
AD-RI49 271 ADA IN MISSION CRITICAL SYSTEM ACQUISITION: A GUIDEBOOK i
(U) MITRE CORP MCLEAN VAi MITRE C31 DIY S N MOHANTY

SEP 84 MTR-84&198i89 F19628-84-C-088i

UNCLSSIFIED F/G 9/2 Nmhhhhhhhhmhhhhhhhmhhhhhh

11-

1113,6 11 .

.8

Ijjjf.152 .

MICROCOPY RESOLUTION TEST CHART
NAPhONAL BUREAU OF STANDARDS lq,. A

Ada in Mission Critical System Acquisition:
A Guidebook

DTIC
JAN 2 198e

DISTIBIJTON STATEMENT A
4 APPra,.4 for public rleasel

Distribution Unlimited

84 12 20 018
3SN3dX~J 1N3V~iN 'i- -iAO v c)OgaOUd3)d -

* REPROOCCED AT GOVERNMENT EXPENSE

Ada in Mission Critical System Acquisition:
A Guidebook

Dr. Siba N. Mohanty

September 1984

MTR-84W00189

SPONSOR:
The Office of the Deputy Under Secretary of Defense (R&AT)

Ada Joint Program Office
CONTRACT NO.:
F19628-84-C-000I

This document was prepared for authorized ditribution.
It has no! heen approved for public release.

Av~~L..:. The MITRE Corporation S ; 8~

* AvV~ i~O MITRE C31 Division
* Dtst Speciil Washington C31 Operations

/ 1820 Dolley Madison BoulevardD
* ii.)'McLean, Virginia 22102

p~~~~~r...~~~~~~~7 ta .- 7- ' -.- - .- - '- - -- ..---

________RE0060&ibFAT GOVERNMiiENT EXPENSE_________

Department Approval:

MITRE Project Approval:

iprig

0.

|0.

1 - - -. * -*

INCLASSIFIED
SIECUSTv CL ASSI I 6 ION Or I. bAGIE 'rShe. boo au..ed

REPORT DOCUMENTATION PAGE READ INSTRUCTIONS -
REPORT DO PBEFORE COMPLETING FORM

REPORI huS6L 12oGVACCES No.A 3 *ECiPENv'S CATALo.G NUMBR

HTR-84W00189 PIP

.' TLE tone .bttt b I YPE OF REPORT 0 PERIOD COVERED

Ada in Mission Critical Systems
Acquisition: A Guidebook [EFRiGOG EOTNME

7? AiJTNOROJ S CONTRACT ON GRANT NUMUERfo)

Dr. Siba N. Mohanty F19628-84-C-0001

* PERFORMING ORGANIZATION NAME AND ADDRESS 10, PROGRAM ELEMENT. PROJECT. TASK
The MITRE Corporation AREA & WORK UNIT NUMBERS
MITRE C31 Division
ygui ly gs n vc."'s

McLean. VA 22102
I CONTROLLING OFFICE NAME AND ADDRESS 12. REPORT DATE

Ada Joint Program Office September 1984
Room 3D-139 13 NUMER Or PAGES

The Pentagon
Washington, DC 20301-3081 ".

14 MONITORING AGEN CY NAME A 'ADDRESS.II dlilerent from COntr O gIl Olhfce) IS SECURITY CLASS (of thle report)

Unclassified
* S. DECL ASSIrICATION, DOWNGRADING

SCI4EDuLE

't OISVRIS.Tlc% STA EME,.T (of thi. Roporij

Approved for public release; distribution unlimited

17 DISTRI1 UT iON ST AT EME N T (of the obeotrac entered In Block 20. II differea t Ito Repoft)

Unclassified

1S SUPPLEMENTAR Y NOTES 0

* Final Version

*It KEY WORDS (Continue 4m rev ere tide of nticoomy and identify by block umober)

* Software Acquisitions, Ada Programming &upport Environment,--Mission Critical -
Systems, Ada Piogramming Design Language,,Life Cycle Software Support,

* 30 ABSTRACT tCornteni.e o rqeve°re side it nocoeor and Identify by blo ini il"r)

This report discusses several issues that influence the successful acquisition 0
of major mission-critical system. These issues range from the role of soft-
ware in the system acquisition process, and the state of software engineering
practice in industry, to Ada compiler validation, Ada run-time environment,
Ad a programming environment, Ada resue, and Ada productivity. A project

* I manager must deal with each of these issues during the course of his procure-
ment and must devise plans to identify them and eliminate them in order to
make his program a successful one.

DO ,?'S1473 COITION OF I NOV 66 15 ODSOLC NLASFEDSl Etrd

S'N 0102. LF- o1--s601 SECURITY CILASSIFICATION6 Oft THIS PACE (WonDos ri""

oil~ 12 '20 0 16

w. r. -. C . J * V ' . - • -- - .. ., * ,*. * -• • . i • - m. * , .* -

ABSTRACT

'This report discusses several issues that influence the success-
ful acquisition of major mission-critical systems. These issues
range from the role of software in the system acquisition process,
and the state of software engineering practice in industey, to Ada
compiler validation, Ada run-time environment, Ada programming
environment, Ada reuse, and Ada productivity. A project manager must
deal with each of these issues during the course of his procurement
ana must devise plans to identify them and eliminate them in order to
make his program a successful one. (io ,, ' .. _ . , <, ,,

C -

[I

!

ii

* -,. ..

"4

TABLE OF CONTENTS

Page

LIST OF ILLUSTRATIONS vii

1.0 INTRODUCTION 1

1.1 Background i

1.2 Purpose 3

1.3 Outline of Report 3

2.0 SYSTEM ACQUISITION MANAGEMENT 5 4

2.1 Mission Analysis and Milestone 0 5

2.2 Exploration of Alternative Concepts and Milestone I 8

2.3 Concept Validation and Milestone II 8

2.4 Full-Scale Development and Milestone III 10

3.0 MISSION CRITICAL SOFTWARE ACQUISITION 11

3.1 Problem Areas 11

3.2 Ada in Mission Critical Acquisitions 12

3.3 Ada Transition Plan 14

4.0 Ada BASED TECHNOLOGY 17

4.1 Ada Language 17

4.1.1 Ada Compilers 19

4.2 Ada Target Environment Characteristics 20

4.3 Ada Programming Support Environments 21

5.0 Ada EXPERIENCE 23

5.1 Ada as a Program Design Language 23

5.2 Distributed Computing in Ada 26

5.3 Use of Off-the-shelf Ada Packages 29

5.4 Ada Productivity 31

6.0 RECOLMENDATIONS 35

APPENDIX SOFTWARE ENGINEERING PRACTICE IN INDUSTRY 37

(LOSSARY 41

REFERENCES 43

V

E.

0

LIST OF ILLUSTRATIONS

Figure Number Page

2-1 Major System Acquisition Cycle 6
2-2 Major System Acquisition Process 7
2-3 Exploration of Alternative Systems 9

vii

7-

[.*.* *. . .

! ~ *

1.0 INTRODUCTION

1.1 Background

Mission-critical computer systems are those systems--programs

and data bases--that are developed as an integral part of detense

system development activities. Mission-critical systems consist of

command, control, communications, and intelligence (C3 1) systems and

weapons systems. C31 systems assist decision makers in gathering and

evaluating intelligence information on enemy forces; enable com-

manders to assess the status and disposition of friendly forces; pro-

vide communication links over which orders and information can be

transmitted; and give civilian and military leaders a means of

redirecting their forces in response to changing conditions. C3 1

systems serve five principal mission areas: nuclear force management;

defense-wide information and communications; electronic warfare; com-

mand, control and communications (C3) counter measures; and defense

intelligence. Weapons systems are used in target acquisition, target

selection, target designation, and in-flight control and delivery of

weapons to designated targets.

Embedded computers are those systems that are integral to a

weapons system or a C3 1 system that performs complex, time-critical

functions. Embedded systems are required to perform parallel pro-

cessing, real-time control, and exception handling, and have unique

input/output control requirements. Embedded systems are also used to

4 perform real-time process control and transaction processing func-

tions. In addition to embedded systems, the other major component of

a C31 system is data processing in a distributed environment.

Mission-critical systems in the military tend to be large

4 (500,000 to 1,000,000 lines of code), be long lived (10 to 15 years

of operational life), have real-time processing requirements, have

severe physical constraints (due to lower processing speed and lim-

4
,° .

"I. - . . .

ited memory capacity of target computers), tend to be extremely com-

plex and are expected to operate flawlessly under all operational

conditions.

Computer software consumes the biggest portion of the embedded

systems' budget. During 1973, the Department of Defense (DoD) spent

$3 billion in procuring embedded software, which was 56 percent of

the total embedded systems' budget. Estimates show that the cost of

embedded software is expected to grow to $32 billion by 1990.(l) This

spiralling growth in embedded software cost is of concern to DoD

planners and the U.S. Congress. Embedded software problems are due

to improper use of existing software technology (see the Appendix) as

well as to a lack of a standard programming language for all

mission-critical systems.

The potential benefits of a standard programming language can be

illustrated from a study of an Army software system.(2) The system's

91 major software components were developed in 43 different program-

ming languages on 58 different computer systems built by 29 manufac-

turers. Each component system has its own unique support software

(e.g., operating system and utilities). If the Army had made use ot

a standard programming language to develop all the software com-

ponents, significant cost savings, both for the development and

maintenance, would have been possible.

For embedded defense systems, the operational environment (e.g.,

threat scenario) must change rapidly. To accommodate this changing

operational environment, the software is constantly maintained (e.g.,

enhanced). The maintenance cost of an embedded detense system is

estimated to be 75 to 80 percent of the total life cycle cost of the

system. Adoption of a single, standard programming language will

facilitate the use of one support software system, reduce training

etfort, promote personnel commonality, and offer substantial savings

in both development and maintenance of embedded defense systems.

I g2

0-

-%7

Also, the availability of large numbers of programmers to produce the

required software in the future is a major concern. A common

higher-order programming language and proper use of software technol-

ogy will improve programmer productivity and software quality, and

will result in lower overall cost for mission-critical defense sys-

tems. These factors motivated the DoD to develop a higher-order pro-

gramming language, Ada (Registered Trademark of DoD, Ada Joint Pro-

gram Office (AJPO)) and a software tool-set, Ada Programming Support

Environment (APSE), to increase programmer productivity and improve

software quality of mission-critical systems.

1.2 Purpose

The purpose of this report is threefold: (1) to explore the

current approaches to acquiring mission-critical defense systems, (2)

to explore how the acquisition process can be improved to provide

greater visibility to software components of the system during the

acquisition process, and (3) to explore the benefits of using Ada in

the development of mission critical defense systems.

1.3 Outline of Report

Section 2.0 discusses the current approach to acquiring

mission-critical computer systems using the milestone concept. The

current practices of software engineering in industry, and how such

practice (or lack thereof) influences system reliability and program-

mer productivity, is discussed in Section 3.0. Ada-based technology

* •and experience are discussed in Sections 4.0 and 5.0, respectively.

Finally, risk areas, and recommended ways to overcome these, are dis-

cussed in Section 6.0. A discussion of software engineering practice

in industry is given in the Appendix.

3

2.0 SYSTEM AuQUISITION MANAGEMENT

Acquisition management involves understanding and applying

methods, procedures, and tools for procuring a computer system to

satisfy a well-defined mission need. Major mission-critical defense

systems are procured under DoD Directive (DoDD) 5000.1,(3)whereas

major Automated Information Systems are procured under DoDD

7920.1.(4) The current approach to acquiring mission-critical comput-

ing syste7ms is based on the milestone concept (see Figure 2-1).

There are four major milestones during the acquisition of a major

system. These milestones occur at the end of well defined phases:

Mission Analysis, Concept Exploration, Concept Validation - I-

Scale Development. A decision for full-scale production i made at

* the end of the full-scale development phase. At each milest - the

mission need, project progress to-date, costs, schedule, and risks

are reviewed to determine if the project should be advanced to the

next phase. The various acquisition phases and associated milestones

are discussed below (see Figure 2-2).

2.1 Mission Analysis and Milestone 0

The procuring agency component(s) must undertake a continuing

analysis for current and forecasted mission capabilities, technologi-

cal opportunities, overall priorities, and resources that are

involved in the acquisition of the proposed capabilities. When the

analysis identifies a deficiency in existing agency capabilities or

an opportunity to establish new capabilities in response to a techno-

logically feasible opportunity, these will be formally set forth in a

Mission Elements Needs Statement (MENS). Mission need must include

mission purpose, capability, agency components involved, time con-

* straints, value or worth of meeting the need, relative priority, and

operating constraints. The statement is not to be expressed in terms

of equipment or other means that might satisfy the need. The mission

need statement is submitted to the agency head for approval at

5

"PREVIOUS PAGE _S
.IS BLANK_ _

*EVALUATIONAN

MAJORSYSTEMRACQITISITO YL

MISO
ANALYSI

EXLRAIO

wz

z 1I

m 0tr0

u
00

z- C

z u

<0Z

oz C
EnU -

00 [NOI F-

Milestone 0. If approv J, the agency component(s) can move forward

witn the confidence of having a need recognized. Then, the explora-

tion of alternative concepts begins to satisfy the mission require-

ments.

2.2 Exploration of Alternative Concepts and Milestone I

Approval of the mission need starts the major system acquisition

process by granting authority to explore alternative system concepts

(see Figure 2-3). This initial approval and the establishment of a

system acquisition program do not automaticaJly mean that a new

major system will eventually be acquired. With an approved need,

designated agency component(s) must continue to analyze other

optional means of satisfying the needs in parallel with the explora-

tion of alternative system concepts that must, as development

proceeds, prove unacceptable. An evaluation of the options, includ-

ing the alternative system design concepts at Milestone I, provides

the basis for subsequent key decisions in the major system acquisi-

tion process. Prior to Milestone I, the designated program manager

must explore system acquisition strategies and develop a system

acquisition plan to implement the strategies that span the entire

acquisition process. At Milestone I, the project undergoes review to

evaluate the alternate concepts out of which one (or more) concept(s)

is(are) selected for demonstration and validation through prototype

development.

0 2.3 Concept Validation and Milestone II

Concept Validation (or, Advanced Development) intends to demon-

strate that one of the alternative concepts explored thus far is

valid and is capable of satisfying the mission need; that the system

* will pertorm in an operational environment; and that the system can

be the basis for full-scale development of the system. Such concept

validation normally involves some type of prototype development--this

8

u z

7 FF-

V)~ La]

zO

U)1013 C =

C) C, w.

>>

E- z

EnE

V311Y1. U.ISI

must range from a principal end item or critical subsystem to a lim-

ited and less-than-complete development model. Milestone II occurs

after concept validation and before the full-scale development phase.

At Milestone II, the results from demonstration and validation of

alternate concepts are evaluated, and one of these prototypes is

selected for full-scale development.

2.4 Full-Scale Development and Milestone III

Full-Scale Development (or, Full-Scale Engineering Development)

and the initial production decision is made on the basis of the fol-

lowing:

a. Essential system concept projected performance measured
against mission need and program objectives

b. An evaluation of remaining risks and potential resolutions

c. An evaluation of estimated acquisitions and ownership costs

d. Such factors as the contractor's demonstrated management,

financial, and technical capabilities to meet program objec-

tives.

Initial production units are to be tested and evaluated in an

environment that ensures effective performance in expected opera-

tional conditions. Normally, the testing is to be done independent

of the agency's development and user organizations. Exceptions to

independent testing must be authorized by an agency head under such

circumstances as physical or financial impracticality or in case of

extreme urgency. Milestone III occurs arter the full-scale develop-

ment phase. This is the final milestone at which a decision is made

regarding the full-scale production of the system.

In addition to these four major milestones, interim project

reviews are held to address and resolve technical and management

issues that must surface during the development etfort.

10

- °, • 10

° I

3.0 MISSION CRITICAL SOFTWARE ACQUISITION

3.1 Problem Areas

For embedded systems, the existing acquisition process treats

software as an integral part of the hardware. That is, even if the

embedded software constitutes a major part of the prototype system

and often is the high-risk item, it is never treated as a separate

entity for procurement purposes. Under current acquisition prac-

tices, a prototype system is made available at Milestone II. In order

for the prototype to function correctly, all of the software com-

ponents of the prototype system must be available at Milestone II.

That is, the software must be produced and acceptance tested during

* prototype development of the system. Even though both hardware and

software have the same phases in the development cycle (requirements

analysis, specification, design, development, and test and integra-

tion), the time lines for the software and hardware phases do not

match. Most major life-cycle events (e.g., design) occur earlier for

software than similar events for hardware. In other words, by the

time the system reaches Milestone II, the software has undergone a

complete development cycle, whereas the hardware is at the prelim-

inary design stage. During full-scale development of the system, the

hardware is changed to improve system performance or to accommodate

new requirements. Often such changes to the prototype hardware imply

significant changes to the software. Since the software has under-

*gone acceptance testing, any changes to software at this stage tend

to be expensive. Even then, in most cases, any performance improve-

ment in the system prior to Milestone III can only be achieved by

changing the software. The realization that the software must

undergo significant changes necessitates that the software be prop-

erly designed, developed, and documented so as to be maintainable.

I

I

• . - .-- '- "- - • - .. - * - "°' • ---. . -"

* . o -. . - i w - r r r r . +b . , - . . *-. - 1' *- . * .o-. -. '* ; -** * . .+ . - . J

0

-The differences in time lines for major reviews for hardware and

software can be accommodated by requiring that formal reviews for

software must precede the similar reviews for hardware. That is,

Requirements Review, Design Review, Preliminary Design Review, Criti-

cal Design Review, and Test Readiness Review for software must pre-

cede the similar events for hardware. In fact, for software, all of

these reviews must be scheduled during the Concept Validation phase

of the acquisition process and prior to the Milestone II review.

This will facilitate orderly development of software and will enable

the contractor to maintain (i.e., enhance) the software during the

full-scale development phase.

3.2 Ada in Mission Critical Acquisitions

DoDD 5000.29 emphasizes the procurement of reliable software

under various DoD and Services Acquisition regulations.(5) The three

military departments of DoD use separate regulations to enforce this

approach (i.e., Air Force Regulation (AFR) 800-14;(6) Army Regulation

(AR) 70-XX;(7) and Secretary of the Navy Instruction (SECNAVINST)

*. 5200.32.(8)).To inject the new technologies into the acquisition pro-

cess, DoDD 5000.31 (9) requires that the Ada programming language

become the single, common computer programming language for Defense

mission-critical applications. Effective 1 January 1984 for programs

entering Advanced Development and 1 July 1984 for programs entering

Full-Scale Engineering Development, Ada shall be the programming

language. This directive need not be applied retroactively to DoD

systems for which formal language commitments have been made in com-

pliance with DoDD 5000.31 before the effective date of this revision.

AR 70-XX, for example, requires that the Computer Resources

*Management Plan (CRMP) must spell out the requirements of using Ada

as a Program Design Language (PDL) and an implementation language.

The following are acceptable plans for using Ada as the implementa-

tion language (stated in order of preference):
(7)

12

S

* **..

. . . . *

(1) The Army's Ada Language System (ALS) is used for the
development and maintenance of mission-critical software.
This is the long-term Army objective. However, the ALS will
be available for initial Army use in January 1985 and is
targeted to only a small number of machines.

(2) A validated Ada compiler other than the ALS is used and all
Ada code developed for the Army is transitioned to the ALS
before Department of the Army Development and Readiness Com-
mand (DARCOM) Life Cycle Software Support (LCSS) accepts it
for maintenance. The project manager will fund the develop-
ment of appropriate code generators and hosts for the ALS if
code generators are not in progress for his hardware.
Current targets are the VAX 11/780 with ALS/VMS, the Nebula
military standard (MIL-STD)-1862B, the Intel 8086 micropro-
cessor, and the Navy's AN/UYK-44.

(3) If an unvalidated Ada compiler is used to start development,
the project manager will take the following steps, in addi-
tion to the requirements in (2) above, to ensure that
mission-critical software using variants of the Ada
languages are not accepted by the Army.

(A) For the purpose of source selection, unvalidated Ada is not
Ada. No additional credit will be given to an ofterer pro-
posing to use an Ada compiler that is currently not vali-
dated.

(B) For any software developed in Ada, the contract shall stipu-
late that the government will not accept the software until
it has been compiled with a validated Ada compiler.

The DoD and Army directives, it appears, apply to mission criti-

cal procurements that are starting anew or are stand alone. However,

major mission-critical procurements must make use ot existing systems
as critical components, and existing systems must be the starting

point for a major future system.

Existing systems often have significant amounts of operational

software written in assembly language or another high-level language

(e.g., FORTRAN, JOVIAL, or CMS-2). Consequently, if a mission-

critical procurement uses an existing system and associated software,

the project manager either continues using the old programming

13.1

language for additional program implementation, or develops and

implements a transition plan for converting the old programs into Ada

and then continues using Ada as required by the above directives.

Such a choice can be made only after careful evaluation of tne alter-

natives in terms of cost-benefits and risks associated with each of

them.

A similar situation exists for systems for which language com-

mitments have been made earlier. Even though the use of a non-Ada

language must be sufficient for these projects, an analysis should be

made as to whether this system will be a starting point for major

mission-critical systems in the future. If the system is likely to

be a starting point for a major acquisition, then the Program Manager

must plan to transition the non-Ada software into Ada at the conclu-

sion of the project.

3.3 Ada Transition Plan

As discussed earlier, a project might have a significant amount

of software written in a language other than Ada that needs to be

reused. Also, the current project might be a starting point for a

major future system. For commonality, the Program Manager must

develop and implement a Transition Plan so as to convert the non-Ada

software into Ada. A brief outline of such a plan is given below. As

a minimum, a Transition Plan should:

a. Define the scope of the (conversion) effort

b. Describe the host and target hardware

c. Describe the existing and future software architectures

d. Indicate explicit task assignments and define responsibili-
ties of the transition group

e. Allocate and schedule resources (manpower, computers, etc.)

14

f. Document the technical approach, key assumptions, and con-
straints underlying the existing system (e.g., hardware and
software), and any deviations for the future system

g. Define appropriate interfaces between the hardware and
software contiguration items and project teams

h. Document standards and practices to be used in the transi-
tion effort

i. Specify a definite completion criterion to be used (e.g.,
the target programming language is Ada, then the Ada code
should be compilable by a validated Ada compiler; if the

target code is in assembly language, then it can be invoked
and executed by an Ada program)

j. Provide adequate testing requirements prior to acceptance.

0 Several prototype translators are available to translate exist-

ing FORTRAN and COBOL programs into Ada programs.(1 0) The approach is

to use a COBOL or FORTRAN analysis tool and produce DIANA (Descrip-

tion Intermediate Attributed Notation for Ada) intermediate form

representation from which the Ada code can be decompiled. This

approach will try to translate 100 percent of the source code

automatically without human intervention. The approach is being

tried in the Worldwide Military Command and Control System (WWMCCS)

Information System (WIS) project.(I0)

15

I%

4.0 Ada BASED TECHNOLOGY

4.1 Ada Language

Since no single DOD standard programming language satisfied all

the requirements of embedded software, DoD commissioned the develop-

ment of a new programming language.C11) This extensive effort

resulted in a new programming language, Ada. The Ada specification

effort began in 1976, and Ada became a standard programming language

in 1983.012) Ada language features are briefly discussed below;

readers interested in more detailed technical information on Ada must

reter to other sources.13-15)

Ada was designed for ease of program development and mainte-

* nance.(16) To achieve these objectives, Ada makes extensive use of

the principles of data abstraction and information hiding. Abstrac-

tion refers to the ability to differentiate between the functional

characteristics of an object from the implementation of these charac-

teristics in the form of a program. Information hiding refers to the

ability to hide object-unique information from other objects. Ada

makes use of these concepts extensively in the design of subpro-

grams, packages, tasks, and generics. A program in Ada is a collec-

tion of functional components and data objects that interact serially

or in parallel. These functional components can be viewed as subpro-

grams, each subprogram having a specification part and a body. Ada,

by virtue ot its design, allows the user to define subprograms and

4 subprogram stubs. During top-down design, subprogram stubs with sub-

program specification only are used to design and test the system in

a top-down manner. The stub bodies are implemented after the design

is complete and is verified to be correct.

A package or software module or program-unit in Ada is the

highest level of abstraction. A package is a collection of groups ot

related types of objects and subprograms. A package has two parts;

17

I

PR VIU PG

|-! ~~F 4.0 Ld AAE NECNOOG

'KKV

the specification and the body. The package specification is an

abstract interface to other packages, and its type can be made visi-

ble or kept private. The visible part of the package specification

describes the functional characteristics and logical interfaces of

the package. The private part specifies the physical interfaces that

a compiler needs to know during the compilation of the package

specification. Information in the private part cannot be used by the

programmer in any way. The package body implements the specification

of the package. The specification and the body are two separate phy-

sical program units, which are compiled and catalogued separately.

The packages facilitate maintenance in the following manner:

a. Modification to a package body will not result in modifica-
0 tion to or recompilation of source programs using these

packages.

b. Modification to the private part of the specification will
not result in modification to source programs using these

packages, but must require recompilation of the source pro-
grams.

c. Modification to the visible part of the package specifica-
tion will result in changing the source programs and will
require recompilation.

Ada package specification and package body can be compiled

- separately from each other. This is possible due to strong data typ-

ing of the package interfaces and variables and due to the provision

of a compilation data base. The compilation data base stores the

* compilation information that is used in compiling any program unit.

The compilation is context dependent; that is, a package body cannot

be compiled if the respective package specification has not been com-

piled.

* Ada facilitates real-time programming for embedded systems

.• through the provision of tasking. Tasks are used to execute con-

current activities. As in packages, a task has the specitication

18

7.- -.- .7. -'

and a body. The task specitication consists of a declaration tor tne

task entry points. The task body implements tne tasK specitication.

The taskb communicate through "rendezvous." That is, when task A

calls task B, a rendezvous is said to occur when execution of an

EviKY from task A and an ACCEe1 from task B coincides. The data

transfer occurs during task renoezvous.

* .Generic program units in Ada permit tne system designer and pro-

grammer to create subprograms and packages tnat provide computing

WiL,, abstract data types. That is, it a generic Ada sort routine is

available for sorting integer arrays, it can be adapLed to sort an

array of names by changing the data types at compile time. Geueric

unLb detine templates of program units that are written once ano

* tnen tailored to a particular need during translation time. For exam-

ple, generic units can be developed for vector operation or matrix

operation, and tne precision of these operations can be specitied as

a parameter during compile time.

4.1.1 Ada Compilers

At present, several software companies are developing Ada com-

pilers tnat are being validated by the AJPO. As of tnis writing,

Data General/Rolm, Telesoft, and Western Digital/Gensoft Ada com-

pilers and New York University (NYU)/Ed interpreters have been vali-

dated by AJPO. Two signiricant characteristics of a compiler are tue

compilation speed and the run-time support environment. Ada prugrams

are likely to be larger than equivaleut programs in other languages.

Ada is large, and extensive type checking is pertormed at compile

time. Hence, compilation speed of Ada compilers is likely to be

slower tnan the compilers of other languages. Ada compilers often

require 0.5 to 1 megabytes of main memory. Due to complex daLa

structures, Ada compilers might require 1 to 2 megabytes of main

me~u.y tor compilation purposes. In adoition, for efricient opera-

tiun, large amounts of secondary memory wil be required.

19

1.7 1.

Consequently, the Ada development environment should consist of large

amounts of main memory and secondary memory for etficient compila-

tion of Ada programs. As the compilers mature, the speed of Ada com-

pilers will increase. In the future, the compilation speed of Ada

compilers must not be a major risk area in any project.

In the near term, compiler validation issues, however, will

continue to be a major issue for most projects. This is due to the

fact that DoD and Service directives require that, prior to final

delivery, Ada software be compiled by using a validated Ada compiler.

AJPO requires that a validated compiler be revalidated once a

year. That requirement is likely to be changed to once in six months

in the future. The revalidation is required to (1) identify any

changes to a validated compiler; (2) identify and eliminate errors in

the validation suite; and (3) develop a new validation suite for pre-

viously untested language features. In other words, a validated com-

piler must be invalidated for one of three reasons, two of which must

be beyond the control of the compiler developer. In order to guard

against the possibility that a validated production compiler is

invalidated in the course of the project, a project manager must plan

to acquire more than one production compiler or must restrict the use

of certain language features for his project.

4.2 Ada Target Environment Characteristics

The Ada target computing environment, the embedded environment,

is likely to be no more than a bare machine without a run-time sup-

port system. Run-time support consists of utility routines that are

required for execution of the object code in the target machine.

Since the target machines do not have any run-time support, any run-

time support of this kind in the development environment must be

transported to the embedded environment.

20

Many existing target computers were not designed to execute Ada

efficiently. In other words, the instruction set of many target com-

puters must not be suitable to generate efficient machine code for

Ada programs. But, in applications with hard real-time constraints,

efficiency of the target code is a necessity. In order to achieve

this efficiency, many code generators must resort to short cuts in

implementing the code generators.(17) These short-cuts or optimiza-

tLions will generate target code that must be efficient but must not

ha.'e one-to-one correspondence between the source and the target

code. Consequently, if one uses an Ada compiler with an optimized

code generator, then in case of errors in target code, debugging will

be very difficult. This fact must impede maintainability of these Ada

programs. A project manager must weigh these risks, and if the per-

formance requirements of the target code for certain real-time func-

tions are not achievable by straight compilation, he must utilize a

language other than Ada for implementing these real-time functions.

4.3 Ada Programming Support Environments

Two parallel efforts are now underway to provide APSEs for Ada

programming erforts. ALS, sponsored by the U. S. Army and developed

by SofTech,(1 8) is expected to provide an Ada Compiler, system utili-

ties, and facilities for large-scale program development (e.g.,

library support and version control, etc.). It will be hosted in a

DEC VAX 11/780 computer. Ada Integrated Environment (AIE), sponsored

by the U. S. Air Force and developed by Intermetrics,(19) is expected

to provide an Ada Compiler, system utilities, and facilities for

large-scale program development. AIE will be hosted in an IBM 370

computer. The ALS is planned to be delivered soon, but tne delivery

of AIE is indefinitely delayed. The tool. in ALS and AIE are

integrated, that is, the tools interact with a common data base tnat

characterizes the program and its associated environment. The WIS

project, on the other hand, is procuring an Ada Programming Environ-

21

2:4

ment, CONAN, whose tools are not integrated.(0) To facilitate move-

ment of programming environments among various operating systems, a

standard Common APSE Interface Specification (CAIS) is being

developed. (20)

These programmming environments are extremely beneficial to

develop high quality Ada programs. Each programming environment

includes a unique Ada compiler that must or must not produce effi-

cient code for the target computer used in the project. If such is

the case, the project must substitute a compiler that can produce

appropriate object code for the target computer. If a substitute

compiler cannot be used in the selected programming environment, the

project must not utilize the Ada programming environment to develop

the source code, but should utilize stand alone compilers and pro-

gramming support tools in the project.

II

I

. . . .

5.0 Ada EXPERIENCE

5.1 Ada as a Program Design Language

Since changes to the embedded software are inevitable, the

change process should be easy and reliable. Software design is the

most important element that influences later maintainability. Conse-

quently, to develop maintainable software, its design should be

correct and complete. Since the Ada language has the features to

develop good designs, Ada programs are also highly maintainable.

Computer program design is a complex task that often requires

the assimilation of large quantities of information and the develop-

ment of solutions to satisfy many conflicting requirements. Various

methodologies, such as the Jackson Approach,(21) the Warnier-Orr

Approach,(22) Top-down Design, and Structured Design, (23 - 2 6) can be

used for software design activity. Ada facilitates the software

design process by providing abstraction and information-hiding facil-

ities. These features are easily exploited during high-level

design, preliminary design, and detail design. During preliminary

design, a package with appropriate interface specification is pro-

vided. Once the preliminary design is verified, the detailed design

commences during which the body of the package is implemented.

A PDL is used to document a program design in lieu of using

flowcharts. PDL is a pseudocode that describes the control structure

and general organization of the program. A free-form PDL contains a

minimal number of syntax and semantic rules. A design language has

three principal uses:(27)

a. As a medium for the formulation of the design

b. As a means to communicate the design

c. As a medium to formally document the design.

23

I

PDL normally provides (1) indenting and labelling facilities;

and (2) control structures consisting of selection (IF-THEN-ELSE),

iteration (WHILE), and sequence and module invocation (CALL). The

use ot Ada as a PDL has many advantages:(28)

a. It allows for syntax checking by the Ada compiler.

b. It is a convenient method of expressing interface specifica-
tion between computer program components. The specification
can be checked for correctness, consistency, and traceabil-
ity.

c. Ada explicitly supports software engineering principles, i.
e., a designer well versed in software engineering can
create proper designs.

d. Use of Ada as a PDL will encourage the contractor and pro-
gram management to learn the language, which, in turn, will
facilitate the introduction of a new language into the pro-
ject and accelerate compiler maturation.

As mentioned before, a PDL is a means to document a design at

the preliminary and detail design stages of system development.

Preliminary guidelines to use Ada as a design language have been

developed by an Institute of Electrical and Electronics Engineers'

(IEEE) software engineering standards working group.(29) Successful

*use of PDL depends on a successful design. The experience of a group

of engineers at General Electric (GE) demonstrates this.(30)

The GE team undertook the task of redesigning and implementing

an existing FORTRAN and Assembly-based system in Ada. The subsystems

* •to be redesigned were (1) an analysis of multiple beam antennas; and

(2) a graphics package to display the results of the analysis. The

effort resulted in a new design that was implemented in Ada. The

observations of the team are as follows:

a. "...The word "Ada" has been used to mean both the language
itself and various design concepts supported by the
language.... unless explicitly trained...programmers will
utilize Ada in a manner similar to FORTRAN and Pascal and

24

6-

will not make effective use of structuring and information-
hiding facilities that Ada provides."

b. "...A comparision of two designs illustrates that a team's
background and design philosophy can have a more protound
effect on the ultimate design than the choice of the
language. That Ada supports information-hiding is no guaran-
tee that a development team will exploit this technique. If
one believes that information-hiding is desirable, one must
address many other issues in addition to the choice of
language. These include the background and experience of tne
team, the training, and the requirements document."

c. "...Most short Ada courses tend to teach the language
itself, instead of presenting an overall design philosophy
that can be expressed through Ada."

The foregoing observations illustrate that proper software

design is very important for the development of reliable and main-

tainable software. A project must have to undertake many steps to

ensure that a good design exists prior to expressing the design in a

PDL. One approach is to develop a Module Design Guide (MDG), which

can be used to design the software modules for the project.(31) The

idea of MDG has been developed by Parnas and others at the Naval

Research Laboratory in response to a, ...growing gap between

software engineering principles being advocated in major conferences

and the practice of software engineering at many industrial and

govermental laboratories... The ideas appeared to be easier to write

about than to use."(31)

The MDG is concerned with three structures: (1) the module

structure and the assumptions made about various modules; (2) the
#fuses" structure--the relation "requires the use of"; (3) the process

structure--the run-time activities involving modules. The module

structure is based on the principle of information-hiding; that is,

module details that are likely to change independently should be the

secrets of separate modules; the only information that appears in

25..

4

the moaule interfaces is that which is unlikely to change. The MDG

is intended to satisfy the following goals:

a. One should be able to understand the module responsibility
without understanding the internal design of the module.

b. One should be able to identify a group of relevant modules
from those that are irrelevant to suit one's need.

c. The number of branches in and out of a module--number of
interfaces, should be sufficiently small so as to track the
affected modules in the event of a change to a given module.

A module guide can be developed by using the software engineer-

ing principles so as to achieve the goals described above. Readers

familiar with Ada syntax can see the close relationship between the

41 module guide and the Ada language features. Thus, software modules

designed using the MDG can be easily implemented in Ada PDL.

In using Ada in his project, a project manager must be concerned

with two distinct activities: (1) a proper module design; and (2)

expressing the design using suitable features of Ada. It is sug-

gested that an MDG be used for proper design of software modules and

a PDL guide (e.g., an improved version of IEEE PDL guidebook) be used

to express those designs. Then, and only then, is the resulting

design likely to impact the development and maintenance phases of the

system life-cycle and is likely to result in reliable and maintain-

able Ada programs.

5.2 Distributed Computing in Ada

Modern C31 systems are a collection of physically dispersed data

processing sites with associated data bases. These systems must

include embedded, as well as distributed, systems. Eftective C3

depends on coordinated activities among all dispersed sites. To

achieve effective C3 , significant distributed computing is required.

In the following sections, several issues relevant to distributed

computing will be discussed.

26

L

A distributed computing environment is defined as a collection

of distributed processing centers and data bases, physically and log-

ically interconnected by communication links for the purpose of exe-

cuting applications programs in a coordinated manner.(32) In distri-

buted C3 systems, processes communicate through message passing. An

interconnection network routes messages to appropriate processes and

all interprocess interaction occurs at the network level. Communica-

tions primitives that facilitate applications level interaction can

be classified into two types of communication, as follows:(32)

a. Synchronous communication

1. Synchronous communication with remote invocation
(exactly once, or at least once)

2. Synchronous communications without remote invocation.

b. Asynchronous communication.

For synchronous communication, a sending process sends a request

to a receiving process indicating its desire to send. The receiving

process accepts the request and indicates its willingness to accept

the data by returning an acknowledgement message. When both the send-

ing and receiving processes are at a predetermined state (e.g., syn-

chronized), the data transfer between processes occurs. For widely

dispersed processing centers, the time delay for message transfer

must be unduly large, and thus must rule out the possibility of con-

current processing of processes. That is, the sending process must

[4 remain inactive until the receiving process has acknowledged and

accepted the data from the sending process. Asynchronous processing

does not require that the processes be synchronized for data

transfer. That is, in asynchronous communication, data transfer

[occurs without acknowledgement by the receiving process. Asynchro-

nous communication takes place through the provision of data buffers

at the receiving end. Asynchronous communication also facilitates

I .

27

4 * .'-

i concurrent processing of processes since the sender does not have to

wait for the receiver.

Synchronous communication, with or without remote invocation,

can be performed using Ada Tasks. In implementing the synchronous

communication, the programmer uses a DISCONNECT statement to delay

the acknowledge statement. Placement of the DISCONNECT statement is

an indicator of the level of concurrency desired. The placement of

this statement has to be carefully calculated by the applications

programmer and is often tricky. Asynchronous communication using a

data buffer, on the other hand, does not have any such requirements.

Asynchronous communication requires three processes: a sender, a

receiver, and a bounded-buffer. An example of such a model imple-

mented in Ada is given below.(32) In this example, the buffer has 10

slots that can be filled by the sender and emptied by the receiver.

All three processes execute asynchronously. If the buffer is full,

the sender cannot fill the buffer. Similarly, if the buffer is

empty, the receiver cannot empty the buffer.

TASK Buffer IS
ENTRY send (pl:IN portion);

ENTRY receive (p2:OUT portion);
END;

TASK BODY Buffer IS
buf: array (0..9) OF portion;
inp: integer:=0;

outp: integer:=0;
BEGIN

LOOP

SELECT -- nondeterministically

WHEN inp-outp <10=> --not full
ACCEPT send (pl: IN portion) DO

buf (inp modlO):=pl;
END; --disconnect

* inp:=inpl;
OR

. WHEN inp>outp => --not empty
ACCEPT receive (p2:OUT portion) DO;

p2:=buf(outp modlO);

28

LI

".,.. . , .

END; -- disconnect

outp:=outp+l;
END SELECT;

END LOOP;
END BUFFER;

TASK BODY sender IS TASK BODY receiver IS

LOOP LOOP
buffer.receive (m); buffer.send (m);

END LOOP; END LOOP;
END sender; END receiver;

The processes (tasks) communicate when execution of ACCEPT of one of

the process and the ENTRY of the other process coincide (e.g., ren-

dezvous) during execution.

Data base access and update is the next most important thing in

distributed processing environments. This data base support can be

provided by designing interfaces to existing data base systems or by

specifying and designing an entirely new data base system that will

fully exploit the capabilities of Ada.(l0)

5.3 Use of Off-the-shelf Ada Packages

Packages are one of the more exciting concepts of Ada. The con-

cept of the package must, one day, revolutionize the computing indus-

try in the way programs are designed and developed. Future program-

mers will build programs out of existing packages (generic or library

units) rather than build them from scratch. This is likely to

improve the quality of future programs. Also, the cost of future

systems using off-the-shelf Ada packages is likely be lower.

Experts estimate that eventually up to 90 percent of the program

designers will use some portion of an existing Ada package from a

catalog. Intellimac Corp. has developed a set of packages that can

29

" -*. .""

be used along with a Telesoft Ada compiler to develop programs for

commercial applications (e.g., Payroll).(3 3) These packages are as

follows: StrHandler, Dater, Terminal, Float BCD, Num Handler,

FormatChk, In Out, and Screen_ 10. It is expected that utility pack-

ages like these and mathematical application packages for matrix mul-

tiplication, multiple regression, etc. will be widely available to

permit application programmers to use these packages instead of

developing them.

Typical mission-critical Ada projects will consist of 100,000 to

2,000,000 machine Lnstructions, which are equivalent to 20,000 to

500,000 lines of Ada source code.(3 4) Some of these future projects

will use existing off-the-shelf Ada software extensively. Likely

characteristics of such an Ada project are as follows:

a. Half of the programs will be off-the-shelf and the other
half will be written specifically for the project.

b. Ninety percent of the new code will be in portable Ada. Use
of machine language instruction and assembly subprograms
will be discouraged.

Some potential problems in using existing off-the-shelf Ada

packages in an Ada project are discussed below. In order to use an

existing Ada package (generic or library unit), one has to first

determine that there is a good match between the user specification

and the specification of the existing package. If the package satis-

fies only a portion of the requirements, the package must be modified

4G to "tailor" it for the application. Assume that a package specifica-

tion is 100 lines of Ada code, and its body is 1000 lines long. If

changes are required for the package, the maintenance must not be

easy, Also, recompilation of the new package implies recompiling all

4 the other packages used by the new package. These additional packages

could mean an additional 2500 lines of Ada code. So, in using an

I
i - 30

I

existing Ada package one is expected to recompile 3500 lines of Ada

code on the average. -35' 36)

From this scenario, it can easily be infered that any large pro-

ject trying to use off-the-shelf packages will have to implement a

formalized maintenance procedure through rigorous configuration con-

trol. A good programming environment and formalized configuration

management is a must for proper use of off-the-shelt packages.

* 5.4 Ada Productivity

• -Even though there is no definite measure of software produc-

tivity, lines ot code/unit-time is still the most widely used measure

in industry. Experience shows that, for complex real-time systems,

productivity varies between 0.3 to 1.0 lines of delivered

code/hour.(3 7, 38) So far, Ada has been used in several relatively

small and less complex applications. The reported productivity fig-

ures vary between 5 to 8 lines of delivered code/hour.(3 9) Produc-

tivity figures for large, complex, real-time systems are likely to be

lower than these figures, but they are likely to be higher than the 1

line/hour for non-Ada systems. The question is how should these

higher productivity figures be considered in costing Ada-based sys-

tems?

To begin with, the productivity figures reported thus far are

actually for the program development phase only. Since software

development effort begins with requirements analysis and ends with

* test-integration, all these phases must be considered in cost esti-

mation. For example, a large software system development expenditure

is distributed as follows: 20 percent for requirements analysis and

specification; 20 percent for design; 20 percent for development; and

* 40 percent for test-integration. Use of Ada is unlikely to influence

ana thereby reduce the requirements analysis and specification

efforts. Even though the design will be influenced by Ada concepts,

31

0

I

there is no solid indication that the design effort will be reduced

if Ada is used as a PDL. Consequently, for large software systems,

the front end efforts for analysis, specification, and design must

remain unchanged. If Ada is used for programming, the programming

effort must be reduced by as much as a factor of five for small sys-

tems. But, for large systems, the actual reduction factor is yet to

be determined. Additionally, there is no solid information as to

whether use of Ada for programming will result in a reduced test-

(integration effort, but most experts will agree that a reduction in

test-integration effort of Ada programs is likely. Consequently,

from a development view point, the total reduction in development

etfort must not be significant and is likely to be on the order of 10

4 to 15 percent.

The cost of Ada programmers must also be considered in estimat-

ing the total system development cost. Since Ada is new, there are

few proficient Ada programmers. The law of supply and demand dic

tates that these programmers will be higher priced than assembly

language or FORTRAN programmers, at least in the near term. Hence,

in the near future, even though a reduction in development effort is

possible for Ada-based systems, the net total development cost must

da not be significantly different from a non-Ada system. On the other

hand, the maintenance effort for Ada programs is likely to be signi-

ficantly smaller than for non-Ada systems. Since maintenance con-

sumes 75 to 80 percent of the total life-cycle costs, use of Ada is

likely to result in reduced total life-cycle cost for the project.

Consequently, a project manager planning to use Ada in a project must

not realize significant gain in development cost but is likely to

experience significant gain in the maintenance cost.

From this discussion, it is apparent that the Ada language is

well suited to design and develop reliable and maintainable mission-

critical software. At the same time, the discussion in the Appendix

I

indicates that the practice of software engineering is rare in the

industry. Ada must be the catalyst that will accelerate the software

engineering practice in industry and assist in the production of

reliable software.

Additionally, experience shows that large systems benefit from

management approaches and development methodologies.(40) Also, for-

malized quality assurance, configuration management, independent

verification and validation, and test and evaluation are known to

improve the quality of large mission critical systems.(41-4 3) Conse-

quently, in addition to complying with Ada-related directives, a pro-

ject manager must insist on a formalized management approach and

development methodology as well as use of proven tools so as to

minimize the risks associated with his procurements.

33

I

6.0 RECOMMENDATIONS

Several risk areas related to major system acquisition are dis-

cussed below. A program manager must analyze each of these risk

areas in light of his particular project requirements and must

develop plans and procedures to deal with them during the acquisition

process.

a. The project manager must recognize the differences in time
lines for development phases for hardware and embedded
software and must schedule formal reviews accordingly.

b. If the project has a substantial amount of existing
software, a cost-benefits analysis should be made prior to
deciding whether or not to transition to Ada. A substantial

amount of existing software in a language other than Ada
must imply that the project should not use Ada for future
program implementations. If the amount of existing code is

not significant, a transition plan should be prepared and

implemented for orderly transition to Ada.

c. If the current project is likely to be a starting point for
a major future system, then, even if the project is targeted

for implementation in a non-Ada language, the project
manager must plan to convert the non-Ada software into Ada
after program conclusion.

d. If the ALS (or a similar programming environment) is used
for program development, then for some real-time problems,
the target code must fail to meet the specified performance
criteria. Consequently, the project manager must plan to
develop critical real-time code segments in another DoD-
approved, higher-order language that can be integrated with

the Ada code.

ae. If a code generator for a specific target computer does not

exist, the project manager has to contract for the develop-
ment of the appropriate code generator. As usual, there is
a slim chance t Tat the code generator will fail to produce
object code that meets the performance requirements. To
counter such a possibility, the project manager must require
that the time-critical functions be developed in another

programming language.

3 5 [PREVIOUSPAGE

3BLANK

f. A validated compiler has to be used for the compilation of
the final system prior to delivery. There is always a slight
chance of an existing validated compiler getting invalidated
due to new tests in the validation suite or due to discovery
that some tests in the earlier validation suite are
incorrect. Consequently, a contingency plan to use another
compiler must be developed.

g. Ada as a PDL, if properly used, is likely to result in
higher productivity and is likely to produce maintainable
and reliable programs. Guidelines for proper use of a MDG
and proper use of Ada as a PDL are a must for achieving4 these objectives.

h. Off-the-shelf packages can speed up development time of
Ada-based systems. In order to achieve this benefit a
coherent plan for Ada reusability, a program development
environment and formalized configuration management pro-

cedures are required.

36

Kl

APPENDIX

SOFTWARE ENGINEERING PRACTICE IN INDUSTRY

Ada has been designed with software engineering in mind. The

term software engineering is used to describe ways to develop,

manage, and maintain software so that the resulting product is reli-

able, correct, efficient and flexible. The language designers have

tried to implement data abstraction and information-hiding and have

provided packages, tasks, generics, subprograms, stubs, abstract data

typing, and pragmas, to name a few, that support the use of software

engineering principles--system decomposition, stepwise refinement,

and modularization--in system development. The current trend is to

associate software engineering with Ada, so much so that many con-

sider software engineering to be Ada's middle name (as in, Ada

"Software Engineering" Augusta Byron, etc.). Success of Ada in

building mission critical defense systems is closely tied with the

proper practice of software engineering.

4A recent survey (44) by a team of researchers from the Univer-

sity of Maryland addresses this issue. In the following paragraphs,

sections of their paper are abstracted to give an overview of the

use of software engineering in the data processing industry. From

their survey, it is clear that the practice of software engineering

in industry is, indeed, rare. Before Ada can be used successfully in

developing reliable and maintainable software, awareness and practice

of software engineering must be improved. Until then, mere use of

Ada as a PDL or an implementation language must not yield the

expected benefits.

The survey started in June of 1980 and continued through the

summer of 1983, involving 30 organizations: 5 IBM divisions, 12 other

3.7

U. S. companies and 13 Japanese companies. The survey consisted of 2

small (less than 10 staff-months), 7 medium (10 to 100 staff-months),

11 large (100 to 1000 staff-months), and 9 very large (greater than

1000 statf-months) projects. Some of the findings are given below.

"...We found surprisingly little use of software engineering

.- practices across all companies. No organization fully tries to use

the available technology. Although some companies had stronger

management practices than others, none used tools to support these

fpractices in any significant way."
"...Tools are not widely used in the industry. Not too surpris-

ingly, the use of tools varies inversely from how far the tools are

from the code development phase. Tools are most frequently used dur-

0 ing the code and unit test phase of software development

(e.g.,compiler, code auditor, test coverage monitor, etc.). Tools

are less frequently used in the adjacent phases of the software

life-cycle--design and integration (e.g., PDL processors and source

0 code control systems). Few requirements or maintenance tools are

used. "

"...At all places contacted, requirements were in natural

language text. Some projects had requirements documents that could be

processed by machine, but tool support was limited to screen-oriented

text editors. No analysis tools (like Software Requirements Engineer-

ing Methodology (SREM) and Problem Statement Language (PSL)/Problem

Statement Analyzer (PSA)) were used, except on toy projects."

"...Most designs are expressed in some form of PDL or pseudo

code While the use of PDL seems to be accepted practice, its use

is not particularly effective. For example, we consider the expansion

• of PDL to code a reasonable measure of the detail in a design. A

PDL-to-source-code expansion ratios of 1:1 must indicate that the

design has the same detail as its eventual code. With design and code

S
38

being separate tasks, this expansion indicates that the two concepts

are not separated. The expansion ratio of PDL-to-source-code were

1:5-10 at one location, 1:3-10 at another, and 1:1.5(!!)-3 at a

third."

"...All companies surveyed had a methodology manual; however,

they were either out of date, or were just in the process of being

updated. In this environment, Department of Defense MIL (military)

specifications were a dominant driving force, and most standards were

oriented to goverr--ent policies. The methodology manuals were often

policy documents outlining the type of information to be produced by

a project but not how to obtain that information."

In order to improve the software development practice in indus-

try, the authors make the following recommendations:

a. More and better computer resources, such as, better comput-
ing facility, workstations, screen-oriented syntax-directed
editors, programming support tools, should be made available
for development.

b. Methods and tools should be evaluated for their utility and
usability.

c. Tool support, such as, testing tools and debugging tools,
should be built for a common high-level language.

d. PDL processors should support an automated set of metrics
that cover the design and coding process.

e. Syntax-directed editors, in which the grammar of the under-
lying language is built in, would facilitate rapid develop-
ment of valid programs and add to productivity. Its use
should be encouraged.

f. The review process should be improved. The reviews or
inspections are a strong part of current methodology and its
use can be strengthened by use of -omated tools.

g. Incremental development such as iterative enhancements
should be used.

39

. ~.. . . - . • . ,-

4GLOSSARY

AFR Air Force Regulation
AlE Ada Integrated Environment
AJPO Ada Joint Program Office
ALS Ada Language System
APSE Ada Programming Support Environment
AR Army Regulation

C3 Command, Control, and Communications
C3 1 Command, Control, Communications, and Intelligence
CAIS Common APSE Interface Specification
CRMP Computer Resources Management Plan

DARCOM Department of the Army Development and Readiness Command
DoD Department of Defense
DoDD DoD Directive

DIANA DescriDtion Intermediate Attributed Notation for Ada

GE General Electric

IEEE Institute of Electrical and Electronics Engineers

LCSS Life Cycle Software Support

MDG Module Design Guide
MENS Mission Elements Needs Analysis

MIL Military

MIL-STD Military Standard

PDL Program Design Language
PSL/PSA Problem Statement Language/Problem Statement Analyzer

SECNAVINST Secretary of the Navy Instruction
SREM Software Requirements Engineering Methodology

U. S. United States

WWMCCb Worldwide Military Command and Control System
WIS WWMCCS Information System

I

1

II 41 PREVIOUS PAGE

I'L,

REFERENCES

1. "DoD Digital Data Processing Study," Proc. EIA Fall Symposium--

DoD Electronics Forecast, Los Angeles, CA, 1980.

2. P. Wegner, "Capital Intensive Software Technology," IEEE
SOFTWARE, Vol. 1, No. 3, pp. 7-46, July 1984.

3. U. S. Department of Defense, Maior Syste Acquisitions, DoD

Directive 5000.1, Washington, DC, 18 January 1977.

4. U. S. Department of Defense, Life Cycl Management of Automated
Information Systems, DoD Directive 7920.1, Washington, DC, 17
October 1978.

5. U.S. Department of Defense, Management of Computer Resources in
Maior Defense Systems, DoD Directive 5000.29, Washington, DC, 26
April 1976.

6. U. S. Air Force Logistics Command, Acquisition and Support Pro-
cedures for Computer Resources in Systems, AFR 800-14, Vol II,
25 Nov. 1975.

7. U. S. Army Development and Readiness Command (DARCOM), Manage-
ment of Computer Resources in Army Mission Critical Defense Sys-
tems (Preliminary Draft), AR 70-XX, 14 November 1983.

8. Secretary of the Navy Instructions (SECNAVINST), Management of
Computer Resources in the Department of the Navy Systems, SECNA-
VINST 5200.32, 11 Jun 1979.

9. U.S. Department of Defense, Computer Programming Language Pol-
icy, DoD Directive 5000.31, Washington, DC, 10 June 1983

10. J. R. Green and W. A. Whitaker, "Ada Foundations for WIS," Proc.
Washington Ada Symposium, Association of Computing Machinery,

pp. 19-25, March 1984.

11. W. A. Whitaker, "The U. S. Department of Defense Common Higher
Order Language Effort," SIGPLAN Notices, p. 2, February 1978.

12. U. S. Department of Defense, Ada Programming Language,
ANSI/MIL-STD-1815, February 1983.

PREVIOus P A4_I_
IS-LAN

...

4

13. R. Wiener and R. Sincovec, Software Engineering with Modula-2
and Ada, John Wiley and Sons, New York, NY, 1984.

14. C. Booch, Software EnRineering with Ada, The Benjamin/Cummins
Publishing Co., 1983.

15. P. Fonash, "Ada Program Overview," SIGNAL, pp. 27-31, July 1983.

16. R. F. Brender and I. R. Nassi, "What is Ada?," IEEE COMPUTER,
New York, pp. 17-32, June 1981.

17. Sperry Corporation, Ada-News, Vol. 3, No. 2, June 1984.

18. M. Wolfe, et al., "The Ada Language System," IEEE Computer, pp.
37-45, June 1981.

19. M. J. Ryer, "Experience in Using Ada to Implement a Compiler,"
Proc. Washington Ada Symposium, pp. 3-97, March 1984.

20. Department of Defense, Ada Joint Program Office, Common APSE
Interface Set Specification, CAIS 1.3, 31 July 1984.

21. M. A. Jackson, Principles of Program Design, Academic Press, New
York, NY, 1975.

22. K. Orr, Structured Requirements Definition, Ken Orr and Associ-
ates, Inc., Topeka, KS, 1981.

23. H. D. Mills, Software Productivity, Little, Brown and Company,
Boston, MA, 1983.

24. H. Mills, "Top-Down Programming in Large Systems," Debugging
Techniques in Large Systems, R. Rustin (ed.), Prentice Hall,
Englewood Cliffs, NJ, pp. 42-45, 1971.

25. W. Stevens, G. Meyers, and L. Constantine, "Structured Design,"
IBM Systems Journal, Vol. 13, No. 2, pp. 115-139, 1974.

26. E. Yourdon, and L. Constantine, Structured Design, Prentice
Hall, Englewood Cliffs, NJ, 1979.

27. The MITRE Corporation, Ada-based Desig Language, WP-25007, R.
F. Hillard II, Bedford, MA, 30 December 1983.

28. The MITRE Corporation, Preliminary Program Manager's Guide to
Ada, WP-25012, R. G. Howe, et al., Bedford, MA, 30 November

1983.

I4

4

6F

29. Institute of Electrical and Electronics Engineers, Inc., Using
Ada as a Design Language (draft version 2.2), Software Engineer-
ing Standards Committee, New York, August 1984.

30. A. G. Duncan, et al., "Communications System Design using Ada,"
Proc. Seventh International Software Engineering Conference,
IEEE cat. no. 84CH2011-5, pp. 398-407, March 1984.

31. D. L. Parnas, et al., "The Module Structure of Complex Systems,"
Proc. Seventh Internation Software Engineering Conference, IEEE
Cat. No. 84CH2011-5, pp. 408-417, March 1984.

32. S. M. Shatz, "Communications Mechanisms for Programming Distri-
buted Systems," IEEE COMPUTER, Vol. 17, No. 6, pp. 21-29, June
1984.

33. J. E. Fawcette, "Ada Goes to Work," Defense Electronics, Vol.
14, No. 7, pp.60-81, July 1982.

34. S. F. Zigler, "Consideration in Acquiring Ada Compiler," Proc.
Washington Ada Symposium, pp. 85-90, March 1984.

35. S. Zigler, and R. Weicker, "Ada Language Statistics for the
iMAX-432 Operating System," Ada Letters, pp. 63-67, May-June
1983.

36. G. Persch, M. Dausmann and G. Goos, "Early Experience with Pro-
gramming Language Ada," Ada Letters, p. 63-67, July 1983.

37. S. N. Mohanty, "Software Cost Estimation: Present and Future,"
Software Practice and Experience, Vol. 11, pp. 102-121, 1981.

38. S. N. Mohanty, "An Overview of Software Cost Models," IEEE
Tutorial: Compute System Dei, IEEE Press, New York, NY,
Sept. 1984.

39. B. Mathis, presentation at SIGAda Meeting, 30 July - 1 August,
0 Hyannis, MA., 1984.

40. E. M. Prell and A. P. Sheng, "Building Quality and Productivity
into a Large Software System," IEEE SOFTWARE, Vol. 1, No. 3, pp.
47-55, July 1984.

0 41. S. N. Mohanty, "On Verification and Validation," Proc. Symposium
on Software Verification and Validation, NTIS-PB1-236465, pp.
1-52, June 1981.

45

0

42. S. N. Mohanty, "IV&V: Key to Quality Computer Systems," Proc.
Workshop on Product Assurance Techniques for Embedded Computer
Systems (eds., D. Smock and S. Mohanty), Naval Surface Weapons
Center, White Oak, MD (will be available from NTIS and DTIC),
pp. 3-5 - 3-26, January 1984.

43. The MITRE Corporation, Product Assurance Guidelines, MTR-
84W00044, 3. Hayes and S. Mohanty, McLean, VA, March 1984.

44. M. Zelkowitz, et al., "Software Engineering Practices in the US
and Japan," IEEE COMPUTER, Vol. 17, No. 6, pp. 57-66, June 1984.

0

46

DISTRIBUTION LIST

INTERNAL EXTERNAL

A-10 G. J. MacDonald MAJ A. 11. Kopp (15)

C. A. Zraket Director, Ada Joint Program Office
The Pentagon, Room 3D139 (A/N)

D-14 E. C. Brady Washington, D.C. 20301
A. J. Roberts
G. F. Steeg Dr. R. Mathis (15)

Director, STARS Joint Program Office
W-90 J. W. Benoit The Pentagon, Room 3D139 (A/N)

R. E. Bernstein Washington, D.C. 20301

W. F. Foster
R. M. Harris
L. S. Pocinki
S. Polk
J. K. Summers

4 J. H. Wood

W-91 F. A. Frangione

R. G. Henderson
S. R. Jones

W-92 N. L. Broome
S. J. Turner

W-93 S. Chokhani (5)

R. B. Dial
R. A. Mikelskas (5)
S. N. Mohanty (25)

Records Resources (2)

4

I

I

I .". , .

* FILMED

S 2-85

* DTIC

