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THERMOVISCOELASTIC PROPERTIES OF
UNIDIRECTIONAL FIBER COMPOSITES

1. INTRODUCTION

The present work is concerned with evaluation of the time

dependent thermo-mechanical response of a unidirectional fiber
composite consisting of transversely isotropic elastic fibers

and of linear viscoelastic isotropic matrix. The problem is of

fundamental importance for fiber composite structures which undergo

severe temperature variation. A pertinent example is a graphite/

polymer space structure revolving around the earth and thus, sub-

jected to a temperature cycle whose minimum is 1160K in the earths

shadow and maximum 589 0K in the sunlight. Under such conditions
there are significant variations and time dependences of stiff-
nesses, compliances and thermal expansions and contractions. The

knowledge of such properties for the undirectional material is

essential for analysis of laminates made of unidirectionally re-

inforced laminae.
Most of the methods of analysis of viscoelastic properties

of composite materials have been concerned with the isothermal

case. The fundamental method in this case has been developed
in [1, 2]. It was shown that elastic and viscoelastic properties
are related by the usual correspondence principle of quasi-static

linear viscoelasticity. Thus, an expression for an elastic pro-

perty can be converted into the Laplace transform of the cor-
responding viscoelastic property which can then be obtained by

Laplace transform inversion. Detailed analyses have been given
in [3].

4 When the temperature varies with time, thermoviscoelasticity
of the matrix must be taken into account. This case has been

discussed in (4]. A common idealization of linear thermovisco-

elastic behavior is the so-called thermorheologically simple ma-

terial. This implies that viscoelastic responses at any temper-

-ela,••. :• te&.' . .. "
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ature can be obtained from a master response at reference tempera-
ture by a constant horizontal shift along the log t axis. In such
a case the previously mentioned correspondence principle can still
be retained in modified form with respect to a reduced time vari-
able.

However, the thermorheologically simple material is of limited
usefulness. The main problem with this idealization is that it
implies that initial (elastic) response of the material is not tem-
perature dependent while the developing time dependent response

does depend on temperature. Such an idealization does not appear
justified for polymers with large temperature variations. Conse-
quently, the present study is concerned with the case of thermo-
rheologically complex viscoelastic matrix.

In the following, methods of analysis will be developed to
evaluate the thermoviscoelastic response of such a unidirectional
composite on the basis of the composite cylinder assemblage model

(CCA) and the hexagonal array model. Experience with elastic
analyses shows that the predictions of both models are numerically
extremely close and agree well with experiments. The preference
of one model over the other is a matter of computational convenience.
The CCA analysis is very simple and in the present case requires
only the solution of simple one dimensional integral equations. The
hexagonal array model requires finite element analysis and is thus

used only in those cases where the CCA model is not applicable.

2. THERMOVISCOELASTIC STRESS STRAIN RELATIONS OF MATRIX

The stress strain relations of a linear viscoelastic material
at constant temperature may be written in the general form

+ t aeajjt W C We tC~(0) + i:Cik(t. b dtf

(2.1)

(t) -o s~(0) +1 S (-' LCt
Sij ijkt Ok° 0 + SijkZltt') t
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where Cijkt(t) is the relaxation moduli tensor and Sijkt(t) is the
creep compliance tensor.

For isotropic materials it may be usually assumed that the
viscoelastic effect under isotropic stress and strain is much
smaller than the viscoelastic effect in shear. Separating stress
and strain into isotropic parts a and e and into deviatoric parts

sij and eij according to the scheme

aij - 6ij + sij =1/3 akk

(2.2)
C ij - e6ij + eij - 1/3 ckk

the stress-strain relations become

a(t) - 3Ke(t)

(ijCt) - 2G(t) eij (0) + 2 f Gdtt-t )'

(2.3)

eij (t) = l/2g(t)si(o) + 1/21 g(t-t'
0

where K is the elastic bulk modulus, G(t) is the shear relaxation

modulus and g(t) is the shear creep compliance. It is understood

here and from now on that the hereditary integrations commence at

0 .n view of future developments it is noted that a relaxation

modulus or creep compliance can be written in the form

G(t) - G(o) H(t) + AG(t)

g(t) -g(o) H(t) + Ag(t) (2.4)

"g(o) - I/G(o)

-- 3--



where H(t) is the Heaviside unit step function. lnserting (2.4)
into (2.3) we have

ai(t) - 2G(o)eij(t) + 2 AG(t-to) dr'

(2.5)
t as

eiJl(t) = i/2g(o) sil(t) + 1/2 Ag(t-t') -Jdt
at,

The material properties in (2.2-5) are temperature dependent
and the question which arises is how to represent such stress-
strain relations when the temperature varies with time. This ques-
tion has been the subject of much work and discussion and refer-
ences may be found in Christensen [4] and Schapery [5].

The most well known and common representation is the so called
thermorheologically simple material (TSM). By this it is implied
that if a relaxation shear modulus, say, at constant reference tem-
perature *o is expressed in terms of logt, thus

G(tjo) - F(logt) (2.6)
0

then at some other temperature

G(t, F) F[logt + P(•)] (2.7)

which implies that the function F is shifted by an amount i along
the logt axis. With the definitions

log h(O) 00

(2.8)
•(t) = Jh[•(u)] du

the TSM equivalent of (2.3) and (2.5) become

-4-
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rot ')e
sij(t) - 2G(t)eij(o) + 2 G( - ) dtat'

(2.9)

2Gl(o)lei(4) + 2 AG( dt
at'

ft a s
ei. (t) - 1/2g(&)si.(o)0 + 1/2 -g ( - )t' dt'

(2.10)

- l/ 2 g(o)sij(V) + 1/2 Ag(& - ,) at'

According to (2.6-7) the relaxation modulus (or creep compli-
ance) at any temperature can be found by shifting the corresponding
property at reference temperature horizontally along the logt axis

by amount h(o) which is also often denoted by i/aT(ý). The main
problem with the TSM representation is that it does not admit tem-
perature dependence of the initial (elastic) modulus or compliance.

Indeed it follows from (2.9) and (2.10) that

sij(o) - 2G(o)eij(o) (2.11)

Thus the TSM concept is not suitable for materials whose elastic
and viscoelastic properties change with temperature by similar
orders of magnitude. This is in particular the case for polymers
at significant temperature variations. More complicated linear
viscoelastic materials are called thermorheologically complex ma-

terials (TCM). The most natural generalization of the TSM repre-

sentation is to add a vertical shift in log property-log t space,
thus conserving the concept of a master viscoelastic time response
which is shifted to obtain properties. For discussion see Schapery

(5]. More general creep ty'pe stress-strain relations have been

--5--



discussed by Harper and Weitsman [6] and these will here be adapted

to the case of shear. Let the shear creep function at some refer-

ence temperature *o be written as

g(t, 00 -g 0 H (t) + Ag(t) (2.12)

Then the strain-stress relation for arbitrary temperature varia-
tion 0(t) is written as

(2.13)

2eij(t) - goVo(w)sij(o) + VI(o) /f ( - ') [V 2(')sij(t'_dt'_

. where 0 0 •(t) and 0' - 0(t') and the strain-stress relations in-

Svolves the four functions V0 , VI, V2 and h, the last through (2.8).

The creep function at some temperature 0 0 00 is found from

(2.13) by introducing sij(t) - sij(o)H(t) and assuming constant

temperature. This yields

g(t, 0) - v(O)[go H(t) t Ag(t)] a v(f)g(•o, t) (2.15)

All of the stress-strain relations discussed are representa-

tiozns of varying complexity. The various shift functions are intro-

duced for reasons of convenient mathematical approximation and not

on the basis of physical arguments. Relations of type (2.13) can

be written in analogous fashion for relaxation stress-strain rela-

tions but the connections between relaxation and creep shift func-

tions do not appear to be known.

In the sequel (2.13) and it's inverse will be written symbol-

ically

e eij (t) - 1/2X s ij(t)

(2.16)

sij(t) - 2r e ij(t)

-6-
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where I and r are creep and relaxation operators, respectively.
The stress-strain relation connecting isotropic part of stress

with isotropic part of strain is assumed elastic and therefore has
the form

o(o, t) a 3K[1(t)1Jf(t) - a[j(t)] 0(t)l

where a is secant thermal expansion coefficient in reference to a
free thermal strain-temperature diagram.

3. THERMOVISCOELASTIC STRESS STRAIN RELATIONS OF UNIDIRECTIONAL
FIBER COMPOSITE

3.1 General

It is assumed that the Unidirectional Fiber Composite (UFC)
consists of thermoviscoelastic matrix, characterized by the stress-
strain relations described above, and of transversely isotropic
elastic fibers, thus carbon or graphite fibers. This includes as
a special case glass fibers which are isotropic. The fibers are
randomly placed and therefore the UFC is transversely isotropic
in the macroscopic sense. It follows, just as for elasticity,
that the UFC has five independent relaxation moduli and five inde-
pendent creep compliances. The former characterize the response

4 of the UFC to average strains which are constant in time and the
latter - the response to average stresses constant in time. For
details see [3]. However, unlike the isothermal linear visco-
elastic case (2.1), it is not possible in the case of present
complex matrix stress-strain relations to write composite stress-
strain relations of the composite in terms of relaxation moduli

and creep compliances. Nor is it possible to use the powerful
Laplace Transform Method to achieve such a goal. The specific
form of such stress-strain relations must in the present case be
uncovered by analysis of a model of the UFC.

-7-



For reasons of simplicity and practical significance we shall
confine the analysis to those properties which enter into the
stress-strain behavior of a lamina in a laminate under conditions
of plane stress. In the thermoelastic case such stress-strain
relations are

¶12

= sh 011 + St2 a22 + ato (a)

£22 S1 2 
0* + S * 22 + a* (b)

4 £2 o1 /2C* 6  (c) (3.1.1)

i,•:all C*I• + C*a -E, + D10 (d)
A011 11 11 + 12 £22+()

where x is in fiber direction, x 2 is transverse to fibers, figure
I, overbar denotes average, * denotes effective property and 0 de-
notes temperature rise. The compliances and stiffnesses are re-
lated to UFC properties in following fashion

S = l/E! Sh -*/,*

66 Ls 1 /E c6 L G

-c - E,/(1 -V,2 E,/E.) a ,E*

'b- v* E*/(l - v*2  E*/) v*E

2C 2  E*/ (I - \ E*/E*) M E (3.1.2)

--8--
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1 L 2 T

D*~ (n*a* + 2kL *
1 L

D -(2,*a* + 2k~i*a*2 L T

where

E* - Longitudinal Young's modulus
L

E* - Transverse Young's modulus
T

v* - Longitudinal Poisson's ratio
L

G* -Longitudinal shear modulus

n*,Z*- Certain effective moduli of UFC, see [3]

k*- Transverse bulk modulus of UFC, [3]

L Longitudinal thermal expansion coefficient of UFC

a - Transverse thermal expansion coefficient of UFC
T

Suppose the matrix is thermoviscoelastic and that the UFC

specimen is subjected to constant average stress and temperature

at time t=O, thus these quantities are given by •ijH(t) and 411(t)

where H(t) is the Heaviside step function; then the strains are

given by (3.1.la-c) with S* replaced by time and temperature de-

pendent creep compliances and a* replaced by time and temperature

dependent expansion coefficients. Similarly, for application of

Heaviside strains eiiH(t) and temperature OH(t) the time dependent

average stresses are now given in terms of time and temperature

-9-
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dependent relaxation moduli C. and D. The general case of aver-

age strain, stress or temperature inputs which are arbitrary func-
tions of time is much more complex. For constant temperature the

stress-strain relations of the composite will be of form (2.1) but
for variable temperature this is no longer the case I only analy-
sis of a model can uncover the nature of the stress-s.rain rela-

tions.
In the following we shall use two kinds of geometrical models

to represent the UFC. The first one is the composite cylinder
assemblage which was first introduced in [8] and which has been

discussed in greater detail in [3]. This model consists of a col-
lection of contiguous composite cylinders in each of which the
central cylindrical core represents a fiber which is surrounded by
a concentric matrix shell. All space is filled out by composite
cylinders whose diameters diminish from finite to infinitesimal
sizes, figure 2. In all composite cylinders fiber to matrix shell

* radius ratios are the same.
The second model is a periodic hexagonal array of identical

circular cylinders, figure 3. Both models are macroscopically
transversely isotropic. Elastic analyses have shown that the ef-
fective elastic moduli of these two models are extremely close and
are in good agreement with experimental results. The first model
is employed in those cases when it admits an analytical solution.

The second model is used in the remaining cases and must be analyzed
numerically.

3.2 Axisymmetric Deformation

We consider a homogeneous cylindrical specimen of some trans-
versely isotropic material, without as yet specifying its mechanical
nature, which is subjected to the displacement field

-10-
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u C (t) x
1

U2 - CT(t)X2 (3.2.1)

3 - 3

Then the only nonvanishing strains are

ell M eL e22 £33 ' CT (3.2.2)

and it follows from the transverse isotropy that the only surviving
stresses are

ali = aL(t) a22 = 3 OT(t) (3.2.3)

. which are related to the strains by the stress-strain law of the
material. Next we consider any circular cylinder of radius b with
generators in x direction within the specimen, extending through-

out its length. The center of this cylinder is located at point

x2O, x0 o figure 4. Introducing local coordinates xP,x13 located at
the center and defined by

o ,2 +x2 x 3  3 +X3 (3.2.4)

The displacements (3.2.1) become

u 1 MCLxl

o £TX0 ,X (3.2.5)u2 "T x2 +T X2

0U3  CT x3 + CT xf

-11-
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The first parts of the right sides of (3.2.5 b,c) are rigid body
motions of the cylinder while the second parts when converted to
cylindrical coordinates become

Ur - r u 8  0 (3.2.6)r T

The stresses (3.2.3) converted to cylindrical coordinates are

11 -zz L rr T (3.2.7)

and the rest of cylindrical stress components vanish. Thus the
cylinder is in a state of axisymmetric deformation and stress.

Next we consider a composite cylinder of inner radius a and
outer radius b. The inner core is transversely isotropic fiber

material and the concentric shell is isotropic (or transversely
isotropic) matrix material. The cylinder surface is subjected
to the displacements (3.2.5-6). Thus

U (S) CLXl, Ur (s) - C u (s) - 0 (3.2.8)

Solving this axisymmetric problem subject to the proper continuity

conditions at interface r=a we obtain on r-b a stress arr (b)-T
and on the end sections an average stress Ul- aL. Thus, to an

external observer the composite cylinder appears as some homogen-

eous transversely isotropic cylinder whose effective stress strain

law is defined by the relations between £L' £T and OL, OT* This

stress-strain law is now assigned to the homogeneous cylindrical

specimen which was our starting point. It then follows that the
surface displacements and tractions on the homogeneous circular

cylinder of radius b are the same as those on the composite cyli-

der of radius b and therefore replacement of the first cylinder

by the second does not perturb the state of stress and strain in

the homogeneous specimen.

-12-



Obviously, the effective stress-strain law of the composite

cylinder depends geometrically only on the ratio a/b. Therefore,
any part of the volume oi the cylindrical specimen can be replaced

by non-overlapping composite cylinders with same a/b without per-
turbing the homogeneous state of stress and strain in the remain-
ing volume. This remaining volume is made indefinitely small by
adding more and more composite cylinders of diminishing sizes.
Thus in the limit there is obtained a composite cylinder assem-

blage, figure 2, whose symmetric stress-strain relation is that
of a single composite cylinder. Accordingly, we now consider a

composite cylinder composed of transversely isotropic fiber and

thermoviscoelastic transversely isotropic matrix which is in an
&xisymmetric state. The nonzero displacements and stresses are
ur, uz arr 06e and zz . They may be functions of r, z-xI and

t and will be assigned superscript 1 for matrix and superscript

2 for fiber. The cylinder is subjected to some uniform tempera-
ture variation 0(t) and to mechanical boundary conditions

u (r,L,t) - CL(t)L u (ro,t) - 0

(3.2.9)

a rr(b,z,t) - 0T(t)

The interface conditions at r-a are

U•. (a,z,t) = u (a,z,t)

a (a,z,t) ) a(2)apzt) (3.2.10),r>rr " rr
1r (a,z,t) u (aozt)

S (2)

-13-
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Guided by the elastic axisymmetric generalized plane strain solu-
tion the displacements will be assumed to have the form

uM = Al(t)r + Bl(t)/r

u(2) - A2 (t)r (3.2.11)

u (1) " U(2) " CL (t)z

where Al, B1 and A2 are unknown functions of time. The associated

strains are

() A1 B /r2 C(2) mArr " rr2

e-- A + B /r 2 A (3.2.12)

(1) C(2)

.4

Using the transversely isotropic thermoelastic stress-strain re-
lations of the fiber material the fiber stresses are given by

(2) n(2) + le(2) + £ e(2) + DL$zz "nzz rr Oe L

Cy (2) 2) + (k + GT)e(2) + (k-GT)c() + DT (3.2.13)

(2 =• (2) + €-.) (2) +(2+G ) € )+
e - + (k-GT )e + (k+GT )e +D

where

DL -(na L + 2 kaT) DT - -(£aL + 2ka T) (3.2.14)

-14-



k is transverse bulk modulus, GT is transverse shear modulus, n

and k are additional moduli and aL, aT are longitudinal and trans-
verse expansion coefficients, respectively. All of these quant-

ities may be temperature dependent. Separating the cylindrical

stresses and strains according to the scheme (2.2) and using (2.17)

we have

rrl) W 1 (2A + Co - 3ayO + 2re(A /3 - B /r2-oE/3)

C(I) , XK(2A +Eo-3ao) + 2r(AI/3+Bl/r 2 -Co/3) (3.2.15)

Oo• M I( K1 (2A +Eo-3alo) + 2r(-2A,/3 + 2co/3)

Fiber and matrix stresses must satisfy the equilibrium

equation

dar 0 r-oee 0rr + rr (3.2.16)

This is obviously true for fiber stresses and is easily verified

for the stresses (3.2.15).
Introduction of the relevant results into (3.2.9-10) yields

equations for the unknowns A1, B1 and A2 . After some rearrangement
these may be put into the form

2K1 A1 (t) + 2(1/34v 2 ).A 1 (t)-2v2 LA2 (t) -

a T (t)+3K1 alo(t) - KlEL(t) + 2 / 3 rEL(t)

(3.2.17)

2KiA1 (t) + 8/3rA1 (t) - 2k 2 A2 (t) - 2rA2 (t) .

- (3KaI1+DT) (t) + (z 2 -Kl)CL(t)+2/3reL(t)

"k -15-



where

v2 (a/b)2 (3.2.18)

Another important case is uniform stressing on the terminal sec-
tions of the cylinder. Thus

Szz(r,o,t) = az (r,L,t) u aL(t) (3.2.19)

The solution form (3.2.11) remains valid but eL(t) is an addition-
al unknown. An additional equation is obtained by averaging the
stress ac from (3.2.13) and (3.2.15). The resulting equation is
after rearrangement

2v11K1A1 (t) - 4/3vlEA,(t) + 2Y 2 v2A2 (t)

j +(vl ++v2n 2 )CL(t) + 4/3vl!F'L(t) -

" aL(t) + (3vlKl 1c - V2 DL)(t) (3.2.20)

where

vl- -v 2  (3.2.21)

It should be noted that a in fibers and matrix are very different

and therefore satisfaction of end conditions in average fashion pro-
duces Saint Venknt type local perturbations near the terminal sec-.
tiona. Equations (3.2.17), (j.2.20) now determine the unknowns A1 ,
N2 and eLe In both cases B1 is related to A1 and A2 by

Al + B1/a- A2 (3.2.22)

-16-



which is a consequence of (3.2.10a) and (3.2.11)
The important case of free thermal expansion is obtained by

subjecting the composite cylinder without load to a temperature
step function rise A, relative to reference temperature *O" Then

aL(t) - aT(t) M 0 (3.2.23)

Solving equations (3.2.18), (3.2.20) for this case the effective
longitudinal secant expansion coefficient a* is defined by e

L L
while the transverse expansion coefficient is defined by the radial
surface displacement per unit radius. Thus

(3.2.24)

StAO) = [A (t) + B (t)/b 2 ] /Ac

Another important case defined by the present formulation is

axial stressing aL(t) or axial straining £L(t) in isothermal con-
ditions or together with temperature changes.

3.3 Longitudinal Shear

We consider a unidirectionally reinforced specimen which is
subjected to the boundary conditions

Ul(S) (t) u2 (S) - I(t)x 1  u3 (S) - 0 (3.3.1)

which represents a pure shear displacement. Than the only surviving
average strain is Z1 2 (t) - 0(t) and if the specimen is transversely
isotropic the only surviving average stress is (t).

Dually, the specimen is subjected to the shearing boundary
conditions

-17-



T T1 (S) - T (t)n 2  T2 (S) - T(t)n1  T3 (S) - 0 (3.3.2)

in which case the only surviving average stress is a 1 2 (t) - T(t)

and the only surviving average strain is 71 2 (t). It has been
shown [3) that for an elastic fiber composite such a problem is
solved by antiplane strain formulation. The same formulation is
valid in the present case. The displacements in fiber region R2

and in matrix region R1 have the form

u1 (x) - - 3x2  (a)

u 2 (x) - Ox2  (b) (3.3.3)

u3 (_) W 0 (c)

where

OW ()(2,x3,t) in R 1

iR (3.3.4)
0 (2) (x 2,X3,t) in R 2

Then the only surviving strains and stresses are

12c:2 " 2c 1 3  3 (a)

-: r12 or0•1 ) 0 * ,1 in R1  (b) (3.3.5)
2 2 1331S113

G Of (2) a G 0(2) in R2  (c)
P12 2L 2 '13 L 13

where r is defined by (2.17), GL is the fiber longitudinal shear
modulus and a comma denotes partial differentiation. The only
i. -18-



surviving equilibrium equation is

012`2 + a13'3 - 0 (3.3.6)

Introducing (3.3.5 bc) into (3.3.6) we have

V2 0 (l) . 0 in R1

(3.3.7)
V2 0 (2) - 0 in R2

It follows from (3.3.3) and (3.3.1) that 9 must satisfy the bound-

ary condition

0 (C) -20x 2  (3.3.8)

where C is the contour of the specimen section. At fiber/matrix
interface C1 2 the displacements and tractions must be continuous.
Since the only surviving stresses are a12 and a13 the only sur-

viving traction on C1 2 is

T I o 1 2 n 2 + a 1 3n 3  (3.3.9)

Introducing (3.3.5 bc) into (3.3.9) and equating fiber T1 to

matrix T1 we have

._,_) - G ---(2 ) on C1 2  (3.3.10)
an L n

and displacement continuity in terms of (3.3.3) is satisfied if

(i) 0 (2) on C12 (3.3.11)
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If the boundary conditions are (3.3.2), and assuming that the

entire boundary C is in the matrix, then (3.3.8) is replaced by

r _ r(t) n2 (3.3.12)

This completes the mathematical formulation for analysis of any
unidirectional specimen under longitudinal shear.

Our purpose is to analyze the composite cylinder assemblage
model in terms of the above given formulation. A det Aled analy-
sis of elastic longitudinal shear has been given in E3] and the
present situation is very similar. A composite cylinder subjected
to (3.3.1) will have on its boundary tractions of form (3.3.2) and
vice versa. Thus a composite cylinder behaves to an external ob-
server as a homogeneous circular cylinder with some viscoelastic
stress-strain relation. If this stress strain relation is assigned
to a homogeneous cylindrical specimen under longitudinal shear,
circular cylindrical portions of the specimen can be replaced by

0 . composite cylinders without perturbing the states of stress and
strain in the remainder. Thus just as in the axisymmetric case,
the stress-strain law of the assemblage becomes that of one com-
posite cylinder.

Consequently, we consider one composite cylinder subjected
to (3.3.1). The boundary and interface conditions (3.3.8),
(3.3.10-11) for the two harmonic functions 0 (1) (relt) 0 (2)(r,e,t)
then become

O(l) (b,e,t) - 2$(t)b as 0

0(1) (aet) - o(2) (a,e,t) (3.3.13)

€(1) • (2)

ar -L r~

The functions 0 which solve this problem are

-20-
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0 (r,e,t) - MA1 (t) + Bi(t)/r] COse

(3.3.14)
S(2)(r,8,t) A2 (t) cose

where A1 , A2 and B2 are defined through (3.3.13) by the equations

A (t) -2(t) - vA /V (a)•~ %() .[ 2( 2 ()/1
B (t) a2[At - 20(t)J/vl (b) (3.3.15)

('+v 2 ) L A2 (t) + vlGLA2 (t) - 4 LM(t) (c)

The last equation is an integral equation which can be sim-
plified by operating on both sides with . which is the inverse of

. r, see (2.16). Remembering that B(t)-! 1 2 (t) we have

(l+v 2 ) A2 (t) + VlGL)A 2 (t) A(t) (3.3.16)

The boundary traction Tl(b,8,t) is the left side of (3.3.13c)
evaluated at r-b. It follows from (3.3.14) that it is given by

TI(bet) - r (A1 - Bl/b 2 ) cOse (3.3.17)

If the cylinder were homogeneous the boundary tractions would
have the form (3.3.2). Since cosB-n 2 on rub it is seen that (3.3.17)

is of that form (T2 vanishes on r-b since n -0 but does exist on
the end sections where n2-0, n1 -l). Therefore the average stress
response • 1 2 (t) is identified by the multiplier of cose in (3.3.18).
Using (3.3.16) we have after rearrangement

(t) 2 v2A (3.3.18)
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where A2 is defined by (3.3.16). If desired, A2 can be eliminated
by use of (3.3.16) and then (3.3.18) assumes the operational form

((l+v2+VlG LX)6 2 (t)-2 [v,_r+ (l+v 2 )GL] 12 (t) (3.3.19)

Equation (3.3.19) defines the stress-strain relation of the fiber

composite as modelled by the CCA. The relaxation modulus is

given from (3.3.19) as M12 (t) when (1 2 1t) - H(t) and dually the
creep compliance is given as - 1 2 (t) when 31 2 (t)-H(t). When the
matrix is elastic r-G 1 and x-1/G1 and the known results for the
elastic longitudinal effective shear modulus [8,3] are obtained.

3.4 Transverse Shear and Transverse Uniaxial Stress

Let the composite be subjected to the average stress state

0 0 0

0 a 02(t) o (3.4.1)
ViiJ ~22 (~

0 0 0

The loading which produces (3.4.1) is shown in figure 5. The
"stress (3.4.1) may be split in the following fashion

0 0 000 0

oo o o
"I - o 22 (t) o + 0 o 2I2 (t) o (3.4.2)

0o O ko22(t o o -ho2 (t)

The first part is an isotropic transverse stress which has been
considered in section 3.2 while the second is a pure transverse

-22-

.... ,..



shear of magnitude T(t)=oCM2 (t) oriented at 450 with respect to
the material axes xl, x2 , x3 . Since the material is linear the
response to transverse uniaxial strain is obtained by superposi-
tion of the isotropic stress response and the transverse shear
response.

Unfortunately, however, the CCA model cannot be directly
analyzed for transverse shear. This is a well known difficulty
which arises also in the elastic context. Therefore, a different
model is needed for this case. A suitable model is hexagonal ar-
ray of identical circular fibers. Such a model has the required
transverse material isotropy. It is well known that in all cases
where CCA analyses can be performed hexagonal array and CCA re-
sults are numerically extremely close (see i.e. [3]), therefore

no practical inconsistency is expected by reverting more to the
hexagonal array model.

Analysis of the periodic hexagonal array is performed using
finite element analysis techniques. The finite element developed
for this analysis is a four noded linear rectangle of the seren-

j dipity type. The inclusion of a linear displacement function in

the xI direction (independent of x 2 ,x 3 ) yields the capability
for generalized plane strain analysis. Viscoelastic material
properties are incorporated into a pre-stress as described in
the following section.

The periodic hexagonal array (figure 3) is such that only a
single repeating element need be modelled. The various symmetrices
of the model and loading allow for the prescription of the neces-
sary boundary conditions on the repeating element. The appropriate
boundary conditions for the repeating element can be determined
by noting that each of the hexagonal cylinders are identical and
that under any loading state, the array of hexagons must be con-
tiguous.

In the case of transvers• (x2 ) extiiiaional or compressional
loading, the loading and model symmetrices require that sides 1,
3, and 4 of the repeating element (figure 3) remain straight,
and parallel to their original positions. Contiguity between
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hexagonal cylinders prescribes that along side 2, the line con-
necting the fiber centers define a point of cylic symmetry. There-
fore, points on side 2 above the intersection of the fiber center
line deflect exactly opposite of equidistant points on the other
sides. Stress boundary conditions are incorporated in the usual
fashion with the stresses being integrated to determine applied
nodal forces.

4. NUMERICAL PROCEDURES AND IMPLEMENTATION

The analytical models developed in the previous section in-
volve the integral operator representation of the matrix shear re-
sponse. The presence of the integral operator necessitates that
the models be evaluated incrementally in time. The procedure
utilized for both the CCA and hexagonal array models involves
specifying the time history of applied load and temperature and

determining the response of the composite at times 0,, At, 2At, 3At,

etc. where At is an increment of time. At each time step, the
hereditary integrals are evaluated numerically using simple trap-
ezoidal integration.

4.1 Composite Cylinder Assemblage

Literature review has yielded matrix thermoviscoelastic ma-
terial properties in the form of compliance data only. The equa-

tions 3.2.17, 18 and 3.2.20 have therefore been converted from
relaxation to compliance form utilizing the relation r 1x-x. This
operation yields the equations

2yklAl(t)] + 2(1/3 + v 2 )Al(t)-2v2 A 2 (t)=

Xa (t)+3X[klal (t)]-X[klL (t)]+2/3EL(t) (4.1.1)

Fi -24-
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21 [k AM(t)] + 8/3AM(t) - 21 [k2 A2 (t)] - 2A2 (t) =

3 X((kl1al+DT)O(t)]+X[U(2 (t)-kl)eL (t)]+2 / 3 eL(t) (4.1.2)

2v1x [k 1A1 (t)]-4/3v1Ai(t)+2v2 X [ 2 A2 (t) ]+vlX[klcL (t)I+v 2 [n2 cL(t)]

+4/3vIeL(t)-X OL (t)+ 3 vlx[klalO(t)]'v 2 -[DL0(t)] (4.1.3)

where both the matrix bulk modulus kI and the fiber elastic con-
stants may be temperature dependent and therefore dependent upon

the time history of the applied temperature.
During the first time step evaluation, the hereditary integral

operator reduces to simply

•x(o)-g(o)x(o) (4.1.3)

Sand the problem reduces to an elastic analysis with the initial,

t-o, loadings and the initial matrix shear compliance, g(o). Sub-
sequent time steps are evaluated utilizing a trapezoidal numerical
integration scheme where the hereditary integral operator is eval-
uated as

XXMC 1+C2x (ti) (4.1.4)

The constants C1 and C2 are functions of the prior time history
of x(t) and *(t). This yields three linear simultaneous equa-
tions for A (ti), A (ti), and eL(ti). Thus the problem is easily

solved.

4.2 Finite Element Analysis

Implementation of the thermo-viscoelastic matrix constitu-
tive relations within the finite element analysis is accomplished

in the same manner as in the CCA model. The viscoelastic strair
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(or stress) is simply treated as a pre-stress in the analysis.
The form of the thermoviscoelastic constitutive relations

for the matrix were defined in equations 2.3 with the shear hered-
itary integral defined in equation 2.13. Utilizing the compliance
form, an elemental constitutive matrix is formulated

lei= [D] 1fs
.1 - -Io

where [D] is viscoelastic and the compliance matrix [D]"I is com-
prised of terms involving the inverse of the matrix bulk modulus

operating on the isotropic part of the stress tensor akk and the
shear compliance operator X operating on the deviatoric part of
the stress tensor sii. Evaluation of the compliance matrix at
any time step is therefore evaluated using the same simple trape-
zoidal integration scheme as in the CCA model yielding.

le (ti)I D -la()I+i (4.2.1)

S 4,

This form is equivalent to equation 4.1.4 and the constant matrix
[D iI and vector It are functions of the prior time history of
0(t) and lo(t)j . The constitutive relations 4.2.1 are then inverted

to yield

to(ti)I - [Di] lc(ti4 +•to

The development from this point on is the standard method for ob-

taining the elemental stiffness and load vector for finite element
analysis and will not be detailed.

5. PREDICTED COMPOSITE BEHAVIOR

The two analytical models developed in the previous sections

have been utilized to predict the response of a unidirectional
fiber composite with a thermo-viscoelastic matrix. The results
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of the analysis are presented in this section.

5.1 Material Properties and Finite Element Mesh

The fiber properties utilized are typical carbon fiber data
and are given in table 1. It has been assumed that these properties
are independent of temperature.

Matrix properties utilized in the analysis are given in table
1 and figures 6-9. These properties are derived from data obtained
from [63 utilizing some basic assumptions and modifications. The
data obtained from [61included a complete characterization of the

extensional properties of a 3502 matrix material system over the
temperature range 303OK-4230 K. The thermal expansion coefficient
was found to be constant over this temperature range. Since two
material constants are needed to define an isotropic material and
only extensional data were given$ Poisson's ratio at the reference
temperature was assumed to be 0 .3k thus defining the matrix initial,

reference temperature properties. The time dependent portion of
"the matrix shear compliance, Aq, is shown in figure 6 and was com-
puted directly from the data in [63 noting that all time depen-

dent extensional response is due to shear alone.
Determining the temperature dependence of the matrix para-

meters go0 h, V1 and V2 required modifications to the data from

[6]. The data were obtained in a form which could not be used be-
low the reference temperature, 3030K. Additionally, the two ver-
tical shift functions, V1 and V2 were not well balanced when ex-
* rapolated beyond the temperature range over which they were ob-
tained. These difficulties and the lack of a second matrix material
constant as described above were remedied by modifying the form of
the mathematical representation of all temperature dependent ma-
terial parameters which were obtained from (6]. After modifi-
cation, a single vertical shift function was obtained as the pro-

Sduct of the functions V1 and V2 and this function was used to re-
place V2 in equation 2.13 with V1 set to unity. Finally, it was
assumed that the matrix bulk modulus was independent to tempera-
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ture. These modifications yielded the data shown in figures 7-9.

While these data are no longer purely experimentally obtained,
they do provide a consistent set of properties for analysis.

In both the CCA and finite element analytical models, the
fiber volume fraction was set as 0.6. The finite element model of
the repeating element of the periodic hexagonal array is shown in

figure 10. The loadings for the finite element analytical model
consisted of transverse extension and temperature. Boundary con-

ditions for these analyses were discussed in section 3.4.

5.3 Axial Shear and Temperature Loading

The impetus for developing the analytical models described
earlier was to determine the response of a unidirectional composite

subjected to combined loading and cylic temperature. The temper-
ature cycle of interest has extremes of 1166K and 589 0 K. Before
performing the analysis corresponding to such a thermal cycle, iso-

thermal analysis at the two extremes and at the reference temper-
ature were performed,

The CCA model was utilized with a constant axial shear stress
of 1 HPa at temperatures of 1160K, 3030K, and 5890K. The resulting
axial shear strains are shown in figures 11 and 12. These data

demonstrate the acceleration of creep strain and softening of the

initial and time dependent portions of the composite response as
temperature is increased. The axial shear strain at 1160K appears
to be nearly constant. This phenomenon is a function of the her-

izontal shift, h, approaching 10-4 and the vertical shift, V2 ,

approaching 0.5 at this low temperature. The very small value of

"h" causes the creep rate to decrease so that in effect, the creep

strain after one hour is comparable to a reference temperature
creep strain after 10-4 hours. The vertical shift factor at 116 0K

has the effect of nearly halving the creep strain response that
would occur at 10 hours at room temperature. The combination

of these two shift functions cause the resulting creep strain to

appear constant in the figure.

1.4 -28-
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The thermal strains produced by step temperature changes
from the reference temperature to 1160K, 3040K and 5890K are shown
in figure 13. The strains have been normalized with respect to
the temperature change yielding secant thermal expansion coeffic-
ients at these three temperatures. These data demonstrate the
same horizontal and vertical shift effects as were seen in the
axial shear compliance. The strains at 3040K and 1160K are re-
drawn with an expanded scale in figure 14. The data again show
the very low temperature response to be nearly constant in time.

Having determined the composite response to step mechanical
and temperature loadings, an analysis was performed utilizing a
constant axial shear stress of 1 MPa in conjunction with the tem-
perature cycle shown in figure 15. The 24 hour period can be con-
sidered representative of the temperature cycle experienced by
satellite in geosynchronous orbit.

The axial shear strain produced by this loading/cyclic tem-
perature combination over 48 hours (2 periods) is shown in figure
16. The shear strain is seen to increase sharply during the init-
ial 8 hours while the temperature is increasing. As the temper-
ature drops, the strain decreases reflecting the increased matrix
initial shear modulus at lower temperatures. The difference in
shear strain at 24 and 0 hours is the accumulated creep strain
after one temperature cycle.

During the second temperature cycle, the response is similar
but the increase in creep strain is much smaller indicating that
at some future time, the composite response may settle into purely
periodic steady-state behavior.

The free thermal expansion strains produced by the cylic tem-
perature are shown in figures 17 and 18. The evidence of visco-
elastic behavior in these results is the non-zero strain at 24
and 48 hours where the temperature is at the reference temperature
and no temperature change is applied. The increment of visco-
elastic strain induced between 24 and 48 hours is seen to be much
smaller than between 0 and 24 hours. As with the axial shear
strain response, this would indicate that a steady state response
may occur after further cycling. -29-



The total effects of the thermoviscoelastic matrix material
on pure thermal expansion is considerably smaller than for the
mechanical, axial shear load. This is due to the more nearly hydro-
static matrix stress state induced by a temperature change alone.

5.4 Transverse Extension and Temperature Loading

The finite element analytical model was also used to predict

the composite response under combined mechanical and cyclic tem-
perature loading. The mechanical loading consisted of a 1 HPa
transverse extensional stress while the temperature cycle was as
shown in figure 15.

The composite strain response to this loading history is
shown in figure 19. The magnitude of the applied stress is small
and the overall composite response is dominated by free thermal
expansion. When the free thermal expansion strains are removed,
the effects of the thermoviscoelastic matrix on the composite re-
sponse are readily apparent as seen in figures 20, 21, and 22.
These figures persent the mechanical strain in loading direction,
(x2 ) in the direction perpendicular to the load (x3 ) and in the
axial direction (x1 ), respectively.

The composite response without thurmal expansion is seen
to reflect the same phenomena that were present under axial shear
and thermal cycling. The response during the second temperature
cycle is similar to that exhibited during the first cycle but
with a reduced total change in strain over the period of the cycle.

6. DISCUSSION AND RECOMMENDATIONS

The development of thermoviscoelastic analytical capabilities
for unidirectional fiber composites has provided a means for
realistic modelling of material behavior under cyclic loading and
temperature environments. These capabilities have been demon-
strated through the prediction of composite response under com-
bined Heavieside mechanical load and cyclic thermal load. The
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results have demonstrated the significance of temperature depen-

dence of the various material parameters in the matrix represen-
tation.

The predicted composite compliances under cyclic temperature

have indicated that significant differences in response occur during

the first and second temperature cycles while indicating that under
subsequent cycling, the material response may become steady-state.
This area will require further study to adequately define the ma-
terial response to cyclic temperature.

The difficulties encountered in acquiring matrix thermovisco-
elastic material properties and the sensitivity of the predicted
composite behavior have demonstrated the need for further study
of the proper form of the hereditary integral representation. This
area also includes the representation of the various temperature

dependent parameters within the hereditary integral.
The analytical models developed have proven the significance

of and need for the thermorheologically complex matrix represen-t.

tation. The much more realistic matrix representation utilized

here has provided a pioneering effort in the analysis of fiber

composites.
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Table 1. Material Properties

Fiber Properties

BA w 231 GPA

ET - 22.4 GPa

GA w 22.1 GPa

GT - 8.30 GPa

vA 0.30

~A-
S•A "1. 3 3 ýim/m° c

UT w 7.04 pm/m~c

VF a 0.60

Matrix properties at reference temperature (3030K)

k -3.58 GPa

g(o) - 0.606 (GPa)-

v =0.30

a 30.0 pm/m°K

kqa

I
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