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SYMBOLS

A n  load measurements in air, n 1, 2,3 s model coefficient to be determined empirically,
s = s(a)0

a model coefficient to be determined empirically,

a a(ct) t time, sec

Cd drag coefficient Uo. free-stream velocity, m/sec

C1  lift coefficient Wn  load measurements in water, n 1,2,3 

Cm quarter-chord pitching-moment coefficient a airfoil incidence, deg

c airfoil chord, m ao mean value of pitch oscillation, deg

e model coefficient to be determined empirically, a1  amplitude of pitch oscillation, deg S
e = e(a)

A difference between linear and static load curves, FI- Fs .
F aerodynamic load coefficient. F = F(r)

e unity-step function
F, component of F sufficient for linear range, F, = F, (r)

A model coefficient to be determined empirically, S
F 2  supplement to F, required for nonlinear range, X?. = (c)

F2  F 2(r)
v kinematic viscosity, m2 /sec

F linear extrapolation of the static load curve, F = F(a)

tmn coefficients in mth cubic spline equation, n = 1, 2, 3
Fs  static load, Fs = Fs(a) d k /....

F mean value in Taylor expansion for load, F = F(r)
o model coefficient to be determined empirically,

F modulus of first harmonic in Taylor expansion for a = o(C)
load,F = F(r)

r reduced time, r wt/k
ft forcing function on F, defined by second member in

equation (2) W frequency of oscillation in pitch, rad/sec

f2 forcing function on F2 defined by second member in () derivative with respect to time, a/at
equation (3)

(") second derivative with respect to time, l2/a t2

k reduced frequency of oscillation, k = c.x/2U.
.0 imaginary part of quantity

Re Reynolds number, Uc/v
I' total number of increments in one cycle

- model coefficient to be determined empirically,
r r(a) 6? real part of quantity S

v
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APPLICATION OF THE ONERA MODEL OF DYNAMIC STALL

K. W. McAlister, 0. Lambert,* and D. Petott

Aeromechanics Laboratory, U.S. Army Research and Technology Laboratories, AVSCOM •

SUMMARY

A semi&.pirical model, developed at the Office National D'Etudes et de Recherches Aerospatiales
4ONFRbf) to predict the unsteady loads on an airfoil that is experiencing dynamic stall, is investigated. This
study, describes the math model from an engineering point of view, demonstrates the procedure for obtaining
various empirical parameters, and compares the loads predicted by the model with those obtained in the
experiment. The procedure is found to be straightforward, and the final calculations are observed to be in
qualitative agreement with the experimental results. Comparisons between calculations and measurements

* also indicate that a decrease in accuracy results when the values of both the reduced frequency and the .,

amplitude of oscillation are large. Potential quantitative improvements in the accuracy of the calculations
are discussed in terms of accounting for both the hysteresis in the static data and the effects of stall delay in
the governing equations.

INTRODUCTION airfoil may have doubled their maximum steady flow values

(ref. 3). As the vortex is swept into the wake of the airfoil, a
sudden reversal in the lift and drag loads occurs, thereby

When a helicopter is in forward flight, the rotor blade creating a significant source of vibration on the helicopter.
must undergo a cyclic variation in incidence in order to Another damaging aspect of dynamic stall is the rapid growth "
balance the lift developed both over the advancing and and decline of a nose-down pitching moment. This results
retreating quadrants (to prevent roll), as well as over the from a rearward movement of the center of pressure which "
forward and rearward quadrants (to prevent pitch). Increas- accompanies the passage of the vortex over the airfoil and .
ing the flight speed of the helicopter increases the asymmetry into the wake. This impulsive character of the pitching .
in the local velocity distribution between the advancing and moment acts as a strong forcing function on the aeroelastic .

retreating sides. In order to eliminate the roll moment pro- stability of the rotor blade (ref. 4). A potentially dangerous
duced by this asymmetry, the incidence of the rotor blade situation may therefore develop if the interaction between
must be decreased on the advancing side and increased on the the blade and the surrounding air results in oscillations that
retreating side. Clearly there is a limit to how much the inci- are negatively damped. Since rotor blades are typically both
dence can be increased without causing the flow to separate slender and flexible, this unstable condition, known as "stall
from the blade. Nevertheless, conditions often exist when flutter," can be especially threatening to the safety of the
this separation boundary is briefly penetrated, giving rise to a helicopter.
phenomenon called dynamic stall. In order to calculate the performance boundaries of a

The characteristics of dynamic stall are strongly influ- potential rotor design, it is essential that the mathematical
enced by the time-dependent nature of the viscous region formulation adequately models the effects of dynamic stall.
surrounding the airfoil. Although flow reversal may have Unfortunately. a closed-form solution does not exist. In fact,
progressed over most of the upper surface of the airfoil all of the currently available methods employ some form of
during a rapid increase in incidence, the boundary layer will approximation or empiricism, and are also normally
normally remain attached for angles of incidence well restricted to two-dimensional flows (ref. 5). Many of these '' "'
beyond the stall angle observed in a steady flow environment prediction techniques are based directly on a recognition of - .-
(refs. I and 2). The onset of stall is initiated by the growth the global attributes contained in the unsteady force and"- -:* .i "'
and passage of a vortex over the airfoil. By the time the moment responses that are observed in the angle-of-attack
vortex has reached the trailing edge, the resulting unsteady domain. As a consequence. expressions have been devised by -
flow values for the lift, drag, and pitching moment on the numerous investigators that describe explicitly the "time-

*e ddelay" character of the various events embodying dynamic
*lngeniur de I'Armement. Service Technique des Programnmes stall. A particularly noteworthy representative of this

Aeronautiques. Paris Armees. France.
*. tResistance dcs Structures. OITice National DYEtudes et de approach is presented in reference 6. Two time constants are

Recherches Aerospatiales, Chatillon. France. featured in this model: one describes the time delay after
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exceeding the static stall angle and before a vortex is shed assumption to be imposed, in light of the model's applicabil-

from the leading edge of the airfoil, and the other describes ity to separated flows, is that the instantaneous force and
the time required for this vortex to reach the trailing edge. moment loads do not depart too greatly from their steady

Generally speaking, most prediction techniques for flow values. This condition is necessary so that the coeffi-
dynamic stall have been successful only within the limits of cients appearing in the governing equations reduce to func-
the data from which they were fabricated. A model that is tions of only velocity and angle of attack for a given airfoil. . "
very much dependent on its data base is described in refer- Additional simplifying assumptions are then made concern-
ence 7. However, a fairly extensive range of data was con- ing a reduction in the order of the equations and the elimina-
sidered initially, and allowance was made for expansion. tion of certain cross coupling coefficients. The validity of .. ,
This method is based on a set of algebraic equations contain- these assumptions could not be demonstrated analytically,
ing parameters that mi-st be determined from the available and had to be confirmed by experiment. A significant out-

synthesized experimental data. Published results show that come from this simplification is that the model can now be
the procedure accurately reconstructs the aerodynamic loads used to evaluate any given load, independent of the others.
that occur during dynamic stall over a wide range of condi- Evaluating the model at different amplitudes and frequen-
tions. An important factor contributing to the success of cies provided the necessary guidance in reaching the final
this method lies in the particular set of dynamic parameters form of the equations. Airfoil oscillations below stall indi-
that were postulated. The accuracy of this approach is depen- cated that the loads could be represented by a first-order
dent on the correctness of three semi-empirical expressions equation, having a real negative pole: whereas oscillations
that describe (a) the airfoil incidence when moment stall beyond stall produced loads that required a second-order
occurs. (b) the dimensionless time when the stall vortex equation representation, having two complex conjugate
reaches the trailing edge. and (c) the incidence when the flow poles. In view of these observations, the single-equation
reattaches to the surface of the airfoil. formulation for each load was abandoned. Instead, each load

In contrast to the niethods that attempt to duplicate the would be divided into two components, one governed by the
effects of dynamic stall, a unique method was developed at first-order equation and the other by the second-order equa-
ONERA that utilizes the characteristics of differential equa- tion. Letting the function F denote the total aerodynamic
tions to directly simulate the aerodynamic responses in the load of interest, the governing equations become
time domain (ref. 8). Although other techniques may render
more accurate predictions of rotor blade loading, the primary F= /F- + F 2  (1) -

advantage of the ONERA model is that the governing system
of equations can be readily linearized. therefore making it T'1 XF 1 =XFW + (s + o)& + s6 (2)
well suited for inclusion in analyses of rotor stability (refs. 9
and 10). Certain aspects of the model are continuing to F2 + aF2 + rF2 =-(rA + e (3) -.

undergo refinement: however, the fundamental concept
appears to be well established (refs. II and 12), and will not where the coefficients X, s, o, a, r, and e will be treated as
be restated in detail here. Instead, the scope of this presenta- functions of a only, the instantaneous incidence of the air-
tion will be to describe the model from an engineering point foil. Strictly speaking, these coefficients are also dependent
of view, to demonstrate the attainment of various empirical on the free-stream velocity (or alternatively on the Mach
parameters, and to compare the loads predicted by the model number) and the profile of the airfoil. However, to illustrate
with those obtained from an experiment, the application of this technique. it is sufficient to consider

an incompressible flow so that a becomes the only param-
eter. Since these coefficients actually represent time deriva-

DESCRIPTION OF THE MATH MODEL tives (no longer explicitly apparent), and must be determined
experimentally, they can be obtained by performing small- -. -

amplitude oscillations around discrete values of a. The range - .

General Equations of angles over which the coefficients must be specified is . "
dictated by the large-amplitude cases to be calculated by the

A fundamental assumption is made that the aerodynamic model. The variables F1 and Ai also functions of u. are com- 0

loads can be determined from a set of nonlinear transfer pletely determined by the static behavior of the airfoil. F
functions containing input variables that describe the motion denotes a linear extrapolation of the static load curve and
of the airfoil. Considering the operational and structural A is defined to be the difference between this extrapolation ..

environments that are typical for helicopter rotor blades, it and the actual static curve. Using a hypothetical lift response
is further assumed that all input and output variables are as an example, the relation between various terms is illus-
first-order small quantities and that the coupling can be trated in figure 1. 0
neglected between the chord force and either the normal
force or the pitching moment. Perhaps the most restrictive
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As the frequency of the airfoil oscillation diminishes in with a can be ascribed. In this case, the function A(a) can be

the limit, all time derivatives vanish and equations (1)--3) written as

reduce to

dA
lim F= F I - A = Fs  Ale, = Al0 + (a -C) a (6) 0

o t.. ..

where F. is the static load response. If the airfoil motion is Although the variation of F! with a is simply a straight line,

unsteady, but remains entirely within the linear range, then regardless of the amplitude of oscillation, it will nevertheless

A = 0 and the load is completely determined by the solution be expressed in the same form as for A; so that

of equation (2) for F,.
dF1

F11 = F1 + (a - ao) - (7)

Small-Amplitude Equations a CI daao

To determine the relationships between the six coeffi- Reclaiming the imaginary parts of a and F in equa-

cients and a, an experiment is required in which the airfoil is tions (4) and (5) above, the dependent and independent S

made to undergo pitching oscillations at different frequencies variables become

and mean angles, and for values above and below stall.

Although the pitching motion can be random (ref. 11), only a = a + a 1 e
ik? (8)

harmonic variations in incidence will be considered. Letting
ao denote the mean angie, a, the amplitude, and k the F, = E + F eikr (9)

reduced frequency of oscillation, the incidence can be T
generally expressed as F2 -F +F eikr (10)

a = ao + 61[a, ei k?] (4) Substituting the quantities given in equations (6)-(10) into
the governing equations (1 )-(3) yields

and i not restricted to small-amplitude motion. However, if
the amplitude of the oscillation is small, say a, < 10, then F= T1 + F2 + (F, + F)eikT (1 )

the corresponding load can be approximated byrdF

F=F+6[F eikr] (5) 10 da la0

where F represents the mean value of the load, not necessar- 1
ily equal to Fs, and F is a complex function representing the + ik(Xs + u) -sk a eikr  (12)

modulus of the first harmonic of the load. This is only anJ
approximate expression for the load since the forcing func- rFp2 + (r + iak - k 2)F 2 e

ikT = --r Ao - (r + ik)a dA

tion in equation (3), and the coefficients in both equa- a0 'da " "

tions (2) and (3), are nonlinear functions of a. As such. " -.

equation (5) is more correctly written with higher order (13)

terms, however, experiments have shown that when the 0

amplitude of the oscillation is sufficiently small, the load Equations (12) and (13) both state that two equalities must

response is nearly elliptical so that the first-harmonic repre- be satisfied; the terms of one equality are steady while those

sentation is acceptable. of the other are unsteady (identified by their product with -. -

Given the experimental observation that for small- the complex potential term). The equalities that are corn-

amplitude oscillations a first-order input in a produces a first- posed of steady terms are:

order output in F, the governing equations (1)43) can be S
simplified to a system with locally constant coefficients and F. = Fl10o

with forcing functions that are first-order harmonic relative

• to a. The forcing function in equation (2) already has a first- and

harmonic form since it is linear in a and its derivatives. The
same is not generally true of the forcing function in equa- F 2 = -AIa

tion (3) since the term A is normally quite nonlinear with a. 0

However, given the restriction that the oscillations will be Summing the above two expressions to obtain the mean

small in amplitude means that a piecewise-linear variation value for the load gives " - - ..'

3

- - - - - - - - -- - - - - - - - - - - - - -°.- -.-. . . . .- --- - .'- --. % . . °. - -. --° , .



F=-Ila0 -Ato Fs  (14) analyzed to determine the real and imaginary components of
the first harmonic. The coefficients, which are taken to be

and states that when the amplitude of the oscillation is small, constant during the oscillation around any given mean angle,

the mean load will be the same as its static value. In actual- must assume values as required to satisfy the equality -

ity, the mean value will depart slightly from its static value as between the real and imaginary load measurements and those 0

the frequency of oscillation is increased: however. the linear- described by equations (16) and (17). After obtaining these

ization of the equations prevents this behavior from being coefficients, and knowing the static behavior of the airfoil.

reproduced. Taking similar steps to arrive at the unsteady the governing equations (1)-{3) can be solved to obtain the

portion of the load results in load. This entire sequence is diagrammed in figure 2.

P- an + J. dao DESCRIPTION OF THE EXPERIMENT
2 (15)

(N +ik) (r +iak -k)

The experiment was conducted in the 4000-liter, closed-

This relation represents the transfe; function of the oscillat- circuit facility at the Aeromechanics Laboratory Water

ing portion of the load (1') relative to the input (a, ). Separat- Tunnel. Ames Research Center (fig. 3). The test section is

ing the real and imaginar. components of equation (15) 21 cm wide, 31 cm high, and extends horizontally a distance

yields of 86 cm. The airfoil selected for this study was a Boeing-
Vertol VR-7, having a two-dimensional planform with a

Jr I d 1  chord of 10 cmi. The airfoil was positioned so that it spanned
= + .... .the width of the test section to within 0.015 cm of either

(da I00 + kA) da ,/ side. In order to minimize the moment of inertia about its
pitch axis, the airfoil was cast from a lightweight epoxy resin
around a metal spar. The pitch axis was placed at the quarter-

kr - ae) - r dA% (16) chord location. When installed, the spar of the airfoil
(k -r)2 + (ak) doJ extended through the test-section windows and was sup-

ported by lift and drag transducers on both sides (fig. 4). One

and end of the spar was adjoined to an instrumented drive shaft
through a torsionally stiff coupling so that airfoil incidence
and pitching moment could be measured. Frictional

0 ~moments imparted by the support bearings and seals were

•] = ks N 2 ( also measured and later treated as dynamic-load tares.
) ( + )  o) Electrical instrumentation consisted of transducers for

ek(k 2 - r) + akr dA the measurement of airfoil incidence, lift (both sides), drag
+ r -- da (17) (both sides), total pitching moment, and the bearing and

A +o seal moments (both sides). After amplification. these signals

were either appropriately summed (i.e., total pitching

and for lrge values of k, assuming that k >> X, equa- moment minus both frictional moments) and displayed on
tion (16) shows that a is the asymptotic value of the real local monitors: or they were transmitted to a remote data

P part of the load: similarly, equation ( 17) shows that s is the acquisition system where they were digitized, averaged, and
asymptotic value of the rate of change of the imaginary part stored for later processing. Digitiing and ensemble averaging
of the load with respect ito the reduced frequency. In other was based onl two additional signials: a 360/rev pulse train
Words, that was synchronous with wt, and a I/,rev pulse that was

synchronous with the beginning of each cycle of airfoil
F) oscillation. On-line ; onitoring for smoothness of the ensem-

lir = o + iks (1X) ble average of a particular load provided the basis to termi-
k-, a, nate the data acquisition: and the number of cycles used in

generating the average, therefore, was dependent on the
The small-amplitude equations are now in a convenient extent of the nonperiodic content of the signal. It is esti-

form to evaluate the six coefficients, and they can be applied mated that the incidence of the airfoil could be measured to
over the entire incidence range, both above and below stall. an accuracy of 0.20. Lift and drag measurements are con-

To evaluate these coefficients, an experiment must be per- sidered to be accurate to 0.01 N and the pitching moments
formed to obtain the load measurements during small- to 0.002 N it.

amplitude oscillations. The measurements are then Fourier

4
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With the airfoil set at zero incidence, the speed of the To determine the six coefficients of the math model,
water was adjusted to produce a dynamic pressure of small-amplitude oscillations in pitch are required around a
689 N/i (0.10 lb 1 in. ). This pressure corresponds to a selection of mean angles in the linear and nonlinear range.
Reynolds number o (Re = 120,000 based on the chord of tile For some airfoils, the static stall angle marks the division
airfoil. The tunnel was then operated at a fixed drive speed between these two ranges- however, as can be seen from
for the duration of the experiment. Some reduction in tunnel figure 7, the nonlinear range in the present case begins well
speed is thought to have occurred when the airfoil was below the stall angle. Within the linear range, three of
stalled: however, no attempt was made to either measure or the coefficients become inconsequential because A = 0:
account for this degradation. while among the remaining three coefficients to be evaluated,

In order to obtain the asymptotic character of the real two are usually found to be constant (ref. 12). As a result
and imaginary components of the load at high frequency, say of this reduction in complexity, data are needed for only
at k = 1.2. an oscillation frequency of around 4.5 Hz would a few mean angles in the linear range. In the present case
be required. Inertial loads might, therefore, become a prob- the linear range appears to be so brief that little advantage
lem. The inertial loads are potentially less serious in water can be realized in the number of mean angles to be
than in air because of the relatively low density ratio required.
PmodeltPwatcr compared with PniodeliPair. However. at the In keeping with the assumptions under which equa-
bezinning of this test it was not known whether the inertial tions (16) and (17) were deried, the amplitude of oscillation
effects on the hydrodynamic load responses could be was restricted to a = 0.50. Measurements were made at
neglected. Furthermore, there was also concern about 13 mean angles (a = 00, 1.50 , 30. 50, 70 9", 11°.130. 150.
gravitational effects (buoyancy) and 'he possibility of 170, 190, 21', and 230) and 11 reduced frequencies
variable support loads (due to misalignments) during angle (k = 0.025, 0.05, 0.10, 0.15, 0.2. 0.3, 0.4, 0.5, 0.7, 0.9,
changes. The contribution of all such loads to the balance and 1.2). Excluding the lowest-frequency case, these small-
measurements is summarized schematically in figure 5. amplitude results are presented in figures 15(a)-15(m) for

To obtain the desired hydrodynamic load, the gravita- the lift, drag, and pitching moment. Also included are the
tional. support, and inertial loads must be removed from the first-harmonic equivalents of these data (shown as dashed
unsteady load measurements. This can be accomplished lines). The high frequency component of the lift and
during the data reduction phase, provided that the appro- pitching-moment signals, especially apparent for values of
priate quantities are measured at the time of the experiment, incidence below 1.50, is due to Karman-vortex shedding from
The inertial effects can be accounted for by lowering the the airfoil. The frequency of this vortex shedding appears to
water in the test section and performing the same unsteady be around 47 Hi. The first-harmonic curves appear to com-
load measurements in air. The gravitational and support loads pare well with the actual data, and therefore will be accepted
can be accounted for by performing quasi-static measure- in the following analysis as an accurate replacement for the
ments in water (at zero flow) as well as in air. Having snall-amplitude measurements. Examining these first-
recorded these different results, the final hydrodynamic load harmonic curves in more detail, the real and imaginary com-
can be calculated by following the procedure outlined in ponents of each load modulus are separated and shown in
figure 6. figure 16. For any given load, these components correspond

to 6F] and .'/[F] in equations (16) and (17). and as such
provide the basis on which the six coefficients can be

DISCUSSION OF RESULTS determined.

Load Measurements Coefficient Evaluation 0

The variables Fl(c,) and A(ct) are both essential elements in The most important step in finalizing the governing differ-
the math model, and they can easily be determined from the ential equations for the loads on a given airfoil is the deter- -. .
iatic behavior of the airfoil. Their variation with a must be mination of the equation parameters. Specification of the

established over the entire incidence range for which large- parameters Fl(a) and A(a) evolves directly from the static
amplitude responses are to be calculated. Static measure- load measurements, which are shown in figures 17 and 18.
ments of lift, drag. and pitching moment are shown in To smooth out any irregularities in the experimental data.
figure 7. In order to evaluate the capability of the model for and to provide a more well-behaved variation with incidence - - -
calculating loads under dynamic stall conditions, measure- so that reasonably bounded derivatives could be calculated, "-"-"-"-
ments were also made with the airfoil undergoing large- the static curves have been fitted with piecewise-cubic "'," -

amplitude oscillations over a range of reduced frequencies splines. Both A and dA/da are derived using these curve fits.
(figs. 8-14). Evaluation of the six coefficients is less straightforward.

Generally speaking. coefficients cannot be found which . .

5
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precisely satisfy equations (16) and (17) over the frequency = 0.25 (Va) (20)
range desired, and at the same time culminate in a smooth
dependence on incidence. Instead, solutions must be sought Another coefficient that appears to vary little with inci-
at each mean angle which satisfy the equations for 6? [F] and dence is s. Representing the asymptotic slope of the imagi-
• 1[ in a least-squares sense. Furthermore, experience has nary part of the load at high reduced frequencies, the experi-
shown that a particular order should be followed in establish- mental data presented in figure 16 confirm that s can indeed
ing the set of coefficients. Since the primary intent of this be approximated by a constant over nearly the entire inci-
presentation is to provide an example of the application of dence range. For those cases in the nonlinear range where the
the ONERA model, the following discussion will be limited asymptotic value has not yet been reached at the highest
to the lift coefficient so that the method can be discussed in reduced frequency under consideration (i.e., at a0 = 230), it
more detail and with greater clarity, is common practice to accept the extrapolated value for s

Before evoking this procedure, it is useful to identify from the linear range. Taking an average of these measure-
those coefficients that, from experience, have been found to mients yields
be independent of incidence and whose values are essentially
declarable by inspection. Considering the linear range, equa- s = 0.12 (Va) (21)
tion (16) states that Determination of the remaining four coefficients is more

df- laborious since they must be considered simultaneously, they
2- +ok 2  typically all vary with incidence in some nonlinear fashion,rei .0 and vet nowhere do they satisfy the governing equations

M - )i ) precisely. The optimizing algorithm selected for this task is
based on a numerical scheme that finds solutions to equa-
tions (16) and (17) so as to produce the least accumulated

This expression can be used to examine the bounds m disagreement with the measured load responses. Considering
6?[F.al as k is varied. On one extreme, k 0 requires that that these coefficients will vary mostly in the nonlinear
63[F,'a ] (dI,/da)ao. On the other extreme, letting range, and since A is a more direct measure of the departure
k - large suggests that 6[F/a1 I -o. Although a is in general from the linear curve than is a, all four coefficients will be
a function of a, its value can be readily approximated in the considered as explicit functions of A instead of a. This -

linear range. It can also be hown that the average value for implies that their values in the linear range (where ai may -

6? [F/la I over this extreme range of reduced frequencies is vary greatly) will be invariant and equal to their values at
[(dFi/da)a° + or1/2, and that this value is obtained when A = 0.
k X. Accordingly, a second coefficient can be approximated Exercising the optimization routine with all four coeffi-
in the linear range. Experience also indicates that the niagni- cients initially unknown yields an expected dispersion of
tude of X has an effect on the manner in which the real and solutions (fig. 19). The customary step at this point in most JR
imaginary asymptotes are approached in the linear range: parameter-identification procedures is to recognize which
small values accelerate the approach and large values cause feature or characteristic of the data is most prominent, and
the approach to be more gradual (ref. 13). Additionally, on which coefficient is this feature most dependent. Sensi- -- -. "
some observations have been made about ? in the nonlinear tivity tests have shown that the location of the peak values
range. Experience has also shown that for low and medium of both the real and imaginary responses is such a feature,
reduced frequencies, F2 is dominant over F, . Recalling from and that it is strongly (but not solely) dependent on r. The
equation (15) that the first term of the second member optimization for r will therefore be examined first, and a 0
represents F, and that the second term represents ,F2 , it is curve defined that best describes this coefficient's variation
evident from the composition of these two quantities that with A. Although a simple parabolic relationship might have
the value of X is of no consequence in this case. Furthermore, sufficed in this case, the distribution of points for the other
an examination of equation (!8), which is valid at high three coefficients indicated that a more flexible curve fit
reduced frequencies, shows that X is completely absent from would be necessary. To be consistent, a piecewise-cubic
the expression for F1 (which equals the sum of T'1 and F 2)- spline was chosen for all curve fits. A curve is first faired
This implies that the value of X has a negligible effect on the through the data and then a set of manufactured data points
math model for all frequencies in the nonlinear range, and is defined along this curve. On any given interval between - -
that its value in the linear range can simply be extrapolated these manufactured points, the curve is described by:
over the entire incidence range. As a result, it has been the
practice at ONERA to simply accept a constant value for /7 =r mo + mI(Am -a) + M2(AM -a) + tm 3 (Am - a)3

.. In keeping with this attitude, X can be approximated from •
the data for the real component of the lift at ao = 0° shown (22)
in figure 16(a):
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where m represents the interval for which am < a < am+, characteristic of the real and imaginary responses in the non-
Obviously, this curve fit is not unique, and a great deal of linear range (ao > 90). The data in this range appear to be
subjectivity can influence the weighting of various data reasonably well behaved so that a curve similar to the one
points. In such cases, experience can become an important described by (22) can be established for a(A). This curve,
factor in the shaping of curves through the data. In any case, when extrapolated back to . = 0, yields a value for a that is
it may still be necessary to make certain adjustments to the substantially higher than what the optimizations (as well as
coefficients after reviewing how the model calculates a large- the experimental observations) require. During a calculation
amplitude case. For example, assume that several calculations for an airfoil at low incidence recovering from stall, this
are performed for an airfoil undergoing large-amplitude oscil- region will contribute significantly to the damping in the
lations through stall. Furthermore, assume that the airfoil equation for F2 . Therefore, some modification to the curve
then returns to attached flow conditions with suspiciously for a as A - 0 can be anticipated.
little change in the hysteresis, in each case, as the reduced The optimization process can now be narrowed down to
frequency is increased. This may suggest that the values of the evaluation of a single unknown, e, and the resulting dis-
a and r in the linear range (hence their value at A = 0) need tribution of computed values for this coefficient is shown in
to be modified to allow less damping and more response in figure 22. Although the variation of e with A is quite differ-
the equation for F2 . This behavior could not have been fore- ent after stall (A > 0.9) compared with its behavior over the
seen from smll-amplitude tests. and perhaps not even from remainder of the nonlinear range, the fitting of a piecewise-
large-amplitude tests where the reduced frequency is small. cubic spline to the data is straightforward. As can be seen
However, for large-amplitude oscillations at moderate from the governing equations (1)-(3), the coefficient e con-
reduced frequencies, the time-history effects become suffi- tributes only to the forcing function for I-',. Aside from its
ciently significant and can influence the loads even though impact on the time history of the solution as A - 0. the fact
the forcing function in the equation for F2 may be locally that e appears as a product of A1 means that its value in the
small or zero. linear range is not important. The unknown e affects the

Although the curve for r can be regarded as provisional, amplitude of both the real and imaginary parts of the
and eventually may be modified, it will be considered as response in the nonlinear range as well as the phase of
fixed for the present. With X, s, and r specified. the optimiza- response relative to the motion of the airfoil. Negativ,
tion process is repeated- but now only a, a, and e are con- of e cause a phase lag with respect to a and as the m .- ide
sidered to be unknown. As can be observed in figure 20, the of e increases, the phase lag tends toward 90' . The oppocite
dispersion of points for the remaining three coefficients is trend occurs for positive values of e.
considerably reduced, thereby the plotting of succeeding To conclude the optimization process, the expressions
curve fits can be done with greater confidence. Representing obtained for the six coefficients will be coupled with equa-
the asymptotic value of the real part of the load, the data for tions (16) and (17) to examine the real and imaginary com-
o will be considered as the most reliable even though the ponents presently represented by the model. The focus of
maximum reduced frequency at each a0 generally appeared the examination will be on how well the model reproduces
to be too low to reveal the actual asymptote. A simple curve the real and imaginary components of the lift coefficient
fit through the data for a would be especially infeasible in obtained in the experiment. Figures 23 and 24 show the
this case. For the special case when A = 0. the value for u comparison between the experimental values (discrete sym-
used to evaluate N (recall when a = 00) also applies. For bols) and the calculated values (solid curves) at the mean
values of A near zero. o is perhaps more dependent on a angles for which data exist. Excellent agreement is obtained
(explicitly) than on A. whereas for larger values of A. a very through ao = 150; however, the calculations resemble only
demonstrative dependence on A is observed. In fairing a the trend of the experiment for mean angles between
curve through the data for a, those points for which A1 - 0 170 <_ a 0 < 230. That such good agreement exists between
(and which may eventually require some explicit dependence the calculations and the experiment for low values of a0 (in
on a) were ignored and an expression similar to (22) was spite of a disregard for many of the computed optimizations . .

established for a(A). in the range A z0) suggests that the small amplitude tests
With only two unknowns remaining, a and e. the optimi- provide little information about the coefficients r, a, a. and e -

zation procedure yields a set of new values for each coeffi- in this domain. The less satisfactory agreement between the
cient with even less dispersion (fig. 2 1). Like a, both a and e calculations and the experiment for the higher values of a,
exhibit a behavior around A - 0 that may require an explicit (A > 0.2) may be either due to an inadequacy in the model's
dependence on a if strict adherence is to be retained. How- equations to account for a fully separated flow or due to the
ever, in keeping with the decision made for a, those points optimization process which assigned equal weighting to each
will be ignored for the present. Instead. the value of each of the experimental observations. In any case. a judgment on
coefficient at A = 0 will be that obtained by extending the the consequence of this shortcoming will have to await the
curve from higher values of A. The coefficient a affects both calculation of a large-amplitude case. The topographies of
the amplitude and width of the mid-frequency wave that is the real and imaginary components over the k-ao p!ane are
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shown in figure 25 for the experimental data and in figure 26 computation of equations (2) and (3), respectively. The
for the math model using the coefficient optimizations upper-left subplot shows the calculated value for the lift
(recall fig. 22). coefficient, F, + F 2 , along with the actual measured

response (dashed line). The results given in these figures indi-
cate that the math model does reproduce qualitatively the 0

Large-Amplitude Calculations increases in both overshoot and hysteresis as the reduced
frequency is increased. Even the slight surge in the lift

Using the expressions for the six coefficients obtained response just prior to stall (ab well as just prior to reattach-
above, the unsteady load for a prescribed airfoil motion can ment) is correctly predicted by the math model (i.e., see . .

be calculated from equations (1)-(3). First, the governing fig. 27(c)). This characteristic is believed to be attributable
system must be reduced to a set of first-order equations in to the term A that appears in the forcing function for 1"2, 0
order to use a standard differential-equation solver. The and reflects the abrupt static stall that was actually measured
governing equations are readily transformed to the following: in the experiment (recall figs. 17 and 18). However, the

extent of both the overshoot and the hysteresis appears to be
= 1-' + t.2  quantitatively incorrect. In addition, the calculated lift coef-

ficient during the deep-stall phase of the motion (&< 0) is
F1 = -XW1 + WE + (Xs + 0)& + s6 generally too low, and becomes even more so as the reduced

(23) frequency is increased. It appears that a decrease in accuracy
T 2 = F3 results when the values of both the reduced frequency and

the amplitude of oscillation are large.
1*3 = -aF3 - r 2 - (rA + e A) I To overcome the quantitative disagreement in the lift

overshoot between the calculations and the measurements, it
Given a set of initial conditions, say Fi(r 0) = 0.0 appears that the math model must be amended to better
(i = 1. 2. 3). a time marching solution can be generated with account for the effects of stall delay. This eventuality was
dimensionless time 7. the independent variable, expressed as envisaged early on by the architects of this model (ref. 8).

Consequently, an allowance for the observed delay in stall
CA) t T2rn was provided for through the product of a unity-step func-

(n 1 2.3 ... .) (24) tion, E, with the forcing function on F 2 in equation (3). The
k \k intent of this procedure is to disable the forcing function on

F, during a certain period of time, 6r, beginning when the
where N denotes the total number of increments in one static stall angle is exceeded. This dimensionless-time interval
cycle. The number of time steps required to reach a steady- is defined by
state solution depends on the magnitude of the unsteady air-
foil motion. Therefore, the higher the reduced frequency, k,
the greater the number of time steps required. /= t (26)

By requiring that 7 = 0 when a = 00. the sinusoidal motion (
of the airfoil can be described by

and typically has been set at about 8r 10 in recent applica-
a = a0 - 01 cos 7k (25) tions of the model (ref. 12). After satisfying this delay in

time, the forcing function then assumes its current value. The
The calculations are based on a mean angle and amplitude of time-delay concept (a prominent feature in ref. 6) is physi-
oscillation of cao = a, = 100 and a range of reduced frequen- cally based on the overshoot caused by the stall vortex. This
cies from 0.002 < k < 0.25. These conditions were chosen vortex induces additional lift on the airfoil when passing over
because they challenge the math model to accurately predict the airfoil.
tile dynamic loads occurring during deep stall and with vary- Since vortex shedding just prior to reattachment is gener- -.-

ing degrees of overshoot (values above static Ci-ma.x) and ally' not obvious from available experimental data, it is
hysteresis. The results for the lift coefficient are shown in unlikely that a similar time-delay factor applies to the stall
figures 27(a)-27(g), and a steady-state solution was reached recovery phase of the cycle. However, since a hysteresis
during the first cycle of oscillation for all of the cases clearly exists in the static response, it does seem appropriate
calculated. to distinguish between & > 0 and 61 < 0 in terms of the defi-

Each figure is subdivided into three subplots. The right- nitions for A (and therefore A). Doing so would automati-
hand subplot displays the calculated components of the lift cally establish a persistence in the forcing function on F2 and
coefficient, -', and P'2 , as well as the measured static cause an extension of the hysteresis. A proper accounting for
behavior of the airfoil (dashed line). The lower-left subplot the stall-delay effect during & > 0, as well as the recognition
shows the forcing functions f' and f2 that appear in the of a separate A. during & < 0, both have a potential for
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improving substantially the quantitative accuracy of the In the present case, the static curve becomes nonlinear prior
math model. As such, these considerations need to be evalu- to stall and deviates greatly from the classic tangent to the

• ated before proceeding to the modeling of the drag and data near at = 00. Furthermore, when stall does occur, it is
moment responses. quite abrupt. The extent to which this behavior affects the

applicability of the model has not yet been resolved. S
4. A comparison between calculations and measurements

CONCLUSIONS for large-amplitude cases at various reduced frequencies
shows that the math model does reproduce qualitatively the .. "

A semiempirical model, developed at the Office National increases in both dynamic-lift overshoot (values above static
D'Etudes et de Recherches Aerospatiales (ONERA) to Q-max) and hysteresis as the frequencies are increased. Even
predict the unsteady loads on an airfoil that is experiencing the slight surge in the lift response just prior to stall (as well 0
dynamic stall, has been described. Calculations were per- as just prior to reattachment) is correctly predicted by the
formed for comparing with results from an experiment in the math model. However, the extent of both the overshoot and
Aeromechanics Laboratory Water Tunnel. The static and the hysteresis appears to be quantitatively incorrect. In addi-
dynamic data obtained were for a Boeing-Vertol VR-7 airfoil tion, the calculated lift coefficient during the deep-stall
at a Reynolds number of Re = 120,000. Although lift, drag, phase of the motion is generally too low, and becomes even
and moment responses (both small and large amplitude) have more so as the reduced frequency is increased. It appears

been included in this study, the comparisons that have been that a decrease in accuracy results when the values of both
discussed, including the following conclusions, are confined the reduced frequency and the amplitude of oscillation are
to the lift coefficient. large.

1. The procedure, established at ONERA to identify the 5. It is believed that the quantitative accuracy of the
six coefficients in the math model, was found to be straight- math model can be substantially improved by incorporating a
forward and the trends consistent with earlier investigations time-delay factor to account for the delay in stall during the
when used with small-amplitude experimental data. & > 0 portion of the cycle. Also, based on the observed static

2. Coefficient optimizations were found that produced hysteresis. an improvement in the extent of the dynamic
excellent agreement between calculated and measured small- hysteresis may be realized by allowing for a separate A func-
amplitude responses, as long as the mean angles were within tion during the & < 0 portion of the cycle. It is recom-
00 < ao < 150. For the higher mean angles that correspond mended that consideration be given to both of these poten-
to deep stall. 17' < ao < 23°, the calculated small-amplitude tial improvements to the model before examining the drag - •
responses based on optimized coefficients in this range were and moment responses.
not in good agreement with measured values.

3. The shape of the static-lift curve in the present experi-
ment differs from the idealized version (as well as from mea- Ames Research Center
surements on other airfoils at higher Reynolds numbers) National Aeronautics and Space Administration .
around which the math model was originally formulated. Moffett Field, California 94035, June 18. 1984 S
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l1iure 1. VarIition of the real and imaginary load components with mnean angle and reduced frequency.
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