)
cosh [Z— +A cos[T°—
£(to) = &o. n(to) =m0 . (B.18)

Introduce non-dimensional variables in the following way:
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g= i .y=£—.t=——-t (B.17a)
a _$o=Uto . _m 5 _ AU
Zo hc Yo = 7~ fo = z—h'to- (B.17b)
Equations (B.14)},(B.15), and (B.18) then become
dz _ sinhy (
df coshy + AcosZ (B.18)
ay - Asin% (B.1g
df coshy + AcosZ (B.29)
Z(to) = Zo. §(to) = To . (B 20)
Dividing equation (B.19) by (B.18) yields
dj _ AsinZ (B2
dZ = sinhy (B21)
which implies
sinhyd%y — AsinZdZ =0 . (B.22)
Integration of (B.22) gives
1
|
|
|
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coshy + A cosZ = constant . ~ (B.23)

Initial conditions, (B.20), determine the constant of integration. Introduce ¥

such that

e? = coshy + AcosZ = cosh{jp + AcosZ, . (B.24)

This simply shows that the interface point moves on the streamline ¥ deter-
mined by initial conditions. The function 'E is independent of time. From (B.24)

and (B.18B) it is seen that

Q 'a
)
"

]
+
o
]
P
<)

(B.25)

Since sinh#j = Veosh?y — 1, Equation (B.24) can be used to write (B.25) as

2z _ [(1 -Ae“;cosi)z-e‘ﬁ]% (B.28)
dt '
or .
af = dz - (B.27)
[(1 ~AeVcos2)? - e“";] '
Integrating (B.27) produces
y dz
t=Fg= B.28
° isﬁ-acosﬂz-w (B.26)

where
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a=Ae” b=eV. (B.29)

a and b are constants. The solution is found by determining Z() from (B.28)

and then %(Z) trom (B.24).

Physically, it is known that there is a critical value of the non-dimensional
streamfunction, J corresponding to the boundary of the so called ‘‘cat's eye’.

This value is easily found,

¥=1n(1+4). (B.30)

Outside the cat’'s eye boundary e¥> 1+4 and the quantity inside the square
root in (B.28) is positive for all real values of z. Inside the cat's eye e? < 1+ 4
and the denominator of the integrand in (B.28) possesses zeros for certain real
z. A change in integration variable will put (B.28) into a form where the above

behavior is more apparent. Let

(:tang—, T =2 arctan ¢. (B.31)

With this substitution

After some manipulation (B.23) becomes

1=
+&
3
—_—l
\/(1+a+b)(1+u-b -?/' Y ) (&2 - B (B.32)
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where - a
{=tan % & = tan ?o (B.33a)
1 b i b-1 i
- [l~a+d|® _|la+db-—-1|2
-[1+a+b] ' ﬁ-[a-b«i-i] (B.33b)
Inside the cat’'s eye
1-A<ef< 1+4 (B.34)
which implies
l1-a<d< 1l+a. (B.35)
Hence a and 8 are positive real numbers. Outside the cat's eye
e > 1+4 (B.386)
which implies
b<l-a. (B.37)

Once again a is positive real but now g is positive and purely imaginary.

The integral in (B.32) is in a form that allows the solution to be expressed

easily in terms of Jacobian elliptic functions. The fundamental relation defining

these functions is the following:
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v dt
A e e (B:38)

y. considered as a function of f and k, is expressed as.
y =sn(f k). (B.39)
Two other functions are defined in terms of sn ,
en(f k) = Vi-y?

dn(f k) = V1 —k%y*? .

Reciprocals of these three functions are denoted ag follows:

nS(f k) = gy me(f ) = ey nd(f k) = s

Byrd and Friedman (1971) give a complete development of the Jacobian elliptic
functions and of their properties. The similarity between (B.38) and the integral
in (B.32) establishes the connection between the desired solution and Jacobian

elliptic functions.
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B.4. Exact Solution Inside the Cat’s Eye Boundary
Since the streamlines inside the cat’s eye are closed orbits we expect 2 to be

a periodic function of 7 in (B.28). The period of one revolution around the vor-

tex center can be shown to be

e 8K
T (1+a+d)(1+a -d)(a*+8 (B.40)

where .
TR ER (B41)

and K(s) is the complete elliptic integral of the first kind.

Since f and , are known, determination of the number of complete revolu-

tions, which have occured, is possible. Let this quantity be denoted by N.

N = INT [— : (B.42)

The symbol /NT(z) was borrowed from Fortran. It simply means to truncate z

after the decimal point. For example
INT(2.123) =2,
the result being a simple integer.

The tunction #(f) is bounded above and below in a predictable way. Define a

quantity z ° such that

= 3
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cosz’ = 1;'b . (B.43)
Then
<2 <2 -z°. (B.44)

With the above information, the solution needs to be separated into four
different cases corresponding to initial locations in one of four quadrants about

the vortex center. The four cases are as follows:

1) 46< 0, z°< To< 7 (B.45a)
2) §g> 0, 2°< Fp< 7 (B.45b)
8) o> 0. "< F< 2 -z* (B.45¢)
4) Yg< 0, "< F< 2 —2°. (B.454)

For each case, it will turn out, flve sub-cases are needed, so twenty separate for-
mulas represent the complete solution. More development will be given for Case

1 in (B.45a). The other cases follow in a similar manner.

Consider Case 1. Define the time ¢ ° as

-~

t*= fg(6)d¢ (B.48)
where "
gl€) =[(1 —acos¢)? -b%] ?. (B.47)

Given the number of periods, N from (B.42), we can define five separate possibil-

ities. They are
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@) 0< (F-£,)-NT< ¢t*
b) < (FE=F) —NT< ¢°+ %r
1

c) t°+ -i—T< (F-%5) =NT < t.+?T

d) t'+-é-T< (F-F) -NT< t*+ %—7’

a) t°+ %r< (F-%,) -NT< T.

Take Case 1a for example. Equation (B.28) implies

%
t-fo-NT= fg(e)de
$
with restrictions

0< (f-%)-NT<t’, §<0, 2°<2< %.

Equation (B.49) implies

% H
T-To-NT=[g()d¢~ [g()de.

Using (B.48)

Sy
F-fo-NT=t"- [g(e)de.

Using (B.47). (B.31), (B.33), and (B.43) the above can be written as

A ala e e A" 2 PO U

" (B.4Ba)

(B.48b)
(B.48c)
(B.484)

(B.48e)

(B.49)

(B.50)

A _a
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where
c=(1+a+d)(l1+a -b).

Manipulation aimed at obtaining a form similar to equation (B.38) will eventually

produce
r -y~ r o ~ -~
;—tanlé—z(t) =ncl-é-\/-o'(a“7_?—+ Y(¢*~T + 85+ NT) , 7—&21?? (B.52)

which deflnes the solution #() in terms of the Jacobian elliptic function
nc (f .k) where f and k are the complicated expressions in square brackets
above. The twenty formulas mentioned earlier, of which (B.52) is one, are col-

lected together in section B.8.

B.5. Exact Solution Outside the Cat’s Eye Boundary

A fluid particle that starts outside the cat’'s eye boundary will remain cutside
and simply move over, or under, the vortex centers depending on whether the
particle starts above, or belo,w the boundary. Equation (B.28) may be written

then, for the outside flow, as

3
abave: ?-?°=fg($)d£, 2> 2, §> 0 (B.53a)

%
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8,
below: T ~To= fg(8)d¢. £< . §< 0 (B.53b)
]

where g (¢) is given in equation (B.47).

The characteristic time for the outside flow is

2w
T= { FIGLY (B.54)

which is analogous to the period, 7, for the inside flow. Physically, it is the time
it takes a particle to travel from a location directly above one stagnation point
to a location directly above the next stagnation point. The methods used previ-

ously allow T to be found.

r= _4 K(r)
af{i1+a +b)(1+a -b)

(B.55)

where

re o7 (B.58a)

a

= 1_"“_"'".% =|i-ab : B.56b)
1+a +d 14+a-b (B.

Following a strategy similar to that used for the inside problem, the number of

vortex centers traversed can be defilned as




e e AP S (A, St " Mt i S R AR C A D

;._‘- -98 -

N2

I-f

T M = INT ['__1- °} . (B.57)
>
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Now defilne new coordinates with the effect of non-zero M subtracted out.

Denote these by a prime.

t'=f-tg-Mr,. 0< < T (B.58a)
Za=Z-Zg—-2mM,0<Z3< 2, ¥>0 (B.58b)
B, =F-2-2nM,0< <27, §< O (B.58c)

The subscripts, @ and b, refer to above and below the boundary; @ for ¥ > 0
and b for ¥ < 0. It is useful to deflne an origin Zgy. Above the boundary, Zgg is
taken to be the Z coordinate of the flrst stagnation point to the left of £,. Below,

it is the first stagnation point to the right.

wr| Ze Zo> 0
2m + To >
‘g) 0. Eoo =2ﬂ'M0, MQ = 3 (B59a.)
0 a
-1+1NT{E; . ZTg< Q
To|
i i 1+INT[2"] , Zg> 0
Y<0 Zyg=2nMyg. Mg = 2 (B.59b)
INT[#- L %<0

R RE A
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then

g) 0, 0 <€ Zg = Zyg < 2

g( 0. 0« £°°-§°< 2

(B.80a)

(B.80b)

Consider ¥ > 0; ¥ < 0 will be very similar. Equation (B.53) can be written, using

(B.58) and (B.59), as

_ 8y + 5, S, +8y-3g9
t'= gleyae = [ g(e)ds
) $o-%00
_ EirEr-Ey -5
= [ gt - [ gleyde
0 0

The inequalities in (B.58) and (B.60) imply

0« 5&4‘50"500( an

0< 50‘300( _m .

(B.81)

(B.82a)

(B.82b)

Define a time, 7o . as the time for a particle to travel from Zy to Z;. Then

#g-529
T0 = { gle)de.

Putting 7o into the elliptic function form, using (B.31). produces

(B.83)

M)

2_.& '




where

into (B.81) yields
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.. =
:‘ 0

avV(i+a+b)(1+a-b) '

2F(64.7)

ﬁ To=7T
-
P
9
L

1) 0< F'+1p <

¥

2) Lre Temoc T,

L' AN A e Y e e e et al

aV(l+a+b)(I1+a-b) '

tan g, = -71-tan

depending upon the value of £’ + To. They are

o % "20_]

S ta

0C< Zg~—Zgg<

ﬂ<50—500< am

0« E¢,+EO—EOO< T
< 2-’1‘20—500( 2m

3) r< F+mg < g-‘r . 21 < B+ Eg—Zg < 3

. om
LN WY

(B.84a)

(B.84b)

(B.65a)

(B.85b)

and F(p.k) is the incomplete elliptic integral of the first kind. Putting (B.85)

(B.88)

Just as was the case in the inside problem, separate cases need to be studied,

(B.B7a)
(B.87b)

(B.87¢)
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4) %ﬂ Trato< 27, B < £.+8y-5g0 < 47 (B.87d)

Consider Case 1. Straightforward manipulation of (B.86) gives

4
- - 2F(p's.T)
470 = aV{T+a+8)(1+a-b) (B.68)
where P
tang'y = l. tan [M] (B_Bg)
Y 2
Using properties of elliptic functions, (B.88) and (B.89) imply
(2, + %0~ Zq0 | i | +
atZo—Zoo | _ c(t") 1 _|s
cot l > == [1-::2(?')] : (B.70)
where I
c(f)=cn l g—V(1+a.+b)(l+a.—b)(?'+1'°) : r] (B.71)

Equation (B.70) defines Z; and hence Z as a function of ' and hence of . Z(f)
is the desired solution. The other three cases follow in similar fashion as does

the solution below the cat's eye boundary.
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B.8. Complete Solution
.“ For the record, the complete solution to the problem (B.18).(B :9) (B.20) is
given below. Zy, g ty. and 7 are given and Z and § are desired. The formulas

tor Z(f) will be given realizing that those for §() are obtained from equation

:l (B.24).

Inside Solution:

( Case 1" z°< Eg< 7, §p< O

1@a)0< F=F4=NT < t*, 2°< 2<%, §<O0

4 —tan

16)t° < T~Eg-NT < t° + 4L=T. z’<Z<m, y>0

2 [ VT
Lian |E| = ne —&L(?—?o-m-t’), s
b B 2 K
!
r
1)t + i—T< fF-t,=-NT< t*+ %—T, m<z<2n-z°, ¥y> 0

. = [ T2

=-tan Sm-Z =nc -—5—+g—(t'+-1—T-?+t°+NT), s

8 2 © 2
{.
|
Y
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3
4

ld)t‘+%T< T-Fq=NT<t'+ =T, n<c2<2r-z", <0

" r
-;—tan [3"2;’ =ne | @a-&-m-r-;—n e

le) t’ + %T< t=To-NT< T, Z<Z<m, y<0
a | a4
%-t.an [% =nc I—aEL(t’+T-?+?°+NT). s

Case 2: °< Zg< m, §g> O

2a)0< t-£,-NT < i—T-t’. Tp< E<mP> 0
a [
%—tan [g—] =nc l iaT!TE!—(?-?o-NT+t’). s

2b) i—T—t’< t-T,-NT < -é—T—t’. T<2<2r-2°, 9> 0

- r
L ten [242] - e l_L*/a TR (L7t -T st eNT), s

2
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20) ST —t*< T-To-NT < r-t. mczcan-z", 9<0

2 I Va2
Ltan 228 < | MR g gpnrert- Ly

2d) %T-—t‘< F-fo-NT< T-t' z°<Z<m, §<0

& ok o SO R M

f -~ -_—
= ne l ——L”";+(T—t‘—t +T,+NT) . s

Y
|
or
»
=}

2e) T -t "< t=t4-NT<T,z°<2< %, §>0

[

s -;-tan g— =nc l—ax—"'i—(?—?o—NT—T+t'). s

Case 3: # < £ < 2n —2°, §y> 0

8
y
: 3a)0 < E-fg-NT<t’, Zg<2<2r-2°, §>0
[
_g) |
%-tan ﬁ"_z_i] =nc [ @(t'—?#ﬂﬁNT). s
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3b)t° < T-T,-NT < t°+ i—T. m<E<2m-z°, §<0

2 f ViR
;—tan [_—_.2"2-21 =nc l a;' (t-?o-NT—t') ]

3c)t° + i—r< T-To-NT < t*+ -;—T. z°<F<m, §<0

- [
Lian (Bl cpe | YEHBE (po Lo 2.2
ﬂtan[z] ncl ~ (¢ +2T t+,+NT), s

3d)t'+%7’< T-To-NT < £t°+ %T. z°<E<m, 950

a [ .~
(g [ .

3e)t’+ :-:-T< T-fTg-NT< T, n< 2<%, §>0

[

;—tan ﬂz-—?- = nc [ _a‘—+L(t‘+T-?+?g+NT), s

Case 4: m< Zg< 2 —2°, §,< O
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4a) 0 < T -Fg=NT < i—T—t'. "< E< 2, <O

L tan

—‘ r -
ﬁ g’—r-z—z]':ml@(?"to-NT"‘t‘),s

4b) i—r—t’< t-%To-NT < é—T—t’. z°<Z<m, F<O

[ Vo2
=nc l“—:ﬁ—(é—r—t‘—?+?o+m, s

Ltan [1

8 2

4c) %—T—t'< t-f,-NT < %T—-t’. z°<Z<nm, >0

a [
Lian (&l 2 pne | YEHB 7 7 _ o_L
g tan |2 = nc l - (t —tg—NT+t 2T), s

4d) %T—t’< F-Fo~NT< T—t', m<Z<2m—-2z',§>0

vV ! ! Py -~ -~
L:—L(T—t -t +tg+NT), s

Lian

g

=nc

48) T -t < T-Fq-NT< T, <2< 2r-2", <0
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Above Outside Solution: # > 0. ¥> 0

Case 1:0< F'+75 < é—r 0< Z+Zg=Zgo< 7

oot 5.'4'20"500 1_
2 7
Case 2: %—-r< T'+70< T, W< Bl+Zg—Zg9 < 27

cot 2+ 2o ~%g —To ] = -‘I;F[cn[ %(1’—?'-1'0) . T ]]

2

Case 3:7< t'+75 < %‘r 27 < Bl +Zy—2gg < 3

[

i""so -500 -2

cot D) ;'
. 3 -~ -~y -~ o~
Case 4: Evr< t'+7g < 27, 3N € T+ Ty —Tgg < 47

f
F{cnl %(?'-0-1'0), r ”

= %-F[cnl L (F+ro-7), 7
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41 + By =2, -2 [
1 cot 002 °]= :;‘-F[cn[%(%r—f -To) r”

Below Outside Solution: ¥ < 0, ¥< 0

Casea 1:0< F'+75 < ;—‘r 0C< Zy+Zog—Zpg < 7

K

Ty +Zog ~Zo
cot [—?_go__—

F{cn[ & (?’+f°). r

|

=L
4

i
:
E

Case 2: +r < B'+19< T, T< By +Zpg~Zg < 21

2
27 + Zg — Ty —Too 1 a -,
cot 3 3 Fi{en - (r=t'-Tg). T
Case 3: 7< t'+7 < -g—-'r 21 < Zy +Zgg -2y < 37
5‘4"500-20-2” 1 ra -~
cot =~F cnl—(t'+1'o-'r), r
2 ¥ 4

bt T 3

Case 4: %-‘T( T'+79< 27, 3m < B)+Bgg—F, < 4m

——r——vw v v v, vvy vy T Y XX ¥ TT
e
2
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AT+ Ty -2y —F
cot e 1 oo]

|
3 =717F[cn[%-(21'-?'—1'°),r

Y SO S

Auxiliary Formulas:

=2 -

a=Ae?, b=e?, y=In(coshf + 4 cos )

¥ =In(1+4) , on cat's eye boundary
e¥> 1+A |, outside boundary
[ e?< 1+A , inside boundary

1 1 1
= |l=a+b|¥ o _ja+b-1}F _ _li-a-b|F
= 2= |1T+a+b ""[1-04-1 '7'[1+a-b
°
E :
;: s=ﬂ+7-'r-;L
a‘+g a

-L
8

c=2((1+a+8)(1+a -b)]

_ 4r = 2%
T= —_‘/E!"'_ﬁ! K(s), - K(r)

t-%,
N=INT[—T-]. M=INT[

t -1,
T

T =t-ty-MT
Bg=2-Zg—-2nM tory> 0

Zy=Zg-Z-2nHM foryy< 0

cosz’= —I%b—. 290 =21 My
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z
INT[—O-J 129> 0,9> 0

2
50 i o~
-1+INT[§] 1 Zg< 0, Yyg> 0

% | . -
1+[NT[§] i Tg> 0,9y9< 0

Zq o -
!NT[E;] 1 Zo< 0,Y< 0

Fl=[%)
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B.7. Numerical Solution and Interface Patterns

B.7.1. Numerical Methods. Equations (B.5)(B.8) and (B.7) can be solved
directly numerically by Euler integration. The differential equations are approx-
imated as difference equations for a small time step, At. Starting at ¢y, the solu-
tion (£.) is found at tg+Af. Using this solution as initial conditions the solu-
tion at £o +2A¢ is found and so on until the final time t is reached. This method
will work, with no additional complication, for any velocity field even if exact
integration is not possible. The disadvantage is that it is computationally very

slow since high accuracy requires a small time step. A PDP 11/44 computer

took as long as 5 hours to compute a typical interface of interest.

The exact solution of the previous section can be evaluated numerically as an
alternative to Euler Integration. The Jacobian elliptic functions are approxi-
mated by taking the first several terms of their Fourier series expansions. is The
interface pattern computed in 5 hours by Euler integration takes only 8 minutes

to compute when the exact solution is evaluated.

B.7.2. Results of Numerical Evaluation of Erxact Solution. Results for the
spatial interface problem introduced earlier will be presented first. Recall that
the interface in this case is the same as the streakline that originates from a
point (ro yo). From the discussion in Section B.1, our interest is in the case
when zg is the z coordinate of the splitter plate tip and y¢ is small and negative.
For demonstration purposes, suppose U; = 10 cmm /sec, Uz = 5 cn/sec, and take
the forced wavelength to be m cm. The interface pattern for A = 1.0 and
Yo = =0.55 cm is shown in Figure B.1a. The similarity between this computed
interface and the observed interface for turbulent pre-mixing transition shear
layers is quite remarkable; c.f., Figure 3.3. As expected, an origin below the
splitter plate produces cores of pure high speed fluid. A cusp forms which rolls

around the vortex center as it moves downstream. Inside the cat’'s eye
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boundary, the interface forms a double spiral, the two spiral arms terminating
at the cusp. A second cusp forms along the low speed edge. This cusp occurs in
the outside flow, using the terminology of the previous sections. The formation
of these cusps can be understood by looking at the temporal roll-up for a
moment. The streamlines, which are fixed for all time, are shown in Figure B.2
along with the initial interface. Point (a) moves around on its streamline while
points (b) and (¢) move on their streamline. The period for {(a) to orbit the vor-
tex center is less than that for points (b) and (¢) because (a) is closer to the
vortex. Point (a), being at the mid-point between vortex centers, will orbit in a
shorter time than any other point, between (d) and (e), on the interface and
thus will be the cusp point. In the outside flow, point (f) takes less time to move
from one vortex to another than any other between (d) and (g). Point (f) is,
therefore, the cusp point in the outside flow. These cusps are observed in the

real flow, Figure 3.3.

Figure B.1 demonstrates the effect of vorticity concentration on the interface
pattern. Figure B.la is the solution for A=1.0, the potential flow solution, while
Figures B.1b, B.1c, B.1d are the solutions for smaller values of 4 and hence, for
less concentrated vortices. The release point is fixed for all four flgures at
Yo = —0.55 cm. Recall that the streamline pattern does not change significantly
with A. The width of the cat's eye at its widest point decreases with decreasing

A. If we take

¥(z . y) =Iln(coshy + Acosz) (B.72)

then the width of the cat's eye divided by the spacing of the vortices is

~ «,
-
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2o Lin[(e24) + VTFEAT =§ (B.73)

This function is given in the table below for various values of 4. J

TABLE B.1

A 1.0 0.8 0.8 0.4 0.2 0.0

1 gl”"- 0.6807 0.5123 0.4537 0.3797 0.2480 0.0

° The width decreases monotonically with decreasing A. This effect is vigible in
Figure B.1 by comparing the width of the last vortex on the right in Figures B.1a,
B.1b, and B.1c. In Figure B.1d the cat's eyes are so narrow that the yo = -0.55
5 release point places the interface entirely in the outside flow. The conclusion
trom Figure B.1 is that 4 does not effect the qualitative properties of the inter-
face. As long as part of the interface falls inside the cat's eye boundary, the

cusp and spiral arms will form. Qualitatively speaking then, there is no

size as far as the shape of the interface is concerned.

o
s
E
«
P difference between a concentrated point vortex and a vortex with non-zero core
3
[ The effect of release point for flxed vorticity concentration is demonstrated
L]
9 in Figure B.3. When the release point is near the z-axis, as in Figure B.3a, most
3
¢ of the interface is inside the cat’s eye so the spiral arms are longer and wrap
around the vortex center more times than would be the case for y, further from
o the z-axis. Nolice also how the cusp in the outside flow changes with y,. In Fig-
ure B.la it is much sharper than in B.1d. The time for the cusp to form, how-

ever, is not a strong function of release point.

B.7.3. Mumerical Solution by Euwler Mntegration. The lack of qualitative
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changes in the interface pattern with vorticity concentration in the foregoing
discussion suggests that it is sufficient to limit further consideration to point
vortices where the analysis is simplified by complex variable theory. In fact, this
simplification allows an extension of the model to include effects of a vortex
pairing on the interface. Jimenez (1980) presented an exact solution for orbit-
ing rows of point vortices which will be used to model the pairing process. This

solution is briefly reviewed in what follows.

The complex potential for two infinite rows of point vortices with spacing { is

LY 4 TR W2 n Ty f
w(z) = = In sin L(z z,) + o In sin L(z Z5). {B.74)

z, and 2z, label the position of the two rows while ¥; and v, are the strengths of
the vortices in row 1 and row 2 respectively. 2z, and z, are functions of time
determined by the condition that each vortex moves with the induced velocity of

all others. This implies

dz, _ i72

—r~ = 37 oot 1;—(21—22) (B.75)
di: iz—‘—cot Tz,-2,) . (B.76)
dt 21 { ! A
It we [et
(=2, -2, (B.77)
Y=+ 72 (B.78)

Then




N

VN . e ——— N 2 A e s Pl A A Paliat oo E e g e e

-115-
2 _ iy £
at - 2ot T (B.79)

Separating (B.79) into real and imaginary parts will produce a system of equa-

tions very similar to equations (B.18)(B.19)(B.20) of Section B.3. Without loss in

generality, choose l = T and ¥y = %

5 and let ¢ = ¢ + in. Assuming vy, = 7, . Some

manipulation leads to the following system of equations.

dz sinh (y -n) sinh (¥ +7)

dar _ L L
dt = 2 cosh (y =7n) - cos (z —¢) * 2 cosh (y +7n) —cos (z +¢) (B.80)
ay _ _1 sin (z —¢) _1 sin (z + ¢) (B.81)
dt 2 cosh(y —=n) —cos(z—-¢) 2 cosh (y +7) —cos (z +¢) '
a¢ _ 1 sinh 27
dt 2 cosh 2n - cos 2¢ (B.82)
dn __ 1 __ sin2¢
dt 2 cosh 2n —cos 2¢ (B.83)
with initial conditions
y(0) = zo, y(0) =yoq £(0) =5 m(0)=0. (B.84)

Physically the system (B.80) through (B.84) represents the following problem.

LR
2

= 0, select pairs and displace them from their equilibrium location toward each

Start with an inflnite row of point vortices with spacing 7 and strength —. Att

other by an amount £;. The vortices will move since they are no longer at their

' Sadied t""‘T
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equilibrium location. The developing interface is described by the system (B.80)
through (B.B4) with (£m) reflecting the vortex locations and (z.y) the interface

location. The system of equations is easily solved by Euler integration.

As a check, {p = 0 should produce the same interface pattern as was seen ear-
lier since no displacement initially will leave the vortices at their equilibrium
positions for all time. Figure B.4 shows the developing temporal interface for
such a case. The cusp and spiral arm behavior discussed earlier is apparent and

the result checks with the £5 = 0 limit.

Jimenez (1980) describes the interface we speak of as being like a rubber
band that is attached to fluid particles at time equals zero and forced to stretch
or compress as dictated by the prescribed fluid motion. Even for steady flow the
rubber band shape will continuously change with time. It is interesting to see
how much the rubber band gets stretched and where it gets stretched the most.
The impression one gets from Figure B.4 is that a great deal of stretching takes
place. Strain is an important consideration if this model is taken a step further
by treating the interface as a strained diffusion flame. Such an extension would
allow computation of the product of a chemical reaction between two species
separated by the interface. This problem is not solved in this work. However,
the strain on the interface is computationally simple to find. Consider two
points on the interface; points (a) and (b) in Figure B.2 for example. Let the dis-
tance between (a) and (b) be L at £ = 0. At some later time, (a) and (b) will be
some other distance apart, say L;. The strain is the new length divided by the
original length. Now consider many points all with the same L. At a later time
the spacing between the initially equidistant points is proportional to the local
strain. This strain is displayed in Figure B.5 for the interface roll-up in Figure

B.4.
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The data in Figure B.5 are computed starting with 300 equally spacéd points
extending over four wavelengths. This means the points are 0.04189 apart at
t = 0. Each plot in Figure B.5 shows the spacing between points as.a function of
point number for a certain elapse time. Figure B.5a, at the upper left, is the
first time step shown and time increases to the right and downward. Note the
frequent rescaling of the plots. Figure B.5a shows that at first there are almost
equal amounts of stretching and compressing. The minimum in the strain
corresponds to the cusp point inside the cat's eye. As time transpires (i.e., mov-
ing from plot to plot in Figure B.5) you see that a net stretching begins to occur.
Two local maxima occur corresponding to locations on the two spiral arms on
opposite sides of the inside cusp point. The apparent ‘‘turbulence” in these
plots is most likely due to the numerics since nothing in the flow could cause
this kind of randomness. The true strain would probably look like a smoothed

out version of the curves in Figure B.5.

At some deflnite time, a change in the strain takes place. In Figure B.5g
(third row, first column) a peak is observed at the extreme left. Subsequent
frames show this peak increases rapidly until, for the last plot, it dominates all
others. This strain maximum occurs at the point where the interface intersects
the cat's eye boundary; point (d) in Figure B.2. Consider two points very near
point (d); one inside the cat's eye and one outside. Point (d) moves toward the
stagnation point with time and eventually ends up at the stagnation point in
infinite time. The point inside the boundary also moves toward the stagnation
point at first but will make a sharp turn to the right at some time. Similarly,
the point outside the boundary will move toward the stagnation point at first
turning sharply to the left at some later time. Thus, the two points which were
initially very close together remain close to each other for a while and then
separate by large distances at a time associated with point (d) approaching the

stagnation point. The outside point will leap-frog from vortex-to-vortex to iche
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left while the inside point will orbit around the vortex above point (a) in Figure
B.Z. For infinite time, the points will become infinitely far apart. Jimenez (1980)
refers to this process as a production of interface at the stagnation points. In
his solutions, yg = 0, so the stretching occurs instantly. In our model, y4 < 0

and it takes a finite amount of time for the strong stretching to occur.

B.7.4. Hesults for the Case of Pairing Rows. Consider the system (B.80)
through (B.84) when the vortices are displaced initially from their equilibrium
position; i.e., {5 # 0. The developing temporal interface is shown in Figure B.8.
Once again, the interface pattern looks very much like the pictures of the actual
flow; cf., pairing vortices at the downstream end of Figure 3.3. The cusp
behavior, outlined earlier for £, = 0, is similar for the pairing vortices. A cusp
forms in the inside flow for both vortices invoived in the pairing as do the spiral
arm pairs. The outside flow, below the vortices, develops cusps also with the
right vortex possessing a more pronounced one than the left vortex Something
new shows up in the last two frames of Figure B.68. A cusp forms on the other
side of the vortex which started on the left. For the steady row, {5 = 0, this can
never occur. In that probiem, the portion of the initially straight interface that
is outside the cat's eye is either entirely above or entirely below. In other words,
the'outsn‘le problem was separable into two problems; an above problem and a
below problem. Once a particle started above, it remained above and likewise
for the below problem. When the flow is unsteady, such as for & # 0, this is not
the case. Figure B.6 is an example of the eflect of unsteady flow. The interface,
outside the instantaneous cat's eye at ¢t =0, is entirely below. The new cusp.
seen in the last two frames, suggests that part of the interface has crossed the

boundary to become part of the above flow since that is the only place such a

cusp could form.
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B.B8. Summary

The roll-up of a passive interface by rows of point vortices has been studied
for the case when the interface initially starts below the vortex centers. Many
teatures of the real, forced, pre-mixing transition shear layer, shown in Figure

3.3, appear in the solutions. Moreover, these features exist only for the off-axis

- interface and not for the symmetric case of Jimenez (1980).

.- Cores of pure high speed fluid were found as were the cusp and spiral arm
;] features evident in Figure 3.3. In addition, cusp development in the braids also
occured which matched well with the picture. Study of the strain on the inter-
face showed that it took a finite length of time for the large strain associated
with the stagnation point flow to exert an influence on the interface. In

Jimenez's solution, the influence was instantaneous because the interface inter-

———p—p

o Bl
'i e

sected the stagnation point at ¢ = 0. Study of orbiting rows of point vortices
showed interface patterns similar te those observed for pairing vortices in the
real shear layer. Specifically, a cusp forms on the high-speed-side like those

visible in Figure 3.3.
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(@) U, = 2.0 cm/sec , U, = 1.0 cm/sec , Rey = 31

(b) U, = 14.8 cm/sec . U, = 8.6 cm/sec , Re, = B6

() U, = 56.1 cm/sec , Up = 21.9 cm/sec , Rey = 170

Figure 3.1 : Three Flow Regimes of the Unforced Shear Layer
(a) Laminar . (b) Transitional . (c) Turbulent
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Figure 3.4 : Controlled
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Amalgamation by Subharmonic Excitation
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Figure 3.5 : Effects of F = 0.5 Hz forcing on a Laminar Shear Layer
U,=2 cm/sec , Up,=1 cm/sec , (a) Simultaneous Plan and
Side Views (b) Obligue View looking down and upstream

— vy

[ua gt s aun S

PSP R W - . e EORI Y R At At A

Lo




Y T

> Y-

Meaae— |

Y S —
- s - L

(a) unforced flow

(b) F = 3.8 Hz

(c}) F =» 2.8 HZ

(d) F = 2.4 Hz

137

Figure 3.8 : Effects of Forcing on Shear Layer Structure for

Uy = 14.8 cm/sec and Uy = 5.8 cm/sec (part 1)
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(e) F = 2.2 Hz

(f) F = 1.4 Hz

(@) F = 1.1 Hz

U6,

AU
r =051 6, =0.68mm F,= 4.7 Hz, — = 76, —~—= 570 cmt

Figure 3.8 : Effects of Forcing on Shear Layer Structure for
U, = 11.8 cm/sec and U, = 5.9 cm/sec (part 2)
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(a) unforced flow

4 oA I CU———————————————SewS S
E (b) F-iEHZ.F/FO-O.19.1-4cm ~———

(c) F=8Hz, F/Fgm=0.43, x = 6 cm -~

Dt e e et 4

M
(d) F-4H2.F/F°-0.06,x-12 cm - . o

Figure 3.144 : Reacting L.I.F. Photographs of a Forced Turbulent
Shear layer . U, = 70 cv./3ec , U, = 27 cm/sec




k.o

- ivywv-wvr s
.

MG S A A Rk Be i e e S T D M P A Bl A S
- o . R L Y - - - .. N R R R A

146

{a) unforced flow

(b) F =12 Hz , F/Fy=0.48, x = 4 cm

8 Hz . F/Fo=0.43, 6 cm

(@ F =4Hz,. F/Fqm0.08, A = 12 cm

Figure 3.12 : Time Exposures of the Phenolphthalein Reaction
Jy = 70 cm/sec , U, = 27 cm/sec
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Figure 3.43 Digitized Boundar
Time Exposures i

y of the Mixed Region from
N Figure 3.42
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Measurement -- High Reynolds Number .
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:, Figure 3.48 : Product Thickness and Growth Rate from Absorption

L. Measurement -- High Reynolds Number , F = 3.8 Hz

J

b

o

£ .1'-"- - Y ) ;. r - - - ‘.__: J -; .“J W P Y S o re ‘.-A'A_.‘ .‘J




- .

151

.10
.08
d .08
ax (8e,)

.04

.02

x (cm)

1.0 -

T, e, T
SE ]

v

-
o

8p, (cm)

e

v
A} i §

T —

R P S R T N Y N

K i it i oA

U; =70 cm/sec
r=0.38
F=8.0Hz
0,=0.27 mm
Fo=62.7 Hz

u,e
11 487
Y

é‘%’- = 4340 cm™

]
€ =143.4cm

eF

Figure 3.17 : Product Thickness and Growth Rate from Absorption
e Measurement -- High Reynolds Number , F = 8.0 Hz
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10 15 20
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U,=17.4cm/sec
r=0.48
F =unforced
0, =0.54 mm
Fo=8.3Hz
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Product Thickness and Growth Rate from Absorption
Measurement -- Low Reynolds Number , Unforced
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.10 ‘
.08
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0 r=0.48
o] - 10 15 20 25
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Figure 3.20 : Product Thickness and Growth Rste from Absorption
Measurement -—— Low Reynolds Number , F = 2.8 Hz
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‘ Figure 3.21 : Product Thickness and Growth Rate from Absorption
Measurement -- Low Reynolds Number , F = 4.5 Hz
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Figure 3.23 : Product Thickness Fluctuastion from Absorption Product
Measurement -— High Reynolds Number , Unforced
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Figure 3.24 : Product Thickness Fluctuation from Absorption Product
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Figure 3.33 : Time Series of Product Concentration in the Unforced Flow
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Figure 3.35 : Time Traces of Product Concentration in a Transitional Layer
Data shown are for the y location of maximum mean product.
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{a) unforced flow

(d) F = 1.5 Hz Xypo = 0.8

Figure 3.38 :

Flow Images from L.I.F. Measurements in a Transitional _ayer
Uy = 17.4 cm/sec , U, = B.3 cm/sec
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(a) Side and Plan Views of Phenolphthalein Reaction

(b) Reacting L.I.F. Cross-section. Scale different than (a).

Figure 4.1 : Unforced Wake at a Reynolds Number of 460
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(a) Plan and Side Views

(b) Oblique View

gure 4.3 : Effects of Forcirg on 3 Lamipar wWake (F = 0.5 Hz , Ug = 2 CM Si
(a) Simultaneous Plan and Side Yiews (o) Obliigue vView
-- looking down and slightly upstream




v v o p

E:
;
:

R U TS

185

(a) Unforced flow

() F=1,7 Hz

(d F =8.5Hz

(e) F

9.8 Hz

Figure 4.4 : Effects of Forcing on a Transitional Wake
Ue.™= 12 cim/sec, Re,_- 160
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.60 v

b/a

Theoretical Karman
spacing ratio=0.284

Fo =5 Hz

F/Fq

A P i - g

Figure 4.5 : Effect of Forcing on Spacing Ratio in the Initial Karman
b Vortex Street of a Transitional Wake ( U, = 412 cm/sec )
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(s) unforced (b) F = 14.5 Hz

(c) F =7.85 Hz (d) F = 5.3 Hz

C
8
[l

24 cm/sec

D
il

0.8 mm

Re, = 220

Figure 4.7 : Effects of Forcing on a Re, = 220 Wake.
Side and Plan Views of Reaction Product.
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(a) unforced flow

Figure 4.8 :

Effects of Forcing on a Reg = 200 Wake.
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(@) F = 42.5 Hz

Cages ¥

(b) F=9.14 Hz

Figure 4.9 . Photographs of a Forced "Turbulent” Wake (Re,_ = 320) .
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(c) F= 7.4 Hz

.

Lt

TR

—

(d) F=5.8 Hz

r Figure 4.9 : (continued) Forced "Turbulent® Wake (Re, = 320).
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Splitter
Plate
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Figure 4.42 : "Tipping” of Spanwise Vorticity by the No-Slip Condition
. on the Test Section Side-Walls.
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X

— Splitter

Plate Tip

S

Image
Vortices

g
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©

Figure 4.13 : Model for Motion of the Streamwise Vortices in the Highly Mixed
Wake , The view point is from downstream looking upstream.

(a) nesr splitter plate

(b) intermediate stage

(c) steady equilibrium configuration
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o Phenolphthalein
Concentration :

el — RRAEVASMEE “ EPCARE
o
o

% 1.0 x 1078 molar
] -0.2 F
L
=
1 -~ -0.4
o
a
~N
a
t_ S
c
k~ — -0.6 F

g O Base pH = 12.4 o

, -0.8 |} 0© Base pH = 11.7 o

[ ¢ Base pNH = 10.7

- on
-

-

N 1.0 \ \ \ [

. 0.0 0.6 1.2 1.8 2.4

3 L (cm)

Figure A.2 : Effect of Base Concentration on the
¢ Absorption Coefficient, o
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Figure B.1 : Effect of Vorticity Concentration on a Spatial Interface
U, =7.5cm/sec , AU=5cm/sec, h = 0.5 cm
@) A=1.0 (b) A=0.7 (c) A=0.5 (d) A= 0.25
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Figure B.3 : Effect of Point of Origin on o Spatial Interface , A = 0.9 |
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Figure B.5 : Development of Strain in the Temporal Interfsce Solution
shown in Figure B.4 . Abscissa for each plot is Point Label
Number (Scale is 0 to 300 for each plot). Ordinate for each
plot is Dimensionless Spacing between initially equidistant
points. Ordinats scales range from O to the following maxima
for each plot : (a) 0.2 () 0.2 () 0.5 (d) 0.5 (e) 0.5
() 0.5 (g 1.0 (h) 4.0 (3) 1.0 (3) 2.0 K 2.0 (1) 3.0
Dimensionless elapse times are as indicated.
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