


MICROCOPY RESOLUTION TEST CHART NATIONAL BUREAU OF STANDARDS 1963 A

REPRODUCED'AT GOVERNMENT EXPENSE

ARL-STRUC-REPORT-402

235

AD-A149

ĩ

Л

C

1

-

1.1

Ľ

J. AUSTRALIA

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

MELBOURNE, VICTORIA

STRUCTURES REPORT 402

ANALYSIS OF THE DOUBLE OVERLAP FATIGUE SPECIMEN

by

J. PAUL and R. JONES

THE UNITED STATES NATIONAL TECHNICAL INFORMATION SERVICE IS AUTHORISED TO REPRODUCE AND SELL THIS REPORT

APPROVED FOR PUBLIC RELEASE

COMMONWEALTH OF AUSTRALIA 1984

COPY No

SPY V

FILE

M

84 12 31 040

APRIL 1984

AN 1 0 1985

В

AR-003-016

DEPARTMENT OF DEFENCE DEFENCE SCIENCE AND TECHNOLOGY ORGANISATION AERONAUTICAL RESEARCH LABORATORIES

STRUCTURES REPORT 402

ANALYSIS OF THE DOUBLE OVERLAP FATIGUE SPECIMEN

by

J. PAUL and R. JONES

SUMMARY

In recent years an analogy has been proposed between the behaviour of a bonded overlap joint and a bonded repair. This paper examines the behaviour of the fibre and the adhesive stresses in a bonded overlap joint and shows that the results of previous onedimensional analyses of this problem are invalid in the vicinity of the gap in the specimen. The fibre and adhesive stresses are also shown to be strongly dependent on the gap size.

C COMMONWEALTH OF AUSTRALIA 1984

POSTAL ADDRESS: Director, Aeronautical Research Laboratories, Box 4331, P.O., Melbourne, Victoria, 3001, Australia

CONTENTS

 NAME OF TAXABLE PARTY.

NOTATION	Page No.
1. INTRODUCTION	1
2. THE D.O.F.S. SPECIMEN	2
3. CONCLUSION	4
4. ACKNOWLEDGEMENTS	5
REFERENCES	
DISTRIBUTION	

DOCUMENT CONTROL DATA

1

Accession For	_
NTIS GRA&I	
DTIC TAB	
Unannounced	
Justification	
By Distribution/ Availability Codes	
Dist Sportal	

•

NOTATION

<i>u</i> , <i>v</i>	Displacements of nodes in x or y direction
σy, τ	Adhesive peel and shear stresses
8	Gap
σ_{u}	Unnotched failure stress for the boron-epoxy
ao	Critical damage zone size
σι	Fibre stress
σ _x	Stress in x-direction

1. INTRODUCTION

The Aeronautical Research Laboratories (ARL) in Australia has pioneered the use of adhesively bonded boron fibre reinforced plastic (BFRP) patches to repair cracks in aircraft components [1]. This procedure has been successfully used in several applications to RAAF aircraft, including the field repair of fatigue cracks in the lower wing skin of Mirage III aircraft [2] and in the landing wheels of Macchi aircraft [1, 2]. In each case, repairs were made by adhesively bonding a BFRP patch to the component with the fibres spanning the crack, the aim being to restrict the opening of the crack under load thereby reducing the stress intensity factors and thus preventing further crack growth.

Two approaches have been developed in Australia for the analysis and design of bonded repairs to thin metal sheets. The first approach to be developed is based on the use of the finite element method and is presented in detail in [3]. The second approach is based on a postulated analogy to an overlap joint [4, 5]. It has been shown in [3] that this analogy gives a good approximation for the stress intensity factor at the tip of a patched crack, provided that the crack grows in a self-similar fashion. Experimental work [6] has also shown that the overlap-joint specimens yield data on adhesive material properties which are particularly useful in aiding the choice of adhesive and surface preparation for a bonded repair. Indeed, from the experimental point of view, the overlap joint approach is particularly worthwhile. Unfortunately this paper shows that the approximate theory used in [4, 5] is invalid in the vicinity of the crack (i.e. gap). Consequently the accuracy of the expressions given in [4, 5] for the peak fibre stresses in the repair and the adhesive stresses over the crack, requires further investigation.

2. THE D.O.F.S. SPECIMEN

Let us begin by considering the simple double overlap joint (D.O.F.S.) specimens which are currently used in the joint UK/USA/Canada/Australian demonstrator program on crack patching. The geometry of these specimens is shown in Fig. 1.

A detailed finite element analysis was undertaken for each specimen geometry. The adhesive layer, aluminium, and the boron epoxy were modelled separately. The resultant finite element model consisted of sixty-eight of the eight-noded isoparametric elements. In this idealization the modulus for the aluminium was taken to be $E = 73 \times 10^3$ MPa, $\nu = 0.3$, whilst for the adhesive $E = 13.5 \times 10^3$ MPa, $\nu = 0.35$, and the the boron epoxy the values $E_{11} = 208 \times 10^3$ MPa, $E_{22} = E_{33} = 2.5 \times 10^3$ MPa, $\nu_{13} = \nu_{23} = \nu_{12} = 0.1677$ and $G_{13} = G_{23} = G_{12} = 5 \times 10^3$ MPa were used.

The resulting variation of the peak fibre stresses and adhesive stresses, and the displacements along the plane AA' (see Fig. 1) are given in Tables 1 and 2 for several values of the gap parameter g and for a stress of 137.9 MPa applied uniformly to the ends of the aluminium (see Fig. 1).

1

Boron	DDOF,	Adhesive	and	Fibre	Stresses
-------	-------	----------	-----	-------	----------

g (mm)	g σ_y τ thro			ress Distribution h Laminate		
()	(1411 a)		Bottom (nodes)	Top (node 4)		
8.0	 24 · 1	-41.3	635.0	472.5		
4.0	- 19 ·7	-42.5	670.0	433·0		
2.0	-15.5	-43.7	715.0	396 · 5		
1.0	$-12 \cdot 1$	-44.9	765.0	371.5		
0.25	- 8·2	-46.7	855.0	348 · 5		
0.0	- 6.8	-48.0	930.0	341.0		

TABLE 1(a)

Boron DDOF, Displacements Along A1 Face, See Fig. 1(b), in mm

					N	odes			
		9	183	192	209	218	235	7	3
g = 8.0 mm	u	0.02400	0.02393	0.02370	0.02330	0.02267	0.02173	0.02003	0.01132
g = 4.0 mm	u	0.01917	0.01910	0.01887	0.01847	0.01784	0.01689	0.01519	0.00625
g = 2.0 mm	u	0.01671	0.01664	0.01641	0.01601	0.01537	0.01442	0.01272	0.00352
g = 1.0 mm	u	0.01545	0.01538	0.01515	0.01474	0.01410	0.01315	0.01144	0.00202
g = 0.25 mm	u	0.01447	0.01439	0.01474	0.01376	0.01311	0.01216	0.01043	0.00064
g = 0.0 mm	u	0.01413	0.01405	0.01382	0.01341	0.01276	0.01180	0.01006	0.000

TA	BLE	2
----	-----	---

Boron DOF, Adhesive and Fibre Stresses

g (mm)	σy (MPa)	<i>т</i> (MPa)	σ _f MPa Stress Distribution through Laminate		
(1111)	(MIT a)	(IVIFA)	Bottom (node 3)	Top (node 4)	
8.0	-25.0	34 · 5	630.0	600.0	
4.0	-22·6	35.0	650·0	570·0	
2.0	-1 9 ·8	35 · 7	685·0	530·0	
1.0	17 · 0	36.5	725.0	495.5	
0.25	-13·1	- 37 · 1	800.0	453·0	
0.0	- 10.6	- 38 8	895·0	432 · 5	

3

for overlap joints is not valid in the vicinity of the gap; however, the overlap joint analogy can still be used, and the critical design parameters for crack patching evaluated, provided that a detailed two-dimensional analysis of the joint configuration is undertaken.

4. ACKNOWLEDGEMENTS

This work was done for Dr A. A. Baker as part of the TTCP panel PTP-4 demonstrator program on crack patching. The authors also wish to acknowledge discussions with Dr J. Hart-Smith of the McDonnell Douglas Corp.

DISTRIBUTION

AUSTRALIA

DEPARTMENT OF DEFENCE

Central Office

Chief Defence Scientist Deputy Chief Defence Scientist Superintendent, Science and Technology Programmes Controller, Projects and Analytical Studies Trials Directorate, Director of Trials Defence Science Adviser (U.K.) (Doc. Data sheet only) Counsellor, Defence Science (U.S.A.) (Doc. Data sheet only) Defence Science Representative (Bangkok) Defence Central Library Document Exchange Centre, D.I.S.B. (18 copies) Joint Intelligence Organisation Librarian H Block, Victoria Barracks, Melbourne Director General—Army Development (NSO) (4 copies)

Aeronautical Research Laboratories

Director Library Superintendent—Structures Divisional File—Structures Authors: R. Jones J. Paul

Materials Research Laboratories

Director/Library

Defence Research Centre

Library

Navy Office

Navy Scientific Adviser Directorate of Naval Aircraft Engineering Superintendent, Aircraft Maintenance and Repair

Army Office

Army Scientific Adviser Engineering Development Establishment, Library US Army Research, Development and Standardisation Group

Air Force Office

Air Force Scientific Adviser Technical Division Library Director General Aircraft Engineering—Air Force HQ Operational Command (SMAINTSO) HQ Support Command (SLENGO)

DEPARTMENT OF DEFENCE SUPPORT

Government Aircraft Factories Library

DEPARTMENT OF AVIATION

Library Flying Operations and Airworthiness Division

STATUTORY AND STATE AUTHORITIES AND INDUSTRY

CSIRO

Materials Science Division, Library Trans-Australia Airlines, Library Ansett Airlines of Australia, Library Commonwealth Aircraft Corporation, Library Hawker de Havilland Aust. Pty Ltd, Bankstown, Library

UNIVERSITIES AND COLLEGES

Adelaide	Barr Smith Library
Flinders	Library
Latrobe	Library
Melbourne	Engineering Library
Monash	Hargrave Library
	Professor I. J. Polmear, Materials Engineering
Newcastle	Library
Sydney	Engineering Library
N.S.W.	Physical Sciences Library
	Professor R. A. A. Bryant, Mechanical Engineering
	Assoc. Professor R. W. Traill-Nash, Civil Engineering
Queensland	Library
Tasmania	Engineering Library
Western Australia	Library
R.M.I.T.	Library
	Dr H. Kowalski, Mech. & Production Engineering

CANADA

CAARC Coordinator Structures NRC Aeronautical & Mechanical Engineering Library

Universities and Colleges

Toronto Institute for Aerospace Studies

FRANCE

ONERA, Library

INDIA

CAARC Coordinator Structures Defence Ministry, Aero Development Establishment, Library Hindustan Aeronautics Ltd, Library National Aeronautical Laboratory, Information Centre

INTERNATIONAL COMMITTEE ON AERONAUTICAL FATIGUE

Per Australian ICAF Representative (25 copies)

ISRAEL

Technion-Israel Institute of Technology Professor J. Singer

JAPAN

National Research Institute for Metals, Fatigue Testing Division

Universities Kagawa University Professor H. Ishikawa

NETHERLANDS

National Aerospace Laboratory (NLR), Library

NEW ZEALAND

Defence Scientific Establishment, Library

SWEDEN

Swedish National Defense Research Institute (FOA)

SWITZERLAND

F+W (Swiss Federal Aircraft Factory)

UNITED KINGDOM

Ministry of Defence, Research, Materials and Collaboration CAARC, Secretary

Royal Aircraft Establishment

Farnborough, Dr G. Wood, Materials Department Commonwealth Air Transport Council Secretariat

Admiralty Marine Technology Establishment

Holton Heath, Dr N. J. Wadsworth

St Leonard's Hill, Superintendent National Physical Laboratory, Library National Engineering Laboratory, Library British Library, Lending Division CAARC Coordinator, Structures

Universities and Colleges

Bristol	Engineering Library
Nottingham	Science Library
Southampton	Library
Strathclyde	Library
Cranfield Inst. of	
Technology	Library
Imperial College	Aeronautics Library

UNITED STATES OF AMERICA

NASA Scientific and Technical Information Facility Metals Information Boeing Company Mr W. E. Binz Mr J. C. McMillan Lockheed-California Company Lockheed Missiles and Space Company Lockheed Georgia McDonnell Aircraft Company, Library

Universities and Colleges

lowa	Professor R. I. Stephens
Illinois	Professor D. C. Drucker
Massachusetts Inst	t. of
Technology	M.I.T. Libraries
Lehigh	Inst. of Fracture and Solid Machanics
	Professor G. C. Sih

SPARES (20 copies)

TOTAL (160 copies)

Department of Defence

DOCUMENT CONTROL DATA

I. a. AR No. A R-003-016	I. b. Establishment No. ARL-STRUC-R-402	2. Document Date April 1984	3. Task No. AIR 80, 126
4. Title ANALYSIS OF THE DOUBLE OVERLAP FATIGUE SPECIMEN		5. Security a. document Unclassified b. title c. abstract	6. No. Pages 9 7. No. Refs
		U. U.	7
8. Author(s) R. Jones J. Paul		9. Downgrading Instructions	
10. Corporate Au Aeronautical R MELBOURNE	esearch Laboratories, P.O. Box 4331,		c. Downgrading d. Approval
Approved for p Overseas enquirer	tribution (of this document) public release rs outside stated limitations should be referred ant of Defence, Campbell Park, CANBERRA, A		Information Services
13. a. This docume No limitations	ent may be ANNOUNCED in catalogues and a	wareness services availabl	e to
13. b. Citation for	other purposes (i.e. casual announcement) may	y be (select) unrestricted	(or) as for 13 a.
14. Descriptors Repair Crack patching Fatigue (materi Reinforcement	als)		5. COSATI Group 1130
and a bonded re in a bonded over problem are inv	an analogy has been proposed between epair. This paper examines the behavio rlap joint and shows that the results of p alid in the vicinity of the gap in the sp to be strongly dependent on the gap size	ur of the fibre and the previous one-dimension ecimen. The fibre and	e adhesive stresses al analyses of this

END FILMED

2-85

DTIC